
Chapter 2
Software Validation Techniques
in the Automotive Sector

David Borge-Diez , Pedro-Miguel Ortega-Cabezas ,
Antonio Colmenar-Santos , and Jorge-Juan Blanes-Peiró

Abbreviations

ATCU Automatic Transmission Control Unit
ADAS Advanced Driver-Assistance System
dll Dynamic-link libraries
CAN Controller Area Network
ECU Electronic Control Unit
ESP Electronic Stability Program
EX Expert system
GA Genetic Algorithms
HIL Hardware-in-the-loop
MIL Model-in-the-loop
SIL Software-in-the-loop
SM Software Module

D. Borge-Diez · J.-J. Blanes-Peiró
Department of Electrical and Control Engineering, Universidad de León, Campus de
Vegazana, s/n, 24071 León, Spain
e-mail: david.borge@unileon.es; dbord@unileon.es

J.-J. Blanes-Peiró
e-mail: jorge.blanes@unileon.es

P.-M. Ortega-Cabezas · A. Colmenar-Santos (B)
Departamento de Ingeniería Eléctrica, Electrónica y de Control, UNED, Juan del Rosal, 12,
Ciudad Universitaria, 28040 Madrid, Spain
e-mail: acolmenar@ieec.uned.es

P.-M. Ortega-Cabezas
e-mail: pedro-miguel.ortega-cabezas@valeo.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Colmenar-Santos et al. (eds.), Development and Testing of Vehicle Software and its
Influence on Sustainable Transport, https://doi.org/10.1007/978-3-031-47630-3_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47630-3_2&domain=pdf
http://orcid.org/0000-0003-0529-539X
http://orcid.org/0000-0002-6217-8301
http://orcid.org/0000-0001-8543-4550
http://orcid.org/0000-0003-3646-9671
mailto:david.borge@unileon.es
mailto:dbord@unileon.es
mailto:jorge.blanes@unileon.es
mailto:acolmenar@ieec.uned.es
mailto:pedro-miguel.ortega-cabezas@valeo.com
https://doi.org/10.1007/978-3-031-47630-3_2

32 D. Borge-Diez et al.

2.1 Introduction

2.1.1 Engine ECU Software

Electronic control units (ECUs) have become essential for the correct operation of
a vehicle [1, 2]. Software validation plays a key role and has two fundamental goals
[3]. Firstly, the software must comply with the functional specifications set by the
design team. Secondly, software validation ensures the integration of all software
modules (SMs) into the hardware, simultaneously checking that all the elements
present in the network interact properly [4, 5]. The process of software validation of
an ECU implies significant costs for the companies during a project because of the
means necessary to carry out this activity [6, 7]. In addition, the cost of correcting
bugs, once the software is marketed, is high and it can tarnish the brand’s image [8,
9]. Consequently, a balance between costs, deadlines, and quality must be reached.

Powertrain control is a system in charge of transforming the driver’s will into an
operating point of the powertrain according to the performance established for the
product [10]. The key element of the control system is the engine ECU composed of
complex hardware and software. The engine ECU (hardware and software) must be
validated to assure that engine is properly controlled, the interaction with the rest of
the ECUs is rightly performed and the passengers’ safety is insured. Thus, one can
deduce that the software validation process is complex and needs improvements with
the aim of reducing costs, increasing productivity and reliability in the automotive
sector [11, 12].

This chapter is focused on the engine ECU software validation and shows solutions
to the main difficulties associated with traditional software validation techniques by
using expert systems (EXs) and dynamic-link libraries (dlls) during the hardware-in-
the-loop (HIL) simulation. The technique proposed in this research performs better
than traditional techniques and allows improving: ease for automating test-cases, bug
detection skills, functional coverage, difficulties to detect bugs linked to SMs that do
many calculations and the difficulties to validate the software automatically among
others. In addition, it shows that the HIL simulation can be automated in an easier
way.

2.1.2 Related Works

The code and functional coverage is a real concern when validating a software.
Research has been conducted on this topic to enhance this parameter [13–17]. There-
fore, test-case generation is a key issue. The black-box technique has been used
for a long time in the automotive sector, as discussed by Conrad [18]. Despite its
widespread use, it is true that it has some weak points as discussed by Chundur
et al. [19]. In their dissertation, they consider that test-cases based on the engineers’

2 Software Validation Techniques in the Automotive Sector 33

experience usually imply gaps and test-redundancies. The model-based testing tech-
nique is an option to assess the code and functional coverage rate. The generation
and execution of test-cases based on models have been proposed on several occa-
sions. For instance, Skruch and Buchala (DELPHI supplier) proposed a study based
on models [20]. The tool Automation Desk (dSpace®) was used. Raffaelli et al
presented research focused on functional models by using the commercial software
Matelo® [21, 22].

The HIL simulation should be carried out as quickly as possible and with the
highest number of test cases executed to ensure the time-frame and quality of the
project [23]. Test automation is essential to ensure a high code coverage and to
improve reliability [24, 25]. There are many ways for automating HIL simulation in
the market [26, 27]. The automation process is mainly based on black-box techniques
such as stated by Lemp, Köhl and Plöger: “As a rule, the tests specified by the ECU
departments are first performed as black box tests on the network system (know-how
on software structures is not taken)”.

The HIL simulation implies that a specific operating point is reached by the engine
ECU. This can be extremely complicated, requiring a lot of manipulations on the
HIL model due to SM interactions. There are three possible ways for executing a
given test-case in an HIL simulation. Firstly, executing the test-case manually, that
is, a technician performs all the necessary actions in the HIL simulation to reach
the desired operating point. Secondly, the “tester-on-the-loop” concept can be used.
Petrenko, Nguena-Timo and Ramesh, reported the main problems and solutions asso-
ciated with software validation in the automotive sector [28]. Their main conclusion
was focused on the methodology known as “tester-in-the-loop”, in which the test
engineer leads the system to a desired operation point, considered as a crucial oper-
ation point. Once the crucial point is reached, a series of automated actions are
executed to reach the goals previously established in the test-case. Finally, test-cases
can be fully automated. In this case, a script controls the whole execution process.

Some types of bugs are not detected by using some techniques such as the tester-
in-the-loop or black-box, Fig. 2.1, depicts the obtained result for an output for a
variable of a SM when executing the software in an HIL simulation (in red) and
its expected value (in blue). As one can see, the results are different. This error
represents an inaccuracy when it comes to calculating the gas speed in the exhaust
pipe. This error impacts the amount of urea injected to treat NOx. Because this bug
does not imply the presence of a functional bug, it is impossible to detect it by using
the black-box technique. The detection of this type of bugs involves the checking
and detailed analysis of the software code by running additional software.

The solution for validating no matter what type of SM is very far from achieving
by employing a direct comparison between the HIL results and the expected outputs
indicated in the test-cases. One can encounter some difficulties such as synchroniza-
tion problems or difficulties to validate the software automatically, among others.
Table 2.1 describes the main issues.

The present chapter proposes how to implement the possible solutions depicted in
Table 2.1 thanks to the use of dlls for validating any types of SMs when automating a
test-case through the HIL simulation, and especially all SMs that cannot be validated

34 D. Borge-Diez et al.

0

400

800

1200

1600

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

sp
ee

d

time (s)

Gas speed (expected) Gas speed (Software output)

Fig. 2.1 Bug not detected when using traditional techniques

by employing traditional techniques. Thanks to dlls, SMs responsible for doing a
great deal of internal calculations, can be validated. During the HIL simulation, it
can be checked that all the calculations are properly carried out when the software
and hardware are integrated. This feature allows finding bugs which cannot be found
by traditional techniques. In addition, in case the desired operating point set in the
test-case is not reached in an automated HIL simulation, owing to SM interactions,
the dlls can determine the expected output that the software should provide. Thanks
to rule-based EX, it is possible to verify whether the functional behavior of the
software is correct for the outputs obtained after the HIL simulation. EXs can carry
out a real-time performance validation when executing a test-case thanks to dlls.

2.2 Application of Rule-Based Expert Systems
and Dynamic-Link Libraries to Enhance
Hardware-In-The-Loop Simulation Results1

2.2.1 Introduction

New and innovative techniques to validate software are needed to reduce cost and
increase software quality.

This research focuses on the validation of engine electronic control unit software
by using EXs and dlls with the aim of checking if this technique performs better than
traditional ones.

1 Extract of the following paper published in Journal of Software “Application of Rule-Based Expert
Systems and Dynamic-Link Libraries to Enhance Hardware-In-The-Loop Simulation Results” JSW
2019 Vol.14(6): 265–292. ISSN: 1796-217X. https://doi.org/10.17706/jsw.14.6.265-292. http://
www.jsoftware.us/.

https://doi.org/10.17706/jsw.14.6.265-292
http://www.jsoftware.us/
http://www.jsoftware.us/

2 Software Validation Techniques in the Automotive Sector 35

Table 2.1 Potential solutions for the aforementioned issues

Consequences Reason Possible solutions

Difficulties to validate
the software
automatically

When the values set in the test-case for the inputs
are not reached due to SM interactions; then the
output values set in the test-case may be no longer
available. No automatic validation can be
performed

Recalculate the
output values
So that automatic
validation process
can be carried out.
Dlls can perform
this task

The test-engineer cannot establish the expected
outputs before performing the test. In some cases,
the output values are analog trends which depend
on many factors (number of kilometers, number of
regenerations of the diesel particulate filter, values
of safety module counters, dilution oil rate,
properly EEPROM initialized, etc.). Consequently,
the expected output can be set after having
performed the HIL simulation performing the test.
In some cases, the output values are analog trends
which depend on many factors (number of
kilometers, number of regenerations of the diesel
particulate filter, values of safety module counters,
dilution oil rate, properly EEPROM initialized,
etc.). Consequently, the expected output can be set
after having performed the HIL simulation

Bug performance
detection

If input values are different from the ones
established in the test-case, then the software
performance behavior is unknown

Synchronization
problems

When a test-case is run, the process must compare
the current state of the engine ECU and the
expected outputs. It is not possible to read all
variables involved in the test-case at the same time
due to data acquisition software limitations
combined with Python scripts
Consequently, a desynchronization problem
occurs as some variables are read at t1, others at t2
etc.

A data-acquisition
can be done while
the test-case is
run. Then, when
the process is
ended, the
data-acquisition is
stopped, and the
conformity of the
results can be
achieved
comparing the
HIL results with
the dll results

The fact of having different values stored in
EEPROM memories keeps the test-engineer from
providing accurate screenshot and expected results

The EEPROM
can be initialized
when building the
dll

(continued)

36 D. Borge-Diez et al.

Table 2.1 (continued)

Consequences Reason Possible solutions

Functional coverage
unknown

A functional code coverage could be established
by analyzing the black-box test-cases before the
HIL simulation. When reaching different values
for the inputs after HIL simulations, then the
use-cases tested are different from the ones
planned

Implementing a
system that can
assess whether the
software
performance is as
expected or not
Considering the
number of
performance rules
assessed, the
functional
coverage could be
established. A
performance EX
can perform this
task

Difficulties to detect
bugs linked to SMs that
perform many
calculations

The calculations may be performed wrongly but
they do not imply that the vehicle behaves in such
a way that the client could detect any abnormality
(Fig. 2.1)

Implementing a
system that can
check if the
software properly
calculates all
software outputs.
Dlls can perform
this task

To do this, a test-case database was built and run by using HIL simulations to
validate a series of SMs by using these techniques: the tester-in-the-loop, automation
by using a Python script, the model-based testing and EXs combined with dlls with
the aim of assessing several factors such as: productivity gain, bug detection skills,
functional coverage assessment, ease to automate test-cases among others.

Dlls and EXs improve the HIL success rate by 4.8%, 6% and 20% at least, for
simple, fairly-complex, and highly-complex SMs, respectively. Between 9 and 13
more bugs were found when using the EXs and dlls compared with other techniques.
Two of the bugs would have required software not initially planned as they were
linked to environmental policies. The proposed technique can be applied to any
types of a SM, especially in those cases in which traditional validation techniques
fail.

2 Software Validation Techniques in the Automotive Sector 37

2.2.2 Method

2.2.2.1 Description

The engine specifications are composed of Simulink® models. Thus, the dll can be
easily built considering that Mathworks® has implemented different ways to build
a dll from a Simulink® model [29].

The method used in this research are composed of different stages. Firstly, a
series of test-cases are designed. Then, all test-cases are run by using the following
techniques: manual execution by a technician, automation by employing Python
scripts (with and without dlls), the tester-in-the-loop technique and fully automated
process by using a performance EX combined with dlls. The EX compiles all rules
(software requirements) related to the SM under validation. To conduct the test-cases,
an HIL simulation is used. The HIL model belongs to the company subjected to this
case-study and has been validated by its experts. The hypothesis to be proved by
following this method is that all issues shown in Table 2.1 can be solved thanks to this
technique proposed by the authors. Several indicators are analyzed such as: evaluation
of the success rate of the HIL simulation, main causes of failure and success for each
of the methodologies when running test-cases, the functional coverage obtained, the
productivity gain which may take place. The advantages and limitations of using dlls
will be discussed. EXs will assess the software performance.

The dll can be implemented by following the steps indicated in many Mathworks®
documentation available in their site. The only thing that the user really needs is the
Simulink® model to be converted into a dll. In this study, this is not a problem
as the specifications needed to code the engine ECU software, are composed of
Simulink® models. The main difficulty is how to call the dll. To do this, as described
in Matlab® documentation, different programming languages such as C or an m-file
can be employed. In this research, C language has been chosen. It is important to
describe how the HIL simulation is performed when using dlls to validate the soft-
ware. Figure 2.2 depicts the process when using an automation script. This description
is valid for all techniques but the manual execution one (no automation process). A
test-case is executed through a Python script coded by a test engineer. At this moment,
the software Inca® [30], or any other software that can read the memory positions of
the ECU, performs the data acquisition of all the software variables selected by the
test engineer. The result of this process is to generate a data-acquisition file. During
the HIL simulation the script is in charge of performing all the necessary manipula-
tions on the driver-ECU interface of the HIL model automatically. If after a certain
pre-established time, the values for the input set in the test case are not reached, the
data acquisition process and the test-case execution are stopped by the Python script.
Then, a data acquisition file containing all the software variables chosen by the test-
engineer in the HIL simulation is obtained. A C-file is in charge of decoding the data
acquisition file and sending, one by one, all the samples of the HIL simulation to
the dll as exposed later. Every time a sample is sent by the C-file, the dll returns the
theoretical value that the software should have delivered. Then, the Python scripts

38 D. Borge-Diez et al.

Fig. 2.2 Use of dlls in an HIL simulation when performing a test-case

checks whether the software outputs are equal to dll outputs every time the dll returns
a value. Two key topics must be reminded. Firstly, the outputs of the SM are also
available in the asci-ii file. Secondly, the engine ECU software is an image of the
Simulink® models of the SM under validation.

2.2.2.2 Functions Used in the HIL Simulation

The methodology proposed in this study has been tested in three types of functions
or SMs chosen according to the number of calculations to be done as well as their
complexity, number of inputs and/ outputs of the SM and the accuracy required for
the output results (Table 2.2). They have been considered as representative for this
case-study by the authors and the company subjected to this research.

2 Software Validation Techniques in the Automotive Sector 39

Table 2.2 Types of SM presented in the ECU software

Type of
SM

Characteristics Validation requirements SM

Simple a. A reduced number of input and
output variables present in the
SM and small number of
calculations to be done.
Furthermore, they are not
complex

b. High accuracy needed for
calculations in some cases and
easy to identify the main
functional characteristics of the
SM

SMs require a few
manipulations to make the
engine ECU reach the desired
operating point
For instance, the SM in charge
of detecting whether the
accelerator pedal is blocked.
The engine ECU must check a
few parameters

Such as:
Temperature
estimators
Brake pedal
monitoring

Fairly
complex

a. High number of input and output
variables present in the module
but moderate number of
calculations to be performed

b. Moderate accuracy needed for
calculations. However, difficult
to identify the main functional
characteristics of the SM

SMs require more
manipulations to make the
engine ECU reach the desired
operating point
For instance, SMs related with
treatment of exhaust gases

Such as:
Treatment of
exhaust gases
systems

Highly
complex

a. High number of input and output
variables and number of
calculations

b. Calculation not necessarily
complex but high number of
functional calculations but
Moderate/low calculation
accuracy

SMs need weeks to reach the
desired operating point
For instance, the SM in charge
of assessing the diesel dilution
rate in the engine oil

Such as:
The SM in
charge of
controlling
the oil rate
diluted into
diesel

It is important to establish this classification because the validation requirements
as well as the characteristics of the SM clearly influence the time required to carry out
the validation process, as well as the additional difficulties that may arise. 5 SMs of
each type were selected, based on different criteria such as test engineers’ experience,
the most problematic SMs in other projects, SMs that require systematic validations
to ensure the vehicle safety, SMs that require frequent regression validations as well
as those SMs that have never been implemented in previous projects and, in short,
they are a novelty (see Table 2.2).

Table 2.3 shows the number of tests considered in this research according to the
type of SM.

Table 2.3 Number of tests
used in this research Type of SM Number of test

Simple 250

Fairly complex 1,250

Highly complex 100

40 D. Borge-Diez et al.

Table 2.4 Methods to generate test-cases

Technique Method

Cause-effect technique A1

Model-based testing A2

One EX combined with dlls and Two EXs combined with dlls A3

A1: A database in which the staff trace different bugs found throughout a project. In addition, several
test-cases come from the software requirements
A2: Pseudorandom values generated by Matelo® to cover a functional model
A3: Pseudorandom values generated by Python scripts

Table 2.4 indicates the methods followed to generate test-cases for each technique.
It is important to analyze what A2 and A3 mean. In A2, Matelo® can generate all

necessary test-cases with the aim of covering the functional model. In A3, Python
scripts also generate test-cases trying to cover the functional model. In addition, they
generate pseudorandom values trying to reach functional states not implemented in
the model. A functional state not implemented in the model involves a use-case not
considered by the design team. In other words, a design error. The fact of using fuzzy
variables, as exposed later, allows increasing the combination of the inputs of the
SM under validation. It must also be taken into account that the scripts in charge of
generating pseudorandom values have to avoid impossible combinations such as a
vehicle speed at 90 km/h and the first shift engaged.

Table 2.5 shows examples of test-cases which could be used to check some func-
tionalities of the software by using different techniques. Fuzzy variables are used
when using EXs combined with dlls by increasing the number of combinations of
the inputs provided by the SM under validation.

2.2.2.3 Equipment

The following equipment was used in this research.

• An engine ECU software and hardware.
• The HIL bench used to conduct this research belongs to the manufacturer

dSpace®, model dSpace® Simulator Full-size [31]. It is a versatile HIL simulator
capable of emulating the dynamic vehicle behavior.

• When it comes to building the model that serves as the driver’s interface, ControlD-
esk® version 5.1 from dSpace® manufacturer is employed [32]. By using this
software, it is possible to carry out all necessary data exchange between the HIL
bench and the engine ECU. This model was designed by the company subjected
to this case-study and it is validated by the Electronic Validation Powertrain and
Hybrids service before using it.

• Throughout this research, it is necessary to make measurements of different soft-
ware variables stored in the engine ECU memory. To do this, it is imperative to

2 Software Validation Techniques in the Automotive Sector 41

Table 2.5 Examples of test-cases

Feature to be
checked

Actions to be done Expected results Technique

Body control unit.
Cyclic redundancy
check invalid

Set a CRC invalid value
of the frame BCM_A1

Check the inhibition
of adaptive cruise
control

Cause-effect
Model-based testing

Diesel particulate
filter regeneration

1. Var1_veh_started =
TRUE

Start the vehicle
2. Var2_temperature_

exhaust_gas = 600ºC
Do a driving cycle and
var3_vehicle_speed =
80 km/h Press the brake
pedal to reach 40 km/h
Then Var4_particulate_
filter = 40 g
Do not overpass
2000 rpm

When the RG is
performing the
variable var1_out is
activated

Model-based testing

Diesel particulate
filter regeneration

Var1_veh_started =
TRUE
Start the vehicle and
var2_temperature_
exhaust_gas = High
Do a driving cycle.
Var3_vehicle_speed =
High
Press the accelerator
pedal to reach low speed

When the RG is
performing the
variable var1_out is
activated

EXs combined with
dlls

use software that allows reading memory locations. In this research, version 7.1.9
of INCA® was used [30].

• The automation process can be carried out in different ways: by using Python
script or AutomationDesk® software [33]. In this research, the Python script was
chosen because the staff’s skill in AutomationDesk® in the service subjected to
this case-study was low.

• Matlab® R2013 and Microsoft Visual Studio 2015 were used to create the dlls
used in this research.

• Matelo®. Software used for validation purposes being able to generate test-cases.

42 D. Borge-Diez et al.

2.2.3 Results

2.2.3.1 Ease for Automation Test-Cases

a. Simple software modules

Simple SMs, as indicated in the previous section, are characterized by handling a
small number of variables. As a result, it is not difficult to reach the values established
in the test-case. The problem associated with SM interactions appeared in all SMs
considered in this research. For example, by analyzing the measurements obtained
in the HIL simulation when validating a simple SM, by using MDA® [33], it was
observed that, when actuating the brake pedal, multiple variables were affected and
changed their values. When the brake pedal is actuated, the vehicle speed is reduced
significantly, even without changing the accelerator pedal position. To decrease the
vehicle speed, the engine ECU must control the engine combustion by modifying the
air-diesel mixture rate. This phenomenon is regulated by other SMs which were not
validated in this process. Therefore, one can conclude that to achieve the values set
in the test-case, multiple SMs must be controlled simultaneously. This fact involves
a great deal of complexity to code Python scripts.

One of the most important issues to be analyzed is the consequences of not
reaching the values set in the test-case. Table 2.6 shows the results when validating
the simple functions by using different techniques. As one can see, the tester-in-
the-loop technique offers better results than the automated one without using dlls,
because a technician makes the engine ECU reach a specific operating point during
the test-case execution. When using dlls, the results are by 4.8% and 14.4% better
than the tester-in-the-loop or automation results achieved by using a Python script
only.

The Simulink® blocks that, in most cases, prevent reaching the values set in the
test-case in this research, are show in Table 2.7.

Table 2.6 Comparisons of different techniques for validating simple SMs

Methodology Number of cases in
which the output value
set in the test-case was no
longer valid

Error rate after 250
simulations (%)

Success rate (%)

Automated with a
Python script but
without using a dll/
model-based testing

49 19.6 80.4

Tester-in-the-loop 25 10 90

Automated with a
Python script and the
use of dll

13 5.2 94.8

2 Software Validation Techniques in the Automotive Sector 43

Table 2.7 Most problematic Simulink blocks

Interpolator block. In this case, depending on the input values presented to the
Simulink® block, an output value is provided by applying an algorithm or an
interpolation method

Simulink® native comparator block. It has problems in all its versions (greater than,
greater than or equal to, less than, less than or equal to). In engine ECU software, on
many occasions the value of a certain physical magnitude (e.g., motor revolutions,
vehicle speed) is compared with a calibration threshold

It is important to analyze the root cause of the 5.2% failures. After the analysis of
the 13 failures shown in Table 2.6, it was verified that the dynamic model used for the
HIL simulation failed. Analysis showed that this issue came from 2 SMs. These SMs
needed a 10 ms-sample period. Owing to imperfections of the HIL model, latency
times and hardware limitations of the HIL bench, in certain occasions this sample
time was not respected.

b. Fairly-complex and highly-complex software modules

For fairly-complex and highly complex validation SMs, the number of variables
increased up to 80. Therefore, the issue of SM interactions is even more present.
Figure 2.3 shows the total number and types of variables of a fairly-complex SM and
the difficulty of manipulation to make the variables reach a specific value set in a test-
case. The graph depicted in Fig. 2.3 shows that the Boolean variables were easier to be
manipulated to reach the desired value, especially when they were related to variables
directly linked to the driver’s interface-model. If they were linked to analogical
variables, it was not easy to reach the desired value. The triangle obtained for a fairly-
complex SM was an isosceles whose height is focused on high difficulty. Therefore,
the issue about SM interaction arises. On average, after having analyzed 5 SMs it was
concluded that at least 40 variables were influenced between them. It is important
to explain the nuance of “at least”. The Boolean variables are simple to manipulate.
Nevertheless, some of them have a direct impact on making the analogical ones reach
the desired value established in the test-case. The HIL simulation results are shown
in Table 2.8 in which one can see the number of times the expected output values
specified in the test-cases are no longer valid when the SM inputs fail to reach the
specific values set in the test-case. At the same time, the most problematic blocks
present in the Simulink® models can also be observed (Table 2.9).

When it comes to a highly complex SM, the triangle obtained is closer to that of
an isosceles one with a lower base. This characteristic indicates a greater presence
of variables that are difficult to manipulate in a HIL simulation (Fig. 2.4). In this
case, a total of 120 variables that influence the other variables had to be handled.
The Simulink® blocks that pose the most problems were the same as those shown
in Table 2.8. The results after the 100 HIL simulations are shown in Table 2.10.

In highly complex SMs, errors that prevent the HIL simulation from succeeding
when using dlls were also detected. When validating a highly complex SM, a lower

44 D. Borge-Diez et al.

Fig. 2.3 Type of variables
present in an
average-complexity SM

Table 2.8 Comparisons of different techniques for validating fairly-complex SMs

Methodology Number of cases in
which the output value
set in the test-case was
no longer valid

Error rate after 1250
simulations (%)

Success rate (%)

Automated with a
Python script but
without using a dll/
model-based testing

480 38.4 61.6

Tester-in-the-loop 200 16 84

Automated with a
Python script and the
use of dll

125 10 90

success-rate with dlls was obtained because these SMs require covering thousands
of kilometers (close to 20,000 km in some cases). Thus, the probability of failure in
the simulator increases. Considering the strong SM interaction, it is unlikely to reach
the specific values set in the test-case. Thus, the tester-in-the-loop solution offers
worse results than when using dlls.

In fairly and highly complex SMs, at any given time, it was observed that several
variables were close to the values previously set in the test-case as long as other values
were quite far. If some manipulations were performed to make all the variables closer
to the values set in the test-case, then the ones which were far from the expected
values started to get closer, and the remaining variables started to get further. Thus,
it is unlikely to be able to reach the input values set in a test case owing to SM
interactions in such complex software as in an HIL simulation. Figure 2.5 shows how,
by increasing the error tolerance against the value set in the test-case for the variables
that constitute the test-case, the number of variables that remained within those
tolerance margins increased. However, in any case, it was never possible to make

2 Software Validation Techniques in the Automotive Sector 45

Table 2.9 Most problematic Simulink blocks for an average SM

Interpolator block. In this case, depending on the input values presented in the
Simulink® block, an output value is provided by applying an algorithm or
interpolation method

Simulink® native comparator block. It has problems in all its versions (greater than,
greater than or equal to, less than, less than or equal to). In engine ECU software, on
many occasions the value of a certain physical magnitude (e.g., motor revolutions,
vehicle speed) is compared with a calibration threshold

This block sets the output to TRUE while the input In remains TRUE for a certain
calibratable time. Otherwise, the output is FALSE. As found in this research, when it
comes to average and complex functions, it is more difficult than in simple functions
to succeed by making the input In remain stable

This block provides a Boolean type TRUE when a falling edge is detected.
Otherwise, it remains FALSE. In this case, when it comes to average and complex
functions, it is difficult in certain cases (for example when validating exhaust gas
treatment systems) to reach the conditions to generate a falling edge

This block works as a typical RS flip-flop. As in a falling edge block, when it comes
to average and complex functions, it is difficult in certain cases (for example when
validating exhaust gas treatment systems or oil adaptive maintenance function) to
reach the conditions when the S-input could be activated

Fig. 2.4 Type of variables present in a high-complex SM

all the variables remain within the established tolerance range. This fact happened
when executing the test-cases manually or automatically. As a result, these results
show the great difficulty of validating an engine ECU software version by using HIL
simulation.

Figure 2.6 summarizes the results obtained when using or not using dlls in an HIL
simulation. As shown, dlls improve the HIL results in a significant way for all types
of SMs, especially for simple and fairly-complex functions. It must be reminded

46 D. Borge-Diez et al.

Table 2.10 Comparisons of different techniques for validating highly complex SMs

Methodology Number of cases in
which the output value
set in the test-case was no
longer valid

Error rate after 100
simulations (%)

Success rate (%)

Automated with a
Python script but
without using a dll/
model-based testing

61 61 39

Tester-in-the-loop 35 35 65

Automated with a
Python script and the
use of dll

15 15 85

Fig. 2.5 Error trend depending on error tolerance of the SM inputs

that estimator SMs belong mainly to simple functions. That is why one can see
such a huge difference when comparing the results obtained when activating or not
activating dlls in an HIL simulation. In fairly and highly complex functions, it must
also be noted that the SMs that require performing of many calculations belong to
this category. Thus, there is also a significant difference when using dlls.

The reader may think that the automation process is not useful when validating the
engine ECU software. This conclusion is false as there are some SMs, especially those
related to electronics, which can be successfully automated such as CAN (Controller
Area Network) and LIN (Local Interconnect network) bus or the basic functionalities
of adaptive cruise control with the capacity to stop the vehicle (see Table 2.11). These
statements have been proven in this research as shown in Table 2.12.

In this research, the SMs listed in Table 2.10 were used.

2 Software Validation Techniques in the Automotive Sector 47

Fig. 2.6 Comparison of results obtained when using and not using dlls

Table 2.11 List of SMs used and tested in this research

Functions or SMs tested Number of test-cases tested

CAN Bus 600

Driving aid systems 140

Pressure and Temperature carburant probe (SENT) 100

LIN Bus 50

Table 2.12 Comparisons of different techniques for validating functions depicted in Table 2.10

Methodology Number of cases in
which the output value
set in the test-case was no
longer valid

Error rate after 1000
simulations (%)

Success rate (%)

Automated with a
Python script but
without using a dll

12 1.2 98.8

Tester-in-the-loop 13 1.3 98.7

Table 2.11 does not show the results for automation with dlls as most of the
function did not have a Simulink® model.

2.2.3.2 Functional Coverage

The functional coverage has been assessed by using Eq. (2.1) which is widely
employed in the automotive sector. Table 2.13 shows the total number of functional
requirements associated with the SMs validated in this research.

48 D. Borge-Diez et al.

Table 2.13 Number of total
functional requirements Type of SM Number of requirements

Simple 75

Fairly-complex 400

Highly-complex 510

FC =
number of software requirements tested by a technique

number of software requirements indicated in Table 15
(2.1)

Table 2.14 depicts the results obtained for each technique in this research.

a. Cause-effect technique and tester-in-the-loop

All test-cases run in this research by using these techniques are similar to the ones
depicted in Table 2.5. It must be reminded that the test-cases can be run in a manual
way or by employing Python scripts with the aim of automating the process.

The main limitation of the cause-effect technique is test-case redundancy. Many
test cases run to validate the software were indeed linked to the same software
requirements. The main reason behind this issue is the lack of a functional model of
the SM under validation. When a use-case is not considered initially in the software
requirements, it cannot be found by the cause-effect technique. In addition, bugs
linked to calculation errors cannot be detected.

b. Model-based testing

When using Matelo®, it is important to expose the problems found. If the test
engineer let Matelo® generate test-cases, this software will assign specific values
for each input of the SM under validation. As a consequence, the problems of SM
interactions, are identified. The only way to overcome this issue is to use fuzzy values
combined with dlls. In this case, results are similar to the ones obtained when using a
performance EX as long as dlls are used. Matelo® can be used also in such a way that
Matelo® will not generate the test-case but it will control the automation process. In
order words, the test engineer must code a Python script to generate the test -cases

Table 2.14 Functional coverage obtained for each research

Technique Simple SM Fairly-complex SM Highly-complex SM

Number
of rules
tested

Functional
coverage
(%)

Number
of rules
tested

Functional
coverage
(%)

Number
of rules
tested

Functional
coverage
(%)

Cause-effect 64 85.3 312 78 357 70

Model-based
testing

64 85.3 312 78 357 70

Tester-in-the-loop 64 85.3 312 78 357 70

Performance EX
combined with dlls

68 90.7 348 87 445 87.2

2 Software Validation Techniques in the Automotive Sector 49

needed and then Matelo® will check the functional states covered as the automation
is performed.

In the present research, the test engineer codes Python scripts with the aim of
running the same test-cases as for the manual execution, the tester-in-the-loop and
so on. Consequently, the results shown in Table 2.9 are the same for the cause-effect
technique and the model based-testing one.

c. Performance expert system

The rule-based EX allows specifying the functional requirements of SMs. Two
phases are considered when validating EXs: a validation and a test one. On the one
hand, the former consists of verifying a certain number of test-cases depending on
the type of SMs to assess the EX performance to be sure that the EXs seem to work
properly (Table 2.15). Table 2.16 shows the results obtained during the first phase in
which a 83.3% success rate was obtained.

Once the errors were corrected, the test phase was performed to assure that the
EXs would assess the software behavior properly. If no error occurred the EX was
accepted.

The main conclusion that can be drawn is all possible use-cases are not checked
when no EX is used. When it comes to simple and medium-complexity SMs, the
number of unchecked functional states is shown in Table 2.17. The number of untested
rules in a medium or highly complex function is greater because of the large number
of use cases involved in this type of SMs.

Table 2.15 Number of test-cases used to validate the EXs

Number of test-cases used to test
the EX during the verification
process

Number of test-cases used to test
the EX during the acceptance
process

Simple SMs 100 80

Fairly complex SMs 120 50

Highly complex SMs 5 2

Table 2.16 Errors detected when validating the EXs

Type of error Percentage
(%)

Cases Explanation

Wrong syntaxes 8.8 20 Because the rules used to design the EXs are
extremely complex, the programmer made coding
errors

Incoherence
between rules

3.5 8 In some cases of wrong performance of the EX,
incoherence between rules was found

Misunderstanding
of technical
specifications

3.1 7 Because of innovative evolutions in some parts of
the engine, some technical specifications were not
understood properly

Rules not coded or
forgotten

1.3 3 This error is owing to the same misunderstanding
of technical specifications

50 D. Borge-Diez et al.

Table 2.17 Number of rules or functional states not checked when an EX is not used

Type of SM Number of functional states not tested without using an EX

Simple 4

Fairly-complex 36

Highly-complex 88

These improvements are mainly based on two reasons:

1. Dlls allow controlling better the HIL simulation as it is possible to know at any
time if the current state of the engine ECU is coherent or not as already exposed
in this research.

2. EXs assess the functional coverage easily. The reader can think that a similar
result could be obtained by using Matelo® combined with dlls. Matelo® gener-
ates test-cases off-line. If after the HIL simulation, the inputs of SM under vali-
dation do not reach the desired operating point, Matelo® cannot calculate the
expected value for the current state of the engine ECU in-real time.

3. Dlls allow finding bugs linked to calculation errors.

2.2.3.3 Productivity Gain

It is essential to check if EXs implementation respects the timeframes of the project
by analyzing several factors. As shown in Table 2.18, the gain is positive for fairly
and highly-complex SMs when using an EX. This gain comes from the automation
process which allows testing test-cases quicker. In addition, these test-cases can be
always run thanks to dlls. Consequently, an EX combined with dlls performs better
than the other techniques. For simple SMs, the result is different as the HIL simulation
implies that very simple and quick manipulations are conducted on the driver’s
interface model. As a result, the time gain is negative and the timeframe of the project
may not be respected. It must be reminded that several projects are being developed at
the same time by car manufacturers: diesel or gasoline engines. Between these types
of engines, one can find considerable differences when it comes to torque structure
or after treatment of exhaust gas systems. However, when comparing engines of the
same groups, they are remarkably similar. As a result, an EX designed for a project
can be used for another one. Then, only the automation and validation phases will
be performed. As one can see in these phases, this technique outperforms the other
ones. The main conclusions which can be drawn is that the proposed technique always
meets the project planning especially when there are several engines developing at
the same time.

2 Software Validation Techniques in the Automotive Sector 51

Table 2.18 Time needed to design test-cases and rule-based EXs

Simple
functions

Fairly
complex
function

Complex
function

Total time for designing test-cases (h) 8 80 120

Time for
designing and
coding

Time for coding, design and validate
EXs and Python script for the
automation process (h)

4 35 70

Time for preparing dlls (h) 2 6 10

Time for coding a Python script (h) 4 32 50

Time for coding when using the
tester-in-the-loop (h)

2 25 35

Total time for designing and coding
when using EXs (h)

14 121 200

Total time for designing and coding
when using Python scripts (h)

12 112 170

Total time for designing and coding
when using the tester-in-the-loop (h)

10 105 155

Total time for designing when
executing a test-case manually (h)

8 80 120

Test-case
execution

Time for executing an automated
test-case by using EXs (h)

0.32 13 73

Time for executing an automated
test-case (h)

0.25 12.5 72

Time for executing a test-case by
using the tester-in-the-loop (h)

0.46 62 80

Time for executing a test-case
manually (h)

0.5 80 170

Validation Time for validating the results with
automation (h)a

0.00028 0.00347 0.00044

Time for validating the results
without automation (h)

1.67 20.83 2.33

Total time Total time by using EXs (h) 14.32 134.00 273.00

Total time with automation by using
Python scripts (h)

12.25 124.50 242.00

Total time when using the
tester-in-the-loop (h)

10.46 167.00 235.00

Total time without automation (h) 10.17 180.83 292.33

aIn this case, the following data have been considered: 50 test-cases for simple functions with an
execution time of 0.02 s, 250 test-cases for fairly complex functions with an execution time of
0.05 s, and 50 test-cases for complex functions with an execution time of 0.08 s. The execution time
was measured by using the Python function time clock

52 D. Borge-Diez et al.

2.2.3.4 Bug Detection

Figure 2.7 shows the bugs found by each technique when running the test-cases. The
tester-in-the-loop offers a better performance than the automation process as it can
make the system reach critical states that are not easy to reach when only using a
Python script. There are not significant differences between manual and tester-in-
the-loop techniques when it comes to bug detection as there is a technician who
participates in the test-case execution, Python scripts detect fewer bugs than the rest
of the techniques as test-cases are difficult to automate due to SM interactions. As a
consequence, when the system reaches an operating point close to the one established
in the test-cases, the outputs indicated in the test-cases may be no longer valid. To
solve these problems, fuzzy values for the SM inputs may be used as exposed later
in this section.

The results obtained in this research show that EXs with dlls give better perfor-
mance and can be used to test more functional states and detect more bugs than the
other techniques. Basically, this statement is based on two main reasons:

1. The problems coming from the SM interactions are fixed due to dlls. Even though
the operating point established in the test-case is not reached, dlls can provide
the right values expected from the software. Consequently, the test-cases can
be successfully run and the automation process can validate the HIL simulation
results automatically.

2. The functional coverage is improved due to the existence of the functional model.
In addition, this model can be covered easily thanks to the automation success
by using the dlls. It is also important to establish the main types of bugs found
for each technique (Table 2.19).

3. When the bug is linked to calculation errors (calculation faults).

Fig. 2.7 Bugs found when using different techniques

2 Software Validation Techniques in the Automotive Sector 53

Table 2.19 Type of bugs detected

Calculation faults Bugs Performance faults

Manual validation 0 12 2

Tester-in-the-loop 0 14 1

Automation without dlls 0 10 0

Model-based testing 0 10 5

EXs and dlls 5 14 4

4. When no code error occurred but there was unexpected performance software.
This issue can come from an error design in the SM under validation (performance
faults).

5. When there is a code bug. This means the programmer has made a mistake and
coded differently from what was indicated in the specifications.

2.2.3.5 Costs

It is necessary to discuss costs. The first one is associated with the licenses needed
to use a specific technique (already discussed). The other one is linked to software
versions needed to correct bugs detected at the end of the project. This can be caused
by two things. Firstly, certain SMs (especially those related to advanced driver assis-
tance systems) cannot be tested at the beginning of the project. The validation of
these functions needs very mature software of some ECUs present in the network
(electronic stability program ECU, body control unit, radars, cameras, gearbox ECU
in automatic cars). Secondly, some bugs appear when testing some use-cases that
were not considered in the validation process. When these bugs are detected, the
project team must decide whether the bug has a significant functional impact and
therefore require correction of the software. Otherwise, the bug can be corrected
in future engine projects and no correction will be made. Developing new software
versions involves a high cost but also might imply updating the ECU of vehicles
that have already been marketed. The results showed that EXs combined with dlls
detected two bugs that would have required corrective software development. These
bugs were not detected using the cause-effect technique, the model-based testing
one, the manual execution or the model-based testing one.

The reader might think that, in case of bugs in the Simulink® model, the software
will also contain these faults. As a result, no bug will be detected by using the method
proposed in this research. This study has proven that this statement is true and that
is why the performance EX must be used.

2.2.3.6 Comparison Among Other Methods

When performing an HIL simulation, it is not easy to reach the values indicated in
the test-case due to SM interactions. Figure 2.8 shows an example of a histogram

54 D. Borge-Diez et al.

Fig. 2.8 Example of test-case

displaying speed value. Depending on the value reached, the output can be 1 or 0.
Consequently, if a test-case indicates that the speed must be 60 km/h, the accuracy
is a critical factor and the expected output could be no longer valid.

A comparison among different techniques is shown in Table 2.20.

2.2.4 Conclusions

This research, conducted at the second most important European car manufacturer,
is focused on the software validation of an engine ECU by using dlls and an EX (ES).
This combination allows the detection of software performance and coding bugs. As
shown in this research, dlls and ES can detect bugs that other techniques such as the
black-box or the tester-in-the-loop cannot, especially those in temperature estimator
SMs and after-treatment of exhaust gases SMs, which require accurate calculations.
The obtained results show how dlls and the EX can improve the HIL success rate
compared with the tester-in-the-loop technique and can execute 4.8% of the test-
cases in simple validation SMs, 6% of the test-cases of fairly complex SMs and 20%
of the test-cases of highly complex SMs despite the presence of SM interactions. In
comparison to the use of a Python script without using a dll, the dlls and the EX can
improve the HIL and can execute 14.4% of the test-cases in simple validation SMs,
28.4% of the test-cases of fairly complex SMs and 46% of the test-cases of highly
complex SMs. As a result, dlls can overcome the issue linked to SM interactions. In
addition, between 9 and 13 more bugs were found when using the EX and dlls, six of

2 Software Validation Techniques in the Automotive Sector 55

Table 2.20 Comparison among different techniques

Manual
validation

Automation
without dll

Model-based
testing

EXs and dlls

Validity of
test-cases

As shown in Fig. 2.9, it is necessary to reach
the exact value indicated in the test-case.
Otherwise, the validation process cannot be
performed automatically

Even though the values
indicated in the test-case are
not reached, the validation can
be performed automatically

Accuracy
needed

The test-case output may be no longer valid
(Fig. 2.9). The test-engineer should check
the specification to confirm the expected
output

The test-case output may be no
longer valid. However, dlls can
check the expected output
automatically

Complexity As shown in Fig. 2.9, it is highly
complicated to reach the specific values
indicated in the test-cases (see Tables 2.6,
2.8 and 2.10) due to SM interactions

Even though the HIL
simulation does not reach the
specific values indicated in the
test-case, the validation
process can be performed

Robustness in
case of failure

During the HIL simulation, the engine ECU
can detect a failure (low rail pressure, turbo
failure, etc.). In that case, the test-case
output is no longer valid

Even though the engine ECU
detects a failure, the dll can
detect the expected output in
that case

Reading ECU
variables in
real-time

INCA software does not allow reading
in-real time variables by using Python while
data acquisition is performed. The
test-engineer has to analyze the data
acquisition to check if a bug is present

The dll can do the validation
process automatically when
using a C-code at the same time

Fig. 2.9 Example of model and activation conditions

56 D. Borge-Diez et al.

which could not be detected by other techniques. Even though EXs and dlls require
more time to be implemented, the timeframe of the project was respected.

2.3 Use of Genetic Algorithms to Reduce Costs
of the Software Validation Process2

2.3.1 Introduction

The number of ECUs installed in vehicles is increasingly high. Manufacturers must
improve the software quality. Innovative techniques must be proposed to reduce cost
and increase software quality.

This research proposes a technique being able to generate not only test-cases in
real time but to decide the best means to run them (HIL simulations or prototype
vehicles) to reduce the cost and software testing time. It is focused on the engine
ECU software which is one of the most complex software installed in vehicles. This
software is coded by using Simulink® models. Two genetic algorithms (GAs) were
coded. The first one is in charge of choosing which parts of the Simulink® models
should be validated by using HIL simulations and which ones by using prototype
vehicles. The second one tunes the inputs of the SM under validation to cover these
parts of the Simulink® models. The usage of dlls is described to deal with the issues
linked to SM interactions when running HIL simulations.

GAs found at least 7 more bugs than traditional techniques and improved the
functional and code coverage by between 3% and 11% for functional coverage and
by between 1.4% and 7% for code coverage depending on the SM complexity. The
validation time is reduced by 11.9% regarding traditional techniques. GAs perform
better than traditional techniques improving software quality and reducing costs and
validation time. The usage of dlls allows testing the software in real time as described
in this study.

Both the number of ECUs installed in vehicles and their complexity are increasing
[5, 34, 35]. Thus, manufacturers must assure software quality and reliability [12].
The software and hardware validation of an engine ECU is performed by using
the HIL simulation and prototype vehicles [36]. The HIL simulation has several
advantages as no vehicle with all ECUs updated with the latest software version is
necessary. Secondly, the ECU behavior in the network can be checked by analyzing
the frames transmitted and received when conducting an HIL simulation. However,
the real interactions between ECUs are not tested as all frames received are sent
by a model and not by real ECUs. Regarding prototype vehicles, the engine ECU
software is tested in real vehicles which must have all ECUs properly updated: ESP

2 Extracted from Ortega-Cabezas, P.M., Colmenar-Santos, A., Borge-Diez, D. et al. Experience
report on the application of genetic algorithms to reduce costs of the software validation process
in the automotive sector during an engine control unit project. Software Quality Journal 30, 687–728
(2022). https://doi.org/10.1007/s11219-021-09582-x. https://www.springer.com/journal/11219.

https://doi.org/10.1007/s11219-021-09582-x
https://www.springer.com/journal/11219

2 Software Validation Techniques in the Automotive Sector 57

(Electronic Stability Program), ADAS (Advanced Driver-Assistance System ECU),
ATCU (Automatic Transmission Control Unit), etc.

This chapter is focused on one of the most complex software installed in vehicles:
the engine ECU software. It proposes the usage of GAs aiming at choosing the most
adequate means to be used for validation while generating test-cases automatically
at the same time. The main goals are:

a. Choosing automatically the optimal means to reduce the validation time and
costs.

b. Finding solutions to technical problems when using the HIL simulation due to
SM interactions.

c. Assessing whether GAs perform better than other techniques such as the model-
based testing and the black-box techniques.

d. Verifying whether GAs are able to find bugs when other techniques fail.
e. Assessing the staff skill impact on the validation process.

The engine ECU software development comprises three phases (V-cycle devel-
opment): implementing models based on Simulink® software in order to control
the engine performance, generating C-code and checking the final integration of the
software into the hardware. During the whole process, the engine software completes
three levels of testing: model-in-the-loop (MIL), software-in-the-loop (SIL) and HIL
simulations [37]. Consequently, the software is tested to assure that it meets all
requirements. During the MIL, a controller model is implemented and applied to
the Simulink® model aiming at checking if the model behaves as expected [38–40].
During the HIL simulation, the integration between software and hardware is tested
thanks to a controller (the engine ECU and its software) which controls the system
that imitates the engine behavior (the HIL simulator) [41–45]. In addition, prototype
vehicles are used to test some functions which cannot be completely validated when
using HIL simulations such as ADAS [46]. Therefore, the most adequate means
to validate the software must be chosen to reduce time and costs. Finally, SIL is
employed to test an executable code within a modelling environment [47].

Currently, software is tested based on software, architecture and system require-
ments [37]. At this point, how to test software requirements is a key point discussed
in some standards such as ASPICE (2020). Software testability depends on 5 factors
such as: requirements, built-in test capabilities, the test-cases design, the test support
environment, and the software process in which testing is conducted [48]. Regarding
software requirements, the most significant cause of accidents due to software is
linked to poorly created software requirements or requirements that are partially
delivered to developers [49, 50]. Dos Santos et al. carried out a detailed analysis about
software requirements testing approaches such as the requirement driven testing
[51, 52].

Concerning autonomous driving, ISO 26262 only covers functional safety when
a failure occurs but not when there is no system failure. That is why, the safety of
the intended functionality (SOTIF) ISO 21448 came out [53, 54]. Some key topics
to validate the software are focused on 3D Modeling and sensor buildings. The
former aims to create a realistic environment while the latter consists of modeling

58 D. Borge-Diez et al.

and testing sensors among others [55]. Huang et al. detail in their research the main
tendencies to validate software such as software testing, simulation testing, x-in-
the-loop testing and driving test in real conditions [56]. Riedmaier et al. describe
an important method to test the software: the scenario-based approach which allows
individual traffic situations to be tested by using virtual simulations [57]. Other
approaches such as formal verification, a function-based approach, real-world testing,
shadow mode testing and traffic-simulation-based approach are used to test SOTIF.
The main difference among them is that in the scenario-based and function-based
approaches, a microscopic statement about the safety of the system is first made to
be transferred to a macroscopic statement. The rest of the methods result directly
in a macroscopic statement. There are solutions in the market which allow rapid
prototype, MIL/SIL simulations, HIL simulations and real test drives [58].

Cybersecurity in the automotive industry involves three main factors to be consid-
ered such as authentication and access control, protection from external attacks and
detection and incident response [59]. The factors which make the automotive secu-
rity more efficient include integration of right solutions such as firewalls, protecting
communications, authenticating communications and encrypting data [60, 61]. These
topics are important to offer performance such as on-the-air software update and
V2X communication [62, 63]. As detailed by McAfee, the scope of cybersecurity
involves the distributed security architecture, hardware and software security and
finally network security [62]. Standards such as ISO/SAE 21434 will help the auto-
motive sector to implement solutions for effective compliance with cybersecurity
requirements as today’s knowledge sharing is inadequate [64, 63] In this research,
some topics linked to cybersecurity testing are analyzed.

2.3.2 Methods

2.3.2.1 Simulink Models

The SMs are composed of multiple complex Simulink® models and subsystems.
Figure 2.9 shows an example of the internal structure of the SM linked to the NOx

heating probes installed in vehicles. When the initial conditions are reached (key on,
the engine rpm more than 650 rpm and the vehicle speed higher than a threshold),
the engine ECU software checks whether the dew point is reached. This point is
the temperature to which air must be cooled to become saturated with water vapor.
Afterwards, the NOx probes start to heat until reaching the required temperature to
measure NOx ppm present in the exhaust gas pipe. In this study, all models were
transformed into models based on nodes (Sx) which represent different low-level
system states3 and relations between them (Fig. 2.10). When designing test-cases,
it must be determined which parts of the Simulink® model should be validated by

3 Low system states are functional states at low level. Consequently, the functional state cannot be
detected by the driver.

2 Software Validation Techniques in the Automotive Sector 59

Fig. 2.10 Example of model and activation conditions

using the HIL simulation or prototype vehicles and how inputs are tuned. Next section
describes in-detail how GAs work to do this.

2.3.2.2 How GAs Work Together

Figure 2.11 depicts a pseudocode and a high-level description of the method. A
model is implemented by using the Python code (Fig. 2.11) through the variable
named ARCS which contains the cost and conditions to go from one state to another
one. Next sections display how the conditions are specified. Once the model is made,
the GAs are parametrized, and the range values of the input variables of the SM under
validation and the constrained linked to the optimization problem are specified. The
GA2 generates populations (inputs for the SM under validation). GA1 is used to
assess and optimize the path with the lowest cost by doing operations such as mutation
or crossover taking into account the population generated by GA2. The GA2 makes
the population evolve in such a way that the cost calculated by GA1 is minimized.

2.3.2.3 GAs Description

a. GA in charge of tuning inputs

Once the model is implemented and set in the code, this generates populations.
To do this, the range must be specified as well as the constrained among software
variables linked to the optimization problem. The fitness function of this GA2 is the
output of GA1 described later which was responsible for finding an optimal path
given specific inputs. When the GAs are run, the results display the values of all
inputs of the SM which cover the path requiring the minimum cost and the usage of
HIL simulations.

60 D. Borge-Diez et al.

IMPORT packages
#Describes nodes and arcs. Here is the structure
to define them
Si-Sk describes the transition for going to Si to Sk:
cost and conditions. #The variable range is also
specified.
ARCS= {“Si-Sk”: {“cost”: 150, “conditions”:
{“variable x”:[range],
call_assessment_conditions}}

#Define input ranges
RANGES= {“variable1”: [0,10],
 “variable2”: [0, 20]
 }
#Define GAs parameters.
GA1_PARAMS,
 “initial_state”=S1
 “final_state”= S9 #considering that there are 9
states

“mutation_factor”= 0.7
 “gens”= 9
 “retain_factor”= 0.4

#Define GAs parameters
GA2_PARAMS
 “mutation_factor”= 0.8
 “gens”= 50 # number of members of a
population
 “retain_factor”= 0.15

DEFINE conditions among variables
#Generate initial population of input variables.
This function returns the #values of each variable.

#Example value: {variable1=2, variable2=2.7},
{variable1=2.6, variable2=3.5},

variable1,
variable2…=input_population_generate()

For each member, check the path obtained
depending on conditions indicated #in ARCS
FOR j=1 to gens_GA2
 FOR i=1 to gens_GA1
 #Calling the first GA to find the best path. In
other

#words,the path
 #with minimum cost for a given input
 cost, states, fitness_score =
 calling_GA1_find_best_path(inputs_values[i])
 NEXT
 evolve_mutation_retain(inputs)
NEXT

Fig. 2.11 Pseudocode of how GAs work together

b. GA in charge of choosing the most adequate means

Several key factors must be considered when deciding the most adequate means
to validate the software such as the ones shown in Table 2.21 [42, 65].

All factors shown in Table 2.21 are assessed when going among states of the
models (see Fig. 2.10). This process is composed of two phases:

2 Software Validation Techniques in the Automotive Sector 61

Table 2.21 Factors considered to assess the fitness function

Factor Description

Tuning activities Some SMs must be tuned before its validation such as
combustion/injection SMs. In this case, the engine software can
apply different cartographies to inject the optimal amount of
diesel or gasoline. If one of them is not tuned, the engine may
stall. Consequently, a dataset which guarantees a minimum
functionality of the SM under validation must be available

Time needed to go from one
state to another one

An estimate of the time needed to validate an SM when using a
vehicle or an HIL model is made. There are two
possibilities—either to perform the simulation by using an HIL
model or a vehicle. The former implies that the HIL model must
be robust. The latter implies that a vehicle should be used. Some
use-cases are difficult to reach when using prototype vehicles.
Test-engineers’ experience is essential to assess properly this
factor

Dependency on ECUs When validating a certain SM by using a vehicle, all ECUs must
be updated aiming at assuring that all frames are properly
transmitted and received among other factors. Otherwise, the
validation process such as the adaptive cruise control SM cannot
be performed. In this case, at least the ADAS, ESP and engine
ECU must be properly updated and tuned

Risk level The automotive safety integrity level is a system which classifies
potential risks posed in the vehicle when it is operated by using
the ISO 26262. For this purpose, it uses three parameters such as:
exposure, controllability and severity with the aim of establishing
a score. By using this score, a series of automotive safety
integrity level is established. Regarding the engine ECU, the
software must guarantee the passengers’ and vehicle safety in a
dangerous situation. Depending on the ASIL values (A, B, C, D)
the level of risk will be different

Feedback from other
projects

It is common that several engine projects take place at the same
time. Consequently, feedback from other projects is of paramount
importance. Therefore, when a bug is found in a specific engine
software version, it is immediately communicated to other
project teams so that they can check if there is a bug in some
other engine software applications. Meanwhile client complaints
are also considered in such a way that if a project receives a client
complaint, it is transmitted to other projects, which could
galvanize all necessary actions

• Phase 1. A multidisciplinary team assesses these factors aiming at determining
the cost of each path by using the process depicted in Fig. 2.12. As a result, a
model with the whole cost set for each transition is obtained (Fig. 2.10).

• Phase 2. This GA chooses the most adequate means to validate the SM by assessing
the cost function given by Eq. (2.2):

62 D. Borge-Diez et al.

Fig. 2.12 Factors indicated in Eq. (2.1)

Fitness function =
i=n∑

i=1

Si (2.2)

where Si is the cost of reaching the Si state,
∑i=n

i=1 Si is the cost linked to all
transitions of a specific path. When the HIL is chosen, the fitness function is always
lower than 150. Otherwise, prototype vehicles are employed as, in this case, the
fitness function reaches 150 or more. The reader can check this by adding all Si

values needed to reach S14.

Each path is composed of different states. The paths which contain state 17 more
frequently are considered as the optimal ones to be validated by using an HIL simula-
tion. Otherwise, it should be validated by using prototype vehicles. The test-engineer
can collect important information when analyzing the states covered once the optimal
path is assessed (dependency on other ECUs, feedback from other projects, etc.).

2.3.2.4 HIL Simulations

Once the GAs are parametrized and a model is built as shown in Fig. 2.10, the HIL
simulation can be conducted. In addition to the cost value, the actions to be conducted
on the HIL model for each transition must be coded (Fig. 2.13) as the software
variables have to reach the values specified in the test-case. Several ways to set the
conditions to pass from one state to another one can be used. The first entails writing
the equations directly in the code, which is limited to simple SMs as fairly complex
and high complex SMs involve many equations. The second option is to call the

2 Software Validation Techniques in the Automotive Sector 63

Fig. 2.13 HIL simulation process

Simulink® model by using the test-case inputs to make the Simulink® model return
the expected output values. In this study, the Simulink® models were transformed
into dlls by following the steps described in the official Matlab® documentation.
Figure 2.13 depicts the usage of dlls. They are necessary to conduct the validation
process to find bugs due to SM interactions as it will be shown in the results and
discussion sections.

2.3.2.5 Network and Software and Hardware Integration

This proposal validates the network and hardware and software integration by using
the dlls as shown in Fig. 2.13. Once the software is coded, the software outputs
must be equal or very close (if the outputs are analogical) to the values provided
by the Simulink® models despite the SM interactions. This point is checked by
using the dlls which allow comparing the HIL results when running a test-case with
the outputs provided by dlls. The same explanation can be used for vehicles as the
data acquisition can be injected into the Simulink® models, and both results can be
compared.

Regarding the network, it is tested when using prototype vehicles in real condi-
tions. Not all SMs implemented in the software exchange information with other
ECUs. All these aspects are considered in Fig. 2.12 where the reader can find state
S10 which assesses if the SM under validation has an impact on the network. Anyway,
if an SM must be validated and prototype vehicles with all ECUs properly updated
are not available (specially at the beginning of the project), HIL simulations are used

64 D. Borge-Diez et al.

considering that the frames are simulated by using a model (this situation is also
considered in Fig. 2.12).

2.3.2.6 Traditional Techniques

The hereafter techniques were used in this research.

a. The cause-effect technique

One of the most used techniques in the automotive sector is the black-box tech-
nique [18]. The main idea behind this technique is to test software as a black box. In
other words, the internal structure of the SM is not considered by the test-engineer
who is focused on the software behavior. That is why this technique is also known
as behavioral testing. When designing the test to be run, test engineers design test-
cases and decide which means could be used according to their experience [18, 66,
67]. The cause-effect is a black-box technique widely employed in the automotive
sector for several reasons (easy to automate among others). This technique is based
on considering a series of conditions linked to inputs of the SM under validation,
the test-engineer must check if the software runs as expected. To do this, the test-
engineer performs a series of actions by using the means employed for validation
(prototype vehicles or the HIL simulation) and, finally, verify the software behavior.
This behavior is validated and assessed by using the outputs of the SM under valida-
tion. It must be reminded that the means used to validate it are chosen by considering
the test-engineers’ experience when using this technique.

b. The model-based testing

It is a software testing technique consisting of deriving test-cases from a functional
model which describes the functional aspects and requirements of the SM under
validation. Thanks to this model, it is easier to assess the functional coverage as
the number of functional states covered when validating an SM is known. When
implementing it, all functional states and the transition from one state to another are
indicated. In this research, Matelo® software was used to generate the functional
model of SMs [68]. This software allows implementing a model easily. Regarding
the activation of each transition, the conditions are set. In this study, each transition
calls a Simulink® model to check the next state to be activated. Matelo® allows
generating test-cases by assigning values to all variables used in transition in such
a way that it tries to cover all possible transitions and paths. Finally, each state can
be a model as it is the case in this research making the models extremely complex.
Figure 2.14 sums up all aforementioned process explained. A test-case is generated
and by using calls to Simulink® models, Matelo® determines which part of the
model will be covered (Fig. 2.14 in orange). Many test-cases are generated to cover
the whole model and to increase functional and code coverage.

2 Software Validation Techniques in the Automotive Sector 65

Fig. 2.14 Example of NOx activation model based on Matelo®

2.3.2.7 Experimental Settings

The characteristics of SMs have an impact on three factors: the time needed to
validate the software, the means used to run test-cases and the number of test-cases
to be run considering the planning of the engine software development. According
to the test-engineers’ experience and the technical documentation used for coding
the software, the SMs were classified as simple, fairly complex and high complex
SMs (Table 2.2).

Table 2.22 shows the way of generating test-cases. All techniques used the soft-
ware and system requirements traced in DOORs, feedback from other projects4

and the Simulink® specifications as inputs. By analyzing all these input data, the
test-engineers build models when using GAs and the model-based testing. Finally,
test-cases are implemented automatically or manually. As described later, the test-
engineers’ skills have a significant impact on the time needed to implement test-cases
and to obtain a productivity gain.

4 Feedback from other projects means bugs found in a project which could impact another project.

66 D. Borge-Diez et al.

Table 2.22 Test-cases run in this research

Technique Inputs used for
implementing
test-cases

Software used Way of
implementing
test-cases

Model used

Cause-effect
technique

1. Feedback
from other
projects

2. Software
requirements

3. System
requirements

4. Simulink®
specifications

1. DOORs
2. Corporate database to

trace bugs
3. Excel® file which

contains all
information needed
(initial conditions,
actions to be done,
etc.)

Manually by
interpreting:
a. the software and

system
requirements

b. the information of
bugs traced in the
corporate
database

None

Model-based
testing

1. Feedback
from other
projects

2. Software
requirements

3. System
requirements

4. Simulink®
specifications

1. Matelo®
2. DOORs
3. Corporate database to

trace bugs

Automatically done
by Matelo® by
covering the model
built by the
test-engineer

Functional
model

Genetic
Algorithms

1. Feedback
from other
projects

2. Software
requirements

3. System
requirements

4. Simulink®
specifications

Pseudorandom values
generated by Python
when coding GAs

Automatically done
by genetic
algorithms

Low level
model

2.3.3 Results

This section compares the performance among GAs and traditional techniques by
using the KPIs indicated in Table 2.23.

2.3.3.1 Code Coverage

During HIL simulations, a bug is detected if the difference between the HIL results
and the outputs provided by the Simulink® models does not obey Eq. (2.3).

j=m∑

j=1

∣∣HIL j − Simulink j

∣∣ ≈ 0 (2.3)

2 Software Validation Techniques in the Automotive Sector 67

Table 2.23 KPI employed in this research

KPI Description

Code coverage It determines the number of Simulink® blocks successfully validated when
running test-cases divided by the total number of Simulink® blocks considered

Functional
coverage

It determines the number of functional states successfully tested when running
test-cases divided by the total number of functional states considered

Validation
software time

It describes the time needed to implement, run and validate an SM when
running test-cases

Productivity
gain

The time gain obtained when using a specific software validation technique

Bugs found
and their types

Number of bugs and types found when using a specific software validation
technique

Bugs found by
other clients

Number of bugs found by other users of the engine ECU software such as ESP
and ADAS validation staff

where HIL j is the value for the output j of the SM under validation after having run
a test-case by using an HIL simulation and Simulink j is the value for the output j of
the SM under validation after having run a test-case by using the Simulink® model.

The coverage is assessed by using Eq. (2.4) which relates to the number
of Simulink® blocks tested versus the total number of blocks presented in the
specifications of the SM under validation.

Code coverage = number of Simulink® blocks tested

number of Simulink® blocks present in the SM under validation
× 100 (2.4)

Table 2.24 shows the number of blocks present in the SMs validated in this
research, which is used to assess the code coverage (Table 2.25).

As the cause-effect technique does not use models, the code coverage is lower than
the one obtained when using the model-based testing and GAs. Building a model in
which each state is a Simulink® block allows testing the same functional state by
following different branches of the Simulink® model (Fig. 2.15). The model-based
testing does not allow tuning the inputs of the SM with the aim of choosing the best
means (an HIL simulation or vehicles) to validate an SM contrary to GAs. In addition,
this technique needs to define test-cases as inputs and expected outputs. In case of a
problem with the automation process due to SM interactions, the expected outputs
could be no longer valid. This problem is solved by GAs and dlls. Regarding GAs, the
code coverage is the addition of the code coverage when using HIL simulation and

Table 2.24 Number of total
Simulink® blocks Type of SM Number of Simulink® blocks

Simple 80

Fairly complex 350

High complex 530

68 D. Borge-Diez et al.

Table 2.25 Code coverage obtained when validating the 15 SMs

Technique Simple SM Fairly complex SM High complex SM

Number of
Simulink®
blocks

Code
coverage
(%)

Number of
Simulink®
blocks

Code
coverage
(%)

Number of
Simulink®
blocks

Code
coverage
(%)

Cause-effect 63 78.7 265 75.7 380 71.7

Model-based
testing

68 85 285 81.4 410 77.3

GAs when
using an HIL
simulation

58 92.5 235 88.5 412 78.7

GAs when
using
prototype
vehicles

16 75 5

prototype vehicles. GAs perform better as they can cover more Simulink® blocks
providing that the right means are used.

Code coverage should be at least 90% to meet standards. The validation process of
an engine ECU is the combination of the software validation performed by the vali-
dation team (topic considered in this research), the tuning activities and the driving
tests which consist of making 6 vehicles cover 20,000 km each to test the software
in real conditions. The total code and functional coverage are assessed considering
these three activities. No technique can reach 100% coverage due to several reasons
such as project planning constraints. As proved later, validating by choosing the
wrong means increases the validation time.

Fig. 2.15 Example of different ways of activating an output

2 Software Validation Techniques in the Automotive Sector 69

Table 2.26 Number of total functional requirements

Type of SM Number of requirements Number of Simulink® blocks

Simple 75 80

Fairly complex 400 350

High complex 510 530

Table 2.27 Functional coverage obtained for each research

Technique Simple SM Fairly complex SM High complex SM

Number of
requirements
tested

Functional
coverage
(%)

Number of
requirements
tested

Functional
coverage
(%)

Number of
requirements
tested

Functional
coverage
(%)

Cause-effect 60 80 302 75.5 357 70

Model-based
testing

65 86.6 330 82.5 385 75.4

GAs 69 92 346 86.5 400 78.4

2.3.3.2 Functional Coverage

Table 2.26 shows the functional states linked to the Simulink® blocks present in
the SM chosen. The number of functional states can be lower than the number of
Simulink® blocks as some outputs of the SM can be activated by using several paths
without any impacts on the functional state of the vehicle (Fig. 2.15).

Table 2.27 shows the results obtained for each technique. These results are logical
as the higher the code coverage is, the higher the functional coverage is. The standard
percentage of validation (90%) is reached thanks to tuning, validation and test-driving
activities.

2.3.3.3 Automation

For several reasons, the automation process is difficult to be performed when it
comes to engine ECU software due to SM interactions. Firstly, reaching the values
for inputs of the SM under validation is difficult as the complexity of the SM increases.
Secondly, if inputs do not reach the expected values, the values of the outputs of the
SMs under validation will be no longer valid (Fig. 2.16).

Test-cases can be fully automated, partially automated or can be run manually.
In this research, GAs were run by using the tester-in-the-loop and fully automated
options. The success rate of reaching the values indicated in the test-case is shown
in Fig. 2.17.

70 D. Borge-Diez et al.

Fig. 2.16 Potential error when a test-case is automated

Fig. 2.17 Success rate when automating the HIL simulation

2.3.3.4 Bugs

Types of Bugs

Generally, all techniques detect the same types of bugs linked to Simulink® blocks.
Some examples of Simulink® blocks where a bug was found are shown in Table 2.28
and Fig. 2.18. Some types of bugs linked to multiple calculations such as temperature
or gas speed estimators can only be detected when using HIL simulations combined
with dlls. Figure 2.19 depicts the obtained result for a software variable output of an

2 Software Validation Techniques in the Automotive Sector 71

Table 2.28 Types of bugs found

Matlab® native comparator block. It has problems in all its versions (greater
than, greater than or equal to, less than, less than or equal to). In engine ECU
software, on many occasions the value of a certain physical magnitude (e.g.,
motor revolutions, vehicle speed) is compared with a calibration threshold

This block allows choosing between two possible paths

This block sets the output to TRUE while the input In remains TRUE for a
certain calibratable time. Otherwise, the output is FALSE. As found in this
research, when it comes to average and complex SMs, it is more difficult than
in simple SMs to succeed by making the input In remain stable

Interpolator block. In this case, depending on the input values presented in the
Simulink® block, an output value is provided by applying an algorithm or an
interpolation method

The Saturation block produces an output signal that is the value of the input
signal bounded to the upper and lower saturation values. The upper and lower
limits are specified by the parameters Upper limit and Lower limit

This block works as a typical RS flip-flop. As in a falling edge block, when it
comes to average and complex SMs, it is difficult in certain cases (for example
when validating exhaust gas treatment systems or oil adaptive maintenance
functions) to reach the conditions when the S-input could be activated

This block provides a Boolean type TRUE when a falling edge is detected.
Otherwise, it remains FALSE. In this case, when it comes to average and
complex SMs, it is difficult in certain cases (for example when validating
exhaust gas treatment systems) to reach the conditions to generate a falling
edge

SM when running the software by using an HIL simulation (in red) and its expected
value (in blue). The error between the red and blue lines, represents an inaccuracy
regarding the calculation of the gas speed in the exhaust pipe, which impacts the
amount of urea injected to treat NOx. Since this bug does not imply the presence
of a functional bug unless it causes a malfunction detected by the driver, it is not
detected by using the cause-effect technique or the model-based testing one. Only
GAs combined with Simulink® model can detect it.

Number of Bugs

The results are shown in Fig. 2.20. GAs overperform the rest of the techniques used
in this study because Simulink® blocks are used as shown in Fig. 2.13. Regarding the
model-based testing, the fact of using models ensures better results than the cause-
effect technique. Finally, the cause-effect technique performs least efficiently as no

72 D. Borge-Diez et al.

Fig. 2.18 Types of bugs found

0

400

800

1200

1600

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

sp
ee

d

time (s)
Gas speed (expected) Gas speed (Software output)

Fig. 2.19 Bug not detected unless GAs are used

model is used. The result is that it is extremely difficult to establish both the code
and functional coverage.

2.3.4 Discussion

2.3.4.1 Test-Case Formulation

Several challenges must be considered when designing test-cases.

a. The engine ECU software consists of SMs composed of an important number
of inputs and outputs which are usually analogical. Consequently, their values
range between specific intervals. When running test-cases, it is difficult to reach

2 Software Validation Techniques in the Automotive Sector 73

Fig. 2.20 Number of bugs found by using each technique

values contained in the variable range. For example, a variable representing the
soot present in the diesel particulate filter can take a value of 40 g.

b. Considering the number of variables of SMs and their ranges, it is not possible
to generate and run all test-cases which could cover the whole combination of
the spectrum. In some occasions, when a variable takes a value close to its upper
limit, the test-case can fail. However, if values are not close to this value, the
test-case provides the expected results. That is why, at least during the validation
process, the functional model must be covered with different test-cases which
take different combinations.

c. Constraints must be considered to avoid generating uncoherent test-cases (for
example speed = 100 km/h and first gear engaged).

d. When running a test-case by using automation processes, it is not possible to
obtain the exact values indicated in the test-case due to SM interactions. Thus,
the expected outputs specified in the test-case might be no longer valid. Therefore,
the traditional formulation of test-cases based on input and expected output values
cannot be used in simulations. Dlls allows solving this technical issue as depicted
in Fig. 2.5. Thanks to them, it is always possible to assess Eq. (2.2) as they can
provide the output values for the input ones reached during the HIL simulation.
Therefore, GAs can check if software runs as expected by comparing the HIL
results and the Simulink® models results.

2.3.4.2 Test-Cases Automation

Python scripts for automating the process must keep the inputs of the SM in a
specific range. Otherwise, the expected output of the test-case may be no longer
valid (Fig. 2.16). Regarding fairly complex SMs, as the number of variables present
in SMs is high, it is recommended to use the tester-in-the-loop. High complex SMs
have many functional states linked to the number of kms covered (example oil dilution

74 D. Borge-Diez et al.

rate). Consequently, reaching a functional state is not difficult and test-cases can be
fully automated.

GAs allow testing most of the SMs present in the engine ECU software except
for:

a. Estimators. There are SMs responsible for predicting temperature and other
magnitude trends of certain components, which involve many calculations. The
easiest way to test these SMs is to perform data acquisition by using prototype
vehicles and, then, the obtained.dat file is injected into the Simulink® model. The
difference between the data acquisition and the Simulink® outputs is expected
to be close to zero.

b. Networks. The most important network in cars is the CAN (Controller Area
Network). In these cases, the testers have to verify if frames are transmitted and
received properly, how the engine ECU reacts when receiving an invalid value or
an absent frame, etc. This statement can be applied to other types of networks. It
is easier to validate networks by using the HIL simulations than using prototype
vehicles.

c. SMs which are not modeled by using Simulink®. Dlls must be used if GAs are
applied. Not all SMs of the engine ECU software have a specification based on
Simulink® model. Consequently, GAs cannot be applied to any SMs. However,
only 7% of the SMs did not have Simulink® models.

Certain high complex SMs need to cover many kilometers to reach the specific
operating point indicated in the test-case. When validating the software, GAs cannot
be used as the number of generated populations is not compatible with the project
planning. In these cases, the cause-effect technique is recommended to reduce the
validation time. Anyway, these SMs can be validated by using GAs if the calibration
dataset is modified in the same way as it is done in this study.

2.3.4.3 Means Used to Validate

Using the most adequate means to validate is an essential topic as:

a. The difficulty to reach an operation point depends on the means used to validate.
It is easier to use test failures on a probe by using the HIL model than by using a
prototype vehicle. If the wrong means is chosen, many attempts are required to
run the test-case properly.

b. The chances to find more bugs than by using other techniques are increased
as the validation time is reduced. Consequently, test-engineers have time to run
more test-cases than other techniques. Thus, the code and functional coverage are
increased. In addition, implementing a model by using the model-based testing
and GAs reduces redundancies in test-cases.

c. The productivity gain obtained thanks to GAs has an important impact on soft-
ware quality. As shown in Fig. 2.21, if software version A is validated with some
delay (weeks 17 and 18), after the specifications for software B are sent to the

2 Software Validation Techniques in the Automotive Sector 75

Fig. 2.21 Delays in software validation and impacts on software quality

supplier (week 16) in charge of coding the software, the software version B is
delivered with bugs found in weeks 17 and 18, which may be blocking points.
Therefore, the software version B could be not usable.

d. The test-engineers establish the best means according to their experience when
using the model-based testing and the black-box technique. Regarding GAs, a
multidisciplinary team sets the cost of the functional model.

2.3.5 Conclusions

Engine electronic control unit (ECU) software is one of the most complex software
which is in charge of controlling the engine as well as other systems such as exhaust
after-treatment systems. Among the main issues that test engineers can face is how
to choose the best means to validate (HIL simulations or prototype vehicles) as well
as design test-cases which are representative enough.

This research uses two GAs to establish the best means to validate SMs and to
generate test-cases in which the expected outputs are no longer needed thanks to
the usage of Simulink® models used to develop the engine ECU software with the
aim of improving code and functional coverage, software bugs, test-case automation
capacity and productivity. The obtained results were compared with the ones got by
using traditional techniques such as the model-based testing or cause-effect ones.

The results obtained in this research show that GAs can find similar results for
simple SMs and high complex ones. However, when it comes to fairly complex ones
(the ones that are more present in the engine ECU software), GAs perform better than
the other techniques as at least 7 more bugs were found. When it comes to functional
and code coverage GAs perform better. When it comes to functional coverage, GAs
improve up to 11% in fairly complex SMs and 8.4% for high complex SMs when
using the cause-effect technique. When it comes to the model-based testing technique,
GAs improve up to 4% in fairly complex SMs and 3% for high complex SMs. The
code coverage is also improved by GAs reaching 12.8% and 7% for fairly complex
and high complex SMs respectively when using the cause-effect technique. When
using the model-based testing, GAs perform better up to 7.1% and 1.4% for fairly
complex and high complex SMs respectively.

76 D. Borge-Diez et al.

Another advantage of using GAs is that they can detect all types of bugs thanks to
the usage of Simulink® models contrary to other techniques such as the model-based
testing and the cause-effect ones.

The implementation time is compatible with an engine project planning as shown
in this research.

2.4 Application of Rule-Based Expert Systems
in Hardware-In-The-Loop Simulation. Case-Study:
Software and Performance Validation of an Engine
Control Unit5

2.4.1 Introduction

2.4.1.1 Background

Innovative techniques to validate software are needed to reduce cost and increase
software quality.

This research aims to check if two rule-based EXs combined with dlls perform
better than other techniques widely employed in the automotive sector when
validating the engine control unit (ECU) software by using a HIL simulation.

To perform this research fifteen SMs of different complexity were chosen to be
validated in an HIL simulation by using different techniques such as the manual
execution, the tester-in-the-loop, the model-based testing, a rule-based EX and the
combination of two EXs to establish the code and functional coverage, the produc-
tivity gain, the number of bugs found, potential limitations of each technique and the
success rate of the HIL simulation. The test-cases used are described in-depth in the
method section.

The enhancement, that dlls and EXs offer, depends on the number of states in the
functional model used in the EXs and the number of subintervals in which the SM
inputs can be divided. A range between 6 and 16 more bugs can be detected when
using two EXs. The HIL enhancement can reach 6%, 16.8% and 18% depending on
the SM complexity.

2.4.1.2 Engine ECU Software

The electronic architecture of today’s vehicles is extremely complex. As a result,
the number of ECUs present in vehicles is increasingly high [1, 2]. This trend will
continue in the next years, thanks to driving assistance systems, which are essential for

5 Extracted form Journal of Software: Evolution and Process. 2020, Volume 32, Issue 1. https://
doi.org/10.1002/smr.2223, https://onlinelibrary.wiley.com/journal/20477481.

https://doi.org/10.1002/smr.2223
https://doi.org/10.1002/smr.2223
https://onlinelibrary.wiley.com/journal/20477481

2 Software Validation Techniques in the Automotive Sector 77

autonomous cars. ECUs are composed of hardware and software whose complexity
depends on the function carried out in the network. Therefore there are multiple
software running simultaneously and coexisting in a commercial car [5, 35]. This
fact forces manufacturers to improve the software quality and the validation processes
[3]. In addition, it is not difficult to find estimates that indicate that the total number
of lines of code present in the software ECUs of a vehicle can reach up to more than
100 million. In the future, these figures will even grow significantly up to 200 or 300
million in autonomous vehicles.

Powertrain control is a system in charge of transforming the driver’s will into an
operating point of the powertrain according to the performance established for the
product (eg, consumption and emissions) [69]. The key element of the control system
is the engine ECU composed of complex hardware and software. The hardware is
responsible for getting information from sensors after a filtering process to reduce
noise in signals. The software processes all data received and handles actuators to
reach the operating point. In addition, when a vehicle is in motion, the engine ECU
(hardware and software) interacts with other ECUs to ensure the proper functioning
of the car. This implies that each ECU should receive the information at a specific
time. Therefore, the engine ECU (hardware and software) must be validated to assure
that engine is properly controlled, the interaction with the rest of the ECUs is rightly
performed, and the passengers’ safety is insured. Otherwise, some failures could
occur and lead to the situation in which the vehicle stalls. This fact makes the most
safety critical parts of the software a hard-real-time (HRT) system. In other words,
the system is subjected to real-time constraints in which every critical task must
be executed at a specific deadline to ensure the correct operation of the system.
Thus, one can deduce that the software validation process is complex and needs
improvements with the aim of reducing costs, increasing productivity and reliability
in the automotive sector.

This chapter is focused on the engine ECU software validation (one of the most
complex software present in a vehicle) and shows solutions to the main difficulties
associated with traditional software validation techniques. The solution proposed
is showing that two EXs working in cooperation and combined with dynamic-link
libraries (dlls) perform better than traditional techniques such as the model-based
testing or tester-in-the-loop among others.

2.4.1.3 Techniques Currently Used

The engine ECU software validation is based on HIL simulation, combined with
different techniques for generating test cases. Three key stages must be considered
when performing an HIL simulation: test-case generation, test-case execution, and
validation of the execution results.

One can find different definitions for the black box concept such as “the black-
box testing is a method of software testing that examines the functionality of an
application without peering into its internal structures or workings” [70, 71]. Among
others, there are three types of techniques used when applying the black-box one:

78 D. Borge-Diez et al.

a. Equivalence portioning

The inputs of the SM under validation are divided into partitions, and after having
selected representative values for each partition, the test case is conducted. Then the
software behavior is analyzed. The model-based testing can be defined as the auto-
matic generation of software test procedures, using models of system requirements
and behavior. To do this, a functional model must be implemented. This technique
may be considered in this research as an equivalence portioning technique in the
black-box testing. Because test cases are derived from functional models and not
from the source code, the model-based testing is usually seen as one form of the
black-box testing. The main advantage of this functional model is that all functional
states and the transition from one state to another are indicated. Thanks to this, it
is easier to assess the functional coverage as the number of states covered when
validating an SM is known.

The EX combined with dlls consists of using an EX to assess if the software
behaves as expected. The EX is built by using rules coming from the specifications
and software requirements. The dlls are the Simulink model of the SM under vali-
dation that allows calculating the software outputs when performing the HIL simu-
lation despite the SM interactions. This topic is analyzed in-depth in this research.
The authors have considered this technique as an equivalence portioning one as it is
exposed in this chapter.

b. Boundary value analysis

Boundary values for the SM inputs are determined and the test-case obtained is
performed. Then the software behavior is analyzed.

c. Cause-effect technique

In the automotive sector, the test engineer usually has to validate cause-effect test
cases that come from the software requirements. As a result, given a series of specific
causes (conditions related to inputs), the validation process has to check the effect
(software behavior). An example of a possible test case could be: “In case of an ESP
frame is absent, the stop and start function must be inhibited.” The tester-in-the-loop,
the manual execution, or automated can be considered as cause-effect techniques in
this research.

All techniques that may be used to validate the engine ECU software have to face
several issues such as the SM interactions that prevent reaching the values established
in the test case, the type of bugs that can be found, and the problem of enhancing the
code and functional coverage. Considering that the engine ECU software has up to
70 complex SMs, the interaction between SMs is continuously present and disturbs
the validation process such as electronic noise. Consequently, given a test case, it is
almost impossible to make the inputs reach the desired value. The main consequence
is that the expected output set in the test case could be no longer available.

Some types of bugs are extremely difficult to detect by using HIL simulation
unless a technician uses a significant amount of time to analyze the data acquisition.
Figure 2.22 shows an example, the obtained result for an output for a variable of

2 Software Validation Techniques in the Automotive Sector 79

Fig. 2.22 Bug not detected when using black-box technique

an SM when running the software in an HIL simulation (in red) and its expected
value (in blue). As one can see, the results are different. This error represents an
inaccuracy when it comes to calculating the gas speed in the exhaust pipe. This error
could impact the amount of urea injected to treat NOx. Because this bug is not linked
to a functional bug, it is impossible to detect it by using the black-box technique. The
detection of this type of bug involves checking and detailed analysis of the software
code by running additional software.

Considering all aforementioned, the main limitations associated with these tech-
niques currently used in the automotive sector when using the HIL simulation are
depicted in Table 2.29. The aim of this research is to solve all these limitations by
using two EXs working in cooperation combined with dlls. The fact of using two
EXs allows improving the code and functional coverage and gaining a better control
of the automation process, thanks to dlls. It also provides an opportunity to detect
any type of bugs.

2.4.1.4 Related Works

The engine ECU software validation is based on HIL simulation. Several stages must
be considered when performing an HIL simulation such as test-case generation and
test-case execution.

A test-case consists of a set of inputs and their expected outputs that the software
should provide when working properly. In an HIL simulation, a test case is run, and
the obtained result is compared with the expected one to check whether the software
has operated properly for this specific test case [72–74]. There are many different

80 D. Borge-Diez et al.

Table 2.29 Problems analyzed in this research

Limitations Reason Possible solution

Difficult to validate
the software
automatically

When the values set in the test case
for the inputs are not reached, then
the output values set in the test case
may be no longer available.
Consequently, no automatic
validation can be performed

Dlls can perform this task as shown
in this research as they recalculate
the output values that the SM under
validation should provide for the
specific input values reached after
the HIL simulation. Therefore, an
automatic validation process can be
carried out

Possible bug
performance
detection
improvement

If input values are different from
the ones established in the test case,
then the software performance
behavior is unknown

Functional coverage
unknown

A functional code coverage could
be established by analyzing the
black-box test cases before the HIL
simulation
However, when reaching different
values for the inputs after HIL
simulations, then the use cases
tested are different from the ones
planned

A performance rule-based EX can
assess the functional coverage as
exposed in this research. An EX can
assess whether the SM under
validation performances as
expected or not, thanks to the rules
used for its implementation. Thus,
performance bugs could be
detected. Considering the number
of performance rules assessed, the
functional coverage could be
established

Difficult to detect
bugs linked to SMs
that perform many
calculations

The calculations may be performed
wrongly, but they do not imply that
the vehicle behaves in such a way
that the client could detect any
abnormality

Dlls can perform this task as shown
in this research as they can be used
for checking whether the SM under
validation calculates all SM outputs
properly

Difficult to assess
the code coverage
accurately

There is no code model or
something similar to use it for
calculating the code coverage when
using the black-box or similar
techniques. It must be considered
that there are many if-then
structures in the software, which
makes it extremely difficult to test
all possible paths. However, the
question is if the whole
performance rules have been tested
with a considerable number of
software rules

A software and a performance
rule-based EXs can assess the
functional and code coverage as
exposed in this research. It can be
employed to establish the code and
performance coverage

ways to generate a test case, such as assigning specific values to all inputs of the
SMs under validation to cover a functional model, as exposed later in this research,
or assessing the software performance when checking each software requirement
[75–79]. The former is very difficult to implement owing to SM interactions, as it
will be discussed in this paper. The aim of this method is to make the inputs reach
specific values and check the outputs. The latter is widely used because the inputs of

2 Software Validation Techniques in the Automotive Sector 81

SMs do not need to reach exact values but approximate ones to check the software
performance. As a result, it is more flexible.

The black-box technique has been used for a long time in the automotive sector,
as discussed by Conrad [80]. Despite its widespread use, it is true that it has some
weak points, as discussed by Chunduri [81]. In their dissertation, they consider that
test cases based on the engineers’ experience usually imply gaps and test redundan-
cies. Thus, they proposed a methodology to improve the black-box technique and the
test-case generation. To do this, they proposed to work on three factors: enhancing
function requirements specification, establishing traceability across test levels, and
obtaining comprehensive function test-coverage information. In addition, it is essen-
tial to remark that the test-case execution must not be too time-consuming. Conse-
quently, more test cases can be run, and the code/functional coverage is improved.
Some research has also been focused on this topic. Zhou et al. proposed the optimized
use of symbolic simulation with the aim of reducing the time required to generate
a test case at the IEEE Conference [75]. As a result, given a model of a software
function under validation, the time needed to cover the model will be reduced. Sopan-
Barhate presented their theory about how to make the software validation process
in the automotive sector more effective at the International Congress of Electronic
Instrumentation and Control [76]. In their opinion, the main concerns linked to the
software validation process are how to design representative test cases as well as how
to prioritize the test-case execution based on priority levels, ensuring, at the same
time, high code coverage rates. The solution proposed in their research is the use of
orthogonal array testing.

Model-based testing is a good technique to test SMs, and it allows the assessment
of the code/functional coverage in an easy manner. Raffaëlli et al. at the Embedded
Real Time Software and Systems Conference, presented research focused on the
usage of a functional model by running Matelo software [82, 83]. The aim of this
research was to accurately assess the code coverage, as all branches of the model
could be tested. The application in an HIL simulation for a more complex ECU, such
as an engine ECU, was not shown. Perez et al conducted a review on the current state-
of-the-art techniques used for the verification and validation of embedded systems,
including software developed in the automotive sector [84]. Their main conclusion
shows the need of further research concerning automatic validation, safety tests,
and model validations. In short, these concepts are clearly linked to the test-case
generation and improvement in automation processes. The aforementioned aspects
are analyzed in-depth in this chapter.

There are many ways for automating HIL simulation in the market [85, 86].
The automation process is mainly based on black-box techniques such as those
reported by Köhl et al: “As a rule, the tests specified by the ECU departments are first
performed as black box tests on the network system (know-how on software structures
is not taken)” [86]. At the 52nd Congress of the ACM/IEEE Design Automation
Conference, Petrenko and Nguena-Timo reported the main problems and solutions
associated with software validation in the automotive sector, on the basis of the
experience of General Motor Research and Development staff, powertrain software
validation team of General Motors, and the Centre of Montreal [87]. Their main

82 D. Borge-Diez et al.

conclusion was focused on the methodology known as the “tester-in-the-loop,” in
which the test engineer leads the system to a desired operation point, considered as
a crucial one, with the aim of assuring the correct execution of the test case in such
a way that the software behavior can be assessed. Once the crucial point is reached,
a series of automated actions are executed to reach the goals previously established
in the test case. Tatar and Mauss proposed at the ERTS Congress: Embedded Real
Time Software and Systems the possibility of not using HIL simulation. Instead,
by using a virtual platform, engine ECU software could be validated, thanks to the
interaction with a car model [88]. As a result, many points could be tested. All the
possible issues or bugs linked to the software integration on the hardware would not
be detected. Koopman and Wagner exposed the main future issues when it comes
to software validation in the Society of Automotive Engineers Congress. One of
the most important concepts introduced in their dissertation was the “driver-out-
of-the-loop” concept. Currently, the ECUs are validated by considering the driver’s
actions on the vehicle (accelerations, braking, etc.). If the vehicle is autonomous,
these driver’s actions are not relevant, and some external factors such as traffic and
pedestrians must be considered to validate the software. As a result, they consider
machine learning techniques as a key aspect in the future.

2.4.2 Method

2.4.2.1 Description

The aim of this chapter is to validate the following hypothesis:

Two EXs working in cooperation perform better than traditional techniques when validating
an engine ECU software. In addition, two EXs can overcome the difficulties depicted in
Table 2.29.

To do this, a series of test cases are run by using the following techniques: the
cause-effect one the model-based testing one, one EX combined with dlls, and finally,
two EXs combined with dlls by using the HIL simulation. Then the following param-
eters are measured for each technique to validate the hypothesis: code and functional
coverage, productivity, bugs found, and automation process success.

2.4.2.2 Data Used in This Research

The methodology proposed in this study has been tested in three types of functions
or SMs chosen according to the number of calculations to be done as well as their
complexity, number of inputs and outputs of the SM, and the accuracy required for
the output results They have been considered as representative for this case study by
the authors and the company subjected to this research. Considering the experience

2 Software Validation Techniques in the Automotive Sector 83

of the company that is the subject of this case study, three types of SMs or functions
can be distinguished as shown in Table 2.2.

When generating test-cases, three strategies were followed in this research:

1. Generating pseudorandom values for the SM inputs under validation in such
a way that all paths of the models that belong to EXs are covered. For each
combination of the inputs, the performance EX must assess the expected behavior
of the vehicle (represented by an HIL bench) in cooperation with a software
EX that will cover a software model to assure a high code coverage. The right
outputs for all inputs generated in the test case are known by using the dlls. All
aforementioned statements are exposed in this section. In this chapter, as exposed
later, manual test cases were also generated in order to cover the functional and
software models.

2. The company under this case study has a database in which the staff document
different bugs found throughout the engine project. The main advantage of this
process is to guarantee easy mainstreaming between projects. All data stored in
this database are handled in meetings with the supplier responsible for coding the
software and designing the hardware on a weekly basis. Test engineers design
test cases on the basis of different inputs such as this database, functional defects
found during driving tests, specifications requirements, as well as the defects
found when the engine has been marketed. The goal is to keep the test-case
libraries as complete as possible over time. When the test engineer has designed
the test-case library for a specific SM, a validation process is carried out. The test
engineer and the designer of the SM verify whether the use cases presented in the
test-case library are representative enough. For each of the test cases presented
in the database, it is possible to assign values to the SM inputs with the aim of
checking the software rules.

3. Pseudorandom values are generated by Matelo software with the aim of covering
the whole functional model. It must be reminded that this technique is an equiva-
lence portioning one. As test cases are generated by Matelo, the functional model
is covered. Matelo assesses the functional coverage automatically. Matelo could
also be used to implement a software model. However, authors have not carried
it out in this chapter.

Table 2.30 shows the number of tests considered in this research according to the
type of SM.

The difference between the number of test-cases for each type of SMs is because
the fairly-complex SM involves a greater number of use-cases.

Table 2.30 Number of tests
used in this research Type of SM Number of test

Simple 250

Fairly-complex 1,250

Highly-complex 100

84 D. Borge-Diez et al.

Table 2.31 Two EXs
combined with dlls Technique Method

Cause-effect technique A1

Model-based testing A2

One EX combined with dlls A3

Two EXs combined with dlls A3

A1: A database in which the staff trace different bugs found
throughout a project. In addition, several test-cases come from
the software requirements
A2: Pseudorandom values generated by Matelo® to cover a
functional model
A3: Pseudorandom and manual values generated by Python scripts

Table 2.31 indicates the methods followed to generate test-cases for each
technique.

It is important to analyze what A2 and A3 mean. In A2, Matelo can generate
off-line (before the HIL starts) all necessary test cases with the aim of covering the
functional model. In A3, Python scripts also generate test cases trying to cover the
software model. The Python scripts generate pseudorandom values trying to reach
software states not implemented in the model. A software state not implemented in
the model involves a use case not considered by the design team, in other words,
a design error. In addition, a test engineer generates manually off-line test cases
by establishing the most likely combination of variables by using fuzzy values to
cover the functional and software states. This process consists of avoiding illogical
situations such as engaging the fifth shift when the vehicle is at 5 km/h. These
inconsistencies must also be taken into account when generating automatically test
cases by using Python scripts. The fact of using fuzzy variables, as exposed later,
allows increasing the combination of the inputs of the SM under validation. These
test cases generated manually are run by using Python scripts.

For confidentiality reasons, the list of test cases cannot be published. However,
It is important to remark that fuzzy variables are used when using EXs combined
with dlls by increasing the number of combinations of the inputs provided by the
SM under validation.

2.4.2.3 Equipment

The following means used in this research are shown in Table 2.32.

2.4.2.4 Methodology Proposed

In this section, the key elements used in this technique are presented (EXs and dlls).
Then, the process how they collaborate to run a test case is described.

2 Software Validation Techniques in the Automotive Sector 85

Table 2.32 Equipment used in this research

Item Description Phase where the item
is used

Cost

HIL Bench HIL bench
manufacturer
dSpace®, model
dSpace® Simulator
Full-size (dSpace,
2016a). Versatile HIL
simulator capable of
emulating the
dynamic vehicle
behavior

Every time a test-case
is run. Necessary for
the HIL simulation no
matter which
technique is used

Depending on the
characteristics of the
HIL bench, the price
can vary. Estimation
for this case-study:
e100,000 each bench

INCA version 7.1.9
provided by ETAS®
(BOSCH) (ETAS,
2017)

Software used to
make measurements
of different software
variables stored in the
engine ECU memory

Every time a test-case
is run. Necessary for
the HIL simulation no
matter what technique
is used

The price depends on
the number of licenses.
For a big car
manufacturer, an
estimation of e5,000
for each license can be
made

Matlab® R2013 and
Microsoft Visual
Studio 2015

Software necessary to
create dlls

Every time a test-case
is run and the user
wants to avoid the SM
interaction problem

The price depends on
the number of licenses.
This information was
not provided by the
company subjected to
this case-study

Matelo® Software used for
validation purposes
being able to generate
test-cases

Necessary to generate
test-cases when using
the model-based
testing technique

The price depends on
the number of licenses.
Estimations of 20
licenses are e100,000

ControlDesk®
version 5.1 from
dSpace. (dSpace,
2016c)

This software is
needed to build the
HIL model which
belongs to dSpace®
manufacturer. The
HIL model was built
by the company
subjected to this
case-study

No matter which
technique is
considered

No information about
cost was provided by
the company subjected
to this case-study

a. Expert systems

Two EXs are distinguished:

• Software EX
Its aim is to establish the software rules which must be applied to assure the

software operation, such as a sequence of updating variables to be followed when
a failure occurs. A software rule is a Simulink® path to be followed to reach a
specific operation point.

86 D. Borge-Diez et al.

• Performance EX
The second EX is responsible for checking whether the vehicle responds as

expected for a specific use-case. The first EX only verifies if the software rule is
applied. The other one is abstracted from the software and only focuses on the
fact of verifying the correct behavior from vehicle performance point of view.
Properly coded software may exhibit wrong behavior owing to design errors as
some use-cases were not considered in the specifications used for coding the
software.

b. dlls

As exposed earlier, it is highly unlikely to reach the operation point set in the test
case because of SM interactions. This fact implies that the automation process is not
easy to be performed. Figure 2.2 depicts the process to automate a test case by using
Python scripts. During the HIL simulation, the script is in charge of performing all the
necessary manipulations on the driver-ECU interface model automatically. During
this process, a data acquisition is performed by employing the INCA software. If these
values are not reached after time out elapsed, the data acquisition is stopped and the
dll is called. The dll represents the Simulink model of the SM under validation, and
it allows assessing and providing the expected values of the SM for a specific state
of the ECU. Thus, by using dlls, it is always possible to obtain a result after an HIL
simulation. Thanks to this data acquisition and a C-file, it is possible to call the dll.

c. EXs and dlls working in collaboration

Figure 2.23 describes the process.

• Phase 1. The software EX establishes the test-case to be run. It must be reminded
that a rule corresponds to a Simulink® path of the model of the SM under valida-
tion. This rule is communicated to performance EX with the aim of establishing
the performance rule to be applied during the HIL simulation.

• Phase 2. The HIL simulation is performed trying to reach the operation point
established in the test-case.

• Phase 3. A test-case is composed of a series of input values and the expected
outputs. If the specific operation point is not met after a specific time elapsed,
then the expected output set in the test-case may not be longer valid. The dll of
the SM under validation allows assessing the right output values for the current
engine ECU state. The software EX collects this information and assesses the
software rule that was tested after the HIL simulation.

• Phase 4. The software EX sends a message to the performance EX about the
software rule tested in such a way that the performance EX can update (if needed)
the expected software behavior.

• Phase 5. Both EXs checked the HIL simulation results and decide whether the
software behavior is correct and meet the specifications.

2 Software Validation Techniques in the Automotive Sector 87

F
ig
. 2
.2
3

E
X
s
w
or
ki
ng
 in

 c
oo
pe
ra
tio

n

88 D. Borge-Diez et al.

2.4.3 Validation of the Key Elements: EXs and Dlls

This section describes the validity of the different key elements involved in this
research.

2.4.3.1 Expert System Validation

The aim of the rule-based EXs is to check whether the software runs properly, carrying
out an automatic analysis of the HIL simulation results. The EX design is shown in
Fig. 2.24. As shown, there is a knowledge base composed of rules coming from
functional or software requirements set by experts and designers at the beginning
of the project. These rules are the base of the expert knowledge. When it comes to
the inference engine, it is composed of a functional or software models describing
different states that the system can process when applying the rules presented in the
knowledge base. It must be reminded that two EXs are designed for each SM under
validation.

a. Software expert system

The aim of this EX is to check whether the software meets software specifications.
To better understand this, Fig. 2.25 must be analyzed. One can see a software model
of a given SM, where S1–S6 represent a state. In this case, the state represents a part
of the Simulink model. The conditions to be met to pass from one state to another one
come from the Simulink model used to code the software. As a result, depending on

Fig. 2.24 Scheme of the EXs used in this chapter

2 Software Validation Techniques in the Automotive Sector 89

Fig. 2.25 Inference engine in detail

the HIL simulation, the values of the software variables of a given SM are analyzed
in such a way that the final state is set. By checking different states covered after
having executed a certain number of test cases, it is easy to have the first estimation
of the code coverage. As exposed in the performance section, a test case could be
run and the inference engine may not know in which software state the system is.
This fact can occur, and it happens when a use case has not been considered by the
design team. That is why all states in Fig. 2.25 are linked to state 6 as it represents
an unknown software state.

To obtain an accurate code coverage, two key actions have been performed in this
research:

• Generation of test cases in such a way that the range of possible values for a given
variable is divided into intervals. In this way, the probability of covering all paths
of the Simulink model is increased.

• Usage of as many states as necessary to describe the system.

b. Performance expert system

The performance EX is built by using functional states in which the vehicle can
operate. Therefore, the model is not focused on part of the Simulink model of the
SM under validation. The fact of covering the functional model allows assessing the
functional coverage but not accurately as depicted in Fig. 2.26 when assessing the
transition from S2 to S4; it is unknown if the value for Out1 was obtained following
the path1 or the path2.

When a test case is analyzed by the performance EXs, after having applied
different rules, the inference engine determines the state of the system. Therefore,
the EXs decide whether the outputs provided by the software are coherent for the
test case simulated. At this point, it is vital to verify in-depth the inference engine.

90 D. Borge-Diez et al.

Fig. 2.26 Inference engine in detail

As shown, all functional states (S1, S2, S3, S4, and S5) are related to a state called
S6. S6 corresponds to an unexpected or unknown state, which represents a use case
not considered by the designers. By using this state, test engineers can improve the
EXs if needed. The S6 state will be analyzed later. In this research, the EX code is
not provided as it belongs to the company’s know-how and is confidential.

The validation process of both types of EXs is stimulated following these two
phases:

• The established rules, used by the EX, are checked following a procedure
consisting of a meeting between designers and testing engineers to assure the
conformity of the EX. Then, the EX is implemented by using Python.

• The aim of the validation process is to check two key characteristics: firstly, to
assure that the rules presented in the knowledge base are coherent and secondly,
to verify that the EXs can assess the software performance properly. To do this,
a set of data acquisitions, already analyzed by test engineers, is used for the
aforementioned purposes.

2.4.3.2 Dynamic-Link Library Validity

Dlls are a key element of this research. The reader may think that the fact of using dlls
could keep the validation process from checking the SM interactions. This statement
is not true for several reasons:

• The effects due to inputs and outputs of SM interactions are collected in the data
acquisition file as it is the result of the HIL simulation.

• It is essential to distinguish some important points when it comes to designing the
engine ECU software. Before integrating the software into the hardware, there is
a process of building prototypes with the aim of checking whether the Simulink
models work properly. Once this is checked, the decision of integrating soft-
ware and hardware is made. Afterwards, the design specifications are written,
all the SMs are assembled, and finally, a software is coded and the validation

2 Software Validation Techniques in the Automotive Sector 91

process starts. Therefore, the Simulink models are the transcription of the func-
tional specifications of the engine ECU and must be met independently of the SM
interactions, hardware design, task scheduling, software-hardware integration,
etc. In addition, Simulink models are tested before sending the specifications to
the supplier in charge of coding the software. Therefore, for a series of given
inputs, the outputs provided by the Simulink models must be equal to the ones
provided by the engine ECU software when no bug is discovered. Otherwise, the
functional specifications are not met.

• The fact of only considering one dll corresponding to the SMs under validation
does not imply that software and hardware integration is considered as the inputs
processed to the dll are the consequence of an HIL simulation. Therefore, the
SM interactions are already considered in the data acquisition file. The software
must provide the same output values as the Simulink model (dll). Otherwise, the
functional specifications are not met.

2.4.3.3 Measurement Conditions

Before starting the HIL simulation, some conditions must be met. Otherwise, the
result is rejected:

• The information provided by the probes must be equal in all cases (with and
without dlls) when it comes to external factors such as air and pressure temperature
and slope of the road.

• The engine ECU memory must contain no errors before starting the HIL simula-
tion. If it does, then it must be erased by using the procedure established by the
ECU supplier.

• All test-case executions must be conducted on the same HIL bench. This factor is
important to assure that the same probes are being used during the whole research.

If a diagnosis defect appears when validating with dll and not when validating without
dlls, or vice versa, then the test-case result is rejected and it must be executed again
as the HIL model could have failed.

2.4.4 Practical Implementation

A key issue in any project is costs. Therefore, costs must be reduced as much as
possible. Therefore, in this research, it has been tried to implement software validation
by using Python packages. Each test case is run by using Python scripts and C-code.
Firstly, the test case is performed by using Python scripts that interact with the HIL
model with the aim of reaching the values established in the test case. During this
process, a data acquisition is completed in ascii format. Secondly, a C-code is used
to call the dlls and to assess the software behavior.

92 D. Borge-Diez et al.

2.4.4.1 Python Scripts When Using Two EXs

From a pseudocode point of view, a multithreading implementation was conducted.
One can find the thread responsible for generating software rules that will be sent
to two threads: the one in charge of automation control and the one that handles
performance rules (Fig. 2.27). The process is as follows. A software rule is chosen,
and consistent inputs values for the variables involved in such rule are generated.
Then a message is sent to the EX 2 to set the rule to be applied according the one
chosen by EX 1. Once done, the automation process can be conducted using an
HIL simulation. EX 2 thread is waiting for the result. The automation thread sends a
message indicating if the result was correct, that is to say, whether the system reached
values close to the desired operating point. If so, the EX 1 communicates to EX 2 that
the selected rule was correct. Otherwise, the EX 2 updates the performance rule to
be applied according to the operation point that was reached in the HIL simulation.

The second thread is in charge of controlling the automation process (Fig. 2.28),
which starts when the EX 1 thread establishes the software rule to be tested (Fig. 2.28
waiting_message_from_expert_system_1). Once the process starts, the automation
thread tries to lead the system to the desired state set by the EX 1 thread. The
automation process ends:

• when this operating point is reached. In this case, the software and performance
rules for both EX must not be updated (Fig. 2.27 automation_OK)

• when a time out elapses as the operating point is not reached because of SM
interactions. In this case, the software and performance rules initially chosen
might be updated (Fig. 2.26 else).

Fig. 2.27 Pseudocode of software EX thread

2 Software Validation Techniques in the Automotive Sector 93

Fig. 2.28 Pseudocode of
automation thread

Finally, thread 3 is responsible for managing the performance EX (Fig. 2.29).
Its practical implementation is extremely simple, as it only runs when it is allowed
by the EX 1. This can take place in two distinct situations: firstly, when the thread
is instructed to select the rule to be applied according to the one set by EX 1 and
secondly, when it is indicated to proceed to update the rule depending on the final
engine ECU state, once the process of the HIL simulation is completed.

To implement a cross-thread communication, a submodule event from the Python
threading package was chosen. Its main advantage is its ease of use. Using the wait()
and set() methods, it is possible to keep a thread waiting while another performs
other tasks. When the latter ends, using the set method, an event occurs to wake up
all paused threads. In this case, its use is essential for several reasons:

1. The automation thread and the EX 2 threads must not start calculations until EX
1 has been initialized.

2. The thread in charge of handling EX 1 must not continue its execution as long
as the automation process is finished.

Fig. 2.29 Pseudocode of
performance EX thread

94 D. Borge-Diez et al.

3. The EX 2 thread must not continue its execution as long as a confirmation about
the current status of the ECU done by EX 1 is received. The main raison is that
a rule updated could be necessary.

2.4.4.2 Dynamic-Linked Libraries

The implementation of dlls allows the use of the Simulink model on multiple
computers without additional cost. The dll can be implemented by following the
steps indicated in many Mathworks documentation available in their site. The only
thing that the user really needs is the Simulink model to be converted into a dll. In
this case, these models are available as they are sent to the supplier to code the soft-
ware. As described in Matlab documentation, the dll can be called by using different
programming languages. In this research, C-language has been used. This process
is depicted in Fig. 2.30. Firstly, when a test case is run, different software variables
chosen by the user are recorded by using the INCA software. The result of this
process is an ascii file that contains the variables (inputs and outputs of the SM under
validation) and the specific time when each measurement was performed. Secondly,
the ascii file is read by using a C-file in such a way that each line of the file is used
for calling the dll (see phase 2, Fig. 2.30). The dll must return the expected output
for the inputs used to call the dll. Finally, a comparison is performed as depicted in
Fig. 2.30, phase 3. It must be reminded that the outputs of the SM are also available
in the ascii file.

2.4.5 Results

2.4.5.1 Functional Coverage

The functional coverage would be evaluated as Eq. (2.5). This equation is widely
used in the automotive sector as it allows assessing the functional coverage in an
easy way by using the software requirements. Table 2.33 depicts the total number of
functional requirements linked to the SMs chosen for this research.

FC =
number of software requeriments tested by a technique

number of software requirements indicated in Table 8
· 100 (2.5)

Table 2.34 shows the results obtained for each technique.

a. Cause-effect technique

The aim of the cause-effect technique is to check that the software requirements
established at the beginning of the engine project are met. They come from a database
in which the staff document different bugs found throughout the engine project. In
other words, all test cases are based on the experience of the company subjected

2 Software Validation Techniques in the Automotive Sector 95

Fig. 2.30 Interactions between the C-code and the dll

Table 2.33 Number of total
functional requirements Type of SM Number of requirements

Simple 75

Fairly-complex 400

Highly-complex 510

to this case study. These test cases can be run by using a manual execution or can
be automated by employing Python scripts. The main limitation of the cause-effect
technique is test-case redundancy [81]. This research confirms this statement. After
having analyzed the test-cases run by using this technique, the authors found many
of them which tested the same software requirements.

b. Model based-testing

As already exposed in this research, a functional model is built by employing
Matelo software. In addition, this software is able to generate test cases with the aim
of covering the whole functional model. The functional coverage can be calculated
easily by using Eq. (2.5). Moreover, this technique allows detecting use cases not
considered initially in the software requirements.

96 D. Borge-Diez et al.

Table 2.34 Functional coverage obtained for each research

Technique Simple SM Fairly-complex SM Highly-complex SM

Number
of rules
tested

Functional
coverage
(%)

Number
of rules
tested

Functional
coverage
(%)

Number
of rules
tested

Functional
coverage
(%)

Cause-effect 64 85.3 312 78 357 70

Model-based
testing

64 85.3 312 78 357 70

Tester-in-the-loop 64 85.3 312 78 357 70

Performance EX
combined with dlls

68 90.7 348 87 445 87.2

Software EX and
performance EX
combined with dlls

71 94.6 360 90 465 91.2

When using Matelo (the model-based testing technique), it is important to expose
the problems found during this chapter. If the test engineer let Matelo generate
test cases, this software will assign specific values for each input of the SM under
validation. As a consequence, the problems of SM interactions are identified. That
is why this strategy could not be used. To face this issue, one can use dlls combined
with Matelo. In this case, Matelo will not generate the test case, but it will control
the automation process. In order words, the test engineer must code a Python script
to generate the test cases needed, and then Matelo will check the functional states
covered as the automation is performed. In the present chapter, the test engineer
codes Python scripts with the aim of running the same test cases as for the manual
execution, the tester-in-the-loop, and so on.

C. EXs Combined with dlls

The software performance is assured by using an EX capable of detecting whether
the software behaves properly when a test case is conducted. As discussed earlier,
the unexpected behavior can come from a coding fault or design error. In both cases,
the performance EX can detect them. Therefore, the results obtained when validating
the EX are analyzed in this section. As done in the previous case, a validation and
a test phase were performed. The main problems obtained for the former phase are
depicted in Table 2.35.

When the errors indicated in Table 2.36 were corrected, the EX was assessed
during the validation phase. In this case, the same number of test cases used when
validating the software EX was performed. The acceptance process was the same as
reported in the software EX validation process (Table 2.36).

When using a performance EX, a certain number of test cases were conducted by
assigning pseudorandom values to the inputs of the SMs: 25 for 20 simple SMs, 5 for
fairly complex SMs, and 2 for highly complex SMs. Table 2.37 depicts the results
obtained.

2 Software Validation Techniques in the Automotive Sector 97

Table 2.35 Errors detected when validating the EXs

Type of error Cases Percentage Explanation

Wrong syntaxes 6 5.5 Because the rules used to design the EXs are
extremely complex, the programmer made coding
errors

Incoherence among
rules

2 1.8 In some cases of wrong performance of the EX,
incoherence between rules was found

Misunderstanding of
technical
specifications

3 2.7 Because of innovative evolutions in some parts of
the engine, some technical specifications were not
understood properly

Rules not coded or
forgotten

1 0.9 This type of error was made owing to the same
misunderstanding of technical specifications

Table 2.36 Most important points checked during the validation meeting

Most important factors considered to validate the expert system

All safety concepts (ISO 26262) were modeled or considered in the EX

All diagnoses that may be detected by the engine ECU during the validation process were
considered in the EX

The number of states is considered sufficient and representative enough by the project team

All use cases are modeled and considered in the EX (a priori)

The transitions among all the states considered in the EX are defined and modeled properly

The feedback of other projects was considered in the EX

Table 2.37 Code coverage when an EX is used

Type of SM Number of rules Number of functional states
tested not checked when
using an EX

Functional coverage (%)

Simple 75 7 90

Fairly complex 400 52 87

Highly complex 510 65 87.2

When both EXs are used together when performing an HIL simulation, the final
results are enhanced, as more rules are checked as shown in this section (Table 2.38).
The main reason behind this fact is that the higher the code coverage of the software
EX, the higher the functional coverage obtained when carrying out HIL simulations.
Therefore, it is essential that they work in cooperation. Another aspect that must
be analyzed is why 100% functional coverage is reached when the software code
coverage is not 100%. This fact can be easily explained as a specific variable can
be activated by different software paths of the Simulink model. Figure 2.31 shows
how output Out1 can be activated by two different paths. That is why the functional

98 D. Borge-Diez et al.

Table 2.38 Number of rules or functional states not checked when an EX is not used

Type of SM Number of rules Number of
functional states
tested not checked
when using both
EXs

Software code
coverage (%)

Functional
coverage (%)

Simple 75 4 94.6 100

Fairly complex 400 40 90 95

Highly complex 510 45 91.2 94

Fig. 2.31 Activation of a specific variable

coverage is 100% but not code coverage. This fact supports the conclusion that the
number of subintervals is essential to get a high code coverage.

2.4.5.2 Code Coverage

The supplier responsible for coding the engine ECU software starts from the speci-
fications composed of complex models which are provided by the car manufacturer.
Thus, it is extremely difficult to reach a code coverage close to 100% as reported in
previous research [81]. In order to assess the code coverage, the Eq. (2.6) was used
which establishes the relation between the total number of Simulink® blocks to be
tested (Table 2.39) and the total number of Simulink® blocks tested.

FC =
number of Simulink® blocks tested by a technique

number of Simulink® blocks indicated in Table 12
· 100 (2.6)

2 Software Validation Techniques in the Automotive Sector 99

Table 2.39 Number of total
Simulink® blocksa Type of SM Number of requirements

Simple 75

Fairly-complex 400

Highly-complex 510

aWhen a state flow is present, each state is considered as a
Simulink® block

The results obtained for each technique are shown in Table 2.40.

a. The cause-effect technique

When using the cause-effect technique, after having run all test-cases to assess
the functional coverage the number of Simulink® blocks covered were calculated
following the equation [2]. The cause-effect technique implies redundancies. Conse-
quently, the code coverage is not high. The main limitation associated with this
technique is that it is based on the software behavior and not on checking the code
coverage and the number of Simulink® blocks covered.

b. The model-based testing

The model used for testing the SM under validation can be built from two points
of view. The first one focuses on the functional software behavior. The other one
focuses on the software structure, in other words, on the Simulink blocks without
analyzing the purpose of each block. In this section, the second point of view is used.
However, it faces the same problems already described when automating test cases
because of the SM interactions.

c. EXs combined with dlls

Table 2.40 Code coverage obtained for each research

Technique Simple SM Fairly-complex SM Highly-complex SM

Number
of rules
tested

Functional
coverage
(%)

Number
of rules
tested

Functional
coverage
(%)

Number
of rules
tested

Functional
coverage
(%)

Cause-effect 63 78.7 265 75.6 410 77.3

Tester-in-the-loop 63 78.7 265 75.6 410 77.3

Model-based
testing

63 78.7 265 75.6 410 77.3

Performance EX
combined with dlls

74 92.5 295 84.3 435 82

Software EX and
performance EX
combined with dlls

76 95 313 89.6 425 80.2

100 D. Borge-Diez et al.

Fig. 2.32 Scheme of a software EX used in this research

A realistic way to assess the code coverage is to check whether all sub-blocks
which composed a Simulink® model of a specific SM under validation, are verified
after having run all the test-cases. In this research, two options were considered:

a. Division of the range of every software variable involved in the validation process
into subintervals. The aim of this was to generate test-cases that allow covering
as many paths of the Simulink® model as possible. This strategy is followed by
commercial software such as Matelo®.

b. Number of states. This is a key factor as it allows modelling in detail the software
behavior by using functional states. As depicted in Fig. 2.32, every path of a
Simulink® model may be represented by a functional state.

By changing the value of these factors, the code coverage was assessed. To do
this, it was checked how many functional states were covered when conducting all
test-cases available to validate an SM following the strategies described earlier to
generate test-cases. The obtained results are shown in Table 2.41. These figures show
how the code coverage increases as the number of states goes up. This fact must be
coherent with the functional coverage rate. This point will be analyzed in this section.

The code coverage could be calculated in a more accurate way. However, this
implies that two main issues should be taken into account. Firstly, the number of test
cases to be performed by using an HIL simulation increases, and the project time
frame can be affected. In addition, some use cases are difficult to be simulated when
using an HIL bench owing to the HIL model limitations, especially when it comes
to SMs linked to advanced driver assistance systems. It must be reminded that these
functions need a lot of information exchanged between different ECUs present in the
CAN network. Secondly, the number of states should also be increased. However, it
cannot be stated that the more states are used, the higher the code coverage is. As
shown in Table 2.41, there is a limit at which the code coverage does not increase
meaningfully (15 states for a simple function and 75 for a fairly and highly complex
function). After analyzing the results, the conclusion was that many test cases were

2 Software Validation Techniques in the Automotive Sector 101

Ta
bl
e
2.
41

C
od
e
co
ve
ra
ge
 tr
en
d
de
pe
nd
in
g
on
 th

e
nu
m
be
r
of
 th

e
st
at
es
 (
m
ea
su
re
d
in
 %

)
(S
ub
in
te
rv
al
 =

 3
)

N
um

be
r
of

st
at
es
\ty

pe
 o
f
SM

1

3
5

8
11

15
18

20
25

31
36

42
48

54
60

68
75

80

Si
m
pl
e

1.
5

6.
3

14
45

75
95

95
.2

95
.3

95
.3

95
.4

95
.4

95
.4

95
.5

95
.5

95
.6

95
.6

95
.7

95
.7

Fa
ir
ly
-c
om

pl
ex

1.
19

2.
1

2.
6

3.
5

5.
2

8.
5

15
17

35
.6

36
.9

42
.3

50
57
.1

64
.3

71
.4

78
.6

89
.3

89
.6

H
ig
hl
y-
co
m
pl
ex

1.
1

1.
8

2.
2

3.
1

4.
7

6.
7

13
.5

15
.8

29
.8

33
.2

38
.2

43
.2

53
.2

58
.5

68
.7

72
.5

80
80
.2

102 D. Borge-Diez et al.

redundant. As mentioned above, some states are difficult to reach when using an HIL
simulation owing to HIL model limitations.

When it comes to subintervals breakdown, the obtained results are shown in
Table 2.42. The main conclusion is the higher the number of subintervals, then the
lower code coverage is, as redundancy in test cases occurs. In this research, the authors
proceeded to use a fuzzy logic to establish the optimal number of subintervals. More
specifically, the speed was considered as low, average, and high, the water cooling
temperature low, average, or high, and so on.

Figures 2.33 and 2.34 depict the results in a more visual way.
Finally, it is essential to check the validity of the software EX. Two phases were

considered: a validation and a test one. On the one hand, the former consists of
verifying test-cases to assess the EX performance depending on the type of SMs
under validation (60 for simple SMs, 40 for fairly-complex SMs and 10 for highly
complex SMs). On the other hand, the later seeks its acceptance after having tested
30 for simple SMs, 20 for fairly-complex SMs and 5 for highly complex SMs. It
is vital to remark that all the points, tested to validate the system, covered all the
functional rules. Thus, the functional coverage rate was 100%. In the first phase, a
17.3% error was obtained. In the second one, 0%. As a result, the EX was validated.
Table 2.43 shows the results obtained during the first phase.

Before using the EX, an acceptance process is performed, consisting mainly of
a series of meetings in which some key factors are assessed. Table 2.44 depicts the
most important ones. All the factors assessed cannot be indicated for confidentiality
reasons. It is essential to remark that no bug or unexpected behavior of the EX was
detected after its validation.

2.4.5.3 Bug Detection

When using one EX, the results obtained after executing the number of test-cases
specified in Table 2.2 are shown in Fig. 2.27.

• The Cause-effect technique (automated or not) and the model-based testing one.
The use of Python scripts is a less efficient technique because it is complicated

to make the system reach a specific operating point, especially when dealing with
certain SMs, such as those related to after treatment of exhaust gas systems. It must
be reminded that these SMs perform multiple complex and accurate calculations.
As a result, this technique faces the SM interaction problem. Despite this, a test-
case can be executed by using an HIL simulation thanks to dlls. This statement
is also true for model-based testing. The fact of reaching specific points remains
difficult due to the SM interaction problem.

• The tester-in-the-loop technique and the manual execution one.
The tester-in-the-loop technique offers better results as a technician or a test

engineer can make the system reach a specific operating point. Then, a script is
run to use all the necessary manipulations on the HIL model to end the test-case

2 Software Validation Techniques in the Automotive Sector 103

Ta
bl
e
2.
42

C
od
e
co
ve
ra
ge
 tr
en
d
de
pe
nd
in
g
on
 th

e
su
bi
nt
er
va
ls
 a
nd
 th

e
nu
m
be
r
of
 s
ta
te
s
(m

ea
su
re
d
in
 %

)

N
um

be
r
of

st
at
es
\ty

pe
 o
f
SM

1

3
5

8
11

15
18

20
25

31
36

42
48

54
60

68
75

80

Su
bi

nt
er

va
l =

 4

Si
m
pl
e

1
4

8
35

68
85

85
.2

85
.3

85
.3

85
.4

85
.5

85
.5

85
.6

85
.6

85
.6

85
.7

85
.7

85
.7

Fa
ir
ly
-c
om

pl
ex

1.
2

2.
1

2.
3

3
4.
2

7
12

14
30
.2

31
.2

36
45

52
.2

56
.3

62
.3

70
83
.2

83
.8

H
ig
hl
y-
co
m
pl
ex

1.
1

1.
2

2
2.
5

4.
1

5
11
.6

12
.5

18
.2

23
.5

29
.2

34
.5

40
.2

43
.5

48
.5

53
.1

58
.2

58
.8

Su
bi

nt
er

va
l =

 5

Si
m
pl
e

1
3.
5

7.
2

30
51

72
72
.1

72
.2

72
.5

72
.6

72
.6

72
.6

72
.7

72
.8

72
.8

72
.8

72
.8

72
.9

Fa
ir
ly
-c
om

pl
ex

1.
18

1.
9

2.
2

2.
8

3.
5

6.
2

10
.8

12
.5

25
.6

28
.6

32
40

48
.5

53
.5

58
64
.5

72
.5

72
.9

H
ig
hl
y-
co
m
pl
ex

1.
1

1.
8

1.
9

2.
2

3.
5

4.
2

7
8.
5

12
.7

16
.5

20
.1

24
.2

27
.6

32
.5

37
.5

42
.8

50
50
.6

104 D. Borge-Diez et al.

0

20

40

60

80

100

120

1 3 5 8 11 15 18 20 25 31 36 42 48 54 60 68 75

C
od

e
co

ve
ra

ge
 (%

)

Number of states

Simple SM. Subinterval = 3 Simple SMs. Subinterval=4 Simple SMs. Subinterval =5

Fig. 2.33 Code coverage rate versus the number of subintervals considered when validating a
simple SM

0
10
20
30
40
50
60
70
80
90

100

1 3 5 8 11 15 18 20 25 31 36 42 48 54 60 68 75

Co
de

 c
ov

er
ag

e

Number of states

Code coverage vs subintervals

Fairly-complex SM subinterval = 3 Highly-complex SM subinterval=3

Fairly-complex SM subinterval = 4 Highly-complex SM subinterval=4

Fairly-complex SM subinterval = 5 Highly-complex SM subinterval=5

Fig. 2.34 Code coverage trend vs the number of sub-intervals chosen when validating a fairly and
highly complex SMs

performance. This statement is also true for manual execution as a technician
performs the whole test-case execution.

• Using EXs to validate the software
EXs performance must be analyzed. In the previous research, which is under

consideration for publication, the authors probed how the use of a performance
EX introduced significant advantages such as the capacity of detecting more bugs
than other techniques. The question that might arise is if the addition of a software
EX introduces significant improvements, which would justify its implementation.

2 Software Validation Techniques in the Automotive Sector 105

Table 2.43 Errors detected when validating the EXs

Type of error Cases Percentage Explanation

Wrong syntaxes 10 9.1 Because the rules used to design the
EXs are extremely complex, the
programmer made coding errors

Incoherence between rules 6 5.5 In some cases of wrong performance
of the EX, incoherence between rules
was found

Rules not coded or forgotten 3 2.7 This error is due to the same
misunderstanding of technical
specifications

Table 2.44 Most problematic Simulink blocks

Interpolator block. In this case, depending on the input values presented to the
Simulink block, an output value is provided by applying an algorithm or an
interpolation method

Matlab native comparator block. It has problems in all its versions (greater
than, greater than or equal to, less than, less than or equal to). In engine ECU
software, on many occasions, the value of a certain physical magnitude (eg,
motor revolutions and vehicle speed) is compared with a calibration threshold

As shown in Fig. 2.35, the answer is yes, as more six bugs were found. This
fact supports the results shown in Table 2.38; the higher the code coverage, the
more functional states are checked. Six bugs were detected by using two EXs.
Figure 2.36 depicted a classification of these bugs. The term of strategy chosen
showed in Fig. 2.15 refers to the ability of testing more paths of the Simulink
models, thanks to the use of software EXs that allow to increase the code coverage
rate. The rules not considered concept refers to functional states reached during
HIL simulations that had not been considered by the design team. The value bugs
term refers to certain bugs detected when a Simulink block did not perform some
calculations properly (Table 2.44).

2.4.6 Dynamic-Link Libraries

The problem of SM interactions is resolved, thanks to the usage of dlls as proved in
this research. It must be remarked that the obtained results are very similar no matter
what technique is used provided that dlls are implemented as depicted in Tables 2.45,
2.46, and 2.47.

Several factors must be considered to better understand these results. Firstly, dlls
are not needed when using the manual execution as the test engineer can control accu-
rately the automation process. Secondly, the results for “Automated with a Python

106 D. Borge-Diez et al.

0 5 10 15

Highly-complex functions

Fairly-complex functions

Simple functions

Highly-complex functions

Fairly-complex functions

Simple functions

Highly-complex functions

Fairly-complex functions

Simple functions

Highly-complex functions

Fairly-complex functions

Simple functions

Highly-complex functions

Fairly-complex functions

Simple functions

Highly-complex functions

Fairly-complex functions

Simple functions
M

an
ua

l v
al

id
at

io
n

O
nl

y
au

to
m

at
io

n
Te

st
er

-in
-th

e-
lo

op

O
ne

 E
X

an
d

dl
ls

M

od
el

-b
as

ed
 te

st
in

g
Tw

o
EX

s
an

d
dl

ls

Number of bugs

Te
ch

ni
qu

e
Number of bugs detecting by each technique

Fig. 2.35 Capacity of bug detection

script and the use of dlls” are representative for no matter what technique is used,
which implies that a Python script is run to perform the automation process such as
the model- based testing and EXs. Finally, when using dlls, a 100% success rate is
not achieved because of HIL model inaccuracies. The HIL model, which represents
the vehicle dynamic, is not perfect. Therefore, from time to time, the engine ECU

2 Software Validation Techniques in the Automotive Sector 107

0 1 2 3 4 5 6 7 8 9 10

Model-based testing

One EX and dlls

Tester-in-the-loop

Manual validation

Only automation

Number of bugs

Te
ch

ni
qu

e
Type of bugs detected by both EX vs traditional techhniques

Strategy chosen Rules not considered Value bugs

Fig. 2.36 Types of bugs found

Table 2.45 Comparisons of different techniques for validating simple functions

Methodology Number of cases in
which the output value
set in the test case was
no longer valid

Error rate after 250
simulations (%)

Success rate (%)

Only but without using a
dlls

49 19.6 80.4

Tester-in-the-loop 5 10 90

Only automation and the
use of dlls

13 5.2 94.8

One EX and dlls 12 4.8 95.2

Two EXs and dlls 13 5.2 94.8

can detect failures, which implies that the test case cannot be properly run despite
the dlls usage.

2.4.7 Limitations

It is important to emphasize that the use of EXs does not allow the detection of any
type of bugs. Indeed, the output provided by the software for a particular variable

108 D. Borge-Diez et al.

Table 2.46 Comparisons of different techniques for validating fairly complex functions

Methodology Number of cases in
which the output value
set in the test case was
no longer valid

Error rate after 1250
simulations (%)

Success rate (%)

Only but without using a
dlls

480 38.4 61.6

Tester-in-the-loop 350 28 72

Only automation and the
use of dlls

125 10 90

One EX and dlls 126 10.1 89.9

Two EXs and dlls 124 9.9 90.1

Table 2.47 Comparisons of different techniques for validating highly complex functions

Methodology Number of cases in
which the output value
set in the test case was
no longer valid

Error rate after 100
simulations (%)

Success rate (%)

Only but without using a
dlls

61 61 39

Tester-in-the-loop 35 35 65

Only automation and the
use of dlls

15 15 85

One EX and dlls 15 15 85

Two EXs and dlls 14 14 86

differs from the one expected. However, if this fault does not introduce any serious
malfunction, the EXs will not be able to detect it. That is why, the use of the dlls is
essential in this methodology. This type of bugs may be present in SMs that perform
many calculations.

The reader might think that, in case of bugs in the Simulink model, the software
will also contain these errors. As a result, no bug will be detected by using the method
proposed in this research. This study has proven that this statement is true and that
is why the performance EX must be used. In the engine ECU software, when some
specific failures are detected, a software reset takes place. If, despite this, the failure
still occurs, the ECU stops the car. Figure 2.37 shows a bug found during this research.
The dll and the software did not increase a counter properly. The main consequence
was that instead of counting until four software resets, they counted until two and
the engine was not stopped. In this case, the dll and the software provided the same
outputs. However, the EX detected this software bug.

Finally, the limitation associated with this methodology is no different to others
that can be proposed as increasing the number of test cases to be conducted to ensure
a code coverage of 100% is not compatible with the planning of an engine design
project.

2 Software Validation Techniques in the Automotive Sector 109

Fig. 2.37 An example of a software bug detected by the EX that could not be detected by using
traditional techniques

2.4.8 Threats to Validity

Table 2.48 describes the main variables to be controlled (predictors) to check the
influence on the response variables (productivity gain, documentation quality, and
bugs). Among these predictors, one can distinguish the sample used in the study
described in this chapter, the staff’s skills in Python, the SM chosen to be validated,
the staff’s experience in how the engine ECU operates, the reliability of measures
done during the validation, and finally, the quality of the documentation furnished
to technician or engineers to validate the software (test description, python scripts,
etc.).

All these factors are analyzed in the sensitivity analysis. The authors described
in-depth how all these factors impact the time needed to code Python scripts and,
therefore, productivity (internal threats). Considering that one of the most important
factors to be analyzed in this research is the number of bugs found when using two
EXs working in collaboration, it is essential to check how these variables impact
this factor. Figure 2.17 shows that the less quality the documents have, the fewer
bugs are detected, and therefore, the performance decreases. The quality depends on
the sample used in this research, the training in Python, the staff’s experience in the
engine control unit ECU, and the number of people belonging to the staff. When it
comes to external threats, it is of paramount importance to verify if the results can
be generalized or if it is applicable to a larger group. Figure 2.38 shows that it can be
applied as the quality depends on the number of members of the staff. This statement
is based on the fact that the higher the staff is, the more hours can be devoted to
improving the quality of documentation. Otherwise, the terms of the project will be
prolonged.

110 D. Borge-Diez et al.

Table 2.48 Factors to be controlled when validating the engine ECU

Factor Description

Sample used in this research This research was performed in a software validation service that
belonged to one of the most important manufacturers in Europe.
The staff used in this research is composed of 40 people: 19
engineers and 21 technicians. Each person may have different
skills, but this fact was considered in the sensitivity analysis

Training in Python The more a validation department masters Python, the more
sufficient the productivity gain is or the more extensive
knowledge of an engine operation the staff can acquire, the less
time they require to write the tests. Technicians and engineers
having different levels in coding Python or in engine operation
knowledge were chosen. Then the influence of all the
aforementioned aspects was analyzed in the sensitivity analysis

SM chosen for the research Not all SMs present in the engine ECU software have the same
complexity. It is not possible to draw exactly the same
conclusions for a simple SM as for a highly complex one. The
SMs were divided into three groups. The fact of not doing this
implies that the productivity gain is not properly assessed

Unreliability of measures All measures were taken in the same conditions. To assure this,
a procedure was written, which describes when measures can be
accepted and when they must be rejected it. In addition, EXs
must be validated
Otherwise, the conclusions could be completely random and
wrong

Staff’s experience in the
engine ECU field

The members of the staff of a validation service may change
their positions in the company. As a result, the department may
have more specialized people at a specific moment and vice
versa in other occasions. This research was performed
considering different scenarios depending on the staff’s training
as shown in the sensitivity analysis

Quality of documentations
provided to the technician to
validate the software

A validation department can have more or less staff. It must also
be reminded that a validation department is of high cost for
companies, so they try to limit the number of people who run the
service

2.4.9 Sensitivity Analysis

When automating a test case, it is necessary to make the vehicle reach specific
operating conditions. To do this, there are two options: firstly, coding a high-quality
script that can control all necessary parameters that could prevent the vehicle from
achieving the desired operating point and secondly, the “tester-in-the-loop” concept
can be applied. Thus, a technician makes the vehicle reach a desired operating point,
and then an automation script performs all subsequent actions to run the test case
completely. In this chapter, these SMs were automated in the company subjected to
this case study by using Python scripts. The key to achieve this is to code libraries that
can carry out specific interaction with the vehicle model interface, such as heating

2 Software Validation Techniques in the Automotive Sector 111

Fig. 2.38 Documentation quality vs bugs found when using Exs

the NOx probes. Therefore, quick and robust scripts can be coded. However, the time
needed to code Python scripts depends on the programmer’s experience. As shown
in Table 2.49, the staff of the validation software validation service of the company
subjected to this case study has been classified as expert, average, and low level when
it comes to their experience in Python.

Figure 2.39 depicts the obtained results.
Clearly, training in Python scripts is a key aspect to be taken into account to

improve productivity when it comes to software validation.
However, training in Python is not the only key factor to improve the quality

of software and time frame of the project. Knowledge about physical phenomena
controlled by the SM under validation has a great influence on the time needed to
design tests. For example, if a test engineer needs to design tests for validating the
urea injection for the nitrogen oxide treatment, if he knows the physical foundation
of the function, besides knowing the software architecture, the time needed to design
a test case is reduced. To verify this, expert python test engineers were chosen to
code python scripts to automate simple, average, and complex functions. However,
these engineers had high, average, and low knowledge about the function to be
automated. The obtained results are shown in Fig. 2.40. Consequently, in addition

Table 2.49 Staff’s training in Python

Group Experience in coding Python scripts Number of members

Expert level More than 2 y 10

Average level Between 1 and 2 y 15

Low level Less than 1 y 15

112 D. Borge-Diez et al.

Fig. 2.39 Time needed to code a script depending on staff’s training

to SM knowledge, another potential method of improvement is provided by the
expertise in the physical phenomena linked to a combustion engine.

The number of engineering hours dedicated to design the tests used during the
validation process depends on the final quality of the test documentation provided
by the technician. If schedules, notes, and comments are attached, the cost increases.
Figure 2.41 shows the total amount of engineering hours spent to design the tests
depending on the final quality provided. In this research, the quality was measured
by using a checklist built by the validation expert engineer of the powertrain software
validation service.

Taking together Figs. 2.40 and 2.41, the total number of hours needed to design
the test cases (test-case design and the time needed to code the Python scripts) is

Fig. 2.40 Needed time for designing test cases vs functional and physical knowledge about a SM

2 Software Validation Techniques in the Automotive Sector 113

Fig. 2.41 Engineering hours spent for test design depending on the type of SM to be validated in
black-method

shown in Fig. 2.42. Significant productivity improvements when comparing with
the black-box technique can be obtained when the training of the staff is improved:
13.5% for complex functions, 10.9% for fairly complexity functions, and 16.6% for
simple functions considering the average knowledge case. These figures are based
on the scenario of high Python skills as well as good knowledge of the SM under
validation.

Fig. 2.42 Total number of hours to design the test cases (design and script coding time)

114 D. Borge-Diez et al.

2.4.10 Conclusions

Several issues that the automotive sector must face when validating the electronic
control unit (ECU) software are: how to design representative use-cases, how to
properly automate the HIL simulation because of the interaction of SMs, and, how
to be able to find coding and performance bugs when running a test-case.

This research, conducted at the second most important European car manufacturer,
is focused on the software validation of an engine ECU by using dlls and two rule-
based EXs, one for detecting performance bugs and the other for finding code bugs.
This combination allows the detection of software performance and coding bugs. In
this research, the use of dlls and two EXs were compared to other techniques such as
the tester-in-the-loop, automation by using Python scripts and a performance EX and
automation by using Python scripts without EXs. The results obtained show that dlls
and two EXs are able to detect 6 bugs more than the use of dlls and a performance EX
can, 14 bugs more than the tester-in-the-loop can, 16 bugs more than the automation
by using Python scripts can,15 bugs more than a manual execution can and 14 bugs
more than the model-based testing can. Dlls and EXs working in cooperation enhance
the code coverage regarding the other techniques. This enhancement depends on
the number of states in the functional model used in the EXs and the number of
subintervals in which the SM inputs can be divided as shown in this research.

Dlls and Python scripts can be used combined with different techniques such
as the using of a performance EXs or two EXs. The obtained results show that the
methodology proposed in this research enhances the HIL success rate compared with
the tester-in-the-loop technique by up to 6% for simple validation SMs, by 16.8% for
fairly-complex SMs and by 18% for highly complex SMs despite the SM interactions.
When it comes to automation without using dlls, the methodology proposed in this
research enhances the HIL success rate up to 14.4% for simple validation SMs, by
27.4% for fairly-complex SMs and by 47% for highly complex SMs despite the SM
interactions.

Even though ES and dlls require more time to be implemented for highly-complex
and simple functions, the deadline of the project was met. When it comes to fairly-
complex functions there is a productivity gain considering the number of SMs to be
tested in an engine ECU software project versus the tester-in-the-loop and manual
execution. In addition, the time needed to implement the model-based testing tech-
nique is similar to the one needed for two EXs. It must be reminded that the
fairly-complex SMs are the majority in the engine ECU software.

2 Software Validation Techniques in the Automotive Sector 115

References

1. Broy, M. Challenges in automotive software engineering. Proceedings of the 28th International
Conference on Software Engineering (pp. 33–42). ACM. 2006

2. Navet, N., & Simonot, F. Automotive Embedded Systems Handbook (1st ed.). CRC Press.
Florida, United States, 2008

3. Roychoudhury, A. Embedded Systems and Software Validation (1st ed.). Morgan Kaufmann
Publishers, Massachusetts, United States, 2009

4. Gajjar, M. J. Sensor Validation and Hardware-Software Code Design. Mobile Sensors and
Context-Aware Computing (1st ed.). Morgan Kaufmann, Massachusetts, United States, 2017

5. Rajan A., Wahl T. CESAR - Cost-Efficient Methods and Processes for Safety-Relevant
Embedded Systems (1st ed.), Berlin, Germany, Springer, 2013

6. Oshana, R. Software Engineering for Embedded Systems: Methods, Practical Techniques and
Applications (1st ed.), Amsterdam, Netherlands, Elsevier, 2013

7. Oberkampf, W. L., Roy, C. J. Verification and Validation in Scientific Computing (1st ed.).
Cambridge University Press, Cambridge, United Kingdom, 2010

8. Westland, J. C. The cost of errors in software development: evidence from industry. Journal of
Systems and Software 2002, 62(1), 1–9

9. Zaman, N. Automotive Electronics Design Fundamentals (1st ed.), Berlin, Germany, Springer,
2015

10. BOSCH, BOSCH Automotive Electrics and Automotive Electronics (1st ed.). Germany, Robert
BOSCH, 2013

11. Garousi, V., & Mäntyla, M. V. A systematic literature reviews in software testing. Information
and Software Technology 2016, 80, 195–216

12. Kasaju A., Petersen K., & Mantyla M. V. Analyzing an automotive testing process with
evidence- based software engineering. Information and Software Technology 2013, 55,
1237–1259

13. Jungui Z., Zhiyi Z., Peizhang X., & Jingyu W. A test data generation approach for automotive
software. Proceedings of the Conference IEEE 2015

14. Hoffmann A., Quante J., & Woehrle M. Experience report: White box test-case generation for
automotive embedded software. Proceedings of the IEEE Ninth International Conference on
Software Testing, 2016

15. Saglietti, F., Oster, N., & Pinte. F. White and grey-box verification approaches for safety and
security critical software systems. Information Security Technical Report 2008, 13(1), 10–16

16. Wernick, P., & Lehman, M. Software process white box modelling for FEAST/1. Journal of
System and Software 1999, 46(2–3), 193–201

17. Awedikian R., & Yannou, B. Design of a validation test process of an automotive software.
International Journal on Interactive and Manufacturing 2010, 4(4), 259–268

18. Conrad, M. http://drops.dagstuhl.de/opus/volltexte/2005/325/, 2005
19. Chunduri, A. http://www.diva-portal.org/smash/get/diva2:945731/FULLTEXT02, 2005
20. Skruch, P., Buchala, G. Model-based real-time testing of embedded automotive systems. SAE

Int. J. Passeng. Cars – Electron. Electr. Sys 2014. 7(2), 337–344
21. Raffaëlli, L., Vallée, F., Fayolle, G., Armines, A., Souza, P., Rouah, X., Pfeiffer, M., Géronimi,

S., Pétrot, F., & Ahiad, S. Proceedings of the Embedded Real Time Software and Systems
Conference, 2016

22. All4Tec, http://www.all4tec.net/MaTeLo/homematelo.html (last accessed on 10/03/2021)
23. Ilic, V., Popic, S., & Kovacic, M. Data flow in automated testing of the complex automotive

electronic control units. IEEE Instrumentation & Measurement Magazine 2016
24. Keller, R., Alink, T., Pfeifer, C., Eckert, C. M., Clarkson, P. J., & Albers, A. Proceedings of

the International Conference on Engineering Design, 2017
25. Köhl, S., Lemp. D., & Plöger, M. ECU network testing by hardware-in-the-loop simulation.

ATZ Worldwide 2003, 105(10), 10–12
26. National Instrument, http://www.ni.com/white-study/10343/en/ (last accessed January 2020)

http://drops.dagstuhl.de/opus/volltexte/2005/325/
http://www.diva-portal.org/smash/get/diva2%3A945731/FULLTEXT02
http://www.all4tec.net/MaTeLo/homematelo.html
http://www.ni.com/white-study/10343/en/

116 D. Borge-Diez et al.

27. Winemantech, https://www.winemantech.com/services/hardware-in-the-loop-test-systems/
(last accessed January 2020)

28. Petrenko, A., Nguena, T., & Ramesh, S. Model-based testing of automotive software: some
challenges and solutions. Proceedings of the 52th Congress ACM/IEEE Design Automation
Conference, 2015

29. Matlabcentral File exchange. https://www.mathworks.com/matlabcentral/fileexchange/9709-
from-simulink-to-dll-a-tutorial (last accessed January 2020)

30. NCA Software Product etas. https://www.Etas.Com/En/Products/Inca_Software_Products.Php
(last accessed January 2019)

31. DSPACE. Simulator Hardware. https://www.Dspace.Com/En/Inc/Home/Products/Hw/Simula
tor_Hardware/Dspace_Simulator_Full_Size.Cfm (last accessed February 2022)

32. DSPACE Experiment and visualization. https://www.dSpace.com/en/inc/home/products/sw/
experimentandvisualization/controldesk.cfm (last accessed February 2022)

33. DSPACE. Test Automation Software. https://www.dspace.com/en/pub/home/products/sw/
test_automation_software/automdesk.cfm (last accessed February 2022)

34. Krûguer, M., Straube, S., Middendorf, A., Hahn, D., Dobs, T., Lang, K.D. Requirements for
the application of ECUs in e-mobility originally qualified for gasoline cars. Microelectronics
Reliability 2016, 64, 140–144

35. Gajjar, M.J.Mobile Sensors and Context-Aware Computing. Massachusetts: Morgan Kaufmann
Publishers, Massachusetts, United States, 2017

36. Lockledge, J.C., Salustri, F.A. Defining the Engine Design Process. Journal of Engineering
design, 10, 109–124. https://doi.org/10.1080/095448299261344 (last accessed March 2022)

37. Raikwar, S., Jijyabhau, L.W., Arun Kumar, S., Sreenivasulu Rao, M. Hardware-in-the-Loop test
automation of embedded systems for agricultural tractors. Measurement 2019, 133: 271–280

38. Plummer, A.R. Model-in-the-loop testing, Proceedings of the Institution of Mechanical
Engineers Part I Journal of Systems and Control Engineering 2006, 220 (3), 183–199

39. Zhan, Y., Clark, J.A. A search-based framework for automatic testing of MATLAB/Simulink
models. Journal of Systems and Software 2008, 81(2), 262–285

40. Vivas, J.L., Agudo, I., Lopez, J. A methodology for security assurance-driven system
development. Requirements engineering 2011, 16, 55–73

41. Martin, H., Ma, Z. , Schmittner, C. , Winkler, B., Kreiner, C. Combined automotive safety
and security pattern engineering approach. Reliability Engineering & System Safety 2020, 198,
Article 106773

42. Haghighatkhah, A., Banijamali, A., Pekka Pakanen, O., Oivo, M., Kuvaja, P. Automotive
software engineering: A systematic mapping study. Journal of Systems and Software 2017,
128, 25–55

43. Hooshyar, H., Mahmood, F., Vanfretti, L., Baudette, M. (2015). Specification, implementa-
tion, and hardware-in-the-loop real-time simulation of an active distribution grid. Sustainable
Energy, Grids and Networks 2015, 3, 36–51

44. National Instrument (2019). https://www.ni.com/fr-fr/innovations/white-studys/17/what-is-har
dware-in-the-loop-.html (Accessed on 3 March 2020)

45. Ortega-Cabezas, P.M., Colmenar-Santos, A., Borge-Diez, D., Blanes-Peiró, J.J. Application of
Rule-Based Expert Systems and Dynamic-Link Libraries to Enhance Hardware-in-The-Loop
Simulation Results, The Journal of Software 2019, 14(6), 265–292

46. Meloa, S.M., Carver, J.C., Souza, P.S.L., Souza, S.R.S. Empirical research on concurrent soft-
ware testing: A systematic mapping study. Information and Software Technology, 2019, 105,
226–251

47. Vandi, G. , Nicolò, C., Corti, E., Mancini, G. , Moro, D., Ponti, F., Ravaglioli, V. Development
of a Software in the Loop Environment for Automotive Powertrain System. Energy Procedia
2014, 45, 789–798

48. Garousi, V., Felderer, M., Kilicaslan, F.N. (2009). A survey on software testability. Cornell
University. https://arxiv.org/abs/1801.02201 (last accessed on 17 January 2020)

49. Walia, G.S., Carver, J. C. A systematic literature review to identify and classify software
requirement errors. Information and Software Technology 2009, 51(7), 1087–1109

https://www.winemantech.com/services/hardware-in-the-loop-test-systems/
https://www.mathworks.com/matlabcentral/fileexchange/9709-from-simulink-to-dll-a-tutorial
https://www.mathworks.com/matlabcentral/fileexchange/9709-from-simulink-to-dll-a-tutorial
https://www.Etas.Com/En/Products/Inca_Software_Products.Php
https://www.Dspace.Com/En/Inc/Home/Products/Hw/Simulator_Hardware/Dspace_Simulator_Full_Size.Cfm
https://www.Dspace.Com/En/Inc/Home/Products/Hw/Simulator_Hardware/Dspace_Simulator_Full_Size.Cfm
https://www.dSpace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dSpace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dspace.com/en/pub/home/products/sw/test_automation_software/automdesk.cfm
https://www.dspace.com/en/pub/home/products/sw/test_automation_software/automdesk.cfm
https://doi.org/10.1080/095448299261344
https://www.ni.com/fr-fr/innovations/white-studys/17/what-is-hardware-in-the-loop-.html
https://www.ni.com/fr-fr/innovations/white-studys/17/what-is-hardware-in-the-loop-.html
https://arxiv.org/abs/1801.02201

2 Software Validation Techniques in the Automotive Sector 117

50. Ågren, S.M., Knauss, E., Heldal, R., Pelliccione, P., Malmqvist, G., Bodén, J. The impact of
requirements on systems development speed: a multiple-case study in automotive, Require-
ments Engineering 2019, 24, 315–340

51. Dos Santos, J., Martins, L.E.G, de Santiago Junior, V.A, Povoa, L.V., dos Santos, L.B.R.
Software requirements testing approaches: a systematic literature review, Requirements
Engineering 2019, https://doi.org/10.1007/s00766-019-00325-w

52. Abadeh, M.N. Performance-driven software development: an incremental refinement approach
for high-quality requirement engineering, Requirements Engineering 2020, 25, 95–113

53. Feldhütter, A., Segler, C., Bengler, K. Does Shifting Between Conditionally and Partially
Automated Driving Lead to a Loss of Mode Awareness? In N. Stanton (Ed.), Advances in
Human Aspects of Transportation. AHFE 2017.Advances in Intelligent Systems and Computing
2018, 597, pp. 730–741

54. ISO. Cybersecurity standard (2019). https://www.iso.org/standard/70939.html (last accessed
on 20 September 2020)

55. Utesch, F., Brandies, A., Pekezou, P., Schiessl, F., Schiessl, F. Towards behaviour based testing
to understand the black box of autonomous cars. European Transport Research Review 2020,
12, 48

56. Huang, W.L., Wang, K. Ly, Y., Zhu, F. Autonomous Vehicles Testing Methods Review. IEEE
19th International Conference on Intelligent Transportation Systems (ITSC) 2016, pp. 163–168

57. Riedmaier, S., Ponn, T., Ludwig, B., Shick, F. Diermeyer, F. Survey on Scenario-Based Safety
Assessment of Automated Vehicles. IEEE Access 2020, 8, 87456–87477

58. dSpace http://www.cokesen.com/resimler/1521204313_Dokuman1.pdf (last accessed 10
September 2020)

59. Möller, D., Haas, R. Guide to Automotive Connectivity and Cybersecurity. Berlin, Germany,
Springer

60. El-Rewini, Z., Sadatsharan, K., Flor, D., Siby, S., Plathottam, J., Ranganathana, P. Cybersecurity
challenges in vehicular communications. Vehicular communications 2020, 23, 100214

61. Vector. https://www.vector.com/int/en/know-how/technologies/safety-security/automotive-
cybersecurity/#c2941(last (accessed on 10 September 2020)

62. Placho, T., Schmittner, C., Bonitz, A., Wana, O. Management of automotive software updates.
Microprocessors and microsystems 2020, 78, 103257

63. Koegel, M., Wolf, M. (2018). Auto update – safe and secure over-the-air (SOTA) software
update for advanced driving assistance systems. Berlin, Germany, Springer

64. ISO. Autonomous driving safety standard. https://www.iso.org/standard/70918.html (last
accessed on 20 September 2020)

65. Banish, G. Engine Management: Advanced Tuning. Minnesota: Cartech, 2007
66. Garousi, V., Mäntylä, M.V. A systematic literature review of literature reviews in software

testing. Information and Software Technology 2016, 80, 195–216
67. Kasoju, A., Petersen, K., Mäntylä, M.V. Analyzing an automotive testing process with evidence-

based software engineering, Information and Software Technology 2013, 55(7), 1237–1259
68. Matelo® Software. https://www.all4tec.com/ (last accessed on 7 February 2020)
69. BOSCH. BOSCH Automotive Electrics and Automotive Electronics (1st ed.). Robert BOSCH.

Germany. 2013
70. IEEE http://ieeexplore.ieee.org/document/4344112/ (last accessed June 2018)
71. Mariani L, Pezze M, Zuddas D. Recent advances in automatic black-box testing. Adv. Comput.

2015; 99: 157–193
72. Engström E, Runeson P, Skoglund M. A systematic review on regression test selection

techniques. Inf. Softw. Technol. 2010; 52(1): 14–30
73. Linderman U, Maurer M, Braun T. Structural Complexity Management. 1st ed. Springer, Berlin,

Germany. 2009
74. Yoo S, Harman M. Pareto efficient multi-objective test case selection. Proceedings of the ACM/

SIGSOFT. International Symposium on Software Testing and Analysis 2007. ACM. 2, 140-150
75. Zhou J., Zhang Z., Xie P., Wang J. A test data generation approach for automotive software.

IEEE International Conference on Software Quality, Reliability and Security. 2015

https://doi.org/10.1007/s00766-019-00325-w
https://www.iso.org/standard/70939.html
http://www.cokesen.com/resimler/1521204313_Dokuman1.pdf
https://www.vector.com/int/en/know-how/technologies/safety-security/automotive-cybersecurity/#c2941(last
https://www.vector.com/int/en/know-how/technologies/safety-security/automotive-cybersecurity/#c2941(last
https://www.iso.org/standard/70918.html
https://www.all4tec.com/
http://ieeexplore.ieee.org/document/4344112/

118 D. Borge-Diez et al.

76. Sopan-Barhate, Effective test strategy for testing automotive software. International Congress
of Electronic Instrumentation and Control. 2015

77. Xing Y, Gong Y, Wang Y, Zhang X. Intelligent test-case generation based on branch and bound.
The Journal of China Universities of Posts and Telecommunications. 2014; 21(2): 91-97

78. Zhang W, Yang Y, Wang Q. Using Bayesian regression and EM algorithm with missing handling
for software effort prediction. Inf. Softw. Technol. 2015; 58: 58-70

79. Zheng J. Predicting software reliability with neural network ensembles. Expert Systems with
Applications, 2009; 36(2, Part 1): 2116-2122. 29

80. Conrad, M. http://drops.dagstuhl.de/opus/volltexte/2005/325/ (last accessed January 2017)
81. Chunduri, A. (2016) http://www.diva-portal.org/smash/get/diva2:945731/FULLTEXT02 (last

accessed January 2018)
82. Raffaëlli L., Vallée F., Fayolle G., Armines A, de Souza P., Rouah X., Pfeiffer M. Géronimi S.

Pétrot F. Ahiad S. Embedded Real Time Software and Systems Conference. 2016
83. All4Tec. http://www.all4tec.net/MaTeLo/homematelo.html (last accessed November 2017)
84. Perez, Y.M., Marin, H.A.P., Bedoya, A.E. http://www.revistaieeela.pea.usp.br/issues/vol14issu

e5May2016/14TLA5_41EspinosaBedoya.pdf (last accessed January 2018)
85. Mechanical Simulation. https://carsim.com/products/realtime/index.php (last accessed January

2018)
86. National Instrument http://www.ni.com/white-study/10343/en/ (last accessed November 2017)
87. Petrenko A. Nguena-Timo, Ramesh S. Model-based testing of automotive software: some

challenges and solutions. 52th Congress ACM/IEEE Design Automation Conference. 2015
88. Tatar M, Mauss J. Systematic Test and Validation of Complex Embedded Systems. Toulouse,

France: Embedded Real Time Software and Systems (ERTS 2014); 2014

http://drops.dagstuhl.de/opus/volltexte/2005/325/
http://www.diva-portal.org/smash/get/diva2:945731/FULLTEXT02
http://www.all4tec.net/MaTeLo/homematelo.html
http://www.revistaieeela.pea.usp.br/issues/vol14issue5May2016/14TLA5_41EspinosaBedoya.pdf
http://www.revistaieeela.pea.usp.br/issues/vol14issue5May2016/14TLA5_41EspinosaBedoya.pdf
https://carsim.com/products/realtime/index.php

	2 Software Validation Techniques in the Automotive Sector
	2.1 Introduction
	2.1.1 Engine ECU Software
	2.1.2 Related Works

	2.2 Application of Rule-Based Expert Systems and Dynamic-Link Libraries to Enhance Hardware-In-The-Loop Simulation Results
	2.2.1 Introduction
	2.2.2 Method
	2.2.3 Results
	2.2.4 Conclusions

	2.3 Use of Genetic Algorithms to Reduce Costs of the Software Validation Process
	2.3.1 Introduction
	2.3.2 Methods
	2.3.3 Results
	2.3.4 Discussion
	2.3.5 Conclusions

	2.4 Application of Rule-Based Expert Systems in Hardware-In-The-Loop Simulation. Case-Study: Software and Performance Validation of an Engine Control Unit
	2.4.1 Introduction
	2.4.2 Method
	2.4.3 Validation of the Key Elements: EXs and Dlls
	2.4.4 Practical Implementation
	2.4.5 Results
	2.4.6 Dynamic-Link Libraries
	2.4.7 Limitations
	2.4.8 Threats to Validity
	2.4.9 Sensitivity Analysis
	2.4.10 Conclusions

	References

