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Abstract. Machine Learning (ML) strongly relies on optimization pro-
cedures that are based on gradient descent. Several gradient-based
update schemes have been proposed in the scientific literature, especially
in the context of neural networks, that have become common optimiz-
ers in software libraries for ML. In this paper, we re-frame gradient-
based update strategies under the unifying lens of a Moreau-Yosida
(MY) approximation of the loss function. By means of a first-order Tay-
lor expansion, we make the MY approximation concretely exploitable
to generalize the model update. In turn, this makes it easy to evaluate
and compare the regularization properties that underlie the most com-
mon optimizers, such as gradient descent with momentum, ADAGRAD,
RMSprop, and ADAM. The MY-based unifying view opens to the pos-
sibility of designing novel update schemes with customizable regulariza-
tion properties. As case-study we propose to use the network outputs to
deform the notion of closeness in the parameter space.

1 Introduction

Gradient based optimization procedures are arguably one of the main ingredi-
ents of Machine Learning (ML). As a matter of fact, the success of deep learn-
ing strongly relies on the efficiency of Stochastic Gradient Descent (SGD) to
solve large scale optimization problems [3]. It is pretty common to introduce
the gradient descent method in Euclidean spaces, leveraging on the geometrical
interpretation of the direction of steepest descent [5], that yields the definition of
gradient descent by means of an iterative procedure. In particular, we are given a
function f which we aim at minimizing, and which depends on some parameters
w ∈ R

N . If wk are the values of the parameters at the k-th step of the gradient
descent, their update scheme is given by

wk+1 = wk − τ∇f(wk), (1)
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for some initial w0 = w0 ∈ R
N and τ > 0 (learning rate, step size), being ∇f the

gradient of f with respect to w. The ML literature includes several works aimed
at providing adaptive values for τ , eventually considering a specific learning rate
for each component of w, or introducing further terms in the update rule [7,10,
19,22]. Despite their large ubiquity in implementations of ML-based solutions,
such works are inspired by different principles and they are presented starting
from different problem formulations, that make it hard to quickly compare them.
Moreover, simply looking at the final update rules they devise is not enough to
fully grasp what are the expected effects they bring to the optimization. Delving
into their details to trace connections among them is definitely possible, but it
is not straightforward.

Motivated by these considerations, in this paper we propose to reconsider
the aforementioned update rules, casting them all into a unified view in which
wk+1 is presented as the solution of a newly introduced optimization problem
with well-defined and clearly interpretable regularity conditions. Such conditions
constrain the variation between wk and wk+1, thus making it easier to under-
stand the expected properties of the solution (wk+1) and to compare different
approaches. Our idea is rooted on the so-called Moreau-Yosida (MY) approx-
imation of a function [1], that we apply to the loss f , and it is motivated by
evident analogies between the stationary points defining the MY approximation
and update rules in the form of Eq. (1). It turns out that directly dealing with
such approximation is not enough to recover the update scheme of Eq. (1), thus
we investigate the first-order Taylor expansion of f in the MY approximation
to devise a related optimization problem whose solution is indeed equivalent
to Eq. (1) under certain regularity conditions. Beyond the benefits introduced
by the interpretability of the proposed unified view, it is important to remark
that our main goal is to provide researches with a formulation that more easily
opens to the development of novel, more informed, optimizers. A related app-
roach is well-known and exploited in the specific context of the online learning
community [4], still not widely known to a wider ML audience.

In order to emphasize the usefulness of the proposed uniform view, we con-
sider a case-study in which data is continuously streamed and learning pro-
ceeds in a continual manner [6,12,18]. Since our contribution is theoretical, our
goal is to showcase the flexibility of the MY view in injecting problem-related
prior knowledge in the update scheme, while proposing powerful experimentally-
validated optimizers goes beyond the scope of this paper. In particular, we exploit
the MY approximation to design a novel update scheme for the weights of a neu-
ral network , modulating the strength of the updates in function of the variations
of the predictions over time. In the considered setting it is widely known that it is
hard to find a good trade-off between plasticity and stability [18], and we follow
the assumption for which strong output variations might be associated to sig-
nificant changes in the data, thus they require the network to be more plastic in
order to adapt to the novel information. Differently, small variations triggers less
significant updates, preserving the already learned information, thus favouring
stability. We notice that while the use of a regularization based on information
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from the output space of a model is a well-known principle behind Manifold Reg-
ularization [2,15], here we show how it can be exploited in continual learning
by direct injection in the update rule of the model parameters. Moreover, recent
approaches to continual learning exploited related heuristics to improve the qual-
ity of the learning process [13], even if without a clear theoretical formalization
behind them.

The paper is organized as follows (see Fig. 1): Sect. 2 is devoted to the descrip-
tion of the MY approximation, its properties, the uniform view of gradient-based
learning, and its relationships with proximal algorithms. Section 3 revisits com-
monly used optimization methods in Machine Learning in the context of the
proposed uniform view, describing all of them in a unique, common, framework.
In Sect. 4, we present a case-study based on an output-modulated update scheme.
Section 5 concludes the paper with our final discussions.

Fig. 1. Conceptual scheme of the organization of the article, that highlights the main
theoretical contributions.

2 From Moreau-Yosida Approximations
to Gradient-Based Learning

In this section we formally introduce the Moreau-Yosida (MY) approximation
that we consider in the context of this paper, Definition 1. Then, we will exploit
such notion to setup an update scheme, Eq. (9), based on a related optimiza-
tion problem whose minima are described by the same recursive rule of gradi-
ent based methods. This fully connects the MY approximation and gradient-
based learning, yielding a uniform view that we will exploit in the rest of the
paper. For completeness, we also discuss its relations with proximal algorithms
(Sect. 2.1).

Definition 1 (Moreau-Yosida Approximation). Given a non-negative,
lower semicontinuous function f : RN → R, such as for many implementations
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of the empirical risk in Machine Learning, the Moreau-Yosida approximation [1]
of f evaluated in point w, referred to as fMY(w), is1

fMY(w) := min
w′∈RN

f(w′) +
1
2τ

‖w′ − w‖2, (2)

where ‖ · ‖ is the Euclidean norm and τ > 0.

The objective function in the optimization problem of Eq. (2) is composed of
two terms: the left-most one is the value of f in w′ (for example, a loss function
aggregated over the available data), being w′ the variable of the minimization
problem, while the right-most term is a regularizer that penalizes strong varia-
tions between such w′ and the target point of the approximation, i.e., w. As a
result, given w� that minimizes the objective of Eq. (2),

w� ∈ arg min
w′∈RN

f(w′) +
1
2τ

‖w′ − w‖2, (3)

we have that
fMY(w) = f(w�) +

1
2τ

‖w� − w‖2,
where smaller values of τ forces w� and w to be closer (in the sense of standard
Euclidean topology). See Fig. 2. In the case of hard-constrained optimization,
the problem of Eq. (2) is conceptually equivalent to the following constrained
optimization problem,

min
w′∈RN

f(w′);

s.t. ‖w′ − w‖ ≤ ε,

for some ε > 0 (that increases when τ decreases), that makes evident the notion
of spatial locality of the MY approximation.2 When f ∈ C1(RN ;R), the sta-
tionary points of the objective function in Eq. (2) are those w� for which the
gradient ∇f of f is null,3 thus

∇f(w�) +
1
τ

(w� − w) = 0, (4)

from which we get
w� = w − τ∇f(w�), (5)

that is an alternative representation of Eq. (3).
1 Notice that the minimum here exists since f + ‖ · −w‖2/2 is lower semicontinuous

(because f is lower semicontinuous) and coercive since f ≥ 0 and ‖ · −w‖2/2 is
coercive (then the sublevels of f + ‖ · −w‖2/2 are contained in the sublevels of
‖ · −w‖2/2, which are compact). The existence of the minimum then follows from
Weierstrass. .

2 Of course, this formulation calls for Lagrange multiplier theory to be solved.
3 Notice that in general in Eq. (2) such strong assumption on differentiability is not

required, since the MY approximation is general and can be applied even in contexts,
like functional analysis, where the notion of gradient could not be clear.
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Fig. 2. Three different optimization steps. In (a) it is represented the global optimiza-
tion step from w0 to wk+1 ∈ arg minw′ f(w′). In (b) the global step is made local by
requiring that the minimization should be done around (magenta strip) the previous
step wk as described in Eq. (2). In (c) we graphically show the equivalence between the
local step and the one induced by the MY regularization as it is described by Eq. (7).
Picture (b) and (c), as it is noted in Eq. (8), are equivalent to an implicit gradient
descent step.

Bridging Gradient-Based Learning. Let us consider the sequence of points
(wk)k≥0 defined by the classic recursive relation of gradient-based methods with
learning rate τ , as the one of Eq. (1),{

w0 = w0 ∈ R
N ;

wk+1 = wk − τ∇f(wk), k > 0.
(6)

where w0 is a fixed initial point. We can exploit the MY approximation of f
in Eq. (2) and, in particular, the expression of the argument that minimizes
its optimization problem, Eq. (3), to devise another related recursive relation,
replacing w� with wk+1 and w with wk,{

w0 = w0 ∈ R
N ;

wk+1 ∈ arg minw′∈RN f(w′) + 1
2τ ‖w′ − wk‖2, k > 0,

(7)

that, accordingly to Eq. (5), is equivalent to4{
w0 = w0 ∈ R

N ;
wk+1 = wk − τ∇f(wk+1), k > 0.

(8)

It is evident that Eq. (8) describes an implicit scheme, from which wk+1 cannot
be immediately computed, since it belongs to both the sides of the equation. This
is different from Eq. (6), that is indeed an explicit scheme. For ML application it
is critical to rely on explicit schemes, since solving the implicit Eq. (7) is usually
unfeasible. A further step can be done to recover the explicit gradient descent
4 In the reminder of the paper we will omit to write explicitly the initialization of the

method w0 = w0 and we will just describe the recursion relation for k > 0.
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method from MY approximation. The basic observation is that whenever f is
smooth, at least in the neighbourhoods of wk, we can approximate the value of
f using a Taylor expansion truncated to the first order,

f(w′) ≈ f(wk) + ∇f(wk) · (w′ − wk),

where · is the standard scalar product in R
N . Using this approximation in

Eq. (7), and considering that f(wk) is a constant for the optimization problem
reported in such an equation (thus it can be dropped), we get

wk+1 ∈ arg min
w′∈RN

∇f(wk) · (w′ − wk) +
1
2τ

‖w′ − wk‖2, k > 0. (9)

Following the same procedure we already applied in Eq. (4), we can write down
the equation of the stationary points of the newly introduced Eq. (9), that holds
for w′ = wk+1, ∇f(wk) + (wk+1 − wk)/τ = 0, which ultimately yields wk+1 =
wk − τ∇f(wk), that is exactly the explicit gradient descent method of Eq. (6).
Equation (9) represents the MY view on gradient-based methods of Eq. (6).
Figure 2 qualitatively depicts the connections between classic gradient descent
and the MY view.

Uniform View. The MY scheme in Eq. (9) allows us to clearly spot the
role of the variation between w′ = wk+1 and wk, that is involved both in the
squared regularizer (weighed by learning rate τ), and in the modulating term of
the gradient of loss function f . Equation (9) is a powerful tool that is general
enough to describe several variants of gradient-based updates, also referred to as
optimizers. This is achieved by tweaking the regularizer ‖w′ − wk‖2 or adapting
∇f , thus clearly showing what are the expected properties of the resulting update
rule, that is the topic covered in the following Sect. 3. Differently, in Sect. 4 we
will use this framework to describe a case-study in which a new gradient-based
method is introduced, as a proof-of-concept of the versatility of this view toward
the design of novel optimizers.

2.1 Relations with Proximal Algorithms

In is interesting to formally analyze the relations of the MY view and proximal
algorithms. A proximal algorithm is an algorithm that solves a convex opti-
mization problem making use of the proximal operator of the objective function
(see [17]). The simplest example of this class of methods, which is called “proxi-
mal minimization algorithm”, defines a minimizing sequence that is obtained by
the repeating application of the proximal operator proxτf (that we will formally
define shortly) to an initial point w0:{

w0 = w0 ∈ R
N ;

wk+1 = proxτf (wk), k > 0.
(10)

Such method is closely related to the Moreau-Yosida approximation of the objec-
tive function f , once we provided and discuss the definition of the proximal
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operator. Let us suppose that f , in addition of being lower semicontinuous and
non-negative (hence proper), is also convex (we recall that what we presented
so far did not have such a requirement, introduced here only with the goal of
discussing proximal algorithms). Then, the function f(w′) + 1/(2τ)‖w′ − w‖2 of
which we are taking the minimum in Eq. (2) is strongly convex. This implies
that the minimizer of Eq. (2), that we will denote as w′

w, is unique. The operator
implementing the mapping w �→ w′

w is called proximal operator or proximation
(for more details, see [17,21]). In order to be able to write an explicit represen-
tation of this operator, let us recall from subdifferential calculus [21] that if f is
convex, and if g is C1 near w, being w a point that minimizes f + g, then

−∇g(w) ∈ ∂f(w),

where ∂f is the subdifferential of f . If we apply this result to f(w′)+1/(2τ)‖w′−
w‖2 with g(w′) = 1/(2τ)‖w′ − w‖2 we immediately have

∂f(w′
w) +

1
τ

(w′
w − w) 	 0,

which is the relation that uniquely characterizes w′
w and that, in particular,

guarantees that the operator proxτf , implemented as

proxτf (w) := (I + τ∂f)−1(w) ≡ w′
w,

is uniquely defined. It should now be apparent that the proximal operator and
the MY approximation of Definition 1 are very closely related. For instance,
when f is convex we can write

fMY(w) = f(proxτf (w)) +
1
2τ

‖proxτf (w) − w‖2,

and we can relate the gradient5 of fMY with the proximal operator as follows,

proxτf (w) = w − τ∇fMY(w).

Finally we notice that in the convex case the arg min in Eq. (7) becomes a
singleton and hence the algorithm in Eq. (7) coincides with the one in Eq. (10).
For completeness, we mention that there exists scientific literature that studies
proximal algorithms also in the non-convex case [9,11].

3 Moreau-Yosida View of Popular Optimizers

In this section we will discuss how the MY view of Eq. (9) is general enough to
can describe several existing optimizers widely employed in the ML community.
In particular, we will consider the case of Stochastic Gradient Descent (SGD)

5 It is indeed a standard result that under the convexity assumption fMY is differen-
tiable.
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[20], Heavy Ball method (gradient descent with momentum) [19], AdaGrad [7],
RMSprop [22], and ADAM [10].

SGD. The largely popular Stochastic Gradient Descent method [20] is based
on a stochastic objective that involves a fraction of the available data at each
iteration. We use it as starting example to introduce further notation that will
be helpful in the following, being it a pretty straightforward case to cast in
the MY view. We consider a training set with n samples, and we assume that
f = (1/n)

∑n
i=1 fi, being fi the loss evaluated on the i-th example. At each

iteration of gradient descent, a mini-batch of independently (randomly) sampled
data is considered. If we indicate with Ik the set of m indices of the examples in
the k-th mini-batch, and with (1/m)

∑
i∈Ik

fi(wk) the loss function evaluted on
it, then the standard update scheme in the SGD algorithm is

wk+1 = wk − τ
1
m

∑
i∈Ik

∇fi(wk), k > 0.

The MY view is obtained without applying any changes to the squared regu-
larized, as expected, and by simply replacing the term ∇f(wk) in Eq. (6) with
(1/m)

∑
i∈Ik

∇fi(wk),

wk+1 ∈ arg min
w′∈RN

gk · (w′ − wk) +
1
2τ

‖w′ − wk‖2, k > 0, (11)

where we introduced the notation gk := (1/m)
∑

i∈Ik
∇fi(wk), that we will keep

using in the following, since it allows us to be general enough to go back to
classic full-batch gradient descent by setting gk to ∇f(wk).

Heavy Ball Method. Also known as gradient descent with momentum [19], is
based on an explicit formula that involves the latest variation wk−wk−1 between
the learnable parameters,

wk+1 = wk − αgk + β(wk − wk−1), k > 0, (12)

with α, β > 0. The MY view be obtained introducing a higher order regulariza-
tion term and by writing the constants α and β as α = μτ/(μ+τ), β = τ/(μ+τ),

wk+1 ∈ arg min
w′∈RN

gk · (w′ − wk) +
‖w′ − wk‖2

2τ
+

‖w′ − 2wk + wk−1‖2
2μ

, k > 0.

Interestingly, the MY view clearly shows that, compared to vanilla gradient
descent, here we also have an addition regularity term (weighed by 1/(2μ)), that
enforces second-order information on the update step. An alternative definition
of the method is sometimes given using exponential averages, that can still be
cast in the MY view. Let (ak)k≥0 be a sequence, then the exponential moving
average with discount factor δ of (ak)k≥0 is the sequence (〈a〉δ

k)k≥0 where the
k-th term is computed as

〈a〉δ
k := (1 − δ)

k∑
j=0

δk−jaj . (13)
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Using such a notion, a popular alternative form of the update rule of Eq. (12) is
wk+1 = wk − τ〈g〉β

k . In this case, using Eq. (13) we can rewrite the MY view as

wk+1 ∈ arg min
y∈RN

〈g〉β
k · (y − wk) +

1
2τ

‖y − wk‖2, k > 0,

i.e., by replacing the gradient term gk with its exponential moving average with
decay factor β. The higher-order regularity is replaced by a smoothing operation
on the gradient term gk. We will use this alternative form also when describing
the ADAM algorithm.

AdaGrad and RMSprop. Both methods (see [7] and [22]) can be cast in the
MY view in a related manner. Their update schemes are defined as

wk+1 = wk − τ(Hk)−1gk, k > 0.

where Hk is a diagonal matrix with the following elements in the diagonal,

(Hk)ii :=

⎧⎨
⎩

ε +
√∑k

n=0(g
n
i )2; for AdaGrad

ε +
√∑k

n=0〈g2i 〉β
n, for RMSprop,

where ε > 0, i ∈ {1, 2, . . . , N}, gk
i is the i-th component of the gradient and,

for i fixed in {1, . . . , N}, ((g2i )n)n≥0 is the sequence of the square of the i-
th component of the gradient, where (g2i )n := (gn

i )2. The MY view can be
described by changing the metric with which we assess the closeness of the next
point with respect to the current value of wk. In particular, both the methods
are obtained from Eq. (11) with the substitution ‖w′ − wk‖2/(2τ) −→ (w′ −
wk) · Hk(w′ − wk)/(2τ), that clearly emphasizes the change of metric induced
by matrix Hk when evaluating the regularization term in the variation of the
learnable parameters.

ADAM. As it is well known, ADAM [10] consists in a specific way to put
together gradient descent with momentum and RMSprop. In order to see exactly
how it can be expressed in the regularization approach à la Moreau-Yosida, first
we need to introduce a further definition of normalized exponential moving aver-
age. Let (〈a〉γ

k)k≥0 be the exponential moving average of the sequence (ak)k≥0

with discount factor δ, then we define

〈̂a〉δ

k :=
〈a〉δ

k

1 − δk+1
, k ≥ 0. (14)

The update scheme of ADAM is then,

wk+1 = wk − τ(Ĥk)−1〈̂g〉β1

k , k > 0,

where Ĥk is a diagonal matrix with

(Ĥk)ii = ε +

√√√√ k∑
n=0

〈̂g2i 〉β2

n , i ∈ {1, . . . , N},
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and β1 and β2 are the customizable parameters of the ADAM algorithm. Follow-
ing the exact same procedure we described in the case of the Heavy Ball method,
using Eq. (14) we can describe ADAM in the context of the MY view as

wk+1 ∈ arg min
y∈RN

〈̂g〉β1

k · (y − wk) +
1
2τ

(y − wk) · Ĥk(y − wk), k > 0, (15)

where it can be easily noticed both (i.) the change of metric in the regularity
term due to the role of matrix Ĥk, and (ii.) the smoothing operation on gk,
that, as discussed in the case of the Heavy Ball method, indirectly introduces a
higher-order regularity condition on the variation of the weights.

4 Case Study: Output-Modulated Update Scheme

When introducing the MY view of Sect. 2, we discussed essentially how a gradient
step is equivalent to solving a local minimization problem on a risk f around
the current step wk. As a proof-of-concept of the versatility of this view toward
the design of novel optimizers, we consider a specific use-case based on neural
networks.

Scenario. Let ν(·, w) : Rd → R
p be a neural network that, given a set of

weights w ∈ R
N , maps some input data x ∈ R

d into an output ν(x,w) ∈ R
p.

The risk f is a measure of the performance of the network ν. We focus on a
continual learning scenario, in which the data samples are not i.i.d., for example
due to the fact that tasks and task-related data are presented in a sequential
manner, where the data distribution changes over time [8,14,18]. In this case, the
learning process might be plagued by several similar/related samples streamed
in neighboring steps, and by abrupt changes in the data when switching from
one task to another. The plasticity of the model should then adapt over time,
being the network more plastic when never-seen-before data is provided, while it
should not be too prone to overfitting data that was already shown several times
in the last time frame. We make the hypotetis that the variations in the network
outputs could indirectly tell if we are in front of data that is similar to what was
just observed, or if we are switching to different data. Of course, there are no
attempts to solve catastrophic forgetting issues of to propose a novel continual
learning algorithm, since what we are presentin is just a case-study to support
the simplicity of injecting novel knowledge in the update procedure by working
on the MY view.

Output-Based Modulation. In Eq. (7) the notion of closeness in the space
of parameters is given by the term ‖w′ − wk‖2/(2τ). Here the general idea is to
modify this natural Euclidean topology by taking into account the way in which
the changes in the parameters, induced by learning, is affected by the variations
of the outputs of the model. The simplest way in which we can achieve this is by
introducing a modulation function ψ(ν) that takes into account the outputs of
the network ν in order to appropriately weigh the regularization term in Eq. (7);
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what we are proposing hence is to study variants of a gradient descent method
that are obtained thought the following transformation of the “distance” term:

1
2τ

‖w′ − wk‖2 −→ ψ(ν)
2τ

‖w′ − wk‖2. (16)

The MY-view, by explicitly showing the regularizer of the variation of the
weights, allows us to immediately connect the modulated term with its effects
in the update rules, as we are going to investigate by providing the precise form
and structure of ψ(ν). Since the output of the network depends on the input
data other than the value of the parameters, we also need to define a protocol
with which data is introduced to the learner. At each time step, we are given a
mini-batch of data of size m, with sample indices collected in the already intro-
duced Ik, and using the same definition of gk we presented in the case of SDG,
i.e., gk = 1

m

∑
i∈Ik

∇fi(wk). We are now in position to discuss our proposal for
the modulation function ψ, that we select to be

ψ(ν) :=
1
γk

∥∥∥∥ 1
m

∑
i∈Ik

ν(xi, w
k) − 1

m

∑
j∈Ik−1

ν(xj , w
k−1)

∥∥∥∥
−2

, (17)

being γk > 0 a normalization factor that can eventually vary over time (that is
the reason for its subscript). When the average outputs of the network produced
at step k−1 are similar to the ones at time k, then ψ(ν) is small, and vice-versa.
The MY view is then

wk+1 ∈ arg min
w′∈RN

gk · (w′ − wk)

+
1
2τ

‖w′ − wk‖2

γk

∥∥∥ 1
m

∑
i∈Ik

ν(xi, wk) − 1
m

∑
j∈Ik−1

ν(xj , wk−1)
∥∥∥2 , k > 0,

(18)

from which it is easy to compute the stationarity condition of the objective
function to get

wk+1 = wk − τγk

∥∥∥∥ 1
m

∑
i∈Ik

ν(xi, w
k) − 1

m

∑
j∈Ik−1

ν(xj , w
k−1)

∥∥∥∥
2

gk,

for k > 0. The last equation shows the update rule of our newly designed opti-
mizer, which embeds our knowledge/intuitions on the learning problem at hand.
The whole process we followed in devising it, shows how the such knowledge was
initially injected into the MY view having a clear understanding of the regular-
ization properties we aimed at enforcing, and only afterwards we obtained the
update rule, in which the gradient of the loss is shown jointly with what comes
from the proposed regularization.

5 Conclusions and Future Work

In this work we discussed how Moreau-Yosida approximation can be a powerful
tool to efficiently devise optimization methods for Machine Learning. We pre-
sented a framework that offers a unified view on many existing gradient-based
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methods, but that also gives new insights and suggests different interpretations
of them. We used the Moreau-Yosida view in the context of a continual learn-
ing use-case, devising a customized output-modulated gradient-based step, with
a mechanism that inhibits updates of the parameters in presence of stationary
outputs of a neural network. Future works will focus on the usage of the Moreau-
Yosida view of this paper to design novel optimizers for Machine Learning, inject-
ing well-defined and understandable properties in the optimization problem that
yields the update scheme of the model parameters. While this paper is focused
on the theoretical aspects of the proposed approach, in future work we plan to
experimentally investigate the impact of novel optimizers designed within our
uniform view, also considering modern benchmarks and learning scenarios [16].
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