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Abstract. Improved industrial defect detection is deemed critical for ensuring
high-qualitymanufacturing processes. Despite the effectiveness of knowledge dis-
tillation in detecting defects, there are still challenges in extracting useful features
and designing a better student network. In this study, a new framework based on
knowledge distillation is proposed to address these issues. To avoid overfitting and
balance anomaly detection between image and pixel levels, a simplified student
decoding network is designed. To extract more diverse features, a multi-teacher
network is used in the teacher network. Simple addition and concatenation oper-
ations for feature maps were not sufficient, the method fuses features iteratively
using attention mechanisms utilized for the multi-teacher networks. The approach
is evaluated on two benchmark datasets for industrial defect detection, Mvtec
and BTAD, and significantly improved performance is achieved compared to the
other methods. An average accuracy of 99.22% and 97.46% for image-level and
pixel-level ROC-AUC, respectively, is achieved on theMvtec dataset, and 93.47%
and 96.3% on the BTAD dataset. The proposed framework shows effectiveness in
detecting defects in industrial settings, as demonstrated by the results.

Keywords: Industrial defect detection · Reverse knowledge distillation ·
Multi-teacher model

1 Introduction

Industrial defect detection is a technology that aims to identify defects in various indus-
trial products to ensure their quality and maintain production stability. It has a wide
range of applications, including unmanned quality inspection [1], intelligent inspection
[2], and video surveillance [3]. However, industrial defect detection faces several chal-
lenges. One major challenge is related to data. Industrial defect detection requires large
amounts of high-quality data to train and improve their accuracy. However, obtaining
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such data can be challenging, as defects may be rare or unpredictable, and collecting
and labeling data can be time-consuming and expensive. Another challenge is related
to the complexity of industrial environments. Industrial defect detection must be able to
identify defects in images with complex backgrounds, such as those with reflections or
shadows, and in images with multiple types of defects. Finally, industrial defect detec-
tion must be highly accurate to detect subtle defects that may be difficult to identify with
the human eye.

These challenges have led to the development of different approaches. It is usually
divided into three categories. The first category is the synthesis of abnormal samples
[4, 5]. These methods utilize neural networks for the binary classification of normal
and synthetic abnormal samples. However, It requires pre-processing operations in the
image, thereby increasing model complexity, and may not be able to effectively capture
the complexity of real-world anomalies. The second category relies on pixel-level image
comparison by reconstructing a normal image. Self-encoding and generative models,
such as AE [6] and GAN [7], are commonly used in these methods. However, this
approach may not align the reconstructed pixels with the input image and may alter the
style of the image, leading to detection errors and performance degradation. The third
category focuses on feature similarity, where the features extracted by convolutional
neural networks, and anomalous regions have distinguishable feature embeddings [8].
These methods are more tolerant to noise interference and have better robustness in
detection. Frameworks of teacher-student networks have been proposed on the basis
of feature similarity [9], but they suffer from limitations such as insufficient feature
extraction and the risk of overfitting due to using the same architecture.

To address these issues, a new network architecture has been designed. First, the
insufficiency of extracting sufficiently diverse or representative features by using a sin-
gle teacher networkmay be encountered. To tackle this problem, amulti-teacher network
has been proposed to extract features with more diversity. Second, simple addition and
concatenation operations may prove insufficient to achieve optimal performance when
combining the learned features from multiple teacher networks. To overcome this prob-
lem, an iterative attention-based feature fusionmethod has been employed. Additionally,
if the teacher and student network structures are identical, overfitting may occur. In such
cases, the student network may overlearn to reconstruct abnormal regions, resulting in
poor generalization performance during testing. To avoid this situation, a simplified
student network has been designed with a different structure from the teacher network.

The key contributions of this work can be summarized as follows:

1. A network architecture consisting of multiple teachers and a student is utilized. The
architecture extracts image features from multiple models.

2. Simple addition and concatenation operations for feature maps not be sufficient. To
combine the features extracted from themulti-teacher networks, the iterative attention
feature fusion method is employed. In order to prevent overfitting, the student and
teacher networks use distinct architectures that are not consistent with each other.

3. To demonstrate the efficacy of our approach, numerous experiments were performed
on industrial datasets.
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2 Related Work

2.1 Reconstruction-Based Methods

Reconstruction-based methods are commonly used to detect anomalies by calculat-
ing pixel-level or image-level anomaly scores based on the reconstruction error, which
is measured by models such as Auto-Encoders and Generative Adversarial Networks
(GANs). However, these models can reconstruct abnormal samples well due to the gen-
eralization capability of neural networks, making it challenging to distinguish normal
and abnormal samples accurately. To address this issue, researchers have modified the
network architecture by incorporating memory mechanisms [10], generating pseudo-
anomaly samples [11], and using image masking strategies [12]. These modifications
aim to improve the ability to discriminate between normal and abnormal samples. How-
ever, current methods still have limited discrimination ability in real-world anomaly
detection scenarios. To overcome these limitations, some researchers have proposed
preprocessing techniques, such as Omni-frequency Channel-selection [13], to compress
and restore individual images, and incorporate Position and Neighborhood Information
to achieve better reconstruction results. While the reconstruction-based method is intu-
itive and has strong interpretability, existing methods can suffer from biases that result in
detection errors and limit detection performance. For instance, the reconstructed image
may have misaligned pixels or change the style of the original image. Additionally, the
pixel-level comparison can be sensitive to noise, resulting in poor detection robustness.

2.2 Embedding-Based Methods

Embedding-basedmethods aim to detect anomalies by comparing the embedding vectors
of normal and abnormal samples using a trained network. Commonly used approaches
include defining embedding similarity, one-class classification [14, 16], and Gaussian
distributions [15]. The literature [14] and [16] are popular methods that define a compact
one-class distribution using normal sample vectors. To handle high-dimensional data,
Deep SVDD has been adopted to estimate feature representations using deep networks.
However, using the entire image embedding can only determine whether an image is
normal or not, but cannot locate the abnormal regions. To address this issue, some
researchers [17, 18] have used patch-level embeddings to produce an anomaly map,
where each patch represents a point in the feature space. This approach allows for the
localization of abnormal regions in the image. The literature [19] has proposed methods
to obtain a better feature space representation by adapting the target dataset’s features.
Additionally, some researchers have used a decoupled hypersphere to further improve
detection performance. Recently, a flow-based idea has been proposed to performdensity
estimation and calculate anomaly scores [20]. The goal of these methods is to find
distinguishable embeddings, making them more robust to noise and other sources of
interference.

2.3 Knowledge Distillation

Knowledge distillation networks typically consist of two networks. The student network
imitates the output of the teacher network in order to simplify the model and reduce
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its resource requirements. In the field of anomaly detection, during the training phase,
only normal samples are used, and through training, the feature vectors extracted by the
teacher and student networks are very similar. During the testing phase, if an abnormal
sample is encountered, the similarity of the feature vectors extracted by the two networks
is very low. Using this idea, we can detect anomalies. Currently, based on this idea, there
have been many works. For example, the framework proposed by the US method [21]
includes a teacher network andmultiple student networks. Through distillation of the last
layer, multiple students imitate the output of the teacher network for anomaly detection.
However, considering that the distillation of the last layer is insufficient, MKD [22] uses
multiple feature layers for distillation, achieving good results. In order to further improve
detection performance, reference [8] attempted to propose a reverse distillation architec-
ture, compressing the extracted features through the teacher network and then decoding
them through the student network, achieving good results. In addition, DeSTSeg [23]
introduced the segmentation concept into the knowledge distillation architecture. This
study is based on the reverse distillation framework to perform anomaly detection.

3 Method

The objective is to use a reverse distillation framework to detect anomalies in an input
image by training a student network to imitate the behavior of multiple teachers’ net-
works. By leveraging this approach, the student network can accurately identify anoma-
lies in new images. In Fig. 1, in the training phase, firstly, there are three pre-trained
teacher networks to extract the features of normal images, and then the features of differ-
ent layers are fused by themulti-scale feature fusionmodule(MFF). Secondly, the output
of theMFFmodule is fused using the iterative attention feature fusionmodule(iAFF), and
then the obtained feature maps are compressed using the one-class embedding(OCE)
module to obtain low-dimensional vectors. Finally, the low-dimensional vectors are
decoded using the simplified student network to obtain the feature maps of each layer.
The loss function is calculated by the feature layer corresponding to the teacher net-
work. In the testing phase, the test images are modeled to obtain each feature layer of
the simplified student network, and then the feature maps are fused to obtain the final
anomaly results.

3.1 Multi-teacher Models

Most distillation network architectures are designed to distill knowledge from a one-
teacher to one student. However, in the process of human learning, students often learn
from multiple teachers. By incorporating multiple teacher models, a student model can
benefit frommultiple interpretations of the task. Ensemble learningwithmultiple teacher
network predictions has been shown to outperform one teacher network. Therefore, we
propose a distillation network architecture that utilizes multiple teachers to enhance the
student model’s performance.

Rich features are extracted from images using ResNet18, ResNet34, and
Wide_ResNet50, which have been pre-trained on ImageNet. The model based on the
resnet network family has a total of four convolutional blocks.We only used the previous
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Fig. 1. An overview can be provided for the framework that has been proposed for the detection
and localization of anomalies. The figure contains a training phase and a testing phase. In the
training phase, there are three pre-trained teacher networks, feature fusion (MFF, iAFF), feature
compression (OCE), and a simplified student network. In the testing phase, the feature maps of
each feature layer of the student network are output by the model, and the visualization results
can be obtained by the feature map fusion module.

three convolutional blocks to obtain the feature maps, removing the last convolutional
block. To facilitate the use of a single decoding network in calculating the loss, the feature
channels from the multiple teacher’s networks need to be fused. This can be achieved
through a simple concatenation operation. Once the feature channels have been fused,
cosine similarity is used as the loss function for knowledge transfer.

During training, the input image is resized to 224 * 224 * 3. By fusion of the corre-
sponding feature layers of the three networks, the first layer generates a feature map with
dimensions of 64 * 64 * 384, the second layer generates a feature map with dimensions
of 32 * 32 * 768, and the third layer generates a feature map of size 16 * 16 * 1536.

3.2 Feature Fusion and Dimensional Compression

Since each layer of each teacher network has different feature map sizes, feature map
fusion needs to be done in order to get a uniform size. In addition, to effectively combine
the learned features of a multi-teacher network, simple addition, and concatenation
operations may not yield optimal results. As a solution, iterative attention feature fusion
is adopted.

TheMFFmodule is a type of module that facilitates multi-scale fusion by combining
feature maps of varying sizes into a uniform size. This process results in a final feature
map that is 16 * 16 in size and has a channel count of 3072. The IAFF module addresses
short and long skip connections and the fusion of features caused within the Inception
layer. Meanwhile, it is shown that the initial integration of feature maps can be a bot-
tleneck and can be mitigated by adding another attention level. Specific details about
IAFF can be found in the references [24]. After the iAFF module is applied, the feature
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map is resized to a size of 16 * 16 * 3072. The dimensionality of the feature vector is
reduced by the OCE block, which employs ResNet’s residual connection block. Further
details about this module can be found in [9]. Ultimately, a feature map is 8 * 8 * 2048 is
obtained as the output of the OCE block. Eventually, 3072 dimensions are compressed
into 2048 dimensions.

3.3 Student Network

Some previous studies on knowledge distillation architectures for anomaly detection
have employed identical architectures. However, this approach may lead to overfitting,
as the student network can easily reconstruct the features of the anomaly region, thereby
negatively impacting the detection performance. Therefore, a more suitable network
architecture needs to be devised. Additionally, to ensure compatibility between the fea-
ture channels of the intermediate layers in the multiple teacher networks, a simplified
decoding network is designed. The structure is illustrated in Fig. 2.

Figure 2 is a simplified student decoding network. The right side of the figure shows
the student decoding network and the left side shows the basic blocks. There are a total
of three layers in the student decoding network, and each layer contains the basic blocks.

The Residual Connection Block from ResNet [25] serves as the inspiration for the
basic blocks, which use to combine feature maps of different scales. The first branch
includes a deconvolution layer and a BatchNorm layer, it can keep original features. The
second branch consists of two 1 * 1 convolutions and a 3 * 3 convolution. In this proce-
dure, the 1 * 1 operation is first performed on the image, then the 1 * 1 convolution and
3 * 3 convolution are passed respectively, and finally, the concat operation is performed.
The purpose is to reduce the amount of computation. To match the feature map size of
the teacher network, a 4 * 4 deconvolution layer is applied in one branch of the Basic
Block. The output of the two branches is combined through summation and then passed
through a ReLU layer.

To match the structure of the teacher network, the student decoder module has the
same three-layer structure, but in an inverted order. The D3 module is constructed with
a Basic Block and a convolutional layer. The 1 * 1 convolutional layer is responsible
for adjusting the number of input channels to match that of the corresponding teacher
network’s output channels. On the other hand, the D2 and D1 modules both consist of
a Basic Block, which is used to maintain the original features and fuse feature maps of
different scales.

3.4 Loss Function

Minimizing this loss function is the main objective of the training process. In out model,
the formula for calculating a two-dimensional anomaly map [27] is as follows.

Mk(h,w) = 1 − f kT (h,w)f
k
S (h,w)

∥
∥f kT (h,w)

∥
∥ · ∥

∥f kS (h,w)
∥
∥

(1)

The height and width of the feature map are denoted by h and w, respectively, while
the number of feature layers is represented by k. The variables f kT (h,w) and f kS (h,w)
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Fig. 2. A simplified student decoding network.

denote the feature vectors. The loss function is defined as shown in (2).

L =
3

∑
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⎫

⎬

⎭
(2)

4 Experiments

4.1 Datasets

The MVTec AD dataset [27] has been developed with a focus on industrial inspection,
and it serves as a means of comparing different methods for anomaly detection. The
dataset comprises 15 categories of objects and textures, with each class being further
divided into a training set and a testing set. The training set consists of 3629 images of
typical objects, while the test set includes 1725 images.

As for the BTAD dataset [28], it contains 2830 images showcasing actual industrial
anomalies in 3 different products. The dataset contains 3 categories, including 2 for
objects and 1 for texture, with 1800 images for training and 741 images for testing.

4.2 Implementation Details

The experimentswere carried out on anUbuntu 18.04operating systemusing anNVIDIA
GTX Geforce 2070s GPU. In these experiments, we employed pre-trained ResNet18,
ResNet34, and Wide_ResNet50 as the backbone. All images in the MVTec and BTAD
datasets were resized to 256 * 256 pixels. To optimize our model, we used the Adam
optimizer. The learning rate was scheduled using the cosine annealing strategy. We
trained our model for 200 epochs, using a batch size of 4.
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4.3 Results

To assess the effectiveness of our model for image-level anomaly detection, the perfor-
mance was compared with existing methods. Table 1 presents the results of our image-
level anomaly detection, indicating that our model achieved superior performance com-
pared to other models, with a score of 99.22. Moreover, our method also demonstrated
better results in terms of texture and object class, reaching 99.54 and 99.9, respectively,
when compared to other models. These findings suggest that our model is an effective
approach to image anomaly detection.

Furthermore,Ourmodel showed remarkable improvement compared to othermodels
in performance, indicating the positive impact of our multi-teacher networks, feature
fusion, and a simplified student decoding network. Our method differs from the US
method in that we utilize an inverse teacher-student network architecture, while the US
does not. We hypothesize that in the absence of an inverse structure, the student network
may not effectively identify anomalous regions. Notably, some categories such as Grid,
Pill, and Zipper demonstrated better results than our method, although our performance
was comparable to theirs.

For pixel-level anomaly detection, we compared our method with several baselines
including SPADE, Cutpaste, Draem, UniAD, NSA, and ADRD. However, it should be
noted that our comparison did not encompass all the methods presented in the image-
level anomaly detection evaluation, and there were instances where some data were not
disclosed in the publication.

Based on the results presented in Table 2, it is evident that our method achieved a
good performance in pixel-level anomaly detection, with a ROC-AUC score of 97.46,
indicating its effectiveness. Our method achieves optimal results in some categories,
e.g. Transistor, and Zipper. The Draem method achieves good results in some categories
where it is based on pixel-level segmentation. This provides a good idea for pixel-level
localization.

Table 1. Results of image-level anomaly detection on the MVTec dataset.

Category RIAD US PaDiM Cutpaste NSA Draem UniAD ADRD Ours

Texture Carpet 84.2 91.6 99.8 93.9 95.6 97 99.9 98.9 100

Grid 99.6 81 96.7 100 99.9 99.9 98.5 100 99.8

Leather 100 88.2 100 100 99.9 100 100 100 100

Tile 98.7 99.1 98.1 94.6 100 99.6 99 99.3 98.2

Wood 93 97.7 99.2 99.1 97.5 99.1 97.9 99.2 99.7

Average 95.1 91.5 98.8 97.5 98.6 99.12 99.06 99.48 99.54

Object Bottle 99.9 99.0 99.9 98.2 97.7 99.2 100 100 100

Cable 81.9 86.2 92.7 81.2 94.5 91.8 97.6 95 98.6

(continued)
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Table 1. (continued)

Category RIAD US PaDiM Cutpaste NSA Draem UniAD ADRD Ours

Capsule 88.4 86.1 91.3 98.2 95.2 98.5 85.3 96.3 97.6

Hazelnut 83.3 93.1 92 98.3 94.7 100 99.9 99.9 100

Metal nut 88.5 82.0 98.7 99.9 98.7 98.7 99 100 100

Pill 83.8 87.9 93.3 94.9 99.2 98.9 88.3 96.6 97

Screw 84.5 54.9 85.8 88.7 90.2 93.9 91.9 97 97.8

Toothbrush 100 95.3 96.1 99.4 100 100 95 99.5 100

Transistor 90.9 81.8 97.4 96.1 95.1 93.1 100 96.7 98.3

Zipper 98.1 91.9 90.3 99.9 99.8 100 96.7 98.5 99.7

Average 89.9 85.8 93.8 95.5 96.5 97.41 95.37 97.95 98.9

Average 91.7 87.7 95.5 96.1 97.2 98.27 96.6 98.72 99.22

The VT-ADL and autoencoder method were also compared with our model on the
BTAD dataset. It can be observed from Table 3 that other models were outperformed
by our method. Since pixel-level anomaly detection scores were not provided by other
methods, they could not be compared. In categories 1 and 2, better results than our
method were achieved by the other method.

Figure 3 shows the visualization results of our models. The red area indicates the
area considered by the model to be the higher anomaly region. We show the original
image, the mask image, and the visualization result separately. From the results, we can
see that our model can accurately detect the defective regions, which indicates that our
model has good detection performance.

Table 2. ROC-AUC results for pixel-level anomaly detection on the MVTec AD dataset are
present-ed. The best-performing method for each category is highlighted in bold.

Category SPADE Cutpaste Draem NSA UniAD ADRD Ours

Texture Carpet 97.5 98.3 96.2 95.5 98 98.9 99.3

Grid 93.7 97.5 99.5 99.2 94.6 99.3 99.2

Leather 97.6 99.5 98.9 99.5 98.3 99.4 99.4

Tile 87.4 90.5 99.5 99.3 91.8 95.6 94.5

Wood 88.5 95.5 97 90.7 93.4 95.3 94

Average 92.9 96.3 98.2 96.8 97.8 97.7 97.28

Object Bottle 98.4 97.6 99.3 98.3 98.1 98.7 98.4

Cable 97.2 90 95.4 96 96.8 97.4 97.3

(continued)
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Table 2. (continued)

Category SPADE Cutpaste Draem NSA UniAD ADRD Ours

Capsule 99.0 97.4 94.1 97.6 97.9 98.7 98.4

Hazelnut 99.1 97.3 99.5 97.6 98.8 98.9 99

Metal nut 98.1 93.1 98.7 98.4 95.7 97.3 96.6

Pill 96.5 95.7 97.6 98.5 95.1 98.2 96.1

Screw 98.9 96.7 99.7 96.5 97.4 99.6 99.3

Toothbrush 97.9 98.1 98.1 94.9 97.8 99.1 99

Transistor 94.1 93.0 90.0 88 98.7 92.5 93.5

Zipper 96.5 99.3 98.6 94.2 96.0 98.2 98.7

Average 97.6 95.7 97.1 96 97 97.86 97.63

Average 96.5 96 97.5 96.3 97.4 97.78 97.46

Table 3. Results of image-level and pixel-level anomaly detection for the BTAD dataset. The
symbol “-” indicates that the method does not provide a pixel-level anomaly score.

BTAD AE + MSE AE + MSE + SSIM VT-ADL Ours

0 49/- 53/- 99/- 100/99.6

1 92/- 96/- 94/- 94.6/92.3

2 95/- 89/- 77/- 85.8/97

Mean 78/- 79/- 90/- 93.47/96.3

Fig. 3. Visualization results of image anomaly detection.

In Fig. 4, statistics of the abnormal scoreswere presented. The results indicate that the
model could effectively distinguish between normal and abnormal samples. However,
there were some categories where the distinction was not clear, indicating the need for
an improved model.

4.4 Ablation Study

Table 4 shows the impact of pretraining and non-pretraining networks on image-level
and pixel-level anomaly detection results, demonstrating the significance of pretraining
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Fig. 4. The abnormal scores were statistically analyzed, and the distinction between normal and
abnormal samples was displayed in the histogram. Normal samples were represented by blue bars,
while abnormal samples were represented by yellow bars.

in image feature extraction. Results reveal that utilizing pretraining can enhance the
accuracy by approximately 25 points, suggesting that pretraining is effective in capturing
image features.

Table 4. Results of anomaly detection using our model, comparing the performance of models
trained with and without pretraining.

Three Teachers Network Unpretrained Pretrained

Texture 77.42/70.12 99.7/97.28

Object 68.94/78.17 98.9/97.63

Average 73.18/74.15 99.22/97.46

Table 5 presents the results of different modifications made to the original network
for image-level and pixel-level anomaly detection. The baseline represents the original
network. The simplified student network corresponds to our own designed student net-
work, which replaces the original one. The multi-teachers network involves using three
teacher networks instead of one. For the feature fusion of multiple teachers, the attention
iteration module was introduced.

Employing different architectures for the teacher and student networks can lead to
improved results. This highlights the potential risk of overfitting when using a high-
performing student network, which may inadvertently recover anomalies.

The adoption of multi-teacher networks can enhance the extraction of feature rep-
resentations, as evidenced in Table 5, where the image-level anomaly detection results
improve significantly, while the pixel-level anomaly detection results remain relatively
unchanged.
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Table 5. Evaluating the effectiveness of the proposed networks and modules in detecting
anomalies.

Baseline Simplified Student Three Teachers iAFF Value
√

98.72/97.78√ √
98.77/97.93√ √ √
98.91/97.56√ √ √ √
99.22/97.46

Adopting iterative attention feature fusion can further enhance the quality of feature
extraction. Table 5 demonstrates that the employment of thesemodules leads to improved
results in image-level anomaly detection tasks.

5 Conclusion

A new framework for industrial defect detection is proposed, which involves the use
of reverse knowledge distillation with three teachers. To prevent overfitting and bal-
ance image and pixel detection, a simplified student decoding network was created. To
extract more features, a multi-teacher network was used for the teacher network. How-
ever, simple addition and concatenation of featuremapswere found to be inadequate, and
therefore an iterative attention feature fusion method was employed to effectively com-
bine the features of the multi-teacher networks. Extensive experiments are conducted
on two datasets, Mvtec and BTAD, and it is demonstrated that the anomaly detection
scores of image-level tasks are improved by our approach. However, the improvement
in pixel-level performance has decreased, and further investigation is needed to enhance
it in the future.

Acknowledgements. This research is supported in part by the Natural Science Foun-
dation of Jiangsu Province of China (BK20222012), Guangxi Science and Technology
Project (AB22080026/2021AB22167), National Natural Science Foundation of China (No.
61375021) and the Natural Science Key Project of Anhui Provincial Education Depart-
ment (No. KJ2020A0636, No. KJ2021A0937, No. 2022AH051683, No. 2022AH051670, No.
2022AH051669).

References

1. Lee, J.H., et al.: A new image-quality evaluating and enhancing methodology for bridge
inspection using an unmanned aerial vehicle. Smart Struct. Syst. 27(2), 209–226 (2021)

2. Ullah, W., et al.: Artificial intelligence of things-assisted two-stream neural network for
anomaly detection in surveillance big video data. Futur.Gener. Comput. Syst.. Gener. Comput.
Syst. 129, 286–297 (2022)

3. Patrikar, D.R., Parate, M.R.: Anomaly detection using edge computing in video surveillance
system. Int. J. Multimedia Inf. Retrieval 11(2), 85–110 (2022)



A Simplified Student Network with Multi-teacher Feature Fusion 257

4. Li, C.-L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detec-
tion and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9664–9674 (2021)

5. Schlüter, H.M., Tan, J., Hou, B., Kainz, B.: Natural synthetic anomalies for self-supervised
anomaly detection and localization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M.,
Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13691, pp. 474–489. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-19821-2_27

6. Wang, S., et al.: Auto-AD: autonomous hyperspectral anomaly detection network based on
fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 60,
1–14 (2021)

7. Lu, H., Du,M., Qian, K., He, X.,Wang, K.: GAN-based data augmentation strategy for sensor
anomaly detection in industrial robots. IEEE Sens. J. 22(18), 17464–17474 (2021)

8. Pei, M., Liu, N., Gao, P., Sun, H.: Reverse knowledge distillation with two teachers for
industrial defect detection. Appl. Sci. 13(6), 3838 (2023)

9. Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9737–9746 (2022)

10. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall
in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14318–14328 (2022)

11. Ding, C., Pang, G., Shen, C.: Catching both gray and black swans: open-set supervised
anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7388–7398 (2022)

12. Ristea, N.-C., et al.: Self-supervised predictive convolutional attentive block for anomaly
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13576–13586 (2022)

13. Liang, Y., Zhang, J., Zhao, S., Wu, R., Liu, Y., Pan, S.: Omni-frequency channel-selection
representations for unsupervised anomaly detection. arXiv preprint arXiv:2203.00259 (2022)

14. Chen, Y., Tian, Y., Pang, G., Carneiro, G.: Deep one-class classification via interpolated
gaussian descriptor. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
36, no. 1, pp. 383–392 (2022)

15. Sun,X.,Yang, Z., Zhang, C., Ling,K.-V., Peng,G.: ConditionalGaussian distribution learning
for open set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13480–13489 (2020)

16. Zhang, F., Fan, H., Wang, R., Li, Z., Liang, T.: Deep dual support vector data description for
anomaly detection on attributed networks. Int. J. Intell. Syst. 37(2), 1509–1528 (2022)

17. Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling frame-
work for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021.
LNCS, vol. 12664, pp. 475–489. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
68799-1_35

18. Wang, S., Wu, L., Cui, L., Shen, Y.: Glancing at the patch: anomaly localization with global
and local feature comparison. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 254–263 (2022)

19. Lee, S., Lee, S., Song, B.C.: CFA: coupled-hypersphere-based feature adaptation for target-
oriented anomaly localization. IEEE Access 10, 78446–78454 (2022)

20. Yu, J., et al.: Fastflow: unsupervised anomaly detection and localization via 2D normalizing
flows. arXiv preprint arXiv:2111.07677 (2021)

21. Wang, G., Han, S., Ding, E., Huang, D.: Student-teacher feature pyramid matching for
anomaly detection. arXiv preprint arXiv:2103.04257 (2021)

https://doi.org/10.1007/978-3-031-19821-2_27
http://arxiv.org/abs/2203.00259
https://doi.org/10.1007/978-3-030-68799-1_35
http://arxiv.org/abs/2111.07677
http://arxiv.org/abs/2103.04257


258 M. Pei and N. Liu

22. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowl-
edge distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14902–14912 (2021)

23. Zhang, X., Li, S., Li, X., Huang, P., Shan, J., Chen, T.: DeSTSeg: segmentation guided
denoising student-teacher for anomaly detection. arXiv preprint arXiv:2211.11317 (2022)

24. Dai, Y., Gieseke, F., Oehmcke, S.,Wu,Y., Barnard, K.: Attentional feature fusion. In: Proceed-
ings of the IEEE/CVFWinterConference onApplications ofComputerVision, pp. 3560–3569
(2021)

25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

26. Yu, J., Liu, J.: Two-dimensional principal component analysis-based convolutional autoen-
coder for wafer map defect detection. IEEE Trans. Ind. Electron. 68(9), 8789–8797
(2020)

27. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD–a comprehensive real-world
dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

28. Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: VT-ADL: a vision transformer
network for image anomaly detection and localization. In: 2021 IEEE 30th International
Symposium on Industrial Electronics (ISIE), pp. 01–06. IEEE (2021)

http://arxiv.org/abs/2211.11317

	A Simplified Student Network with Multi-teacher Feature Fusion for Industrial Defect Detection
	1 Introduction
	2 Related Work
	2.1 Reconstruction-Based Methods
	2.2 Embedding-Based Methods
	2.3 Knowledge Distillation

	3 Method
	3.1 Multi-teacher Models
	3.2 Feature Fusion and Dimensional Compression
	3.3 Student Network
	3.4 Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results
	4.4 Ablation Study

	5 Conclusion
	References


