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Abstract. Wavelet packet transform (WPT) has found extensive use in bear-
ing fault diagnosis for its ability to provide more accurate frequency and time-
frequency representations of non-stationary signals. Traditional quantitativemeth-
ods prioritize unequal node-energy distribution at the desired decomposition level
as a criterion for WPT base selection. Decomposition results obtained with WPT-
base selected using this approach can be characterized as having one WPT-node
with high signal energywhich is automatically considered as a component of inter-
est containing information about bearing fault. However, prioritizing one WPT-
node at this early stage of fault diagnosis process might not be optimal for all
nodes in the WPT-tree decomposition level and might exclude components in
other nodes, which may contain features potentially important for fault diagno-
sis. In this paper, we propose a node-specific approach for WPT-base selection to
improve the quality of feature extraction. The new criterion evaluates WPT-bases
upon their ability to generate a signal with the highest ratio of energy and entropy
of the signal spectrum for a specific node. Using this criterion, the finalWPT signal
decomposition is constructed using the WPT-nodes produced by the bases with
the highest criterion score. This approach ensures the preservation of all mean-
ingful components in each node and their distinction from the noisy background,
resulting in a higher quality feature extraction. To evaluate the effectiveness of
the proposed method for bearing fault diagnosis, a comparative analysis was con-
ducted using two sets of PaderbornUniversity bearing fault experimental vibration
data and the bearing vibration data from the Case Western University benchmark
dataset. As a result, the proposed method showed better average performance
across three datasets.

Keywords: Bearing Fault Diagnosis · Feature Extraction ·Wavelet Packet
Transform ·Wavelet Packet Base Selection

1 Introduction

Bearings are crucial mechanical components found in various applications, and their
faults can cause significant damage, loss of production, and even human casualties
[1, 2]. With the availability of high-quality vibration sensors and Machine Learning
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(ML) algorithms, data-based fault diagnosis methods are becoming more prevalent.
These methods usually involve processing of the signal, extraction of the signal features,
feature selection, and ML classification. Deep Learning (DL) can also be used for fault
diagnosis, but the issue of explainability remains a challenge. Despite the advantages
of DL, traditional ML methods remain a powerful alternative, particularly when data is
limited [3].

In machine learning-based fault diagnosis algorithms, the first step is signal process-
ing. Traditionally, Fast Fourier Transform (FFT) has been used, but it has limitations
such as poor resolution, inability to capture transient signals, and spectral leakage [4–6].
Short-time Fourier Transform (STFT) solves these issues by sliding a window along the
signal and performing FFT on each window to obtain a time-frequency representation.
However, STFT has limitations regarding window length selection, which results in a
tradeoff between frequency resolution and time resolution [7].

EMD is a time-frequency method that is used for decomposition of the signals into
intrinsic mode functions (IMFs) without using a base function. It is particularly useful
for non-stationary signals. However, the mode mixing phenomenon can occur when
IMFs generated by EMD overlap, making it difficult to interpret and analyze them
individually. To overcome this, techniques like EEMD or CEMD have been developed,
but they require significant computing time and balancing the number of attempts and
decomposition quality [8, 9].

The Wavelet Packet Transform (WPT) offers high time-frequency resolution and
sensitivity to transient components by decomposing a signal into various sub-bands
with different frequencies using wavelets as decomposition bases. WPT is less adaptive
and flexible than EMD, but it is computationally less expensive. The selection of either
method depends on the signal and application. Although there are many wavelet base
functions available, selecting one remains a vulnerable part of WPT that lacks a general
state-of-the-art solution method, creating a need for new solutions to be found.

This paper proposes a method for a novel feature extraction approach by trying to
resolve a fundamental drawback of the WPT in comparison with EMD—dependency
on the wavelet base. To overcome this limitation and increase the quality of feature
extraction using WPT, a new criterion for base wavelet selection is proposed along with
the novel node-specific approach for constructing of the representation of the bearing
vibration signal. The new criterion evaluates WPT bases based on their ability to gen-
erate a signal with the highest ratio of energy and entropy of the signal spectrum for a
specific node. The final WPT signal decomposition is constructed using the WPT nodes
produced by the bases with the highest criterion score. This approach aims to preserve all
meaningful components in each node and distinguish them from the noisy background,
resulting in higher-quality feature extraction.

Further this paper is organized as follows: Sect. 2 overviews the datasets used for the
validation of proposed method, Sect. 3 provides some technical background on Wavelet
Packet Transform, Sect. 4 describes the proposed criterion for WPT base selection and
construction of the signal representation, Sect. 5 discusses the fault diagnosis framework
used for performance evaluation and Sect. 6 concludes the manuscript.
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2 Technical Background

2.1 Wavelet Packet Decomposition

The Wavelet Packet Decomposition or Transform (WPT) decomposes an input signal
into a binary tree structure of wavelet packet nodes, which are indexed as (j, n), with
corresponding coefficients dn

j . This allows for analysis of both low and high-frequency
spectra, making it useful for characterizing non-stationary bearing fault signals. At the
root of the WPT tree, the input signal is located in the node W (0, 0), with W (1, 0) and
W (1, 1) representing the low-pass and high-pass filtered branches, respectively, resulting
in approximation and detail coefficients d0

1 and d1
1 . Further decomposition is performed

in the same way at every level j. An schematic example of a WPT with j decomposition
levels is shown in Fig. 1.

Fig. 1. Wavelet Packet Tree schematic.

The choice of the wavelet base inWPT decomposition is crucial. There are twomain
families of selection methods: qualitative and quantitative. Qualitative methods focus
on properties like symmetry, compact support, orthogonality, regularity and vanishing
moment to find the best fitting wavelet. However, relying solely on wavelet properties
can be limiting due to the possibility of different wavelets sharing the same properties,
making it hard to determine the most suitable one. To address this, researchers have
explored shapematching, an alternative qualitative approach that analyzes the geometric
shape of wavelets. It aims to find a wavelet base that resembles the shape of the target
signal feature, improving signal component extraction. However, despite its benefits,
manual shape matching is time-consuming and lacks automation.

Considerable research has been carried out to address the limitations of qualita-
tive methods by exploring quantitative approaches. These approaches utilize various
quantitative measures like signal energy, Shannon entropy, cross-correlation, Emlen’s
modified entropy measure and distribution error criterion to determine the most appro-
priate wavelet base. In recent times, the criterion based on the ratio of the maximum
energy to the Shannon entropy gained significant popularity as one of the leading quan-
titative methods for selecting the wavelet base. This criterion combines the widely used
maximum energy metric and Shannon entropy metric, offering a reliable approach to
wavelet base selection. The maximum energy method suggests that the most suitable
wavelet base will enable the extraction of the highest possible energy from the analyzed
discrete-time signal. The energy Ex of the signal x can be mathematically represented
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as follows:

Ex =
N∑

n=1

|xn|2 (1)

It’s crucial to acknowledge that signals possessing identical energy levels can exhibit
varying frequency distributions. For instance, one signal may have higher energy levels
in frequency components important for fault diagnosis, while another signal may have a
broad spectrumwith uniform energy levels throughout the spectrum,which is not fruitful
for fault feature extraction. To quantify the distribution of signal energy among nodes
in a wavelet packet decomposition layer, Shannon Entropy H is employed as follows:

H = −
N∑

i=1

pi · log2 pi (2)

Here pi denotes the probability distribution of the energy among the wavelet coefficients,
is presented in the following manner:

pi = |wt(s, i)|2
Ex(s)

(3)

where wt(s, i) is a i th wavelet coefficient at the s level.
Then the ratio between energy and Shannon entropy can be expressed as.

R(s) = Ex(s)

H (s)
(4)

The given equation allows for the calculation of the R(s) ratio at the desired level
of decomposition for each potential wavelet base. The candidate wavelet which exhibits
the highest energy to Shannon entropy value is selected as the basis for decomposing
the given signal or set of signals using the WPT method.

3 Proposed Methodology

3.1 Envelope Analysis

The vibration signal from faulty bearings contains high-frequency components resulting
from different mechanisms like impact, rubbing, or resonance. These high-frequency
elements are frequently concealed by low-frequency components in the signal, which
can arise from machine operation, background noise, or measurement noise. To extract
these high-frequency components, the Hilbert Transform Envelope Extraction method
is employed in the same way as in [6].
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3.2 Wavelet Base Evaluation Criterion

The selection of a wavelet basis during the procedure of signal decomposition through
Wavelet Packet Transform (WPT) significantly influences the spectral qualities of the
resultant coefficients. Each wavelet base possesses distinct qualities that make them
better suited for capturing particular types of spectral content or signal features, while
others may be less effective in doing so. In the standard WPT procedure, outlined in
the Sect. 3, a wavelet base is carefully selected from a poll containingW wavelet bases.
Each wavelet base is then applied to decompose a representative subspace of the signal
data. The resulting WPT coefficients are subsequently evaluated, and based on this
assessment, a final decision is made regarding the most suitable wavelet base for the
given signal data.

In contrast, the proposed method endeavors to portray a signal by employing WPT
decomposition as a basis, yet it is not constrained to employing only one wavelet base.

In this approach, the signal data is initially decomposed into a specified level, denoted
as j, using a poll ofW wavelet bases. For each node within the decomposition, ranging
from d0

j to dn
i , a score chart is created. This score chart has a length of W , with each

element representing the evaluation results of reconstructed coefficients obtained from
the WPT decomposition of this node using different wavelet bases. The assessment of
these coefficients is based on the evaluation of their spectral content. This evaluation is
performed by calculating the relation of the total power of the spectrum to the Shannon
entropy of the signal power spectrum. Considering the Shannon entropy of the signal
power spectrum Hps is defined as:

Hps = −
N∑

i=1

pi log2(pi) (5)

where N stands for the number of frequency bins in the signal power spectrum and the
probability of the signal power being in the i-th frequency bin pi is defined as:

pi = Pi∑N
j=1 Pj

(6)

where Pi is the power in the i-th frequency bin.
And the total power of the signal spectrum is computed as:

Pss =
N∑

i=1

Pi (7)

So, the final ratio is defined as:

R = Pss

Hps
=

∑N
i=1 Pi

−
N∑
i=1

Pi∑N
j=1 Pj

log2

(
Pi∑N
j=1 Pj

) (8)

The proposed method utilizes the R-value criterion to assess the reconstructed coef-
ficients and determine the most suitable mother wavelet for representing the signal.
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This criterion enables the comparison of spectral content captured by each wavelet and
identifies the one that offers the most effective representation. Specifically, the criterion
measures the extent to which information in the signal power spectrum is concentrated
within specific frequency bands rather than uniformly distributed across the entire spec-
trum. A preferred wavelet base is one that yields reconstructed coefficients with a higher
ratio of signal spectrum total power to its Shannon entropy. This preference indicates a
signal with a more predictable and structured spectral composition.

3.3 Signal Representation Using WPT with Node-Specific Bases

Aiming for more efficient feature extraction, the proposed method constructs a repre-
sentation of the input signal using WPT as a fundament. The node-specific approach for
the wavelet base selection uses a rating based on the R-value. Each of the nWPT nodes
at decomposition level j has its unique rating of the WPT-bases, where the best base
for a particular node has the highest R-value. It means that it is possible to obtain more
useful spectral contents for efficient feature extraction from the reconstructed signal of
each particular node if it was selected from a WPT tree decomposed using the wavelet
base with the highest R-value. Thus, the final representation is obtained when each of
the n nodes was selected. This process is illustrated in Fig. 2.

Fig. 2. Schematic for WPT node-specific base selection.



186 A. Maliuk and J.-M. Kim

3.4 Statistical Feature Extraction

In order to represent the obtained data in fewer variables, 19 statistical features were
extracted from the time and frequency domain of each of the eight reconstructed signals
obtained in Sect. 4. Features from each node were concatenated and in the result one
second sample of the vibration signal is now represented by 152 features. Table 1 contains
the names and formulas for each of these 19 features.

Table 1. Statistical features and their formulas.
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4 Experimental Test Bed and Data Collection

The proposed method was evaluated using four bearing-fault datasets to ensure valid-
ity and reliability. Three publicly available datasets were obtained from the KAt-
DataCenter of Paderborn University (PU) in Germany and Case Western Reserve Uni-
versity (CWRU) [10, 11]. PU datasets are denoted as PUA and PUR for artificial and
real bearing faults.

The PU dataset’s vibration data was collected using a modular test rig comprising
an electric motor (Hanning ElektroWerke GmbH & Co. KG), measuring shaft, a mod-
ule for bearing installation, flywheel, and motor used for load simulation. The electric
motor is a 425 W PMSM controlled by an industrial inverter (KEB Combivert 07F5E
1D-2B0A). Four different experimental conditions used for each bearing are shown in
Table 2. Vibration data was obtained using a piezoelectric accelerometer installed on top
of the bearing module and sampled at 64 kHz rate. For the current research the signals
were downsampled with the factor of eight for faster computations. Each dataset sample
represents one second of vibration signal. PU dataset has signals from six healthy bear-
ings with a run-in period of one to 50 h. PUA dataset has 12 bearings with faults inflicted
using electric discharge machine, electric engraving, and drilling. Faults have depths of
1–2 mm for EDM trenches and lengths of 1–4 mm for electric engraving. All faults are
categorized as Healthy, Outer Ring Fault, and Inner Ring Fault, and their arrangement
and codes are demonstrated in Table 3.

Table 2. PU test rig parameters of operation.

No. Angular velocity [rad/sec] Torque of the Load [Nm] Radial Load [N]

0 157.08 0.7 103

1 94.25 0.7 103

2 157.08 0.1 103

3 157.08 0.7 4 * 102

Table 3. PUA dataset composition.

Bearing type and class Bearing letter and code

Healthy [K]: 001-006

Outer Ring Fault [KA]: 01, 03, 05, 06, 07, 08, 09

Inner Ring Fault [KI]: 01, 03, 05, 07, 08

The PUR dataset includes 14 bearings with accelerated lifetime faults inflicted by a
specially developed machine, imitating natural fault infliction with the extensive radial
load. Damages appear as pitting or plastic deformations caused by debris and were
categorized into three levels based on the affected area’s length on the ring surface.
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Bearings were classified as having outer ring fault, inner ring fault, or both. Rolling
elements remained intact. PUR dataset arrangement with bearing codes is presented in
Table 4.

Table 4. PUR dataset composition.

Bearing type and class Bearing letter and code

Healthy [K]: 001-006

Outer Ring Fault [KA]: 04, 15, 16, 22, 30

Inner Ring Fault [KI]: 04, 14, 16, 17, 18, 21

Outer + Inner Ring Fault [KB]: 23, 24, 27

The data obtained from Case Western Reserve University (CWRU) was collected
from an experimental setupwith a two-horsepowermotor, accelerometers, one SKF6205
bearing positioned at the drive end and another installed at the fan end, and a device for
measuring rotational force. Vibrations were recorded at 12000 and 48000 samples per
second via a 16-channelDAT recorder. Faultswere seeded on the following bearing parts:
the inner race, the outer race, and the ball using spark erosion tool. The faults ranged
in diameter from 0.007 inches to 0.040 inches and were positioned at three o’clock, six
o’clock, and 12 o’clock. The data were digitized at a rate of 12000 samples per second
and divided into one-second segments, resulting in a dataset with dimensions of 1920×
12000. The arrangement of CWRU data is shown in Table 5.

Table 5. CWRU dataset composition.

Class names Bearing identification number

Healthy 97-100

Outer Ring Fault 130-133, 144-147, 156-160, 197-200, 234-237, 246-249, 258-261

Inner Ring Fault 056-059, 105-108, 169-172, 209-212

Ball Damage 048-051, 118-121, 185-188, 222-225

5 Performance Evaluation and Discussion

The proposed method constitutes only a portion of the bearing fault diagnosis frame-
work. However, to evaluate its effectiveness for fault diagnosis through comparative
analysis, two complete fault diagnosis frameworks were constructed. The structure of
these frameworks is illustrated in Fig. 3. Signal processing and feature extraction stages
were established based on the description in Sect. 3. The only discrepancies between
the two frameworks lie in the feature engineering stage, specifically in the way the
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vibration signal is processed after envelope analysis. The framework highlighted in red
employs the proposed WPT with node-specific base selection, while the framework
highlighted in blue uses the standard WPT. The white elements are identical for both
frameworks. To ensure the validity of the comparison, three feature selection approaches
were employed. The first approach utilizes the entire feature vector obtained after feature
selection, the second approach utilizes Principal Component Analysis to reduce dimen-
sionality by employing a linear combination of original features, and the third approach
is a wrapper-based Boruta method that selects features based on their importance score
for the Random Forest model. After feature selection, the data is randomly divided,
leaving 80% of the data for training and 20% for testing. The 80% chunk is used for
training of the k-NN model, and the performance of the trained model is validated using
k-fold cross-validation. K-NNmodel is selected due to its low computational expensive-
ness and its instance-based nature. It is a non-parametric algorithm that refrains from
making any presumptions about the inherent data distribution. Instead, its method of
classification involves assessing new instances by contrasting them against the labeled
instances present in the training data. Its performance heavily relies on the quality of the
features. If the feature space is not well-defined or if irrelevant features are included, the
algorithm may not perform well, which means that the quality of the feature set can be
fairly assessed by the k-NN performance.

Fig. 3. Bearing fault diagnosis framework for performance comparison.

This bearing diagnosis framework underwent testing on three datasets, and Table 6
presents the accuracy of fault identification for each dataset individually, as well as the
average performance across all three datasets. By testing the proposed feature extraction
method combined with various feature selection methods, it can be concluded that the
suggested approach of WPT node-specific base selection produces signal representa-
tions that enhance the performance of fault diagnosis frameworks employing traditional
statistical feature extraction and selection techniques, as well as conventional Machine
Learning models.
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Table 6. Fault identification accuracy comparison.

WPT type Feature Selection PU (art)
Acc. %

PU (real)
Acc. %

CWRU
Acc. %

Avg.
Acc. % all datasets

Proposed PCA 90.97 98.43 87.76 92.39 (+1.09)

Boruta 20 features 98.00 99.84 97.14 98.33 (+1.78)

Boruta 10 features 96.61 99.69 96.88 97.73 (+3.17)

Boruta 5 features 96.70 99.68 95.05 97.14 (+2.96)

None 93.40 98.75 94.53 95.56 (+1.24)

Standard PCA 90.02 98.44 85.42 91.29

Boruta 20 features 96.35 100.00 93.29 96.55

Boruta 10 features 96.18 100.00 87.50 94.56

Boruta 5 features 94.96 99.84 87.76 94.19

None 91.84 99.45 91.67 94.32

6 Conclusions

The current study proposes a node-specific approach forwavelet packet transform (WPT)
base selection for feature selection in bearing fault diagnosis. The traditional approach
focuses on a single WPT node with high signal energy, potentially excluding important
features present in other nodes. To address this limitation, a criterion based on the
energy-entropy ratio of the signal spectrum for each node was introduced. This criterion
evaluates the ability of WPT bases to generate signals with concentrated energy in
specific frequency bands. By selecting the WPT bases with the highest criterion score,
our method ensures the preservation of meaningful components and their distinction
from noise. Upon the evaluation using three bearing fault datasets, it was found that on
average across three datasets, the proposed method outperforms the traditional approach
in fault diagnosis performance.

Our approach provides several benefits, including a comprehensive representation of
the signal, explicable diagnostic procedures, and low computational cost. Nevertheless,
it’s crucial to acknowledge that while our suggested technique has its roots in theWavelet
Packet Transform (WPT), it does not adhere to certain fundamental properties of wavelet
decomposition, such as energy conservation and superposition. Thus, it’s inappropriate
to label it as an advanced WPT technique. Nonetheless, our proposed method remains
a valuable tool for feature extraction, leveraging well-founded mathematical principles
that underlie the applied signal manipulations, establishing a strong basis for its use.
As a result, the extracted features offer valuable information about the signal, which
can be applied in various applications including signal processing, classification, and
pattern recognition. In conclusion, our node-specific approach improves the accuracy
and reliability of bearing fault diagnosis by enhancing feature extraction capabilities.
Future work can focus on optimizing the criterion and exploring its applicability to other
signal analysis tasks as long as performing more tests with the Deep Learning models.



WPT-Base Selection for Bearing Fault Feature Extraction 191

Acknowledgements. This work was supported by the Technology Innovation Program
(20023566, Development and Demonstration of Industrial IoT and AI Based Process Facility
Intelligence Support System in Small and Medium Manufacturing Sites) funded by the Ministry
of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Technology
Infrastructure Program funded by the Ministry of SMEs and Startups (MSS, Korea).

References

1. Bazurto, A.J., Quispe, E.C., Mendoza, R.C.: Causes and failures classification of industrial
electric motor. In: 2016 IEEE ANDESCON, pp. 1–4. IEEE, Arequipa, Peru (2016)

2. Smith, W.A., Randall, R.B.: Rolling element bearing diagnostics using the Case Western
Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64–65, 100–131
(2015)

3. Chen, L., Xu,G., Tao, T.,Wu,Q.: DeepResidual network for identifying bearing fault location
and fault severity concurrently. IEEE Access 8, 168026–168035 (2020)

4. Skora, M., Ewert, P., Kowalski, C.T.: Selected rolling bearing fault diagnostic methods in
wheel embedded permanent magnet brushless direct current motors. Energies 12(21), 4212
(2019)

5. Maliuk,A.S., Prosvirin,A.E., Ahmad, Z., Kim,C.H.,Kim, J.M.:Novel bearing fault diagnosis
using Gaussian mixture model-based fault band selection. Sensors 21(19), 6579 (2021)

6. Maliuk, A.S., Ahmad, Z., Kim, J.M.: Hybrid feature selection framework for bearing fault
diagnosis based on Wrapper-WPT. Machines 10(12), 1204 (2022)

7. Pham, M.T., Kim, J.M., Kim, C.H.: Accurate bearing fault diagnosis under variable shaft
speed using convolutional neural networks and vibration spectrogram. Appl. Sci. 10(18),
6385 (2020)

8. Ke, Z., Di, C., Bao, X.: Adaptive suppression of mode mixing in CEEMD based on genetic
algorithm for motor bearing fault diagnosis. IEEE Trans. Magn. 58(2), 1–6 (2022)

9. Lei,Y., Lin, J., He, Z., Zuo,M.J.:A reviewon empiricalmode decomposition in fault diagnosis
of rotating machinery. Mech. Syst. Signal Process. 35(1–2), 108–126 (2013)

10. Lessmeier, C., Kimotho, J.K., Zimmer, D., Sextro, W.: Condition monitoring of bearing
damage in electromechanical drive systems by using motor current signals of electric motors:
a benchmark data set for data-driven classification, p. 17 (2016)

11. “Welcome to the CaseWestern Reserve University Bearing Data CenterWebsite|Case School
of Engineering|Case Western Reserve University,” Case School of Engineering, 10 August
2021. https://engineering.case.edu/bearingdatacenter/welcome. Accessed 20 Oct 2022

https://engineering.case.edu/bearingdatacenter/welcome

	WPT-Base Selection for Bearing Fault Feature Extraction: A Node-Specific Approach Study
	1 Introduction
	2 Technical Background
	2.1 Wavelet Packet Decomposition

	3 Proposed Methodology
	3.1 Envelope Analysis
	3.2 Wavelet Base Evaluation Criterion
	3.3 Signal Representation Using WPT with Node-Specific Bases
	3.4 Statistical Feature Extraction

	4 Experimental Test Bed and Data Collection
	5 Performance Evaluation and Discussion
	6 Conclusions
	References


