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Abstract. Time series motifs are repeated subsequences within a time
series. Finding motifs is a large field in time series recognition. For exam-
ple, Matrix Profile is a robust and scalable data structure that helps
with motif discovery. In this paper, we demonstrate that motif discovery,
namely Matrix Profile, can be used as a feature to increase the accuracy
of temporal neural networks. While current temporal neural networks
are effective, they lack specific considerations of time series properties,
such as periodicity, motifs, and discords, etc. Therefore, we propose using
multi-modal fusion networks to classify signals that use both the origi-
nal features and the motif-based features. We demonstrate the proposed
method’s effectiveness on all of the signal and device datasets of the 2018
UCR Time Series Classification Archive. The results show that the pro-
posed Matrix Profile-based features are useful for fusion networks and
can increase the accuracy of temporal neural networks.

Keywords: Matrix Profile · Fusion Neural Network · Signal
Classification · Time Series Motifs

1 Introduction

Recently, many state-of-the-art time series classification methods use Artificial
Neural Networks (ANN), such as Recurrent Neural Networks (RNN) [29] and
Temporal Convolutional Neural Networks (TCNN) [38]. They have shown to be
widely effective for time series and signal classification [3,38]. However, while
neural networks might be effective for time series, they do not inherently have
considerations for some aspects and elements of signals, such as motifs and dis-
cords.

Time series motifs are repeated subsequences within a time series and dis-
cords are anomalies in times series. Finding motifs and discords, or the field
of motif discovery, is essential for finding patterns in time series. Motif discov-
ery has been used for time series analysis in many domains, such as protein
sequences [22,41], actions [36], sounds [9], and signals [23,25].

This research was partially supported by MEXT-Japan (Grant No. JP23K16949).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Lu et al. (Eds.): ACPR 2023, LNCS 14406, pp. 123–136, 2023.
https://doi.org/10.1007/978-3-031-47634-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47634-1_10&domain=pdf
http://orcid.org/0000-0002-5146-6818
https://doi.org/10.1007/978-3-031-47634-1_10


124 K. Suresh and B. K. Iwana

Fig. 1. Example of time series and the resulting Matrix Profile. The green brackets of
(a) and (b) are an example of a motif, and the orange brackets of (c) and (d) are an
example of a discord. (Color figure online)

One powerful tool used for motif discovery is Matrix Profile [40]. Matrix
Profile is a robust and scalable data structure that helps with motif discovery.
Specifically, Matrix Profile is a sequence calculated based on a sliding window of
subsequences and the distance to its nearest neighbor subsequence. An example
time series and Matrix Profile calculation result is shown in Fig. 1. In the figure,
the dips in the Matrix Profile correspond to the locations of the motifs and
the peaks are discords. The use of Matrix Profile has shown to be effective at
large-scale motif discovery [39,42].

We propose the inclusion of motif and discord information as supplemental
information for signal classification. Namely, Matrix Profile is used to improve
the classification ability of temporal neural networks by providing additional
motif-based features alongside the original signal features. This is done by con-
sidering the Matrix Profile vector as a sequence and combining it with the origi-
nal time series features in fusion neural networks. These motif-based features can
be considered a self-augmented extra modality to represent the signal. There-
fore, we are able to use both features in a single multi-modal model. Through
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this, we demonstrate that the motif-based features can supplement the original
time series features and improve classification.

The contribution of this paper is as follows:

– We propose the use of Matrix Profile-based features to supplement time series
in classification. This is done using fusion networks to combine the features.

– We demonstrate that the proposed method can improve the accuracy of neural
networks in signal classification. To do this, we evaluate the proposed method
on 24 datasets taken from the 2018 University of California Riverside (UCR)
Time Series Archive [7]. The 24 datasets are all of the sensor and device
datasets with at least 100 training patterns from the archive.

– We examine the effect that the window size of Matrix Profile has on the
accuracy of the proposed method.

– The code for the proposed method can be found at
https://github.com/uchidalab/motif-based-features

2 Related Work

The use of fusion neural networks is a common solution for multi-modal data
recognition [11]. They have been used for a wide range of applications. Of them,
there are a few works that use fusion neural networks with different features
extracted from the same time series. For example, the Long Short-Term Memory
Network Fully Convolutional Network (LSTM-FCN) [17] uses a fusion network
to combine an LSTM branch and an FCN branch for time series classification.
Similarly, Song et al. [34] combine the features from an LSTM and a CNN for
time series retrieval. Features can also be derived or learned from the original
time series representation. For example, Iwana et al. [16] propose using local
distance-based features with the original features in fusion 1D CNNs and Oba et
al. [24] combines data augmentation methods in a gated fusion network. Matsuo
et al. [20] uses a learned self-augmentation by converting the time series into
images and then uses a multi-modal network. Wang et al. [37] uses a fusion
network with multi-scale temporal features and distance features.

3 Using Matrix Profile as a Feature Extraction Method

3.1 Motif Discovery

A motif is a repeated pattern in a time series. Specifically, given time series
t = t1, . . . , tn, . . . , tN of length N and tn ∈ R, a continuous subsequence ts,M =
ts, . . . , ts+M−1 of length M starting from position s, where 1 ≤ s ≤ N −M + 1,
is a motif if it shares similar values with any other subsequence ts′,M within t
with a different start position s′. Note, time series element tn can one dimension
(univariate) or multiple dimensions (multivariate).

Motif discovery refers to finding sets of similar short sequences in a large
time series dataset. Motifs are essential as these primitive patterns can be used as
inputs for algorithms to perform segmentation, classification, anomaly detection,
etc. Further, studying motifs can provide insight into the functional properties
of the time series [43].

https://github.com/uchidalab/motif-based-features
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3.2 Matrix Profile

Matrix Profile [40] is a powerful motif discovery algorithm that represents times
series based on the distances of subsequences to their nearest neighbors. Specif-
ically, using a sliding window, we can extract all of the subsequences from the
time series. We can then compute the pairwise distances between these subse-
quences and store them in the form of a matrix. This matrix is then stored in
a vector that only holds the information on the distances of each subsequence
to the nearest neighbor of that subsequence. This vector is called the Matrix
Profile.

Namely, given time series t, first the all-subsequences set is created. The all-
subsequences set A is an ordered set of all possible subsequences of time series
t, obtained by a sliding window of length M across t = t1, . . . , tN−M+1, where
M is a user-defined subsequence length. We use A[s] to denote the subsequence
ts,M = ts, . . . , ts+M−1.

Next, a Distance Profile di is created for each subsequence in A. The Dis-
tance Profile is the ordered vector of distances between each subsequence in
all-subsequences set A and all other subsequences in A. For this distance, tradi-
tionally, the Euclidean distance is used. Using each Distance Profile, a similarity
join set S is constructed with each subsequence A with its nearest neighbor,

Ss = arg min
s′

ds[s′], (1)

for each s-th subsequence of A. Matrix Profile p is the vector of distances between
A and S, or:

p = ||A1 − S1||, . . . , ||As − Ss||, . . . , ||AN−M+1 − SN−M+1||. (2)

An example of the result of a Matrix Profile calculation is shown in Fig. 1. Matrix
Profile has many advantages over conventional methods of motif discovery and
anomaly detection representations. To state a few, it is space efficient, paralleliz-
able, scalable, and can be used efficiently on streams of data [40].

3.3 Matrix Profile as a Motif-Based Feature

As described previously, Matrix Profile is a vector that is used to identify motifs
and discords by containing the distance of each subsequence to its nearest neigh-
bor. In other words, the values of the Matrix Profile will be small for repeated
subsequences and large for anomalies. The values of the Matrix Profile vector
have a nonlinear relationship to the original time series features. Thus, it is possi-
ble to exploit Matrix Profile to create a feature vector that contains information
that is not inherent to the original time series features.

In order to use the Matrix Profile features, we consider vector p as a sequence,
or:

f = p� = p1, . . . , ps, . . . , pN−M+1. (3)

This gives a sequence f of length N − M + 1, which is similar in size to the
original time series features t. The motif feature sequence f can now be used
alongside the original t in multi-modal classification.
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4 Multi-modal Classification with Fusion Neural
Networks

The original features t and the motif features f are different modalities that con-
tain different information about the same signal. Therefore, we combine the two
features in one multi-modal model to improve classification. Using the additional
motif features can supplement the original time series.

(a) (b)

Fig. 2. Different arrangements of combining features in multi-modal fusion networks.

There are various methods of creating a multi-modal classification model.
We propose to use a fusion neural network. Specifically, we implement a multi-
modal neural network and combine the modalities through model fusion. The
modalities can be combined at different points in the neural network. Some com-
mon places modality fusion can take place is at the input level or at the feature
level, as shown in Fig. 2. Input-level fusion combines the inputs by concatenating
them. The combined input is then used with a typical temporal neural network.
Feature-level fusion concatenates separate modality branches within a network.

5 Experimental Results

5.1 Data

In order to evaluate the proposed method, we use 24 time series datasets from the
UCR Time Series Archive [7]. The datasets are all of the device and sensor type
datasets with at least 100 training patterns. There are 8 device datasets, ACSF1,
Computers, ElectricDevices, LargeKitchenAppliances, PLAID, RefrigerationDe-
vices, ScreenType, and SmallKitchenAppliances and 16 sensor datasets, AllGes-
tureWiimoteX, AllGestureWiimoteY, AllGestureWIimoteZ, ChlorineConcentra-
tion, Earthquakes, FordA, FordB, FreezerRegularTrain, GesturePebbleZ1, Ges-
turePebbleZ2, InsectWingbeatSound, Phoneme, Plane, StarLightCurves, Trace,
and Wafer. The sensor and device datasets are used since they are examples of
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signal data. However, there is no theoretical limitation to the type of time series
used. Furthermore, datasets with less than 100 training patterns are not used
because very small datasets are not suitable for neural networks.

The datasets used in the experiments have a wide range of lengths. The
dataset with the shortest time series is the ElectricDevices dataset with 96 time
steps and the longest one is the ACSF1 dataset with 1,460 time steps. Six of
the datasets, AllGestureWiimoteX, AllGestureWiimoteY, AllGestureWiimoteZ,
GesturePebbleZ1, GesturePebbleZ2, and PLAID have varying number of time
steps. For these datasets, we pre-process them by post pattern zero padding. In
addition, all the datasets except for the six previously mentioned datasets were
already z-normalized by the creators of the datasets.

For the motif-based features, the Matrix Profile algorithm is applied to the
signal. We use a Matrix Profile window size of 7% of the longest time series
in the training dataset. This window size is determined through a parameter
search, shown in Sect. 5.6. Also, for the input-fusion networks, because the fea-
ture sequence lengths are different by M − 1, the motif features f are post
zero-padded. Finally, the motif features are z-normalized based on the training
set.

5.2 Architecture and Settings

Two time series recognition architectures were used as the foundation of the
experiments, a 1D Very Deep Convolutional Network (VGG) [33] and a Bidi-
rectional LSTM (BLSTM) [31]. The 1D VGG is a VGG adapted for time series
in that it uses 1D convolutions instead of the standard 2D convolutions. It has
multiple blocks of convolutional layers followed by max pooling layers. There
are two fully-connected layers with 1,024 nodes and dropout with a probability
of 0.5. The number of blocks and filters per convolution are determined by the
suggestions of Iwana and Uchida [15]. For the BLSTM, there are two layers of
100 cells each. The hyperparameters of the BLSTM are the optimal suggestions
by Reimers et al. [28]. In the case of the feature-fusion networks, two streams
with the same hyperparameters are used and the concatenation is performed
before the first fully-connected layer of each.

For training the 1D VGG, Stochastic Gradient Decent (SGD) with an initial
learning rate of 0.01, momentum of 0.9, and weight decay of 5 × 10−4 is used.
These settings are suggested by [33]. For the BLSTM, following [28], we use an
Nadam [8] optimizer with an initial learning rate of 0.001. For both networks,
we use batch size 50 and train for 10,000 iterations. The datasets used have fixed
training and test sets that are provided by the dataset authors.

5.3 Comparison Methods

To demonstrate the effectiveness of the proposed method, the following evalua-
tions were performed:

– Single-Modality Network with Time Series Features (Single, TS): The original
time series features are used as a baseline.
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– Single-Modality Network with Matrix Profile Features (Single, MP): This uses
the same networks as TS, but using only the Matrix Profile-based features.
Single MP (7%) refers to using a 7% window for matrix profile. Single MP
(Best) uses the best window for each dataset.

– Input-Level Fusion with Time Series and Matrix Profile Features (Input
Fusion, TS+MP): For the input-level fusion network, the time series fea-
tures and Matrix Profile features are concatenated in the dimension direction
and then fed to the neural network.

The evaluation of all of the comparisons use the same hyperparameters and
training scheme, with exception of the feature-level fusion which has two modal-
ity streams with their own set of feature extraction layers.

5.4 Results

Training and testing were performed five times, and the average of the five results
was recorded as the final value in order to obtain an accurate representation of
the accuracy of each method. The results are shown in Table 1. For the applicable
comparisons, the window size was set to a fixed percentage of the longest length
time series in the training set. For the MP (7% Win.) features, all datasets use
a window of 7% of the maximum time series length. For MP (Best Win.), the
best accuracy is used for each dataset.

From the table, it can be seen that input fusion with the time series features
and the proposed Matrix Profile features had the highest accuracy for most
datasets. The results with the best window for each dataset predictably had
the highest accuracy. However, a window of 7% of the time series length still
performed better than without using the fusion network. This is true for both
the 1D VGG and the BLSTM.

We also compare the proposed method to other comparison methods. A
Nemenyi test is performed using results reported from literature. Figure 3 com-
pares the proposed BLSTM and VGG using TS+MP (7%) and (Best) to
Bag of Patterns (BoP) [18], Bag of Symbolic Fourier Approximation Symbols
(BOSS) [30], Collective of Transformation Ensembles (COTE) [2], Complex-
ity Invariant Distance (CID) [4], Derivative DTW (DDDTW ) [12], Derivative
Transform Distance (DTDC) [13], Elastic Ensemble (EE) [19], Fast Shapelets
(FS) [26], Feature Fusion CNN using Local Distance Features and series features
(CNN LDF+TS) [16], Learned Pattern Similarity (LPS) [6], Learned Shapelets
(LS) [21], Multilayer Perceptron (MLP) [1], Random Forest (RandF) [1],
Residual Network (ResNet) [10], Rotation Forest (RotF) [1], Shapelet Trans-
form (ST) [14], Symbolic Aggregate Approximation - Vector Space Model
(SAXVSM) [32], SVM with a linear kernel (SVML) [1], Time Series Bag of
Features (TSBF) [5], SVM with a quadratic kernel (SVMQ) [1], 1-NN with
Euclidean Distance (1-NN ED) [7], 1-NN with DTW (1-NN DTW) [7], 1-NN
with DTW with the best warping window (1-NN DTW (Best)) [27], and 1-NN
with Move-Split-Merge (1-NN MSM) [35]. In the figure, BLSTM and VGG refer
to the previous models with only time series features. It can be seen that the
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Table 1. Average Test Accuracy (%) Trained Five Times

Type: Single Single Single Input Fusion Input Fusion

Feature: TS MP (7%) MP (Best) TS+MP (7%) TS+MP (Best)

1D VGG Backbone

ACSF1 34.6 27.6 31.6 (15%) 36.8 43.0 (13%)

AllGestureWiimoteX 70.3 27.1 28.2 (5%) 68.6 69.6 (9%)

AllGestureWiimoteY 72.2 25.5 26.3 (5%) 68.9 71.3 (3%)

AllGestureWiimoteZ 63.9 29.7 31.0 (13%) 58.9 63.9 (15%)

ChlorineConcentration 83.4 69.0 69.0 (7%) 73.2 74.3 (15%)

Computers 60.7 50.0 55.0 (5%) 62.8 63.4 (1%)

Earthquakes 68.8 72.9 74.8 (Multi) 70.2 71.4 (11%)

ElectricDevices 70.4 63.8 63.8 (7%) 72.3 72.3 (7%)

FordA 94.0 55.0 86.0 (3%) 93.5 94.0 (13%)

FordB 82.6 55.9 75.7 (1%) 82.3 83.1 (15%)

FreezerRegularTrain 99.2 55.5 88.8 (5%) 94.9 97.8 (15%)

GesturePebbleZ1 16.0 44.8 53.8 (5%) 59.5 74.4 (3%)

GesturePebbleZ2 15.3 34.7 34.7 (7%) 71.3 84.4 (1%)

InsectWingbeatSound 59.1 37.2 42.6 (13%) 59.5 59.5 (7%)

LargeKitchenAppliances 79.8 53.7 14.4 (3%) 78.6 81.8 (1%)

Phoneme 15.9 10.7 14.4 (3%) 15.5 17.6 (5%)

PLAID 12.2 36.0 72.9 (5%) 12.2 12.2 (Multi)

Plane 98.7 96.0 99.0 (13%) 97.1 98.7 (11%)

RefrigerationDevices 47.9 42.0 47.8 (3%) 51.0 52.2 (9%)

ScreenType 39.9 38.3 43.4 (1%) 40.7 51.4 (1%)

SmallKitchenAppliances 70.5 54.8 72.4 (3%) 75.5 78.4 (13%)

StarLightCurves 96.7 92.0 93.7 (11%) 96.1 96.6 (15%)

Trace 83.4 78.2 87.0 (5%) 99.6 100 (5%)

Wafer 99.6 99.6 100 (3%) 99.6 99.9 (3%)

Total 63.97 52.08 60.44 68.27 71.38

BLSTM Backbone

ACSF1 73.0 34.0 34.0 (7%) 61.0 68.5 (5%)

AllGestureWiimoteX 68.4 24.6 30.4 (13%) 67.5 67.7 (9%)

AllGestureWiimoteY 65.2 24.5 26.1 (9%) 65.9 68.7 (9%)

AllGestureWiimoteZ 63.9 31.6 34.1 (15%) 59.8 66.0 (15%)

ChlorineConcentration 61.8 58.4 59.4 (9%) 61.1 61.1 (7%)

Computers 60.0 60.5 61.4 (7%) 59.9 62.9 (11%)

Earthquakes 73.4 69.4 74.6 (15%) 73.6 74.1 (15%)

ElectricDevices 69.6 63.0 63.0 (7%) 73.3 73.3 (7%)

FordA 60.2 76.5 80.5 (3%) 91.1 91.1 (7%)

FordB 69.5 66.1 71.1 (3%) 78.0 82.6 (1%)

FreezerRegularTrain 92.5 83.3 89.5 (15%) 93.4 95.9 (11%)

GesturePebbleZ1 43.5 51.7 55.2 (11%) 44.6 67.6 (9%)

GesturePebbleZ2 40.3 43.2 57.0 (13%) 44.5 70.6 (15%)

InsectWingbeatSound 55.8 29.5 35.8 (15%) 51.9 54.5 (11%)

LargeKitchenAppliances 85.5 53.9 58.8 (1%) 84.6 86.2 (5%)

Phoneme 11.7 14.8 14.8 (7%) 13.0 14.1 (3%)

PLAID 50.5 73.8 75.9 (5%) 76.0 76.0 (7%)

Plane 97.1 92.2 97.0 (15%) 99.0 99.2 (11%)

RefrigerationDevices 45.3 46.6 49.4 (3%) 48.7 53.4 (15%)

ScreenType 38.6 39.7 46.5 (3%) 41.3 49.3 (1%)

SmallKitchenAppliances 68.7 73.0 75.7 (3%) 80.3 80.3 (7%)

StarLightCurves 91.8 87.2 93.4 (15%) 95.8 95.9 (9%)

Trace 84.0 70.5 98.0 (15%) 80.0 90.7 (13%)

Wafer 99.1 99.0 99.5 (3%) 99.0 99.6 (3%)

Total 65.39 56.96 61.70 68.47 72.99
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Fig. 3. Critical difference diagram using a Nemenyi test comparing the proposed
method to reported methods. Green highlighted methods are the proposed input fusion
networks. (Color figure online)

proposed method performed on the upper end of the methods. Using the best
window with VGG was ranked higher than most of the models. The methods
with better overall scores were a large ensemble of many classifiers (COTE), a
classical method, and two other neural networks.

5.5 Qualitative Analysis

Figure 4 is a comparison of test samples classified by a standard VGG using the
normal time series features and the proposed Input Fusion network with a VGG
backbone using both the time series features and the matrix profile features.
Noticeably, the proposed method performed better when the matrix profile fea-
tures had more discords. In Figs. 4(b) and (c), the matrix profile features were
often small with only sparse and narrow peaks. Conversely, when the proposed
method excelled, the discord peaks were wider and more frequent. Thus, it can be
inferred that the proposed method is better suited to signals with more frequent
discords.

5.6 Ablation

An ablation study is performed to demonstrate the usefulness of adding matrix
profile-based features. Table 2 compares using a network on a single feature (time
series features or matrix profile features) as well as the difference in using an
input fusion network versus a feature fusion network. Feature Fusion refers to
a network that has branches for both features and concatenates them at the
fully connected layer. Also, in order to demonstrate that the improved results
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Fig. 4. Examples of test patterns classified by Single VGG TS and the proposed Input
Fusion VGG TS+MP (7%) from the RefrigerationDevices dataset. The upper row of
each subfigure is the original Time Series feature and the lower row is the Matrix Profile
feature. Two examples from each class are shown.

Table 2. Average Test Accuracy (%) of the 24 Datasets Trained Five Times

Network Feature Model

1D VGG BLSTM

Single TS 63.97 65.39

Single MP (7% Window) 52.08 56.96

Single MP (Best Window) 60.44 61.70

Input Fusion TS+TS 63.32 66.47

Feature Fusion TS+TS 64.07 64.33

Input Fusion TS+MP (7% Window) 68.27 68.47

Input Fusion TS+MP (Best Window) 71.38 72.99

Feature Fusion TS+MP (7% Window) 66.08 66.95

Feature Fusion TS+MP (Best Window) 67.91 70.45
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of the proposed method are not strictly due to having more parameters, a fair
comparison is made using only the time series features for modalities of the
fusion networks (TS+TS).

Table 2 shows that using a fusion network with only time series does not have
a significant difference with just having a single network. The results between
Single TS and Input Fusion/Feature Fusion TS+TS are within a percent of each
other. However, the TS+MP trials all have large increases over Single TS. This
indicates that the matrix profile-based features provide supplemental informa-
tion for the network to learn from.

5.7 Effect of Window Size

Matrix Profile has one hyperparameter, the window size. The value of this hyper-
parameter has an effect on the robustness of the proposed method. Figure 5
shows the average accuracy at different window sizes. As can be seen in the
figure, after about a window size 7% of the time series, the accuracy starts to
decrease. Furthermore, when using the Matrix Profile features only, the accu-
racy of the VGG quickly decreases after a small window. Despite this, the Input
Fusion and Feature Fusion still increases.

Fig. 5. Effect of the Matrix Profile window size.
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6 Conclusion

In this paper, we propose the use of motif-based features to supplement time
series in classification. The motif-based features are features that represent motifs
and discords in time series. The features are created by using Matrix Profile to
generate a second modality of data to represent the time series. Due to the
features being similar in length to the original time series, we can use them as a
sequence in multi-modal neural networks.

Through the experiments, we demonstrate that using the motif-based fea-
tures alongside the time series features can be used to increase the accuracy of
BLSTMs and Temporal CNNs in fusion networks. We performed an extensive
evaluation using all of the signal and device time series patterns from the UCR
Time Series Archive, which includes 24 time series datasets.
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