
A Class Incremental Learning Algorithm
for a Compact-Sized Probabilistic Neural
Network and Its Empirical Comparison
with Multilayered Perceptron Neural

Networks

Shunpei Morita, Hiroto Iguchi, and Tetsuya Hoya(B)

Department Computer Engineering, CST, Nihon University, 7-24-1, Narashino-dai,
Funabashi-City, Chiba 274-8501, Japan

houya.tetsuya@nihon-u.ac.jp

Abstract. It is well known that class incremental learning using deep
learning is difficult to achieve, since deep learning approaches inherently
suffer from the catastrophic forgetting in the training mode. In contrast, a
probabilistic neural network is capable of performing classification tasks
based upon a set of local spaces, each composed of a training pattern,
and thereby class incremental learning can be robustly performed. In this
paper, we propose a class incremental learning method by exploiting the
property of a probabilistic neural network, while reducing effectively the
number of the training patterns to be stored within the hidden layer, and
compare the performance of the class incremental learning tasks obtained
using a multilayered perceptron model with that using a probabilistic neu-
ral network. Simulation results using seven publicly available datasets
show that both the classification accuracies of an original probabilistic
neural network and the proposed incremental learning method are 2.59 to
26.58 times higher than that of the deep learning in class incremental learn-
ing. Moreover, we observed that the class incremental learning performed
using a probabilistic neural network exhibited a robust performance com-
pared to the deep neural networks with iCaRL. In addition, it was observed
that the proposed learning method was able to reduce effectively the num-
ber of the units in the hidden layer, while with the decrease in accuracy by
only 1.77% to 7.06%, compared to the original one.

Keywords: Probabilistic neural network · Multilayered perceptron ·
Deep learning · Class incremental learning · Pattern classification

1 Introduction

Deep learning (DL) [1] is one of the most widely used learning methods in the
field of machine learning, and it has made significant contributions to the devel-
opment of pattern recognition technologies. In particular, deep neural networks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14406, pp. 288–301, 2023.
https://doi.org/10.1007/978-3-031-47634-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47634-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-47634-1_22


A CIL Algorithm for a CS-PNN 289

(DNNs) [2] are nowadays prevalent in both academic studies and industrial appli-
cations, and many image classifier models, including VGG [3], ResNet [4] and
AlexNet [5], for instance, have been used across a wide range of fields. In many
of the cases, the performance of a classification model is typically evaluated after
the training performed in an iterative fashion, using the entire set of the training
patterns. In practice, however, it is often the case that the training patterns are
not ready to be available for all the classes but given only partially at a time and
those of the remaining classes come later. Therefore, it is desirable to perform
a continual learning (CL) [6], where the network training continues with the
incoming new patterns. Within the CL principle, a number of class incremental
learning (CIL) [7] approaches have been proposed to date [8–10]. In CIL, a pat-
tern classifier is augmented with new classes, using only an additional set of the
patterns for the new classes. However, it has been increasingly acknowledged, as
pointed out in [11–13], that catastrophic forgetting of previously learned classes
is a major problem in DL for performing the CIL/CL.

According to the taxonomy proposed in [14], the CIL approaches for DL
proposed to date can be classified into the three categories of i) data-centric, ii)
model-centric, and iii) algorithm-centric ones. For i), the CIL method in [8] intro-
duces maximum entropy regularization (MER) into the loss function in order to
prevent overfitting to the uncertain knowledge, and a confident fitting is given as
penalty. In contrast, the method in [9] utilizes the dynamically expandable rep-
resentation (DER) and can be categorized as a type ii) approach, based upon the
classification in [14]. Within the method, the representation previously learned
by a DNN is frozen and new additional feature extractors are learned for the
additional tasks. For iii) the method in [10], i.e. weight aligning (WA), maintains
the fairness between the previously learned and new classes. One of the other
model-centric CIL methods is elastic weight consolidation (EWC) [15], and it
is claimed in [15] that the old tasks can be memorized by slowing down the
learning pace of some selected network parameters. However, the work in [14]
reports rather counterfactual simulation results. In addition, replay methods
have received much attention in the CIL for DNNs, and iCaRL [11] is particu-
larly widely used among them. The iCaRL attempts to get over the catastrophic
forgetting by adding some previously trained data to the newly incoming data.
Although several methods have proposed to date, it is said that the catastrophic
forgetting inherent to DNNs has still not been fully overcome.

In contrast to the DNN approaches described above, probabilistic neural net-
work (PNN) [16] is another artificial neural network model, originally proposed for
pattern classification problems. The original PNN model has only a single hyper-
parameter to be given a priori, and its training is straightforwardly completed in
a one-shot manner; each training pattern is accommodated as the attribute vector
of a second layer unit. Moreover, it is also shown in a recent study [17] that the
parallel implementation of a PNN using k-means clustering enables its reference
(testing) mode to be performed superior to a DNN, by exploiting the independence
property of the arithmetic operations for each unit in the hidden layer, as well as
those in each output layer unit representing a single class.



290 S. Morita et al.

Fig. 1. The flow of the class incremental learning.

In this paper, we propose a novel class incremental learning algorithm for
a PNN with a reduced number of the hidden layer units (a.k.a. compact sized
PNN; CS-PNN) and empirically verify its effectiveness by comparing a DNN
and PNN with the original training scheme. The organization of the paper is
as follows: Sect. 2 describes what CIL is, followed by a brief introduction of the
PNN, and comparison between the CIL on a PNN and DNN. Section 3 proposes
a new CIL algorithm for PNN. Section 4 is devoted to the simulation study, i)
comparing a DNN and the original PNN under the CIL situations, each yielding
the baseline, and then ii) evaluating the classification performance of the CS-
PNN. Section 4 provides the summary of the present work and suggests some
future directions.

2 Preliminary Studies

2.1 Class Incremental Learning

In [11], CIL is meant to be the task of learning incrementally some additional
classes for an already learned model, so that the newly added classes can be
also identified by the model, besides the classes already learned. For instance,
provided that a model has been trained for the classification task of handwritten
digits and is capable of performing the task only partially, e.g. the digits from
zero to eight, an additional learning is performed on the model, so that a new
digit nine can also be classified, in addition to the nine digits already learned,
as illustrated in Fig. 1.

2.2 Probabilistic Neural Network

A PNN is a feed-forward neural network composed of an input and output layer,
with linear-sum activation units for the latter, and a single hidden layer with the



A CIL Algorithm for a CS-PNN 291

Fig. 2. (a) The structure of a PNN with a total number of training patterns and Nc

classes, and (b) The PNN represented as a composite structure by a set of the Nc

class-independent sub-networks.

nonlinear units. Figure 2 (a) illustrates the structure of a PNN. In Fig. 2, each
of the hidden layer units has a radial basis function (RBF) in terms of Gaussian
response function as an activation function:

hj(x) = exp
(

−‖x − cj‖22
σ2

)
(1)

where ‖ · · · ‖2 denotes L2-norm, hj , x, and cj are respectively the output value of
the j-th hidden layer unit, the input vector, and the attribute vector representing
one of the training patterns, and where σ is the radius unique to all the RBFs.
Each hidden layer unit is connected to an output layer unit corresponding to
the class to which the training pattern belongs. In PNN, the weight between a
hidden layer and output layer units is set as follows:

wj,k =

{
1 if cj belongs to class k,

0 otherwise.
(2)

In the output layer, each unit yields the activation value:

ok =
1

Uk

Uk∑
j=1

wk(j),khk(j)(x) (3)

Ntr =
Nc∑
k=1

Uk (4)

where wk(j),k is the weight between the j-th RBF belonging to class k and the
k-th output layer unit, Uk is the number of the training vectors for class k, Ntr is



292 S. Morita et al.

the total number of the training vectors for all the classes, and k(j) is the ID of
the RBFs that belong to class k (which is the same as ok). In a PNN, since both
the hidden and output layer units are completely separated from class to class,
the network can be eventually regarded as a composite network consisting of its
class-independent subnetworks, as shown in Fig. 2 (b). Moreover, the training of
the original PNN is completed in only 2 steps: i) storing each training vector as
the attribute of a hidden layer unit and ii) determining σ in (1) appropriately.

2.3 Class Incremental Learning on DNN and PNN

For training a DNN, DL aims to minimize the output error for w, i.e. a certain
set of the network parameters, where the input vector x is given:

w ← w − η
∂E(x,w)

∂w
(5)

where E is the error function, for which a categorical cross entropy is often used
in classification problems, and η is the learning rate. Then, in the situation where
the network parameters are optimized for a new set of the training patterns, it
is quite often the case that the knowledge acquired from new training patterns
can easily override the weight and bias parameters optimized using previous
patterns. This is the main cause of the catastrophic forgetting occurring in a
DNN. Therefore, in the situation where the CIL is performed on a DNN, the
problem arises in the pattern classification tasks, as the classification accuracy
for a new class is apt to decline dramatically. In other words, this is due to the
fact that the model can be optimized only for a particular set of the training
patterns for a new class.

In contrast to the DNNs, PNN does not suffer from such forgetting, as the
network training on a PNN essentially proceeds by only adding each hidden
layer unit with storing a training vector as an attribute vector within the RBF,
as described earlier. Moreover, in the situation where the dataset given is well-
balanced, it is considered that the feature space can be reasonably covered by
a set of the local subspaces spanned by the respective attribute vectors, each
stored in a hidden layer unit, and thereby it is considered that an additional
learning such as the CIL can be effectively and straightforwardly carried out.

3 Class Incremental Learning Algorithm
for a Compact-Sized Probabilistic Neural Network

Here, we propose a new method applied for training the PNN, i.e. a compact-
sized probabilistic neural network (CS-PNN) for CIL, with reducing the number
of units in the hidden layer. In the CS-PNN, each unit in the hidden layer
memorizes the location of a selected training vector in the feature space. Also,
the number of the hidden layer units can be suppressed by updating the location
of some existing vector, if a new training vector is located nearby the existing
one, without adding it as a new attribute vector. The training algorithm for the
CS-PNN is summarized as follows.



A CIL Algorithm for a CS-PNN 293

step 1. For the first training pattern belonging to a new class (k=1,2,. . . ,Nc),
add hk(j=1) into the hidden layer with ck(i=1) = xtr(k,i=1), and ok into the
output layer.

step 2. For i = 2, 3, . . . , Uk, perform the following for all the remaining training
patterns:
If ∃hk;hk(xtr(k,i)) > θk then update cj for the unit hj which yields a max-

imum output value among the existing units belonging to class k to the
average between xtr(k,i) and cj as follows:

cj ← xtr(k,i) + cj

2
(6)

Otherwise, add hk(i) into the hidden layer with ck(i) = xtr(k,i), as well as ok
to the output layer, if it does not exist yet, and connect hk(i) to ok (i.e.
with the weight unity in between);

Note that applying the CS-PNN algorithm in the above will automatically
generate the units in both the hidden and output layers, where necessary. Also,
since the parameters cj (j = 1, 2, . . . , Uk; Uk is the number of training patterns
belonging to class k) are updated only for the subnet representing a single class,
the CIL is performed without affecting to the attribute vectors stored in other
subnets (i.e. representing the respective classes). Moreover, during the opera-
tion of the CIL algorithm in the above, only the attribute vector of the unit
which is the nearest to the training is updated, while the stored vectors in other
units remain intact, with only a small and necessary change in the feature space
spanned. In addition, since only the attribute vectors of the units with their acti-
vations larger than the threshold are updated, a smaller value of θ can lead to a
further reduction in the number of the hidden layer units, depending upon the
situations. Note, however, that there needs a trade-off between the performance,
since, with a small setting of θ, the chance that the attribute located far from
the primary feature space for a particular class can be selected for the update
increases. For this reason, a care should be taken for the choice of the value θ,
besides the unique radius σ in (1).

4 Simulation Study

We conducted a series of the simulations, aimed for comparing the CIL capabil-
ities of the DNN, original PNN, and the proposed CS-PNN.

In the simulation study, we used the seven publicly available datasets:
abalone, isolet, letter-recognition, MNIST, optdigits, pendigits, and wdbc; one
obtained from the MNIST [18], and the remaining six from the UCI machine
learning repository [19]. Then, each pattern vector of a dataset was normalized
within the range of [−1, 1]:

xi ← 2
(

xi − xiMIN

xiMAX − xiMIN
− 0.5

)
(7)



294 S. Morita et al.

Table 1. Summary of the seven datasets used for the simulation study.

Dataset #Training #Testing #Classes #Features per pattern

abalone 2088 2089 3 7
isolet 2252 1559 26 617
letter-recognition 16000 4000 26 16
MNIST 60000 10000 10 784
optdigits 3823 1797 10 64
pendigits 7494 3498 10 16
wdbc 398 171 2 30

where i is the ID of an attribute vector. The properties of the seven datasets used
for the simulations are summarized in Table 1. For the unique hyper-parameter
of a PNN, σ was set by the following equation, and the setting was used through
all the simulations, which yielded relatively a reasonable performance for each
dataset:

σ =
dMAX

Nc
(8)

where dMAX is the maximum distance computed using all the pairs of the training
patterns across all the classes used for training, and Nc is the number of classes.

In the case of training a DNN, an entire set of the training vectors was divided
into those of the respective class, and each set of the vectors was presented to the
network as one batch at a time for the training. For the DNN, once an iterative
training session using the batch belonging to a certain class was completed, the
batch for other class was used for the next iterative training session. This manner
of the subsequent training sessions continued till the last class.

4.1 Comparison Between the DNN and Original PNN Under
the CIL Situation

In this simulation, we first compared the DNN and PNN for the baseline tasks
of the CIL. For the baseline tasks, each batch for the class till the last was
subsequently presented to a DNN/PNN and the CIL at each presentation was
performed. Then, the classification accuracy after completing the CIL was evalu-
ated for each of the two models, using the testing vectors. In the tasks, therefore,
each training pattern vector was stored, as described earlier, as an attribute vec-
tor of a unit in the hidden layer of a PNN, while the parameter setting, as well
as the training, of the DNN was done based upon the following manner:

– Number of the Hidden Layers: varied from 1 to 3.
– Training Algorithm: Adam [20] (learning rate = 0.01, α = 0.9, β = 0.999).
– Number of Epochs in an Iterative Training Session:

• Patterns for the first class (i.e. the first CIL task): 20 epochs.



A CIL Algorithm for a CS-PNN 295

Table 2. Simulation results comparing the classification accuracies, obtained after the
completion of the training for all the classes in the CIL situation, and showing the
baseline performance of DNN and PNN, under the CIL situation.

Dataset Acc. of DNN [%] Acc. of
1 hidden layer 2 hidden layers 3 hidden layers PNN[%]
1 epoch 20 epochs 1 epoch 20 epochs 1 epoch 20 epochs

abalone 36.05 36.05 36.05 36.05 31.02 36.05 57.25
isolet 11.61 7.7 3.85 3.85 3.85 3.85 86.34
letter-recognition 3.62 3.95 3.95 3.95 3.95 3.95 96.23
MNIST 10.09 10.09 10.09 10.09 10.09 10.09 96.50
optdigits 10.52 10.02 10.91 10.02 10.02 10.02 98.39
pendigits 18.7 17.64 15.04 9.61 9.61 9.61 94.25
wdbc 37.43 37.43 37.43 37.43 37.43 37.43 97.08

• Patterns for other classes (i.e. other remaining tasks): once epoch/20
epochs.

In the setting for the DNN above, the three hyper-parameters for the Adam,
which is considered as one of the state-of-the-art DL algorithms, were those given
as the default values used in PyTorch [21] except for the learning rate, whereas
the numbers of the epochs chosen were based upon the preliminary simulations;
it was empirically confirmed that 20 epochs were sufficient to reach a convergent
state for each run. The simulation results are summarized in Table 2. In this
table, we obviously see that a DNN is not able to perform properly the CIL
tasks at all, where the number of classes was increased one-by-one. On the other
hand, the classification accuracies obtained using a PNN were always higher than
those obtained using the DNNs for all the seven datasets used in the simulation
study. As shown in Table 2, it was observed that the classification accuracy by a
PNN was around 2.5 times as high as those by DNNs for the wdbc case, whereas
26.5 times higher for the letter-recognition case. For the CIL tasks using the
MNIST, we then analyzed the classification accuracies in each class obtained by
a DNN with three hidden layers, upon the iterative training of 20 epochs in each
additional training task. In the analysis, we confirmed that the accuracies for
the preciously learned classes were all dropped to zero, except that of 100% for
each new class just learned. Therefore, it is said that the catastrophic forgetting
did occur in the early stage of learning in each case of the DNNs, since there
was no significant difference between the classification accuracies for the one-
epoch cases and those of the twenty epochs, as shown in Table 2. From these
observations, it can be therefore concluded that a PNN is capable of performing
the CIL, without any serious forgetting occurred, as reported in [22], while the
DNNs are not.



296 S. Morita et al.

Table 3. Simulation results comparing the classification accuracy and the number of
the RBFs using the original PNN and CS-PNN for each of the seven datasets.

Dataset Original PNN CS-PNN
θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

abalone Acc. [%] 57.25 36.96 44.23 44.71 44.47
Num. RBFs 2088 11 14 23 37

isolet Acc. [%] 86.34 83.64 85.12 86.14 86.14
Num. RBFs 2252 2126 2161 2187 2240

letter-recognition Acc. [%] 96.23 90.68 92.40 94.20 95.60
Num. RBFs 16000 9703 10667 11635 12809

MNIST Acc. [%] 96.50 91.14 95.38 96.12 96.48
Num. RBFs 60000 47240 47476 47778 50177

optdigts Acc. [%] 98.39 98.11 98.22 98.44 98.33
Num. RBFs 3823 2819 2986 3208 3471

pendigits Acc. [%] 94.25 93.62 94.23 93.42 95.57
Num. RBFs 7494 1873 2404 3200 4487

wdbc Acc. [%] 97.08 82.46 82.46 83.63 97.08
Num. RBFs 398 9 19 26 65

4.2 Evaluation of Classification Accuracy and Reduction Rate
of Hidden Layer Units for the Proposed CS-PNN

We then conducted another set of simulations, in order to validate the classifi-
cation performance in the case where the CS-PNN was applied. The simulation
results are shown in Tables 3 and 4 and Figs. 3 and 4.

Table 3 summarizes both the classification accuracies and number of hidden
layer units after performing the incrementally training of a PNN by applying
the proposed algorithm (i.e. CS-PNN) in Sect. 3.

In Table 4, a performance comparison of both the relative difference in terms
of classification accuracy and reduction rate of RBFs between the original PNN
and CS-PNN, calculated using the values in Table 3, is shown. The relative dif-
ference and reduction rate were calculated, respectively, as follows:

Relative Difference = Acc. of original PNN − Acc. of CS-PNN (9)

Reduction Rate = 1 − Num. RBFs in each CS-PNN
Num. RBFs in original PNN

(10)

Here, the relative difference in (9) is introduced for a straightforward com-
parison of the difference between the classification accuracy of the original PNN
and CS-PNN; a minus value shows the accuracy of CS-PNN inferior to that of
the original PNN. As shown in the bottom two rows in Table 4, the average



A CIL Algorithm for a CS-PNN 297

Table 4. Comparison of relative difference in classification accuracy between the orig-
inal PNN and CS-PNN, and reduction rate of hidden layer units (RBFs).

Dataset CS-PNN
θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

abalone Relative Difference [%] −20.30 −13.02 −12.54 −12.78
Reduction rate of RBFs [%] 99.47 99.33 98.90 98.23

isolet Relative Difference [%] −2.69 −1.22 −0.19 −0.19
Reduction rate of RBFs [%] 5.60 4.04 2.89 0.53

letter-recognition Relative Difference [%] −5.55 −3.82 −2.03 −0.63
Reduction rate of RBFs [%] 39.36 33.33 27.28 19.94

MNIST Relative Difference [%] −5.36 −1.12 −0.38 −0.02
Reduction rate of RBFs [%] 21.27 20.87 20.37 16.37

optdigts Relative Difference [%] −0.28 −0.17 0.06 −0.06
Reduction rate of RBFs [%] 26.26 21.89 16.09 9.21

pendigits Relative Difference [%] −0.63 −0.03 −0.83 1.32
Reduction rate of RBFs [%] 75.01 67.92 57.30 40.13

wdbc Relative Difference [%] −14.62 −14.62 −13.45 0.00
Reduction rate of RBFs [%] 97.74 95.23 93.74 83.67

Avg. Relative Difference [%] −7.06 −4.86 −4.19 −1.77
Reduction rate of RBFs [%] 52.10 48.95 45.18 38.30

Med Relative Difference [%] −5.36 −1.22 −0.83 −0.06
Reduction rate of RBFs [%] 39.36 33.33 27.28 19.94

over the relative difference for each value of θ for the CS-PNN was −7.06%,
−4.86%, −4.19%, and −1.77%, respectively, whereas the corresponding median,
which was computed over these results, was respectively as −5.63%, −1.22%,
−0.83%, and −0.06%. Therefore, overall, a dramatic performance degradation
as in the DNNs was not observed for the CS-PNN, compared to the original
PNN. In Table 4, it is, however, observed that the range of the decrease in terms
of the classification accuracy for both the abalone and wdbc datasets is relatively
larger than that for other datasets. The possible reason for such a deterioration
is ascribed to the relatively higher reduction rate of the hidden layer units, as
shown in Table 4, and/or the removal of the units yielding a significant impact on
the classification performance. In contrast, the accuracies obtained using the CS-
PNN for the other five datasets, i.e. isolet, letter-recognition, MNIST, optdigits,
and pendigits, are all shown to remain almost intact, each with a relatively high
reduction rate of the RBFs (except the isolet case with θ = 0.6), as shown in
Table 4.

On the other hand, the reduction rates for both the abalone and wdbc (except
for θ=0.09) were over 90%, while a significant decrease in terms of the classifica-
tion accuracy of over 10% was also observed. In contrast, the relative difference in



298 S. Morita et al.

Fig. 3. Classification accuracies obtained using original PNN, CS-PNN
(θ=0.6,0.7,0.8,0.9), and iCaRL on DNN (K = 0.2 × the number of all training data),
with the number of classes varied for the abalone, isolet, letter-recognition, and
MNIST datasets.

classification accuracy for the five cases of the isolet, letter-recognition, MNIST,
optdigits, and pendigits almost always stayed below the corresponding averaged
one, while the reduction rates of the RBFs were varied greatly with the set-
ting of θ as shown in the bottom in Table 4. This indicates that an appropriate
setting of θ by somehow taking into account the overall distribution of the dis-
tances between the input and attribute vectors is necessary, so as to effectively
reduce the number of the RBFs. Therefore, it is considered, as a rule of thumb
in practice, that the value of the unique radius σ is first tuned to yield a higher
classification accuracy, then θ is varied for an effective reduction in the number
of the RBFs.

In sum, from these observations, it is said that the CS-PNN can effectively
select the training pattern vectors to be accommodated within the hidden units,
while maintaining relatively well-separated class boundaries in between, as com-
pared to the original PNN approach.



A CIL Algorithm for a CS-PNN 299

Fig. 4. Classification accuracies obtained using original PNN, CS-PNN
(θ=0.6,0.7,0.8,0.9), and iCaRL on DNN (K = 0.2 × the number of all training data),
with the number of classes varied for the optdigits, pendigits, and wdbc datasets.

Figures 3 and 4 show the changes in the classification accuracy of the CIL
with an original PNN, CS-PNN, and the DNN with iCaRL. In this simulation,
the memory size K for the iCaRL, i.e., the number of stored data for the sub-
sequent additional training task, was set at 0.2 times the number of all training
data in each dataset. In Figs. 3 and 4, we observe that for all the datasets except
the abalone the classification accuracy almost always stays above 70–80%. More-
over, as shown in Figs. 3 and 4, the accuracy for all the four datasets but the
abalone, isolet, and wdbc was improved steadily, albeit sometimes exhibiting a
sudden drop at an earlier CIL task, and remained relatively high afterwards,
unlike the DNN without applying the iCaRL. In addition, it was confirmed that
the accuracy of the iCaRL consistently showed a decrease with each additional
training for the letter-recognition, optdigits, and pendigits cases, compared to
the CS-PNN. In the isolet case, however, the accuracy of CS-PNN was lower
than iCaRL at the early stages, though the classification accuracy of the CS-
PNN approached that of the iCaRL as the additional training tasks proceeded.
A similar trend was observed for the MNIST case. In contrast, for the abalone
and wdbc, the CS-PNN and iCaRL exhibited no significant difference in the
accuracy. Therefore, it is said that the CS-PNN performed effectively for all the
seven datasets used for the simulation study compared to the CIL of the DNN
with iCaRL.



300 S. Morita et al.

5 Conclusion

In this work, we have firstly shown that a PNN is capable of performing the CIL,
through the simulation study using seven publicly available datasets in compar-
ison with the DNNs. We have then proposed the CS-PNN, for the purpose of
effectively reducing the number of the hidden layer units in a PNN, while main-
taining a reasonably high classification performance. It has also been observed
that performing a CIL is virtually not possible by a bare DNN approach using
the Adam algorithm for all the cases, due to the catastrophic forgetting occurred
during the simulation, while the CS-PNN can cope moderately well with the CIL.
Compared to the iCaRL, CS-PNN can also perform robustly in the CIL tasks.
Moreover, it is worth mentioning that,unlike DNNs, the training of a PNN is
fast, as the training does not require iterative training of the network parameters
at all but can be simply done by assigning some selected training data to the
hidden layer unit’s attributed vectors as described in this work. It is also notable
that, beside the hidden layer units, the network obtained via the CS-PNN has
a varying number of output units during a CIL task, unlike conventional, fixed-
sized DNN models. In addition, it is also reported in [23] that a PNN exhibits
the high robustness against an adversarial attack.

Future work is directed to the investigation of the effective choice of the
unique radius σ of a PNN, as well as that applicable to the CS-PNN.

References

1. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
2. Schmidhuber, D.E., Hinton, G.E., Williams, R.J.: Deep learning in neural networks:

an overview. Neural Netw. 61, 85–117 (2015)
3. Karen, S., Andrew, Z.: Very deep convolutional networks for large-scale image

recognition. The 3rd International Conference on Learning Representations,
https://arxiv.org/pdf/1409.1556. Accessed 29 May 2023

4. Kaiming, H., Xiangyu, Z., Shaoqing, R. Jian, S.: Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778 (2016)

5. Alex, K., Ilya, S., Geoffrey, E, H.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems 25 (2012)

6. Sebastian, T., Tom, M.M.: Lifelong robot learning. Robot. Auton. Syst. 15(1–2),
25–46 (1995)

7. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning and memory. Psychol. Rev. 102(3),
419–457 (1995)

8. Dahyun, K., Jhwan, B., Yeonsik, J., Jonghyun C.: Incremental learning with maxi-
mum entropy regularization: rethinking forgetting and intransigence. https://arxiv.
org/abs/1902.00829. Accessed 29 May 2023

9. Shipeng, Y., Jiagwei, X., Xuming, H.: Der: dynamically expandable representation
for class incremental learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3013–3022 (2021)

https://arxiv.org/pdf/1409.1556
https://arxiv.org/abs/1902.00829
https://arxiv.org/abs/1902.00829


A CIL Algorithm for a CS-PNN 301

10. Bowen, Z., Xi, X., Guojun, G., Bin, Z., Shu-Tao, X.: Maintaining discrimination
and fairness in class incremental learning. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 13205–13224 (2020)

11. Sylvestre-Alivise, R., Alexander, K., Georg, S., Christoph, H. L.: iCaRL: incremen-
tal classifier and representation learning. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

12. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)

13. Ratcliff, R.: Connectionist models of recognition memory: constraints imposed by
learning and forgetting functions. Psychol. Rev. 97(2), 285–308 (1990)

14. Da-Wei, Z., Qi-Wei, W., Zhi-Hong, Q., Han-Jia, Y., De-Chuan, Z., Ziwei, L.:
Deep class-incremental learning: a survey. https://arxiv.org/pdf/2302.03648.pdf.
Accessed 29 May 2023

15. James, K., et al.: Overcoming catastrophic forgetting in neural networks. PANS
114(13), 3521–3526 (2017)

16. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)
17. Takahashi, K., Morita, S., Hoya, T.: An analytical comparison between the pattern

classifiers based upon a multilayered perceptron and probabilistic neural network
in parallel implementation. Int. Conf. Art. Neural Netw. 3, 544–555 (2022)

18. LeCun, Y., Cortes, C., Burges, C. J. C.: The MNIST database. http://yann.lecun.
com/exdb/mnist/. Accessed 19 Aug 2021

19. Dua, D., Graff, C.: UCI machine learning repository. Univ. California Irvine, Irvine,
CA. http://archive.ics.uci.edu/ml. Accessed 29 May 2023

20. Diederik, P. K., Jimmy, B.: Adam: a method for stochastic optimization. https://
arxiv.org/abs/1412.6980. Accessed 29 May 2023

21. Pytorch, Team.: PyTorch: An imperative style, high-performance deep learning
library. https://pytorch.org. Accessed 01 June 2023

22. Hoya, T.: On the capability of accommodating new classes within probabilistic
neural networks. IEEE Trans. Neural Netw. 14(2), 450–453 (2003)

23. Ian J. G., Jonathon, S., Christian, S.: Explaining and harnessing adversarial exam-
ples. International Conference on Learning Representations. https://arxiv.org/
abs/1412.6572. Accessed 29 May 2023

https://arxiv.org/pdf/2302.03648.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://pytorch.org
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572

	A Class Incremental Learning Algorithm for a Compact-Sized Probabilistic Neural Network and Its Empirical Comparison with Multilayered Perceptron Neural Networks
	1 Introduction
	2 Preliminary Studies
	2.1 Class Incremental Learning
	2.2 Probabilistic Neural Network
	2.3 Class Incremental Learning on DNN and PNN

	3 Class Incremental Learning Algorithm for a Compact-Sized Probabilistic Neural Network
	4 Simulation Study
	4.1 Comparison Between the DNN and Original PNN Under the CIL Situation
	4.2 Evaluation of Classification Accuracy and Reduction Rate of Hidden Layer Units for the Proposed CS-PNN

	5 Conclusion
	References


