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Abstract. The Transformer has made significant advances in various fields, but
high computational costs and lengthy training times pose challenges for models
basedon this architecture.To address this issue,wepropose an improvedALBERT-
based model, which replaces ALBERT’s self-attention mechanism with an addi-
tive attention mechanism. This modification can reduce computational complex-
ity and enhance the model’s flexibility. We compare our proposed model with
other Transformer-based models, demonstrating that it achieves a lower parame-
ter count and significantly reduces computational complexity. Through extensive
evaluations on diverse datasets, we establish the superior efficiency of our pro-
posedmodel over alternative ones.With its reduced parameter count, our proposed
model emerges as a promising approach to enhance the efficiency and practicality
of Transformer-basedmodels. Notably, it enables practical training under resource
and time limitations, highlighting its adaptability and versatility in real-world
scenarios.

Keywords: Additive attention · ALBERT · Fastformer · NLP · Text
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1 Introduction

Since the emergence of the Transformer architecture [1], it has garnered significant
achievements across multiple domains. Models such as BERT [2], GPT [3–5], built
upon this architecture, have become the standard benchmarks for numerous tasks in
Natural Language Processing (NLP) and exhibited commendable performance. Before
the advent of the Transformer, traditional structures such as Recurrent Neural Networks
(RNNs) [6] and Convolutional Neural Networks (CNNs) [7] were widely used in NLP
but suffered from issues like information loss and long-term dependencies. In contrast,
the Transformer adopts an attention mechanism to concurrently process elements within
a sequence, avoiding these issues and enabling better representation learning through
pre-training. Besides NLP, researchers are increasingly exploring its applications in
other fields, such as Computer Vision. For instance, Vision Transformer (ViT) [8] pro-
cesses input image blocks as sequential data and has achieved impressive performance
in diverse image classification tasks. Similarly, the DETRmodel [9] leverages the Trans-
former architecture for object detection tasks, outperforming traditional approaches
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in accuracy. Additionally, the DALL-E model [10] excels at generating images from
textual descriptions, while the Transformer-based Temporal Modeling (TTM) method
effectively handles temporal and spatial information in video sequences.

Although models based on the Transformer architecture have achieved impressive
results, the dot-product attention in their architecture requires matrix multiplication

operations between two matrices QN×d and
(
KT

)d×N
(where N is the sequence length

and d is the feature dimension) for similarity calculations, resulting in a complexity of
O

(
N 2 · d)

. This leads to two significant issues: 1. High resource consumption during
training; 2. Long training time. Without adequate GPU or TPU resources, it becomes
challenging to train an effective model quickly or within limited computing resources,
constraining low-resource researchers or companies from pursuing related tasks. To
address these problems, researchers have proposed some solutions. For instance, Dis-
tBERT [11] employs knowledge distillation to learn from a teacher model, thereby
reducing training time. Longformer [12], conversely, enhances the attention mecha-
nism by utilizing local attention, specifically a sliding window mechanism, to compute
attention between each word. This approach effectively reduces the time complexity
associated with the traditional Transformer’s dot-product attention, subsequently short-
ening themodel’s training time.While thesemethods have somewhat expedited training,
the resources and time required remain prohibitive for many people.

In this paper, we propose an improved ALBERT [13] based model that replaces
ALBERT’s self-attentionmechanismwith an additive attentionmechanism. This change
achieves a linear reduction in time complexity and significantly reduces the model’s
parameter count by transitioning from dot product attention to additive attention. We
conduct experiments on two text classification datasets to evaluate our model’s per-
formance. The results demonstrate that the proposed model outperforms several other
models in terms of computational complexity and inference speed. The main contribu-
tions of this paper are: 1) proposing an improvedALBERT-basedmodel that incorporates
additive attention, reducing computational complexity and enhancing model flexibility;
2) conducting experiments on two text classification datasets, showcasing our model’s
strong competitiveness.

The rest of this paper is organized as follows: Sect. 2 reviews some related works.
Section 3 provides a detailed introduction to our proposed approach. Experiments high-
lighting the merits of our approach are presented in Sect. 4. Section 5 concludes the
paper and discusses future work.

2 Related Work

2.1 Efficient Transformer-Based Models

The Transformer architecture is known for its high time complexity and vast num-
ber of parameters, demanding considerable computational resources during training.
To address this challenge, several approaches have been proposed to reduce the train-
ing time and resource requirements of Transformers. For instance, the Reformer model
[14] groups attention scores with similar values into the same bucket, thereby reduc-
ing time complexity. Likewise, the Sparse-Transformer [15] divides the input text into
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fixed-length blocks and limits attention computations to these blocks, effectively dimin-
ishing the number of attention operations and further cutting down time complexity.
Recently, the BigBird model [16] was introduced to address the computational chal-
lenges associated with processing long sequences. By employing a hierarchical block
sparse attention mechanism that merges global attention with block-level random atten-
tion, BigBird significantly curtails the computational resources needed for processing
long sequences.

2.2 ALBERT Model

ALBERT is a variation of BERT that introduces three significant improvements over the
original BERT model:

1. ALBERT shares weight parameters across all layers of the model, leading to a
reduction in the model’s parameter count.

2. ALBERT effectively addresses the interdependency between the word embedding
vector’s dimension E and the hidden layer size H through factorization. This
substantially reduces the model’s parameter count, especially when E � H .

3. TheNext Sentence Prediction (NSP) task in BERThas been found ineffective, leading
to its removal from the model. Instead, the Sentence-Order Prediction (SOP) loss is
used for training, resulting in improved performance in natural language processing
tasks.

Benefiting from these improvements, ALBERT retains the same hyperparameter
settings as BERT but has substantially fewer parameters—reducing from 108M in BERT
to just 12M in ALBERT. Moreover, ALBERT’s training speed is 1.7 times faster than
that of BERT.

2.3 Self-attention and Additive-Attention Mechanism

The self-attention mechanism is a fundamental computational module of the Trans-
former architecture, allowing the model to capture contextual dependencies and cal-
culate attention weights for contextual representations. Partitioning the self-attention
mechanism into multiple heads enables the model to capture diverse types of contextual
relationships. The main equations are shown below:

headi = Attention(Qi,Ki,Vi) = softmax

(
QWQ

i

(
KWK

i

)T
√
d

)

VWV
i (1)

MultiHead(Q,K,V ) = Concat(headi, . . . , heads)W
O (2)

where WQ
i ,WK

i ,WV
i ∈ R

d×d is the learnable parameter matrix and WO is a fully
connected linear matrix. Q,K,V ∈ R

N×d is the Query, Key and Value matrix for
multiplying the input sequence X with WQ,WK ,WV . N is the sequence length and d
is the hidden layer dimension.
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The Fastformer [17] architecture incorporates the additive attentionmechanism as its
main computational module, building upon the self-attention mechanism of the Trans-
former. It first aggregates the query sequences into a global query vector and models
their interaction with attention keywords using elementwise products. Next, it employs
additive attention to aggregate the keywords into a global keyword vector and model
their interaction with attention values. Linear transformations are then applied to learn
the context-aware attention values added to the attention queries to generate the final
output. This approach reduces the time complexity of attention computation from in
the Transformer to linear complexity, significantly accelerating the training speed of the
model.

3 Method

The overall framework of the proposed method is illustrated in Fig. 1. The key modifi-
cation involves replacing the additive attention mechanism with the self-attention mech-
anism within the ALBERT model. This substitution results in improved computational
speed for the whole framework.

Fig. 1. Framework of the proposed method.

3.1 Overview and Procedure

First, we define the input sequence as T ∈ R
N, where N represents the number of tokens.

Then, we perform word embedding on the sequence to obtain E ∈ R
N×ed, where N is

the length of the input sequence and ed is the word embedding dimension. We also add
positional embedding and sentence embedding vectors. Next, the sequence is projected
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into E ∈ R
N×d using factorization in ALBERT, where d represents the hidden layer

dimension. Specifically, E is represented as E = [e1, e2, . . . , eN ]. Finally, the sequence
E is processed using additive attention to compute the interactions between contexts and
obtain feature vectors with contextual information. One of the computation graphs for
additive attention is shown in Fig. 2.

Fig. 2. Additive attention.

The input vector E is multiplied by WQ,WK ,WV ∈ R
d×d to obtain three matrices

Q,K,V . By calculating the global query and key vectors and engaging in additive
attention with the value, the final output is obtained. The computation is defined as
follows:

q =
∑N

i=1
αiqi =

∑N

i=1

exp
(
WT

q qi/
√
d
)

∑N
j=1 exp

(
WT

q qj/
√
d
)qi (3)

where q ∈ R
d represents the global query vector obtained through additive attention to

the q matrix, αi denotes the attention weight for the ith q vector, and wq ∈ R
d is the

learnable parameter vector.

k =
∑N

i=1
βipi =

∑N

i=1

exp
(
WT

k pi/
√
d
)

∑N
j=1 exp

(
WT

k pj/
√
d
)pi (4)

Since the interaction between the global q vector and each ki needs to be modeled,
pi = q∗ki is computed through element-wisemultiplication. The kmatrix, encapsulating
the global context, is obtained using the additive attentionmechanism. The global k ∈ R

d

vector is defined as in the equation above, and wk ∈ R
d represents a learnable parameter



A Study on Improving ALBERT with Additive Attention 197

vector. Similarly, the global key and each value vector are multiplied between elements
to compute the vector of key-value interactions ui = k ∗ vi. The resulting vectors are
passed through a linear transformation layer to learn the hidden representations.

3.2 Parameter and Computational Complexity Analysis

In this section, we analyze the computational complexity of our model. In Transformer-
based models, the self-attention mechanism is standard, and the complexity of calcu-
lating attention weights in self-attention is O

(
N 2 · d)

. Conversely, the time and space
requirements for learning global query vectors and key vectors in additive attention net-
works areO(N · d), and the time and space costs of element-wise multiplication are also
O(N · d).

In addition, the total number of parameters for additive attention networks and
element-wise multiplication is 2hd , where h is the number of attention heads. At last,
we can obtain the parameter size of each layer in our model as 3d2+2hd (the sum of the
parameters of the two weight matricesWQ,WK is 2d2; the parameter size of the output
transformation matrix is d2; and adding the 2hd mentioned above, the parameter size of
each layer is 3d2 + 2hd ). Moreover, because we use weight sharing for all layers of the
model, the total parameter size of our model can also be approximated as 3d2 + 2hd ,
which is fewer parameters compared to the Transformer model that has at least 4d2

parameters per layer (encompassing the three weight matrices WQ,WK ,WV , the out-
put transformation matrix; excluding bias terms and layer normalization). In conclusion,
these analytical results underscore the theoretical efficiency of the method proposed in
this paper.

4 Experiments

4.1 Experimental Setup

Our training was conducted on an NVIDIA RTX3090 graphics card, boasting 24 GB
of video memory. The system operated on a Windows 10 64-bit platform, with Python
version 3.7 and PyTorch version 1.10.1.

We initialized the embedding matrix of our models using Glove [18] word embed-
dings. This approach allowed us to harness pre-trained word representations, facilitating
the capture of intricate semantic relationships within our dataset. To ensure consistent
and reliable results across experiments, we set the random seed to 2023. Moreover,
each experiment was conducted three times to account for potential variability, with the
average performance being reported.

Throughout the training process, we maintained a consistent batch size of 64 for
all models. This size indicates the number of training examples processed during each
neural network training iteration. For optimization, we chose the AdamW optimizer,
renowned for its efficacy in refining deep neural networks. The specific parameters of
our hyperparameter settings are detailed in Table 1.

Baselines. We selected four models as our baselines:
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Table 1. Hyperparameter setting.

Method IMDB Sentiment140

Encoder layer 12 12

Decoder layer – –

Window size (Longformer, Bigbird) 8 16

Block length (Bigbird) 4 8

Attention head 12 12

Maximum text length 512 512

Hidden dimension 768 768

Loss Crossentropy Crossentropy

Batch size 64 64

Optimizer AdamW AdamW

Learning rate 1e−4 1e−4

Epochs 3 3

Dropout 0.1 0.1

Longformer. The Longformer model, a pre-trained language model built on the Trans-
former architecture, excels in handling lengthy texts. It distinguishes itself from conven-
tional Transformer models by incorporating a novel attention mechanism known as slid-
ing window attention. This mechanism enables the Longformer to sustain high com-
putational efficiency while processing long texts. Furthermore, the Longformer model
introduces a new position encoding method called global attention mask. This enables
the model to have a more comprehensive understanding of the context in long texts.

Bigbird. The BigBird model is also a pre-trained language model based on the Trans-
former architecture, which is designed to handle even longer texts than the Longformer
model. It introduces a novel sparse attention mechanism that enables the model to focus
on a small subset of input tokens during each step while effectively capturing global
dependencies across the entire input sequence. Moreover, the BigBird model incorpo-
rates a novel position encoding technique known as random attention spans, enhancing
its proficiency in handling long texts.

DistilBERT. DistilBERT is an optimized and streamlined version developed from the
BERT model. It achieves a more petite model size and faster inference speed through
distillation. This approach involves training a compact model to mimic the behavior
and knowledge of a larger model. By distilling the essential information from the
larger model, DistilBERT retains comparable language understanding capabilities while
significantly reducing computational requirements.

ALBERT. ALBERT is basedon a simplifiedversionof theBERTmodel,which addresses
the issue of model size and computational efficiency by utilizing parameter sharing and
weight matrix factorization techniques. ALBERT maintains the effectiveness of BERT
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while significantly reducing its size and improving processing speed. This makes it
a practical choice for various natural language processing tasks, providing a balance
between performance and efficiency.

4.2 Datasets and Evaluation Methodology

To evaluate the performance of our model, we carried out experiments on two text
classification datasets: IMDB [19] and Sentiment140 [20]. The IMDBdataset focuses on
movie rating prediction, whereas the Sentiment140 dataset is made up of 16,000 English
tweets, each categorized as positive, negative, or neutral. This dataset is extensively used
for training and evaluating sentiment analysis models. The detailed information of these
datasets is showcased in Table 2.

Table 2. Datasets for Text Classification.

Dataset Train Val Test Avg. len Class

IMDB 25k 12.5k 12.5k 98.3 2

Sent.140 128.8k 16.1k 16.1k 505.4 2

The reasons for choosing these two datasets are as follows. The IMDB dataset
contains short text samples, while the Sentiment140 dataset comprises long text sam-
ples. This allows us to evaluate the model’s performance on both short and long texts
separately.

For text classification, accuracy and the F1 score stand out as pivotal metrics of eval-
uation. These metrics can be calculated using formulas 5−8, where TP (True Positive)
represents correctly predicting positive samples, TN (True Negative) represents cor-
rectly predicting negative samples, FP (False Positive) represents incorrectly predicting
negative samples as positive, and FN (False Negative) represents incorrectly predicting
positive samples as negative. Precision and recall, calculated as

Accuracy = TP + TN

TP + TN + FP + FN
(5)

Precision = TP

TP + FP
(6)

Recall = TP

TP + FN
(7)

The F1-score is computed using accuracy and recall rates, as illustrated in the
subsequent formula:

F1 = 2
Precision × Recall

Precision + Recall
(8)
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4.3 Comparison of Parameter Numbers and Inference Speed

Table 3 provides a comparison of parameter counts and inference speeds across different
models. From the table, it’s clear that ourmodel stands out in terms of complexity, param-
eter counts, and inference speed. Remarkably, our proposed model boasts an impres-
sive 109.7% enhancement in inference speed when pitted against the ALBERT model,
eclipsing other models with an acceleration surpassing 222.1%. Furthermore, when jux-
taposed with alternative models, our model’s complexity remains linear, translating to
faster training times and augmented efficiency.

Table 3. The comparison of parameter numbers and inference speed for different models.

Method Complexity Parameter numbers Inference speed

Longformer O(N · k · d) 110M 5.405

Bigbird O(N · k · d) 137M 3.823

DistilBERT O
(
N2 · d

)
66M 1.475

ALBERT O
(
N2 · d

)
12M 3.520

Our proposed approach O(N · d) 9.5M 1.678

4.4 Experimental Results

Table 4. Experimental results of various models.

Method IMDB Sentiment140

Accuracy F1 Accuracy F1

Longformer 0.850 0.850 0.781 0.781

Bigbird 0.843 0.842 0.783 0.783

DistilBERT 0.847 0.846 0.792 0.792

ALBERT 0.881 0.880 0.839 0.838

Our proposed approach 0.852 0.851 0.825 0.824

As illustrated in Table 4, our proposed approach showcases exemplary performance
on both short and long text datasets. Moreover, as indicated in Table 3, our method
registers only a slight performance decrement, approximately 1.7%, when compared
to ALBERT. Yet, it marks a notable surge of 109.7% in inference speed. These find-
ings underscore the significant benefits of our proposed method, particularly with its
incorporation of additive attention, especially in terms of inference speed.
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5 Conclusions and Future Work

In this paper, we present an improved ALBERT-based model that replaces ALBERT’s
self-attention mechanism with additive attention. This additive attention transforms the
querymatrix into a global query vector. This vector then collaborateswith eachkeyvector
to generate a global key vector enriched with contextual information. Using the additive
attention mechanism, this global key vector interacts with all value vectors, leading to
the derivation of the final global attention value. The output from this last attention
layer is achieved by melding it with the query matrix using residual concatenation.
Our experiments, conducted on two distinct text classification datasets, indicate that our
proposed model demands considerably fewer training resources than most Transformer-
based counterparts, translating into expedited training durations.

In the future, we plan to pre-train the proposed model to ensure more nuanced
context modeling. Additionally, we also envisage integrating a decoder component to
fortify tasks related to extended sequence text generation.
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