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Abstract. In recent years, there has been a growing need for techniques that
enable users to explain the basis for decisions made by neural networks in image
recognition problems.Whilemany conventionalmethods have focused on present-
ing the spatial basis for pattern recognition judgments by identifying the regions
in the image that significantly influence the recognition results, our proposed
method focuses on presenting a structural basis for recognizing handwritten Kanji
characters. This is accomplished by pruning neural networks to acquire detec-
tors for simple patterns that are commonly found in Kanji characters. During the
process of sequentially adding these detectors, we also apply pruning to the net-
work connecting the detectors, thereby aiming to precisely acquire simple hier-
archical connections among the detectors as a structural recognition process in
pattern recognition. We successfully applied this method to simple handwritten
Kanji images, and achieved Kanji recognition by combining detectors for simple
patterns without significantly affecting the recognition rate.

Keywords: Character Recognition · Deep Learning · Neural Network Pruning ·
Pattern Detector

1 Introduction

Currently, various studies on deep learning are being conducted worldwide to improve
its performance by devising the structure of neural networks and learning from more
training data. With such performance improvements, deep learning has been able to
penetrate various application fields, and is highly likely to become the foundation of
social systems in the near future.

To facilitate the integration of deep learning into diverse social systems, it is imper-
ative that society willingly accept machine-generated judgments. For example, in the
medical field [1], a technology that can not only make judgments, but also explain the
rationale behind such judgments is needed. The field of deep learning explainability
has emerged to address this imperative [2]. Consequently, extensive research efforts
have been directed towards the domain of object recognition, with particular emphasis
on methodologies that spatially elucidate the regions within an image that significantly
influence decision-making processes.
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On the other hand, techniques that enable machines to provide explanations for their
decisions based on the structure of patterns in images have been relatively scarce in the
existing research literature. In a typical object recognition application, the recognized
objects are composed of complex and hierarchically arranged combinations of different
components. For example, a car can be described as a combination of wheels, windows,
and a body; decomposing it further reveals that a wheel comprises a tire and rim. The
structural representations generated bymachines may not always align with human intu-
ition. Nonetheless, empowering machines to explain the rationale behind their decisions
by leveraging the pattern is crucial to establishing human confidence in the machine’s
judgments. To accomplish this goal of structural explanation, it is necessary to not
only address the given pattern recognition problem, but also develop methodologies for
automatically acquiring the underlying structure of the pattern.

In this study, we proposed an approach to Kanji character recognition that utilizes
a neural network to automatically and precisely acquire the underlying structure of
patterns, and explain the judgment rationale based on a pattern structure. The motivation
for addressing the Kanji recognition problem is that Kanji characters are composed
of a limited set of components, which renders them suitable to understand the pattern
structure. The proposed method consists of a combination of simple detectors based on
a neural network. During the training process, edge pruning techniques are employed
within the neural network to acquire detectors that respond to simple patterns present in
Kanji characters. Furthermore, by sequentially connecting these detectors and pruning
edges within the network of connections among the detectors, we can achieve Kanji
character recognition. The sparse connections among the detectors in the final neural
network provide a representation of the pattern as a tree structure; this constitutes the
foundation for judgments. Through experimentation, we confirmed that the character
recognition based on detector connectionswas feasiblewithout significantly reducing the
recognition accuracy.Additionally,wedemonstrated the ability to analyze the connection
relationships of each detector, thereby allowing us to acquire detectors that respond
to multiple Kanji characters in common. Through hierarchical connections of these
detectors, we could represent the process of pattern detection as a tree structure.

2 Related Works

2.1 Investigating Explainability in Neural Networks

In recent years, there have been various studies on explainability in deep learning [2].
Many of these methods have been based on approaches that identify important factors
that contribute significantly to recognition results. For example, the integrated gradi-
ents (IG) method finds the elements by integrating the gradient of the activity value of
the output corresponding to the recognition target on a pixel-by-pixel basis [3]. This
method provides a pixel-by-pixel representation of which parts of the image contribute
significantly to an increase in the activity value of the output corresponding to the
recognition target. Local interpretable model-agnostic explanations (LIME) finds which
small regions in the input image contribute significantly to the recognition result [4].
This method achieves this by randomly generating a group of small regions with the
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same features of the image, thus obtaining the activity value of the output correspond-
ing to the recognition target, and expressing the relationship between the two by linear
regression. Activation maximization (AM) obtains the input image that mostly activates
a certain neuron in a neural network by finding the gradient of its activity value relative
to the input image [5, 6]. These methods have received a lot of attention and are at the
forefront of explainability in deep learning. Other studies on explainability based on var-
ious approaches have also been conducted. Most of these methods represent important
elements that contribute significantly to recognition results as units of pixels or regions
in an image. Most of them adopt an approach that visually presents the spatial location
of the elements in the image.

On the other hand, approaches that explicitly present the structure of recognition tar-
gets, such as part-whole relationships, as important elements contributing to the recog-
nition results are not widely observed. In a research effort, based on such an approach,
Zhang et al. have achieved highly interesting Kanji character recognition, including
zero-shot learning, by utilizing the ideographic description sequence (IDS) dictionary
to represent the structure of characters [7]. However, in this method, the structure of
the recognition targets must be pre-defined in the dictionary. Generally, it is challenging
to pre-define the constituent elements that can represent the part-whole relationships of
recognition targets. For example, in the problem of face recognition, assuming that we
want to explain a face is recognized based on the fact that it consists of eyes, nose, and
mouth, pre-defining the constituent elements of a face and preparing separate recog-
nizers for each of them is not practical. In our research, instead of manually preparing
recognizers for the constituent elements of a recognition target, we have attempted to
automatically acquire detectors by pruning the edges of a neural network.

2.2 Applying Edge Pruning to Neural Networks

Pruning edges in neural networks, along with quantization, is commonly applied to
compress the network size [8]. Various approaches have been attempted to eliminate
redundant computations by pruning edges and quantizing the parameters in the network,
while preventing degradation of the recognition performance to the extent possible. Our
study does not attempt to compress the network size; instead it acquires detectors of
simple patterns that commonly exist in the recognition target by means of edge pruning.
It is assumed that the performance of a neural network that has been pruned excessively
will deteriorate, and distinguishing similar patterns will be difficult. In our study, the
neural network that can no longer distinguish similar patterns is used as a detector of
patterns that commonly exist in the recognition target.

3 Proposed Method

3.1 Outline

Figure 1 illustrates an outline of the neural network structure employed in the proposed
method. Firstly, convolutional neural network (CNN) is utilized to train character images
and obtain a character recognition network.After extracting a feature extractor consisting
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of convolutional layers, pattern detectors composed of dense layers are sequentially
added, and the learning process is repeated. During the training, edge pruning is applied
to the dense layers to create detectors that capture simple patterns.Moreover, by applying
edge pruning to the dense layers, the connectivity of the pattern detectors is simplified.
By analyzing this connectivity of the pattern detectors, it becomes possible to acquire
the structure of the underlying patterns that form the basis of recognition.
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Fig. 1. Outline of the proposed method.

3.2 Obtaining Feature Extractor

First, our method obtains a feature extractor that extracts local features of the input
character image. This feature extractor is obtained by transferring the convolution layers
from a trained character recognition network based on CNN, which is widely used in
pattern recognition. As these filters have a significant impact on character recognition
performance, it is necessary to obtain good filters at this stage.

Figure 2 shows the CNN used in this method to obtain the feature extractor. The
network is trained using the training data, which consists of binary images of characters
as input data and one-hot vectors representing the character types of the input characters
as teacher data. Using the training data, the weights in the network are updated to reduce
the value of the loss function using an optimization algorithm. The loss function is the
categorical cross entropy. During the training process, the weights of the network with
the best recognition results for the validation data are used as the final training set. After
training, the classifier is discarded and the feature extractor is used as a set of filters to
extract the local features of the character images.

3.3 Adding and Pruning Pattern Detectors

Adding Pattern Detectors. Our method adds the 1st pattern detector to the feature
extractor obtained in the previous step (see Sect. 3.2), as shown in Fig. 3 and trains the
network in the manner described shortly. In the training process, edge pruning is applied
to the dense layers in the pattern detector to make it respond to simple patterns in the
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Fig. 2. Convolutional Neural Network for character recognition.
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Fig. 3. Adding pattern detectors to the feature extractor.

characters. It may be noted that the weights in the feature extractor are frozen and used
in this training process.

After the training of the 1st pattern detector is completed, the 2nd pattern detector
shown in Fig. 3 is added and the network is further trained. By adding the 2nd pattern
detector, the overall network structure becomes more complex, and a detector that can
respond to complex patterns can be obtained. The weights in the 1st pattern detector
as well as those in the feature extractor are frozen, and the training with edge prun-
ing described later is applied to the 2nd pattern extractor. By adding pattern detectors
sequentially as described above, our method finally obtains the detector that can output
the desired Kanji recognition results.

The pruned dense layer within each pattern detector comprises highly sparse edges
resulting from the pruning process. As a result, the nodes in the output layer of each
pattern detector no longer respond to only one character, but to multiple characters. This
signifies that the parameter count representing each pattern detector has been reduced
through pruning, thereby enabling it to respond to simple patterns present in multiple
characters. The values of these nodes are input to the next pattern detector through the
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pruned dense layer that connects them. By revealing how pattern detectors are inter-
connected via the pruned dense layer, it will be possible to explain to the machine the
combination of structural patterns present in the input image. Additionally, in the event
of a failure in recognizing handwritten Kanji images, it may be possible to explain the
cause of recognition failure by observing the output values of each pattern detector and
identifying which patterns exhibited weak responses.

Training and Pruning Pattern Detectors. As shown in Fig. 4, the proposed method
applies pruning to the dense located just before the output layer of the pattern detector
and the dense layer connecting the pattern detectors. The pruning is achieved by fixing
the weights of the edges between the nodes in the dense layer to zero. Here, we define
sparsity, sf as the ratio of the number of edges, whose weights are fixed to 0, to the total
number of edges in the dense layer. In this method, in the process of training, the weights
of the edges in the dense layer are fixed to 0 for edges, whose weights are close to 0.
This operation is repeated until sf reaches a pre-defined value.

This training process is divided into two stages: In Stage 1, training for character
recognition with edge pruning, shown in Fig. 4(a), takes place, and in Stage 2, training
for a detector that responds to simple patterns, shown in Fig. 4(b), takes place.

In Stage 1, we use the training data described in Sect. 3.2 to update the weights of
the dense layer in the pattern detector until the loss function converges. The teacher data
in the training data is represented as a one-hot vector. The character type corresponding
to the node with the largest value in the output layer is used as the recognition result.
In this process, the edge pruning is repeatedly applied to the dense layer just before the
output layer of the pattern detector until sf reaches a pre-specified value.

The training method with edge pruning, as proposed by us, is described below. First,
the final value of sf and the number of sparsity updates I, are determined in advance.
Then, using the training data described in Sect. 3.2, the weights in the dense layers are
updated until the loss function converges. Then, for the weights within the dense layers,
this method fixes the weights whose value is close to 0 to 0 so that sf can be calculated
by the following equation:

sparsity = sf i/I ,

where i is the number of updates of the current sparsity. By repeating the above training
and pruning I times, sf within the dense layers becomes the final sf specified.

In the Stage 2, we aim to obtain detectors that respond to simple patterns using
the network obtained after applying edge pruning. The pruning of the dense layers
results in a decrease in the network’s recognition performance, limiting it to recognizing
only simple patterns. In other words, this pruning yields a network that exclusively
responds to various simple patterns of kanji characters. We input the character images
from the training data into the network and calculate the average values of the nodes
in the output layer for each character type. As the pruned network only responds to
simple patterns, even when a character image belonging to a particular character type is
inputted, multiple nodes in the output layer may exhibit high values. In this approach, as
depicted in Fig. 4(b), we apply discriminant analysis [9] to binarize the average values
of the nodes in the output layer, thereby determining multiple nodes that respond to
character images of a specific character type. Subsequently, we obtain teacher vectors,
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(a) Training for character region with edge pruning

(b) Training detectors that respond to simple patterns
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Fig. 4. Training for pattern detectors.

as shown in Fig. 4(b), where non-responsive nodes have a value of 0, and responsive
nodes possess probabilities indicating the correct character type as their element values.
Using this training data, we retrain the pruned network to obtain detectors that respond
to simple patterns. The loss function used in this stage is also a categorical cross entropy.

Once the training of a detector is complete, the next detector is added, and the same
training process is performed.As shown inFig. 5, theweightswithin the feature extractor,
weights of the learned pattern detectors, and weights of the connections between the
pattern detectors are all frozen. Only the weights within the newly added pattern detector
and weights of its connections with the previous pattern detector are updated through
training. Regarding the weights of the connections with the preceding pattern detector,
they are primarily initialized randomly, except for the weights of edges connecting
the nodes corresponding to the same character type, which are initialized to 1. This
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initialization is done to actively utilize the output of the previous pattern detector. By
completing the training of the last pattern detector at the stage depicted in Fig. 4(a), we
obtain the final character recognition network. Furthermore, as illustrated in Fig. 5, by
tracing the sparse connections between detectors from the nodes of the final output layer
to the feature extractor, we can understand the simple patterns on which each character
is recognized.
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Fig. 5. Adding pattern detectors (gray boxes indicate that weights are frozen).

4 Experimental Results

This section describes the experimental results of the proposedmethod,whichwas imple-
mented on a computer with an Intel Xeon E5-1603 v4 2.80 GHz CPU, with 16.0 GB
RAM, and anNVIDIAQuadro K620GPU chip. All the processing was coded in Python.
Tensorflow and OpenCV were used to implement the neural network and text image
input/output and transformation processes, respectively. The Tensorflow model opti-
mization toolkit was also used for pruning the edges of the neural network. The analysis
of the connectivity between pattern detectors was conducted using the anytree library.

The handwritten Japanese character image data set ETL9B was used in this experi-
ment. This set consists of binary images of 201 64× 63 pixel sized characters for each of
the 3036 character types, including Japanese Kanji. In this experiment, 80 types of Kanji
learned in the first grade of elementary school, which are relatively simple in structure,
were used as the target characters for recognition to confirm whether the basic hierar-
chical structure within Kanji could be acquired. For each character type, 120, 21, and 60
images were used for training, validation, and test, respectively. For the training images,
a random projective transformation was applied to generate 300 character images for
each character type. Of the generated images, 270 and 30 were used as training and
validation images, respectively. As a result, 390, 51, and 60 images were prepared for
training, validation, and test for each character type.



Character Structure Analysis by Adding and Pruning Neural Networks 137

The parameters of the network are shown in Fig. 6. First, as described in Sect. 3.2, we
trained the CNN consisting of a feature extractor and a classifier for 1000 epochs using
the training images to obtain the model with the best recognition rate for the validation
image. The recognition rate of this model for the test image was 97.8%.
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Fig. 6. Parameters in the proposed neural network.

Then, the feature extractor was extracted, and as described in Sect. 3.3, the pat-
tern detectors were sequentially added. By utilizing the learning method described in
Sect. 3.3, the weights of the edges in the pruned dense layer within the pattern detec-
tor and the one connecting them were acquired while pruning the unnecessary edges.
As shown in Fig. 6, the values of final sf used in the pattern detector were extremely
high. This indicates that each node on the output side of the pruned dense layers used
in the pattern detectors was connected to at most a few nodes on the input side and,
in some cases, might not be connected at all. Therefore, the pruned dense layers used
in the pattern detectors were composed of highly sparse edges. During training, early
stopping was applied using the validation data to shorten the training time. Figure 7
depicts the recognition rate at the end of character recognition training using edge prun-
ing, where pattern detectors were sequentially added. Despite the pruned dense layers
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involved in the output of the pattern detector being composed of highly sparse edges, it
was observed that by connecting only a few pattern detectors, a performance comparable
to a conventional CNN could be achieved. The highest recognition rate was obtained
when six pattern detectors were connected, yielding a recognition rate of 98.0%.

Fig. 7. Recognition rates of the proposed method.

Next, in the network, where the six pattern detectors with the highest recognition
rates from Fig. 7 were connected, we examined to which character types the output
nodes of each pattern detector’s output layer responded. Figure 8 lists the nodes in the
output layers of each pattern detector that responded to multiple character types and
maintained connections with the output layer of the sixth pattern detector. Clearly, the
initially added pattern detector outputted recognition results through a pruned dense
layer with highly sparse edge connections, causing many nodes in the output layer to
respond to multiple character types. However, as the pattern detectors were sequentially
added, it was observed that by utilizing the outputs from the previous pattern detector
and the feature extractor, each node in the output layer narrowed down the character
types to which it responded. Notably, starting from the fourth pattern detector, each
node in the output layer began responding to only one character type. In this validation,
we expected some nodes in the output layer of the pattern detector to respond to similar
character types. However, as shown in Fig. 8, most of the nodes that responded to
multiple character types in the output layer were not responding to character types that
appeared very similar. It was unclear whether these were detectors that were mistakenly
obtained or if there were indeed common patterns that humans cannot intuitively grasp.
Additionally, as mentioned in [4], it was possible that they were also responding to
regions that humans did not anticipate. In the future, it will be necessary to combine
existing methods, such as activation maximization, as described in Sect. 2.1 to visually
present to which parts of characters each node in the output layer of each pattern detector
was responding.
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Fig. 8. Nodes in the output layers of pattern detectors responding to multiple characters.

Additionally, the connectivity of the pattern detectors was examined after applying
edge pruning to the 6th pattern detector. Several examples are shown in Fig. 9. The
solid round rectangles represent nodes in the output layer of the pattern detectors, and
the characters inside the rectangles indicate the character types to which the nodes
responded in the corresponding character image. The solid round rectangles represent
nodes in the output layer of the pattern detector, and the characters in the rectangle
indicate that the node responded to character images of that character type. Arrows
connecting the nodes represent the remaining edges in the pruned dense layers that
connected the pattern detectors. The red round rectangles indicate that when the value of
this node increased, the value of the corresponding node in the 6th pattern detector also
increased. The blue round rectangles indicate that when the value of this node increased,
the value of the corresponding node in the 6th pattern detector decreased. As shown
in the upper left tree in Fig. 9, in 51 out of 80 cases, a node responding to a certain
character type in the output layer of each pattern detector was serially connected to
a node responding to the same character type in the output layer of the sixth pattern
detector. Additionally, in the other trees in Fig. 9, where nodes in the output layer of
the pattern detectors were interconnected in a more complex manner, it can be observed
that this sequential connection was still present. Furthermore, nodes in the output layer
of a particular pattern detector tended to suppress nodes that responded to visually
similar, but different character types in the output layer of the 6th pattern detector. This
hierarchical structure allowed for the acquisition of the similarity relationships among
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the target character types. Additionally, in Fig. 9, subtrees within the shaded regions
of the same color indicate that they shared the same structure. This implies that the
nodes indicated by the red arrows contributed to the final recognition results of multiple
character types. In other words, acquiring these nodes meant obtaining detectors that
responded to simple patterns, which was the goal of this study. Representing these
connectivity relationships in a tree structure signifies the description of the underlying
patterns governing the decision-making process. However, it should be noted that these
considerations are subjective and difficult to evaluate objectively. Future work should
explore quantitative evaluation methods.

Fig. 9. Obtained connection relationships of pattern detectors.

Figure 10 illustrates examples of node values in the output layer of the pattern
detectors for the character images that the proposed method failed to recognize. On
the left are the pattern detectors corresponding to the correct character types, while on
the right are the pattern detectors corresponding to the misrecognized character types.
It can be observed that when the input character was corrupted, nodes corresponding
to similar characters also responded and tended to suppress the final output. However,
these observations are subjective. In the future, it is necessary to visualize how each
node responds to specific patterns using techniques, such as activation maximization.
Furthermore, it is essential to establish quantitativemeasures and conductmore objective
evaluations.
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Fig. 10. Examples of node values in the output layers of the pattern detectors for erroneously
recognized character images.

5 Conclusions

In this study, we proposed a method to explain the rationale behind judgments based
on pattern structure using a neural network for handwritten Kanji character recognition.
This approach involved sequentially connecting pattern detectors to feature extractors
obtained from a CNN designed for handwritten Kanji character recognition. During the
training process, pruning the network enabled each pattern detector to respond to simple
patterns shared among similar characters. Furthermore, pruning the network connecting
the pattern detectors allowed us to represent the relationships among detectors as tree
structures, depicting the foundational patterns for judgments. Through experiments, we
confirmed that the proposed method achieved a character recognition performance com-
parable to that of CNN despite being composed of a sparse neural network. Additionally,
we confirmed that the connection relationships among pattern detectors allowed us to
understand the relationships among simple patterns shared among similar characters,
represented as tree structures.

While we succeeded in acquiring detectors that responded to multiple Kanji charac-
ters in common, we were unable to visualize to which patterns in the character images
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these detectors were responding. In the future, introducing the conventional method
described in Sect. 2.1, which visually presents judgment rationale, is necessary. Further-
more, owing to the computational limitations in this study, we froze the weights of the
pre-trained feature extractors and pattern detectors, applying learning only to the newly
added pattern detectors. Moving forward, we plan to introduce fine-tuning and explore
learning methods that tune all the weights within the network.
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