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2.1 Introduction 

2.1.1 Engine ECU Software 

Electronic control units (ECUs) have become essential for the correct operation of 
a vehicle [1, 2]. Software validation plays a key role and has two fundamental goals 
[3]. Firstly, the software must comply with the functional specifications set by the 
design team. Secondly, software validation ensures the integration of all software 
modules (SMs) into the hardware, simultaneously checking that all the elements 
present in the network interact properly [4, 5]. The process of software validation of 
an ECU implies significant costs for the companies during a project because of the 
means necessary to carry out this activity [6, 7]. In addition, the cost of correcting 
bugs, once the software is marketed, is high and it can tarnish the brand’s image [8, 
9]. Consequently, a balance between costs, deadlines, and quality must be reached. 

Powertrain control is a system in charge of transforming the driver’s will into an 
operating point of the powertrain according to the performance established for the 
product [10]. The key element of the control system is the engine ECU composed of 
complex hardware and software. The engine ECU (hardware and software) must be 
validated to assure that engine is properly controlled, the interaction with the rest of 
the ECUs is rightly performed and the passengers’ safety is insured. Thus, one can 
deduce that the software validation process is complex and needs improvements with 
the aim of reducing costs, increasing productivity and reliability in the automotive 
sector [11, 12]. 

This chapter is focused on the engine ECU software validation and shows solutions 
to the main difficulties associated with traditional software validation techniques by 
using expert systems (EXs) and dynamic-link libraries (dlls) during the hardware-in-
the-loop (HIL) simulation. The technique proposed in this research performs better 
than traditional techniques and allows improving: ease for automating test-cases, bug 
detection skills, functional coverage, difficulties to detect bugs linked to SMs that do 
many calculations and the difficulties to validate the software automatically among 
others. In addition, it shows that the HIL simulation can be automated in an easier 
way. 

2.1.2 Related Works 

The code and functional coverage is a real concern when validating a software. 
Research has been conducted on this topic to enhance this parameter [13–17]. There-
fore, test-case generation is a key issue. The black-box technique has been used 
for a long time in the automotive sector, as discussed by Conrad [18]. Despite its 
widespread use, it is true that it has some weak points as discussed by Chundur 
et al. [19]. In their dissertation, they consider that test-cases based on the engineers’
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experience usually imply gaps and test-redundancies. The model-based testing tech-
nique is an option to assess the code and functional coverage rate. The generation 
and execution of test-cases based on models have been proposed on several occa-
sions. For instance, Skruch and Buchala (DELPHI supplier) proposed a study based 
on models [20]. The tool Automation Desk (dSpace®) was used. Raffaelli et al 
presented research focused on functional models by using the commercial software 
Matelo® [21, 22]. 

The HIL simulation should be carried out as quickly as possible and with the 
highest number of test cases executed to ensure the time-frame and quality of the 
project [23]. Test automation is essential to ensure a high code coverage and to 
improve reliability [24, 25]. There are many ways for automating HIL simulation in 
the market [26, 27]. The automation process is mainly based on black-box techniques 
such as stated by Lemp, Köhl and Plöger: “As a rule, the tests specified by the ECU 
departments are first performed as black box tests on the network system (know-how 
on software structures is not taken)”. 

The HIL simulation implies that a specific operating point is reached by the engine 
ECU. This can be extremely complicated, requiring a lot of manipulations on the 
HIL model due to SM interactions. There are three possible ways for executing a 
given test-case in an HIL simulation. Firstly, executing the test-case manually, that 
is, a technician performs all the necessary actions in the HIL simulation to reach 
the desired operating point. Secondly, the “tester-on-the-loop” concept can be used. 
Petrenko, Nguena-Timo and Ramesh, reported the main problems and solutions asso-
ciated with software validation in the automotive sector [28]. Their main conclusion 
was focused on the methodology known as “tester-in-the-loop”, in which the test 
engineer leads the system to a desired operation point, considered as a crucial oper-
ation point. Once the crucial point is reached, a series of automated actions are 
executed to reach the goals previously established in the test-case. Finally, test-cases 
can be fully automated. In this case, a script controls the whole execution process. 

Some types of bugs are not detected by using some techniques such as the tester-
in-the-loop or black-box, Fig. 2.1, depicts the obtained result for an output for a 
variable of a SM when executing the software in an HIL simulation (in red) and 
its expected value (in blue). As one can see, the results are different. This error 
represents an inaccuracy when it comes to calculating the gas speed in the exhaust 
pipe. This error impacts the amount of urea injected to treat NOx. Because this bug 
does not imply the presence of a functional bug, it is impossible to detect it by using 
the black-box technique. The detection of this type of bugs involves the checking 
and detailed analysis of the software code by running additional software.

The solution for validating no matter what type of SM is very far from achieving 
by employing a direct comparison between the HIL results and the expected outputs 
indicated in the test-cases. One can encounter some difficulties such as synchroniza-
tion problems or difficulties to validate the software automatically, among others. 
Table 2.1 describes the main issues.

The present chapter proposes how to implement the possible solutions depicted in 
Table 2.1 thanks to the use of dlls for validating any types of SMs when automating a 
test-case through the HIL simulation, and especially all SMs that cannot be validated
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Fig. 2.1 Bug not detected when using traditional techniques

by employing traditional techniques. Thanks to dlls, SMs responsible for doing a 
great deal of internal calculations, can be validated. During the HIL simulation, it 
can be checked that all the calculations are properly carried out when the software 
and hardware are integrated. This feature allows finding bugs which cannot be found 
by traditional techniques. In addition, in case the desired operating point set in the 
test-case is not reached in an automated HIL simulation, owing to SM interactions, 
the dlls can determine the expected output that the software should provide. Thanks 
to rule-based EX, it is possible to verify whether the functional behavior of the 
software is correct for the outputs obtained after the HIL simulation. EXs can carry 
out a real-time performance validation when executing a test-case thanks to dlls. 

2.2 Application of Rule-Based Expert Systems 
and Dynamic-Link Libraries to Enhance 
Hardware-In-The-Loop Simulation Results1 

2.2.1 Introduction 

New and innovative techniques to validate software are needed to reduce cost and 
increase software quality. 

This research focuses on the validation of engine electronic control unit software 
by using EXs and dlls with the aim of checking if this technique performs better than 
traditional ones.

1 Extract of the following paper published in Journal of Software “Application of Rule-Based Expert 
Systems and Dynamic-Link Libraries to Enhance Hardware-In-The-Loop Simulation Results” JSW 
2019 Vol.14(6): 265–292. ISSN: 1796-217X. https://doi.org/10.17706/jsw.14.6.265-292. http:// 
www.jsoftware.us/. 

https://doi.org/10.17706/jsw.14.6.265-292
http://www.jsoftware.us/
http://www.jsoftware.us/
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Table 2.1 Potential solutions for the aforementioned issues 

Consequences Reason Possible solutions 

Difficulties to validate 
the software 
automatically 

When the values set in the test-case for the inputs 
are not reached due to SM interactions; then the 
output values set in the test-case may be no longer 
available. No automatic validation can be 
performed 

Recalculate the 
output values 
So that automatic 
validation process 
can be carried out. 
Dlls can perform 
this task 

The test-engineer cannot establish the expected 
outputs before performing the test. In some cases, 
the output values are analog trends which depend 
on many factors (number of kilometers, number of 
regenerations of the diesel particulate filter, values 
of safety module counters, dilution oil rate, 
properly EEPROM initialized, etc.). Consequently, 
the expected output can be set after having 
performed the HIL simulation performing the test. 
In some cases, the output values are analog trends 
which depend on many factors (number of 
kilometers, number of regenerations of the diesel 
particulate filter, values of safety module counters, 
dilution oil rate, properly EEPROM initialized, 
etc.). Consequently, the expected output can be set 
after having performed the HIL simulation 

Bug performance 
detection 

If input values are different from the ones 
established in the test-case, then the software 
performance behavior is unknown 

Synchronization 
problems 

When a test-case is run, the process must compare 
the current state of the engine ECU and the 
expected outputs. It is not possible to read all 
variables involved in the test-case at the same time 
due to data acquisition software limitations 
combined with Python scripts 
Consequently, a desynchronization problem 
occurs as some variables are read at t1, others at t2 
etc. 

A data-acquisition 
can be done while 
the test-case is 
run. Then, when 
the process is 
ended, the 
data-acquisition is 
stopped, and the 
conformity of the 
results can be 
achieved 
comparing the 
HIL results with 
the dll results 

The fact of having different values stored in 
EEPROM memories keeps the test-engineer from 
providing accurate screenshot and expected results 

The EEPROM 
can be initialized 
when building the 
dll

(continued)
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Table 2.1 (continued)

Consequences Reason Possible solutions

Functional coverage 
unknown 

A functional code coverage could be established 
by analyzing the black-box test-cases before the 
HIL simulation. When reaching different values 
for the inputs after HIL simulations, then the 
use-cases tested are different from the ones 
planned 

Implementing a 
system that can 
assess whether the 
software 
performance is as 
expected or not 
Considering the 
number of 
performance rules 
assessed, the 
functional 
coverage could be 
established. A 
performance EX 
can perform this 
task 

Difficulties to detect 
bugs linked to SMs that 
perform many 
calculations 

The calculations may be performed wrongly but 
they do not imply that the vehicle behaves in such 
a way that the client could detect any abnormality 
(Fig. 2.1) 

Implementing a 
system that can 
check if the 
software properly 
calculates all 
software outputs. 
Dlls can perform 
this task

To do this, a test-case database was built and run by using HIL simulations to 
validate a series of SMs by using these techniques: the tester-in-the-loop, automation 
by using a Python script, the model-based testing and EXs combined with dlls with 
the aim of assessing several factors such as: productivity gain, bug detection skills, 
functional coverage assessment, ease to automate test-cases among others. 

Dlls and EXs improve the HIL success rate by 4.8%, 6% and 20% at least, for 
simple, fairly-complex, and highly-complex SMs, respectively. Between 9 and 13 
more bugs were found when using the EXs and dlls compared with other techniques. 
Two of the bugs would have required software not initially planned as they were 
linked to environmental policies. The proposed technique can be applied to any 
types of a SM, especially in those cases in which traditional validation techniques 
fail.
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2.2.2 Method 

2.2.2.1 Description 

The engine specifications are composed of Simulink® models. Thus, the dll can be 
easily built considering that Mathworks® has implemented different ways to build 
a dll from a Simulink® model [29]. 

The method used in this research are composed of different stages. Firstly, a 
series of test-cases are designed. Then, all test-cases are run by using the following 
techniques: manual execution by a technician, automation by employing Python 
scripts (with and without dlls), the tester-in-the-loop technique and fully automated 
process by using a performance EX combined with dlls. The EX compiles all rules 
(software requirements) related to the SM under validation. To conduct the test-cases, 
an HIL simulation is used. The HIL model belongs to the company subjected to this 
case-study and has been validated by its experts. The hypothesis to be proved by 
following this method is that all issues shown in Table 2.1 can be solved thanks to this 
technique proposed by the authors. Several indicators are analyzed such as: evaluation 
of the success rate of the HIL simulation, main causes of failure and success for each 
of the methodologies when running test-cases, the functional coverage obtained, the 
productivity gain which may take place. The advantages and limitations of using dlls 
will be discussed. EXs will assess the software performance. 

The dll can be implemented by following the steps indicated in many Mathworks® 
documentation available in their site. The only thing that the user really needs is the 
Simulink® model to be converted into a dll. In this study, this is not a problem 
as the specifications needed to code the engine ECU software, are composed of 
Simulink® models. The main difficulty is how to call the dll. To do this, as described 
in Matlab® documentation, different programming languages such as C or an m-file 
can be employed. In this research, C language has been chosen. It is important to 
describe how the HIL simulation is performed when using dlls to validate the soft-
ware. Figure 2.2 depicts the process when using an automation script. This description 
is valid for all techniques but the manual execution one (no automation process). A 
test-case is executed through a Python script coded by a test engineer. At this moment, 
the software Inca® [30], or any other software that can read the memory positions of 
the ECU, performs the data acquisition of all the software variables selected by the 
test engineer. The result of this process is to generate a data-acquisition file. During 
the HIL simulation the script is in charge of performing all the necessary manipula-
tions on the driver-ECU interface of the HIL model automatically. If after a certain 
pre-established time, the values for the input set in the test case are not reached, the 
data acquisition process and the test-case execution are stopped by the Python script. 
Then, a data acquisition file containing all the software variables chosen by the test-
engineer in the HIL simulation is obtained. A C-file is in charge of decoding the data 
acquisition file and sending, one by one, all the samples of the HIL simulation to 
the dll as exposed later. Every time a sample is sent by the C-file, the dll returns the 
theoretical value that the software should have delivered. Then, the Python scripts
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Fig. 2.2 Use of dlls in an HIL simulation when performing a test-case 

checks whether the software outputs are equal to dll outputs every time the dll returns 
a value. Two key topics must be reminded. Firstly, the outputs of the SM are also 
available in the asci-ii file. Secondly, the engine ECU software is an image of the 
Simulink® models of the SM under validation. 

2.2.2.2 Functions Used in the HIL Simulation 

The methodology proposed in this study has been tested in three types of functions 
or SMs chosen according to the number of calculations to be done as well as their 
complexity, number of inputs and/ outputs of the SM and the accuracy required for 
the output results (Table 2.2). They have been considered as representative for this 
case-study by the authors and the company subjected to this research.
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Table 2.2 Types of SM presented in the ECU software 

Type of 
SM 

Characteristics Validation requirements SM 

Simple a. A reduced number of input and 
output variables present in the 
SM and small number of 
calculations to be done. 
Furthermore, they are not 
complex 

b. High accuracy needed for 
calculations in some cases and 
easy to identify the main 
functional characteristics of the 
SM 

SMs require a few 
manipulations to make the 
engine ECU reach the desired 
operating point 
For instance, the SM in charge 
of detecting whether the 
accelerator pedal is blocked. 
The engine ECU must check a 
few parameters 

Such as: 
Temperature 
estimators 
Brake pedal 
monitoring 

Fairly 
complex 

a. High number of input and output 
variables present in the module 
but moderate number of 
calculations to be performed 

b. Moderate accuracy needed for 
calculations. However, difficult 
to identify the main functional 
characteristics of the SM 

SMs require more 
manipulations to make the 
engine ECU reach the desired 
operating point 
For instance, SMs related with 
treatment of exhaust gases 

Such as: 
Treatment of 
exhaust gases 
systems 

Highly 
complex 

a. High number of input and output 
variables and number of 
calculations 

b. Calculation not necessarily 
complex but high number of 
functional calculations but 
Moderate/low calculation 
accuracy 

SMs need weeks to reach the 
desired operating point 
For instance, the SM in charge 
of assessing the diesel dilution 
rate in the engine oil 

Such as: 
The SM in 
charge of 
controlling 
the oil rate 
diluted into 
diesel 

It is important to establish this classification because the validation requirements 
as well as the characteristics of the SM clearly influence the time required to carry out 
the validation process, as well as the additional difficulties that may arise. 5 SMs of 
each type were selected, based on different criteria such as test engineers’ experience, 
the most problematic SMs in other projects, SMs that require systematic validations 
to ensure the vehicle safety, SMs that require frequent regression validations as well 
as those SMs that have never been implemented in previous projects and, in short, 
they are a novelty (see Table 2.2). 

Table 2.3 shows the number of tests considered in this research according to the 
type of SM. 

Table 2.3 Number of tests 
used in this research Type of SM Number of test 

Simple 250 

Fairly complex 1,250 

Highly complex 100
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Table 2.4 Methods to generate test-cases 

Technique Method 

Cause-effect technique A1 

Model-based testing A2 

One EX combined with dlls and Two EXs combined with dlls A3 

A1: A database in which the staff trace different bugs found throughout a project. In addition, several 
test-cases come from the software requirements 
A2: Pseudorandom values generated by Matelo® to cover a functional model 
A3: Pseudorandom values generated by Python scripts 

Table 2.4 indicates the methods followed to generate test-cases for each technique. 
It is important to analyze what A2 and A3 mean. In A2, Matelo® can generate all 

necessary test-cases with the aim of covering the functional model. In A3, Python 
scripts also generate test-cases trying to cover the functional model. In addition, they 
generate pseudorandom values trying to reach functional states not implemented in 
the model. A functional state not implemented in the model involves a use-case not 
considered by the design team. In other words, a design error. The fact of using fuzzy 
variables, as exposed later, allows increasing the combination of the inputs of the 
SM under validation. It must also be taken into account that the scripts in charge of 
generating pseudorandom values have to avoid impossible combinations such as a 
vehicle speed at 90 km/h and the first shift engaged. 

Table 2.5 shows examples of test-cases which could be used to check some func-
tionalities of the software by using different techniques. Fuzzy variables are used 
when using EXs combined with dlls by increasing the number of combinations of 
the inputs provided by the SM under validation.

2.2.2.3 Equipment 

The following equipment was used in this research.

• An engine ECU software and hardware. 
• The HIL bench used to conduct this research belongs to the manufacturer 

dSpace®, model dSpace® Simulator Full-size [31]. It is a versatile HIL simulator 
capable of emulating the dynamic vehicle behavior. 

• When it comes to building the model that serves as the driver’s interface, ControlD-
esk® version 5.1 from dSpace® manufacturer is employed [32]. By using this 
software, it is possible to carry out all necessary data exchange between the HIL 
bench and the engine ECU. This model was designed by the company subjected 
to this case-study and it is validated by the Electronic Validation Powertrain and 
Hybrids service before using it. 

• Throughout this research, it is necessary to make measurements of different soft-
ware variables stored in the engine ECU memory. To do this, it is imperative to
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Table 2.5 Examples of test-cases 

Feature to be 
checked 

Actions to be done Expected results Technique 

Body control unit. 
Cyclic redundancy 
check invalid 

Set a CRC invalid value 
of the frame BCM_A1 

Check the inhibition 
of adaptive cruise 
control 

Cause-effect 
Model-based testing 

Diesel particulate 
filter regeneration 

1. Var1_veh_started = 
TRUE 

Start the vehicle 
2. Var2_temperature_ 

exhaust_gas = 600ºC 
Do a driving cycle and 
var3_vehicle_speed = 
80 km/h Press the brake 
pedal to reach 40 km/h 
Then Var4_particulate_ 
filter = 40 g 
Do not overpass 
2000 rpm 

When the RG is 
performing the 
variable var1_out is 
activated 

Model-based testing 

Diesel particulate 
filter regeneration 

Var1_veh_started = 
TRUE 
Start the vehicle and 
var2_temperature_ 
exhaust_gas = High 
Do a driving cycle. 
Var3_vehicle_speed = 
High 
Press the accelerator 
pedal to reach low speed 

When the RG is 
performing the 
variable var1_out is 
activated 

EXs combined with 
dlls

use software that allows reading memory locations. In this research, version 7.1.9 
of INCA® was used [30].

• The automation process can be carried out in different ways: by using Python 
script or AutomationDesk® software [33]. In this research, the Python script was 
chosen because the staff’s skill in AutomationDesk® in the service subjected to 
this case-study was low. 

• Matlab® R2013 and Microsoft Visual Studio 2015 were used to create the dlls 
used in this research. 

• Matelo®. Software used for validation purposes being able to generate test-cases.
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2.2.3 Results 

2.2.3.1 Ease for Automation Test-Cases 

a. Simple software modules 

Simple SMs, as indicated in the previous section, are characterized by handling a 
small number of variables. As a result, it is not difficult to reach the values established 
in the test-case. The problem associated with SM interactions appeared in all SMs 
considered in this research. For example, by analyzing the measurements obtained 
in the HIL simulation when validating a simple SM, by using MDA® [33], it was 
observed that, when actuating the brake pedal, multiple variables were affected and 
changed their values. When the brake pedal is actuated, the vehicle speed is reduced 
significantly, even without changing the accelerator pedal position. To decrease the 
vehicle speed, the engine ECU must control the engine combustion by modifying the 
air-diesel mixture rate. This phenomenon is regulated by other SMs which were not 
validated in this process. Therefore, one can conclude that to achieve the values set 
in the test-case, multiple SMs must be controlled simultaneously. This fact involves 
a great deal of complexity to code Python scripts. 

One of the most important issues to be analyzed is the consequences of not 
reaching the values set in the test-case. Table 2.6 shows the results when validating 
the simple functions by using different techniques. As one can see, the tester-in-
the-loop technique offers better results than the automated one without using dlls, 
because a technician makes the engine ECU reach a specific operating point during 
the test-case execution. When using dlls, the results are by 4.8% and 14.4% better 
than the tester-in-the-loop or automation results achieved by using a Python script 
only. 

The Simulink® blocks that, in most cases, prevent reaching the values set in the 
test-case in this research, are show in Table 2.7.

Table 2.6 Comparisons of different techniques for validating simple SMs 

Methodology Number of cases in 
which the output value 
set in the test-case was no 
longer valid 

Error rate after 250 
simulations (%) 

Success rate (%) 

Automated with a 
Python script but 
without using a dll/ 
model-based testing 

49 19.6 80.4 

Tester-in-the-loop 25 10 90 

Automated with a 
Python script and the 
use of dll 

13 5.2 94.8 
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Table 2.7 Most problematic Simulink blocks 

Interpolator block. In this case, depending on the input values presented to the 
Simulink® block, an output value is provided by applying an algorithm or an 
interpolation method 

Simulink® native comparator block. It has problems in all its versions (greater than, 
greater than or equal to, less than, less than or equal to). In engine ECU software, on 
many occasions the value of a certain physical magnitude (e.g., motor revolutions, 
vehicle speed) is compared with a calibration threshold 

It is important to analyze the root cause of the 5.2% failures. After the analysis of 
the 13 failures shown in Table 2.6, it was verified that the dynamic model used for the 
HIL simulation failed. Analysis showed that this issue came from 2 SMs. These SMs 
needed a 10 ms-sample period. Owing to imperfections of the HIL model, latency 
times and hardware limitations of the HIL bench, in certain occasions this sample 
time was not respected. 

b. Fairly-complex and highly-complex software modules 

For fairly-complex and highly complex validation SMs, the number of variables 
increased up to 80. Therefore, the issue of SM interactions is even more present. 
Figure 2.3 shows the total number and types of variables of a fairly-complex SM and 
the difficulty of manipulation to make the variables reach a specific value set in a test-
case. The graph depicted in Fig. 2.3 shows that the Boolean variables were easier to be 
manipulated to reach the desired value, especially when they were related to variables 
directly linked to the driver’s interface-model. If they were linked to analogical 
variables, it was not easy to reach the desired value. The triangle obtained for a fairly-
complex SM was an isosceles whose height is focused on high difficulty. Therefore, 
the issue about SM interaction arises. On average, after having analyzed 5 SMs it was 
concluded that at least 40 variables were influenced between them. It is important 
to explain the nuance of “at least”. The Boolean variables are simple to manipulate. 
Nevertheless, some of them have a direct impact on making the analogical ones reach 
the desired value established in the test-case. The HIL simulation results are shown 
in Table 2.8 in which one can see the number of times the expected output values 
specified in the test-cases are no longer valid when the SM inputs fail to reach the 
specific values set in the test-case. At the same time, the most problematic blocks 
present in the Simulink® models can also be observed (Table 2.9).

When it comes to a highly complex SM, the triangle obtained is closer to that of 
an isosceles one with a lower base. This characteristic indicates a greater presence 
of variables that are difficult to manipulate in a HIL simulation (Fig. 2.4). In this 
case, a total of 120 variables that influence the other variables had to be handled. 
The Simulink® blocks that pose the most problems were the same as those shown 
in Table 2.8. The results after the 100 HIL simulations are shown in Table 2.10.

In highly complex SMs, errors that prevent the HIL simulation from succeeding 
when using dlls were also detected. When validating a highly complex SM, a lower
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Fig. 2.3 Type of variables 
present in an 
average-complexity SM 

Table 2.8 Comparisons of different techniques for validating fairly-complex SMs 

Methodology Number of cases in 
which the output value 
set in the test-case was 
no longer valid 

Error rate after 1250 
simulations (%) 

Success rate (%) 

Automated with a 
Python script but 
without using a dll/ 
model-based testing 

480 38.4 61.6 

Tester-in-the-loop 200 16 84 

Automated with a 
Python script and the 
use of dll 

125 10 90

success-rate with dlls was obtained because these SMs require covering thousands 
of kilometers (close to 20,000 km in some cases). Thus, the probability of failure in 
the simulator increases. Considering the strong SM interaction, it is unlikely to reach 
the specific values set in the test-case. Thus, the tester-in-the-loop solution offers 
worse results than when using dlls. 

In fairly and highly complex SMs, at any given time, it was observed that several 
variables were close to the values previously set in the test-case as long as other values 
were quite far. If some manipulations were performed to make all the variables closer 
to the values set in the test-case, then the ones which were far from the expected 
values started to get closer, and the remaining variables started to get further. Thus, 
it is unlikely to be able to reach the input values set in a test case owing to SM 
interactions in such complex software as in an HIL simulation. Figure 2.5 shows how, 
by increasing the error tolerance against the value set in the test-case for the variables 
that constitute the test-case, the number of variables that remained within those 
tolerance margins increased. However, in any case, it was never possible to make
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Table 2.9 Most problematic Simulink blocks for an average SM 

Interpolator block. In this case, depending on the input values presented in the 
Simulink® block, an output value is provided by applying an algorithm or 
interpolation method 

Simulink® native comparator block. It has problems in all its versions (greater than, 
greater than or equal to, less than, less than or equal to). In engine ECU software, on 
many occasions the value of a certain physical magnitude (e.g., motor revolutions, 
vehicle speed) is compared with a calibration threshold 

This block sets the output to TRUE while the input In remains TRUE for a certain 
calibratable time. Otherwise, the output is FALSE. As found in this research, when it 
comes to average and complex functions, it is more difficult than in simple functions 
to succeed by making the input In remain stable 

This block provides a Boolean type TRUE when a falling edge is detected. 
Otherwise, it remains FALSE. In this case, when it comes to average and complex 
functions, it is difficult in certain cases (for example when validating exhaust gas 
treatment systems) to reach the conditions to generate a falling edge 

This block works as a typical RS flip-flop. As in a falling edge block, when it comes 
to average and complex functions, it is difficult in certain cases (for example when 
validating exhaust gas treatment systems or oil adaptive maintenance function) to 
reach the conditions when the S-input could be activated

Fig. 2.4 Type of variables present in a high-complex SM

all the variables remain within the established tolerance range. This fact happened 
when executing the test-cases manually or automatically. As a result, these results 
show the great difficulty of validating an engine ECU software version by using HIL 
simulation.

Figure 2.6 summarizes the results obtained when using or not using dlls in an HIL 
simulation. As shown, dlls improve the HIL results in a significant way for all types 
of SMs, especially for simple and fairly-complex functions. It must be reminded
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Table 2.10 Comparisons of different techniques for validating highly complex SMs 

Methodology Number of cases in 
which the output value 
set in the test-case was no 
longer valid 

Error rate after 100 
simulations (%) 

Success rate (%) 

Automated with a 
Python script but 
without using a dll/ 
model-based testing 

61 61 39 

Tester-in-the-loop 35 35 65 

Automated with a 
Python script and the 
use of dll 

15 15 85

Fig. 2.5 Error trend depending on error tolerance of the SM inputs

that estimator SMs belong mainly to simple functions. That is why one can see 
such a huge difference when comparing the results obtained when activating or not 
activating dlls in an HIL simulation. In fairly and highly complex functions, it must 
also be noted that the SMs that require performing of many calculations belong to 
this category. Thus, there is also a significant difference when using dlls.

The reader may think that the automation process is not useful when validating the 
engine ECU software. This conclusion is false as there are some SMs, especially those 
related to electronics, which can be successfully automated such as CAN (Controller 
Area Network) and LIN (Local Interconnect network) bus or the basic functionalities 
of adaptive cruise control with the capacity to stop the vehicle (see Table 2.11). These 
statements have been proven in this research as shown in Table 2.12.

In this research, the SMs listed in Table 2.10 were used.
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Fig. 2.6 Comparison of results obtained when using and not using dlls

Table 2.11 List of SMs used and tested in this research 

Functions or SMs tested Number of test-cases tested 

CAN Bus 600 

Driving aid systems 140 

Pressure and Temperature carburant probe (SENT) 100 

LIN Bus 50 

Table 2.12 Comparisons of different techniques for validating functions depicted in Table 2.10 

Methodology Number of cases in 
which the output value 
set in the test-case was no 
longer valid 

Error rate after 1000 
simulations (%) 

Success rate (%) 

Automated with a 
Python script but 
without using a dll 

12 1.2 98.8 

Tester-in-the-loop 13 1.3 98.7

Table 2.11 does not show the results for automation with dlls as most of the 
function did not have a Simulink® model. 

2.2.3.2 Functional Coverage 

The functional coverage has been assessed by using Eq. (2.1) which is widely 
employed in the automotive sector. Table 2.13 shows the total number of functional 
requirements associated with the SMs validated in this research.
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Table 2.13 Number of total 
functional requirements Type of SM Number of requirements 

Simple 75 

Fairly-complex 400 

Highly-complex 510 

FC = 
number of software requirements tested by a technique 

number of software requirements indicated in Table 15 
(2.1) 

Table 2.14 depicts the results obtained for each technique in this research. 

a. Cause-effect technique and tester-in-the-loop 

All test-cases run in this research by using these techniques are similar to the ones 
depicted in Table 2.5. It must be reminded that the test-cases can be run in a manual 
way or by employing Python scripts with the aim of automating the process. 

The main limitation of the cause-effect technique is test-case redundancy. Many 
test cases run to validate the software were indeed linked to the same software 
requirements. The main reason behind this issue is the lack of a functional model of 
the SM under validation. When a use-case is not considered initially in the software 
requirements, it cannot be found by the cause-effect technique. In addition, bugs 
linked to calculation errors cannot be detected. 

b. Model-based testing 

When using Matelo®, it is important to expose the problems found. If the test 
engineer let Matelo® generate test-cases, this software will assign specific values 
for each input of the SM under validation. As a consequence, the problems of SM 
interactions, are identified. The only way to overcome this issue is to use fuzzy values 
combined with dlls. In this case, results are similar to the ones obtained when using a 
performance EX as long as dlls are used. Matelo® can be used also in such a way that 
Matelo® will not generate the test-case but it will control the automation process. In 
order words, the test engineer must code a Python script to generate the test -cases

Table 2.14 Functional coverage obtained for each research 

Technique Simple SM Fairly-complex SM Highly-complex SM 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Cause-effect 64 85.3 312 78 357 70 

Model-based 
testing 

64 85.3 312 78 357 70 

Tester-in-the-loop 64 85.3 312 78 357 70 

Performance EX 
combined with dlls 

68 90.7 348 87 445 87.2 
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needed and then Matelo® will check the functional states covered as the automation 
is performed. 

In the present research, the test engineer codes Python scripts with the aim of 
running the same test-cases as for the manual execution, the tester-in-the-loop and 
so on. Consequently, the results shown in Table 2.9 are the same for the cause-effect 
technique and the model based-testing one. 

c. Performance expert system 

The rule-based EX allows specifying the functional requirements of SMs. Two 
phases are considered when validating EXs: a validation and a test one. On the one 
hand, the former consists of verifying a certain number of test-cases depending on 
the type of SMs to assess the EX performance to be sure that the EXs seem to work 
properly (Table 2.15). Table 2.16 shows the results obtained during the first phase in 
which a 83.3% success rate was obtained. 

Once the errors were corrected, the test phase was performed to assure that the 
EXs would assess the software behavior properly. If no error occurred the EX was 
accepted. 

The main conclusion that can be drawn is all possible use-cases are not checked 
when no EX is used. When it comes to simple and medium-complexity SMs, the 
number of unchecked functional states is shown in Table 2.17. The number of untested 
rules in a medium or highly complex function is greater because of the large number 
of use cases involved in this type of SMs.

Table 2.15 Number of test-cases used to validate the EXs 

Number of test-cases used to test 
the EX during the verification 
process 

Number of test-cases used to test 
the EX during the acceptance 
process 

Simple SMs 100 80 

Fairly complex SMs 120 50 

Highly complex SMs 5 2 

Table 2.16 Errors detected when validating the EXs 

Type of error Percentage 
(%) 

Cases Explanation 

Wrong syntaxes 8.8 20 Because the rules used to design the EXs are 
extremely complex, the programmer made coding 
errors 

Incoherence 
between rules 

3.5 8 In some cases of wrong performance of the EX, 
incoherence between rules was found 

Misunderstanding 
of technical 
specifications 

3.1 7 Because of innovative evolutions in some parts of 
the engine, some technical specifications were not 
understood properly 

Rules not coded or 
forgotten 

1.3 3 This error is owing to the same misunderstanding 
of technical specifications 
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Table 2.17 Number of rules or functional states not checked when an EX is not used 

Type of SM Number of functional states not tested without using an EX 

Simple 4 

Fairly-complex 36 

Highly-complex 88 

These improvements are mainly based on two reasons: 

1. Dlls allow controlling better the HIL simulation as it is possible to know at any 
time if the current state of the engine ECU is coherent or not as already exposed 
in this research. 

2. EXs assess the functional coverage easily. The reader can think that a similar 
result could be obtained by using Matelo® combined with dlls. Matelo® gener-
ates test-cases off-line. If after the HIL simulation, the inputs of SM under vali-
dation do not reach the desired operating point, Matelo® cannot calculate the 
expected value for the current state of the engine ECU in-real time. 

3. Dlls allow finding bugs linked to calculation errors. 

2.2.3.3 Productivity Gain 

It is essential to check if EXs implementation respects the timeframes of the project 
by analyzing several factors. As shown in Table 2.18, the gain is positive for fairly 
and highly-complex SMs when using an EX. This gain comes from the automation 
process which allows testing test-cases quicker. In addition, these test-cases can be 
always run thanks to dlls. Consequently, an EX combined with dlls performs better 
than the other techniques. For simple SMs, the result is different as the HIL simulation 
implies that very simple and quick manipulations are conducted on the driver’s 
interface model. As a result, the time gain is negative and the timeframe of the project 
may not be respected. It must be reminded that several projects are being developed at 
the same time by car manufacturers: diesel or gasoline engines. Between these types 
of engines, one can find considerable differences when it comes to torque structure 
or after treatment of exhaust gas systems. However, when comparing engines of the 
same groups, they are remarkably similar. As a result, an EX designed for a project 
can be used for another one. Then, only the automation and validation phases will 
be performed. As one can see in these phases, this technique outperforms the other 
ones. The main conclusions which can be drawn is that the proposed technique always 
meets the project planning especially when there are several engines developing at 
the same time.
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Table 2.18 Time needed to design test-cases and rule-based EXs 

Simple 
functions 

Fairly 
complex 
function 

Complex 
function 

Total time for designing test-cases (h) 8 80 120 

Time for 
designing and 
coding 

Time for coding, design and validate 
EXs and Python script for the 
automation process (h) 

4 35 70 

Time for preparing dlls (h) 2 6 10 

Time for coding a Python script (h) 4 32 50 

Time for coding when using the 
tester-in-the-loop (h) 

2 25 35 

Total time for designing and coding 
when using EXs (h) 

14 121 200 

Total time for designing and coding 
when using Python scripts (h) 

12 112 170 

Total time for designing and coding 
when using the tester-in-the-loop (h) 

10 105 155 

Total time for designing when 
executing a test-case manually (h) 

8 80 120 

Test-case 
execution 

Time for executing an automated 
test-case by using EXs (h) 

0.32 13 73 

Time for executing an automated 
test-case (h) 

0.25 12.5 72 

Time for executing a test-case by 
using the tester-in-the-loop (h) 

0.46 62 80 

Time for executing a test-case 
manually (h) 

0.5 80 170 

Validation Time for validating the results with 
automation (h)a 

0.00028 0.00347 0.00044 

Time for validating the results 
without automation (h) 

1.67 20.83 2.33 

Total time Total time by using EXs (h) 14.32 134.00 273.00 

Total time with automation by using 
Python scripts (h) 

12.25 124.50 242.00 

Total time when using the 
tester-in-the-loop (h) 

10.46 167.00 235.00 

Total time without automation (h) 10.17 180.83 292.33 

aIn this case, the following data have been considered: 50 test-cases for simple functions with an 
execution time of 0.02 s, 250 test-cases for fairly complex functions with an execution time of 
0.05 s, and 50 test-cases for complex functions with an execution time of 0.08 s. The execution time 
was measured by using the Python function time clock
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2.2.3.4 Bug Detection 

Figure 2.7 shows the bugs found by each technique when running the test-cases. The 
tester-in-the-loop offers a better performance than the automation process as it can 
make the system reach critical states that are not easy to reach when only using a 
Python script. There are not significant differences between manual and tester-in-
the-loop techniques when it comes to bug detection as there is a technician who 
participates in the test-case execution, Python scripts detect fewer bugs than the rest 
of the techniques as test-cases are difficult to automate due to SM interactions. As a 
consequence, when the system reaches an operating point close to the one established 
in the test-cases, the outputs indicated in the test-cases may be no longer valid. To 
solve these problems, fuzzy values for the SM inputs may be used as exposed later 
in this section. 

The results obtained in this research show that EXs with dlls give better perfor-
mance and can be used to test more functional states and detect more bugs than the 
other techniques. Basically, this statement is based on two main reasons: 

1. The problems coming from the SM interactions are fixed due to dlls. Even though 
the operating point established in the test-case is not reached, dlls can provide 
the right values expected from the software. Consequently, the test-cases can 
be successfully run and the automation process can validate the HIL simulation 
results automatically. 

2. The functional coverage is improved due to the existence of the functional model. 
In addition, this model can be covered easily thanks to the automation success 
by using the dlls. It is also important to establish the main types of bugs found 
for each technique (Table 2.19).

3. When the bug is linked to calculation errors (calculation faults).

Fig. 2.7 Bugs found when using different techniques 
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Table 2.19 Type of bugs detected 

Calculation faults Bugs Performance faults 

Manual validation 0 12 2 

Tester-in-the-loop 0 14 1 

Automation without dlls 0 10 0 

Model-based testing 0 10 5 

EXs and dlls 5 14 4 

4. When no code error occurred but there was unexpected performance software. 
This issue can come from an error design in the SM under validation (performance 
faults). 

5. When there is a code bug. This means the programmer has made a mistake and 
coded differently from what was indicated in the specifications. 

2.2.3.5 Costs 

It is necessary to discuss costs. The first one is associated with the licenses needed 
to use a specific technique (already discussed). The other one is linked to software 
versions needed to correct bugs detected at the end of the project. This can be caused 
by two things. Firstly, certain SMs (especially those related to advanced driver assis-
tance systems) cannot be tested at the beginning of the project. The validation of 
these functions needs very mature software of some ECUs present in the network 
(electronic stability program ECU, body control unit, radars, cameras, gearbox ECU 
in automatic cars). Secondly, some bugs appear when testing some use-cases that 
were not considered in the validation process. When these bugs are detected, the 
project team must decide whether the bug has a significant functional impact and 
therefore require correction of the software. Otherwise, the bug can be corrected 
in future engine projects and no correction will be made. Developing new software 
versions involves a high cost but also might imply updating the ECU of vehicles 
that have already been marketed. The results showed that EXs combined with dlls 
detected two bugs that would have required corrective software development. These 
bugs were not detected using the cause-effect technique, the model-based testing 
one, the manual execution or the model-based testing one. 

The reader might think that, in case of bugs in the Simulink® model, the software 
will also contain these faults. As a result, no bug will be detected by using the method 
proposed in this research. This study has proven that this statement is true and that 
is why the performance EX must be used. 

2.2.3.6 Comparison Among Other Methods 

When performing an HIL simulation, it is not easy to reach the values indicated in 
the test-case due to SM interactions. Figure 2.8 shows an example of a histogram
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Fig. 2.8 Example of test-case 

displaying speed value. Depending on the value reached, the output can be 1 or 0. 
Consequently, if a test-case indicates that the speed must be 60 km/h, the accuracy 
is a critical factor and the expected output could be no longer valid. 

A comparison among different techniques is shown in Table 2.20.

2.2.4 Conclusions 

This research, conducted at the second most important European car manufacturer, 
is focused on the software validation of an engine ECU by using dlls and an EX (ES). 
This combination allows the detection of software performance and coding bugs. As 
shown in this research, dlls and ES can detect bugs that other techniques such as the 
black-box or the tester-in-the-loop cannot, especially those in temperature estimator 
SMs and after-treatment of exhaust gases SMs, which require accurate calculations. 
The obtained results show how dlls and the EX can improve the HIL success rate 
compared with the tester-in-the-loop technique and can execute 4.8% of the test-
cases in simple validation SMs, 6% of the test-cases of fairly complex SMs and 20% 
of the test-cases of highly complex SMs despite the presence of SM interactions. In 
comparison to the use of a Python script without using a dll, the dlls and the EX can 
improve the HIL and can execute 14.4% of the test-cases in simple validation SMs, 
28.4% of the test-cases of fairly complex SMs and 46% of the test-cases of highly 
complex SMs. As a result, dlls can overcome the issue linked to SM interactions. In 
addition, between 9 and 13 more bugs were found when using the EX and dlls, six of
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Table 2.20 Comparison among different techniques 

Manual 
validation 

Automation 
without dll 

Model-based 
testing 

EXs and dlls 

Validity of 
test-cases 

As shown in Fig. 2.9, it is necessary to reach 
the exact value indicated in the test-case. 
Otherwise, the validation process cannot be 
performed automatically 

Even though the values 
indicated in the test-case are 
not reached, the validation can 
be performed automatically 

Accuracy 
needed 

The test-case output may be no longer valid 
(Fig. 2.9). The test-engineer should check 
the specification to confirm the expected 
output 

The test-case output may be no 
longer valid. However, dlls can 
check the expected output 
automatically 

Complexity As shown in Fig. 2.9, it is highly 
complicated to reach the specific values 
indicated in the test-cases (see Tables 2.6, 
2.8 and 2.10) due to SM interactions 

Even though the HIL 
simulation does not reach the 
specific values indicated in the 
test-case, the validation 
process can be performed 

Robustness in 
case of failure 

During the HIL simulation, the engine ECU 
can detect a failure (low rail pressure, turbo 
failure, etc.). In that case, the test-case 
output is no longer valid 

Even though the engine ECU 
detects a failure, the dll can 
detect the expected output in 
that case 

Reading ECU 
variables in 
real-time 

INCA software does not allow reading 
in-real time variables by using Python while 
data acquisition is performed. The 
test-engineer has to analyze the data 
acquisition to check if a bug is present 

The dll can do the validation 
process automatically when 
using a C-code at the same time 

Fig. 2.9 Example of model and activation conditions
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which could not be detected by other techniques. Even though EXs and dlls require 
more time to be implemented, the timeframe of the project was respected. 

2.3 Use of Genetic Algorithms to Reduce Costs 
of the Software Validation Process2 

2.3.1 Introduction 

The number of ECUs installed in vehicles is increasingly high. Manufacturers must 
improve the software quality. Innovative techniques must be proposed to reduce cost 
and increase software quality. 

This research proposes a technique being able to generate not only test-cases in 
real time but to decide the best means to run them (HIL simulations or prototype 
vehicles) to reduce the cost and software testing time. It is focused on the engine 
ECU software which is one of the most complex software installed in vehicles. This 
software is coded by using Simulink® models. Two genetic algorithms (GAs) were 
coded. The first one is in charge of choosing which parts of the Simulink® models 
should be validated by using HIL simulations and which ones by using prototype 
vehicles. The second one tunes the inputs of the SM under validation to cover these 
parts of the Simulink® models. The usage of dlls is described to deal with the issues 
linked to SM interactions when running HIL simulations. 

GAs found at least 7 more bugs than traditional techniques and improved the 
functional and code coverage by between 3% and 11% for functional coverage and 
by between 1.4% and 7% for code coverage depending on the SM complexity. The 
validation time is reduced by 11.9% regarding traditional techniques. GAs perform 
better than traditional techniques improving software quality and reducing costs and 
validation time. The usage of dlls allows testing the software in real time as described 
in this study. 

Both the number of ECUs installed in vehicles and their complexity are increasing 
[5, 34, 35]. Thus, manufacturers must assure software quality and reliability [12]. 
The software and hardware validation of an engine ECU is performed by using 
the HIL simulation and prototype vehicles [36]. The HIL simulation has several 
advantages as no vehicle with all ECUs updated with the latest software version is 
necessary. Secondly, the ECU behavior in the network can be checked by analyzing 
the frames transmitted and received when conducting an HIL simulation. However, 
the real interactions between ECUs are not tested as all frames received are sent 
by a model and not by real ECUs. Regarding prototype vehicles, the engine ECU 
software is tested in real vehicles which must have all ECUs properly updated: ESP

2 Extracted from Ortega-Cabezas, P.M., Colmenar-Santos, A., Borge-Diez, D. et al. Experience 
report on the application of genetic algorithms to reduce costs of the software validation process 
in the automotive sector during an engine control unit project. Software Quality Journal 30, 687–728 
(2022). https://doi.org/10.1007/s11219-021-09582-x. https://www.springer.com/journal/11219. 

https://doi.org/10.1007/s11219-021-09582-x
https://www.springer.com/journal/11219
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(Electronic Stability Program), ADAS (Advanced Driver-Assistance System ECU), 
ATCU (Automatic Transmission Control Unit), etc. 

This chapter is focused on one of the most complex software installed in vehicles: 
the engine ECU software. It proposes the usage of GAs aiming at choosing the most 
adequate means to be used for validation while generating test-cases automatically 
at the same time. The main goals are: 

a. Choosing automatically the optimal means to reduce the validation time and 
costs. 

b. Finding solutions to technical problems when using the HIL simulation due to 
SM interactions. 

c. Assessing whether GAs perform better than other techniques such as the model-
based testing and the black-box techniques. 

d. Verifying whether GAs are able to find bugs when other techniques fail. 
e. Assessing the staff skill impact on the validation process. 

The engine ECU software development comprises three phases (V-cycle devel-
opment): implementing models based on Simulink® software in order to control 
the engine performance, generating C-code and checking the final integration of the 
software into the hardware. During the whole process, the engine software completes 
three levels of testing: model-in-the-loop (MIL), software-in-the-loop (SIL) and HIL 
simulations [37]. Consequently, the software is tested to assure that it meets all 
requirements. During the MIL, a controller model is implemented and applied to 
the Simulink® model aiming at checking if the model behaves as expected [38–40]. 
During the HIL simulation, the integration between software and hardware is tested 
thanks to a controller (the engine ECU and its software) which controls the system 
that imitates the engine behavior (the HIL simulator) [41–45]. In addition, prototype 
vehicles are used to test some functions which cannot be completely validated when 
using HIL simulations such as ADAS [46]. Therefore, the most adequate means 
to validate the software must be chosen to reduce time and costs. Finally, SIL is 
employed to test an executable code within a modelling environment [47]. 

Currently, software is tested based on software, architecture and system require-
ments [37]. At this point, how to test software requirements is a key point discussed 
in some standards such as ASPICE (2020). Software testability depends on 5 factors 
such as: requirements, built-in test capabilities, the test-cases design, the test support 
environment, and the software process in which testing is conducted [48]. Regarding 
software requirements, the most significant cause of accidents due to software is 
linked to poorly created software requirements or requirements that are partially 
delivered to developers [49, 50]. Dos Santos et al. carried out a detailed analysis about 
software requirements testing approaches such as the requirement driven testing 
[51, 52]. 

Concerning autonomous driving, ISO 26262 only covers functional safety when 
a failure occurs but not when there is no system failure. That is why, the safety of 
the intended functionality (SOTIF) ISO 21448 came out [53, 54]. Some key topics 
to validate the software are focused on 3D Modeling and sensor buildings. The 
former aims to create a realistic environment while the latter consists of modeling
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and testing sensors among others [55]. Huang et al. detail in their research the main 
tendencies to validate software such as software testing, simulation testing, x-in-
the-loop testing and driving test in real conditions [56]. Riedmaier et al. describe 
an important method to test the software: the scenario-based approach which allows 
individual traffic situations to be tested by using virtual simulations [57]. Other 
approaches such as formal verification, a function-based approach, real-world testing, 
shadow mode testing and traffic-simulation-based approach are used to test SOTIF. 
The main difference among them is that in the scenario-based and function-based 
approaches, a microscopic statement about the safety of the system is first made to 
be transferred to a macroscopic statement. The rest of the methods result directly 
in a macroscopic statement. There are solutions in the market which allow rapid 
prototype, MIL/SIL simulations, HIL simulations and real test drives [58]. 

Cybersecurity in the automotive industry involves three main factors to be consid-
ered such as authentication and access control, protection from external attacks and 
detection and incident response [59]. The factors which make the automotive secu-
rity more efficient include integration of right solutions such as firewalls, protecting 
communications, authenticating communications and encrypting data [60, 61]. These 
topics are important to offer performance such as on-the-air software update and 
V2X communication [62, 63]. As detailed by McAfee, the scope of cybersecurity 
involves the distributed security architecture, hardware and software security and 
finally network security [62]. Standards such as ISO/SAE 21434 will help the auto-
motive sector to implement solutions for effective compliance with cybersecurity 
requirements as today’s knowledge sharing is inadequate [64, 63] In this research, 
some topics linked to cybersecurity testing are analyzed. 

2.3.2 Methods 

2.3.2.1 Simulink Models 

The SMs are composed of multiple complex Simulink® models and subsystems. 
Figure 2.9 shows an example of the internal structure of the SM linked to the NOx 

heating probes installed in vehicles. When the initial conditions are reached (key on, 
the engine rpm more than 650 rpm and the vehicle speed higher than a threshold), 
the engine ECU software checks whether the dew point is reached. This point is 
the temperature to which air must be cooled to become saturated with water vapor. 
Afterwards, the NOx probes start to heat until reaching the required temperature to 
measure NOx ppm present in the exhaust gas pipe. In this study, all models were 
transformed into models based on nodes (Sx) which represent different low-level 
system states3 and relations between them (Fig. 2.10). When designing test-cases, 
it must be determined which parts of the Simulink® model should be validated by

3 Low system states are functional states at low level. Consequently, the functional state cannot be 
detected by the driver. 
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Fig. 2.10 Example of model and activation conditions 

using the HIL simulation or prototype vehicles and how inputs are tuned. Next section 
describes in-detail how GAs work to do this. 

2.3.2.2 How GAs Work Together 

Figure 2.11 depicts a pseudocode and a high-level description of the method. A 
model is implemented by using the Python code (Fig. 2.11) through the variable 
named ARCS which contains the cost and conditions to go from one state to another 
one. Next sections display how the conditions are specified. Once the model is made, 
the GAs are parametrized, and the range values of the input variables of the SM under 
validation and the constrained linked to the optimization problem are specified. The 
GA2 generates populations (inputs for the SM under validation). GA1 is used to 
assess and optimize the path with the lowest cost by doing operations such as mutation 
or crossover taking into account the population generated by GA2. The GA2 makes 
the population evolve in such a way that the cost calculated by GA1 is minimized.

2.3.2.3 GAs Description 

a. GA in charge of tuning inputs 

Once the model is implemented and set in the code, this generates populations. 
To do this, the range must be specified as well as the constrained among software 
variables linked to the optimization problem. The fitness function of this GA2 is the 
output of GA1 described later which was responsible for finding an optimal path 
given specific inputs. When the GAs are run, the results display the values of all 
inputs of the SM which cover the path requiring the minimum cost and the usage of 
HIL simulations.
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IMPORT packages 
#Describes nodes and arcs.  Here is the structure 
to define them 
# Si-Sk describes the transition for going to Si to Sk: 
cost and conditions. #The variable range is also 
specified. 
ARCS= {“Si-Sk”: {“cost”: 150, “conditions”: 
{“variable x”:[range], 
call_assessment_conditions}} 

#Define input ranges 
RANGES= {“variable1”: [0,10],  
                      “variable2”: [0, 20] 
                    } 
#Define GAs parameters.  
GA1_PARAMS,  
      “initial_state”=S1 
      “final_state”= S9 #considering that there are 9 
states 

“mutation_factor”= 0.7
       “gens”= 9 
       “retain_factor”= 0.4   

#Define GAs parameters 
GA2_PARAMS 
      “mutation_factor”= 0.8 
      “gens”= 50     # number of members of a 
population        
      “retain_factor”= 0.15   

DEFINE conditions among variables 
#Generate initial population of input variables. 
This function returns the #values of each variable. 

#Example value: {variable1=2, variable2=2.7}, 
{variable1=2.6, variable2=3.5}, 

variable1, 
variable2…=input_population_generate() 

# For each member, check the path obtained 
depending on conditions indicated #in ARCS 
FOR j=1 to gens_GA2 
   FOR i=1 to gens_GA1  
      #Calling the first GA to find the best path. In 
other      

#words,the path   
      #with minimum cost for a given input 
      cost, states, fitness_score =     
      calling_GA1_find_best_path(inputs_values[i]) 
   NEXT 
   evolve_mutation_retain(inputs) 
NEXT 

Fig. 2.11 Pseudocode of how GAs work together

b. GA in charge of choosing the most adequate means 

Several key factors must be considered when deciding the most adequate means 
to validate the software such as the ones shown in Table 2.21 [42, 65].

All factors shown in Table 2.21 are assessed when going among states of the 
models (see Fig. 2.10). This process is composed of two phases:
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Table 2.21 Factors considered to assess the fitness function 

Factor Description 

Tuning activities Some SMs must be tuned before its validation such as 
combustion/injection SMs. In this case, the engine software can 
apply different cartographies to inject the optimal amount of 
diesel or gasoline. If one of them is not tuned, the engine may 
stall. Consequently, a dataset which guarantees a minimum 
functionality of the SM under validation must be available 

Time needed to go from one 
state to another one 

An estimate of the time needed to validate an SM when using a 
vehicle or an HIL model is made. There are two 
possibilities—either to perform the simulation by using an HIL 
model or a vehicle. The former implies that the HIL model must 
be robust. The latter implies that a vehicle should be used. Some 
use-cases are difficult to reach when using prototype vehicles. 
Test-engineers’ experience is essential to assess properly this 
factor 

Dependency on ECUs When validating a certain SM by using a vehicle, all ECUs must 
be updated aiming at assuring that all frames are properly 
transmitted and received among other factors. Otherwise, the 
validation process such as the adaptive cruise control SM cannot 
be performed. In this case, at least the ADAS, ESP and engine 
ECU must be properly updated and tuned 

Risk level The automotive safety integrity level is a system which classifies 
potential risks posed in the vehicle when it is operated by using 
the ISO 26262. For this purpose, it uses three parameters such as: 
exposure, controllability and severity with the aim of establishing 
a score. By using this score, a series of automotive safety 
integrity level is established. Regarding the engine ECU, the 
software must guarantee the passengers’ and vehicle safety in a 
dangerous situation. Depending on the ASIL values (A, B, C, D) 
the level of risk will be different 

Feedback from other 
projects 

It is common that several engine projects take place at the same 
time. Consequently, feedback from other projects is of paramount 
importance. Therefore, when a bug is found in a specific engine 
software version, it is immediately communicated to other 
project teams so that they can check if there is a bug in some 
other engine software applications. Meanwhile client complaints 
are also considered in such a way that if a project receives a client 
complaint, it is transmitted to other projects, which could 
galvanize all necessary actions

• Phase 1. A multidisciplinary team assesses these factors aiming at determining 
the cost of each path by using the process depicted in Fig. 2.12. As a result, a 
model with the whole cost set for each transition is obtained (Fig. 2.10).

• Phase 2. This GA chooses the most adequate means to validate the SM by assessing 
the cost function given by Eq. (2.2):
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Fig. 2.12 Factors indicated in Eq. (2.1)

Fitness function = 
i=n∑

i=1 

Si (2.2) 

where Si is the cost of reaching the Si state,
∑i=n 

i=1 Si is the cost linked to all 
transitions of a specific path. When the HIL is chosen, the fitness function is always 
lower than 150. Otherwise, prototype vehicles are employed as, in this case, the 
fitness function reaches 150 or more. The reader can check this by adding all Si 

values needed to reach S14. 

Each path is composed of different states. The paths which contain state 17 more 
frequently are considered as the optimal ones to be validated by using an HIL simula-
tion. Otherwise, it should be validated by using prototype vehicles. The test-engineer 
can collect important information when analyzing the states covered once the optimal 
path is assessed (dependency on other ECUs, feedback from other projects, etc.). 

2.3.2.4 HIL Simulations 

Once the GAs are parametrized and a model is built as shown in Fig. 2.10, the  HIL  
simulation can be conducted. In addition to the cost value, the actions to be conducted 
on the HIL model for each transition must be coded (Fig. 2.13) as the  software  
variables have to reach the values specified in the test-case. Several ways to set the 
conditions to pass from one state to another one can be used. The first entails writing 
the equations directly in the code, which is limited to simple SMs as fairly complex 
and high complex SMs involve many equations. The second option is to call the
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Fig. 2.13 HIL simulation process 

Simulink® model by using the test-case inputs to make the Simulink® model return 
the expected output values. In this study, the Simulink® models were transformed 
into dlls by following the steps described in the official Matlab® documentation. 
Figure 2.13 depicts the usage of dlls. They are necessary to conduct the validation 
process to find bugs due to SM interactions as it will be shown in the results and 
discussion sections. 

2.3.2.5 Network and Software and Hardware Integration 

This proposal validates the network and hardware and software integration by using 
the dlls as shown in Fig. 2.13. Once the software is coded, the software outputs 
must be equal or very close (if the outputs are analogical) to the values provided 
by the Simulink® models despite the SM interactions. This point is checked by 
using the dlls which allow comparing the HIL results when running a test-case with 
the outputs provided by dlls. The same explanation can be used for vehicles as the 
data acquisition can be injected into the Simulink® models, and both results can be 
compared. 

Regarding the network, it is tested when using prototype vehicles in real condi-
tions. Not all SMs implemented in the software exchange information with other 
ECUs. All these aspects are considered in Fig. 2.12 where the reader can find state 
S10 which assesses if the SM under validation has an impact on the network. Anyway, 
if an SM must be validated and prototype vehicles with all ECUs properly updated 
are not available (specially at the beginning of the project), HIL simulations are used
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considering that the frames are simulated by using a model (this situation is also 
considered in Fig. 2.12). 

2.3.2.6 Traditional Techniques 

The hereafter techniques were used in this research. 

a. The cause-effect technique 

One of the most used techniques in the automotive sector is the black-box tech-
nique [18]. The main idea behind this technique is to test software as a black box. In 
other words, the internal structure of the SM is not considered by the test-engineer 
who is focused on the software behavior. That is why this technique is also known 
as behavioral testing. When designing the test to be run, test engineers design test-
cases and decide which means could be used according to their experience [18, 66, 
67]. The cause-effect is a black-box technique widely employed in the automotive 
sector for several reasons (easy to automate among others). This technique is based 
on considering a series of conditions linked to inputs of the SM under validation, 
the test-engineer must check if the software runs as expected. To do this, the test-
engineer performs a series of actions by using the means employed for validation 
(prototype vehicles or the HIL simulation) and, finally, verify the software behavior. 
This behavior is validated and assessed by using the outputs of the SM under valida-
tion. It must be reminded that the means used to validate it are chosen by considering 
the test-engineers’ experience when using this technique. 

b. The model-based testing 

It is a software testing technique consisting of deriving test-cases from a functional 
model which describes the functional aspects and requirements of the SM under 
validation. Thanks to this model, it is easier to assess the functional coverage as 
the number of functional states covered when validating an SM is known. When 
implementing it, all functional states and the transition from one state to another are 
indicated. In this research, Matelo® software was used to generate the functional 
model of SMs [68]. This software allows implementing a model easily. Regarding 
the activation of each transition, the conditions are set. In this study, each transition 
calls a Simulink® model to check the next state to be activated. Matelo® allows 
generating test-cases by assigning values to all variables used in transition in such 
a way that it tries to cover all possible transitions and paths. Finally, each state can 
be a model as it is the case in this research making the models extremely complex. 
Figure 2.14 sums up all aforementioned process explained. A test-case is generated 
and by using calls to Simulink® models, Matelo® determines which part of the 
model will be covered (Fig. 2.14 in orange). Many test-cases are generated to cover 
the whole model and to increase functional and code coverage.
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Fig. 2.14 Example of NOx activation model based on Matelo® 

2.3.2.7 Experimental Settings 

The characteristics of SMs have an impact on three factors: the time needed to 
validate the software, the means used to run test-cases and the number of test-cases 
to be run considering the planning of the engine software development. According 
to the test-engineers’ experience and the technical documentation used for coding 
the software, the SMs were classified as simple, fairly complex and high complex 
SMs (Table 2.2). 

Table 2.22 shows the way of generating test-cases. All techniques used the soft-
ware and system requirements traced in DOORs, feedback from other projects4 

and the Simulink® specifications as inputs. By analyzing all these input data, the 
test-engineers build models when using GAs and the model-based testing. Finally, 
test-cases are implemented automatically or manually. As described later, the test-
engineers’ skills have a significant impact on the time needed to implement test-cases 
and to obtain a productivity gain.

4 Feedback from other projects means bugs found in a project which could impact another project. 
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Table 2.22 Test-cases run in this research 

Technique Inputs used for 
implementing 
test-cases 

Software used Way of 
implementing 
test-cases 

Model used 

Cause-effect 
technique 

1. Feedback 
from other 
projects 

2. Software 
requirements 

3. System 
requirements 

4. Simulink® 
specifications 

1. DOORs 
2. Corporate database to 

trace bugs 
3. Excel® file which 

contains all 
information needed 
(initial conditions, 
actions to be done, 
etc.) 

Manually by 
interpreting: 
a. the software and 

system 
requirements 

b. the information of 
bugs traced in the 
corporate 
database 

None 

Model-based 
testing 

1. Feedback 
from other 
projects 

2. Software 
requirements 

3. System 
requirements 

4. Simulink® 
specifications 

1. Matelo® 
2. DOORs 
3. Corporate database to 

trace bugs 

Automatically done 
by Matelo® by 
covering the model 
built by the 
test-engineer 

Functional 
model 

Genetic 
Algorithms 

1. Feedback 
from other 
projects 

2. Software 
requirements 

3. System 
requirements 

4. Simulink® 
specifications 

Pseudorandom values 
generated by Python 
when coding GAs 

Automatically done 
by genetic 
algorithms 

Low level 
model 

2.3.3 Results 

This section compares the performance among GAs and traditional techniques by 
using the KPIs indicated in Table 2.23.

2.3.3.1 Code Coverage 

During HIL simulations, a bug is detected if the difference between the HIL results 
and the outputs provided by the Simulink® models does not obey Eq. (2.3). 

j=m∑

j=1

∣∣HIL j − Simulink j

∣∣ ≈ 0 (2.3)
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Table 2.23 KPI employed in this research 

KPI Description 

Code coverage It determines the number of Simulink® blocks successfully validated when 
running test-cases divided by the total number of Simulink® blocks considered 

Functional 
coverage 

It determines the number of functional states successfully tested when running 
test-cases divided by the total number of functional states considered 

Validation 
software time 

It describes the time needed to implement, run and validate an SM when 
running test-cases 

Productivity 
gain 

The time gain obtained when using a specific software validation technique 

Bugs found 
and their types 

Number of bugs and types found when using a specific software validation 
technique 

Bugs found by 
other clients 

Number of bugs found by other users of the engine ECU software such as ESP 
and ADAS validation staff

where HIL j is the value for the output j of the SM under validation after having run 
a test-case by using an HIL simulation and Simulink j is the value for the output j of 
the SM under validation after having run a test-case by using the Simulink® model. 

The coverage is assessed by using Eq. (2.4) which relates to the number 
of Simulink® blocks tested versus the total number of blocks presented in the 
specifications of the SM under validation. 

Code coverage = number of Simulink® blocks tested 

number of Simulink® blocks present in the SM under validation 
× 100 (2.4) 

Table 2.24 shows the number of blocks present in the SMs validated in this 
research, which is used to assess the code coverage (Table 2.25). 

As the cause-effect technique does not use models, the code coverage is lower than 
the one obtained when using the model-based testing and GAs. Building a model in 
which each state is a Simulink® block allows testing the same functional state by 
following different branches of the Simulink® model (Fig. 2.15). The model-based 
testing does not allow tuning the inputs of the SM with the aim of choosing the best 
means (an HIL simulation or vehicles) to validate an SM contrary to GAs. In addition, 
this technique needs to define test-cases as inputs and expected outputs. In case of a 
problem with the automation process due to SM interactions, the expected outputs 
could be no longer valid. This problem is solved by GAs and dlls. Regarding GAs, the 
code coverage is the addition of the code coverage when using HIL simulation and

Table 2.24 Number of total 
Simulink® blocks Type of SM Number of Simulink® blocks 

Simple 80 

Fairly complex 350 

High complex 530
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Table 2.25 Code coverage obtained when validating the 15 SMs 

Technique Simple SM Fairly complex SM High complex SM 

Number of 
Simulink® 
blocks 

Code 
coverage 
(%) 

Number of 
Simulink® 
blocks 

Code 
coverage 
(%) 

Number of 
Simulink® 
blocks 

Code 
coverage 
(%) 

Cause-effect 63 78.7 265 75.7 380 71.7 

Model-based 
testing 

68 85 285 81.4 410 77.3 

GAs when 
using an HIL 
simulation 

58 92.5 235 88.5 412 78.7 

GAs when 
using 
prototype 
vehicles 

16 75 5

prototype vehicles. GAs perform better as they can cover more Simulink® blocks 
providing that the right means are used. 

Code coverage should be at least 90% to meet standards. The validation process of 
an engine ECU is the combination of the software validation performed by the vali-
dation team (topic considered in this research), the tuning activities and the driving 
tests which consist of making 6 vehicles cover 20,000 km each to test the software 
in real conditions. The total code and functional coverage are assessed considering 
these three activities. No technique can reach 100% coverage due to several reasons 
such as project planning constraints. As proved later, validating by choosing the 
wrong means increases the validation time.

Fig. 2.15 Example of different ways of activating an output 
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Table 2.26 Number of total functional requirements 

Type of SM Number of requirements Number of Simulink® blocks 

Simple 75 80 

Fairly complex 400 350 

High complex 510 530 

Table 2.27 Functional coverage obtained for each research 

Technique Simple SM Fairly complex SM High complex SM 

Number of 
requirements 
tested 

Functional 
coverage 
(%) 

Number of 
requirements 
tested 

Functional 
coverage 
(%) 

Number of 
requirements 
tested 

Functional 
coverage 
(%) 

Cause-effect 60 80 302 75.5 357 70 

Model-based 
testing 

65 86.6 330 82.5 385 75.4 

GAs 69 92 346 86.5 400 78.4 

2.3.3.2 Functional Coverage 

Table 2.26 shows the functional states linked to the Simulink® blocks present in 
the SM chosen. The number of functional states can be lower than the number of 
Simulink® blocks as some outputs of the SM can be activated by using several paths 
without any impacts on the functional state of the vehicle (Fig. 2.15). 

Table 2.27 shows the results obtained for each technique. These results are logical 
as the higher the code coverage is, the higher the functional coverage is. The standard 
percentage of validation (90%) is reached thanks to tuning, validation and test-driving 
activities. 

2.3.3.3 Automation 

For several reasons, the automation process is difficult to be performed when it 
comes to engine ECU software due to SM interactions. Firstly, reaching the values 
for inputs of the SM under validation is difficult as the complexity of the SM increases. 
Secondly, if inputs do not reach the expected values, the values of the outputs of the 
SMs under validation will be no longer valid (Fig. 2.16).

Test-cases can be fully automated, partially automated or can be run manually. 
In this research, GAs were run by using the tester-in-the-loop and fully automated 
options. The success rate of reaching the values indicated in the test-case is shown 
in Fig. 2.17.
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Fig. 2.16 Potential error when a test-case is automated

Fig. 2.17 Success rate when automating the HIL simulation 

2.3.3.4 Bugs 

Types of Bugs 

Generally, all techniques detect the same types of bugs linked to Simulink® blocks. 
Some examples of Simulink® blocks where a bug was found are shown in Table 2.28 
and Fig. 2.18. Some types of bugs linked to multiple calculations such as temperature 
or gas speed estimators can only be detected when using HIL simulations combined 
with dlls. Figure 2.19 depicts the obtained result for a software variable output of an
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Table 2.28 Types of bugs found 

Matlab® native comparator block. It has problems in all its versions (greater 
than, greater than or equal to, less than, less than or equal to). In engine ECU 
software, on many occasions the value of a certain physical magnitude (e.g., 
motor revolutions, vehicle speed) is compared with a calibration threshold 

This block allows choosing between two possible paths 

This block sets the output to TRUE while the input In remains TRUE for a 
certain calibratable time. Otherwise, the output is FALSE. As found in this 
research, when it comes to average and complex SMs, it is more difficult than 
in simple SMs to succeed by making the input In remain stable 

Interpolator block. In this case, depending on the input values presented in the 
Simulink® block, an output value is provided by applying an algorithm or an 
interpolation method 

The Saturation block produces an output signal that is the value of the input 
signal bounded to the upper and lower saturation values. The upper and lower 
limits are specified by the parameters Upper limit and Lower limit 

This block works as a typical RS flip-flop. As in a falling edge block, when it 
comes to average and complex SMs, it is difficult in certain cases (for example 
when validating exhaust gas treatment systems or oil adaptive maintenance 
functions) to reach the conditions when the S-input could be activated 

This block provides a Boolean type TRUE when a falling edge is detected. 
Otherwise, it remains FALSE. In this case, when it comes to average and 
complex SMs, it is difficult in certain cases (for example when validating 
exhaust gas treatment systems) to reach the conditions to generate a falling 
edge

SM when running the software by using an HIL simulation (in red) and its expected 
value (in blue). The error between the red and blue lines, represents an inaccuracy 
regarding the calculation of the gas speed in the exhaust pipe, which impacts the 
amount of urea injected to treat NOx. Since this bug does not imply the presence 
of a functional bug unless it causes a malfunction detected by the driver, it is not 
detected by using the cause-effect technique or the model-based testing one. Only 
GAs combined with Simulink® model can detect it. 

Number of Bugs 

The results are shown in Fig. 2.20. GAs overperform the rest of the techniques used 
in this study because Simulink® blocks are used as shown in Fig. 2.13. Regarding the 
model-based testing, the fact of using models ensures better results than the cause-
effect technique. Finally, the cause-effect technique performs least efficiently as no
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Fig. 2.18 Types of bugs found 
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Fig. 2.19 Bug not detected unless GAs are used

model is used. The result is that it is extremely difficult to establish both the code 
and functional coverage.

2.3.4 Discussion 

2.3.4.1 Test-Case Formulation 

Several challenges must be considered when designing test-cases.

a. The engine ECU software consists of SMs composed of an important number 
of inputs and outputs which are usually analogical. Consequently, their values 
range between specific intervals. When running test-cases, it is difficult to reach
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Fig. 2.20 Number of bugs found by using each technique

values contained in the variable range. For example, a variable representing the 
soot present in the diesel particulate filter can take a value of 40 g.

b. Considering the number of variables of SMs and their ranges, it is not possible 
to generate and run all test-cases which could cover the whole combination of 
the spectrum. In some occasions, when a variable takes a value close to its upper 
limit, the test-case can fail. However, if values are not close to this value, the 
test-case provides the expected results. That is why, at least during the validation 
process, the functional model must be covered with different test-cases which 
take different combinations. 

c. Constraints must be considered to avoid generating uncoherent test-cases (for 
example speed = 100 km/h and first gear engaged). 

d. When running a test-case by using automation processes, it is not possible to 
obtain the exact values indicated in the test-case due to SM interactions. Thus, 
the expected outputs specified in the test-case might be no longer valid. Therefore, 
the traditional formulation of test-cases based on input and expected output values 
cannot be used in simulations. Dlls allows solving this technical issue as depicted 
in Fig. 2.5. Thanks to them, it is always possible to assess Eq. (2.2) as they can 
provide the output values for the input ones reached during the HIL simulation. 
Therefore, GAs can check if software runs as expected by comparing the HIL 
results and the Simulink® models results. 

2.3.4.2 Test-Cases Automation 

Python scripts for automating the process must keep the inputs of the SM in a 
specific range. Otherwise, the expected output of the test-case may be no longer 
valid (Fig. 2.16). Regarding fairly complex SMs, as the number of variables present 
in SMs is high, it is recommended to use the tester-in-the-loop. High complex SMs 
have many functional states linked to the number of kms covered (example oil dilution
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rate). Consequently, reaching a functional state is not difficult and test-cases can be 
fully automated. 

GAs allow testing most of the SMs present in the engine ECU software except 
for: 

a. Estimators. There are SMs responsible for predicting temperature and other 
magnitude trends of certain components, which involve many calculations. The 
easiest way to test these SMs is to perform data acquisition by using prototype 
vehicles and, then, the obtained.dat file is injected into the Simulink® model. The 
difference between the data acquisition and the Simulink® outputs is expected 
to be close to zero. 

b. Networks. The most important network in cars is the CAN (Controller Area 
Network). In these cases, the testers have to verify if frames are transmitted and 
received properly, how the engine ECU reacts when receiving an invalid value or 
an absent frame, etc. This statement can be applied to other types of networks. It 
is easier to validate networks by using the HIL simulations than using prototype 
vehicles. 

c. SMs which are not modeled by using Simulink®. Dlls must be used if GAs are 
applied. Not all SMs of the engine ECU software have a specification based on 
Simulink® model. Consequently, GAs cannot be applied to any SMs. However, 
only 7% of the SMs did not have Simulink® models. 

Certain high complex SMs need to cover many kilometers to reach the specific 
operating point indicated in the test-case. When validating the software, GAs cannot 
be used as the number of generated populations is not compatible with the project 
planning. In these cases, the cause-effect technique is recommended to reduce the 
validation time. Anyway, these SMs can be validated by using GAs if the calibration 
dataset is modified in the same way as it is done in this study. 

2.3.4.3 Means Used to Validate 

Using the most adequate means to validate is an essential topic as:

a. The difficulty to reach an operation point depends on the means used to validate. 
It is easier to use test failures on a probe by using the HIL model than by using a 
prototype vehicle. If the wrong means is chosen, many attempts are required to 
run the test-case properly. 

b. The chances to find more bugs than by using other techniques are increased 
as the validation time is reduced. Consequently, test-engineers have time to run 
more test-cases than other techniques. Thus, the code and functional coverage are 
increased. In addition, implementing a model by using the model-based testing 
and GAs reduces redundancies in test-cases. 

c. The productivity gain obtained thanks to GAs has an important impact on soft-
ware quality. As shown in Fig. 2.21, if software version A is validated with some 
delay (weeks 17 and 18), after the specifications for software B are sent to the
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Fig. 2.21 Delays in software validation and impacts on software quality 

supplier (week 16) in charge of coding the software, the software version B is 
delivered with bugs found in weeks 17 and 18, which may be blocking points. 
Therefore, the software version B could be not usable.

d. The test-engineers establish the best means according to their experience when 
using the model-based testing and the black-box technique. Regarding GAs, a 
multidisciplinary team sets the cost of the functional model. 

2.3.5 Conclusions 

Engine electronic control unit (ECU) software is one of the most complex software 
which is in charge of controlling the engine as well as other systems such as exhaust 
after-treatment systems. Among the main issues that test engineers can face is how 
to choose the best means to validate (HIL simulations or prototype vehicles) as well 
as design test-cases which are representative enough. 

This research uses two GAs to establish the best means to validate SMs and to 
generate test-cases in which the expected outputs are no longer needed thanks to 
the usage of Simulink® models used to develop the engine ECU software with the 
aim of improving code and functional coverage, software bugs, test-case automation 
capacity and productivity. The obtained results were compared with the ones got by 
using traditional techniques such as the model-based testing or cause-effect ones. 

The results obtained in this research show that GAs can find similar results for 
simple SMs and high complex ones. However, when it comes to fairly complex ones 
(the ones that are more present in the engine ECU software), GAs perform better than 
the other techniques as at least 7 more bugs were found. When it comes to functional 
and code coverage GAs perform better. When it comes to functional coverage, GAs 
improve up to 11% in fairly complex SMs and 8.4% for high complex SMs when 
using the cause-effect technique. When it comes to the model-based testing technique, 
GAs improve up to 4% in fairly complex SMs and 3% for high complex SMs. The 
code coverage is also improved by GAs reaching 12.8% and 7% for fairly complex 
and high complex SMs respectively when using the cause-effect technique. When 
using the model-based testing, GAs perform better up to 7.1% and 1.4% for fairly 
complex and high complex SMs respectively.
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Another advantage of using GAs is that they can detect all types of bugs thanks to 
the usage of Simulink® models contrary to other techniques such as the model-based 
testing and the cause-effect ones. 

The implementation time is compatible with an engine project planning as shown 
in this research. 

2.4 Application of Rule-Based Expert Systems 
in Hardware-In-The-Loop Simulation. Case-Study: 
Software and Performance Validation of an Engine 
Control Unit5 

2.4.1 Introduction 

2.4.1.1 Background 

Innovative techniques to validate software are needed to reduce cost and increase 
software quality. 

This research aims to check if two rule-based EXs combined with dlls perform 
better than other techniques widely employed in the automotive sector when 
validating the engine control unit (ECU) software by using a HIL simulation. 

To perform this research fifteen SMs of different complexity were chosen to be 
validated in an HIL simulation by using different techniques such as the manual 
execution, the tester-in-the-loop, the model-based testing, a rule-based EX and the 
combination of two EXs to establish the code and functional coverage, the produc-
tivity gain, the number of bugs found, potential limitations of each technique and the 
success rate of the HIL simulation. The test-cases used are described in-depth in the 
method section. 

The enhancement, that dlls and EXs offer, depends on the number of states in the 
functional model used in the EXs and the number of subintervals in which the SM 
inputs can be divided. A range between 6 and 16 more bugs can be detected when 
using two EXs. The HIL enhancement can reach 6%, 16.8% and 18% depending on 
the SM complexity. 

2.4.1.2 Engine ECU Software 

The electronic architecture of today’s vehicles is extremely complex. As a result, 
the number of ECUs present in vehicles is increasingly high [1, 2]. This trend will 
continue in the next years, thanks to driving assistance systems, which are essential for

5 Extracted form Journal of Software: Evolution and Process. 2020, Volume 32, Issue 1. https:// 
doi.org/10.1002/smr.2223, https://onlinelibrary.wiley.com/journal/20477481. 

https://doi.org/10.1002/smr.2223
https://doi.org/10.1002/smr.2223
https://onlinelibrary.wiley.com/journal/20477481
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autonomous cars. ECUs are composed of hardware and software whose complexity 
depends on the function carried out in the network. Therefore there are multiple 
software running simultaneously and coexisting in a commercial car [5, 35]. This 
fact forces manufacturers to improve the software quality and the validation processes 
[3]. In addition, it is not difficult to find estimates that indicate that the total number 
of lines of code present in the software ECUs of a vehicle can reach up to more than 
100 million. In the future, these figures will even grow significantly up to 200 or 300 
million in autonomous vehicles. 

Powertrain control is a system in charge of transforming the driver’s will into an 
operating point of the powertrain according to the performance established for the 
product (eg, consumption and emissions) [69]. The key element of the control system 
is the engine ECU composed of complex hardware and software. The hardware is 
responsible for getting information from sensors after a filtering process to reduce 
noise in signals. The software processes all data received and handles actuators to 
reach the operating point. In addition, when a vehicle is in motion, the engine ECU 
(hardware and software) interacts with other ECUs to ensure the proper functioning 
of the car. This implies that each ECU should receive the information at a specific 
time. Therefore, the engine ECU (hardware and software) must be validated to assure 
that engine is properly controlled, the interaction with the rest of the ECUs is rightly 
performed, and the passengers’ safety is insured. Otherwise, some failures could 
occur and lead to the situation in which the vehicle stalls. This fact makes the most 
safety critical parts of the software a hard-real-time (HRT) system. In other words, 
the system is subjected to real-time constraints in which every critical task must 
be executed at a specific deadline to ensure the correct operation of the system. 
Thus, one can deduce that the software validation process is complex and needs 
improvements with the aim of reducing costs, increasing productivity and reliability 
in the automotive sector. 

This chapter is focused on the engine ECU software validation (one of the most 
complex software present in a vehicle) and shows solutions to the main difficulties 
associated with traditional software validation techniques. The solution proposed 
is showing that two EXs working in cooperation and combined with dynamic-link 
libraries (dlls) perform better than traditional techniques such as the model-based 
testing or tester-in-the-loop among others. 

2.4.1.3 Techniques Currently Used 

The engine ECU software validation is based on HIL simulation, combined with 
different techniques for generating test cases. Three key stages must be considered 
when performing an HIL simulation: test-case generation, test-case execution, and 
validation of the execution results. 

One can find different definitions for the black box concept such as “the black-
box testing is a method of software testing that examines the functionality of an 
application without peering into its internal structures or workings” [70, 71]. Among 
others, there are three types of techniques used when applying the black-box one:
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a. Equivalence portioning 

The inputs of the SM under validation are divided into partitions, and after having 
selected representative values for each partition, the test case is conducted. Then the 
software behavior is analyzed. The model-based testing can be defined as the auto-
matic generation of software test procedures, using models of system requirements 
and behavior. To do this, a functional model must be implemented. This technique 
may be considered in this research as an equivalence portioning technique in the 
black-box testing. Because test cases are derived from functional models and not 
from the source code, the model-based testing is usually seen as one form of the 
black-box testing. The main advantage of this functional model is that all functional 
states and the transition from one state to another are indicated. Thanks to this, it 
is easier to assess the functional coverage as the number of states covered when 
validating an SM is known. 

The EX combined with dlls consists of using an EX to assess if the software 
behaves as expected. The EX is built by using rules coming from the specifications 
and software requirements. The dlls are the Simulink model of the SM under vali-
dation that allows calculating the software outputs when performing the HIL simu-
lation despite the SM interactions. This topic is analyzed in-depth in this research. 
The authors have considered this technique as an equivalence portioning one as it is 
exposed in this chapter. 

b. Boundary value analysis 

Boundary values for the SM inputs are determined and the test-case obtained is 
performed. Then the software behavior is analyzed. 

c. Cause-effect technique 

In the automotive sector, the test engineer usually has to validate cause-effect test 
cases that come from the software requirements. As a result, given a series of specific 
causes (conditions related to inputs), the validation process has to check the effect 
(software behavior). An example of a possible test case could be: “In case of an ESP 
frame is absent, the stop and start function must be inhibited.” The tester-in-the-loop, 
the manual execution, or automated can be considered as cause-effect techniques in 
this research. 

All techniques that may be used to validate the engine ECU software have to face 
several issues such as the SM interactions that prevent reaching the values established 
in the test case, the type of bugs that can be found, and the problem of enhancing the 
code and functional coverage. Considering that the engine ECU software has up to 
70 complex SMs, the interaction between SMs is continuously present and disturbs 
the validation process such as electronic noise. Consequently, given a test case, it is 
almost impossible to make the inputs reach the desired value. The main consequence 
is that the expected output set in the test case could be no longer available. 

Some types of bugs are extremely difficult to detect by using HIL simulation 
unless a technician uses a significant amount of time to analyze the data acquisition. 
Figure 2.22 shows an example, the obtained result for an output for a variable of
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Fig. 2.22 Bug not detected when using black-box technique 

an SM when running the software in an HIL simulation (in red) and its expected 
value (in blue). As one can see, the results are different. This error represents an 
inaccuracy when it comes to calculating the gas speed in the exhaust pipe. This error 
could impact the amount of urea injected to treat NOx. Because this bug is not linked 
to a functional bug, it is impossible to detect it by using the black-box technique. The 
detection of this type of bug involves checking and detailed analysis of the software 
code by running additional software. 

Considering all aforementioned, the main limitations associated with these tech-
niques currently used in the automotive sector when using the HIL simulation are 
depicted in Table 2.29. The aim of this research is to solve all these limitations by 
using two EXs working in cooperation combined with dlls. The fact of using two 
EXs allows improving the code and functional coverage and gaining a better control 
of the automation process, thanks to dlls. It also provides an opportunity to detect 
any type of bugs.

2.4.1.4 Related Works 

The engine ECU software validation is based on HIL simulation. Several stages must 
be considered when performing an HIL simulation such as test-case generation and 
test-case execution. 

A test-case consists of a set of inputs and their expected outputs that the software 
should provide when working properly. In an HIL simulation, a test case is run, and 
the obtained result is compared with the expected one to check whether the software 
has operated properly for this specific test case [72–74]. There are many different
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Table 2.29 Problems analyzed in this research 

Limitations Reason Possible solution 

Difficult to validate 
the software 
automatically 

When the values set in the test case 
for the inputs are not reached, then 
the output values set in the test case 
may be no longer available. 
Consequently, no automatic 
validation can be performed 

Dlls can perform this task as shown 
in this research as they recalculate 
the output values that the SM under 
validation should provide for the 
specific input values reached after 
the HIL simulation. Therefore, an 
automatic validation process can be 
carried out 

Possible bug 
performance 
detection 
improvement 

If input values are different from 
the ones established in the test case, 
then the software performance 
behavior is unknown 

Functional coverage 
unknown 

A functional code coverage could 
be established by analyzing the 
black-box test cases before the HIL 
simulation 
However, when reaching different 
values for the inputs after HIL 
simulations, then the use cases 
tested are different from the ones 
planned 

A performance rule-based EX can 
assess the functional coverage as 
exposed in this research. An EX can 
assess whether the SM under 
validation performances as 
expected or not, thanks to the rules 
used for its implementation. Thus, 
performance bugs could be 
detected. Considering the number 
of performance rules assessed, the 
functional coverage could be 
established 

Difficult to detect 
bugs linked to SMs 
that perform many 
calculations 

The calculations may be performed 
wrongly, but they do not imply that 
the vehicle behaves in such a way 
that the client could detect any 
abnormality 

Dlls can perform this task as shown 
in this research as they can be used 
for checking whether the SM under 
validation calculates all SM outputs 
properly 

Difficult to assess 
the code coverage 
accurately 

There is no code model or 
something similar to use it for 
calculating the code coverage when 
using the black-box or similar 
techniques. It must be considered 
that there are many if-then 
structures in the software, which 
makes it extremely difficult to test 
all possible paths. However, the 
question is if the whole 
performance rules have been tested 
with a considerable number of 
software rules 

A software and a performance 
rule-based EXs can assess the 
functional and code coverage as 
exposed in this research. It can be 
employed to establish the code and 
performance coverage

ways to generate a test case, such as assigning specific values to all inputs of the 
SMs under validation to cover a functional model, as exposed later in this research, 
or assessing the software performance when checking each software requirement 
[75–79]. The former is very difficult to implement owing to SM interactions, as it 
will be discussed in this paper. The aim of this method is to make the inputs reach 
specific values and check the outputs. The latter is widely used because the inputs of
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SMs do not need to reach exact values but approximate ones to check the software 
performance. As a result, it is more flexible. 

The black-box technique has been used for a long time in the automotive sector, 
as discussed by Conrad [80]. Despite its widespread use, it is true that it has some 
weak points, as discussed by Chunduri [81]. In their dissertation, they consider that 
test cases based on the engineers’ experience usually imply gaps and test redundan-
cies. Thus, they proposed a methodology to improve the black-box technique and the 
test-case generation. To do this, they proposed to work on three factors: enhancing 
function requirements specification, establishing traceability across test levels, and 
obtaining comprehensive function test-coverage information. In addition, it is essen-
tial to remark that the test-case execution must not be too time-consuming. Conse-
quently, more test cases can be run, and the code/functional coverage is improved. 
Some research has also been focused on this topic. Zhou et al. proposed the optimized 
use of symbolic simulation with the aim of reducing the time required to generate 
a test case at the IEEE Conference [75]. As a result, given a model of a software 
function under validation, the time needed to cover the model will be reduced. Sopan-
Barhate presented their theory about how to make the software validation process 
in the automotive sector more effective at the International Congress of Electronic 
Instrumentation and Control [76]. In their opinion, the main concerns linked to the 
software validation process are how to design representative test cases as well as how 
to prioritize the test-case execution based on priority levels, ensuring, at the same 
time, high code coverage rates. The solution proposed in their research is the use of 
orthogonal array testing. 

Model-based testing is a good technique to test SMs, and it allows the assessment 
of the code/functional coverage in an easy manner. Raffaëlli et al. at the Embedded 
Real Time Software and Systems Conference, presented research focused on the 
usage of a functional model by running Matelo software [82, 83]. The aim of this 
research was to accurately assess the code coverage, as all branches of the model 
could be tested. The application in an HIL simulation for a more complex ECU, such 
as an engine ECU, was not shown. Perez et al conducted a review on the current state-
of-the-art techniques used for the verification and validation of embedded systems, 
including software developed in the automotive sector [84]. Their main conclusion 
shows the need of further research concerning automatic validation, safety tests, 
and model validations. In short, these concepts are clearly linked to the test-case 
generation and improvement in automation processes. The aforementioned aspects 
are analyzed in-depth in this chapter. 

There are many ways for automating HIL simulation in the market [85, 86]. 
The automation process is mainly based on black-box techniques such as those 
reported by Köhl et al: “As a rule, the tests specified by the ECU departments are first 
performed as black box tests on the network system (know-how on software structures 
is not taken)” [86]. At the 52nd Congress of the ACM/IEEE Design Automation 
Conference, Petrenko and Nguena-Timo reported the main problems and solutions 
associated with software validation in the automotive sector, on the basis of the 
experience of General Motor Research and Development staff, powertrain software 
validation team of General Motors, and the Centre of Montreal [87]. Their main
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conclusion was focused on the methodology known as the “tester-in-the-loop,” in 
which the test engineer leads the system to a desired operation point, considered as 
a crucial one, with the aim of assuring the correct execution of the test case in such 
a way that the software behavior can be assessed. Once the crucial point is reached, 
a series of automated actions are executed to reach the goals previously established 
in the test case. Tatar and Mauss proposed at the ERTS Congress: Embedded Real 
Time Software and Systems the possibility of not using HIL simulation. Instead, 
by using a virtual platform, engine ECU software could be validated, thanks to the 
interaction with a car model [88]. As a result, many points could be tested. All the 
possible issues or bugs linked to the software integration on the hardware would not 
be detected. Koopman and Wagner exposed the main future issues when it comes 
to software validation in the Society of Automotive Engineers Congress. One of 
the most important concepts introduced in their dissertation was the “driver-out-
of-the-loop” concept. Currently, the ECUs are validated by considering the driver’s 
actions on the vehicle (accelerations, braking, etc.). If the vehicle is autonomous, 
these driver’s actions are not relevant, and some external factors such as traffic and 
pedestrians must be considered to validate the software. As a result, they consider 
machine learning techniques as a key aspect in the future. 

2.4.2 Method 

2.4.2.1 Description 

The aim of this chapter is to validate the following hypothesis: 

Two EXs working in cooperation perform better than traditional techniques when validating 
an engine ECU software. In addition, two EXs can overcome the difficulties depicted in 
Table 2.29. 

To do this, a series of test cases are run by using the following techniques: the 
cause-effect one the model-based testing one, one EX combined with dlls, and finally, 
two EXs combined with dlls by using the HIL simulation. Then the following param-
eters are measured for each technique to validate the hypothesis: code and functional 
coverage, productivity, bugs found, and automation process success. 

2.4.2.2 Data Used in This Research 

The methodology proposed in this study has been tested in three types of functions 
or SMs chosen according to the number of calculations to be done as well as their 
complexity, number of inputs and outputs of the SM, and the accuracy required for 
the output results They have been considered as representative for this case study by 
the authors and the company subjected to this research. Considering the experience



2 Software Validation Techniques in the Automotive Sector 83

of the company that is the subject of this case study, three types of SMs or functions 
can be distinguished as shown in Table 2.2. 

When generating test-cases, three strategies were followed in this research: 

1. Generating pseudorandom values for the SM inputs under validation in such 
a way that all paths of the models that belong to EXs are covered. For each 
combination of the inputs, the performance EX must assess the expected behavior 
of the vehicle (represented by an HIL bench) in cooperation with a software 
EX that will cover a software model to assure a high code coverage. The right 
outputs for all inputs generated in the test case are known by using the dlls. All 
aforementioned statements are exposed in this section. In this chapter, as exposed 
later, manual test cases were also generated in order to cover the functional and 
software models. 

2. The company under this case study has a database in which the staff document 
different bugs found throughout the engine project. The main advantage of this 
process is to guarantee easy mainstreaming between projects. All data stored in 
this database are handled in meetings with the supplier responsible for coding the 
software and designing the hardware on a weekly basis. Test engineers design 
test cases on the basis of different inputs such as this database, functional defects 
found during driving tests, specifications requirements, as well as the defects 
found when the engine has been marketed. The goal is to keep the test-case 
libraries as complete as possible over time. When the test engineer has designed 
the test-case library for a specific SM, a validation process is carried out. The test 
engineer and the designer of the SM verify whether the use cases presented in the 
test-case library are representative enough. For each of the test cases presented 
in the database, it is possible to assign values to the SM inputs with the aim of 
checking the software rules. 

3. Pseudorandom values are generated by Matelo software with the aim of covering 
the whole functional model. It must be reminded that this technique is an equiva-
lence portioning one. As test cases are generated by Matelo, the functional model 
is covered. Matelo assesses the functional coverage automatically. Matelo could 
also be used to implement a software model. However, authors have not carried 
it out in this chapter. 

Table 2.30 shows the number of tests considered in this research according to the 
type of SM. 

The difference between the number of test-cases for each type of SMs is because 
the fairly-complex SM involves a greater number of use-cases.

Table 2.30 Number of tests 
used in this research Type of SM Number of test 

Simple 250 

Fairly-complex 1,250 

Highly-complex 100 



84 D. Borge-Diez et al.

Table 2.31 Two EXs 
combined with dlls Technique Method 

Cause-effect technique A1 

Model-based testing A2 

One EX combined with dlls A3 

Two EXs combined with dlls A3 

A1: A database in which the staff trace different bugs found 
throughout a project. In addition, several test-cases come from 
the software requirements 
A2: Pseudorandom values generated by Matelo® to cover a 
functional model 
A3: Pseudorandom and manual values generated by Python scripts 

Table 2.31 indicates the methods followed to generate test-cases for each 
technique. 

It is important to analyze what A2 and A3 mean. In A2, Matelo can generate 
off-line (before the HIL starts) all necessary test cases with the aim of covering the 
functional model. In A3, Python scripts also generate test cases trying to cover the 
software model. The Python scripts generate pseudorandom values trying to reach 
software states not implemented in the model. A software state not implemented in 
the model involves a use case not considered by the design team, in other words, 
a design error. In addition, a test engineer generates manually off-line test cases 
by establishing the most likely combination of variables by using fuzzy values to 
cover the functional and software states. This process consists of avoiding illogical 
situations such as engaging the fifth shift when the vehicle is at 5 km/h. These 
inconsistencies must also be taken into account when generating automatically test 
cases by using Python scripts. The fact of using fuzzy variables, as exposed later, 
allows increasing the combination of the inputs of the SM under validation. These 
test cases generated manually are run by using Python scripts. 

For confidentiality reasons, the list of test cases cannot be published. However, 
It is important to remark that fuzzy variables are used when using EXs combined 
with dlls by increasing the number of combinations of the inputs provided by the 
SM under validation. 

2.4.2.3 Equipment 

The following means used in this research are shown in Table 2.32.

2.4.2.4 Methodology Proposed 

In this section, the key elements used in this technique are presented (EXs and dlls). 
Then, the process how they collaborate to run a test case is described.
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Table 2.32 Equipment used in this research 

Item Description Phase where  the item  
is used 

Cost 

HIL Bench HIL bench 
manufacturer 
dSpace®, model 
dSpace® Simulator 
Full-size (dSpace, 
2016a). Versatile HIL 
simulator capable of 
emulating the 
dynamic vehicle 
behavior 

Every time a test-case 
is run. Necessary for 
the HIL simulation no 
matter which 
technique is used 

Depending on the 
characteristics of the 
HIL bench, the price 
can vary. Estimation 
for this case-study: 
e100,000 each bench 

INCA version 7.1.9 
provided by ETAS® 
(BOSCH) (ETAS, 
2017) 

Software used to 
make measurements 
of different software 
variables stored in the 
engine ECU memory 

Every time a test-case 
is run. Necessary for 
the HIL simulation no 
matter what technique 
is used 

The price depends on 
the number of licenses. 
For a big car 
manufacturer, an 
estimation of e5,000 
for each license can be 
made 

Matlab® R2013 and 
Microsoft Visual 
Studio 2015 

Software necessary to 
create dlls 

Every time a test-case 
is run and the user 
wants to avoid the SM 
interaction problem 

The price depends on 
the number of licenses. 
This information was 
not provided by the 
company subjected to 
this case-study 

Matelo® Software used for 
validation purposes 
being able to generate 
test-cases 

Necessary to generate 
test-cases when using 
the model-based 
testing technique 

The price depends on 
the number of licenses. 
Estimations of 20 
licenses are e100,000 

ControlDesk® 
version 5.1 from 
dSpace. (dSpace, 
2016c) 

This software is 
needed to build the 
HIL model which 
belongs to dSpace® 
manufacturer. The 
HIL model was built 
by the company 
subjected to this 
case-study 

No matter which 
technique is 
considered 

No information about 
cost was provided by 
the company subjected 
to this case-study

a. Expert systems 

Two EXs are distinguished: 

• Software EX 
Its aim is to establish the software rules which must be applied to assure the 

software operation, such as a sequence of updating variables to be followed when 
a failure occurs. A software rule is a Simulink® path to be followed to reach a 
specific operation point.
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• Performance EX 
The second EX is responsible for checking whether the vehicle responds as 

expected for a specific use-case. The first EX only verifies if the software rule is 
applied. The other one is abstracted from the software and only focuses on the 
fact of verifying the correct behavior from vehicle performance point of view. 
Properly coded software may exhibit wrong behavior owing to design errors as 
some use-cases were not considered in the specifications used for coding the 
software. 

b. dlls 

As exposed earlier, it is highly unlikely to reach the operation point set in the test 
case because of SM interactions. This fact implies that the automation process is not 
easy to be performed. Figure 2.2 depicts the process to automate a test case by using 
Python scripts. During the HIL simulation, the script is in charge of performing all the 
necessary manipulations on the driver-ECU interface model automatically. During 
this process, a data acquisition is performed by employing the INCA software. If these 
values are not reached after time out elapsed, the data acquisition is stopped and the 
dll is called. The dll represents the Simulink model of the SM under validation, and 
it allows assessing and providing the expected values of the SM for a specific state 
of the ECU. Thus, by using dlls, it is always possible to obtain a result after an HIL 
simulation. Thanks to this data acquisition and a C-file, it is possible to call the dll. 

c. EXs and dlls working in collaboration 

Figure 2.23 describes the process.

• Phase 1. The software EX establishes the test-case to be run. It must be reminded 
that a rule corresponds to a Simulink® path of the model of the SM under valida-
tion. This rule is communicated to performance EX with the aim of establishing 
the performance rule to be applied during the HIL simulation. 

• Phase 2. The HIL simulation is performed trying to reach the operation point 
established in the test-case. 

• Phase 3. A test-case is composed of a series of input values and the expected 
outputs. If the specific operation point is not met after a specific time elapsed, 
then the expected output set in the test-case may not be longer valid. The dll of 
the SM under validation allows assessing the right output values for the current 
engine ECU state. The software EX collects this information and assesses the 
software rule that was tested after the HIL simulation. 

• Phase 4. The software EX sends a message to the performance EX about the 
software rule tested in such a way that the performance EX can update (if needed) 
the expected software behavior. 

• Phase 5. Both EXs checked the HIL simulation results and decide whether the 
software behavior is correct and meet the specifications.
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2.4.3 Validation of the Key Elements: EXs and Dlls 

This section describes the validity of the different key elements involved in this 
research. 

2.4.3.1 Expert System Validation 

The aim of the rule-based EXs is to check whether the software runs properly, carrying 
out an automatic analysis of the HIL simulation results. The EX design is shown in 
Fig. 2.24. As shown, there is a knowledge base composed of rules coming from 
functional or software requirements set by experts and designers at the beginning 
of the project. These rules are the base of the expert knowledge. When it comes to 
the inference engine, it is composed of a functional or software models describing 
different states that the system can process when applying the rules presented in the 
knowledge base. It must be reminded that two EXs are designed for each SM under 
validation. 

a. Software expert system 

The aim of this EX is to check whether the software meets software specifications. 
To better understand this, Fig. 2.25 must be analyzed. One can see a software model 
of a given SM, where S1–S6 represent a state. In this case, the state represents a part 
of the Simulink model. The conditions to be met to pass from one state to another one 
come from the Simulink model used to code the software. As a result, depending on

Fig. 2.24 Scheme of the EXs used in this chapter 
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Fig. 2.25 Inference engine in detail 

the HIL simulation, the values of the software variables of a given SM are analyzed 
in such a way that the final state is set. By checking different states covered after 
having executed a certain number of test cases, it is easy to have the first estimation 
of the code coverage. As exposed in the performance section, a test case could be 
run and the inference engine may not know in which software state the system is. 
This fact can occur, and it happens when a use case has not been considered by the 
design team. That is why all states in Fig. 2.25 are linked to state 6 as it represents 
an unknown software state. 

To obtain an accurate code coverage, two key actions have been performed in this 
research: 

• Generation of test cases in such a way that the range of possible values for a given 
variable is divided into intervals. In this way, the probability of covering all paths 
of the Simulink model is increased. 

• Usage of as many states as necessary to describe the system. 

b. Performance expert system 

The performance EX is built by using functional states in which the vehicle can 
operate. Therefore, the model is not focused on part of the Simulink model of the 
SM under validation. The fact of covering the functional model allows assessing the 
functional coverage but not accurately as depicted in Fig. 2.26 when assessing the 
transition from S2 to S4; it is unknown if the value for Out1 was obtained following 
the path1 or the path2.

When a test case is analyzed by the performance EXs, after having applied 
different rules, the inference engine determines the state of the system. Therefore, 
the EXs decide whether the outputs provided by the software are coherent for the 
test case simulated. At this point, it is vital to verify in-depth the inference engine.
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Fig. 2.26 Inference engine in detail

As shown, all functional states (S1, S2, S3, S4, and S5) are related to a state called 
S6. S6 corresponds to an unexpected or unknown state, which represents a use case 
not considered by the designers. By using this state, test engineers can improve the 
EXs if needed. The S6 state will be analyzed later. In this research, the EX code is 
not provided as it belongs to the company’s know-how and is confidential. 

The validation process of both types of EXs is stimulated following these two 
phases: 

• The established rules, used by the EX, are checked following a procedure 
consisting of a meeting between designers and testing engineers to assure the 
conformity of the EX. Then, the EX is implemented by using Python. 

• The aim of the validation process is to check two key characteristics: firstly, to 
assure that the rules presented in the knowledge base are coherent and secondly, 
to verify that the EXs can assess the software performance properly. To do this, 
a set of data acquisitions, already analyzed by test engineers, is used for the 
aforementioned purposes. 

2.4.3.2 Dynamic-Link Library Validity 

Dlls are a key element of this research. The reader may think that the fact of using dlls 
could keep the validation process from checking the SM interactions. This statement 
is not true for several reasons: 

• The effects due to inputs and outputs of SM interactions are collected in the data 
acquisition file as it is the result of the HIL simulation. 

• It is essential to distinguish some important points when it comes to designing the 
engine ECU software. Before integrating the software into the hardware, there is 
a process of building prototypes with the aim of checking whether the Simulink 
models work properly. Once this is checked, the decision of integrating soft-
ware and hardware is made. Afterwards, the design specifications are written, 
all the SMs are assembled, and finally, a software is coded and the validation
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process starts. Therefore, the Simulink models are the transcription of the func-
tional specifications of the engine ECU and must be met independently of the SM 
interactions, hardware design, task scheduling, software-hardware integration, 
etc. In addition, Simulink models are tested before sending the specifications to 
the supplier in charge of coding the software. Therefore, for a series of given 
inputs, the outputs provided by the Simulink models must be equal to the ones 
provided by the engine ECU software when no bug is discovered. Otherwise, the 
functional specifications are not met. 

• The fact of only considering one dll corresponding to the SMs under validation 
does not imply that software and hardware integration is considered as the inputs 
processed to the dll are the consequence of an HIL simulation. Therefore, the 
SM interactions are already considered in the data acquisition file. The software 
must provide the same output values as the Simulink model (dll). Otherwise, the 
functional specifications are not met. 

2.4.3.3 Measurement Conditions 

Before starting the HIL simulation, some conditions must be met. Otherwise, the 
result is rejected: 

• The information provided by the probes must be equal in all cases (with and 
without dlls) when it comes to external factors such as air and pressure temperature 
and slope of the road. 

• The engine ECU memory must contain no errors before starting the HIL simula-
tion. If it does, then it must be erased by using the procedure established by the 
ECU supplier. 

• All test-case executions must be conducted on the same HIL bench. This factor is 
important to assure that the same probes are being used during the whole research. 

If a diagnosis defect appears when validating with dll and not when validating without 
dlls, or vice versa, then the test-case result is rejected and it must be executed again 
as the HIL model could have failed. 

2.4.4 Practical Implementation 

A key issue in any project is costs. Therefore, costs must be reduced as much as 
possible. Therefore, in this research, it has been tried to implement software validation 
by using Python packages. Each test case is run by using Python scripts and C-code. 
Firstly, the test case is performed by using Python scripts that interact with the HIL 
model with the aim of reaching the values established in the test case. During this 
process, a data acquisition is completed in ascii format. Secondly, a C-code is used 
to call the dlls and to assess the software behavior.
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2.4.4.1 Python Scripts When Using Two EXs 

From a pseudocode point of view, a multithreading implementation was conducted. 
One can find the thread responsible for generating software rules that will be sent 
to two threads: the one in charge of automation control and the one that handles 
performance rules (Fig. 2.27). The process is as follows. A software rule is chosen, 
and consistent inputs values for the variables involved in such rule are generated. 
Then a message is sent to the EX 2 to set the rule to be applied according the one 
chosen by EX 1. Once done, the automation process can be conducted using an 
HIL simulation. EX 2 thread is waiting for the result. The automation thread sends a 
message indicating if the result was correct, that is to say, whether the system reached 
values close to the desired operating point. If so, the EX 1 communicates to EX 2 that 
the selected rule was correct. Otherwise, the EX 2 updates the performance rule to 
be applied according to the operation point that was reached in the HIL simulation. 

The second thread is in charge of controlling the automation process (Fig. 2.28), 
which starts when the EX 1 thread establishes the software rule to be tested (Fig. 2.28 
waiting_message_from_expert_system_1). Once the process starts, the automation 
thread tries to lead the system to the desired state set by the EX 1 thread. The 
automation process ends:

• when this operating point is reached. In this case, the software and performance 
rules for both EX must not be updated (Fig. 2.27 automation_OK) 

• when a time out elapses as the operating point is not reached because of SM 
interactions. In this case, the software and performance rules initially chosen 
might be updated (Fig. 2.26 else).

Fig. 2.27 Pseudocode of software EX thread 
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Fig. 2.28 Pseudocode of 
automation thread

Finally, thread 3 is responsible for managing the performance EX (Fig. 2.29). 
Its practical implementation is extremely simple, as it only runs when it is allowed 
by the EX 1. This can take place in two distinct situations: firstly, when the thread 
is instructed to select the rule to be applied according to the one set by EX 1 and 
secondly, when it is indicated to proceed to update the rule depending on the final 
engine ECU state, once the process of the HIL simulation is completed. 

To implement a cross-thread communication, a submodule event from the Python 
threading package was chosen. Its main advantage is its ease of use. Using the wait() 
and set() methods, it is possible to keep a thread waiting while another performs 
other tasks. When the latter ends, using the set method, an event occurs to wake up 
all paused threads. In this case, its use is essential for several reasons:

1. The automation thread and the EX 2 threads must not start calculations until EX 
1 has been initialized. 

2. The thread in charge of handling EX 1 must not continue its execution as long 
as the automation process is finished.

Fig. 2.29 Pseudocode of 
performance EX thread 
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3. The EX 2 thread must not continue its execution as long as a confirmation about 
the current status of the ECU done by EX 1 is received. The main raison is that 
a rule updated could be necessary. 

2.4.4.2 Dynamic-Linked Libraries 

The implementation of dlls allows the use of the Simulink model on multiple 
computers without additional cost. The dll can be implemented by following the 
steps indicated in many Mathworks documentation available in their site. The only 
thing that the user really needs is the Simulink model to be converted into a dll. In 
this case, these models are available as they are sent to the supplier to code the soft-
ware. As described in Matlab documentation, the dll can be called by using different 
programming languages. In this research, C-language has been used. This process 
is depicted in Fig. 2.30. Firstly, when a test case is run, different software variables 
chosen by the user are recorded by using the INCA software. The result of this 
process is an ascii file that contains the variables (inputs and outputs of the SM under 
validation) and the specific time when each measurement was performed. Secondly, 
the ascii file is read by using a C-file in such a way that each line of the file is used 
for calling the dll (see phase 2, Fig. 2.30). The dll must return the expected output 
for the inputs used to call the dll. Finally, a comparison is performed as depicted in 
Fig. 2.30, phase 3. It must be reminded that the outputs of the SM are also available 
in the ascii file.

2.4.5 Results 

2.4.5.1 Functional Coverage 

The functional coverage would be evaluated as Eq. (2.5). This equation is widely 
used in the automotive sector as it allows assessing the functional coverage in an 
easy way by using the software requirements. Table 2.33 depicts the total number of 
functional requirements linked to the SMs chosen for this research. 

FC = 
number of software requeriments tested by a technique 

number of software requirements indicated in Table 8 
· 100 (2.5)

Table 2.34 shows the results obtained for each technique.

a. Cause-effect technique 

The aim of the cause-effect technique is to check that the software requirements 
established at the beginning of the engine project are met. They come from a database 
in which the staff document different bugs found throughout the engine project. In 
other words, all test cases are based on the experience of the company subjected
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Fig. 2.30 Interactions between the C-code and the dll

Table 2.33 Number of total 
functional requirements Type of SM Number of requirements 

Simple 75 

Fairly-complex 400 

Highly-complex 510

to this case study. These test cases can be run by using a manual execution or can 
be automated by employing Python scripts. The main limitation of the cause-effect 
technique is test-case redundancy [81]. This research confirms this statement. After 
having analyzed the test-cases run by using this technique, the authors found many 
of them which tested the same software requirements. 

b. Model based-testing 

As already exposed in this research, a functional model is built by employing 
Matelo software. In addition, this software is able to generate test cases with the aim 
of covering the whole functional model. The functional coverage can be calculated 
easily by using Eq. (2.5). Moreover, this technique allows detecting use cases not 
considered initially in the software requirements.
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Table 2.34 Functional coverage obtained for each research 

Technique Simple SM Fairly-complex SM Highly-complex SM 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Cause-effect 64 85.3 312 78 357 70 

Model-based 
testing 

64 85.3 312 78 357 70 

Tester-in-the-loop 64 85.3 312 78 357 70 

Performance EX 
combined with dlls 

68 90.7 348 87 445 87.2 

Software EX and 
performance EX 
combined with dlls 

71 94.6 360 90 465 91.2

When using Matelo (the model-based testing technique), it is important to expose 
the problems found during this chapter. If the test engineer let Matelo generate 
test cases, this software will assign specific values for each input of the SM under 
validation. As a consequence, the problems of SM interactions are identified. That 
is why this strategy could not be used. To face this issue, one can use dlls combined 
with Matelo. In this case, Matelo will not generate the test case, but it will control 
the automation process. In order words, the test engineer must code a Python script 
to generate the test cases needed, and then Matelo will check the functional states 
covered as the automation is performed. In the present chapter, the test engineer 
codes Python scripts with the aim of running the same test cases as for the manual 
execution, the tester-in-the-loop, and so on. 

C. EXs Combined with dlls 

The software performance is assured by using an EX capable of detecting whether 
the software behaves properly when a test case is conducted. As discussed earlier, 
the unexpected behavior can come from a coding fault or design error. In both cases, 
the performance EX can detect them. Therefore, the results obtained when validating 
the EX are analyzed in this section. As done in the previous case, a validation and 
a test phase were performed. The main problems obtained for the former phase are 
depicted in Table 2.35.

When the errors indicated in Table 2.36 were corrected, the EX was assessed 
during the validation phase. In this case, the same number of test cases used when 
validating the software EX was performed. The acceptance process was the same as 
reported in the software EX validation process (Table 2.36).

When using a performance EX, a certain number of test cases were conducted by 
assigning pseudorandom values to the inputs of the SMs: 25 for 20 simple SMs, 5 for 
fairly complex SMs, and 2 for highly complex SMs. Table 2.37 depicts the results 
obtained.
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Table 2.35 Errors detected when validating the EXs 

Type of error Cases Percentage Explanation 

Wrong syntaxes 6 5.5 Because the rules used to design the EXs are 
extremely complex, the programmer made coding 
errors 

Incoherence among 
rules 

2 1.8 In some cases of wrong performance of the EX, 
incoherence between rules was found 

Misunderstanding of 
technical 
specifications 

3 2.7 Because of innovative evolutions in some parts of 
the engine, some technical specifications were not 
understood properly 

Rules not coded or 
forgotten 

1 0.9 This type of error was made owing to the same 
misunderstanding of technical specifications

Table 2.36 Most important points checked during the validation meeting 

Most important factors considered to validate the expert system 

All safety concepts (ISO 26262) were modeled or considered in the EX 

All diagnoses that may be detected by the engine ECU during the validation process were 
considered in the EX 

The number of states is considered sufficient and representative enough by the project team 

All use cases are modeled and considered in the EX (a priori) 

The transitions among all the states considered in the EX are defined and modeled properly 

The feedback of other projects was considered in the EX

Table 2.37 Code coverage when an EX is used 

Type of SM Number of rules Number of functional states 
tested not checked when 
using an EX 

Functional coverage (%) 

Simple 75 7 90 

Fairly complex 400 52 87 

Highly complex 510 65 87.2 

When both EXs are used together when performing an HIL simulation, the final 
results are enhanced, as more rules are checked as shown in this section (Table 2.38). 
The main reason behind this fact is that the higher the code coverage of the software 
EX, the higher the functional coverage obtained when carrying out HIL simulations. 
Therefore, it is essential that they work in cooperation. Another aspect that must 
be analyzed is why 100% functional coverage is reached when the software code 
coverage is not 100%. This fact can be easily explained as a specific variable can 
be activated by different software paths of the Simulink model. Figure 2.31 shows 
how output Out1 can be activated by two different paths. That is why the functional
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Table 2.38 Number of rules or functional states not checked when an EX is not used 

Type of SM Number of rules Number of 
functional states 
tested not checked 
when using both 
EXs 

Software code 
coverage (%) 

Functional 
coverage (%) 

Simple 75 4 94.6 100 

Fairly complex 400 40 90 95 

Highly complex 510 45 91.2 94 

Fig. 2.31 Activation of a specific variable 

coverage is 100% but not code coverage. This fact supports the conclusion that the 
number of subintervals is essential to get a high code coverage. 

2.4.5.2 Code Coverage 

The supplier responsible for coding the engine ECU software starts from the speci-
fications composed of complex models which are provided by the car manufacturer. 
Thus, it is extremely difficult to reach a code coverage close to 100% as reported in 
previous research [81]. In order to assess the code coverage, the Eq. (2.6) was used 
which establishes the relation between the total number of Simulink® blocks to be 
tested (Table 2.39) and the total number of Simulink® blocks tested. 

FC = 
number of Simulink® blocks tested by a technique 

number of Simulink® blocks indicated in Table 12 
· 100 (2.6)
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Table 2.39 Number of total 
Simulink® blocksa Type of SM Number of requirements 

Simple 75 

Fairly-complex 400 

Highly-complex 510 

aWhen a state flow is present, each state is considered as a 
Simulink® block 

The results obtained for each technique are shown in Table 2.40. 

a. The cause-effect technique 

When using the cause-effect technique, after having run all test-cases to assess 
the functional coverage the number of Simulink® blocks covered were calculated 
following the equation [2]. The cause-effect technique implies redundancies. Conse-
quently, the code coverage is not high. The main limitation associated with this 
technique is that it is based on the software behavior and not on checking the code 
coverage and the number of Simulink® blocks covered. 

b. The model-based testing 

The model used for testing the SM under validation can be built from two points 
of view. The first one focuses on the functional software behavior. The other one 
focuses on the software structure, in other words, on the Simulink blocks without 
analyzing the purpose of each block. In this section, the second point of view is used. 
However, it faces the same problems already described when automating test cases 
because of the SM interactions. 

c. EXs combined with dlls

Table 2.40 Code coverage obtained for each research 

Technique Simple SM Fairly-complex SM Highly-complex SM 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Number 
of rules 
tested 

Functional 
coverage 
(%) 

Cause-effect 63 78.7 265 75.6 410 77.3 

Tester-in-the-loop 63 78.7 265 75.6 410 77.3 

Model-based 
testing 

63 78.7 265 75.6 410 77.3 

Performance EX 
combined with dlls 

74 92.5 295 84.3 435 82 

Software EX and 
performance EX 
combined with dlls 

76 95 313 89.6 425 80.2 
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Fig. 2.32 Scheme of a software EX used in this research 

A realistic way to assess the code coverage is to check whether all sub-blocks 
which composed a Simulink® model of a specific SM under validation, are verified 
after having run all the test-cases. In this research, two options were considered: 

a. Division of the range of every software variable involved in the validation process 
into subintervals. The aim of this was to generate test-cases that allow covering 
as many paths of the Simulink® model as possible. This strategy is followed by 
commercial software such as Matelo®. 

b. Number of states. This is a key factor as it allows modelling in detail the software 
behavior by using functional states. As depicted in Fig. 2.32, every path of a 
Simulink® model may be represented by a functional state. 

By changing the value of these factors, the code coverage was assessed. To do 
this, it was checked how many functional states were covered when conducting all 
test-cases available to validate an SM following the strategies described earlier to 
generate test-cases. The obtained results are shown in Table 2.41. These figures show 
how the code coverage increases as the number of states goes up. This fact must be 
coherent with the functional coverage rate. This point will be analyzed in this section.

The code coverage could be calculated in a more accurate way. However, this 
implies that two main issues should be taken into account. Firstly, the number of test 
cases to be performed by using an HIL simulation increases, and the project time 
frame can be affected. In addition, some use cases are difficult to be simulated when 
using an HIL bench owing to the HIL model limitations, especially when it comes 
to SMs linked to advanced driver assistance systems. It must be reminded that these 
functions need a lot of information exchanged between different ECUs present in the 
CAN network. Secondly, the number of states should also be increased. However, it 
cannot be stated that the more states are used, the higher the code coverage is. As 
shown in Table  2.41, there is a limit at which the code coverage does not increase 
meaningfully (15 states for a simple function and 75 for a fairly and highly complex 
function). After analyzing the results, the conclusion was that many test cases were
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redundant. As mentioned above, some states are difficult to reach when using an HIL 
simulation owing to HIL model limitations. 

When it comes to subintervals breakdown, the obtained results are shown in 
Table 2.42. The main conclusion is the higher the number of subintervals, then the 
lower code coverage is, as redundancy in test cases occurs. In this research, the authors 
proceeded to use a fuzzy logic to establish the optimal number of subintervals. More 
specifically, the speed was considered as low, average, and high, the water cooling 
temperature low, average, or high, and so on.

Figures 2.33 and 2.34 depict the results in a more visual way.
Finally, it is essential to check the validity of the software EX. Two phases were 

considered: a validation and a test one. On the one hand, the former consists of 
verifying test-cases to assess the EX performance depending on the type of SMs 
under validation (60 for simple SMs, 40 for fairly-complex SMs and 10 for highly 
complex SMs). On the other hand, the later seeks its acceptance after having tested 
30 for simple SMs, 20 for fairly-complex SMs and 5 for highly complex SMs. It 
is vital to remark that all the points, tested to validate the system, covered all the 
functional rules. Thus, the functional coverage rate was 100%. In the first phase, a 
17.3% error was obtained. In the second one, 0%. As a result, the EX was validated. 
Table 2.43 shows the results obtained during the first phase.

Before using the EX, an acceptance process is performed, consisting mainly of 
a series of meetings in which some key factors are assessed. Table 2.44 depicts the 
most important ones. All the factors assessed cannot be indicated for confidentiality 
reasons. It is essential to remark that no bug or unexpected behavior of the EX was 
detected after its validation.

2.4.5.3 Bug Detection 

When using one EX, the results obtained after executing the number of test-cases 
specified in Table 2.2 are shown in Fig. 2.27.

• The Cause-effect technique (automated or not) and the model-based testing one. 
The use of Python scripts is a less efficient technique because it is complicated 

to make the system reach a specific operating point, especially when dealing with 
certain SMs, such as those related to after treatment of exhaust gas systems. It must 
be reminded that these SMs perform multiple complex and accurate calculations. 
As a result, this technique faces the SM interaction problem. Despite this, a test-
case can be executed by using an HIL simulation thanks to dlls. This statement 
is also true for model-based testing. The fact of reaching specific points remains 
difficult due to the SM interaction problem. 

• The tester-in-the-loop technique and the manual execution one. 
The tester-in-the-loop technique offers better results as a technician or a test 

engineer can make the system reach a specific operating point. Then, a script is 
run to use all the necessary manipulations on the HIL model to end the test-case
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Fig. 2.33 Code coverage rate versus the number of subintervals considered when validating a 
simple SM 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

1 3 5 8 11 15 18 20 25 31 36 42 48 54 60 68 75 

Co
de

 c
ov

er
ag

e 

Number of states 

Code coverage vs subintervals 

Fairly-complex SM subinterval = 3 Highly-complex SM subinterval=3 

Fairly-complex SM subinterval = 4 Highly-complex SM subinterval=4 

Fairly-complex SM subinterval = 5 Highly-complex SM subinterval=5 

Fig. 2.34 Code coverage trend vs the number of sub-intervals chosen when validating a fairly and 
highly complex SMs

performance. This statement is also true for manual execution as a technician 
performs the whole test-case execution.

• Using EXs to validate the software 
EXs performance must be analyzed. In the previous research, which is under 

consideration for publication, the authors probed how the use of a performance 
EX introduced significant advantages such as the capacity of detecting more bugs 
than other techniques. The question that might arise is if the addition of a software 
EX introduces significant improvements, which would justify its implementation.
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Table 2.43 Errors detected when validating the EXs 

Type of error Cases Percentage Explanation 

Wrong syntaxes 10 9.1 Because the rules used to design the 
EXs are extremely complex, the 
programmer made coding errors 

Incoherence between rules 6 5.5 In some cases of wrong performance 
of the EX, incoherence between rules 
was found 

Rules not coded or forgotten 3 2.7 This error is due to the same 
misunderstanding of technical 
specifications

Table 2.44 Most problematic Simulink blocks 

Interpolator block. In this case, depending on the input values presented to the 
Simulink block, an output value is provided by applying an algorithm or an 
interpolation method 

Matlab native comparator block. It has problems in all its versions (greater 
than, greater than or equal to, less than, less than or equal to). In engine ECU 
software, on many occasions, the value of a certain physical magnitude (eg, 
motor revolutions and vehicle speed) is compared with a calibration threshold

As shown in Fig. 2.35, the answer is yes, as more six bugs were found. This 
fact supports the results shown in Table 2.38; the higher the code coverage, the 
more functional states are checked. Six bugs were detected by using two EXs. 
Figure 2.36 depicted a classification of these bugs. The term of strategy chosen 
showed in Fig. 2.15 refers to the ability of testing more paths of the Simulink 
models, thanks to the use of software EXs that allow to increase the code coverage 
rate. The rules not considered concept refers to functional states reached during 
HIL simulations that had not been considered by the design team. The value bugs 
term refers to certain bugs detected when a Simulink block did not perform some 
calculations properly (Table 2.44).

2.4.6 Dynamic-Link Libraries 

The problem of SM interactions is resolved, thanks to the usage of dlls as proved in 
this research. It must be remarked that the obtained results are very similar no matter 
what technique is used provided that dlls are implemented as depicted in Tables 2.45, 
2.46, and 2.47.

Several factors must be considered to better understand these results. Firstly, dlls 
are not needed when using the manual execution as the test engineer can control accu-
rately the automation process. Secondly, the results for “Automated with a Python
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Fig. 2.35 Capacity of bug detection

script and the use of dlls” are representative for no matter what technique is used, 
which implies that a Python script is run to perform the automation process such as 
the model- based testing and EXs. Finally, when using dlls, a 100% success rate is 
not achieved because of HIL model inaccuracies. The HIL model, which represents 
the vehicle dynamic, is not perfect. Therefore, from time to time, the engine ECU
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Table 2.45 Comparisons of different techniques for validating simple functions 

Methodology Number of cases in 
which the output value 
set in the test case was 
no longer valid 

Error rate after 250 
simulations (%) 

Success rate (%) 

Only but without using a 
dlls 

49 19.6 80.4 

Tester-in-the-loop 5 10 90 

Only automation and the 
use of dlls 

13 5.2 94.8 

One EX and dlls 12 4.8 95.2 

Two EXs and dlls 13 5.2 94.8

can detect failures, which implies that the test case cannot be properly run despite 
the dlls usage. 

2.4.7 Limitations 

It is important to emphasize that the use of EXs does not allow the detection of any 
type of bugs. Indeed, the output provided by the software for a particular variable
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Table 2.46 Comparisons of different techniques for validating fairly complex functions 

Methodology Number of cases in 
which the output value 
set in the test case was 
no longer valid 

Error rate after 1250 
simulations (%) 

Success rate (%) 

Only but without using a 
dlls 

480 38.4 61.6 

Tester-in-the-loop 350 28 72 

Only automation and the 
use of dlls 

125 10 90 

One EX and dlls 126 10.1 89.9 

Two EXs and dlls 124 9.9 90.1 

Table 2.47 Comparisons of different techniques for validating highly complex functions 

Methodology Number of cases in 
which the output value 
set in the test case was 
no longer valid 

Error rate after 100 
simulations (%) 

Success rate (%) 

Only but without using a 
dlls 

61 61 39 

Tester-in-the-loop 35 35 65 

Only automation and the 
use of dlls 

15 15 85 

One EX and dlls 15 15 85 

Two EXs and dlls 14 14 86

differs from the one expected. However, if this fault does not introduce any serious 
malfunction, the EXs will not be able to detect it. That is why, the use of the dlls is 
essential in this methodology. This type of bugs may be present in SMs that perform 
many calculations. 

The reader might think that, in case of bugs in the Simulink model, the software 
will also contain these errors. As a result, no bug will be detected by using the method 
proposed in this research. This study has proven that this statement is true and that 
is why the performance EX must be used. In the engine ECU software, when some 
specific failures are detected, a software reset takes place. If, despite this, the failure 
still occurs, the ECU stops the car. Figure 2.37 shows a bug found during this research. 
The dll and the software did not increase a counter properly. The main consequence 
was that instead of counting until four software resets, they counted until two and 
the engine was not stopped. In this case, the dll and the software provided the same 
outputs. However, the EX detected this software bug.

Finally, the limitation associated with this methodology is no different to others 
that can be proposed as increasing the number of test cases to be conducted to ensure 
a code coverage of 100% is not compatible with the planning of an engine design 
project.
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Fig. 2.37 An example of a software bug detected by the EX that could not be detected by using 
traditional techniques

2.4.8 Threats to Validity 

Table 2.48 describes the main variables to be controlled (predictors) to check the 
influence on the response variables (productivity gain, documentation quality, and 
bugs). Among these predictors, one can distinguish the sample used in the study 
described in this chapter, the staff’s skills in Python, the SM chosen to be validated, 
the staff’s experience in how the engine ECU operates, the reliability of measures 
done during the validation, and finally, the quality of the documentation furnished 
to technician or engineers to validate the software (test description, python scripts, 
etc.).

All these factors are analyzed in the sensitivity analysis. The authors described 
in-depth how all these factors impact the time needed to code Python scripts and, 
therefore, productivity (internal threats). Considering that one of the most important 
factors to be analyzed in this research is the number of bugs found when using two 
EXs working in collaboration, it is essential to check how these variables impact 
this factor. Figure 2.17 shows that the less quality the documents have, the fewer 
bugs are detected, and therefore, the performance decreases. The quality depends on 
the sample used in this research, the training in Python, the staff’s experience in the 
engine control unit ECU, and the number of people belonging to the staff. When it 
comes to external threats, it is of paramount importance to verify if the results can 
be generalized or if it is applicable to a larger group. Figure 2.38 shows that it can be 
applied as the quality depends on the number of members of the staff. This statement 
is based on the fact that the higher the staff is, the more hours can be devoted to 
improving the quality of documentation. Otherwise, the terms of the project will be 
prolonged.
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Table 2.48 Factors to be controlled when validating the engine ECU 

Factor Description 

Sample used in this research This research was performed in a software validation service that 
belonged to one of the most important manufacturers in Europe. 
The staff used in this research is composed of 40 people: 19 
engineers and 21 technicians. Each person may have different 
skills, but this fact was considered in the sensitivity analysis 

Training in Python The more a validation department masters Python, the more 
sufficient the productivity gain is or the more extensive 
knowledge of an engine operation the staff can acquire, the less 
time they require to write the tests. Technicians and engineers 
having different levels in coding Python or in engine operation 
knowledge were chosen. Then the influence of all the 
aforementioned aspects was analyzed in the sensitivity analysis 

SM chosen for the research Not all SMs present in the engine ECU software have the same 
complexity. It is not possible to draw exactly the same 
conclusions for a simple SM as for a highly complex one. The 
SMs were divided into three groups. The fact of not doing this 
implies that the productivity gain is not properly assessed 

Unreliability of measures All measures were taken in the same conditions. To assure this, 
a procedure was written, which describes when measures can be 
accepted and when they must be rejected it. In addition, EXs 
must be validated 
Otherwise, the conclusions could be completely random and 
wrong 

Staff’s experience in the 
engine ECU field 

The members of the staff of a validation service may change 
their positions in the company. As a result, the department may 
have more specialized people at a specific moment and vice 
versa in other occasions. This research was performed 
considering different scenarios depending on the staff’s training 
as shown in the sensitivity analysis 

Quality of documentations 
provided to the technician to 
validate the software 

A validation department can have more or less staff. It must also 
be reminded that a validation department is of high cost for 
companies, so they try to limit the number of people who run the 
service

2.4.9 Sensitivity Analysis 

When automating a test case, it is necessary to make the vehicle reach specific 
operating conditions. To do this, there are two options: firstly, coding a high-quality 
script that can control all necessary parameters that could prevent the vehicle from 
achieving the desired operating point and secondly, the “tester-in-the-loop” concept 
can be applied. Thus, a technician makes the vehicle reach a desired operating point, 
and then an automation script performs all subsequent actions to run the test case 
completely. In this chapter, these SMs were automated in the company subjected to 
this case study by using Python scripts. The key to achieve this is to code libraries that 
can carry out specific interaction with the vehicle model interface, such as heating
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Fig. 2.38 Documentation quality vs bugs found when using Exs

the NOx probes. Therefore, quick and robust scripts can be coded. However, the time 
needed to code Python scripts depends on the programmer’s experience. As shown 
in Table 2.49, the staff of the validation software validation service of the company 
subjected to this case study has been classified as expert, average, and low level when 
it comes to their experience in Python. 

Figure 2.39 depicts the obtained results.
Clearly, training in Python scripts is a key aspect to be taken into account to 

improve productivity when it comes to software validation. 
However, training in Python is not the only key factor to improve the quality 

of software and time frame of the project. Knowledge about physical phenomena 
controlled by the SM under validation has a great influence on the time needed to 
design tests. For example, if a test engineer needs to design tests for validating the 
urea injection for the nitrogen oxide treatment, if he knows the physical foundation 
of the function, besides knowing the software architecture, the time needed to design 
a test case is reduced. To verify this, expert python test engineers were chosen to 
code python scripts to automate simple, average, and complex functions. However, 
these engineers had high, average, and low knowledge about the function to be 
automated. The obtained results are shown in Fig. 2.40. Consequently, in addition

Table 2.49 Staff’s training in Python 

Group Experience in coding Python scripts Number of members 

Expert level More than 2 y 10 

Average level Between  1 and 2 y 15 

Low level Less than 1 y 15 
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Fig. 2.39 Time needed to code a script depending on staff’s training

to SM knowledge, another potential method of improvement is provided by the 
expertise in the physical phenomena linked to a combustion engine. 

The number of engineering hours dedicated to design the tests used during the 
validation process depends on the final quality of the test documentation provided 
by the technician. If schedules, notes, and comments are attached, the cost increases. 
Figure 2.41 shows the total amount of engineering hours spent to design the tests 
depending on the final quality provided. In this research, the quality was measured 
by using a checklist built by the validation expert engineer of the powertrain software 
validation service.

Taking together Figs. 2.40 and 2.41, the total number of hours needed to design 
the test cases (test-case design and the time needed to code the Python scripts) is

Fig. 2.40 Needed time for designing test cases vs functional and physical knowledge about a SM 
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Fig. 2.41 Engineering hours spent for test design depending on the type of SM to be validated in 
black-method

shown in Fig. 2.42. Significant productivity improvements when comparing with 
the black-box technique can be obtained when the training of the staff is improved: 
13.5% for complex functions, 10.9% for fairly complexity functions, and 16.6% for 
simple functions considering the average knowledge case. These figures are based 
on the scenario of high Python skills as well as good knowledge of the SM under 
validation. 

Fig. 2.42 Total number of hours to design the test cases (design and script coding time)
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2.4.10 Conclusions 

Several issues that the automotive sector must face when validating the electronic 
control unit (ECU) software are: how to design representative use-cases, how to 
properly automate the HIL simulation because of the interaction of SMs, and, how 
to be able to find coding and performance bugs when running a test-case. 

This research, conducted at the second most important European car manufacturer, 
is focused on the software validation of an engine ECU by using dlls and two rule-
based EXs, one for detecting performance bugs and the other for finding code bugs. 
This combination allows the detection of software performance and coding bugs. In 
this research, the use of dlls and two EXs were compared to other techniques such as 
the tester-in-the-loop, automation by using Python scripts and a performance EX and 
automation by using Python scripts without EXs. The results obtained show that dlls 
and two EXs are able to detect 6 bugs more than the use of dlls and a performance EX 
can, 14 bugs more than the tester-in-the-loop can, 16 bugs more than the automation 
by using Python scripts can,15 bugs more than a manual execution can and 14 bugs 
more than the model-based testing can. Dlls and EXs working in cooperation enhance 
the code coverage regarding the other techniques. This enhancement depends on 
the number of states in the functional model used in the EXs and the number of 
subintervals in which the SM inputs can be divided as shown in this research. 

Dlls and Python scripts can be used combined with different techniques such 
as the using of a performance EXs or two EXs. The obtained results show that the 
methodology proposed in this research enhances the HIL success rate compared with 
the tester-in-the-loop technique by up to 6% for simple validation SMs, by 16.8% for 
fairly-complex SMs and by 18% for highly complex SMs despite the SM interactions. 
When it comes to automation without using dlls, the methodology proposed in this 
research enhances the HIL success rate up to 14.4% for simple validation SMs, by 
27.4% for fairly-complex SMs and by 47% for highly complex SMs despite the SM 
interactions. 

Even though ES and dlls require more time to be implemented for highly-complex 
and simple functions, the deadline of the project was met. When it comes to fairly-
complex functions there is a productivity gain considering the number of SMs to be 
tested in an engine ECU software project versus the tester-in-the-loop and manual 
execution. In addition, the time needed to implement the model-based testing tech-
nique is similar to the one needed for two EXs. It must be reminded that the 
fairly-complex SMs are the majority in the engine ECU software.
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