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Abstract. Indoor robots are becoming increasingly prevalent across a
range of sectors, but the challenge of navigating multi-level structures
through elevators remains largely uncharted. For a robot to operate suc-
cessfully, it’s pivotal to have an accurate perception of elevator states.
This paper presents a robust robotic system, tailored to interact adeptly
with elevators by discerning their status, actuating buttons, and board-
ing seamlessly. Given the inherent issues of class imbalance and limited
data, we utilize the YOLOv7 model and adopt specific strategies to coun-
teract the potential decline in object detection performance. Our method
effectively confronts the class imbalance and label dependency observed
in real-world datasets, Our method effectively confronts the class imbal-
ance and label dependency observed in real-world datasets, offering a
promising approach to improve indoor robotic navigation systems.

Keywords: Object detection · Mobile manipulator · Class imbalance
in detection methods

1 Introduction

Indoor robots have become a ubiquitous presence in diverse fields, ranging from
hospitality and delivery services to cleaning and security. The development of
localization techniques and the study of legged robot locomotion on stairs has
been the focus of significant research efforts. Nevertheless, navigating multi-level
buildings using elevators remains an underexplored topic in the field. A cru-
cial skill that robots require to leverage elevators effectively is perception. This
involves accurately determining parameters, such as the current floor and the ele-
vator’s location, by processing and interpreting sensory information. Advanced
perception capabilities are thus essential for robots to navigate multi-level build-
ings with accuracy and efficiency. However, equipping robots with additional
sensors can be prohibitively expensive and may not be a scalable solution. To
address this challenge, we propose a novel method to recognize the state of an
elevator using only an image sensor, thereby eliminating the need for additional
equipment.
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Fig. 1. GAEMI is a sophisticated mobile manipulator equipped with a 5DoF robotic
arm and a ZED camera. Its non-holonomic base features a 2D LiDAR sensor for obstacle
detection and localization within a mapped environment. Additionally, GAEMI has a
forward-facing RGB camera.

When attempting to perform object detection under elevator conditions, it
became evident that real-world datasets present significant challenges that devi-
ate from pre-existing benchmark datasets, such as COCO [10]. Two prominent
issues that arose were label dependency and small object detection.

Addressing the challenges of issues requires careful consideration and spe-
cialized techniques to mitigate their impact on object detection performance.
To this end, we have developed a comprehensive system for indoor robots that
focuses on these challenges and enables intelligent interaction with elevators.

In summary, we introduce a robotic system adept at indoor navigation
and intelligent elevator interaction. It effectively addresses challenges like
small object detection and label dependency to ensure accurate elevator state
recognition and precise interaction. The primary contributions are:

1. Development of an autonomous robotic system that interacts with elevators
using advanced SLAM, kinematics, and perception, ensuring dependable real-
world navigation and interaction.

2. Tackling small object detection and label dependency in our dataset, enhanc-
ing the robot’s perception and performance in real-world tasks.

In Fig. 1, we present GAEMI, the robot employed throughout our experiments,
which demonstrates the capabilities of the autonomous system developed in this
work.
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2 Related Work

Our study tackles the challenge of autonomous elevator operation by empha-
sizing perception and its translation into robotic actions. Utilizing advances in
object detection and elevator button recognition, we aim to establish a depend-
able system for indoor robots’ inter-floor movement. This section provides a
brief overview of pertinent literature on object detection and prior research on
elevator-interacting robots.

2.1 Object Detection

Object detection has been a crucial area of research within the field of computer
vision, with numerous techniques and models developed to advance its capabili-
ties. In this section, we briefly discuss key approaches, including real-time object
detection and anchor-based and anchor-free methods.

Real-time object detection focuses on achieving high-speed detection while
maintaining acceptable levels of accuracy. This aspect is particularly important
for applications where real-time response is vital, such as autonomous vehicles
and robotic navigation. Several notable models, such as YOLO [14], SSD [11],
and MobileNet [3], have been proposed to address the trade-off between speed
and accuracy.

Anchor-based object detection methods, such as Faster R-CNN [15] and Reti-
naNet [9], use predefined anchor boxes to generate region proposals for detecting
objects. These methods benefit from improved localization accuracy but may suf-
fer from increased computational complexity due to the need to evaluate multiple
anchors per image.

Conversely, anchor-free object detection approaches, such as CornerNet [8]
and CenterNet [20], eliminate the need for predefined anchor boxes by directly
predicting object bounding boxes and class probabilities. These methods have
the potential to simplify the detection pipeline and reduce computational over-
head, making them attractive for real-time object detection tasks.

In the following sections, we will delve into the specifics of these object detec-
tion techniques and explore their relevance to addressing the challenges associ-
ated with real-world vision tasks, such as extreme class imbalance and label
dependency.

2.2 Autonomous Elevator Boarding Using Mobile Manipulators

Recent research advancements in indoor robots have contributed significantly
to understanding indoor environments and the development of robot naviga-
tion and interaction capabilities [1,4,13,16,17]. However, limited attention has
been dedicated to the problem of robots autonomously moving between floors
using elevators. Most existing studies have primarily focused on elevator button
recognition, lacking a comprehensive pipeline for autonomous inter-floor move-
ment [5–7]. This underscores the need for further investigation to address the
challenges associated with autonomous elevator operation for indoor robots.



18 S. Shin et al.

Conventional computer vision algorithms have been employed in some stud-
ies for elevator button recognition due to their low data requirements. However,
these methods suffer from limited accuracy and necessitate specific postures
or environments for the robot’s operation. This indicates the need for more
advanced techniques for autonomous elevator operation in real-world robotic ser-
vices. To address the challenges associated with conventional methods in button
recognition, Dong et al . [2] introduced a deep learning approach to improve ele-
vator button recognition. Nevertheless, button location identification still relied
on conventional methods.

Yang et al . [19] proposed an end-to-end method for button recognition using
the YOLO [14], which enables real-time object detection. Zhu et al . [21] intro-
duced a large-scale dataset specifically for button recognition and highlighted
the presence of a high-class imbalance in this task.

A related work worth mentioning is an autonomous robotic system that uti-
lizes an eye-in-hand configuration [22]. This system addresses button opera-
tion by incorporating a deep neural network for button detection and character
recognition along with a button pose estimation algorithm. However, it remains
essential to develop a comprehensive pipeline for autonomous inter-floor move-
ment and advanced techniques for autonomous elevator operation in real-world
scenarios.

3 Proposed Method

3.1 Perception System

Label Superset and Elevator Status Perception. The primary objective
of robotic perception for elevator usage is to ascertain the elevator’s status, such
as whether the door is open or closed, the current floor of the robot, and the
location of the elevator floor. To achieve this level of perception, essential for
seamless navigation and interaction with the elevator system, we first design a
label superset that clearly defines the problem and covers all possible scenarios
to accommodate diverse sites, as shown in Table 1.

With our designed label superset, we can address various elevator statuses
vital for robot planning. For a task like “Go to room 406,” the robot needs to
recognize its floor and the elevator’s status. This helps decide whether to press
up or down and prepare for boarding based on the elevator’s position. The robot
must also ascertain the elevator door’s movement. Our label superset equips the
robot to make decisions and navigate intricate settings effectively.

Object Detection Model. We utilized the YOLOv7 [18] for both object detec-
tion and instance segmentation tasks. YOLOv7 is a cutting-edge object detec-
tion model that outperforms other detectors in terms of speed and accuracy. We
deemed YOLOv7 an appropriate choice for detecting elevator status. To opti-
mize the YOLOv7 object detection and instance segmentation models for our
hardware (NVIDIA Orin), we implemented float16 quantization. This optimiza-
tion led to a single forward path inference time with an FPS ranging between
50 and 80, which is well within the acceptable range for real-time processing.
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Table 1. Label superset. White rows represent labels processed by the indicator
detection module, while the gray row indicates labels handled by the button detection
module. We employ an instance segmentation model for the gray row.

Category Parameters

Elevator Door
Opened, Moving,

Closed

Current Robot Floor
B6, B5, . . . , B1, 1,

. . . , 63

Current Elevator Floor (Outside/Inside)
B6, B5, . . . , B1, 1,

. . . , 63

Current Elevator Direction (Outside/Inside) Up, Down, None

Elevator Button (Outside/Inside)
Up, Down, B6, B5,
. . . , B1, 1, . . . , 63

Fig. 2. Our two-fold strategy for addressing label dependency and small object
detection. (a) The patch-augmentation technique involves cropping high-resolution
images, which helps to maintain the resolution of smaller objects when they are resized
for input to the model, ultimately enhancing recognition of fine details. (b) The Gaus-
sian blur applied to the bounding box region effectively mitigates label dependency
and class imbalance by altering the visual features and removing certain labels from
the image.

3.2 Addressing Label Dependency and Small Object Detection

In our data collection phase for training elevator indicators, we faced two signifi-
cant challenges: label dependency and small object detection. Label dependency
is an issue where some labels, like those for elevator doors, appear regularly in
the images, while others are seen less often. This unequal distribution creates
a class imbalance, making it hard to compile a balanced dataset with a vari-
ety of labels. Our second challenge was related to the size of the objects in our
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Fig. 3. Augmentation strategy. To tackle challenges like small indicator detection,
label dependency, and class imbalance, we employ a two-step augmentation process. (1)
Original dataset. (2) Patch-aug: We crop the original dataset for higher-resolution
training images. (3) Patch-aug-blur: We blur frequent objects such as elevator doors
in high-resolution images and remove their labels. This strategy increases the dataset
size and effectively mitigates class imbalance and label dependency issues.

images. Most indicators, except for the elevator doors, are quite small, which
can make accurate detection by object detection models more difficult. This size
discrepancy posed an additional hurdle in our pursuit of precise detection and
identification.

Patch Augmentation. In addressing the challenge of detecting small objects,
we employed a technique called patch augmentation. We divided high-resolution
images into cropped sections, thereby increasing the resolution of smaller objects
and enriching the visual features in the dataset. The patch-augmentation process
is illustrated in Fig. 2(a).

Label Blurring. To tackle the label dependency issue, we adopted a method
that involves duplicating portions of the dataset and applying a Gaussian blur
to the bounding box region, effectively eliminating the visual features from the
image. In our dataset, certain labels such as Elevator Door Closed (ED CLOSE)
and Current Elevator Direction Outside with None (OED NONE) appeared more
frequently. This was because elevator doors are present in every image, and
most sites have a direction indicator. As a consequence, sampling scarce labels
would result in an increase in ED CLOSE and OED NONE occurrences, leading to
an imbalanced dataset. To address this issue, we selectively blurred these two
classes. For instance, if an image displayed an elevator door in the closed state
and the current floor was 4, we blurred the elevator door to remove the label
from the image. This strategy efficiently mitigates the label dependency issue and
generates a more compact, balanced dataset. Figure 3 illustrates the resolution
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Fig. 4. An overview of the autonomous elevator boarding process. The procedure is
divided into two main categories: (a) button-pushing operations and (b) elevator board-
ing, which encompass tasks such as path planning, object detection, and interaction.

of label dependency and class imbalance, as demonstrated by the dark blue bar.
The implementation of blurring is shown in Fig. 2(b).

3.3 GAEMI: Robotic System

Robot Configuration. In this study, we employed a GAEMI robot, produced
by ROBOTIS, as our indoor mobile manipulator for self-driving service appli-
cations. The GAEMI robot measures 50 × 50 × 117 cm3 and features a non-
holonomic base along with a 5-degree-of-freedom (DoF) manipulator. The base
of the robot is equipped with a 2D LiDAR sensor, and a ZED camera is mounted
on the manipulator arm’s end effector. A comprehensive illustration of the entire
robot is available in Fig. 1.

Robot Operation. Our primary objective for the robot operation is to achieve
autonomous elevator boarding without relying on additional equipment, such
as network connections with the elevator or specialized sensors. We divided the
mobile manipulator tasks into two main categories: (1) navigation and (2) inter-
action. Our complete procedure is depicted in Fig. 4.

Navigation. We employed Cartographer to generate a 2D map. Subsequently,
we used the ROS2 Navigation2 package [12] to direct the robot toward the target
pose. We utilized the Adaptive Monte Carlo Localization (AMCL) method to
determine the robot’s current position within the map and the Dynamic Window
Approach (DWA) for path following.
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Fig. 5. Dataset overview. (a) Indicator dataset: object detection dataset is tailored
to capture the basic status of an elevator. (b) Button dataset: instance segmentation
dataset designed to identify points of interaction between the robot and the elevator,
facilitating precise and successful task execution.

Interaction. In the elevator boarding task, the primary physical interaction
with the environment involves ‘button pushing.’ To achieve this, we first per-
form instance segmentation on RGB images to identify relevant objects within
the scene. For example, if we intend to push the ‘down’ button, we locate the
corresponding mask that represents the ‘down’ button in the image.

Next, we calculate the 2D center of mass from the obtained mask image,
resulting in a 2D (x, y) point. To determine the corresponding 3D (x, y, z)
coordinate, we use the camera’s intrinsic parameters to transform the 2D point.
This transformation allows us to obtain the relative pose of the button with
respect to the camera’s position.

Once the relative pose is established, we can solve the inverse kinematics
(IK) problem to determine the target joint angles for the robotic manipula-
tor. Finally, we implement a manipulator control system to execute the desired
button-pushing operation. This approach enables us to achieve effective and pre-
cise interactions with the elevator’s button panel.

4 Experiments

4.1 Mitigating Class Imbalance and Label Dependency

We partitioned the perception dataset into two distinct parts to address dif-
ferent aspects of elevator perception. The first part is the Indicator dataset,
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which focuses on identifying the overall status of the elevator without requir-
ing manipulator interaction. This dataset encompasses categories such as ele-
vator door status, current robot floor, and elevator direction. The second part
of the dataset addresses perception skills that necessitate precise interaction
points, such as the elevator button. For these cases, instance segmentation is
employed to detect flexible and reliable actions once the button is perceived by
the robot. This division enables a comprehensive understanding of the elevator
environment, ultimately facilitating seamless robot operation. Figure 5 shows
some examples of the two datasets, and further details are provided below:

– Indicator dataset: In this study, we compiled a dataset consisting of 5,000
images sourced from seven distinct origins. The images were captured using
two types of devices: a robot-mounted camera, providing varied viewpoints,
and a smartphone camera. The inclusion of images from multiple perspectives
aimed to enhance the dataset’s robustness. The dataset consists of pairs of
(image, bounding boxes).

– Button dataset: Additionally, we collected button data to identify interac-
tion points. This dataset differs from the indicator dataset in that it includes
pairs of (image, bounding boxes, instance segmentation masks). We hypothe-
size that incorporating instance segmentation masks can improve interaction
capabilities, resulting in more successful robot operations.

Before training the robot perception datasets (Indicator and Button
datasets), we first evaluated the effectiveness of our proposed method (Blur elim-
ination of class) on a general dataset. We aimed to assess how different variations
in the dataset influenced the performance of our model. The evaluation results
are summarized in Table 2, which presents the mean Average Precision (mAP)
scores at different Intersection-over-Union (IoU) thresholds (0.5 and 0.95) for
various dataset variations. The evaluation was conducted using the COCO-test
dataset. We established a baseline using the COCO-mini dataset, which consists
of 1,000 images randomly sampled from the COCO-train dataset. The base-
line model achieved a mAP@0.5 score of 0.014 and a mAP@0.95 score of 0.007.
To create the COCO-blur dataset, as described in Sect. 3, we applied our pro-
posed Gaussian blur elimination technique to the COCO-mini images and repli-
cated them ten times, resulting in a dataset of 10,000 images. The COCO-blur
dataset exhibited improved performance, with a mAP@0.5 score of 0.018 and a
mAP@0.95 score of 0.009. In contrast, the COCO-cutout dataset, which replaces
the blurring process with zero-value regions, demonstrated lower mAP scores
compared to both the baseline and COCO-blur datasets. These results highlight
the effectiveness of our proposed Blur Elimination Technique in addressing two
common challenges in machine learning: class imbalance and label dependency.
By employing this technique, we successfully enhanced the performance of our
model on more generalized datasets, specifically the COCO-mini dataset.

Our analysis provides strong evidence supporting the effectiveness of the Blur
Elimination Technique in improving model performance on a general dataset.
Based on these encouraging results, we extended the application of this method
to our Indicator dataset.
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Table 2. Comparison of mAP scores on COCO-mini variations.

Dataset mAP@0.5 mAP@0.95

COCO-mini (base) 0.014 0.007

COCO-blur 0.018 0.009

COCO-cutout 0.012 0.006

Our experiments demonstrate that diverse augmentations boost YOLOv7’s
performance. Without patch and blur augmentations, YOLOv7’s accuracy drops.
Using patch augmentation alone increased mAP@0.5 by +0.054, due to improved
visual features aiding model accuracy.

However, adding blur after patch augmentation showed a trade-off between
localization and status accuracy. Even though exact object localization slightly
suffered, status accuracy improved. This is expected, as blurring affects localiza-
tion but adds noise beneficial against class imbalance.

For our mobile robot’s needs, status accuracy was prioritized over exact local-
ization since it directly affects the robot’s actions. Thus, even with slight localiza-
tion losses, the model’s effectiveness hinges on improved status accuracy, shown
in Table 3.

Table 3. Experimental results on Indicator dataset. Different variations of the
YOLOv7 model are evaluated based on mAP@0.5 and Status Accuracy. Rows in white
represent standard and patched YOLOv7 models, while the gray row denotes the per-
formance of the YOLOv7 model augmented with both a patch and the proposed blur
elimination technique.

Method mAP@0.5 Status Accuracy

YOLOv7 0.730 0.813

YOLOv7 + patch 0.784 0.878

YOLOv7 + patch + blur 0.779 0.879

4.2 Real-World Robot Operation

To evaluate the performance of our proposed method in real-world scenarios, we
conducted various tasks in the Woojung Hall of Informatics at Korea University.
For this purpose, we constructed an occupancy map of the 6th floor of the build-
ing, as shown in Fig. 6. We focused on three essential tasks to assess the effec-
tiveness of our method. The tasks were as follows: (1) navigating to the button
position (GOTO BUTTON POSE), (2) pressing elevator buttons (BUTTON PUSHING),
and (3) boarding the elevator (ELEVATOR BOARDING). The success rates for each
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Fig. 6. Occupancy map of Woojung Hall of Informatics. This figure illustrates
the constructed occupancy map of the 6th floor of Woojung Hall of Informatics at
Korea University, which serves as the operational landscape for all our real-world robot
experiments.

Table 4. Real-world experiment results. This table reports the success rates of
three distinct tasks executed by the robot. Each success rate corresponds to the pro-
portion of successful trials out of a total of ten attempts.

Task Success Rate

GOTO BUTTON POSE 10/10

BUTTON PUSHING 9/10

ELEVATOR BOARDING 3/10

task are presented in Table 4, demonstrating the performance of our method in
real-world applications.

In the GOTO BUTTON POSE task, the robot successfully achieved optimal posi-
tioning for button actuation (the button click pose, as shown in Fig. 6) in all ten
trials, resulting in a success rate of 100%. The task was considered successful
if the positioning error was within 15cm of the target button click pose. In the
BUTTON PUSHING task, the robot effectively pressed the correct elevator buttons
in nine out of ten trials, leading to a success rate of 90%. The evaluation cri-
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Fig. 7. Demonstration of our integrated robotic system. A comprehensive illus-
tration of the robot successfully performing tasks within a real-world indoor environ-
ment.

terion for this task was the successful actuation of the targeted button by the
robot. However, in the ELEVATOR BOARDING task, the success rate was only 30%
over ten trials. The suboptimal performance in this task can be attributed to
environmental limitations, such as potential obstructions at the elevator door.

The experimental results presented in Table 4 validate the efficacy of our
proposed method and the robustness of our integrated robotic system in real-
world indoor environments. The high success rates in the GOTO BUTTON POSE and
BUTTON PUSHING tasks demonstrate the ability of our method to overcome label
dependency and detect small objects effectively. These achievements significantly
contribute to enhancing robotic navigation and interaction capabilities in multi-
floor buildings.

Figure 7 provides a comprehensive demonstration of the autonomous elevator
boarding process.

5 Conclusion

In this work, we introduced a comprehensive robotic system capable of intel-
ligent interaction with elevators in multi-floor environments. We developed a
unique solution that successfully addresses the challenges of class imbalance
and label dependency in object detection, leading to an enhanced perception
system. Our system integrates cutting-edge SLAM, kinematics, and perception
technologies, enabling the robot to reliably navigate within its environment and
interact effectively with elevator buttons and doors. In real-world scenarios, our
system demonstrated high accuracy and reliability, achieving commendable suc-
cess rates in targeted tasks. The developed approach significantly improves the
robot’s functionality and effectiveness, paving the way for broader applications
of robotics in complex indoor environments.
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