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Abstract. Image matting aims to estimate the opacity of foreground
objects in order to accurately extract them from the background. Exist-
ing methods are only concerned with RGB features to obtain alpha mat-
tes, limiting the perception of local tiny details. To address this issue,
we introduce frequency information as an auxiliary clue to accurately
distinguish foreground boundaries and propose the Frequency Matting
Network (FMN). Specifically, we deploy a Frequency Boosting Module
(FBM) in addition to the Discrete Cosine Transform (DCT) to extract
frequency information from input images. The proposed FBM is a learn-
able component that empowers the model to adapt to complex scenarios.
Furthermore, we design a Domain Aggregation Module (DAM) to effec-
tively fuse frequency features with RGB features. With the assistance
of frequency clues, our proposed FMN achieves significant improvements
in matting accuracy and visual quality compared with state-of-the-art
methods. Extensive experiments on Composition-1k and Distinctions-
646 datasets demonstrate the superiority of introducing frequency infor-
mation for image matting.

Keywords: Image matting · Frequency matting network · Frequency
boosting module · Domain aggregation module

1 Introduction

Natural image matting is a crucial task in computer vision which involves
extracting a high-quality alpha matte (i.e., the opacity of foreground object at
each pixel) from an image, as shown in Fig. 1. This task has numerous applica-
tions in modern life, particularly in fields such as virtual reality, film production,
and digital image processing. Generally, the input image is represented as a lin-
ear combination of foreground and background colors with alpha mattes [22].
This representation can be expressed mathematically as:

Ii = αiFi + (1 − αi)Bi, αi ∈ [0, 1], (1)
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where αi refers to the opacity of foreground objects at pixel i, Ii refers to the
RGB color at pixel i, and Fi and Bi refer to the RGB colors of the foreground
and background at pixel i, respectively. Obviously, the image matting problem
is highly ill-posed since there are seven values to be determined, but only three
values are known for each pixel of a given image.

Most matting approaches typically require a well-annotated trimap as an aux-
iliary input [2,9,10,16,18,27,28]. Since they depend excessively on the quality of
trimaps to predict alpha mattes, automatic matting algorithms [13,14,20,28,29]
have recently garnered significant attention from the academic community due
to their ability to eliminate auxiliary guidance.

Input Image Ground Truth Our Results

Fig. 1. The alpha matte generated by our FMN and the corresponding ground truth
on Composition-1k test set.

All these matting methods [13,14,18–20,28] share one common characteristic,
i.e., they rely solely on RGB information for feature extraction, which limits the
model to perceive local tiny details, e.g., changes of boundaries and illumination
in hair. According to the studies of biology and psychology [32], some animals
may beat humans in visual recognition since they have more wavebands (e.g.,
frequency information) than humans. Therefore, in this study, we claim that
matting problems should not be limited to replicating the visual perception
abilities of humans in the single RGB domain, but rather should incorporate the
additional frequency information for superior recognition ability.

To this end, we propose a novel matting method named Frequency Matting
Network (FMN). We first follow existing methods [13,28,29] to deploy the CNN
encoder for RGB feature extraction. Meanwhile, we use Discrete Cosine Trans-
form (DCT) to transform the image into the frequency domain for frequency
feature extraction. However, the fixed offline DCT algorithm fails to address
real-world images with various foreground objects and complicated backgrounds.
This motivates us to design a Frequency Boosting Module (FBM), which con-
sists of band-wise boosting and space-wise boosting modules (See Sect. 3.3).
In this way, the model can adapt to complex scenarios for accurate frequency
information collection. Furthermore, we propose a Domain Aggregation Module
(DAM), achieving effective feature fusion from the two domains (i.e., frequency
domain and RGB domain) to generate informative feature maps (See Sect. 3.4).
Finally, we adopt the Progressive Refinement Module (PRM) following [29] and
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define a frequency perception loss to provide additional supervision for further
frequency modeling.

Our main contributions can be summarized as:

• Different from previous matting approaches which only extract features in
the RGB domain, we claim that matting should go beyond the RGB domain.
Therefore, we present a new perspective that matting can be improved by
incorporating frequency information with RGB information.

• To leverage information in the frequency domain, we present a novel matting
network, i.e., Frequency Matting Network (FMN), which comprises a Fre-
quency Boosting Module (FBM) and a Domain Aggregation Module (DAM).
The former assists in enhancing frequency signals and the latter effectively
fuses features from RGB domain and frequency domain. Furthermore, we
design a frequency perception loss to provide supervision in the frequency
domain.

• Comprehensive experiments on two widely-used matting datasets (i.e., Adobe
Composition-1k and Distinctions-646) show that the proposed method out-
performs state-of-the-art methods by a large margin.

2 Related Work

In this section, we provide a brief overview of the image matting methods, includ-
ing traditional methods and deep-learning methods as well as knowledge about
learning in the frequency domain.

2.1 Image Matting

Traditional Methods. Traditional matting methods typically rely on color
model established form the input image. According to the manner addi-
tional inputs are utilized, traditional matting approaches are further divided
into sampling-based approaches and affinity-based approaches. Sampling-based
methods [10,23] mainly calculate alpha mattes by representing each pixel inside
transition regions with a pair of known foreground and background color.
Affinity-based methods [1,4,11,12] propagate the alpha values from known
regions to unknown ones based on the affinities among adjacent pixels, resulting
in high computational complexity.
Deep-learning Methods. Deep-learning methods typically provide superior
performance than traditional methods and compensate for their shortcomings.
Trimap-based learning methods require annotated trimaps as additional inputs.
In the pioneering work, [27] proposes an encoder-decoder network that takes an
RGB image and its corresponding trimap as inputs to estimate alpha matte. [9]
presents a context-aware natural image matting method for simultaneous fore-
ground and alpha mattes estimation. [2] proposes AdaMatting, which disentan-
gles the matting task into trimap adaptation and alpha estimation. To address
cross-patch dependency and consistency issues between patches, [28] proposes
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a patch-based method for high-resolution inputs. [18] proposes a transformer-
based architecture with prior-tokens which imply global information of each
trimap region as global priors.

In contrast to trimap-based methods, trimap-free methods predict alpha mat-
tes without trimaps. [30] proposes a structure with two decoders to classify fore-
ground and background and fuses them in an extra network. [20] employs spatial
and channel attention to integrate appearance cues and pyramidal features. [29]
uses a binary mask as additional input and proposes a method to progressively
refine the uncertain regions through the decoding process. [13,14] predict trimap
parallel to alpha matte of the transition region and then fuse them to obtain the
final alpha matte.
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Fig. 2. The overall architecture of the proposed FMN. The frequency features from
FBM and the RGB features from CNN encoder are integrated by DAM. Subsequently,
the outputs from DAM, on the one hand, are fed to the decoder for alpha matte
prediction at multiple resolutions. On the other hand, they are used for frequency
perception to achieve more effective guidance for the network in the frequency domain.

2.2 Learning in the Frequency Domain

The frequency-domain compressed representations contain rich patterns for
image understanding tasks. [8] conducts image classification task based on fea-
tures extracted from frequency domain. [26] first converts information to fre-
quency domain for better feature extraction and uses the SE-Block to select the
beneficial frequency channels and simultaneously filter meaningless ones. [21]
proposes that global average pooling(GAP) operation is dissatisfactory in cap-
turing a range of features since it is equivalent to the lowest frequency elements
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from perspective of the frequency domain. Our proposed FMN benefits from
existing trimap-free methods in terms of the model design. We also innovatively
introduce frequency information into the matting task to perceive more local
details.

3 Frequency Matting Network

In this section, we present the overall network architecture of our Frequency
Matting Network (FMN) and provide details on its implementation. Addition-
ally, we discuss the loss functions adopted in this paper.

3.1 Architecture Overview

We adopt ResNet34-UNet [15] with an Atrous Spatial Pyramid Pooling (ASPP)
as the matting fundamental framework. As illustrated in Fig. 2, the input image
is processed by two data flows, i.e., the RGB flow and the frequency flow. For
the RGB flow, we use a CNN encoder to extract RGB features. While for the
frequency flow, we utilize FBM after DCT to extract frequency features simul-
taneously. Then the features from two domains are fed into DAM for feature
fusion. On the one hand, the output of DAM is processed by a convolution layer
to reduce the dimension. The 1-d feature is used for frequency perception loss,
which provides supervision in the frequency domain. On the other hand, the
output is sent into decoder at the corresponding layer to reserve information
lost in the decoding process. Finally, the outputs from Decoder 1, 2 and 4 are
used by the Progressive Refinement Module (PRM) to selectively fuse features
at different scales. We use weighted l1 loss, composition loss and Laplacian loss
to calculate loss in the RGB domain. Note that We provide supervision for the
network in the both RGB domain and frequency domain. Therefore, we obtain
high quality alpha mattes.
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Fig. 3. The pipeline of Discrete Cosine Transform for an image.

3.2 DCT for Image Transformation

DCT utilizes an orthogonal cosine function as the basis function, which brings
the energy of the image together and facilitates the extraction of features in the
frequency domain. As shown in Fig. 3, the input RGB image xrgb is firstly split
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into three channels, then we can obtain
{
pci,j |1 ≤ i, j ≤ H

8

}
by dividing xrgb into

a set of 8×8 patches. Specifically, we divide patches densely on slide windows of
the image for further frequency processing. Finally, each patch of a certain color
channel pci,j ∈ R

8×8 is processed by DCT into frequency spectrum dci,j ∈ R
8×8.

After operations discussed above, each value corresponds to the intensity of
a certain frequency band. To group all components of the same frequency into
one channel, we first obtain di,j ∈ R

8×8×3 by concatenating each channel dci,j
and then we flatten the frequency spectrum and reshape them to form xfreq

0 ∈
R

H
8 ×W

8 ×192. In this way, we rearrange the signals in zigzag order within one
patch and each channel of xfreq

0 belongs to one band. Therefore, the original
RGB input is transformed to the frequency domain.
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Fig. 4. The illustration of Frequency Boosting Module. It comprises two parts, i.e.,
band-wise boosting and space-wise boosting for interactions within individual patches
and between patches, respectively.

3.3 Frequency Boosting Module

Although DCT is capable of transforming the image from RGB domain into
frequency domain, its characteristic of having no learnable parameters makes
it difficult to adapted to complex scenarios. To solve this problem, we design a
Frequency Boosting Module, and the framework is shown in Fig. 4. Specifically,
we boost the signals form two aspects, including within individual patches and
between patches. On the one hand, we enhance the coefficients in local frequency
bands, i.e., band-wise boosting, and on the other hand, we establish interactions
between patches, i.e., space-wise boosting. Firstly, we downsample and partition
the signals into two parts, the low xfreq

l and high signals xfreq
h ∈ R

96×k2
, where

k means the size. To boost the signals in the corresponding frequency bands, we
feed them into two multi-head self-attention (MHSA) separately and concate-
nate their outputs to recover the original shape. Secondly, we utilize another
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MHSA to reconcile all the different frequency bands, whereas the rich corre-
lation information between each channel in the input features is captured. We
denote the output of band-wise boosting as xfreq

f . However, the above proce-
dures only enable interactions between different frequency spectrums within a
single patch. Therefore, we need to establish connections between patches. To
this end, we first reshape xfreq

f to xfreq
s ∈ R

k2×C and use MHSA to model the
relationships among all the patches. Finally, we upsample these features and get
the enhanced frequency signals xfreq.

3.4 Domain Aggregation Module
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Fig. 5. The illustration of Domain Aggregation Module. It is designed to fuse features
from the RGB domain and the frequency domain.

We have already obtained RGB features and frequency features by CNN and
FBM, respectively. However, it remains a challenge to aggregate features from
two different domains. To this end, we design the Domain Aggregation Module
(DAM) to fuse these features, as shown in Fig. 5. The feature aggregation is
a mutually reinforcing process, where frequency features are discriminative for
local details while RGB features have a larger receptive field to perceive global
semantics.

As CNNs are more sensitive to low-frequency channels, we first apply a fil-
ter to extract high-frequency channels manually. For an input frequency domain
feature xfreq, the network can focus on the most important spectrum automati-
cally. Specifically, we use a binary base filter f base that covers the high-frequency
bands and a Conv block to adjust the channels of frequency features for con-
catenation. Then we feed the aggregated features into another Conv block with
two output channels and a sigmoid. In this way, we obtain the matrix Ifreq for
the frequency domain and Irgb for the RGB domain, separately. Secondly, we
aggregate features from two domains. Multiplied with the matrix and a learned
vector v ∈ R

1×C to adjust the intensity of each channel, the aggregated features
of each domain can be defined as:

Xrgb
s =IrgbX

rgb ⊗ V rgb, Xfreq
s = IfreqX

freq ⊗ V freq, (2)
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Finally, we can obtain the fused features by adding two domain features: Xs =
Xrgb

s + Xfreq
s . In this way, we can make full use of discriminative frequency

information while maintaining semantic information to ensure that both integrity
and details of the foreground can be preserved.

3.5 Network Supervision

To further capture the frequency information that differs from human perception,
we introduce a novel loss, i.e., frequency perception loss. Besides calculating
loss directly in the RGB domain, we also intend to provide supervision for the
network in the frequency domain. And we assume that the predictions should be
correct not only at each pixel location but also in the coefficients after DCT when
they act on the original images. As a result, we design the frequency perception
loss to make the network mine more information in the frequency domain. We
can define frequency perception loss as:

Lf (αp, αg) = ||DCT (αg) − DCT (αp)||22/q, (3)

where q is the quantization table, αp refers to predicted alpha matte and αg

refers to ground truth. αp should be upsampled to the same size as αg before
loss calculation.

As can be seen in Fig. 2, the four predicted alpha mattes under different
resolutions are rescaled to the input image size and then supervised by the
frequency perception loss Lf in the frequency domain. The overall loss functions
in the frequency domain are as follows:

Lfreq =
∑

l

wlLf (αp, αg) (4)

where wl is the loss weight of different scales. We set w 1
8

: w 1
4

: w 1
2

: w1 = 1 : 2 :
2 : 3 in our experiments.

We also provide supervision in the RGB domain. Previous scale alpha mat-
tes preserve relatively complete profiles while they may suffer from ambiguous
details, and current scale alpha mattes retain detail information while they may
be subjected to background noises. Therefore, following [29], we adopt Pro-
gressive Refinement Module (PRM) to selectively fuse the alpha mattes from
different scales with a self-guidance mask. Meanwhile, we employ their loss func-
tions as overall loss functions in the RGB domain:

Lrgb =
∑

l

wlL(αp, αg)

L(αp, αg) = Ll1(αp,αg) + Lcomp(αp, αg) + Llap(αp, αg)
(5)

where wl is the loss weight of different scales. We set w 1
8

: w 1
4

: w1 = 1 : 2 : 3 in
our experiments.

The final loss function for the FMN can be expressed as:

Lfinal = Lrgb + Lfreq (6)
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4 Experiments

In this section, we evaluate the proposed Frequency Matting Network (FMN)
on two datasets: Adobe Composition-1k [27] and Distinctions-646 [20]. We first
compare FMN with SOTA methods both quantitatively and qualitatively. Then
we perform ablation studies for FMN on Composition-1k and Distinctions-646
to demonstrate the importance of several crucial components.

Input Image Trimap Closed Form DIM IndexNet CA

GCA A2U Late Fusion HAtt++ Ours Ground Truth

Input Image Trimap Closed Form DIM IndexNet CA

GCA A2U Late Fusion HAtt++ Ours Ground Truth

Input Image Trimap Closed Form DIM IndexNet CA

GCA A2U Late Fusion HAtt++ Ours Ground Truth

Fig. 6. The visual comparisons on Composition-1k test set.

4.1 Datasets and Evaluation Metrics

Datasets. The first dataset is the public Adobe Composition-1k [27]. It consists
of 431 foreground objects for training and 50 foreground objects which are com-
posed with 20 background images chosen from PASCAL VOC [6] for testing.
The second one is the Distinctions-646 dataset which improves the diversity of
Composition-1k. It comprises 596 foreground objects for training and 50 fore-
ground objects for testing, and then we produce 59, 600 training images and
1000 test images according to the composition rules in [27].
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Table 1. The quantitative comparisons on Composition-1k test set. Upper part:
trimap-based approaches. Lower part: trimap-free approaches.

Methods SAD↓ MSE(103)↓ Grad↓ Conn↓
Share Matting [7] 125.37 0.029 144.28 123.53

Learning Based [31] 95.04 0.018 76.63 98.92

ClosedForm [12] 124.68 0.025 115.31 106.06

KNN Matting [4] 126.24 0.025 117.17 131.05

DCNN [24] 115.82 0.023 107.36 111.23

Info-Flow [1] 70.36 0.013 42.79 70.66

DIM [27] 48.87 0.008 31.04 50.36

AlphaGAN [17] 90.94 0.018 93.92 95.29

SampleNet [25] 48.03 0.008 35.19 56.55

CA Matting [9] 38.73 0.004 26.13 35.89

IndexNet [16] 44.52 0.005 29.88 42.37

GCA Matting [15] 35.27 0.004 19.72 31.93

A2U [5] 33.78 0.004 18.04 31.00

Late Fusion [30] 58.34 0.011 41.63 59.74

HAttMatting [20] 44.01 0.007 29.26 46.41

HAttMatting++ [19] 43.27 0.006 27.91 44.09

PP-Matting [3] 46.22 0.005 22.69 45.40

FMN(Ours) 40.01 0.004 19.97 33.59

Evaluation metrics. We evaluate the alpha mattes following four common
quantitative metrics: Sum of Absolute Differences (SAD), Mean Square Error
(MSE), Gradient(Grad) and Connectivity (Conn) errors proposed by [27].

4.2 Evaluation Results

Evaluation on Composition-1k test set. We compare the FMN with 6 tra-
ditional hand-crafted algorithms as well as 11 deep learning-based methods. For
the trimap-based methods, we can generate trimaps by dilating alpha mattes
with random kernel size in the range of [1, 25]. As the qualitative and quantita-
tive comparisons shown in Fig. 6 and Table 1, respectively, the proposed FMN
exhibits significant superiority over traditional trimap-based approaches. With
respect to trimap-based learning approaches, FMN still produces much better
results than DIM [27], AlphaGAN [17], SampleNet [25], IndexNet [16] in terms of
all the four metrics. For example, IndexNet achieves SAD 44.52 and MSE 0.005,
while our method obtains a superior performance with SAD 40.01 and MSE
0.004. Moreover, our approach is slightly inferior to Context-aware [9] but a lit-
tle worse than GCA Matting [15] and A2U [5]. However, our method can achieve
equivalent performance without any auxiliary inputs, which is very convenient
for novice users. The lower part of Table 1 illustrates that our FMN outperforms
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Table 2. The quantitative comparisons on Distinctions-646 test set. Upper part:
trimap-based approaches. Lower part: trimap-free approaches.

Methods SAD↓ MSE(103)↓ Grad↓ Conn↓
Share Matting [7] 119.56 0.026 129.61 114.37

Learning Based [31] 105.04 0.021 94.16 110.41

ClosedForm [12] 105.73 0.023 91.76 114.55

KNN Matting [4] 116.68 0.025 103.15 121.45

DCNN [24] 103.81 0.020 82.45 99.96

Info-Flow [1] 78.89 0.016 58.72 80.47

DIM [27] 47.56 0.009 43.29 55.90

HAttMatting [20] 48.98 0.009 41.57 49.93

HAttMatting++ [19] 47.38 0.009 40.09 45.60

PP-Matting [3] 40.69 0.009 43.91 40.56

FMN(Ours) 34.28 0.006 19.93 27.23

the SOTA trimap-free approach to a great extent, which decreases SAD and
Conn metrics heavily: from 46.22 and 45.40 to 40.01 and 33.59, respectively,
indicating the effectiveness of our FMN.

Input Image Trimap DIM HAtt++ Ours Ground Truth

Fig. 7. The visual comparisons on Distinctions-646 test set.

Evaluation on Distinctions-646 test set. We compare the FMN with 10
recent matting methods. We also use random dilation to generate high-quality
trimaps [27] and relevant metrics are computed on the whole image. As qual-
itative and quantitative comparisons on the Distinctions-646 dataset displayed
in Fig. 7 and Table 2, respectively, our FMN shows a clear advantage compared
to all the mentioned matting approaches. It is noted that FMN outperforms
trimap-free matting approach by a large margin, especially in terms of Grad
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and Conn metrics. We can see a sharp decrease on Grad and Conn metrics, i.e.,
from 43.92 and 40.56 to 19.93 and 27.23 for PP-Matting, which indicates that
our model can achieve high-quality visual perception.

Table 3. Ablation Study on Composition-1k dataset.

FBM DAM Lfreq SAD↓ MSE(103)↓ Grad↓ Conn↓
64.33 0.018 42.68 48.42

� 42.61 0.007 22.16 34.57

� � 40.24 0.004 20.26 34.05

� � � 40.01 0.004 19.97 33.59

Table 4. Ablation Study on Distinctions-646 dataset.

FBM DAM Lfreq SAD↓ MSE(103)↓ Grad↓ Conn↓
51.46 0.012 45.68 56.71

� 35.88 0.009 23.16 36.57

� � 34.38 0.009 22.64 36.77

� � � 34.28 0.007 19.93 27.23

4.3 Ablation Study

We validate the effectiveness of different components on Composition-1k dataset
and Distinctions-646 dataset, separately. The correlated evaluation values are
summarized in Table 3 and Table 4. Compared with results in the first row,
the utilization of FBM can bring considerable performance improvements on all
the four metrics to a great extent. For example, SAD error decreases sharply
from 64.33 to 42.61 on Composition-1k dataset and from 51.46 to 35.88 on
Distinctions-646 dataset. The main reason is that FBM introduces frequency
information into matting assignment and thus provides more precise local tiny
details to compensate for RGB features. Moreover, the results also show that
DAM plays a vital role in fusing RGB features and frequency features, which
provides a slight rise in alpha matte quality compared to simply adding the
features from two domains in the second row. In addition, the application of
frequency perception loss to constrain frequency features has proven to be valu-
able, particularly in terms of Grad and Conn metrics. Specifically, we observe a
significant improvement in these metrics, with values decreasing from 22.64 and
36.77 to 19.93 and 27.23, respectively.

5 Conclusion

In this paper, we utilize frequency information of an image to help predicting
alpha values in the transition areas, i.e., foreground boundaries. To extract the
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discriminative cues in the frequency domain for complex scenario perception,
we design a Frequency Boosting Module (FBM), which comprises band-wise
boosting and space-wise boosting, to boost the coefficients in all the frequency
bands. Furthermore, we integrate features from the RGB domain and the fre-
quency domain through the Domain Aggregation Module (DAM). Besides, by
providing supervision in both RGB domain and frequency domain, we can com-
pensate for RGB information, which may tend to provide a large receptive field
with details from frequency features. Experiments demonstrate that our pro-
posed FMN achieves better performance than state-of-the-art matting methods
on two commonly-used benchmarks. This work will inspire researchers to explore
the utilization of frequency information in computer vision.
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