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Abstract. The application of computer vision technology to detect pro-
hibited items in X-ray security inspection images holds significant prac-
tical research value. We have observed that object detection models built
upon the Visual Transformer (ViT) architecture outperform those rely-
ing on Convolutional Neural Networks (CNNs) when assessed on publicly
available datasets. However, the ViT’s attention mechanism, while offer-
ing a global response, lacks the CNN model’s inductive bias, which can
hinder its performance, demanding more samples and learning param-
eters. This drawback is particularly problematic for time-sensitive pro-
cesses like security inspections. This research paper aims to develop a
lightweight prohibited item detection model grounded in the ViT frame-
work, utilizing MobileViT as the underlying network for feature extrac-
tion. To enhance the model’s sensitivity to small object features, we
have established dense connections among various network layers. This
design ensures effective integration of both high- and low-level visual fea-
tures without increasing computational complexity. Additionally, learn-
able group convolutions are employed to replace traditional convolutions,
further reducing model parameters and computational demands. Simu-
lation experiments conducted on the publicly available SIXray dataset
validate the effectiveness of the proposed model in this study. The code
is publicly accessible at https://github.com/zhg-SZPT/MVray.

Keywords: Object detection · Lightweight model · Visual
Transformer · X-ray security inspection

1 Introduction

X-ray security inspections are ubiquitous in airports, railway stations, large event
venues, and similar settings, serving to detect any prohibited items that indi-
viduals may be carrying in their luggage. The use of computer vision technology
for X-ray image analysis has been drawing increasing attention in both indus-
try and academia. In terms of practical application, the intelligent analysis of

This work was supported by the School-level Project of Shenzhen Polytechinc Univer-
sity (No. 6022310006K), Research Projects of Department of Education of Guangdong
Province (No. 2020ZDZX3082, 2023ZDZX1081, 2023KCXTD077).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14407, pp. 45–58, 2023.
https://doi.org/10.1007/978-3-031-47637-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47637-2_4&domain=pdf
https://github.com/zhg-SZPT/MVray.
https://doi.org/10.1007/978-3-031-47637-2_4


46 P. Sun et al.

X-ray security inspection images falls within the realm of object detection. Such
a model is expected to identify both the type and location of a prohibited item.
X-ray security inspection images exhibit unique characteristics that often lead
to the failure of traditional object detection algorithms. For one, items in the
X-ray images are positioned randomly. The penetrative nature of X-rays results
in an overlapping effect among different objects. Additionally, prohibited items
come in a variety of types and scales, with smaller ones posing the most signif-
icant challenge to the model and often leading to detection failures. In light of
these technical complexities inherent in the analysis of X-ray security inspection
images, traditional machine learning algorithms often fall short. Conversely, deep
learning technologies, notably those that involve Convolutional Neural Networks
(CNNs), have shown remarkable results in detecting prohibited items in X-ray
images [1].

Research into detecting prohibited items in X-ray security inspection images
within the deep learning framework primarily encompasses two aspects. On the
one hand, there are efforts aimed at developing targeted detection models, taking
into account the unique characteristics of X-ray images. For example, [2] imple-
mented more intricate Deep Neural Network (DNN) structures to alleviate the
impact of cluttered backgrounds on model performance. Other research, includ-
ing those conducted by [3,4], focused on addressing the issue of sample imbalance
in security inspection datasets to enhance the detection recall rate for prohibited
items. The intelligent analysis of X-ray security inspection images also grapples
with the challenge of multi-scale object detection. Certain works have managed
to maintain the visual features of small-scale objects within the network’s high-
level semantics through feature fusion and refinement [4,5]. On the other hand,
security inspection operations are subject to certain time constraints, necessi-
tating the consideration of the inference speed of visual detection models. A
common contention, although not rigorously proven, suggests that increasing
the complexity of DNN structures to enhance model feature extraction capabil-
ity may conflict with the efficiency of inference. In response, some researchers are
dedicated to designing lightweight intelligent analysis models for X-ray security
inspection images [6,7]. Notably, we have proposed a lightweight object detection
framework based on the YOLOv4 algorithm, incorporating MobileNetV3 [8] as
the feature extraction backbone [9]. This approach has demonstrated state-of-
the-art performance in prohibited item detection within X-ray images.

This paper focuses on the design of lightweight models for prohibited item
detection in X-ray images. An effective and practical approach to enhance model
inference efficiency is model compression, encompassing techniques like pruning,
quantization, lightweight structural design of complex models, and knowledge
distillation [10]. Model compression refers to an array of techniques aiming to
diminish the size, complexity, and computational demands of a Deep Neural
Network (DNN) model, while striving to preserve its performance or impact
it minimally. These techniques include weight pruning, quantization, and net-
work architecture search. Lightweight architecture design targets the creation of
neural network structures specifically tailored to have fewer parameters, lower
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computational complexity, and a smaller memory footprint, while still deliver-
ing competitive performance. Models such as the MobileNet series [8,11,12] and
ShuffleNet [13,14] fall within the category of lightweight CNN models. Distinct
from the preceding two strategies, knowledge distillation mimics the teacher-
student dynamic, wherein a less complex and smaller “student” model is trained
to replicate the behavior of a larger and more complex “teacher” model.

Recently, researchers have attempted to apply the Transformer model, which
has proven effective in natural language processing, to the field of computer
vision. Vision Transformer (ViT) [15] represents a pioneering application of
Transformer attention in the realm of vision, which segments an image into
flattened 2D patches and subsequently projects each patch into tokens linearly.
ViT model leverages self-attention mechanism for global interaction responses
among different patch tokens. Unlike the CNN model, the ViT model empha-
sizes global feature extraction and lacks inductive bias, therefore demanding
more data and learning parameters to ensure optimal model performance. For
instance, when compared to the classic lightweight model MobileNetV3 [8], the
ViT model boasts 16 times more parameters (85M in ViT-B versus 4.9M in
MobileNetV3).

We noticed that MobileViT [16], a lightweight ViT model, integrates the fea-
ture extraction capabilities of CNN and ViT and shows impressive performance
across multiple visual tasks. This paper employs MobileViT with the YOLO
detection head to construct a lightweight detection model for prohibited items
in X-ray security inspection images. To enhance model performance, two key
improvements have been made. Firstly, we modify the connection mode of the
feature extraction blocks in MobileViT to dense connections [17]. This change
ensures that the model can achieve cross-scale feature fusion without increasing
the computational load, and effectively solve the problem of missed detection
for smaller-sized prohibited items. Secondly, the Learning Group Convolution
(LGC) [17] is applied into the feature extraction backbone to further reduce
the network’s learning parameters. The proposed model, tested on the SIXray
dataset [18], achieves an mAP of 81.21% with 5.64M learning parameters and
2.72G FLOPs. When compared to CSPDarknet [19], the proposed model reduces
the amount of learning parameters and FLOPs by 20.96M and 7.54G, respec-
tively.

2 Related Work

2.1 Vision Transformer

Transformer was first applied to natural language processing (NLP) tasks [20],
and ViT [15] is a pure transformer directly applies to the sequences of image
patches for image classification tasks. The pure Transformer operation lacks the
inductive bias ability of CNN, so on medium or small data sets (ImageNet), the
performance of ViT is weaker than that of ResNet model. However, when the
ViT model is trained on a larger dataset, its performance surpasses the inductive
bias ability of CNN [21]. Currently, in order to further improve the performance
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of ViT in visual feature extraction, some work combines self-attention and convo-
lution, such as CPVT [22], CvT [23], CeiT [24]. Combining the transformer with
convolution can effectively introduce the locality into the conventional trans-
former. MobileViT [16] is a lightweight version of ViT, which embeds the Trans-
former block into MobileNet, so that the model has the ability to extract local
and global features. MobileViT achieves top-1 accuracy of 78.4% with about 6
million parameters, which is 3.2% more accurate than MobileNetv3 for a similar
number of parameters. On the MS-COCO object detection task, MobileViT is
5.7% more accurate than MobileNetv3.

2.2 Prohibited Item Detection in X-Ray Images

From a practical point of view, intelligent analysis of X-ray security inspec-
tion images belongs to the task of object detection. In addition to knowing the
category of prohibited item, the security inspectors are also very interested in
the location information of the prohibited item. Research on prohibited item
detection based on computer vision is very common. Mery [25] reviewed the
application of computer vision technology in X-ray security inspection image
analysis, and pointed out that the object detection technology based on deep
learning outperforms traditional algorithms in terms of accuracy and general-
ization. Deep learning technology in the security field can be divided into three
categories according to different needs and application scenarios. They are clas-
sification, detection and segmentation [26]. X-ray security package images often
suffer from background clutter and target occlusion, compelling researchers to
develop more intricate, high-performance network structures [27,28]. However,
these complex structures frequently result in slower inference speeds, which could
negatively impact security inspection process operations. Consequently, research
focused on lightweight object detection models is garnering increased attention
within the realm of X-ray security image analysis [9]. The crux of designing a
lightweight object detection model lies in avoiding miss-detections, particularly
for smaller prohibited items, while simultaneously maintaining a streamlined
model structure.

3 MVray Method

In this research, we put forth a novel lightweight object detection model coined as
MVray, which is designed explicitly for the analysis of prohibited items in X-ray
images. Figure 1 delineates the architectural framework of the MVray model,
which employs the MobileViT network [16] as the foundational backbone for
feature extraction, and collaboratively interfaces with the YOLO head to exe-
cute object detection tasks. The MobileViT network unites the local features
extracted by CNN with the global features of the Transformer, thereby ampli-
fying its feature extraction capabilities. While lightweight networks generally
falter in detecting smaller objects, to enhance the feature extraction proficiency
of our backbone network for X-ray security inspection imagery, we integrate
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Fig. 1. MVray framework

dense connections within the feature extraction modules [17]. It’s notable that
these dense connections linearly aggregate features across diverse scales without
substantially escalating the computational load of the model. Moreover, to prune
redundant features and preserve, or even augment, the lightweight advantage of
the backbone network, we employ the LGC to supersede traditional convolution
operations [17].

3.1 MobileViT Backbone

MobileViT is a potent and streamlined network model, grounded in the
MobileNet architecture, which incorporates a Transformer-based self-attention
mechanism within CNN feature extraction layers. Traditional ViTs necessitate
substantial data and computational power to parallel the performance of CNN
models via a multi-head self-attention mechanism, given that Transformer lacks
the spatial induction bias innate to CNN. The central philosophy behind Mobile-
ViT is to utilize transformers in lieu of convolutions for global representation
learning. As delineated in Fig. 1, Transformer blocks are intricately woven into
the fabric of the MobileViT network.

As shown in Fig. 1, the Transformer block in MobileViT is a plug and play
module. Given an input X ∈ RC×H×W , the output Y of Transformer block can
be calculated as

Y = LGC1×1 [X||Transformer (LGC1×1 (X))] (1)

where Y ∈ RC×H×W , and C, H and W represent the channels, height, and width
of the input respectively. || represents the concatenation operation, LGC1×1 (·)
represents the learnable group convolution operation with 1 × 1 convolution ker-
nel.

Unlike the traditional Transformer attention mode, the Transformer oper-
ation in MobileViT requires fewer learning parameters. The LGC operation
projects the input tensor to a high-dimensional space d (d > C). Then Trans-
former attention is applied to establish the long-range dependencies, which is
complementary to the local inductive bias of CNN. We unfold X into N non-
overlapping flattened patches XU ∈ Rd×P×N , where P = wh, and w and h
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are the width and height of a patch. So N = HW/P . Then the self-attention
operations are carried among the flattened patches. The Transformer block in
MobileViT does not lose the spatial position information of each visual patch, so
it is easy to fold XU with self-attention to CNN-wise features XF ∈ Rd×H×W .
Concatenation operator is conducted to achieve feature fusion between the ordi-
nary X and XF , and another LGC implements channel matching to ensure
plug-and-play of Transformer block in MobileViT.

3.2 Dense Connection and Learn-Group-Conv

Prohibited items captured in X-ray security inspection images often display
multi-scale characteristics. However, lightweight networks often struggle to
achieve satisfactory detection performance, especially for smaller objects. This
shortcoming can be attributed to the limited local feature field inherent in
the conventional CNN convolution kernel’s feature extraction process. More-
over, pooling operations within CNN models tend to diminish the responses of
smaller object features within higher-level semantics. One effective and straight-
forward approach to addressing these challenges is to facilitate feature fusion
across various feature layers. This ensures that high-level semantic features incor-
porate elements of low-level visual details. Importantly, the chosen multi-level
feature fusion strategy must maintain computational efficiency, aligning with
the lightweight modeling principles underscored in this study. In the MVray
model, we integrate dense connection operations [17] into the MobileViT back-
bone. This incorporation enhances the reusability of shallow features at higher
layers, incurring minimal additional computational load on the network. How-
ever, it’s important to note that dense connections could potentially lead to data
redundancy through overly dense connection schemes. To mitigate this issue, the
MVray model introduces the LGC module to replace the traditional convolution
operation. This substitution results in further parameter reduction within the
network, achieving a more lightweight architecture while concurrently addressing
data redundancy concerns.

Dense Connection: The traditional CNN is dense because of its progressive
design layer by layer. Each layer has to copy the features of earlier layers, which
causes a large number of data redundancy. Residual structure design is a popular
information fusion strategy used to solve the gradient vanishing problem caused
by an increase in the number of hidden layers. ResNets [29], as the representative
of residual structure, transfer signal from one layer to the next via identity
connections. Unlike residual structure design, the dense connection [17] connects
all layers directly with each other. Specifically, in dense connection each feature
layer obtains additional inputs from all preceding layers, and then transmits the
fusion features to all subsequent layers. We use Xp represents the features on
the p layer, and the comparison of residual structure and dense connection is as
follows.

ResnetConnect : Xp = Fp (Xp−1) + Xp−1

DenseConnect : Xp = Fp (|| [X0,X1, · · ·,Xp−1])
(2)
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Fig. 2. The diagram of LGC operation with 3 groups.

where Fp (·) represents the composite function composed of convolution oper-
ation, batch normalization, and activation function, etc. || is the concatenate
operation.

The dense connection strategy integrates concatenation operations to facili-
tate effective feature fusion, achieving a balance between optimizing feature flow
and reducing computational burden. This is accomplished by establishing direct
connections between each layer and all of its preceding layers. Such a design
minimizes the necessity for feature replication, leading to the accumulation of
features from all levels. Consequently, it aids in compensating for potential miss-
ing attributes and contributes to improved overall feature representation. Differ-
ing from the dense connection mechanism as seen in DenseNet [17], the MVray
model employs a distinctive approach to sub-sampling through global average
pooling. This enables the model to execute addition-based feature fusion on
feature maps of varying resolutions. Importantly, this approach preserves the
overarching architectural structure of the model, underscoring its compatibility
with the lightweight philosophy emphasized in this research.

Learn-Group-Conv: The LGC operation is a robust technique engineered to
curtail redundant features in a neural network during the training process, and
eliminate the need for pre-established hyperparameters. This operation proves
especially beneficial for bolstering the efficiency and precision of models employ-
ing dense connections, which could engender feature redundancy. By enabling
the model to discern which features are vital and which can be pruned, the LGC
operation assists in maintaining the model’s lightweight nature, whilst still facil-
itating potent feature extraction. As depicted in Fig. 1, we substitute traditional
1 ∗ 1 convolution with the LGC operation within the Transformer block.

The LGC operation is divided into two stages, as shown in Fig. 2, with the
standard convolution on the left and the LGC on the middle and right. In the
first stage, the input features are segregated into groups, each of which is sub-
jected to a sparse regularization operation to filter out insignificant features. This
process involves the addition of a penalty term to the loss function, motivating
the network to learn a sparse representation of the input features. The penalty
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term is designated as the Group-Lasso of the group convolution filter, pushing
the filter towards zero weights. In the subsequent stage, following the pruning
and fixing of insignificant features, the network undergoes further training. The
surviving features are re-grouped, and the group convolution filters are learned
via backpropagation. The grouping and filter learning occur in unison, ensuring
that each filter can learn the most pertinent input set for the subsequent layers.
Equation (3) replaces the traditional L1 regularized group-lasso as a criterion
for filtering non-critical input features.

G∑

g=1

R∑

j=1

√√√√
O/G∑

i=1

(
F g
i,j

)2 (3)

where G represents the final number of groups, O and R represent the number of
output channels and input channels respectively. F is the weights learned by the
convolution kernel. Each F g from F 1 to FG has size O/G×R. F g

i,j corresponds
to the weight of the jth input for the ith output within group g. We take the
absolute value, that is F g

i,j squares and then takes the square root.
Traditionally, model sparsity is achieved through L1 regularization. In this

paper, we leverage group-lasso, which accentuates the afferent features within
the same group, to induce sparsity and ensure that convolution kernels within the
same group utilize the same afferent feature subset. During the training process,
the input feature subset within each group bearing lower weight is progressively
pruned. The significance of the input feature to its corresponding group is deter-
mined by aggregating all corresponding weights within the group. To complete
the convolution sparsity operation, input features of marginal importance in the
convolution kernel are set to zero accordingly.

4 Experiment Results

4.1 Experimental Datasets and Implementation Details

We applied the publicly available SIXray dataset [18] to verify the performance
of the proposed MVray algorithm. The SIXray dataset consists of 1,059,231 X-
ray images containing 8,929 prohibited items in 5 categories (Gun, Knife, Pliers,
Scissor and Wrench). The images in the SIXray dataset are all collected in real
life scenarios. We split the training set, the verification set, and the test set in
an 8:1:1 ratio.

All experiments are performed on PyTorch under the Ubuntu 16.04 system
with NVIDIA A100-SXM4-40G GPU. We added the common feature extrac-
tion backbone networks to the comparison of model performance. In order to
compare model performance fairly, all the models participating in the compari-
son experiment adopted the training hyperparameter in Table 1, and carried out
training under the condition of zero pre-training weights.
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Table 1. Model training parameters

Name Parameter

input shape (320,320)

Optimizer adam

Momentum 0.937

Lr decay type cos

Init lr 1e−3

Batch size 16

Epoch 300

Num works 4

4.2 Comparison Results

On the SIXray dataset, our proposed MVray model shows satisfactory perfor-
mance. Table 2 shows the detection performance of MVray model for 5 types of
prohibited items. Overall, the MVray model achieves the mAP value of 81.21%
on the SIXray dataset. The AP indicators of individual categories of prohibited
items also exceed 70%. The MVray model has the best detection performance
for “Gun”, achieving the 95.89% AP value.

We make comparison between the proposed MVray model with other
lightweight feature backbones, such as MobileNet series [11], GhostNet [30],
DenseNet [17], CSPDarknet53 [31] and MobileViT [16]. Table 2 presents the
comparison results on SIXray dataset. The proposed MVray model achieves the
best prohibited item detection performance with 81.21% mAP, which outper-
forms the DenseNet model by an absolute gain of 1.94% mAP, the GhostNet
model by 9.32% mAP, the MobileNetV3 model by 11.02% mAP, the DenseNet
model by 1.94%, and the MobileViT model by 3.96%. CSPDarknet53 is the
basic feature extraction backbone for YOLO series models, which achieves the
best detection performance with 85.42% mAP. However, CSPDarknet53 back-
bone network has far more learning parameters than MVray model, as shown in
Table 3. For the detection of specific categories of prohibited items, MVray model
has an overwhelming advantage in detecting “Scissor” and “Wrench” compared
with other models. When detecting “Scissor”, the MVray model has improved
AP metrics by more than 20% points compared to the MobileNet series models.
When detecting the “Wrench”, the improvement intensity is about 14% points.

The MVray model aims to achieve a balance between object detection accu-
racy and efficiency. Therefore, model lightweight and inference efficiency are very
important indicators. Table 3 shows the volume and computational efficiency of
the model, where the Floating Point Operation (FLOPs), model Parameters
(Params) and Frames Per Second (FPS) are taken into consideration. In order
to ensure the uniqueness of the differences and achieve the comparison effect,
YOLOv4 detection head is selected to make object detection. The proposed
MVray model has the same number of learning parameters (5.64M) as Mobile-
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Table 2. Comparison results among different feature extraction backbones.

Backbone AP mAP

Gun Knife Pliers Scissor Wrench

MobileNetV1 93.75% 75.82% 70.20% 52.07% 57.65% 70.90%

MobileNetV2 92.59% 73.64% 70.60% 52.17% 57.82% 69.36%

MobileNetV3 93.23% 76.08% 69.20% 56.32% 56.10% 70.19%

GhostNet 93.82% 75.38% 70.06% 60.43% 59.76% 71.89%

DenseNet 94.91% 76.64% 78.23% 77.37% 69.18% 79.27%

CSPDarknet53 97.23% 77.55% 84.73% 88.59% 79.00% 85.42%

MobileViT 95.30% 75.83% 77.79% 73.36% 63.98% 77.25%

MVray 95.89% 80.01% 79.67% 78.70% 71.78% 81.21%

ViT model, since neither dense connections nor LGC operations add additional
parameters. MobileNetV2 has the least number of learning parameters (3.50M),
but its detection performance is 12% mAP lower than the MVray model. MVray
model contains 2.72G FLOPs, lower than MobileViT by 0.08G FLOPs. Due
to the additional calculation of Transformer attention, the FLOPs index of the
MVray model is higher than that of the MobileNet series models. Compared
with CSPDarknet with 10.26G FLOPs, the Mvray model has relatively obvi-
ous advantages. The comparison of “Model Size” shows the similar results with
“Params”. The FPS indicator can reflect the inference speed of the model. MVray
model achieves 38.84 FPS, which shows that the MVray model can fully meet
the timeliness requirements of security inspection.

4.3 Ablation Experiment

This paper proposes the MVray model, which employs two additional operations
to enhance the performance of prohibited item detection tasks in X-ray security
inspection images, superior to the base MobileViT model. The implementation
of a dense connection successfully fuses the visual features across various fea-
ture extraction layers, enabling the effective transmission of low-level features
into high-level semantics. This crucial enhancement proficiently addresses the
issue of missed detection of small targets prevalent in lightweight models. Addi-
tionally, the LGC technique further diminishes the model’s learning parameters
and computational load, while simultaneously minimizing feature redundancy
brought about by dense connections. We conducted ablation studies to ascer-
tain the contributions of dense connection and LGC operations, the outcomes of
which are demonstrated in Table 4. The integration of dense connection and LGC
into the MobileViT model significantly boosted its performance. The inclusion of
the dense connection allowed the model to achieve the mAP of 78.79%, marking
a 1.54% increase from the base MobileViT model. Furthermore, the introduction
of LGC elevated the mAP to 77.90%, an improvement of 0.65% over the base
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model. When combined, these operations enable the proposed MVray model to
reach an impressive mAP of 81.21%, outstripping the MobileViT model by a
considerable margin of 3.96% mAP.

In terms of specific prohibited item detection, the incorporation of dense
connection and LGC operations significantly enhances the model’s performance.
Notably, MobileViT achieves the mAP of 63.98% in the detection of the pro-
hibited item of “Wrench”. With the introduction of dense connections and LGC
operations, the model’s performance improved considerably, obtaining 65.58%
and 66.65% mAP, respectively. When these two operations were combined, the
proposed MVray model displayed a marked improvement. Specifically, in the
detection of the “Wrench”, the model attains an impressive mAP of 71.78%.

Table 3. Comparison of lightweight indicators.

Backbone Params FLOPs Model Size FPS mAP

MobileNetV1 4.23M 1.19G 16.14M 57.28 70.90%

MobileNetV2 3.50M 0.65G 13.37M 46.70 69.36%

MobileNetV3 5.48M 0.46G 20.92M 44.67 70.19%

GhostNet 5.18M 0.30G 19.77M 35.08 71.89%

DenseNet 7.98M 5.88G 30.44M 27.16 79.27%

CSPDarknet 26.6M 10.26G 101.54M 31.76 85.42%

MobileViT 5.64M 2.80G 21.50M 35.98 77.25%

MVray 5.64 M 2.72G 21.50 M 38.84 81.21%

Table 4. Ablation experiment results.

Backbone AP mAP

Gun Knife Pliers Scissor Wrench

MobileViT 95.30% 75.83% 77.79% 73.36% 63.98% 77.25%

MobileViT+DC 95.53% 78.65% 76.20% 77.99% 65.58% 78.79%

MobileViT+LGC 95.20% 78.48% 78.09% 71.08% 66.65% 77.90%

MVray 95.89% 80.01% 79.67% 78.70% 71.78% 81.21%

4.4 Visualization

The MVray model proposed herein is capable of identifying the type and location
of prohibited items in X-ray security inspection images. This part showcases
the MVray model’s visual localization performance for detecting the prohibited
items. As visualized in Fig. 3 (which can be zoomed in for more precise results),
we can draw two primary conclusions. Firstly, compared to other algorithms,
the MVray model yields more precise and compact bounding box annotations
for prohibited items within X-ray images. Secondly, the MVray model exhibits
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Fig. 3. Visualization results. Zoom in for better results.

a higher degree of confidence in discerning the types of prohibited items. In
conclusion, the MVray model’s performance in detecting prohibited items in
X-ray security inspection images is commendably effective.

5 Conclusion

In this research, we devise a lightweight detection model, named MVray, target-
ing prohibited item detection in X-ray security inspection images. This model
employs the MobileViT paired with a YOLO detection head as its backbone
framework for feature extraction. To enhance the detection capabilities for
smaller prohibited items, we implement a dense connection operation that effec-
tively amalgamates high-level and low-level features, ensuring the resonance of
small target features within high-level semantics. Further, we introduce a learn-
able group convolution to replace traditional convolution operations, mitigating
feature redundancy triggered by dense connections, and thereby solidifying the
lightweight characteristic of the model. With only 5.64M learning parameters
and 2.72G FLOPs, the proposed MVray model achieves a mean average preci-
sion (mAP) of 81.21% on the SIXray dataset.
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