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Preface

This volume contains the proceedings of the 22nd International Conference of the Italian
Association for Artificial Intelligence (AIxIA 2023), the primary scientific event of the
Associazione Italiana per l’Intelligenza Artificiale (AIxIA). AIxIA is a non-profit orga-
nization, dedicated to promoting the advancement of artificial intelligence (AI) within
academic, social, and production contexts. The association established the series of
international conferences in 1991, initially organizing an event every two years, and
then maintaining an annual schedule from 2015 onwards. Over the years, the confer-
ence has visited many cities throughout the national territory, as reported in the LNCS
proceedings of the various editions (https://link.springer.com/conference/aiia).

AIxIA 2023was held in Rome, Italy, during November 6–9, hosted by the University
of Roma Tre. The event took place on the occasion of the centenary of the foundation
of the National Research Council of Italy (CNR) and was curated by CNR and the three
main public universities of Rome, La Sapienza, Tor Vergata and Roma Tre.

The conference received 53 submissions for the regular research papers track. Each
paper was carefully reviewed by at least three members of the Program Committee, and
finally 33 papers were accepted for publication in these proceedings and presentation at
the conference. Besides regular papers, the conference also received the submission of 15
discussion papers, i.e. position papers or extended abstracts of articles recently published
in premier international conferences and journals related to AI. After a dedicated review
process, 13 discussion papers were accepted for presentation at the conference.

AIxIA 2023 featured renowned keynote speakers. Specifically, three keynote talks
were presented: ‘The Evolution of Artificial Intelligence in Italy: A Personal Journey’
by Luigia Carlucci Aiello, ‘Artificial Intelligence: Some Thoughts?’ by Stuart J. Rus-
sell, and ‘Chatting with a Generative AI: A Personal Review’, by Bernardo Magnini.
The conference agenda also included two tutorials by Pietro Liò and Chiara Ghidini, a
Doctoral Consortium, award events, a panel dedicated to FAIR, the largest AI project in
Italy financed by the Italian Ministry for Universities and Research through the National
Recovery and Resilience Plan (PNRR), and two satellite events: a public gathering titled
‘Artificial Intelligence: Instructions for Use’, focused on the impact of generative AI on
schools and younger generations, and an event dedicated to the connections between AI
and the business and industrial world.

Besides the main track, AIxIA 2023 encompassed a wide range of theoretical and
applied AI aspects, with 19 co-located workshops dedicated to specific topics, bringing
together AI communities with related interests:

– 7th Workshop on Advances in Argumentation in Artificial Intelligence (AI)
– 3rd Italian Workshop on Artificial Intelligence and Applications for Business and

Industries (AIABI)
– 1st International Workshop on AI for Quantum and Quantum for AI (AIQxQIA)
– 10th Italian Workshop on Artificial Intelligence and Robotics (AIRO)
– 4th Italian Workshop on Artificial Intelligence for an Ageing Society (AIxAS)

https://springerlink.bibliotecabuap.elogim.com/conference/aiia
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– 1st International Workshop on High-Performance Artificial Intelligence Systems in
Education (AIxEDU)

– 2nd Workshop on Artificial Intelligence for Human-Machine Interaction (AIxHMI)
– 1st Workshop on Artificial Intelligence for Perception and Artificial Consciousness

(AIxPAC)
– 2nd Workshop on Bias, Ethical AI, Explainability and the Role of Logic and Logic

Programming (BEWARE)
– 2nd Workshop on Artificial Intelligence & Creativity (CREAI)
– 2nd AIxIA Workshop on Artificial Intelligence for Healthcare (HC@AIxIA)
– 2nd Workshop on Artificial Intelligence for Cultural Heritage (IAI4CH)
– 11th Italian Workshop on Planning and Scheduling (IPS)
– 12th Italian Workshop on Machine Learning and Data Mining (MLDM)
– 7th Workshop on Natural Language for Artificial Intelligence (NL4AI)
– 5th Workshop on Artificial Intelligence and fOrmal VERification, Logic, Automata,

and sYnthesis (OVERLAY)
– 30th Workshop of the Working group on Knowledge Representation and Automated

Reasoning (RCRA)
– 2ndWorkshop on Strategies, Prediction, Interaction, and Reasoning in Italy (SPIRIT)
– 4th Italian Workshop on Explainable Artificial Intelligence (XAI.it)

We express our gratitude to the various institutions and sponsors who supported
AIxIA 2023, the AIxIA Executive Board for its steadfast assistance, the Rector of Roma
Tre University, Massimiliano Fiorucci, for granting us the opportunity to host the con-
ference in the facilities of the Department of Civil Engineering, Computer Science, and
Aeronautical Technologies.We alsowant to thank all authors for submitting high-quality
reearch papers, the members of the Program Committee and the additional reviewers for
their efforts to produce fair and thorough evaluations of the submitted papers. Our heart-
felt thanks also go to the Workshop and Tutorial chairs, Andrea Brunello and Danilo
Croce, and the Doctoral Consortium chairs, Valentina Poggioni and Silvia Rossi, for
their invaluable contributions in shaping an exciting program for AIxIA 2023. Finally,
we would like to express our gratitude to all those who, in various capacities, contributed
to the success of AIxIA 2023.

September 2023 Roberto Basili
Domenico Lembo
Carla Limongelli
Andrea Orlandini
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ABALearn: An Automated Logic-Based
Learning System for ABA Frameworks

Cristina Tirsi1(B), Maurizio Proietti2 , and Francesca Toni1

1 Imperial College London, London, UK
{ct519,f.toni}@ic.ac.uk
2 IASI-CNR, Rome, Italy

maurizio.proietti@iasi.cnr.it

Abstract. We introduce ABALearn, an automated algorithm that
learns Assumption-Based Argumentation (ABA) frameworks from train-
ing data consisting of positive and negative examples, and a given back-
ground knowledge. ABALearn’s ability to generate comprehensible rules
for decision-making promotes transparency and interpretability, address-
ing the challenges associated with the black-box nature of traditional
machine learning models. This implementation is based on the strat-
egy proposed in a previous work. The learnt ABA frameworks can be
mapped onto logic programs with negation as failure. The main advan-
tage of this algorithm is that it requires minimal information about the
learning problem and it is also capable of learning circular debates. Our
results show that this approach is competitive with state-of-the-art alter-
natives, demonstrating its potential to be used in real-world applications
where low user expertise is available. Overall, this work contributes to the
development of automated learning techniques for argumentation frame-
works in the context of Explainable AI (XAI) and provides insights into
how such learners can be applied to make predictions.

Keywords: Logic-based learning · Assumption-based argumentation ·
Logic program transformation

1 Introduction

Within the field of artificial intelligence (AI), computational argumentation is a
very powerful tool as it can be used to improve the performance and explain-
ability of AI systems [1]. In general, argumentation is valuable through its inter-
disciplinary applications, such as legal and practical reasoning, game-theory,
decision-theory, and philosophy. It uses formal logic to manipulate and reason
about arguments, which provides a clear and comprehensible explanation for
the reasoning behind a conclusion [2]. Recently, there has also been a renewed
interest in logic-based learning, as it works with less data, human knowledge can
be easily injected, and, most importantly, it is explainable [3].

Assumption-Based Argumentation (ABA) is a popular structured argumen-
tation used for knowledge representation and reasoning [4]. In ABA frameworks,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Basili et al. (Eds.): AIxIA 2023, LNAI 14318, pp. 3–16, 2023.
https://doi.org/10.1007/978-3-031-47546-7_1
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the focus is on the assumptions underlying arguments built from rules, rather
than the arguments themselves, and it uses contraries of assumptions to deter-
mine attacks between arguments. The acceptability of an argument is determined
by the acceptability of its assumptions.

On this basis, ABA learning [5] (a novel methodology to learn ABA frame-
works) has been proposed as a solution to support logic-based learning through
the means of computational argumentation.

The main idea is that it extends the knowledge, which is represented as an
ABA framework, by introducing new rules or modifying existing ones following
transformation rules. Currently, there is no existing algorithm that manages to
automate ABA learning. However, a strategy has been proposed [5] to give an
intuition on how such an algorithm could work, but it is not deterministic and
there is no actual implementation of it.

We are interested in automating the ABA learning process. To this aim, we
introduce ABALearn, an automated system using an algorithm based on the
above mentioned strategy [5].

Additionally, we explore a potential solution to increase the interpretability
of the learned ABA frameworks that makes use of Large Language Models [10].

We are also interested in assessing how our system compares with related
existing learners. In this regard, we conduct an evaluation against two state-of-
the-art logic-based learning systems, ILASP [11] and FOLD-RM [12], and discuss
the results.

2 Background

2.1 Assumption-Based Argumentation Frameworks

An assumption-based argumentation (ABA) framework is a tuple 〈L,R,A, 〉
where

– 〈L,R〉 is a deductive system, with L being the language and R a set of
(inference) rules;

– A ⊆ L is a (non-empty) set of assumptions;
– is a total mapping from A into L, where a is the contrary of a, for a ∈ A

[6].

The elements of L can be any sentences, but in this paper we will only focus
on ground atoms. For sake of simplicity, however, we will use schemata for rules,
contraries and assumptions. We will also assume L is finite. Additionally, we
focus on flat ABA frameworks as they can be mapped onto logic programs.

Example 1 (ABA Framework). Consider the following components:
L = {p(X), q(X), r(X), s(X), t(X), v(X) — X ∈ {a, b}}
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R = {ρ1 : p(X) ← s(X),
ρ2 : q(X) ← r(X),
ρ3 : q(X) ← t(X),

ρ4 : t(b) ← s(b), v(b),
ρ5 : t(a) ←,
ρ6 : v(b) ←}

A = {r(X), s(X)} r(X) = p(X) s(X) = q(X)

Then, 〈L,R,A, 〉 is an ABA framework.

An argument for (the claim) σ ∈ L supported by A ⊆ A and R ⊆ R
(denoted A �R σ) is a finite tree with nodes labelled by sentences in L or by
true, the root labelled by σ, leaves either true or assumptions in A, non-leaves
σ′ with, as children, the elements of the body of some rule in R with head σ′,
and A is the set of all assumptions labelling the leaves [7].

Example 2. Arguments {} �{ρ5} t(a), {s(b)} �{ρ4,ρ6} t(b), and {r(a)} �{} r(a)
are some of the arguments accepted by the ABA framework defined in Example 1.

An argument A1 �R1 σ1 attacks argument A2 �R2 σ2 iff a = σ1 for some
a ∈ A2 [6].

We look at attacks to decide the acceptability of arguments.
In order to decide which arguments are ‘winning’ we characterise the seman-

tics of ABA through extensions (sets of arguments).
Given a flat ABA framework 〈L,R,A, 〉, let Args be the set of all accepted

arguments. Then, a set of arguments A is:

– stable iff it is conflict-free (i.e. no attacks between its elements) and it attacks
all arguments it does not contain;

– admissible iff it is conflict-free and attacks all arguments that attack it;
– complete iff it is admissible and it includes all arguments it defends, where a

set of arguments A defends an argument α iff A attacks all arguments that
attack α;

– grounded iff it is ⊆-minimally complete [8].

For any flat ABA framework 〈L,R,A, 〉, there is a unique grounded exten-
sion and 0, 1 or multiple stable extensions [9].

An ABA framework 〈L,R,A, 〉 is said to cover a sentence σ ∈ L under
the grounded semantics (denoted as 〈L,R,A, 〉 |=G σ) if σ is the claim of an
argument α ∈ G, where G is the grounded extension of 〈L,R,A, 〉.
Example 3. For 〈L,R,A, 〉, as defined in Example 1, the grounded extension
is G = {{} � t(a), {} � q(a), {} � v(b), {r(a)} � q(a), {r(a)} � r(a)}, as
it is the minimal set that attacks all the arguments that attack it, is conflict-free
and contains all the arguments it defends.
Therefore 〈L,R,A, 〉 covers t(a), q(a), v(b), and r(a).

Similarly, we can define the coverage under credulous semantics:
An ABA framework 〈L,R,A, 〉 is said to credulously (bravely) cover a

sentence σ ∈ L under the stable semantics if, there is a stable extension S of
〈L,R,A, 〉, such that σ is the claim of an argument α ∈ S.



6 C. Tirsi et al.

If a sentence is not the claim of any argument accepted under the chosen
semantics, then we say the sentence is not covered.

There is a correspondence between assumption-based argumentation frame-
works and logic programs. Consider an ABA framework that: (i) is flat ; (ii) L
is a set of atoms; (iii) is a one-to-one mapping (i.e. there are no two distinct
assumptions that are mapped to the same contrary); (iv) none of the contraries
are assumptions (i.e. ∀α ∈ A, α /∈ A). Then there is a one-to-one mapping
between the ABA framework and a logic program.

To Transform an ABA Framework to a Logic Program: For all contraries
α(X) = p(X), replace α(X) with not p(X), in the set of rules R and remove it
from the language L to obtain the Herbrand Base.

To Transform a Logic Program to an ABA Framework: For every
negated atom in the logic program not p(X), replace it with a new atom α(X),
add α(X) to the Herbrand Base to obtain the language L, add it to the set of
assumptions A and add the contrary mapping α(X) = p(X).

Example 4. The logic program corresponding to the ABA framework in Ex. 1:
p(X) ←not q(X)
q(X) ←not p(X)
q(X) ← t(X)

t(b) ←not q(b), v(b)
t(a) ←
v(b) ←

2.2 ABA Learning

Definition 1. An ABA learning problem [5] that aims to learn the concept p(X)
(where p is a predicate with arity n ≥ 0 and X = X1,X2, ...,Xn) consists of:
– Two disjoint sets representing the training data: a (non-empty) set of pos-

itive examples E+ and a set of negative examples E− for predicate p
– A flat ABA framework 〈R,A, 〉 representing the background knowledge.

Example 5 (ABA learning problem). The following is an example of an ABA
learning problem, whose goal is to learn the concept of robber(X):

R = {ρ1 : seenAtBank(X) ← wasAtWork(X),
ρ2 : wasAtWork(X) ← banker(X),
ρ3 : banker(jane),
ρ4 : banker(david),
ρ5 : seenAtBank(ann),
ρ6 : seenAtBank(taylor),
ρ7 : wasAtWork(matt)}

E+ = {robber(matt), robber(ann), robber(taylor)}
E− = {robber(jane), robber(david)}

Definition 2 (Completeness). An ABA framework 〈L,R,A, 〉 satisfies
completeness, if it covers all the positive examples e ∈ E+ under the chosen
ABA semantics.
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Definition 3 (Consistency). An ABA framework 〈L,R,A, 〉 satisfies con-
sistency, if it covers none of the negative examples e ∈ E− under the chosen
ABA semantics.

The goal of ABA learning [5] is that the resulting framework should satisfy
the properties of completeness and consistency.

The proposed methodology [5] for achieving this ABA framework is using
five transformation rules as follows (see [5] for formal definitions and intuitions):

– Rote Learning: Given a positive example p(a), generate the rule ρ : p(X) ←
X = a .

– Equality Removal: Remove one of the equalities from the body of the rule.
– Folding: Consider two rules ρ1 : H1 ← Eqs1, B1, B2 and ρ2 : H2 ←

Eqs1, Eqs2, B1. Then, replace ρ1 by ρ3 : H1 ← Eqs2,H2, B2.
– Subsumption: Allows the removal of a rule that is subsumed by other rules

in the background knowledge.
– Assumption Introduction: Introduces a (possibly) new assumption in the

body of a rule, and updates A and the contrary mapping accordingly.

The template in Fig. 1 is adapted from the proposed strategy [5] and describes
how to apply the transformation rules such that by the end of the learning process
the ABA framework should satisfy the goal of ABA learning.

3 The ABALearn System Algorithm

To explore the potential of ABA learning, we introduce ABALearn, an auto-
mated logic-based learning system. Its algorithm is based on the proposed strat-
egy in Fig. 1, by adjusting it such that termination is enforced and there are no
arbitrary choices at any point in the learning process. The source code of the
system is available on GitHub at https://github.com/CristinaGTW/ABALearn.

For this section, when we talk about coverage (and implicitly about complete-
ness and consistency), we imply that it is meant under the grounded semantics.

Termination Condition. The system keeps repeating the iteration consisting
of five steps until the resulting ABA framework is complete and consistent. It is
worth mentioning that the completeness and consistency checks are carried out
against the initial sets of examples.

Training Data Maintenance and Exceptional Termination. At the end
of every iteration, part of the training data gets removed. However, we want
to always keep the initial positive examples that are not yet covered and the
initial negative examples that are covered. Thus, at the start of every iteration
we ensure those are still in the training data, and, if they are not, we reintro-
duce them. At this stage, we must also verify if the algorithm should trigger an
exceptional termination. The two situations that could trigger that are:

https://github.com/CristinaGTW/ABALearn
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Input: Background knowledge: ABA framework 〈R,A, 〉
Training data: E+ and E−, with E+ ∩ E− = ∅

Strategy:
Repeat until 〈R,A, 〉 is both complete and consistent:
Step 1 [Select target for current iteration] Choose a predicate p such that

∃c. p(c) ∈ E+;
Step 2 [Generate rules for p] For each example p(c) ∈ E+ apply Rote Learning;
Step 3 [Generalise] For each rule ρ in R, perform one of the following:
– Find rule ρ′ that subsumes ρ and apply Subsumption;
– Repeatedly apply Folding and then Equality Removal until all constants are

removed from ρ;
Step 4 [Learn exceptions] Repeat until for all p(d) ∈ E−, 〈R,A, |�〉 = p(d):
1. Select p(d) ∈ E−;
2. Select from R a rule ρ : p(X) ← Eqs, B. (w.l.o.g. X ⊆ vars(B)) such that

we can construct an argument for p(d) with ρ as top rule;
3. Construct a set A = {a1(Y1), ..., ak(Yk) ⊆ B that can generate two ground

instances A+ and A− (A+ ∩ A− = ∅) such that:
(a) For every example p(e) ∈ E+, we can build an argument for p(e) with ρ

as top rule and the ground atoms in A+ are children of p(e);
(b) For every example p(e) ∈ E−, we can build an argument for p(e) with ρ

as top rule and the ground atoms in A− are children of p(e);
4. Apply Assumption Introduction by adding the (new) assumption

α(Y1, ..., Yk) with contrary c α(Y1, ..., Yk) to the body of the rule ρ;
5. Add c α(consts(A+)) to E−. Add c α(consts(A−)) to E+.
Step 5 [Remove examples] Remove all examples for predicate p from training

data.

Fig. 1. ABA Learning Strategy Template

1. The algorithm has just completed re-targeting each possible predicate, and
at no point throughout that run has the ABA framework been complete.

2. The target in the previous iteration was the goal predicate and, we have
reintroduced all the examples we have removed at the end of the previous
iteration.

Both cases indicate that the system will not be able to make any more progress
towards achieving the goal, thus it stops the learning process here.

Step 1 - Target Selection. Each iteration requires a target predicate to learn.
The program selects it by looking at the positive examples in the current training
data and selecting the predicate for which it has the most examples as it should
provide more opportunity for learning. The program also keeps track of all the
predicates that have been targeted previously and avoids choosing them as long
as it can (i.e. as long as there are positive examples for predicates that have not
been targeted yet). If it cannot find an unused target, it will go through the list
of already used ones in order.
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Step 2 - Generating rules. This step is carried out in accordance with the
indication in Fig. 1: the program applies Rote Learning for each positive exam-
ple of the target predicate.

Step 3 - Generalising. The program goes through every rule in the background
knowledge and if its head uses the target predicate, it finds all other rules it can
be folded with. It ultimately performs the optimal folds based on the following
criteria:

1. Minimises the number of introduced variables;
2. Favours double folding (i.e. it tries to fold the resulting rule of a fold with

another rule, if it does not introduce any additional variables);
3. Maximisies the number of covered positive examples and the number of not

covered negative examples.

The system removes all equalities from the resulting rules using Equality
Removal. Finally, the program goes through every new rule and checks if it can
find any that is subsumed, such that it can apply the Subsumption rule and
remove it.

Step 4 - Learning Exceptions. The program finds the top rules of all the
arguments that have as a claim a negative example of the target predicate. Then,
for each of these rules it does the following:

1. It constructs the two sets of constants consts(A+) and consts(A−), as
described in Fig. 1, by taking into consideration the variables of every atoms
in the body of the current rule;

2. Performs Assumption Introduction on the current rule by introducing a
new assumption α0 with contrary c α0;

3. It checks if there is any previously introduced assumption α1 with contrary
c α1 for which the same sets consts(A+) and consts(A−) have been used, in
which case it considers α0 equivalent to α1, and proceeds to replace α0 with
α1;

4. If no equivalent assumption has been found, it adds examples for the contrary
c α0 to the training data using the sets consts(A+) and consts(A−).

Step 5 - Removing Examples. The program goes through the training data
and removes all the examples for the target predicate of the current iteration.

Simplifying the ABA Framework. After the system has exited the learning
loop, it will try to simplify the resulting framework. To do this it attempts
removing redundant assumptions and performing some additional Folding.

Enumeration. If the learning process was stopped before achieving com-
pleteness, it will perform Rote Learning for the initial positive examples that
remained uncovered. This guarantees completeness through enumeration.
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Force-Attack. If the learning process was stopped before achieving consistency,
the system finds the initial negative examples that are still covered, along with
the top rules of their arguments. Then, ABALearn applies Rote Learning on
the contraries of the supporting assumptions of these arguments to give rise to
attacks.

4 Explainability

Logic-based learners have the advantage of producing interpretable learning
output. ABALearn, although it shares this attribute, for assumptions and
their contraries, it generates uninterpretable identifiers (e.g. alpha1(A) and
c alpha1(A)), potentially hindering explainability. To address this, we propose
choosing more suggestive names for the predicates generated by the system.
Achieving this would require semantical prediction of exceptional scenarios. We
have considered leveraging the capabilities of large language models1. To explore
this idea further, we conducted a simple experiment using OpenAI’s ChatGPT
[10]. The following is a transcript of the experiment2:

Q: “Consider the following logic program:
flies(X) ← bird(X), not c alpha1(X)
c alpha1(X) ← feathered(X), not c alpha2(X)
c alpha2(X) ← bird(X), not c alpha3(X)
c alpha3(X) ← brokenwings(X)

Can you come up with more suggestive names for the predicates
c alpha1, c alpha2 and c alpha3 such that the rules are more intuitive
for a human reading them?”
A: “Certainly! Here are some alternative names for the predicates
c alpha1, c alpha2, and c alpha3 that might make the rules more
intuitive:
flies(X) ← bird(X), not incapable(X)
incapable(X) ← feathered(X), not can fly well(X)
can fly well(X) ← bird(X), not injured(X)
injured(X) ← brokenwings(X)
With these alternative names, the rules become more human-readable
and easier to understand in terms of bird behavior and wing conditions.”

This outcome goes to show that there is potential in making use of read-
ily available LLMs to mitigate the potential obstacles in logic-based learners’
explainability. Implementing this would most likely make use of OpenAI’s GPT-
4 API. The API is (at the time of writing) yet to be released, therefore further
work in this direction is not possible at the current time.

1 A large language model (LLM) consists of an artificial neural network, trained on
large quantities of text using self-supervised or semi-supervised learning.

2 We provided ChatGPT with the equivalent logic program, given that it deals better
with that, as it does not need to handle the concept of contraries.
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5 Evaluation

There are no other argumentation system we can compare with and no other
implementation of ABA learning. However, as discussed before, there is a map-
ping between logic programs and ABA frameworks. Additionally, there is a corre-
spondence between grounded extensions and well-founded models, and between
stable extensions and stable models. Therefore, we have chosen ILASP and
FOLD-RM to evaluate against.

ILASP [11] is a system that learns answer set programs and to do that
is mostly uses inductive logic programming techniques. FOLD-RM [12] is an
algorithm that learns stratified logic programs. It was designed to be highly
efficient and scalable, and it is concerned with multi-category classification tasks.

5.1 Ease of Use

Looking at the input required by each system, there are some significant dif-
ferences. ABALearn only requires essential information about a learning task
(background knowledge and training data, as in Example 5) and is even able to
define the learning problem on its own from tabular data. ILASP requires similar
information, but, in addition, it also needs to be provided with the mode bias
(e.g. specifying which predicates can go in the head or body, as well as the num-
ber of occurrences allowed), which we would argue represents a higher amount of
cognitive demand from the user. FOLD-RM also has high cognitive complexity,
as the user has to modify the source code to map any input (restricted to tabular
data only, and excluding in particular rich, rule-based background knowledge)
it does not have already prepared into a suitable internal representation. Given
these considerations, we would argue ABALearn is the easiest to set up and run
in contexts where low user expertise is available.

5.2 Response Time and Scalability

We will look at the execution time3 of all three systems for both small learning
tasks with a more complex background knowledge from a structural point of
view, and larger learning tasks with the background knowledge consisting of
just facts.

Small Learning Tasks. For this category, we have run all three systems on
the same set of simple inductive tasks4. The execution times are shown in Fig. 2.
We notice that at this scale ABALearn is slightly faster than ILASP in all tasks.
FOLD-RM outperforms both by a high margin.

3 All learning processes on all systems have been run on the same machine with AMD
Ryzen 7 3700U @ 2.3 GHz and 16 GB RAM.

4 The ABALearn input files for these tasks are available on the GitHub repository.
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Input ABALearn ILASP FOLD-RM
flies 1 0.1 0.11 0.0003
flies 2 0.21 0.32 0.0007
flies 3 0.27 0.31 0.0004
path 0.1 0.51 N/A*
robber 0.07 0.1 0.0002
free 0.15 0.3 N/A*

* The background knowledge could not be represented as tabular data.

Fig. 2. Mean execution times (over 10 runs) in seconds on different inputs

Dataset Input Data Shape ABALearn Input Execution time (seconds)
Rows Columns BK E+ ABALearn ILASP FOLD-RM

krkp 63 37 682 33 333.24 25.84 0.008
krkp 15 37 155 7 4.45 11.91 0.005
krkp 14 37 141 7 4.9 15.65 0.003
krkp 10 37 100 5 2.3 6.55 0.003
krkp 7 37 73 3 0.96 5.94 0.001
acute 60 6 154 31 30.36 0.12 0.002
acute 30 6 72 15 3.2 0.09 0.001
acute 20 6 57 11 1.65 0.09 0.001
acute 13 6 33 9 0.68 0.08 0.0003
acute 10 6 24 5 0.19 0.08 0.0007

Fig. 3. Mean execution times (over 5 runs) in seconds on different subsets of krkp and
acute datasets ‘Rows’ and ‘Columns’ specify the number of rows and columns in the
input CSV file; ‘BK’ and E+ specify the number of facts in the background knowledge
and the number of initial positive examples of the equivalent ABALearn learning task.

Learning Tasks from Non-noisy UCI Datasets. For this part of the evalu-
ation we have picked a couple of UCI datasets (which are perfectly labelled) and
pruned them in order to be able to create inputs for all three systems as fairly as
possible. Thus, we have only kept columns containing discrete values and have
picked different-sized subsets of the datasets. The results of this experiment can
be seen in Fig. 3.

As the input size increases, it is interesting to observe how ILASP com-
pares with ABALearn. We notice that for the acute dataset ILASP outperforms
ABALearn in almost all subset sizes, with significant differences for the three
largest subsets. However, for the krkp dataset, ABALearn outperforms ILASP
up until a certain size. If we look at the structure of the two inputs we notice
that the acute dataset only uses 5 predicates in the given background knowledge,
while the krkp one uses 36. Therefore, although ABALearn does not generally
scale well as the size of the input increases (in terms of number of rules in the
background knowledge and number of positive examples), it does scale with the
size of the language in the given background knowledge better than ILASP.
FOLD-RM outperforms both by a high margin, as expected.
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5.3 Reliability

By ‘accuracy’ in this section we mean the result of computing (TruePositives+
TrueNegatives) ÷ Number of examples, where TruePositives is the number of
positive examples that can be inferred by the learned rules, and TrueNegatives
is the number of negative examples that cannot be inferred by the learned rules.

For this section, we have measured the accuracy of each solution for each
system over 10 consecutive runs of the same input. The inputs used are the
same as in the previous section (both the small examples and the UCI datasets).
We can see the outcomes of a couple of the experiments in Fig. 4 where we have
plotted the mean accuracy along with its standard deviation.

Fig. 4. Accuracy measurements

We first observe both ABALearn and ILASP are deterministic, returning the
same solution for the same input (thus a standard deviation of 0). On the other
hand, FOLD-RM has very high standard deviations, even fluctuating from 0%
to 100% accuracy for some inputs.
Another observation is that ABALearn managed to constantly achieve 100%
accuracy across all runs. ILASP has achieved high accuracies as well, with 100%
accuracy in most runs.
These measurements go to show that both ABALearn and ILASP are more
reliable than FOLD-RM, in the sense that they return accurate solutions that
are replicable.

5.4 Range of Applicability

Non-stratified, Circular Debates. One of the main advantages of ABALearn
is that it manages to handle learning tasks that require to conduct circular
debates. To illustrate consider the Nixon-diamond example [13]. For this learning
task, ABALearn achieves its goal under credulous reasoning with this solution.
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ILASP also manages to successfully learn rules to reason about this circular
debate (but using ABALearn’s solution as a basis for the mode bias).

For FOLD-RM, we gave it the equivalent input, using the same heuristics as
in the small examples. It did not manage to learn any rule.

Handling Noise. For this aspect, we took a few of the tabular data inputs
we used in Sects. 5.2 and 5.3 and introduced a few more duplicate rows with
opposite labeling, which introduces noise given that identical properties result
in different outcomes.

We will only compare ABALearn with FOLD-RM for this category5.
To measure how well each system handles the noise, we looked again at

accuracies. The results of the experiments can be seen in Figs. 5. We notice
ABALearn generally achieves higher accuracies than FOLD-RM.

Fig. 5. Outcome of experiments with noisy inputs

6 Conclusion

We have introduced a novel system, called ABALearn, that implements an algo-
rithm for learning ABA frameworks by extending the knowledge through trans-
formation rules. We have explored the idea of integrating our system with LLMs
to improve its explainability. We have conducted both observational and empir-
ical evaluation, which prove the potential of ABALearn, but also acknowledge
its limitations.

Overall, this report has brought significant insights into the potential of ABA
learning and, more generally, of XAI. The development of ABALearn represents
more exciting proof that we can closely model human-like methods of logical

5 While we know that ILASP is capable of handling noise, the heuristics of generating
equivalent inputs would have resulted in too much overhead for our aims.
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reasoning, which shows that computational argumentation is truly powerful.
While there are still undeniable limitations to our algorithm, we believe that
there are good prospects that, with more research and development, it can have
real-life applications under reasonable ethical considerations.

Future Work. While we did manage to make significant progress in coming up
with an implementation of the proposed learning strategy for ABA frameworks,
there are still improvements that can be made. The first one would be to improve
the coverage checker. The current coverage checker is a prototype of a Python
implementation, which is more scalable than an alternative Prolog one, but it
does have a lot of limitations in terms of complexity of the rules it can deal with.
Then, we also believe that there are optimisations that can be done to increase
scalability. More specifically, the current bottleneck is in the generalising step of
the learning process where we try to find the optimal folds to perform. Then,
on the more technical side, the software is not currently packaged, so it requires
some more work on that side in order to reach a releasable state. Lastly, it would
be very exciting to implement the integration with LLMs.
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Abstract. Abstract Argumentation Frameworks (AFs) are used, in the
field of Artificial Intelligence, to evaluate the justification state of con-
flicting information, thus allowing the development of automatic reason-
ing techniques and systems. Complex argumentative processes such as
decision-making and negotiation, which take place over time, can be mod-
elled through the Concurrent Language for Argumentation, a formalism
for handling concurrent interactions between intelligent agents that use
an AF as shared memory. In this paper, we first show how AFs can
be interpreted as dependency graphs by exploiting the relation between
arguments induced by the attacks. Then, we describe a methodology for
obtaining a procedure that generates the given AF. Such a procedure
allows to dynamically represent dialogues and other forms of interaction
that brought to the instantiation of the specified AF.

1 Introduction

Applications that make use of artificial intelligence techniques provide results
that do not always appear clear and credible, thus decreasing the trust that
users place in them. Providing convincing explanations on how and why a certain
result was achieved has therefore become of fundamental importance, especially
in critical contexts such as health and finance. Argumentation Theory [9] deals
with the problem of representing and reasoning with conflicting information. In
this context, Argumentation Frameworks constitute the basic tool for studying
complex phenomena like the cognitive processes through which humans draw
conclusions from a set of premises. The logic underlying the single arguments is
neglected in Abstract Argumentation Frameworks (AFs) [8], which can be rep-
resented as directed graphs where nodes and edges are interpreted as arguments
and attacks, respectively. On the one hand, abstracting the internal structure
of arguments entails the possibility of automating tasks such as the selection of
acceptable conclusions. On the other hand, AFs only provide information regard-
ing the relations between arguments, and not about the arguments themselves.
This limits the understanding we can have of the argumentative process which
leads to the instantiation of a given AF, an understanding that is crucial for
achieving real-world results [11].
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The purpose of this paper is twofold. Firstly, we interpret argumentation
frameworks (AFs) as dependency graphs by examining the dependency relation
between the arguments induced by attacks. Attacking arguments will depend
on the attacked ones. This approach helps us understand the evolution of AFs
and determine the order in which arguments are presented, to gain insight into
the instantiation process of the AF itself. Secondly, we show how AFs can be
generated using the Concurrent Language for Argumentation (cla). This lan-
guage enables intelligent agents to interact, communicate, and reason through a
shared AF. This work is a continuation of a preliminary study conducted in [5]
that was limited to acyclic graphs. Acyclic AFs closely represent dependency
graphs, where a correct evaluation order for the elements can always be found.
However, it is not possible to straightforwardly study the dependency between
arguments when cycles are present in the topology under consideration. Also,
notice that the same AF can have many correct evaluation orders. The program
we provide in the cla language represents all the possible “correct” evaluation
orders.

2 Preliminaries

In this section, we briefly recall the fundamental notions of AFs and argumenta-
tion semantics, together with (part of) the cla syntax and operational semantics
that we use for deriving our procedure.

2.1 Computational Argumentation

Argumentation Theory aims at understanding and modelling the natural human
fashion of reasoning, allowing one to deal with uncertainty in non-monotonic
(defeasible) reasoning. In his seminal paper [8], Dung defines the building blocks
of abstract argumentation.

Definition 1 (AFs). An Abstract Argumentation Framework is a pair 〈Arg,R〉
where Arg is a finite set of arguments and R is a binary relation on Arg.

For two arguments a, b ∈ Arg, the notation (a, b) ∈ R represents an attack
from a against b. Moreover, we denote as a+ and a− the sets of arguments that
respectively are attacked by and attack a. Given an AF, we want to identify
subsets of acceptable arguments which are selected by applying criteria called
argumentation semantics. Non-accepted arguments are rejected. Different kinds
of semantics have been introduced that reflect desirable qualities for sets of argu-
ments. Among the most studied ones, we find the admissible, complete, stable,
semi-stable, preferred, and grounded semantics [1,8] (denoted with adm, com,
stb, sst, prf and gde, respectively). To operatively find acceptable arguments, we
can resort to labelling-based semantics [7], an approach that associates with an
AF a subset of all the possible labellings.

Definition 2 (Labelling). A labelling of an AF F = 〈Arg,R〉 is a total func-
tion L : Arg → {in, out, undec}. Moreover, L is an admissible labelling for F
when ∀a ∈ Arg
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– L(a) = in =⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) = out;
– L(a) = out ⇐⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = in.

In other words, an argument is labelled in only if all its attackers are labelled
out, and it is labelled out when at least one in node attacks it. In all other cases,
the argument is labelled undec. In particular, in arguments are acceptable, while
the others will be rejected. Similar criteria to that shown in Definition 2 can be
used to capture other semantics [7].

2.2 Concurrent Language for Argumentation

The Concurrent Language for Argumentation (cla) [3,4,6] is a framework for
modelling concurrent interactions between agents that reason and take decisions
through argumentation processes. Agents communicating through cla constructs
share a knowledge base, represented by an AF, to perform reasoning tasks. This
shared store can be accessed and updated by the various agents via specifically
designed operators that are also able to change the underlying AF. We refer the
reader to [3,6] for a complete overview of the language.

A shortened version of the syntax is presented in Table 1: P denotes a generic
process, C a sequence of clauses, A is a generic agent and E a generic guarded
agent. In a cla process P = C.A, A is the initial agent to be executed in the
context of the set of declarations C. The operational model of P can be formally
described by a transition system T = (Conf ,→), where Conf is a pair consisting
of a process and an AF F = 〈Arg,R〉 representing the common knowledge base.

Table 1. Part of cla syntax

P ::= C.A

C ::= p(x) :: A | C.C
A ::= success | add(Arg,R) → A | E | A‖A
E ::= checkw(Arg,R) → A | E + E

In Table 2, then, we give the definitions for the transition rules of addition
(Add), check with waiting (Chw), parallelism (Par) and nondeterminism (Ndt)
operators. The transition relation → ⊆ Conf × Conf is the least relation sat-
isfying those rules, and it characterises the system’s evolution. In particular,
〈A,F 〉 → 〈A′, F ′〉 represents a transition from a state in which we have the pro-
cess P = C.A and the AF F to a state in which we have the process P = C.A′ and
the AF F ′. An add(Arg′, R′) results in the addition of a set of arguments Arg′

and a set of attacks R′ into the shared memory. The operation checkw(Arg′, R′)
is used to verify whether the specified arguments and attacks are contained in the
knowledge base, without introducing any further change. If the check is positive,
the operation succeeds; otherwise, it suspends. The parallel operator ‖ enables
the specification of concurrent agents following the interleaving approach. This
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means that only one action is executed at a time in accordance with a scheduling
imposed by the processor. A1‖A2 results in two possible outcomes: it succeeds
when both actions succeed and suspends otherwise. Finally, any agent composed
through nondeterminism (+ operator) is chosen if its guards succeed. In detail,
a guarded agent E1 transits to agent A1 whenever it can do so (first rule for
(Ndt)); otherwise, both guarded agents are sent one step forward (second rule
for (Ndt)). Indeed, a guarded agent can be followed by more guarded agents,
all of whom must be satisfied for the operation to succeed. Until E1 transits to
A1 (or E2 to E2), both guarded agents are run simultaneously to ensure true
concurrency during execution.

Table 2. cla operational semantics: add, check and parallel operators

〈add(Arg′, R′) → A, 〈Arg,R〉〉 −→ 〈A, 〈Arg ∪ Arg′, R ∪ R′′〉〉
with R′′ = {(a, b) ∈ R′ | a, b ∈ Arg ∪ Arg′} Add

Arg′ ⊆ Arg ∧ R′ ⊆ R

〈checkw(Arg′, R′) → A, 〈Arg,R〉〉 −→ 〈A, 〈Arg,R〉〉 Chw

〈A1, F 〉 −→ 〈A′
1, F

′〉
〈A1‖A2, F 〉 −→ 〈A′

1‖A2, F
′〉

〈A2‖A1, F 〉 −→ 〈A2‖A′
1, F

′〉

〈A1, F 〉 −→ 〈success, F ′〉
〈A1‖A2, F 〉 −→ 〈A2, F

′〉
〈A2‖A1, F 〉 −→ 〈A2, F ′〉

Par

〈E1, F 〉 −→ 〈A1, F 〉
〈E1 + E2, F 〉 −→ 〈A1, F 〉
〈E2 + E1, F 〉 −→ 〈A1, F 〉

〈E1, F 〉 −→ 〈E′
1, F 〉, 〈E2, F 〉 −→ 〈E′

2, F 〉
〈E1 + E2, F 〉 −→ 〈E′

1 + E′
2, F 〉 Ndt

A web interface running a cla interpreter [4] is also available.1 To comply
with the syntax of the tool, we will denote checkw(Arg,R) by checkw(Arg,R)
and E + · · · + E by sum(E,...,E).

3 AFs as Dependency Graphs

Attacks between arguments model conflicts in AFs and establish a dependency
relationship between the arguments themselves. Consider an AF F = 〈Arg,R〉
with two arguments a, b ∈ Arg and the attack relation (b, a) ∈ R. We interpret
this attack as a conflict between the two arguments, knowing that b is the argu-
ment starting the attack on a. It is reasonable to assume that b is introduced
into the framework to contrast argument a and undermine its validity. If a was
not already in the framework, then there would have been no reason for adding
b. Therefore, we can identify a dependency relation between a and b. In our
example, the existence of a is preliminary to that of b, so we can say that b
depends on a.
1

cla web interface: https://conarg.dmi.unipg.it/cla/.

https://conarg.dmi.unipg.it/cla/
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Following these considerations, an AF can be interpreted as a dependency
graph, i.e. a directed graph representing the dependencies of various elements
(in our case, arguments). A dependency graph is a couple D = (S, T ) where S
is a set of elements and T is the transitive reduction of a relation R ⊆ S × S.
In a dependency graph, one can look for an evaluation order respecting the
given dependencies. A correct evaluation order is a numbering that orders two
elements a and b in such a way that if a is evaluated before b, then a must not
depend on b.

Definition 3 (Correct Evaluation Order). Let G = (S,R) be an acyclic
graph where S is a set of nodes and R ⊆ S×S a set of edges. A correct evaluation
order for G is a numbering n : S → N such that ∀a, b ∈ S the following holds:
n(a) < n(b) ⇒ (a, b) /∈ R.

For example, the element corresponding to argument a in Fig. 1 should come
before b and c in a correct evaluation order, while b should come before d and
after both a and c.

Fig. 1. Example of a directed graph that can be interpreted both as an AF and a
dependency graph. Edges obtainable by transitive closure are not represented.

Finding a correct evaluation order for a dependency graph amounts to recon-
structing the reasoning process that leads to the generation of an AF superseding
the same graph. Indeed, AFs represent conflicting information and can be seen
as the instantiation of an argumentative process between intelligent agents. In
the real world, such processes take place over time and can be imagined as a
succession of statements made by one or more counterparties, with the various
statements referring to (attacking) each other. However, a correct evaluation
order cannot be found when the graph has cycles of dependencies (also called
circular dependencies) since none of the objects in the cycle can be evaluated
first. Figure 2 shows an example of circular dependencies generated by arguments
b, c and d, which are in a cycle. Although we cannot determine which elements
involved in the cycle should be presented first, we can still argue that a should
come before b and d before e, just by looking at the edges between them.

To solve the undecidability induced by the presence of cycles in the graph,
we propose to treat any cycle as an agglomeration of nodes whose internal order
cannot be evaluated and for which only connections with adjacent nodes are
taken into account. Referring again to the graph in Fig. 2, we want to obtain an
evaluation order such that b, c and d come after a and before e, while the order
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Fig. 2. Example of an AF containing a cycle.

between the arguments in the cycle is not influential (any of the six permutations
of (b, c, d) can be used). We call this ordering a feasible evaluation order.

Definition 4 (Feasible Evaluation Order). Given a graph G = (S,R), we
call cycle any subset of S whose elements form a cycle in G. Then, we denote
with Cycles(G) the set of all cycles in G, and with CiDep(a) = {c ∈ S | ∃Cycle ∈
Cycles(G).a, c ∈ Cycle} the set of nodes in circular dependences with a. A feasible
evaluation order for the graph G is a numbering n : S → N such that ∀a, b ∈ S |
a /∈ CiDep(b) the following holds: ∀a ∈ {a}∪CiDep(a), b ∈ {b}∪CiDep(b).n(a) <
n(b) ⇒ (a, b) /∈ R.

Proposition 1. A feasible evaluation order for an acyclic graph G is a correct
evaluation order for G.

Proof. Follows from Definitions 3 and 4, observing that for any node a belonging
to an acyclic graph, CiDep(a) = ∅.

We can verify that (a, b, c, d, e) and (a, c, b, d, e) are feasible evaluation orders
for the graph of Fig. 2. In the next section, we show how an AF can be generated
through a cla procedure which adds arguments (and the associated attacks)
following a feasible evaluation order.

4 A cla Program for Building AFs

Our goal is to obtain a cla procedure able to manipulate the shared store in such
a way to obtain a desired AF. We also want to respect the constraints on the
order in which arguments and attacks can be introduced. It is natural to think
that a dialogue between intelligent agents is initiated by one of the counterparts
with the assertion of an argument. This first argument can be then attacked by
other, freshly introduced arguments, also giving a sense of temporal execution
of actions by the agents. The sequence of actions (addition of arguments and
attacks) performed to generate the AF will be described by our cla procedure.

Consider, for example, the AF F in Fig. 2. Starting from an empty AF
G = 〈∅, ∅〉, we want to obtain a framework identical to F by gradually adding
arguments and attacks in an order respecting the dependency relationship. In
our example, we want to add argument a first since it is the only one that does
not attack any others and can be seen as the starting point of the debate. Once
a has been added, we realise that no other argument of the AF in Fig. 2 can be
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inserted in the framework under construction: b would require both a and d to
be already in G, c and d requires b and c, respectively, and e depends on d. The
source of the problem is the cycle formed by arguments b, c and d, which makes
it impossible to establish an order for adding those arguments. To overcome this
inconvenience, we select one of the three arguments through a nondeterministic
choice and add it to G. We apply this technique also when the underlying graph
has no leaf node (i.e. a node with no outgoing edges) because all the arguments in
the AF are involved in some cycle. In our example, adding any argument among
b, c and d allows us to resume the construction of G. For instance, if we choose to
add b, then also c can be inserted, together with the attack (c, b). Next, we can
add d and (d, c) since we know that c is already in G. At any moment after the
addition of d, we can also add the attacks (b, a) and (b, d). Indeed, since b was
inserted before d to break the cycle, we could not add all its outgoing attacks.
Last, we insert e and the attack (e, d). At this point, G corresponds to the AF
F we wanted to build. The sequence (a, b, c, d, e) of arguments added in G is a
feasible evaluation order. In fact, even if we cannot determine which among b, c
and d needs to come first, we know that a must be considered before b, c and d,
while e must be considered after b, c and d.

The sequence of arguments and attacks additions described in the example
above can be obtained as the output of the cla procedure given in Listing 1.

1 add({a},{}) -> success ||
2 checkw ({a,d},{}) -> add({b},{(b,a),(b,d)}) -> success ||
3 checkw ({b},{}) -> add({c},{(c,b)}) -> success ||
4 checkw ({c},{}) -> add({d},{(d,c)}) -> success ||
5 checkw ({b,c,d},{}) -> add({e},{(e,d)}) -> success ||
6 sum(checkw ({a},{}) -> add({b},{}) -> success ,
7 checkw ({a},{}) -> add({c},{}) -> success ,
8 checkw ({a},{}) -> add({d},{}) -> success );

Listing 1. cla program for the AF of Figure 1.

From line 1 to 5, we add in parallel, one by one, all the arguments of F , together
with their outgoing attacks. For instance, add(b,(b,a),(b,d)) adds to the
shared store G the argument b and the attacks (b, a) and (b, d). Before the
addition of an argument, we check that all the arguments it attacks are already
in the framework. For example, before adding b, we execute checkw(a,d,). Since
e attacks an argument in a cycle (namely, d), we also need to check if all the
other arguments in the cycle are already in G (thus obtaining checkw(b,c,d,)).
Note that the check is not required in case of no outgoing attacks, as happens for
argument a at line 1. Finally, to break any possible cycle that would prevent the
check conditions from ever being satisfied, we use the operator sum for making
a nondeterministic choice among arguments b (line 6), c (line 7) and d (line 8).
Since argument b, within the cycle, attacks a, we want a to be present in G
before adding any argument among b, c and d. The sum operation is executed
in parallel with all the other branches of lines 1–5 so that the program always
terminates.
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Algorithm 1: generate cla program from AF
Data: AF F = 〈Arg,R〉
Result: string S

1 procedure gen cla prog(F):
2 S = “”
3 Cycles = find cycles(F) // Cycles: set of cycles
4 foreach a in Arg do
5 if a is not the first element in Arg then
6 S = S + “ ‖ ”
7 Dep = find dep(Cycles, a) // Dep: set of arguments
8 S = S + “checkw(Dep, {}) −> ”
9 S = S + “add({a}, {(a, b) | b ∈ a+}) −> ”

10 S = S + “success”
11 foreach Cycle in Cycles do // Cycle: set of arguments
12 S = S + “ ‖ sum(”
13 Cat = find cat(Cycles,Cycle) // Cat: set of arguments
14 foreach a in Cycle do
15 if a is not the first element in Cycle then
16 S = S + “, ”
17 S = S + “checkw(Cat, {}) −> ”
18 S = S + “add({a}, {}) −> ”
19 S = S + “success”
20 S = S + “)”
21 S = S + “;”

In the following, we provide a procedure for automatically obtaining a cla

program that builds an AF taking into account a feasible evaluation order derived
from attack relations. The procedure is illustrated in Algorithm 1. Our input is
an AF F = 〈Arg,R〉, while the output is a string corresponding to a cla program.
In the procedure gen cla prog, we first initialise an empty string S (line 2), and
then we execute a subroutine find cycles that returns a set of cycles with no
permutations (line 3). We exclude permutations since we are only interested in
identifying sets of arguments forming a cycle and not in the order in which they
appear in the cycle. For instance, we do not need to distinguish the permutation
(a, b, c) from (a, c, b). In lines 4–10, we generate the cla code to add all arguments
and attacks of F in the (initially empty) shared store. To ensure that each
argument is inserted in respect of its dependencies, we resort to the procedure
find dep of line 7 that, given an argument a, returns a set of arguments Dep
that must be added before a. This procedure is defined in Algorithm 2, and
further details on its functioning will be provided later in this section. At line
8, we generate a check operation based on the set Dep, followed at line 9 by
the addition of a and its attacks. If F is acyclic, the gen cla prog procedure
terminates, and the resulting string is a correct cla program. Otherwise, the case
in which F contains cycles is handled in the remaining lines from 11 to 20. For
each cycle Cycle of F (line 11), we build a nondeterministic choice composed of
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Algorithm 2: find argument dependencies
Data: set of cycles Cycles, argument a
Result: set of arguments Dep

1 procedure find dep(Cycles, a):
2 Dep = a+

3 foreach b in a+ do
4 if � C in Cycles | a, b ∈ C then
5 foreach Cycle in Cycles | b ∈ Cycle do
6 foreach c in Cycle do
7 Dep = Dep ∪ {c}

Algorithm 3: find cycle attacks
Data: set of cycles Cycles, set of arguments Cycle
Result: set of arguments Cat

1 procedure find cat(Cycles,Cycle):
2 Cat = {}
3 foreach a in Cycle do
4 foreach b in a+ do
5 if � C in Cycles | a, b ∈ C then
6 Cat = Cat ∪ {b}

the keyword “sum” (line 12) and a list of check and add operations. To ensure
that arguments added in this way retain dependencies from other arguments
outside the cycle, we execute the procedure find cat of line 13. This procedure,
described in Algorithm 3, returns the set Cat used at line 17 to generate the
check operations preceding the additions.

Algorithm 2 describes the procedure we use to find the set of arguments on
which a given argument a depends. We begin by initialising a set Dep with
the arguments attacked by a (line 2). Then we look for any argument b attacked
by a (line 3) which is not in a cycle with a (line 4), and we add to Dep all the
arguments belonging to the same cycles as b (lines 5–7).

If an argument a in a cycle Cycle attacks another argument b which is in turn
not part of the same cycle, we want b to be added before any other argument
in Cycle. Algorithm 3 takes in input the set of all cycles of F and a cycle Cycle.

In the procedure find cat, we initialise an empty set Cat and then, for all
arguments a in Cycle, we go through the list of arguments b attacked by a. If
no cycle exists containing both a and b, then we add b to the set Cat. In this
case, we do not want to check if other arguments of the cycle have already been
added before a because it would cause the cla program to never terminate.

The program obtained as the result of Algorithm 1 lets us manipulate the
shared store between cla agents to shape it into a desired AF. In doing so, argu-
ments are added considering the dependency relations derived by attacks in the
framework, and respecting, in particular, a feasible evaluation order. Since the
program includes nondeterministic operations, more than one distinct execution
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can be obtained, giving rise to different orderings for adding arguments. These
orderings represent feasible evaluation orders for arguments in F .

Theorem 1. Let F = 〈Arg,R〉 be an AF. The cla program returned as output
by the procedure gen cla prog(F) satisfies the following properties:

1. the program terminates;
2. the shared store obtained at the end of the execution corresponds to F ;
3. arguments are added into the store in a feasible evaluation order.

Proof. Below is the proof for all the properties listed above.
1. We use four kinds of operations: addition, check, parallelism and non-

determinism. Among them, only the check can suspend the execution until its
condition is satisfied. Hence, for the program to terminate, all the checks need
their conditions to eventually become true. At line 8 of Algorithm 1, we resort to
check operation to ensure that an argument a is only inserted after all arguments
in Dep, which includes: i) all arguments b attacked by a and ii) all arguments
c in the same cycle of b and not in the same cycle of a. If a and any c appear
together in a cycle, the operation checkw(Dep, {}) would suspend. To prevent this
behaviour, we add in separate parallel branches (which are executed regardless
of the success of the operation above) one argument from each cycle (Algo-
rithm 1, lines 11–20). The addition of those arguments is, in turn, regulated by
another check operation (Algorithm 1, line 17), this time only accounting for
attacked arguments outside the cycle. Therefore, the condition on every check
will eventually be satisfied, and the program will always terminate.

2. The program adds all arguments of F into the shared store, together with
their outgoing attacks (Algorithm 1, line 9). Following property 1, the program
always terminates, implying the execution of all these parallel additions. Note
that an argument a can be considered in more than one add operation, for
instance, those in lines 9 and 18 of Algorithm 1 if a belongs to a cycle. However,
the store will never contain duplicates since the cla addition exploits the set
union, as shown in Table 2.

3. Suppose that the sequence of additions executed by the program does not
follow a feasible evaluation order for F . In this case, referring to Definition 4,
we should find two arguments a and b with a /∈ CiDep(b) and n(a) < n(b) for
which ∃a ∈ {a} ∪ CiDep(a), b ∈ {b} ∪ CiDep(b) | (a, b) ∈ R. Four cases arises: i)
a attacks b; ii) a attacks another argument in the circular dependences of b; iii)
an argument in the circular dependences of a attacks b; iv) an argument in the
circular dependences of a attacks another argument in the circular dependences
of b. In all this cases, both check operations in lines 8 and 17 of Algorithm 1
would prevent adding a before b. Therefore, we reach a contradiction and the
program adds arguments in a feasible evaluation order.

After running the cla procedure generating a given AF F , we can read the
execution trace (the ordered set of operations produced during the execution of
the program) to analyse the argumentative process that leads to the instantia-
tion of F . For example, a possible trace produced by executing the program in
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Listing 1 contains, besides the various checks, addition operations in the follow-
ing order: add({a},{}), add({b},{}), add({c},{(c,b)}), add({d},{(d,c)}),
add({b},{(b,a),(b,d)}), add({e},{(e,d)}). We remark that different traces
can be obtained according to how the nondeterministic choice between argu-
ments in the cycle (b, d, c) is made, and how the interleaving parallelism is han-
dled by the processor.2 The trace reported above contains information regarding
the temporal development of the AF. We can see, for instance, that argument c
is inserted after b and before d, while e is the last proposed in the framework.
With this knowledge, we can study the AF during its evolution, that is, while
the underlying debate takes place.

5 Discussion

We studied AFs from the perspective of dependency between arguments. First,
we showed how dependency can be derived from the attack relations, allowing
us to interpret an AF as a dependency graph in which arguments depend on
those they attack. Second, we resorted to cla constructs for obtaining a program
which generates a desired AF. By reading the trace of the cla program, it is
possible to study the AF’s evolution and explain why a specific argument was
introduced.

In the future, we plan to extend this study in several directions. The traces
of the program we generate can be used to extract explanation trees from AFs.
For example, considering the feasible evaluation order (a, b, c, d, e), which leads
to the construction of the AF in Fig. 3, we are able to break the cycle b, d, c by
removing the attack (b, d) and thus find an explanation for the justification state
of argument a, which is reinstated by e.

Fig. 3. Example of explanation tree obtained from the program in Listing 1. The
arguments are highlighted according to a grounded labelling: the green arguments are
labelled in and the red out (Color figure online).

The procedure we defined for generating AFs through cla constructs can
be optimised to avoid the execution of non-functional operations, such as the
2 An alternative option is to use maximum parallelism [6], for which processes com-
posed through ‖ are executed at the same time. However, this approach may result
in the numbering assigned to arguments by the feasible evaluation order not being
unique.
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redundant addition of certain arguments. These operations have no effect but
do impact the execution time of the program, especially for frameworks with
many cycles. Contextually, we want to provide a working implementation and
a formal analysis of the computational cost for the generating algorithm. By
the rules of cla, we only add an attack if both arguments involved are present
in the AF. To deal with practical cases, however, it may be useful to consider
hidden attacks in the manner of [2], where it is assumed that attacks are explic-
itly added between visible arguments at the time an argument is added. In the
future, we also want to study this possibility and integrate it into the rules of
the language. We also plan to investigate other models for concurrent execution
(like Petri nets) to study how argumentative processes can be represented and
interpreted to extract meaningful information. Then, we want to study depen-
dency in more general frameworks, including, for instance, those where multiple
arguments must be combined to undermine the validity of another [10]. Finally,
it would be interesting to conduct a comparative study with existing approaches
for the computation of argumentation semantics in order to understand the con-
nections between the traces we obtain and the notion of acceptability.
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Abstract. A significant challenge in the domain of autonomous vehi-
cles is to ensure a reliable and safe operation in a multitude of contexts.
As a consequence, autonomous vehicles must be capable of handling
various context changes, such as changing weather conditions as well
as software and hardware faults, without human support. To address
this issue, we introduce a context-based software configuration tool for
autonomous vehicles, called ReConf, which is embedded into Aptus,
a generic framework for extending system architectures of autonomous
vehicles with a self-managing functionality proposed in previous work.
ReConf reconfigures the autonomous driving system in case the con-
text changes by means of a reasoning component based on answer-set
programming in order to determine system configurations that fulfill the
requirements of the current context.

Keywords: Autonomous Vehicles · Answer Set Programming ·
Software Reconfiguration

1 Introduction

The development of autonomous vehicles in accord to SAE level 4 and 5 [25]
brings various challenges due to their complexity. The latter challenge is imposed
by the requirement of handling different contexts [22], such as changing illu-
mination and weather conditions, as well as various operation modes, where
each such mode may demand different applications [19]. A further complication
is that unpredictable system context changes, like ones triggered by hardware
or software faults, must be handled to counteract safety-critical situations [1].
Importantly, autonomous vehicles need to deal with such situations without the
help of an intervening driver or passenger. This necessitates mechanisms for
reconfiguring the autonomous driving system based on the current context.

In this paper, we introduce ReConf, a context-based software configuration
tool for autonomous vehicles. ReConf is integrated into the generic framework
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Aptus [17] for extending system architectures of autonomous vehicles with a self-
managing functionality.1 Aptus defines three layers, viz., the context layer, the
reconfiguration layer, and the component layer, whereby ReConf is embedded
into the former two layers.

The task of ReConf is to analyze the current context the vehicle is experi-
encing and to determine configurations that fulfill the requirements imposed by
it. In particular, ReConf implements this task using two interconnected com-
ponents, viz., C-sar (standing for “context-based software architecture require-
ments”) and Ap2s (standing for “application-placement problem solver”). The
former component is responsible for analyzing the current context and determin-
ing the implied configuration requirements, while the latter computes so-called
configurations, i.e., assignments of applications to computing nodes that satisfy
the given configuration requirements.

Overall, ReConf and its two components are implemented in Python, while
C-sar and Ap2s employ answer-set programming (ASP) [2,6,10–12] for repre-
senting and processing their underlying reasoning tasks. In particular, C-sar
uses ASP to specify the interconnection of context information the vehicle can
generally experience and to determine configuration requirements necessary for
the current context. On the other hand, Ap2s employs ASP to solve our ver-
sion of the so-called application-placement problem [26], which is NP-hard in
general [15,18].

The general concept of ReConf builds on the idea of autonomic managers,
as introduced by IBM [14]. Autonomic managers implement a control loop con-
sisting of a monitor, an analyzer, a planner, an executor, and a shared knowledge
base to control resources, such as hardware and software components. A similar
approach to ReConf was introduced by Zeller et al. [28], where software com-
ponents, system objectives, and requirements are grouped into so-called clusters,
whereby an autonomic manager controls each cluster. However, a drawback of
their approach compared to ReConf are longer reconfiguration times. Another
related approach was presented by Weiss and Struss [27]. Their idea is to activate
or deactivate advanced driver assistance systems according to current context
information. Compared to ReConf, a less complex reasoning is required due to
the limitation to non-autonomous vehicles.

The paper is organized as follows: Section 2 explains the general architecture
of ReConf and provides some basics on answer-set programming. Sections 3
and 4 contain the main part of our paper, detailing C-sar and Ap2s, respectively.
Section 5 concludes the paper with a brief summary and outlook.

2 General Architecture of RECONF

We start our discussion with a general overview about ReConf. As mentioned
before, ReConf is implemented in Python and embedded into the generic frame-
work Aptus [17] for extending system architectures of autonomous vehicles with
1 Note that the name “Aptus” was not used previously [17] and is newly introduced
here.
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a self-managing functionality. ReConf consist of two components, C-sar and
Ap2s, which comprise several components. Since a key element of both of them is
answer-set programming (ASP) [11,12], we first recapitulate some basic elements
of it. Afterwards, we give a brief overview of Aptus and describe the embedding
of ReConf into Aptus, as well as outline the architecture of ReConf.

Preliminaries on Answer-Set Programming. By an answer-set program, or pro-
gram for short, we understand a finite set of rules of form

a1 ∨ · · · ∨ am :− b1, . . . , bk,not bk+1, . . . ,not bn, (1)

where a1, . . . , am, b1, . . . , bn are literals over a first-order vocabulary, i.e., atoms
possibly preceded by the strong negation symbol ¬, ∨ denotes disjunction, and
“not” stands for default negation. We refer to a1 ∨ · · · ∨ am as the head and
b1, . . . , bk, not bk+1, . . . , not bn as the body of (1). A rule with an empty body is
a fact, whilst a rule with an empty head is a constraint.

The semantics of a program is given in terms of answer sets, which are defined
as minimal models of the Gelfond-Lifschitz reduct [11,12]. Prominent answer-set
solvers are, e.g., clasp [8], which is used by clingo [7], and DLV [20].

We will employ the following aggregate functions: #count for counting ele-
ments satisfying certain properties, #max and #min for determining the maxi-
mum and minimum of elements, respectively, and #sum for calculating the sum
of a set of elements. Furthermore, we use the optimization statement #minimize
to find the answer set which minimizes a certain variable.

The Aptus Framework. Aptus [17] is a generic self-managing framework for
autonomous vehicles in the sense that it does not require a specific underlying
vehicle architecture. In particular, Aptus targets to extend arbitrary system
architectures of autonomous vehicles with a self-managing functionality.

Following the general three-layered architecture as introduced by Gat [4] that
is widely applied in the field of robotics, Aptus consists of three logical layers,
viz., (i) a context layer, (ii) a reconfiguration layer, and (iii) a component layer.
These layers implement various properties that are required for a system to be
considered self-managing [13,24], whereby the key properties implemented by
Aptus are (i) context-awareness, (ii) self-configuring, and (iii) self-healing.

The context layer achieves the context-awareness property. In particular, the
context layer is responsible for deriving a set of configuration requirements, which
constitute the input for the reconfiguration layer. The latter layer is required
to determine reconfiguration actions., i.e., the reconfiguration layer implements
the self-configuring property. Finally, the component layer implements the self-
healing property by monitoring the system components and performing fault-
tolerance measures to handle occurring faults.

In this paper, we focus on the context and the reconfiguration layer. In par-
ticular, C-sar is embedded into the former whilst Ap2s is part of the latter.

The general purpose of ReConf is to determine configurations for an
autonomous vehicle that fulfill the requirements of the current context, whereby
we define configurations as assignments of applications to computing nodes.
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Fig. 1. The architecture of ReConf.

Computing such configurations can be separated into two successive tasks,
referred to as T1 and T2 in what follows, respectively. Task T1 is responsible for
analyzing the current context and determining the derived configuration require-
ments, while T2 takes care for computing a valid configuration that satisfies the
given configuration requirements. The latter task is an instance of the general
application-placement problem [26], which is NP-hard in general [15,18].

The overall architecture of ReConf is depicted in Fig. 1. Tasks T1 and T2 are
implemented by two separate components of ReConf, viz. C-sar and Ap2s,
whereby T1 is realized by C-sar and T2 by Ap2s. C-sar and Ap2s, in turn,
consist of several subcomponents: C-sar is composed of the general context-
database, GCDB, the context-reasoning component, CRC, and the post-processing
component, PostProc. Furthermore, Ap2s contains the logAP2S solver for com-
puting the application-placement problem.

These components serve the following purposes: (i) GCDB specifies the inter-
connection of context information the vehicle can generally experience. This
information is provided at design time by the vehicle engineers and might be
updated, e.g., in case the vehicle’s features are extended. (ii) CRC determines, on
the basis of the general context model as given by GCDB and the current context
as provided by various components referred to as current-context providers, tasks
which are requested by the current context as well as a collection of applications
which can feasibly execute these tasks. (iii) Following the postprocessor Post-
Proc, which adds applications that shall be executed as redundant instances,
logAP2S is responsible for finding a configuration that fulfills the received con-
figuration requirements.

CRC, GCDB, and logAP2S are implemented in terms of three answer-set pro-
grams, PCRC, PGCDB, and PlogAP2S. As well, the current context is also represented
by an answer-set program, viz. by a set PCC of facts. To embed these answer-
set programs into ReConf, we use clyngor [21], a Python wrapper for the ASP
system clingo [7], which uses GrinGo [9] as a grounder and clasp [8] as a solver.
Unlike the other subcomponents, PostProc is implemented in Python. The
reason for this is that PostProc requires the implementation of a multilevel
sort algorithm which can be realized more efficiently in Python than in ASP.

The output of CRC is the first answer set, ACR, of the program PCC ∪PGCDB ∪
PCRC, containing the configuration requirements that need to be fulfilled in the
current context. In case no answer set is found, the vehicle is transferred into
a safe state by the component layer of Aptus. Then, ACR is taken by Post-
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Proc as input and extends it to A′
CR by adding applications that are executed

as redundant instances, as mentioned before. Afterwards, A′
CR is handed over

to logAP2S which calculates a configuration that fulfills the received configura-
tion requirements. The output of PlogAP2S is the first answer set of the program
A′

CR∪PlogAP2S. This answer set specifies the assignment of applications to specific
computing nodes for execution. If A′

CR∪PlogAP2S is not satisfiable, the component
layer of Aptus ensures that the vehicle is transferred into a safe state. Finally,
the output of logAP2S is transferred to the so-called configuration-execution com-
ponent, which is responsible for executing the determined requirement (note that
both the configuration-execution component and the current-context provider
are not part of ReConf).

A real-world example illustrating the interplay of C-sar, logAP2S, and
the other components of Aptus can be found in the dissertation of the first
author [16].

3 The Component C-SAR

In what follows, we provide details on the components of C-sar, in particular
on the answer-set programs PGCDB and PCRC of the context database GCDB and the
context reasoning component CRC, respectively.

3.1 The General Context-Database GCDB

We define context as any information relevant to the vehicle’s system configu-
ration, where the context information is categorized into system-context infor-
mation, operational-context information, user-context information, and environ-
mental-context information.

The system context includes information about the vehicle system, includ-
ing, e.g., the available applications and computing nodes, the currently applied
configuration, as well as occurring hardware and software errors. The opera-
tional context includes the so-called vehicle-operation mode, which describes how
the vehicle is operated, e.g., fully autonomous or manual. Additionally, opera-
tion properties can further describe these modes. Parameters that describe the
requirements of the vehicle users, e.g., the type of the ordered entertainment
package, are contained in the user context. Finally, the environmental context
contains information about the external conditions of the vehicle, including, e.g.,
the roadway type, the current traffic rules, and the weather conditions.

The program PGCDB is given by DBsys∪DBop∪DBusr∪DBenv, where its sub-
programs, detailed below, correspond to the above discussed context categories,
containing the context information in terms of facts.

(1) The Database DBsys. We define tasks as general functions, e.g., localiza-
tion, sensor fusion, or motion control, that are implemented by applications,
i.e., applications are concrete implementations of tasks. Tasks are declared by
the predicate task/1, where its argument defines the task’s unique name.
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Multiple diverse applications can implement the same task. Applications and
their relation to a specific task are modeled using the predicate app/2. The first
argument of this predicate specifies the application’s unique name and the second
defines the task the application implements.

Additional parameters further define tasks and applications. For each task,
the following parameters need to be specified: (i) the redundancy level, (ii) the
diversity level, and (iii) the separation level. These parameters are expressed by
the predicates red/2, div/2, and sep/2. The first argument of these predicates
indicates the task, and the second argument defines the parameter value.

The redundancy level specifies the minimum number of redundant applica-
tions that need to be executed. We refer to redundantly executed applications
as active-hot applications. On the other hand, the applications which primarily
execute the task are called active applications.

Furthermore, the diversity level defines the number of redundant applications
that have to be diverse, and the separation level defines on how many different
computing nodes the applications have to be executed. Note that the redundancy,
diversity, and separation parameters allow for increasing the safety and reliability
of applications.

Applications have different demands regarding their execution, whereby we
consider the following application parameters: (i) the memory demand, (ii) the
performance demand, and (iii) a list of required supporting software.

The memory demand and performance demand are modeled by the predicates
mem/2 and perf /2, respectively. The first argument of those predicates defines
the application, and the second argument the parameter value.

For modeling supporting software, e.g., runtime environments like Python
and Java, or libraries such as CUDA [26], the predicate sup sw/1 is used. To
indicate whether an application requires a particular supporting software, we
use the predicate req sup sw/2, where the first argument defines the application
and the second specifies the supporting software that this application demands.

(2) The Database DBop. Vehicle-operation modes and operation properties
are expressed using the predicate veh op mode/1 and op prop/1, respectively,
whereby their argument defines the unique name.

Each vehicle-operation mode and operation property requires that certain
tasks are executed. Thus, these entities are linked to tasks. To express which tasks
the individual vehicle-operation modes, operation properties, and user contexts
demand, the predicate req task/2 is used. The first argument defines the vehicle-
operation mode or the operation property and the second one the task.

(3) The Database DBusr. User contexts are defined by the predicate user cx/1 ,
whereby its argument defines the unique name of the user contexts. Like vehicle-
operation modes and operation properties, a specific user context can require
that certain tasks are executed by the vehicle. The above introduced predicate
req task is used to express this dependency.

(4) The Database DBenv. We introduce environmental-context values and en-
vironmental-context sets to concretely define the environment, including, for
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instance, weather and lighting conditions. As applications can be designed for
certain environmental contexts, they are linked to the environmental-context
values and the environmental-context sets.

Context values are defined via the predicate env cx val/1, whereby its argu-
ment specifies the unique name of the context value. Conceivable environmental-
context values are, for instance, highway, rainy, and dark.

The relation between environmental-context values and applications is
defined via the predicate env cx impl/3. The first argument refers to the appli-
cation, the second to the environmental-context value, and the third specifies
the so-called environmental-context rating. The latter defines the suitability of
an application in a given environment.

The performance of an application can also be rated for a more specific
environmental context, i.e., a combination of environmental-context values. For
instance, a sensor fusion application can be rated for urban driving in clear
weather or for nightly journeys on highways while it is raining. Therefore, the
definition of environmental-context sets, which are groups of environmental-
context values, is supported. Environmental-context sets are specified by the
predicate env cx set/1, which holds as its argument the unique name of the
set. Environmental-context values can be added to sets using the predicate
env cx set mbr/2, whereby the first argument refers to the environmental-
context value and the second to the environmental-context set. The relation
between environmental-context sets and applications is defined by the predicate
env cx impl , similar to the relationship between values and applications.

3.2 The Context-Reasoning Component CRC

The component CRC is implemented by the answer-set program PCRC =
PCRC 1 ∪PCRC 2 ∪PCRC 3, where PCRC 1 is responsible for choosing the tasks that are
requested by the current context, PCRC 2 takes care of selecting, for each chosen
task, one active application, and PCRC 3 identifies the feasible diverse applications
for each task. Details about these programs are given in what follows.

(1) PCRC 1: Task Selection. As mentioned before, CRC takes as input the pro-
gram PCC , which specifies the current context. The latter is composed of one
vehicle-operation mode and a set of operation properties, user contexts, and
environmental-context values, whereby this set can be empty. To express the
current context, we introduce the predicate cur cx/1, whose single argument
can be the name of a vehicle-operation mode, an operation property, a user
context, or an environmental-context value.

To determine the tasks that are required in the current context, the following
rule is introduced:

r1: sel task(T ) :− task(T ), cur cx (C ), req task(C ,T ).

The predicate sel tas/1 marks those tasks that are required in the current
context. Note that a task is selected if it is required by the current vehicle-
operation mode, the current operation properties, or the current user context.
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Fig. 2. The Program PCRC 2.

(2) PCRC 2: Active Application Selection. Program PCRC 2, comprising rules r2–
r10 and depicted in Fig. 2, distinguishes between the selection of applications
for which environmental-context ratings exist or not exist. Applications of the
former kind are referred to as rated applications, while non-rated applications
denote applications that do not depend on the environmental context. Generally,
rated applications are preferred over non-rated ones. In particular, PCRC 2 selects
applications with the most specific and highest rating to be active applications.
Thus, the so-called specialization level has to be determined, which corresponds
to the number of environmental-context values that are members of this set.
Note that environmental-context values have specialization level 1.

The specialization level is defined by the predicate spec lev/3, whereby the
first argument specifies the application, the second the environmental-context set
or environmental-context value, and the last argument specifies the specialization
level. Rule r2 determines the specialization levels of environmental-context sets,
while rule r3 those of environmental-context values.

For each rated application, the most specific environmental-context values
or sets, which are fully covered by the current context, are identified using the
predicate max spec env cx/2, whereby the first argument defines the name of
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the application and the second argument the most specific environmental-context
value or set. We introduce the rule r4 for this predicate.

Rule r5 determines, based on the predicate max spec env cx , the rating of
an application in the current context. This rating is expressed by the predicate
cx app rat/2, whereby the first argument defines the application name and the
second argument the determined rating. In case multiple environmental-context
values and sets associated with an application have the same specialization level,
PCRC 2 acts conservatively and chooses the lower rating, which is determined using
the aggregate #min.

Next, for each selected task, the applications with the highest specialization
level are identified. To indicate which applications are a feasible choice for a
task, we define the predicate feas rat app/2, whereby the first argument defines
the application and the second the task. Furthermore, all non-rated applications
implementing a selected task for which no rated application exists in the cur-
rent context are identified using the predicate feas non rat app/1, whereby its
argument identifies the non-rated application. The predicates feas rat app and
feas non rat app are determined by rule r6 and rule r7, respectively.

As multiple applications which implement the same task can have the same
specialization level, the application with the highest rating is selected using the
predicate max rat app/1 , where its argument holds the name of the application.
The predicate max rat app is determined by the rule r8.

Finally, for each selected task, the application with the highest rating, which
is the first in alphabetically ascending order regarding its name, is selected as
active application. If only non-rated applications exist for a selected task, the
one which is first in the alphabetically ascending order is selected.

To indicate that an application is selected as active application, we introduce
the predicate act app/2. The first argument of this predicate specifies the name
of the application, and the second term holds the so-called redundancy-instance
number. We associate the application name and the redundancy-instance number
to identify active and active-hot applications uniquely. Note that the redun-
dancy-instance number of the active applications is 0. The active applications
are determined by rule r9 and rule r10.

(3) PCRC 3: Diverse Application Determination. As mentioned in Subsect. 3.1,
tasks can require the execution of active-hot applications. Additionally, tasks can
require these active-hot applications to be diverse from the active application.
Therefore, it is required to identify those applications which are feasible choices
for diverse applications. PCRC 3 comprises the rules r11 and r12 described below.

A rated application is classified as a feasible diverse application for a selected
task if the application has not been selected as active application, and the pred-
icate max spec env cx is defined for this application. To identify feasible diverse
applications, we introduce the predicate feas div app/3. The first argument of
this predicate identifies the application, whilst the second one specifies the maxi-
mum specialization value. The third argument specifies the rating of the applica-
tion in the current context. The latter two arguments are subsequently used by
PostProc to decide which feasible diverse application shall be selected. Rule
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r11, given below, determines the feasible diverse applications:

r11: feas div app(A,SL,R) :− app(A,T ), sel task(T ),
max spec env cx (A,EC ), cx app rat(A,R), spec lvl(A,EC ,SL),
SL = #max{X : spec lvl(A, ,X )},not act app(A, ).

A non-rated application is classified as a feasible diverse application for a
selected task if the application is not selected as active application. As before,
feas div app is used to indicate that a non-rated application is a feasible diverse
application, whereby the specialization level and the rating are set to 0. Rule r12
determines non-rated applications that are feasible diverse applications as fol-
lows:

r12: feas div app(A, 0 , 0 ) :− app(A,T ), sel task(T ),
not env cx impl(A, , ),not act app(A, ).

3.3 The Post-processing Component POSTPROC

Based on the answer set ACR computed by CRC, PostProc determines for each
selected task the required set of active-hot applications. Active-hot applications
are either of the same instance as the active application or are diverse. Therefore,
as a first step, PostProc determines for each task whether the redundancy level
of a task is greater than the diversity level. If this is the case, PostProc adds
active-hot applications that are of the same instance as the active application
using the predicate act hot app/2. The first term of this predicate specifies the
name of the application, and the second term holds the redundancy-instance
number.

In order to select for each task the required diverse active-hot applications,
the feasible diverse applications (i.e., the applications for which the predicate
feas div app holds) are sorted by their specialization level and their rating.
Finally, the applications with the highest specialization level and rating are
selected as diverse active-hot applications and added to the answer set. The
resulting extended answer set, A′

CR, is forwarded to logAP2S.
Performance tests showed that C-sar can generate an output in around 10

ms to 20 ms for problem instances that include 15 tasks, 20 applications, 15
environmental-context values and sets, as well as 100 ratings. These values are
in conformance to real-world parameters. The hardware used to generate this
output was equipped with an Apple M2 chip with 8 cores and 8 GB memory.

4 The AP2S Component of RECONF

The answer set A′
CR is used as input for logAP2S. Based on this answer set,

logAP2S aims to determine a valid configuration, where the latter is the output
of the application-placement problem, which is an NP-hard problem [18]. The
input of this problem is a set A of applications and a set N of computing nodes,
and the goal is to find a configuration that maps each application a ∈ A to
exactly one node n ∈ N such that the following conditions are satisfied:
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Fig. 3. The Program PlogAP2S.

(C1) An application has to be executed by exactly one computing node.
(C2) The sum of the memory (resp., performance) demands of all applications

running on a computing node cannot exceed the memory (resp., perfor-
mance) capacity of that node.

(C3) An application runs only on such a computing node that offers the software
required by that application.

(C4) For each task, the separation level has to be satisfied.

To discriminate among a potentially large number of solutions, we utilize an
optimization function that aims to find those configurations that minimize the
number of applications that have to be displaced compared to the current con-
figuration, i.e., the configuration that the vehicle currently applies.

The configuration requirements determined by CRC constitute the input of
logAP2S. Furthermore, logAP2S takes as input the set of currently available com-
puting nodes as well as their memory and performance capacity. The available
computing nodes are defined by the predicate cn/1, which holds as its argu-
ment the unique name of the computing node. Furthermore, the memory and
performance capacity are specified similarly to the memory and performance
demands of applications using the predicates mem/2 and perf /2, respectively.
In addition, we introduce the predicate prov sup sw/2 to specify which support-
ing software is installed on the individual computing nodes. This predicate has
two arguments: the first identifies the computing node, and the second specifies
the corresponding supporting software.

Besides the software-architecture requirements and the specification of the
available computing nodes, logAP2S also considers the application placement
of the current system state as an additional input parameter. Therefore, we
introduce the predicate cur asgmt/2. The first argument of this predicate holds
the name of an application, the second defines the redundancy-instance number,
and the third indicates which computing node executes this application.
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Table 1. Average solving time of logAP2S.

Problem-Size Class Solving Time

|N | = 3, |A| = 30 6.3 ms

|N | = 3, |A| = 60 8.9 ms

|N | = 3, |A| = 90 11.4 ms

|N | = 3, |A| = 120 14.7 ms

As mentioned, the configuration that is determined by logAP2S consists of
assignments of active-hot and active applications to computing nodes. Those
assignments are expressed using the predicate asgmt/3, which, like cur asgmt ,
holds three arguments. The first two arguments identify the application, and the
third argument indicates which computing node shall execute the application.

Figure 3 depicts the program PlogAP2S which implements the configuration
task of logAP2S. The rules r13 and r14 of PlogAP2S implement condition (C1).
Note that we use guards in the head to ensure that each active and active-hot
application is only assigned to one computing node. Condition (C2) is imple-
mented by rules r15 and r16, while conditions (C3) and (C4) are taken care of
by rules r17 and r18, respectively. To implement the optimization function, we
introduce the auxiliary predicate displ cnt/1, which counts the number of dis-
placed applications. Rule r19 defines this predicate, which is then used as input
for the optimization statement in rule r20.

To evaluate the performance of logAP2S, we conducted tests with varying
problem sizes. In particular, four realistic problem-size classes were defined, each
consisting of 1000 randomized test cases, where the number of computing nodes
remained fixed at 3 while the number of applications ranged from 10 to 40. The
results are shown in Table 1 and reveal average solving times of a few millisec-
onds, which are well within an acceptable range for such a configuration [23].

5 Conclusion

In this paper, we introduced ReConf, a context-based software configuration
tool for autonomous vehicles that is integrated into Aptus [17], a generic frame-
work for extending system architectures of autonomous vehicles with a self-
managing functionality. ReConf comprises the two submodules C-sar and
Ap2s, which employ ASP for task solving. Our implementations of C-sar and
Ap2s illustrate that ASP is a viable approach for creating a software config-
uration tool for autonomous vehicles since answer-set programs are compact,
comprehensible, and practicably efficient in their performance.

Concerning future work, we plan to extend the functionality of ReConf.
In particular, we aim to enhance the data model implemented by GCDB and to
integrate additional optimization functions into logAP2S. Furthermore, we plan
to investigate the use of ASP-based stream reasoning [3,5].
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Abstract. In this paper we address an extension of the sequential pat-
tern mining problem which aims at detecting the significant differences
between frequent sequences with respect to given classes. The resulting
problem is known as contrast sequential pattern mining, since it merges
the two notions of sequential pattern and contrast pattern. For this prob-
lem we present a declarative approach based on Answer Set Programming
(ASP). The efficiency and the scalability of the ASP encoding are evalu-
ated on two publicly available datasets, iPRG and UNIX User, by varying
parameters, also in comparison with a hybrid ASP-based approach.

Keywords: Declarative Pattern Mining · Contrast Sequential Pattern
Mining · Answer Set Programming

1 Introduction

In recent times there is an increasing availability of data that contain sequences
of events, items, or tokens organized according to an ordered metric space. The
requirement to detect and analyze frequent subsequences has therefore become
a common problem. Sequential Pattern Mining (SPM) arose as a subfield of
pattern mining just to address this need (see, e.g., [18] for a survey). More pre-
cisely, the typical task in SPM consists in finding frequent and non-empty tem-
poral sequences, called sequential patterns, from a dataset of sequences. Another
interesting class of pattern mining problems goes under the name of Contrast
Pattern Mining [4]. Here, the typical task is about detecting statistically sig-
nificant differences/similarities, called contrast patterns, between two or more
disjoint datasets (or portions of the same dataset). Sequential and contrast pat-
tern mining are known to have a higher complexity than, e.g., itemsets mining.
However, they have broad applications, e.g., the analysis of patient care path-
ways, education traces, digital logs (web access for client profiling, intrusion
detection from network logs), customer purchases (rules for purchases recom-
mendations), text and bioinformatic sequences. In this paper we consider to
merge the concepts of sequential pattern and contrast pattern in order to find
significant differences between frequent sequences with respect to given classes.
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This gives rise to the concept of contrast sequential pattern. The resulting prob-
lem of Contrast Sequential Pattern Mining (CSPM) is not new. However, it has
been little addressed so far (see [3] for a recent survey).

In this paper we address the CSPM task by means of a declarative app-
roach. In particular, we resort to Answer Set Programming (ASP) [2,14], a
well-established computational logic paradigm for declarative problem solving.
Declarative approaches are generally desirable in application domains where the
requirements of transparency, verifiability and explainability of the AI techniques
employed are of paramount importance, such as bio-informatics. For this reason
a novel stream of research called Declarative Pattern Mining (DPM) has been
proposed which can be more useful and appropriate in such contexts. To the best
of our knowledge, no DPM approach exists that supports intensive knowledge-
based contrast sequence mining. We have developed a concise and versatile ASP
encoding for CSPM and for managing complex preferences on patterns. In par-
ticular, we have extended previous work on ASP-based SPM with the necessary
code for checking which frequent sequential patterns out of the discovered ones
highlight significant differences with respect to two classes. We have evaluated
the encoding on two real-world public datasets of sequences (iPRG and UNIX
User) which are enriched with information about the class of reference for each
sequence. For a comparative evaluation, we have chosen a hybrid ASP-based
approach that combines a first step with a traditional algorithm for SPM and a
second step with ASP.

The paper is organized as follows. In Sect. 2 we overview the current research
in CSPM and DPM. In Sect. 3 we provide the necessary background on ASP
and CSPM. In Sect. 4 we describe our ASP enconding for the CSPM task and
in Sect. 5 we report the experimental results obtained on the chosen datasets.
Section 6 concludes the paper with final remarks.

2 Related Works

Sequential and Contrast Pattern Mining are challenging tasks in data mining and
play an important role in many applications. Notably, PrefixSpan is an optimized
algorithm for mining sequences [11]. The notion of contrast is deeply discussed by
Dong in [4]. Chen et al. [3] provide an up-to-date comprehensive and structured
overview of the research in Contrast Pattern Mining which includes also the
case of contrast sequential patterns. In particular, Zheng et al. [23] present a
CSPM method for taxpayer behaviour analysis, and Wu et al. [22] propose a
top-k self-adaptive CSPM solution.

DPM covers many pattern mining tasks such as sequence mining [5,19] and
frequent itemset mining [7,12]. In [19], the authors organize the constraints on
sequential patterns in three categories: 1) constraints on patterns, 2) constraints
on patterns embeddings, 3) constraints on pattern sets. These constraints are
provided by the user and capture his background knowledge. Then, they intro-
duce two formulations based on Constraint Programming (CP). Jabbour et al.
[12] propose SAT based encodings of itemset mining problems to overcome space
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complexity issue behind the competitiveness of new declarative and flexible mod-
els. In [7], MiningZinc is presented as a declarative framework for constraint-
based data mining.

Besides SAT and CP, ASP is also widely used in DPM. The first proposal is
described by Guyet et al. [9]. The authors explore a first attempt to solve the
SPM problem with ASP and compare their method with a dedicated algorithm.
Next, in [5] Gebser et al. use ASP for extracting condensed representation of
sequential pattern. They focus on closed, maximal and skyline patterns. Samet
et al. in [21] show a method for mining meaningful rare sequential patterns with
ASP, whereas in [8] Guyet et al. propose to apply an ASP-based DPM approach
to investigate the possible association between hospitalization for seizure and
antiepileptic drug switch from a french medico-administrative database. Guyet
et al. [10] present the use of ASP to mine sequential patterns within two repre-
sentations of embeddings (fill-gaps vs skip-gaps) and various kinds of patterns:
frequent, constrained and condensed. Besnard and Guyet [1] address the task
of mining negative sequential patterns in ASP. A negative sequential pattern
is specified by means of a sequence consisting of events to occur and of other
events, called negative events, to be absent. In [15,16] Guyet’s ASP encodings for
SPM are adapted in order to address the requirements of an application in the
digital forensics domain: The analysis of anonymised mobile phone recordings.
Motivated by the same application, Lisi and Sterlicchio present an ASP-based
approach to contrast pattern mining in [17].

Whereas all the works mentioned so far are pure ASP-based DPM solutions,
particularly interesting is the hybrid ASP-based approach proposed by Para-
monov et al. [20] which combines dedicated algorithms for pattern mining and
ASP. The authors show that such two-step approach outperforms one-shot ones.

3 Preliminaries

3.1 Answer Set Programming

ASP is a declarative and expressive programming language to resolve difficult
research problems (e.g. security analysis, planning, configuration, semantic web,
etc.) introduced at the end of the 90 s [2]. Every ASP programs is made up of
atoms, literals and logic rules. Atoms can be true or false and a literal is an atom
a or its negation not a. An ASP general rule has the following form:

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm (1)

where all ai and bj are atoms. The previous rule says that if b1, . . . , bk are
true and there is not reason for believing that bk+1, . . . , bm are true then at
least one of the a1, . . . , an is believed to be true. The not statement is not the
standard logical negation but it is used to derive not p (i.e. p is assumed not to
hold) from failure to derive p. The left side of the ← is called head while the right
side body. Rules of the form “a ←” are called facts and they have no body. The
head is unconditionally true and the arrow is usually omitted. Rules of the form



Mining Contrast Sequential Patterns with ASP 47

“← b1, . . . , bk” are called constraints. Adding a constraint in a program deletes
answer sets that satisfy the constraint body. There are different ASP systems,
the most important are Clingo [6] and DLV [13].

3.2 Contrast Sequential Pattern Mining

Sequential Pattern Mining [18] aims at identifying frequent subsequences within
a sequences database D. In the following, we briefly formalize the SPM prob-
lem. Throughout this article, [n] = {1, . . . , n} denotes the set of the first n
positive integers. Let Σ be the alphabet, i.e., the set of items. An itemset
A = {a1, a2, . . . , am} ⊆ Σ is a finite set of items. The size of A, denoted |A|,
is m. A sequence s is of the form s = 〈s1s2 . . . sn〉 where each si is an itemset,
and n is the length of the sequence. A database D is a multiset of sequences
over Σ. A sequence s = 〈s1 . . . sm〉 with si ∈ Σ is contained in a sequence
t = 〈t1 . . . tn〉 with m ≤ n, written s 	 t, if si ⊆ tei for 1 ≤ i ≤ m and an
increasing sequence (e1 . . . em) of positive integers ei ∈ [n], called an embed-
ding of s in t. For example, we have 〈a(cd)〉 	 〈ab(cde)〉 relative to embed-
ding (1, 3). Here, (cd) denotes the itemset made of items c and d. Given a
database D, the cover of a sequence s is the set of sequences in D that con-
tain s: cover(s,D) = {t ∈ D|s 	 t}. The number of sequences in D contain-
ing s is called its support, that is, supp(s,D) = |cover(s,D)|. For an integer
minsup (that is often referred to as the minimum support threshold), the prob-
lem of frequent sequence mining is about discovering all sequences s such that
supp(s,D) ≥ minsup. Each sequence that satisfies this requirement is called a
(sequential) pattern. For minsup = 2 we can see how 〈a〉, 〈b〉, 〈c〉, 〈a b〉, 〈a c〉,
〈b c〉 and 〈a b c〉 are common patterns in the database D reported in Table 1
without considering the reference classes.

Table 1. Example of a sequence dataset, in tabular format (left) and encoded with
ASP (right). Each sequence has a class label, that is used in CSPM.

ID Sequence Class

1 〈d a a c 〉 C1

2 〈a c b c 〉 C1

3 〈a c 〉 C1

4 〈b 〉 C1

5 〈a b c 〉 C2

6 〈a b c 〉 C2

7 〈c 〉 C2

1 cl(1,c1). seq(1,1,d). seq(1,2,a). seq(1,3,a). seq(1,4,c).
2 cl(2,c1). seq(2,1,a). seq(2,2,c). seq(2,3,b). seq(2,4,c).
3 cl(3,c1). seq(3,1,a). seq(3,2,c).
4 cl(4,c1). seq(4,1,b).
5 cl(5,c2). seq(5,1,a). seq(5,2,b). seq(5,3,c).
6 cl(6,c2). seq(6,1,a). seq(6,2,b). seq(6,3,c).
7 cl(7,c2). seq(7,1,c).

A contrast sequential pattern is defined as a sequential pattern that occurs
frequently in one sequence dataset but not in the others [3]. We start by intro-
ducing the concept of growth rate. Given two sequence datasets, D1 labelled
with class C1 and D2 labelled with class C2, the growth rate from D2 to D1 of
a sequential pattern s is defined as:

GRC1(s) =
supp(s,D1)/|D1|
supp(s,D2)/|D2| (2)
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If supp(s,D2) = 0 and supp(s,D1) �= 0 then GRC1(s) = ∞.
In the same way, the growth rate from D1 to D2 of s is defined as:

GRC2(s) =
supp(s,D2)/|D2|
supp(s,D1)/|D1| (3)

If supp(s,D1) = 0 and supp(s,D2) �= 0 then GRC2(s) = ∞.
The contrast rate of s is denoted as:

CR(s) = max{GRC1 , GRC2} (4)

If GRC1(s) = 0 and GRC2(s) = 0 then CR(s) = ∞.
A sequence s in a sequences dataset is said to be a contrast sequential pat-

tern if its contrast rate is not lower than the given threshold: CR(s) ≥ mincr.
Unlike frequent sequential pattern mining, contrast sequential pattern mining
can discover the characteristics of different classes in sequences datasets, which
has been widely used in sequential data analysis, such as protein/DNA dataset
analysis, anomaly detection, and customer behavior analysis.

With reference to the dataset in Table 1, we split D into D1 and D2 according
to the classes C1 and C2, respectively. For example, the sequence s = 〈a c〉 has
supp(s,D1) = 3, supp(s,D2) = 2, GRC1(s) = 1.125, GRC2(s) = 0.89, and
CR(s) = 1.125. Given t = 〈a b c〉, it has supp(t,D1) = 1, supp(t,D2) = 2,
GRC1(t) = 0.375, GRC2(t) = 2.67, and CR(t) = 2.67. If, e.g., mincr = 1, we
can conclude that s and t are contrast sequential patterns for C1 and C2 resp.,
because CR(s) ≥ mincr and CR(t) ≥ mincr.

4 ASP Encoding for Contrast Sequence Mining

In this section we describe the proposed ASP encoding and discuss the rationale
behind. Since CSPM merges the two notions of sequential pattern and contrast
pattern, it is necessary to first extract the frequent sequential patterns from the
input sequences (see Sect. 4.1) and then check which of these regularities are
actually contrast sequential patterns (see Sect. 4.2).

4.1 From Sequences to Sequential Patterns

The sub-problem of mining frequent sequential patterns is encoded according to
the principles outlined in [5]. However, in our case, we need to consider also the
reference class. In particular, D is represented as a collection of ASP facts of the
kind seq(s, p, i) and cl(s, c), where the seq predicate says that an item i occurs
at position p in a sequence s while the cl predicate says that s is labelled with
class c. Table 1 shows the ASP encoding of a sequence dataset.

Besides minsup and mincr, maxlen and minlen are introduced to denote
the maximum and the minimum pattern length, respectively. Also, c1 and c2
stand for the classes C1 and C2, respectively. The lower the value of minsup and
mincr the more patterns will be extracted; the lower the value of maxlen, the
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smaller the ground program will be. Therefore the parameters allow a tuning
for the program efficiency. Finally, each answer set comprises a single pattern of
interest. More precisely, an answer set represents a (contrast) sequential pattern
s = 〈si〉i≤th≤m such that 1 ≤ m ≤ maxlen from atoms pat(1, s1), ..., pat(m, sm).
The first argument expresses the position of the item inside the pattern. For
example the atoms pat(1, a), pat(2, b) and pat(3, c) describe a contrast sequential
pattern 〈a b c〉 for the database in Table 1.

For this sub-problem the basic “fill-gaps” encoding provided by [10] can be
used with little modifications.

4.2 From Frequent Sequences to Contrast Patterns

The sub-problem of filtering contrast patterns out of the frequent sequences
discovered by the encoding reported in Sect. 4.1 requires additional ASP rules.

1 card(Card, c1) :- Card = #count{T : cl(T, c1)}.

2 card(Card, c2) :- Card = #count{T : cl(T, c2)}.

3

4 sup(Sup, c1) :- Sup = #count{T : support(T), seq(T, _, _), cl(T, c1)}.

5 sup(Sup, c2) :- Sup = #count{T : support(T), seq(T, _, _), cl(T, c2)}.

6

7 gr_rate("inf", c1) :- sup(Sup1, c1), Sup1 != 0, sup(0, c2).

8 gr_rate("inf", c2) :- sup(Sup2, c2), Sup2 != 0, sup(0, c1).

9 gr_rate(@gr(Sup1, Card1, Sup2, Card2), c1) :- sup(Sup1, c1),

10 card(Card1, c1), sup(Sup2, c2), card(Card2, c2), Sup1 > 0, Sup2 > 0.

11 gr_rate(@gr(Sup2, Card2, Sup1, Card1), c2) :- sup(Sup1, c1),

12 card(Card1, c1), sup(Sup2, c2), card(Card2, c2), Sup1 > 0, Sup2 > 0.

13

14 contr_pat(yes, Class) :- gr_rate("inf", Class).

15 contr_pat(@csp(Cr, mincr), Class) :- gr_rate(Cr, Class), Cr != "inf".

16

17 :- contr_pat(no, c1), contr_pat(no, c2).

In the code above Lines 1–2 compute the cardinality of the datasets D1 and D2

whereas Lines 4–5 compute the support of a pattern s in D1 and D2 respectively.
Lines 9–10 calculate GRC1(s) in accordance with the formula in Eq. (2), while
Line 6 capture the case of GRC1(s) = ∞. ASP does not support the computation
of formulas that return decimal values. For this reason, a Python script has been
developed which can be called from within ASP (with the @ command followed
by the function name). The result will no longer be treated in ASP as a constant
but rather as a string. Analogously, Lines 12–13 encode the computation of GRC2

according to Eq. (3) and Line 7 concerns the infinite case for GRC2 . Finally, Lines
14–15 check if the sequence s in hand is a contrast pattern for either C1 or C2 by
means of a Python function because it compares decimal numbers. If the growth
rate is less than mincr, a constant no is returned, yes otherwise. Lines 14–15 set
the first term of the contrast pattern to yes in accordance with the formulas in Eq.
(2) and (3), respectively. The constraint at Line 17 discards all answer sets that
do not represent contrast patterns for any of the two classes.
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Below, the same example of CSPM reported at the end of Sect. 3.2 is solved
by running our ASP encoding over the ASP facts in Table 1 with minsup = 20%
and mincr = 1.

1 pat(1,a) pat(2,c) gr_rate("0.89",c2) contr_pat(no,c2) gr_rate("1.125",c1) contr_pat(yes,c1)

2 pat(1,a) pat(2,b) pat(3,c) gr_rate("2.67",c2) contr_pat(yes,c2) gr_rate("0.375",c1) contr_pat(no,c1)

Table 2. Features of iPRG and UNIX User sub-datasets: The number of distinct
symbols, the number of sequences, the total number of symbols in the dataset, the
maximum sequence length, the average sequence length, and the density (calculated

by ||D||
|Σ||D| .)

Dataset |Σ| |D| ‖D‖ max|T| avg|T| density

iPRG 21 8628 111,743 12 11.95 0.62

iPRG 25 25 20 50 657 12 11.88 0.64

iPRG 100 100 20 200 2591 12 11.83 0.64

iPRG 500 500 21 1000 12,933 12 11.92 0.62

iPRG 1000 1000 21 2000 25,841 12 11.91 0.61

UNIX 2672 9099 165,748 1256 18.22 0.01

UNIX 25 25 70 50 365 55 7.3 0.10

UNIX 100 100 178 200 2281 175 11.41 0.06

UNIX 500 500 420 1000 13,289 187 13.29 0.03

UNIX 755 755 540 1510 20,234 214 13.4 0.02

5 Experiments

In this section we examine the computational behavior of the ASP encoding
described in Sect. 4. In pattern mining, it is usual to evaluate the effectiveness
(number of extracted patterns) and the time and space efficiency of an algorithm.
Moreover in ASP-based DPM approaches it is important to know the solver and
grounder time. To this end, we conducted experiments on the following datasets:

– iPRG: each transaction is a sequence of peptides that is known to cleave in
presence of a Trypsin enzyme,1

– UNIX User: each transaction is a sequence of shell commands executed by a
user during one session.2

We have chosen these datasets because (i) they are suitable for the task
considered in this paper (classified sequences), (ii) they have been already used
in the DPM literature, in particular in [10,19] although for a different task,
and (iii) they are publicly available. Notably, transactions in both datasets are
labelled with one of two classes, pos and neg.
1 https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html.
2 https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data.

https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
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In the following we report and discuss the results obtained from scalability
tests on iPRG (Sect. 5.1) and UNIX User (Sect. 5.2). As a solver, we have used the
version 5.4.0 of clingo, with default solving parameters. The timeout (TMO) has
been set to 5 h. The ASP programs were run on a laptop computer with Windows
10 (with Ubuntu 20.04.4 subsystem), AMD Ryzen 5 3500U @ 2.10 GHz, 8 GB
RAM without using the multi-threading mode of clingo. Multi-threading reduces
the mean runtime but introduces variance due to the random allocation of tasks.
Such variance is inconvenient for interpreting results with repeated executions.

As regards the comparison with alternative solutions to the CSPM problem in
hand, it has not been possible to run experiments with dedicated algorithms like
[22,23] since their code is not available. Thus, we have considered a hybrid ASP-
based approach inspired by [20]. The results from the comparative evaluation
are reported and discussed in Sect. 5.3.

Full code and detailed experimental results are available online.3.

5.1 Scalability Tests on iPRG

In order to study the behaviour of the ASP encoding over iPRG, we have created
several subsets of this dataset of increasing size (Table 2).

For each sub-dataset, we show runtime and memory behaviour of the encod-
ing in two settings (see Table 3). On the left the minimum support threshold
(minsup) varies from 10% to 50% while mincr = 3, minlen = 2, and maxlen
= 5 remain fixed, and on the right the minimum contrast rate (mincr) varies
from 1 to 5 while minsup = 20%, minlen = 2, and maxlen = 5 remain fixed.
When we increase minsup and/or mincr, the number of patterns and the run-
time decrease. The minimum support threshold at 20% represents a cut point
as regards the number of patterns found. Obviously, as the size of the dataset
increases, the runtime and memory parameters grow up but the grounding phase
(time−solv. t.) not significantly. In the case of Table 3(e, f, g, h) the execution is
interrupted as it exceeds the time limit of 5 h. Also, the choice of minsup = 10%
influences the dimension of the program and consequently the execution time as
shown in Table 3(e, g). We recall that these tests were conducted using a single
thread for the reasons mentioned before. With more threads the total execution
time will decrease. As regards memory usage, this grows up in proportion to the
size of the input dataset but remains stable as minsup or mincr increases. Low
minsup values allow to find more patterns but at a higher runtime. In fact, the
thresholds minsup and mincr have the pruning function, the former for frequent
sequences and the latter for contrast sequences.

Below, as an illustrative example, we report some contrast sequential patterns
found in iPRG 100 100 for minsup = 10% and mincr = 3.
1 pat(1,4) pat(2,5) pat(3,9) gr_rate("0.05",neg) contr_pat(no,neg) gr_rate("19.0",pos) contr_pat(yes,pos)

2 pat(1,9) pat(2,9) pat(3,2) pat(4,11) gr_rate("inf") contr_pat(yes,pos)

3 pat(1,11) pat(2,16) pat(3,8) gr_rate("12.0") contr_pat(yes,neg) gr_rate("0.08") contr_pat(no,pos)

4 pat(1,2) pat(2,16) pat(3,8) gr_rate("inf") contr_pat(yes,neg)

3 https://github.com/mpia3/Contrast-Sequential-Pattern-Mining.git.

https://github.com/mpia3/Contrast-Sequential-Pattern-Mining.git
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Line 1 describes the contrast pattern 〈4 5 9〉 that represents the sequence
〈Q P N〉 of peptides.4 This pattern has high contrast rate for the pos class.
Conversely, Line 3 shows a contrast pattern (〈11 16 8〉 = 〈L D K〉) for the neg
class. The patterns 〈9 9 2 11〉 = 〈N N I L〉 and 〈2 16 8〉 = 〈I D K〉 at Lines 2
and 4, respectively, have an important property. They occur only in the pos and
neg classes respectively because the growth rate value is infinite.

Table 3. Number of patterns, runtime (seconds), solver time (seconds) and memory
consumption (MB) on all iPRG sub-datasets. TMO means that the execution has
exceeded the imposed 5-hour timeout.

(a) iPRG 25 25, mincr = 3

minsup #pat time solv. t. memory

10% 712 3.065 2.96 25.96

20% 24 1.550 1.35 23.89

30% 2 1.050 0.86 23.89

40% 0 0.480 0.34 23.89

50% 0 0.243 0.08 23.89

(b) iPRG 25 25, minsup = 20%

mincr #pat time solv. t. memory

1 0 0.085 0.00 22.31

2 0 0.076 0.00 21.93

3 0 0.086 0.00 21.67

4 0 0.086 0.00 22.31

5 0 0.086 0.00 22.18

(c) iPRG 100 100, mincr = 3

minsup #pat time solv. t. memory

10% 561 47.553 46.82 87.05

20% 15 22.585 21.43 60.05

30% 0 10.279 9.02 60.04

40% 0 5.474 4.34 60.00

50% 0 3.488 2.23 60.00

(d) iPRG 100 100, minsup = 20%

mincr #pat time solv. t. memory

1 72 20.290 19.12 59.16

2 37 21.855 20.74 61.77

3 15 21.974 20.73 60.05

4 9 18.289 17.15 60.04

5 8 18.338 17.11 59.98

(e) iPRG 500 500, mincr = 3

minsup #pat time solv. t. memory

10% 71 TMO TMO 852.24

20% 12 3543.002 3524.08 852.24

30% 0 1712.463 1692.43 852.24

40% 0 140.521 120.08 852.24

50% 0 98.535 79.49 852.24

(f) iPRG 500 500, minsup = 20%

mincr #pat time solv. t. memory

1 71 TMO TMO 852.24

2 20 403.259 383.63 859.90

3 12 3440.552 3421.60 852.24

4 8 606.101 586.90 851.83

5 4 TMO TMO 1447.55

(g) iPRG 1000 1000, mincr = 3

minsup #pat time solv. t. memory

10% 12 TMO TMO 3258.44

20% 3 TMO TMO 3242.55

30% 0 7375.746 7284.13 3253.90

40% 0 2061.364 1972.19 3232.85

50% 0 TMO TMO 3433.55

(h) iPRG 1000 1000, minsup = 20%

mincr #pat time solv. t. memory

1 12 TMO TMO 3258.44

2 18 TMO TMO 3166,26

3 3 TMO TMO 3207.61

4 0 TMO TMO 3172.99

5 0 TMO TMO 3118.20

5.2 Scalability Tests on UNIX User

As regards the UNIX User dataset we have created several subsets of the same
size as iPRG (see Table 2), except for one (namely, UNIX 755 755) where the
rationale behind the size of 755 is the fact that the positive sequences are only
755 in the original dataset and we wanted to keep the two classes balanced.
4 The meaning of each item can be found at the link where the dataset is published.
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Analogously to the experiments conducted with iPRG, we report runtime and
memory usage for two batches of tests (see Table 4). One concerns the variation
of the minimum support threshold (minsup) from 10% to 50%, while keeping
mincr = 3, minlen = 2, and maxlen = 5 fixed. The other concerns the variation
of the minimum contrast rate (mincr) from 1 to 5 while leaving unchanged
minsup = 20%, minlen = 2, and maxlen = 5. The particularity of the dataset
lies in the size of its alphabet, clearly higher than iPRG. Such a size affects
sequences with a higher average length. In fact the largest sequence, whatever
the size of the dataset considered, is clearly larger than iPRG. This also affects
the number of patterns found, lower than for iPRG because the single sequence
has much more variance. Moreover, the alphabet size affects the overall time.
From a comparison between Tables 3(e, f) and 4(e, f) it is clear the difference
in magnitude of the time taken. All tables show the same behavior in memory
as iPRG. When the data size is high, the overall time exceeds the timeout only
when support threshold is less or equal than 20% (see Table 4(e, g, h)).

Table 4. Number of patterns, runtime (seconds), solver time (seconds) and memory
consumption (MB) on all UNIX User sub-datasets. TMO means that the execution
has exceeded the imposed 5-hour timeout.

(a) UNIX 25 25, mincr = 3

minsup #pat time solv. t. memory

10% 335 0.414 0.26 23.5

20% 1 0.105 0.02 22.93

30% 0 0.095 0.01 22.93

40% 0 0.086 0.01 22.93

50% 0 0.087 0.00 21.38

(b) UNIX 25 25, minsup = 20%

mincr #pat time solv. t. memory

1 1 0.132 0.01 22.94

2 1 0.103 0.02 22.94

3 1 0.099 0.02 22.93

4 1 0.104 0.02 22.93

5 1 0.103 0.02 21.21

(c) UNIX 100 100, mincr = 3

minsup #pat time solv. t. memory

10% 18 3.679 2.69 59.58

20% 0 1.792 1.02 59.57

30% 0 1.342 0.56 59.57

40% 0 0.973 0.24 37.48

50% 0 0.886 0.14 37.35

(d) UNIX 100 100, minsup = 20%

mincr #pat time solv. t. memory

1 0 2.409 1.4 59.4

2 0 1.841 1.10 59.55

3 0 0.818 1.03 59.57

4 0 1.789 1.04 59.53

5 0 1.753 1.04 59.56

(e) UNIX 500 500, mincr = 3

minsup #pat time solv. t. memory

10% 9 TMO TMO 850.79

20% 1 129.941 110.99 850.79

30% 0 59.270 37.88 850.79

40% 0 50.735 30.39 850.79

50% 0 35.419 15.68 850.79

(f) UNIX 500 500, minsup = 20%

mincr #pat time solv. t. memory

1 1 74.553 53.96 855.96

2 1 123.825 104.54 846.29

3 1 123.167 103.68 848.51

4 1 125.537 106.22 850.38

5 1 128.747 109.14 850.38

(g) UNIX 755 755, mincr = 3

minsup #pat time solv. t. memory

10% 1 TMO TMO 2653.12

20% 0 TMO TMO 2642.25

30% 0 235.760 188.53 1849.92

40% 0 146.888 99.52 1850.01

50% 0 120.360 72.95 1850.00

(h) UNIX 755 755, minsup = 20%

mincr #pat time solv. t. memory

1 0 286.354 238.35 1848.77

2 0 13,709.513 13,661.11 1851.55

3 0 TMO TMO 2642.25

4 0 TMO TMO 1848.83

5 0 TMO TMO 3766.38
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Some contrast sequential patterns mined from UNIX 25 25 are shown below
as an illustrative example. Each item represents a UNIX command.5

1 pat(1,12) pat(2,14) pat(3,15) pat(4,13) pat(5,12) gr_rate("inf",neg) contr_pat(yes,neg)
2 pat(1,103) pat(2,2611) pat(3,29) pat(4,2812) gr_rate("inf",pos) contr_pat(yes,pos)

Line 1 shows the sequence 〈12 14 15 13 12〉 = 〈fg | more finger fg〉 that is
a contrast pattern only for the neg class while Line 2 a sequence found only for
the pos class: 〈103 2611 29 2812〉 = 〈quota emacs − nw netscape assoc.out〉.

5.3 Comparison with a Hybrid ASP-Based Approach

As a baseline for a comparative evaluation we have considered a two-step app-
roach that features an ASP filtering on top of a dedicated algorithm for SPM. In

Fig. 1. Comparison between pure and hybrid ASP-based approaches.

5 The reader can find the conversion table at the link where the dataset is published.
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the first step, PrefixSpan [11] is applied to discover frequent sequential patterns,
while in the second step, the patterns are post-processed by using the ASP rules
reported in Sect. 4.2 to find the constrasting ones. The resulting hybrid PrefixS-
pan+ASP approach has been applied on the same datasets (see Table 2) and
with the same parameters used in the scalability tests reported in the previous
two sections. The results obtained with the pure ASP and the hybrid method as
regards the time and memory dimensions are graphically presented in Fig. 1 in
a comparative way.

It is interesting to note the behavior of the two approaches. For both iPRG
and UNIX User, the one-shot approach performs slightly better than the two-
step approach when the dataset size is not large (up to 100–100 sequences). This
can be observed especially for memory usage (see Fig. 1 (b, d, f, h)).

6 Conclusions and Future Work

This article has presented a declarative approach to the CSPM task which is
based on ASP. To the best of our knowledge, this is the first proposed ASP
encoding for this task. It takes advantage of the Python interface for Clingo to
design more complex ASP programs, e.g., numerical computation as in our case.
The encoding has been extensively evaluated on real-world (publicly available)
datasets to draw conclusions about the efficiency of the approach. Low min-
sup and mincr values allow to find more patterns. However, this comes with
an increasing runtime. So, the results from the scalability tests are promising
although they can not be considered conclusive about the validity of the app-
roach. For this reason, a comparison with two-step approaches is particularly
interesting. The results obtained with the hybrid PrefixSpan+ASP approach
confirm and complement the conclusions of [20] concerning the advantages of
hybrid approaches over pure approaches as regards time performance. Our con-
tribution is the empirical evidence for a DPM task (namely, CSPM) that was
not covered by [20]. In particular, the analysis of memory usage provides new
hints on the behaviour of ASP-based DPM solutions.

Much work needs to be done for the future. In order to improve the per-
formance, we intend to explore the extraction of condensed representations (e.g.
maximal and closed patterns) in the context of CSPM. Also, further experiments
are needed to complete the efficiency analysis of our ASP encoding, such as the
ones aimed at studying the interplay between memory usage and pattern length
as done in [10]. Another direction for future development of the present work
is to consider other forms of contrast pattern as described in [3]. Our proposal
is indeed general enough to enable the encoding of several types of constraints.
The addition/deletion of constraints allows the modeling of problem variants.
Overall, an advantage of DPM is that for most well-specified tasks, the devel-
opment effort is significantly lower than for procedural approaches. We do not
expect DPM to be competitive with dedicated algorithms, but to take advan-
tage of the versatility of declarative frameworks to propose pattern mining tools
that could exploit background knowledge during the mining process to extract
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less but meaningful patterns. To this aim, we plan to enrich the datasets for
future experiments with domain knowledge, e.g., chemistry or biology related
constraints in the iPRG dataset.
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Abstract. We present an ontological framework for the reason-based model of
individual preferences introduced by F. Dietrich and C. List. According to this
perspective, an agent prefers x to y if and only if the importance of the reasons
motivating x outweighs the importance of the reasons motivating y. Firstly, we
represent motivating reasons as concepts in Description Logic, to enable a rich
ontological theory that provides a clear and shareable semantics of reasons. Sec-
ondly, we present a model to express preferences on combinations of reasons.
Finally, we discuss how preferences on alternatives depend on preferences on
motivating reasons. We present the framework in a knowledge-dependent way,
meaning that the ontological background constrains the definable preferences on
alternatives and reasons.

Keywords: property-based preferences · motivating reasons ·
knowledge-dependence · ontologies

1 Introduction

The theory of preference relations plays a fundamental role in various branches of eco-
nomics, including game theory, decision theory, and social choice theory. Preferences
are also a fundamental concept in computer science, particularly in multiagent systems
and Artificial Intelligence. They contribute to defining the very notion of an agent—an
entity typically endowed with beliefs, goals, desires, intentions, and preferences—and
help understand and model scenarios such as coordination, negotiation, and competition
among agents, including artificial ones.

The foundation of the theory of preference relations can be traced back to the work
of Kenneth Arrow [2], where preferences are formalised as binary relations satisfy-
ing a number of desiderata, and to Amartya Sen [15], where preferences are inferred
from observable choices. The debate on the nature of preferences and the question of
‘where do preferences come from?’ is, of course, too broad to be summarised here. We
directly introduce a recent important contribution to the theory of preferences, that is
at the origin of the proposed approach: the work of Dietrich and List, which construes
preferences as based on motivating reasons, see [7] and [6]. A related logic-based view
models preferences as grounded on agents’ beliefs about the alternatives or on the prop-
erties of options, e.g. [9,12].
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The reason-based approach is interesting because it is quite general, it clearly
(axiomatically) defines what it means for a preference to be reason-based, and it pro-
vides necessary and sufficient conditions that characterise preferences based on moti-
vating reasons.

Therefore, this theory has interesting applications to the foundations of the problems
rationalisability and explicability of individual preferences.

The modelling of reasons and preferences of Dietrich and List is semantical: prefer-
ence are relations on a set of alternatives X , while reasons are properties of alternatives,
that is, subsets of X . In fact, no formal language is explicitly introduced to model rea-
sons and preferences. Moreover, the possible logical connections or conflicts between
reasons—or, more generally, the meanings of reasons—remain somehow implicit in the
applications of the approach.

The objective of this work is to develop the reason-based approach to preferences
by leveraging the techniques of Knowledge Representation and Applied Ontology. In
particular, we shall define a formal language to express reasons based on Description
Logics (DL s). To provide the information which is required to give contents to reasons,
we shall introduce a methodology to place the reason-based approach within a rich
ontological setting.

The semantic approach of Dietrich and List can be construed as if it were based on
a single intended model of a theory. This option is often too demanding, as it forces the
crisp agreement on any piece of information. We shall base our restatement of [7] on the
models enabled by a formal theory. That is, the definitions that we shall develop (e.g.
the satisfaction of a motivating reason) are to be intended as knowledege-dependent, in
the sense explored in [8]. We also investigate how to express preferences on possible
combinations of reasons. As we shall see, this task is related to the problem of defining
preferences in combinatorial domains. To this task, we will adapt the setting in [16,17]
to the case of concepts in DL s. Then, we shall model how the preferences defined
on combinations of reasons affect the preferences on the alternatives that satisfy those
reasons.

A delicate aspect that we encounter when defining preference on combination of
reasons is the possible logical dependency or conflict between reasons, which constraint
the definable preferences.

Two articles are specifically related to the proposed approach, they are in the area of
multi-attribute decision making. In [14], weighted concepts in DL are used to define
preferences on formulas. The main difference with the present approach is that we shall
work with the class of models of a Knowledge Base, rather than with single models,
besides, we are specifically interested in expanding the reason-based approach in an
ontological setting. Secondly, in [1] weighted DL s are used to model preferences and
utility functions on options depending on the attributes that they satisfy. They do work
with models of a Knowledge Base, the main difference with this works is that we are
interested specifically in the reason-based approach of [7], and in discussing the com-
patibility between preferences and a Knowledge Base.

The remainder of this paper is organised as follows. In Sect. 2, we review the reason-
based approach to preference proposed by Dietrich and List, [7]. In Sect. 3, we present
our modelling of reason-based preferences in DL s, specifically in ALC . Then, we
introduce a method to define utility functions and preferences on combinations of rea-
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sons. In Sect. 4, we approach the dependence of preference on motivating reasons and
we discuss which preferences can be construed as reason-based, consistently with a
Knowledge Base. Section 5 suggests applications, indicates future work, and concludes.

2 A Model of Reason-Based Preferences

In [7], the reason-based approach to preferences is presented “semantically”, i.e. in
terms of sets and relations. We rephrase it by means of a formal language. We refer
here to a general predicative language L (e.g. a fragment of first-order logic), while
in the next sections we will instantiate L with the language of Description Logics, i.e.
ALC .

Let X be a finite set of alternatives. As usual, a preference relation on X is a binary
relation �⊆ X ×X that is reflexive, transitive, and complete. The indifference relation
is defined by x ∼ y iff x � y and y � x.

A motivating reason is viewed by Dietrich and List as a property of the alternatives;
hence, it is intended semantically as a subset of X . Here, we model properties as unary
predicates and the preference relation as a binary predicate of the alphabet of L . The
preference relation is then supposed to satisfy the axioms corresponding to reflexivity,
transitivity, and completeness (cf. [13]) to individuate the intended models. Abusing the
notation, we stil use � for the relational symbol of the language.

We assume a (finite) designated set of unary predicatesR = {P1, . . . ,Pm} for repre-
senting reasons. We decide a model (X , I) to interpret the predicates, by selecting the
set of alternatives X as domain. Thus, the predicates of R are interpreted as subsets of
X : I(Pi)⊆ X . A subsetM ⊆R represents a set of motivating reasons of a certain agent,
cf. [7].

Definition 1 (Coherence of reasons). A set M of reasons is coherent iff
⋂

Pi∈M I(Pi) �=
/0 (or, equivalently, iff P1x∧·· ·∧Pnx is satisfiable in X , I).1

We denote by M ⊆ 2R the set of all sets of motivating reasons. In [7], M is
intended to abstractly represent the sets of motivating reasons of an agent in various
circumstances. By setting M ⊆ 2R , we may exclude implausible combinations of rea-
sons, e.g. incoherent sets of reasons, if agents exhibit a modicum of rationality.

We assume a set of individual constants to refer to alternative in X . By slightly
abusing the notation, we shall use the same letters for denoting the alternatives in X
and the individual constants, we also endorse the unique-name assumption. We write
I |= Pa to state that the formula Pa is true in the model X , I.

We mildly restate the definition of property-based preference relations, cf. [7], in
this setting.

Definition 2 (Property-based preference relations). A family of preference relations
(�M)M∈M is property-based iff there exists a relation � defined on the set of (coherent

1 In [7], this property is termed consistency. We term it coherence, although it refers here to
a single model, the one where Pis are interpreted. By contrast, the notion of coherence of a
concept in DL s refers to the existence of a model where the concept is instantiated.
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sets of) reasons (≥ ⊆M ×M ) such that, for every a, b in X and for any motivating set
of reasons M ∈ C , the following equivalence holds:

a �M b iff{P ∈ M s.t. I |= Pa} � {P ∈ M s.t. I |= Pb} (1)

That is, a is preferred to b according to the motivating reasons M iff the reasons in
M that a satisfies are “better” than the reasons in M that b satisfies (according to the
relation �). The relation � is termed a weighing relation, it compares the importance
of every pair of sets of motivating reasons.2

In [7], property-based preferences are constrained by the following two axioms.

Axiom 1: If {P ∈ M s.t. I |= Pa} = {P ∈ M s.t. I |= Pb} then a ∼M b.

Axiom 2: For any a, b in X and any set M, M′ of reasons in M with M ⊆ M′, if no
P inM′ is true of a and b, then a �M b iff a �M′ b.

Axiom 1 states that, if the properties of a are the same as the properties of b, then
a is indifferent to b. That is, the only way to distinguish between a to b in terms of
preferences is by proposing motivating reasons. Axiom 2 states that the reasons that do
not apply to a nor to b cannot decide the ranking of a and b.

Dietrich and List proved that, if Axioms 1 and 2 hold, then it is possible to associate
a single weighing relation � defined M ×M to the family of preferences (�M)M .
The weighing relation expresses the relevance of the combinations of reasons for the
preference (cf. Theorem 1 in [7]) and every preference relation �M can be generated by
means of a weighing order on sets of reasons. We could say that any �M is rationalised
by a set of reasons M.

We conclude this section, by illustrating the reason-based setting by means of a toy
example.

Example 1. Consider the purchase of a bicycle. Suppose that the motivationally salient
reasons are, in times of inflation, “being a cheap bike” (represented by C) and “being a
durable bike” (represented by D). Thus, we select a set of predicates for reasons R =
{C,D}. We select a domain X , consisting of four alternative bikes. X = {cd,cd̄, c̄d, c̄d̄},
where, e.g., cd denotes the element of the domain X which satisfies C and D, and c̄d̄
denotes an element of X which does not satisfy C nor D. By abusing the notation, we
use the same symbols for the individual constants. Thus, we are interpretingC and D in
X , so that we know which bikes are cheap and which bikes are durable: I(C) = {cd,cd̄}
and I(D) = {cd, c̄d}.

The possible sets of motivating reasons are then 2R = { /0,{C},{D},{C,D}}. Out of
them, we can select the setM = {{C},{D},{C,D}}, i.e. we exclude /0, which amounts
to assuming that preferences are always based on some combination of reasons. Notice
that each set of reason is coherent in this case. The preference relations, based the var-
ious sets of motivating reasons, might be as follows.

2 To avoid proliferation of symbols, we denote by 
M the ordering of the alternatives, while 
,
with no index, indicates the ordering on sets of reasons.



An Ontological Modelling of Reason-Based Preferences 65

M = {C,D} cd �M cd̄ �M c̄d �M c̄d̄
M = {C} cd ∼M cd̄ �M c̄d �M c̄d̄
M = {D} cd ∼M c̄d �M cd̄ �M c̄d̄

Many preference relations can depend on those sets of reasons, the one above is just a
case. However, the family of preference relations �M , forM ∈M , is property-base, cf.
Definition 2. A weighing relation exists and meets the condition of Eq. (1):

{C,D} � {C} � {D}

3 Ontologies for Reason-Based Preferences

We rephrase the reason-based approach within an ontological setting. The motivations
are essentially two and they provide the two objectives of this work. Firstly, we aim
at introducing a semantical understanding of reasons. In Example 1, agents are sup-
posed to have access to a single “intended” model, while usually agents’ information
is represented by (the models of) a Knowledge Base. The definitions of Sect. 2 were
indeed phrased wrt. a single “intended” model. Moreover, Example 1 conveys a lot of
implicit information about the alternatives and the motivating reasons. Bikes are physi-
cal objects, in particular, they are artifacts, usually produced by some factory, marketed
by some company, etc. Durability is a property of physical object (in a technical onto-
logical jargon, it may be construed as a quality or a disposition). Cheapness is also a
property, which is related to having a low cost.

Secondly, we wish to explore the reason-based model of [7] in three directions: i)
by proposing a general mechanism to express preferences on combination of reasons,
ii) by proposing a general strategy for computing the weighing relation between sets
of motivating reasons, iii) by investigating the dependence between the preferences
definable on combinations of reasons and the logical connections between reasons.

The first task can be approached by selecting a suitable background theory—a
Knowledge Base—where reasons are embedded in a network of constraints. That is,
reasons are placed within a Tbox (a terminological box, i.e. a set of axioms), which
makes the agent’s information explicit. To provide a general language to express high-
level ontological definitions (such as “objects”, “events”, “artifacts”, “qualities”, “social
objects”, etc.), the proposal is to include in the Tbox a foundational ontology, such as
DOLCE [4,10]. For an overview and a comparison of the main foundational ontologies
and their modelling choices, see [5]. Usually foundational ontologies are expressed
in rich logical language (e.g. first-order modal logics), while here we shall limit their
expressive power by deploying their decidable counterparts in OWL, cf. [5].

The second task is approached by adapting the modelling of preferences in combi-
natorial domains of [16,17] to DL s.

While we do not enter the details of how to implement the first task, we stress that
the next sections constraint the possibility of defining the reason-based approach in a
knowledge-dependent way, that is, by considering the models of a given ontological
theory. We shall delve into the task of extending the reason-based model with combina-
tion of reasons in the subsequent paragraphs. As we shall see, the possible preferences
that are defined on sets of reasons shall depend on the intended semantics of reasons,
i.e. on the Knowledge Base.
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3.1 Description Logics

We use Description Logics (DL s) as they are fundamental languages for representing
concepts, i.e. unary predicates. Therefore, motivating reasons are here represented as
concepts in DLs. We briefly introduce ALC ; for an exhaustive introduction, see [3].
We work with ALC , however nothing prevents to apply the following definitions
to richer DL s. The syntax of ALC is based on three disjoint sets NI , NC, and NR

of individual names, concept names, and role names, respectively. The set of ALC
concepts is generated by the following grammar, where A ∈ NC and R ∈ NR.

C ::= A | ¬C |C�C |C�C | ∀R.C | ∃R.C

A TBox T is a finite set of general concept inclusions (GCIs) of the form C � D
whereC andD are concepts ofALC . The TBox is used to store general terminological
(semantic) knowledge about concepts and roles. An ABox is a finite set of formulas of
the formCa and Rab, which express knowledge about particular objects. A Knowledge
Base K consists of a T and an A .

The semantics of ALC is defined by means of interpretations I = (Δ I , ·I), where
Δ I is a non-empty set, the domain, and ·I is a function mapping every individual name
in NI to an element of Δ I , each concept name in NC to a subset of the domain, and each
role name in NR to a binary relation on the domain. Then, I extends from concepts in
NC to the full set of ALC -concepts inductively, cf. [3].

We say that the interpretation I is a model of the TBox T (I |=T ) iff I satisfies all
the GCIs in T , i.e. for each C � D ∈ T , CI ⊆ DI . An interpretation I is a model of an
ABox A (I |=A ) iff I satisfies every formula in A , i.e. ifCa ∈ A , then aI ∈CI and if
Rab ∈ A , (aI ,bI) ∈ RI . An interpretation I is a model of a Knowledge Base, I |=K iff
I |=T and I |=A . We say thatK is consistent if there exists an interpretation I that is
a model of K .

Given two concepts C and D, we say that C is subsumed by D w.r.t. K , C �K D,
iff CI ⊆ DI , for every model I of K . We write C ≡K D when C �K D and D �K C.
A knowledge baseK entails an Abox formula φ ,K |= φ iff, for every interpretation I
that is a model of K , I is a model of φ .

3.2 Concept Bases of ALC

The approach developed in [16,17] was designed to compactly represent utility func-
tions over (finite) combinations of goods. In fact, goods are represented there by finite
set of literals of a propositional language. To represent utility functions, the notion
of a goal base is introduced: it is a set of weighted formulas of propositional logic
(interpreted as goals) that allows for generating utility functions from sets of literals
(representing goods) to (real) numbers.
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In particular, we adapt [16,17] for concepts of ALC , following the approaches in
[14] and [1] for DL s and in [11] for first-order logic.

LetR = {D1, . . . ,Dm} ⊆NC be a finite set of concept names ofALC (we exclude
� and ⊥) and assume that a Knowledge Base K is given. Let ALCR be the set
of concepts of ALC constructed out of concept names in R. R represents the set
of motivating reasons, discussed in Sect. 2, while K , and in particular its TBox, shall
represent the background theory that constraints the meaning of the concepts inR. We
shall assume throughout the paper that the Tbox T is acyclic, cf. [3], and when we use
a Knowledge Base K that includes T , we assume that K is consistent.

A weighted concept is a pair (C,w) whereC is a concept of ALCR and w ∈ W is
a value in a suitable set of values (usually real numbers, but this is not important here).

We are ready to introduce the definition of a concept base, which is directly inspired
by the notion of a goal base in [16,17].

Definition 3 (Concept base). A concept base C is a finite set of weighted concepts

C= {(C1,w1), . . . ,(Cm,wm)}
The concept base allows for expressing preferences over possible combinations of

reasons in R. An example is C = {(D1 �D2,w1),(D1,w2)}, where w1 > w2. In this
case, an agent evaluates the conjunction of reasons D1 �D2 as more important than D1

alone, while possibly not caring at all about D2 alone, see also Example 2 below.
For each goal base C, we can define a (utility) function on any possible combination

of reasons. That is, for every C, we can define a function uC : 2R →W, that takes any set
of reasonsM ∈ 2R and returns a value. To define uC, we shall identify any set of reasons
{D1 . . . ,Dn} ∈ 2R with their conjunction

�
i∈{1,...,n}Di. In particular, we put

�
/0= �3.

To compute the values of uC, we take here the sum of the weights of the concepts in C
that are entailed by M.4 Summing up, uC is defined as follows.

uC({D1, . . . ,Dm}) = ∑{w | (C,w) ∈ C and D1 �·· ·�Dm �T C} (2)

As the following example shows, the value of uC depends onT . In fact, the adequate
notation for such functions is uTC . Since we shall consider one T at a time, we omit the
superscript.5

Example 2. Let C = {(D1 �D2,w1),(D1,w2)}. And assume that R = {D1,D2}. The
value uC(M) for M ∈ 2R depends on K , and in particular on T . Consider T = /0. In
this case, subsumptions C � /0 D are assessed wrt. all possible models. Then, the graph
of uC(M) is as follows.

3 In a lattice, � is the infimum of the empty set.
4 In this paper, we assume that weights are aggregated by means of the sum, but other choices
are possible (e.g. products, [17]).

5 This definition of the values returned by the concept base is termed “implication based” in
[14].
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M uC(M)
/0 0
{D1} w2

{D2} 0
{D1,D2} w1+w2

The first line returns 0, because neither � � /0 D1 �D2 nor � � /0 D1 hold.6 The second
line returns w2 since D1 � /0 D1. The third line returns 0, because D2 �D1 does not hold
in every model. The fourth line returns w1+w2, becauseD1�D2 � /0 D1 andD1�D2 � /0

D1 �D2.

Consider the case of T = {D1 � D2}. In this case, the values of uC are as follows.
M uC(M)
/0 0
{D1} w1+w2

{D2} 0
{D1,D2} w1+w2

In the second line, since D1 � D2 ∈ T , T also entails that D1 � D1 �D2.

Notice that the notion of coherence of a set of reasonsM in 2R (cf. Sect. 2, Definition 1)
depends, in our ontological rendering, on T . Intuitively, the elements ofR are concept
names in NC, thus, they are just simple symbols and, if they are not logically connected
by some axiom in T , they cannot clash.

However, consider the case where R = {D1,D2,D3} and T = {D1 ≡ ¬D2}.
In this case, the set M1 = {D1,D2} is not coherent, as there cannot be a
d ∈ DI

1 ∩DI
2, in any interpretation I that makes the TBox true. By contrast, {D2,D3} is

coherent (there are models I of T with a d ∈ DI
1 ∩DI

2).
If M ∈ 2R is incoherent wrt. T , then vC(M) = ∑{w | (C,w) ∈ C and

�
M �T C}

shall return the sum of all weights occurring in C (by ex falso quodlibet).
We discuss now which functions are representable, given a concept base C and a

Tbox T .

Definition 4. We say that a function f : 2R → W is represented by a concept base C iff
f = uC (we may also say that f is generated by C).

By tinkering Theorem 3.2 in [16], we could prove that every function from 2R →W

can be represented by a concept base C, at least when W = R. We leave the details of
the proof for a dedicated work. Notice however that the case of DL s is more delicate
than the propositional case of [16]. The general representation result holds only for the
case of an empty T . That is, the set of functions that are representable depends on the
Tbox T , as the following example shows.

Example 3 (Representability). Let R = {D1,D2,D3} and T = {D1 ≡ D2}. Consider
a function f : 2R → R such that f ({D1}) �= f ({D2}). We show that, in this case, f

6 That is, it is not true that, in every model, Δ ⊆ DI
1 nor that Δ ⊆ (D1 ∩D2)I .
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cannot be represented by any uC. By contradiction, assume that there exists a C such
that f = uC. Thus, uC({D1}) �= uC({D2}). That is,

∑{w | (C,w) ∈ C and D1 �T C} �= ∑{w | (C,w) ∈ C and D2 �T C}

The inequality implies that {C occurring in C | D1 �T C} �= {C occurring in C |
D2 �T C}. Thus, there must be a C0 occurring in C such that, e.g., D1 �T C0 and
D2 ��T C0. That is, in every model I of K , DI

1 = DI
2 is both included in CI

0 and not
included in CI

0, which is a contradiction.
Therefore, f cannot be represented by any C. Other examples can be envisaged, e.g.

when there are sets of reasons that are incoherent wrt. T .

We shall therefore restrict to those utility functions on combinations of reasons that
are compatible with the information conveyed by T .

Definition 5 (Compatibility). A function f : 2R → W is compatible with the TBox T
iff there exists a concept base C such that f is representable, i.e. f = uC.

Notice that, if K is consistent, then the A of K has no effect on which functions
are representable. The motivation for the restriction to preferences and utility functions
that are compatible with T is that T specifies the meanings of the reasons inR, which
is supposed to be acknowledged by the agents who are justifying their preferences in
terms of motivating reasons.

In [16], it is possible to characterise several classes of utility functions in terms of
the formulas occurring in the goal base. In the case of DL s this is not straightforward.
E.g. if the TBox is empty and C contains only concept names D ∈ R, then uC is addi-
tive (i.e. uC(D1, . . . ,Dn) = ∑i=n

i=1 uC({Di})). However, if the TBox is not empty, then we
cannot ensure the independence of each Di. While in the propositional case of [16], it
suffices to constrain the language inside the goal base, in the case ofDL s one needs to
study the correspondence between the inferential features of the TBox and the definable
classes of functions. We leave this interesting point for a future dedicated work.

4 Concept Bases and Reason-Based Preferences

Given a concept base C, by means of uC, we can always define an ordering of sets of
motivating reasons, as follows.

M �C M
′ iff uC(M) ≥ uC(M′) (3)

As �C comes from ≥, it is always reflexive, transitive and complete. Moreover,
since �C comes from uC it is always compatible with the TBox T . By contrast, given
an ordering � on 2R , it is not the case that ≥ is always representable as �C, for some C
and K . Consider the following example.

Example 4. Let R and K as in Example 3. Define f such that f ({D1}) > f ({D2})
and 
 such that {D1} 
 {D2}. Then, there is no concept base C such that 
=�C.



70 D. Porello

Therefore, we shall confine to ordering on 2R which are compatible withK , in the
following sense.

Definition 6. An order relation �⊆ 2R × 2R is compatible with K iff there exists a
concept base C such that �=�C, where �C is defined by Eq. 3.

We turn now to discussing how preferences on alternatives depend on their motivat-
ing reasons. Alternatives are here interpreted as individual names a∈NI . Let X ⊆NI be
a finite set of alternatives. The utility of an alternative a, in a certain situation, is given
by the sum of the weights of the motivating reasons that a satisfies in that situation.

A “situation” is modelled by means of a knowledge baseK , where the TBox T is
given and the AboxA describes the (some) alternatives by the (some) reasons that they
satisfy, i.e.A is a set of formulas of the form Dix for x ∈ X and Di ∈R. WhenM ⊆R,
we denote by

�
M the concept

�
i Di, for Di ∈ M.

Definition 7 (Utility of alternatives). The utility of a ∈ X, given a concept base C, a
Knowledge BaseK , and a set of reasons M= {D1, . . . ,Dm} ⊆R is defined as follows.

uMC (a) = ∑{w | (C,w) ∈ C,
�

M′ �T C, for M′ ⊆ M, andK |= Dia, for all Di ∈ M′}

Thus, the utility of a given a concept base C, when the motivating reasons are M,
is the sum of the weights of the concepts C such that: i) (C,w) ∈ C, ii) C is entailed by
some of motivating reasons inM′, and iii) a satisfies those motivating reasons Di ∈ M′.

Example 5. Let X = {a,b} ⊆NI ,R = {D1,D2,D3,D4},T = {D1 �D2}. The ABox is
A = {D1a,D2b,D3b,D4a}. Let C= {(D1�D2,w1),(D1�D3,w2),(D3,w3),(D4,w4)}.
Consider, for example, the case where M = {D1,D3} are the sole motivating reason.

The value u{D1,D3}
C (a) is then obtained as follows. We have that D1 �T D1 �D2 (given

that D1 �D2 ∈T ) and D1a is inA , so the weight w1 is obtained. The weight w2 is not
added, because D1 �D3 �T D1 �D3, but D3a is not in K . Note that the weight w4 is
not added, even if D4a ∈ K , because D4 is not a motivating reason in this case.

By Definition 7, a preference order, that depends on M and C, on the set of alterna-
tives can be defined.

a �M b iff uMC (a) ≥ uMC (b) (4)

We claim that a �M b, forM ∈ M , is a preference based on reasons, in the sense of
[7]. That is, a �M b satisfies Axiom 1 and 2, rephrased in this context.

Proposition 1. Let a �M b, for M ∈ M , defined as in Eq. 4. If {D ∈ M | K |= Da} =
{D ∈ M | K |= Db}, then a ∼M b.

Proof. Suppose {D ∈ M | K |= Da} = {D ∈ M | K |= Db}. For any M and M′ ⊆ M,
we have that

{C | (C,w) ∈ C and
�

M′ �T C and K |= Dia}
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=
{C | (C,w) ∈ C and

�
M′ �T C and K |= Dib}

Therefore, uMC (a) = uMC (b), hence a ∼M b.

Proposition 2. Let a �M b, for M ∈ M , defined as in Eq. 4. For any a, b ∈ X and any
M1,M2 ∈ M , such that M1 ⊆ M2, if there is no D ∈ M2 \M1 such that K |= Da or
K |= Db, then a �M1 b iff a �M2 b.

Proof. Assume that M′
1 ⊆ M1, M′

2 ⊆ M2. By assumption, M1 ⊆ M2 and there is no
D ∈ M2 \M1 such thatK |= Da orK |= Db. Therefore, we have that, for all Di ∈ M2:

{C | (C,w) ∈ C,
�

M′
1 �T C,K |= Dia} = {C | (C,w) ∈ C,

�
M′

2 �T C,K |= Dia}

{C | (C,w) ∈ C,
�

M′
1 �T C,K |= Dib} = {C | (C,w) ∈ C,

�
M′

2 �T C,K |= Dib}

Therefore uM1
C (a) ≥ uM1

C (b) iff uM2
C (a) ≥ uM2

C (b).

We can finally restate the definition of property-based preference relation (cf. Defi-
nition 2), to highlight the dependence on aK .

Definition 8. Let M ⊆ 2R . A family of preference relations �M for M ∈ M is
property-based iff there exists a weighing relation 
⊆ M ×M such that:

a �M b iff {D ∈ M | K |= Da} � {D ∈ M | K |= Db}
We show that �C is indeed a weighing relation, for preferences a �M b defined

according to Eq. 4.

Proposition 3. Given a Knowledge Base K , for every family of preference �M with
M ∈ M defined as in Eq. 4, �C is a weighing relation for �M.

Proof. We have the following sequence of equivalences: a �M b iff uMC (a) ≥ uMC (b) iff

∑{w | (C,w) ∈ C,
�
M′ �T C, forM′ ⊆ M,K |= Dia, for all Di ∈ M′} ≥

∑{w | (C,w) ∈ C,
�
M′ �T C, forM′ ⊆ M, and K |= Dib, for all Di ∈ M′}

iff(1)

uC({D1, . . . ,Dn} |Di ∈M and K |=Dia})≥ uC({D1, . . . ,Dn} |Di ∈M and K |=Dib})
iff(2)

{D ∈ M | K |= Da} �C {D ∈ M | K |= Db}
The step (1) is justified by noticing that {D1, . . . ,Dn} are concepts in

�
M′ that entailC,

so the value of the sum of the weights of the Cs that are satisfied is uC({D1, . . . ,Dn}).
Step (2) follows by definition of �C, cf. Definition 3.

To sum up, we have restricted ourselves to preference and utility functions on alter-
natives in X that are compatible with a Knowledge Base by construction (cf. Definition
4). As we have shown, such preferences are reason-based and �C is an adequate weigh-
ing relation.

If we start from “any” family of preference relations �M on alternatives in X (i.e.
not defined using Definition 4) and then we apply Theorem 1 in [7], we could determine
whether �M is reason-based (i.e. if it satisfies Axiom 1 and 2). However, this would not
guarantee compatibility with the Knowledge Base.
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5 Conclusions and Future Work

We have shown that the reason-based approach proposed in [7] can be adapted for the
case where: i) reasons are expressed as concepts of ALC , ii) preference relations and
utility functions on sets of reasons are defined by means of a concept base (cf. Definition
3), and iii) preferences on alternatives depend on preferences on sets of reasons (cf.
Eq. 4).

The main feature of this setting is that it is knowledge-dependent, it relies on a
Knowledge Base that confers meanings to the motivating reasons. To cope with the pos-
sible inconsistencies between the Knowledge Base and the preferences, we restricted to
preferences and utility functions that are defined by means of concept bases, which
are compatible with the Knowledge Base by design. In fact, this restriction does not
limit the range of definable preferences, once we are willing to accept that an agent is
rational, has a consistent Knowledge Base, and, consequently, has preferences that are
compatible with it.

This framework paves the way for enriching the ontological side of the Knowledge
Base with (the OWL version) of a foundational ontology, to improve the representation
of motivating reasons and to enable the application to various domains of interest.

There are mainly three directions for future work. Firstly, as we mentioned previ-
ously, it is interesting to study the property of the TBox that enables defining classes of
utility functions (e.g. superadditive, subaddittive, k-additive, modular, cf. [16]).

Secondly, it is interesting to study preference aggregation based on motivating rea-
sons. In this case, we could assume that agents agree on the Knowledge Base, i.e. on the
meanings of the possible reasons, so that the ontological side of the Knowledge Base
operates as a vocabulary that is shared among the agents. Agents’ preferences may still
be in conflict, as they are justified by different, and possibly conflicting, weighing rela-
tions.

Finally, we suggested the idea that the TBox captures the meanings of the motivat-
ing reasons. However, we depicted here a single-agent scenario. It is interesting to study
reason-based preferences in the case of multiple agents, who have possibly contrasting
views of reasons, namely, they might endorse possibly conflicting TBoxes. In this case,
techniques of ontology integration, revision, alignment and aggregation are required to
interact with the preferences defined in terms of motivating reasons.
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Abstract. In this work we introduce a defeasible Description Logic for abduc-
tive reasoning. Our proposal exploits a fragment of a probabilistic extension of a
Description Logic of typicality, whose semantics corresponds to a natural exten-
sion of the well established mechanism of rational closure extended to Descrip-
tion Logics. The presence of typicality assertions that can be non-monotonically
inferred from a knowledge base, corresponding to those belonging to its rational
closure, avoids the need of an explicit selection of abducibles.

1 Introduction

In AI logical formalisms have been developed to represent knowledge and draw new
conclusions, even implicit or hidden ones, through automatic reasoning mechanisms.
With a logic-based approach, one can encode some of the most usual “human” reason-
ing patterns, through syntactic manipulations of well-formed formulae (wffs) and the
notion of logical consequence. Over the years, it became clear that reasoning in terms of
individual elements would have moved away from capturing an abstraction that is both
comprehensible to humans and capable of reflecting the underlying intuition behind
symbolic representation. When knowledge began to be represented through concepts
and relationships between concepts, the notion of ontology was born [7,30], shifting
the focus from attributing properties to individual elements in an unambiguous manner,
to attributing properties to concepts or individuals as instances of one or more concepts.
The family of Description Logic (DLs) was developed to verify the presence of hierar-
chical relationships between classes, subsumption, or determining whether an element
from the domain is an instance of a specific class [3].

Traditionally, a limitation of standard DLs is the impossibility of modeling defeasi-
ble inheritance in taxonomies, i.e. situations in which a child concept is subsumed by
a parent concept, namely SubConcept � TopConcept , it inherits some of the char-
acteristics, while losing others. An exception is a reason for incompleteness in the
ontology, and the lack of a formalism to represent and reason with exceptions, such
as the monotonic ALC does, leads to “trivial” KBs. To overcome this limitation several
non-monotonic extensions of DLs have been proposed [2,5,6,8–10], as well as the one
introduced in [15,25], the non-monotonic extensions of ALC [11] called ALC + TR,
where prototypical properties are specified through a typicality operator T. The basic
idea is to also ascribe typical properties of a class, not holding for all the instances, but
only for the “most normal” ones: for instance, T(Bird) � Fly is used to express that,
normally, birds fly, but we can have exceptions (e.g. penguins and ostriches), namely
birds that do not fly. This proposal is the starting point of the present work.
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In a complete, consistent and stable knowledge base, we talk about monotonic-
ity, when no new fact can invalidate what is known or inferred before. But real-world
domains change, and so the KB [29]. Non-monotonic reasoning deals with the incom-
pleteness of a theory by making assumptions about missing knowledge. In particular,
for abduction, from knowing the theory for which “if A then B” (Rule) and observ-
ing B (Fact), one can assume A (Case) as a possible explanation for B until consis-
tency holds [23]. Deduction is a logical inference that explicates implicit knowledge,
so adding conclusions to the KB does not correspond to increasing knowledge; in con-
trast, abductive reasoning has an intrinsic capacity to increase knowledge, as abductive
hypotheses result in limiting models and thus reduce the ambiguity of KB, until proven
otherwise.

In this work, we move a first step in the direction of providing a general approach
for abduction in typicality Description Logics, through a restriction of a non-monotonic
extension of ALC + TRaCl

R , equipped with probability to reflect the uncertainty behind
a prototypical representation of “cause-and-effect” relationships. We aim to propose a
mechanism to combine the expressive power of DLs, useful in case of complex domain
representations, with the “exploratory” one of the abductive reasoning, which involves
deriving new defeasible knowledge. Rather than explicitly specifying every detail of the
abductive framework and identifying the abducibles within potentially vast application
domains, this work would allow for a more systematic way. The basic idea is to consider
as plausible explanations the set of typicality assertions that can be inferred from the
initial knowledge base, by exploiting the rational closure mechanism characterizing the
logic ALC + Tdeg

R . In this respect, such typicality assumptions are the candidates for
explanations, avoiding the need of explicitly defining abducibles. We can also show that
performing abductive reasoning in such a Description Logic is essentially inexpensive,
in the sense that it is in EXPTIME as the underlying, classical DL ALC.

2 Description Logics of Typicality: The LogicALC + TRaCl
R

In this section we quickly recall the main notions about the monotonic Description
Logic of typicality ALC + TR introduced in [11,14,15] underlying our approach.

The logic ALC + TR is obtained by adding to standard ALC the typicality oper-
ator T [11]. The intuitive idea is that T(C) selects the typical instances of a concept
C. We can therefore distinguish between the properties that hold for all instances of
concept C (C � D), and those that only hold for the normal or typical instances of C
(T(C) � D). As an example, a TBox can contain rigid inclusions like TeenAger �
Person , representing that all teenagers are persons, as well as typical properties like
T(TeenAger) � Student , saying that the prototype of a teenager is a student, but
there can be exceptions to that.

From a semantic point of view, we refer to rational models [15], extending standard
models of ALC by a preference relation < among the elements of the domain of the
discourse ΔI : intuitively, x < y means that x is “more normal” than y, then typical
members of a concept C are the minimal elements of C with respect to this relation.
An element x ∈ ΔI is a typical instance of some concept C if x ∈ CI and there is no
C-element in ΔI more typical than x. Formally:
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Definition 1. A model of ALC + TR is any structure M = 〈ΔI , <, .I〉 where: ΔI is
the domain; < is an irreflexive, transitive, well-founded and modular (for all x, y, z in
ΔI , if x < y then either x < z or z < y) relation over ΔI; .I is the extension function
that maps each concept C to CI ⊆ ΔI , and each role R to RI ⊆ ΔI × ΔI . For
concepts of ALC, CI is defined as usual. For the T operator, let Min<(CI) = {x ∈
CI |� ∃y ∈ CI s.t. y < x}, we define (T(C))I = Min<(CI).

A model M can be equivalently defined by postulating the existence of a function
kM : ΔI 	−→ N, where kM assigns a finite rank to each domain element: the rank
function kM and < can be defined from each other by stating that x < y if and only
if kM(x) < kM(y). Given standard definitions of satisfiability of a KB in a model, we
define a notion of entailment in ALC + TR:

Definition 2. Given a query F (either an inclusion C � D or an assertion C(a) or
an assertion of the form R(a, b)), we say that F is entailed from a KB if F holds in all
ALC + TR models satisfying KB.

Even if the T operator itself is non-monotonic, in the sense that C � D does
not imply that T(C) � T(D), the logic ALC + TR is monotonic. In order to per-
form useful non-monotonic inferences, in [15] the authors have strengthened the above
semantics by restricting entailment to a class of minimal models. Intuitively, the idea is
to restrict entailment to models that minimize the untypical instances of a concept. The
resulting logic is called ALC + TRaCl

R and it corresponds to a notion of rational clo-
sure on top of ALC + TR. Such a notion is a natural extension of the rational closure
construction provided in [16] for Propositional Logic. The non-monotonic semantics of
ALC + TRaCl

R relies on minimal rational models that minimize the rank of domain ele-
ments. Informally, given two models of KB, one in which a given domain element x has
rank 2 (because for instance z < y < x), and another in which it has rank 1 (because
only y < x), we prefer the latter, as in this model the element x is assumed to be “more
typical” than in the former. Query entailment is then restricted to minimal canonical
models. The intuition is that a canonical model contains all the individuals that enjoy
properties that are consistent with KB. A model M is a minimal canonical model of
KB if it satisfies KB, it is minimal and it is canonical1. A query F is minimally entailed
from a KB if it holds in all minimal canonical models of KB. The notion of rational
closure is further extended to the ABox. In [15] it is shown that query entailment in
ALC + TRaCl

R is in EXPTIME.

3 Extending DLs of Typicality with Probabilities

Let us now recall the main features of the logic called ALC + Tdeg
R , extending and

revising the DLs of typicality with probabilities and scenarios [24,25]. Here, typicality
inclusion are equipped with a probability/degree and have the form

T(C) �p D,

1 In Theorem 10 in [15] the authors have shown that for any consistent KB there exists a finite
minimal canonical model of KB.
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where p ∈ (0.5, 1). We then define a non-monotonic procedure whose aim is to
describe alternative completions of the ABox obtained by assuming typicality asser-
tions about the individuals explicitly named in the ABox: the basic idea is similar
to the one proposed in [11], where a completion of an ALC+T ABox is proposed in
order to assume that every individual constant of the ABox is a typical element of the
most specific concept it belongs to, if this is consistent with the knowledge base. This
construction computes only some assumptions of typicality of individual constants, in
order to describe alternative scenarios having different probabilities: different exten-
sions/scenarios are obtained by considering different sets of typicality assumptions of
the form T(C)(a), where a occurs in the ABox.

Given an inclusion T(C) �p D, the higher the probability p the more the inclusion
is “exceptions-free” or, equivalently, the less is the probability of having exceptional
Cs not being also Ds. In this respect, the probability p is a real number included in
the open interval (0.5, 1): the probability 1 is not allowed, in the sense that an inclu-
sion T(C) �1 D would correspond to a strict inclusion C � D (all Cs are Ds).
Given another inclusion T(C ′) �p′ D′, with p′ < p, we assume that this inclusion is
less “strict” than the other one, i.e. the probability of having exceptional C ′s is higher
than the one of having exceptional Cs with respect to properties D′ and D, respec-
tively2. In other words, the two inclusions are ordered, and T(C) �p D has a higher
degree/is less uncertain with respect to T(C ′) �p′ D′. As an example in the direction
of the DL for abduction that we will introduce in the following sections, if KB contains
T(COVID) �0.75 ShortnessOfBreath and T(COVID) �0.6 Fever , we have that,
normally, both shortness of breath and fever are typical symptoms of COVID; however,
the second inclusion has a lower rank with respect to the first one, that is to say it is
believed that there could be more exceptions of COVID patients not having fever with
respect to those not presenting shortness of breath.

Let us now introduce extensions of an ABox, in order to introduce implicit
abducibles. Given a KB, as in [25] we define the finite set C of concepts occurring
in the scope of the T operator, i.e. C = {C | T(C) �p D ∈ KB}. Given an individual
a explicitly named in the ABox, we define the set of typicality assumptions T(C)(a)
that can be minimally entailed from KB in the non-monotonic logic ALC +TRaCl

R , with
C ∈ C. We then consider an ordered set CA of pairs (a,C) of all possible assumptions
T(C)(a), for all concepts C ∈ C and all individual constants a in the ABox.

Definition 3 (Assumptions in ALC + Tdeg
R ). Given an ALC + Tdeg

R KB= (T ,A), let
T ′ be the set of inclusions of T without probabilities, namely

T ′ = {T(C) � D | T(C) �p D ∈ T } ∪ {C � D ∈ T }.

Given a finite set of concepts C, we define, for each individual name a occur-
ring in A: Ca = {C ∈ C | (T ′,A) |=ALC+TRaCl

R
T(C)(a)}. We also define

CA = {(a,C) | C ∈ Ca and a occurs in A} and we impose an order on its ele-
ments: CA = [(a1, C1), (a2, C2), . . . , (an, Cn)]. Furthermore, we define the ordered
multiset PA = [p1, p2, . . . , pn], respecting the order imposed on CA, where

2 The meaning of probability/degree here is significantly different from those of the DISPONTE
semantics in [26] and of the one used to define typicality in probabilistic DLs in [22].
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pi =
m∏

j=1

pij for all T(Ci) �pi1 D1,T(Ci) �pi2 D2, . . . ,T(Ci) �pim
Dm in T .

The ordered multiset PA is a tuple of the form [p1, p2, . . . , pn], where pi is the
probability of the assumption T(C)(a), such that (a,C) ∈ CA at position i. pi is the
product of all the probabilities pij of typicality inclusions T(C) �pij

D in the TBox.

We consider different extensions Ãi of the ABox and we equip them with a prob-
ability Pi. Starting from PA = [p1, p2, . . . , pn], the first step is to build all alternative
tuples where 0 is used in place of some pi to represent that the corresponding typical-
ity assertion T(C)(a) is no longer assumed (Definition 4). Furthermore, we define the
extension of the ABox corresponding to a string so obtained (Definition 5). In this way,
the highest probability is assigned to the extension of the ABox corresponding to PA,
where all typicality assumptions are considered. The probability decreases in the other
extensions, where some typicality assumptions are discarded, thus 0 is used in place
of the corresponding pi. The probability of an extension Ãi corresponding to a string
PAi

= [pi1, pi2, . . . , pin] is defined as the product of probabilities pij when pij �= 0,
i.e. the probability of the corresponding typicality assumption when this is selected for
the extension, and 1 − pj when pij = 0, i.e. the corresponding typicality assumption is
discarded, that is to say the extension contains an exception to the inclusion.

Definition 4 (Strings of possible assumptions S).Given a KB= (T ,A), let the set CA
and PA = [p1, p2, . . . , pn] be as in Definition 3. We define the set S of all the strings of
possible assumptions with respect to KB as

S = {[s1, s2, . . . , sn] | ∀i = 1, 2, . . . , n either si = pi or si = 0}

Definition 5 (Extension of ABox). Let KB= (T ,A), PA = [p1, p2, . . . , pn] and CA =
[(a1, C1), (a2, C2), . . . , (an, Cn)] as in Definition 3. Given a string of possible assump-
tions [s1, s2, . . . , sn] ∈ S of Definition 4, we define the extension Ã of A with respect
to CA and S as:

Ã = {T(Ci)(ai) | (ai, Ci) ∈ CA and si �= 0}

We also define the probability of Ã as P
˜A =

n∏

i=1

χi where χi =
{

pi if si �= 0
1 − pi if si = 0

It can be observed that, in ALC + TRaCl
R , the set of typicality assumptions that can

be inferred from a KB corresponds to the extension of A corresponding to the string
PA (no element is set to 0): all the typicality assertions of individuals occurring in the
ABox, that are consistent with the KB, are assumed. On the contrary, in ALC + TR,
no typicality assumptions can be derived from a KB, and this corresponds to extending
A by the assertions corresponding to the string [0, 0, . . . , 0], i.e. by the empty set. It is
easy to observe that we obtain a probability distribution over extensions of A.

In [25], a notion of non-monotonic entailment in the Description Logic ALC+Tdeg
R

is provided. Intuitively, given KB and a query F , we distinguish two cases:

– if F is an inclusion C � D, then it is entailed from KB if it is minimally entailed
from KB’ in the non-monotonic ALC + TRaCl

R , where KB’ is obtained from KB
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by removing probabilities of exceptions, i.e. by replacing each typicality inclusion
T(C) �p D with T(C) � D;

– if F is an ABox fact C(a), then it is entailed from KB if it is entailed in the mono-
tonic ALC + TR from the knowledge bases including the extensions of the ABox
of Definition 5.

We provide both (i) a notion of entailment restricted to scenarios whose probabil-
ities belong to a given range and (ii), similarly to [26], a notion of probability of the
entailment of a query C(a), as the sum of the probabilities of all extensions from which
C(a) is so entailed. Formally, given a knowledge base KB and two real numbers p and
q, we write KB |=〈p,q〉

ALC+T
deg
R

F to represent that F follows – or is entailed – from KB

restricting reasoning to scenarios whose probabilities range from p to q. When the query
is an ABox assertion, we define:

Definition 6 (Entailment of an ABox inclusion in ALC + Tdeg
R ). Given a

KB= (T ,A), given C a set of concepts, and given p, q ∈ (0, 1], let E =
{Ã1, Ã2, . . . , Ãk} be the set of extensions of A of Definition 5 with respect to C,
whose probabilities are such that p ≤ P1 ≤ q, p ≤ P2 ≤ q, . . . , p ≤ Pk ≤ q. Let
T ′ = {T(C) � D | T(C) �r D ∈ T } ∪ {C � D ∈ T }. Given a query F which
is an ABox assertion C(a), we say that F is entailed from KB in ALC +Tdeg

R in range

〈p, q〉, written KB |=〈p,q〉
ALC+T

deg
R

F , if (T ′,A ∪ Ãi) |=ALC+TR
F for all Ãi ∈ E . We

also define the probability of the entailment of a query as P(F ) =
k∑

i=1

Pi.

When the query is a TBox assertion, probabilities p and q do not play any role:
indeed, probabilities of scenarios are related to ABox extensions, that are not involved
when we are reasoning about TBoxes. In this case entailment in ALC + Tdeg

R corre-
sponds to entailment in the non-monotonic Description Logic ALC +TRaCl

R . Therefore,

we write KB |=〈p,q〉
ALC+T

deg
R

F , if (T ′,A) |=ALC+TRaCl
R

F , where T ′ = {T(C) � D |
T(C) �r D ∈ T } ∪ {C � D ∈ T }. We can proceed as in [25] to show that entailment
in ALC + Tdeg

R is EXPTIME-complete as for standard ALC.

4 A Description Logic of Typicality for Abductive Reasoning

In this section, we present a general approach for abductive reasoning in defeasible DLs,
in order to combine the expressive power of DLs of typicality with the reasoning capa-
bilities offered by the rational closure, exploiting probabilities in the logic ALC+Tdeg

R .
All these ingredients allow us to perform abductive reasoning without the need to set
up an abductive framework by domain expertise. Intuitively, the basic idea is to pro-
vide an explanation of a set of symptoms (a set of ABox formulas) as an extension
of the ABox in the logic ALC + Tdeg

R , namely typicality assumptions that belong to
the rational closure of the ABox and that can extend the initial knowledge in order
to provide an explanation for the symptoms themselves. Those syntactic extensions of
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A are generated by taking into account some plausible pairs C(a) − T(C)(a), from
the set of abducibles, implicitly defined thanks to the modeling scheme itself. This
process aims to seek an explanation for what is observed. For example if the A con-
tains ¬Euphoria(greg) and the T contains T(Depressed) � ¬Euphoria , assuming
T(Depressed)(greg) in ALC + TRaCl

R provides a plausible good explanation.

Let us first consider a restriction of the DL ALC + Tdeg
R called R1. Intuitively,

through specific modeling of the “cause-and-effect” relationships, underlying abductive
reasoning, one can use T and non-monotonic T-assumptions as conjectures to explain
G, the set of observations. So, T(Cause) � Effect represents “a possible typical cause
for the effect”. Next, a syntax restriction of the language of ALC +Tdeg

R is provided in
order to facilitate the construction of an abductive reasoning strategy based on the study
of minimal canonical models on a single individual a.

Definition 7 (R1 as restriction of ALC + Tdeg
R ). We consider an alphabet of concept

names C, and a single individual constant a. Given A ∈ C, we define:

C := A | � | ⊥ | ¬C | C � C | C � C

D := A | ¬C | C � C | C � C

An ALC + Tdeg
R knowledge base is a pair (T ,A). T contains axioms of the form

either C � C, to represent taxonomies of only causes, or T(C) �p D, to represent
that “normally, C is a possible cause for D, and the probability of having exceptional
instances of C not being correlated to D is 1 − p”, where p ∈ R, p ∈ (0.5, 1) and D
does not occur in T. A contains only assertions of the form C(a).

G is a non empty set of assertions C(a) where, due to the “abductive” modeling
scheme T(Cause) � Effect , the concept C cannot occur in T.

Example 1. Consider a domain for medical diagnoses. The TBox T contains
PathologyB � PathologyA (“all patients of PathologyB are also patients of
PathologyA”), and T(PathologyA) �p Symptom (“all typical PathologyA patients
suffer/show Symptom with a probability of having exceptions equals to 1 − p”),
where p is linked to the uncertainty of this prototypical description. Let the A con-
tain PathologyA(john), denoting that “John suffers PathologyA”, or Symptom(john),
representing that “John has the symptom Symptom”. As expected from the underlying
ALC + TR, diseases are described in terms of the symptoms typically displayed by
sufferers through T-inclusions.

Let us now introduce the concept of abductive hypothesis under rational closure.
By using the semantics of minimal canonical models combined with domain-specific
modeling, the defeasible description logic for abduction seeks to take advantage of the
implicit definition of abducibles from which abductive hypotheses can be formulated.

Definition 8 (Abducibiles in R1 as restriction of ALC +Tdeg
R ). Given a KB= (T ,A)

as in Definition 7, let Tip be the set of abducibles, namely:

Tip = {C | T(C) �p D ∈ T }
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Two aspects must be considered: 1) not all assertions that can be instantiated from
the set of possible abducibles are consistent with KB, and 2) if one supposes C(a)
but T(C)(a) is not minimally entailed in ALC + TRaCl

R , w.r.t. the modeling scheme
T(Cause) � Effect , an unintended exception is introduced.

Let us now describe abducible hypothesis in the proposed logic. The main idea
is to set up a strategy for generating abductive hypotheses that are plausible and for
reasoning in a context of maximum typicality, according to rational closure, in which
one can derive defeasible properties while searching for explanations for G.

Let KB = (T ,A) and let KB be the rational closure over KB. In R1, we restrict
entailment to a class of minimal canonical models, where for each C(a) conjectured,
with C ∈ Tip, it should hold (T ′,A ∪ {C(a)}) |=ALC+TRaCl

R
T(C)(a). It can be

observed that, given an ALC + TR model M satisfying KB, we have:

– the rank of a concept in a model is related to the rank of the most typical domain
element belonging to the extension of that concept: kM(C) = min{kM(x) | x ∈
CI}, if CI = ∅ then kM(C) = ∞;

– as proved in [15,25], T(C) � D is minimally entailed from the KB, if it holds in all
minimal canonical models of KB. One can determine the rank of concept C through
the computation of T , rational closure over T , and when M is a canonical model
minimizing the rank of domain elements, it holds in particular:

– T = {T(C) � D | either rank(C ) < rank(C � ¬D) or rank(C ) = ∞}
– rank(C ) = kM(C)

– due to the equivalence between rational closure and the semantics based on rational
models [15], the problem of deciding whether T(C)(a) is plausible, in addition to
the assumption of C(a), with KB ∪ {C(a)} consistent and C ∈ Tip, relies on:
KB |=ALC+TRaCl

R
T(C)(a) iff T(C)(a) ∈ A ∪ {C(a)}. Then one can test all the

rank assignments to the individual constant, kj(a), and evaluate different scenarios
generated by the concepts that a would need to satisfy with that rank assigned: μj =
{(¬C � D)(a) | T(C) � D ∈ T , kj (a) = rank(C )}∪ {(¬C � D)(a) | C � D ∈
T }. When kj(a) is minimal and consistent with T ∪ A ∪ {C(a)} ∪ μj , then M is a
minimal canonical model, where a, the individual constant, can be mapped onto the
most typical domain element w.r.t. C (T(C) �p D), namely kj(a) = rank(C ) =
kM(C) = kM(a), therefore aI ∈ Min<(CI), with C ∈ Tip and M supporting
the typicality assumption aI ∈ (T(C))I .

Hence, proceeding with homogeneous rank is the most intuitive way to generate an
abductive hypothesis in R1.

Definition 9 (Abductive hypothesis of rank r, in R1 as restriction of ALC +Tdeg
R ).

Given a KB= (T ,A) expressed as for Definition 7, a set of assertions on a, with rank r,
can be instantiated as: Ωr = {C(a) | C ∈ Tip, rank(C ) = r}, whereas the powerset
for each rank is: P(Ωr) = {ωr

l | ωr
l ∈ Ωr}, with r ∈ N0 and l = 0, ..., 2|Ωr| − 1. An

abductive hypothesis of rank r is a pair 〈ωr
l ,TipA∪ωr

l
〉 formed by:

– the assertions instantiated by the concepts occurring in T, ωr
l ;
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– the associated T-assumptions, when consistent;

TipA∪ωr
l

= {(a,C) | C(a) ∈ ωr
l and (¬C � D)(a) ∈ μr}

when r = kj(a), and kj(a) is minimal and consistent with (T ,A ∪ ωr
l ).

Thanks to the “ad hoc” modeling schema and the rational closure in ALC + TR

adapted in “abductive terms”, the ABox reasoning procedure [15,25] can be enriched
with meaningful abductive hypothesis of rank r. Indeed when TipA∪ωr

l
⊆ A ∪ ωr

l , if
C(a) ∈ ωr

l then T(C)(a) ∈ TipA∪ωr
l
.

Algorithm 1 generates “meaningful” 〈ωr
l ,TipA∪ωr

l
〉 and it is inspired by the pro-

cedure for computing A in [15] and entailment in ALC + TP
R [24,25]. In order to

build sets of pairs Cr
i (a) and T(Cr

i )(a), the algorithm starts from the concept rank
range [0, ..., k] ⊆ N0 as in [15], considering concepts by homogeneous rank and
testing minimal and consistent rank assignments for the individual constant a. Intu-
itively, the algorithm is used to check whether a new piece of information can be
inferred for each conjectured fact, discarding ωr

l when: (i) ∃Cr
i (a) ∈ ωr

l t.c.KB ∪
{Cr

i (a)} unsatisfiable in ALC + TR; (ii) there is at least one T-assumption, related
to ωr

l , not minimally entailed in ALC + TRaCl
R , through the calculation of A ∪ ωr

l and
TipA∪ωr

l
.

A simple strategy for composing abductive hypotheses is to combine the maximum
number of assertions and T-assertions, of concepts of different ranks, while maintaining
the consistency of what can be assumed, namely:

T ∪ A ∪ ωx
l ∪ TipA∪ωx

l
∪ ... ∪ ωz

m ∪ TipA∪ωz
m

consistent in ALC + TR

with 0 ≤ x ≤ z ≤ k, where k is the max rank of a concept in KB . Let us consider
the reasoning procedure in ALC + Tdeg

R described in Sect. 3 we have the following
adaptations: CA∪ωx

l ∪...∪ωz
m

= TipA∪ωx
l

∪ ... ∪ TipA∪ωz
m

, where the ordered multiset

PA∪ωx
l ∪...∪ωz

m
and the possible extensions ˜Aωx

l ∪...∪ωz
m

= {T(Cr
i )(a) | (a,Cr

i ) ∈
CA∪ωx

l ∪...∪ωz
m

and si �= 0} take into account the pairs, Cr
i (a) − T(Cr

i )(a), assumed
and from which one wants to draw the most number of conclusions.

Intuitively, this approach results in non-monotonic reasoning through the inclusion
of abductive hypotheses in syntactic extensions of the knowledge base. By examining
different scenarios, we can investigate the probability distribution on models for the
named individual a, under the assumption of different possible abductive hypotheses.

Definition 10 (Explanation in R1 as restriction of ALC + Tdeg
R ). Given a

KB= (T ,A) expressed as for Definition 7, a finite and non empty set of facts on a,
G, when KB�ALC+TRaCl

R
G and KB∪G consistent in ALC + TRaCl

R one can seek for an

explanation for G. From Definition 6, we have:

KB ∪ ωx
l ∪...∪ ωz

m |=〈p,r〉
ALC+T

deg
R

G when (T ′, A ∪ ωx
l ∪ ...∪ ωz

m∪ ˜Aωx
l

∪...∪ωz
m

) |=ALC+TR G

testing different scenarios generated by the abductive hypothesis assumed.
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Example 2. Let us consider an example of medical diagnosis adapted from [24,25].
Knowing that Greg belongs to the concept Euphoria , A = {Euphoria(greg)} and
having a terminological knowledge of the domain as follows, we want to find, if possi-
ble, an explanation for Greg’s symptoms, namely: G = {MoodReactivity(greg)}.

Table 1. T from Example 2 in [25].

Algorithm 1. Generating sets of couples Cr
i (a) − T(Cr

i )(a) in R1.

procedure GENERATEABDUCTIVEHYPOTHESESBYRANK((T , A),T ′,Tip, [0, ..., k])
[...] ← ∅ � set of homogeneous sets by rank
for each r in [0, ..., k] do

Ωr ← ∅
for each C ∈ Tip do

if rank(C) = r then
Ωr ← Ωr ∪ {C(a)}

[...] ← Ωr � store sets of Cr
i (a) by rank

for each Ωr in [Ω0, ..., Ωk] do
P(Ωr) ← ∅ � powerset of Ωr

for each C(a) ∈ Ωr do
for each {...} ∈ P(Ωr) do � iterate on each set in P(Ωr)

ω ← ∅
ω ← {...} ∪ {C(a)}
P(Ωr) ← P(Ωr) ∪ {ω}

P(Ωr) ← P(Ωr) ∪ {{C(a)}}
[...] ← P(Ωr) � store powerset by rank

� Perform a selection of the “meaningful” abductive hypothesis by rank
� Remove ωr

l when (T ′, A) ∪ ωr
l is inconsistent in ALC + TR

� Remove ωr
l associated to T-assertions non minimally entailed in ALC + TRaCl

R

X ← ∅ � store abductive hypothesis as pair of set
for each P(Ωr) in [P(Ω0), ..., P(Ωk)] do

for each ωr
l ∈ P(Ωr) do

if T ′ ∪ A ∪ ωr
l consistent in ALC + TR then � consistent with ωr

l

TipA∪ωr
l

← ∅
for each C(a) ∈ ωr

l do
� T-assumption when T ′ ∪ A ∪ ωr

l ∪ μr consistent in ALC + TR

if (T ′, A) ∪ ωr
l |=ALC+TRaCl

R
T(C)(a) then

TipA∪ωr
l

← TipA∪ωr
l

∪ {T(C)(a)} � T-assumption

if |ωr
l | = |TipA∪ωr

l
| then � check all the T-assumptions

store 〈ωr
l ,TipA∪ωr

l
〉 in X
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Table 2. Assertions to be satisfied when rank assignments: r = 0 or r = 1, from T .

We have that G is not entailed from KB, but KB ∪ G is consistent. With a set of
abducibiles as: Tip = {Depressed ,Bipolar ,ProstateCancerPatient}, and a com-
puted rank of each concept as: rank(Depressed) = rank(ProstateCancerPatient) =
0 and rank(Bipolar) = 1, the possible rank assignments to the individual constant pro-
duce the assertions in Table 2. The “meaningful” abductive hypotheses by rank, from
Table 3, are: 〈ω0

2 ,TipA∪ω0
2
〉 and 〈ω1

1 ,TipA∪ω1
1
〉, which can be combined, then we have:

KB ∪ω0
2 ∪ TipA∪ω0

2
∪ ω1

1 ∪ TipA∪ω1
1
is consistent in ALC + TR. Moreover, we have

(greg ,Bipolar)r=1, (greg ,ProstateCancerPatient)r=0 with P = [0.7, 0.48]. All the
possible T-assumptions from ω0

2 ∪ ω1
1 and the corresponding extensions of A with

probabilities are shown in Table 4.

Table 3. Abductive hypotheses and T minimally entailed in ALC + TRaCl
R .

abd. hypothesis by rank assertions Cr
i (a) T-assumptions T(Cr

i )(a)

〈ω0
1 ,TipA∪ω0

1
〉 Depressed(greg) ∅

〈ω0
2 ,TipA∪ω0

2
〉 ProstateCancerPatient(greg) T(ProstateCancerPatient)(greg)

〈ω0
3 ,TipA∪ω0

3
〉 Depressed(greg)

ProstateCancerPatient(greg)
∅

〈ω1
1 ,TipA∪ω1

1
〉 Bipolar(greg) T(Bipolar)(greg)

Table 4. Plausible A extensions [25] (PCP stands for ProstateCancerPatient , B for Bipolar ).
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In R1 we have: KB ∪ ω0
2 ∪ ω1

1 |=〈0,1〉
ALC+T

deg
R

G with a total probability of

P(Eω0
2∪ω1

1
) = 0.7. Hence Greg’s mood swings can be explained with a not trivial

diagnosis [24,25] (T′,A ∪ ω0
2 ∪ ω1

1 ∪ Ã1
ω0

2∪ω1
1
) |=ALC+TR

G, corresponding to the
assumption of Greg as a typical person with bipolar disorder and prostate cancer with

a probability of 34%, instead when (T′,A ∪ ω0
2 ∪ ω1

1 ∪ Ã2
ω0

2∪ω1
1
) |=ALC+TR

G, the

scenario Ã2
ω0

2∪ω1
1

could suggest that Greg is just a typical person with bipolar disorder,

with a probability of 36%. Example 2 is a variation of that one in [25], to show how
the assumption of the set ω0

2 ∪ω1
1 as “combined” abductive hypothesis, generates a sce-

nario Ã3
ω0

2∪ω1
1
, with rank assignment k(greg) = 0, in which Greg cannot be an atypical

person with bipolar disorder due to A ∪ ω0
2 ∪ ω1

1 |=ALC+TR
T(Bipolar)(greg).

We conclude by observing that the whole procedure for abductive reasoning is
essentially inexpensive, in the sense that it is in EXPTIME as the underlying, classic
ALC.

Theorem 1. Abductive reasoning in R1 is in EXPTIME.

5 Conclusions and Future Works

In this work, we have presented a general approach to defining a defeasible description
logic for abductive reasoning, based on plausible typicality assumptions. The idea is to
consider a restriction of ALC + TR to TBoxes expressing that typical X is a possible
cause for effect Y, T(X) � Y , in order to provide explanations for observed effects G,
while composing, indirectly, the set of abducibles as the concepts belonging to the scope
of T. Thanks to the notion of rational closure and through the computation of rank of
concepts C ∈ Tip, one can determine when {T(C) � D} ∈ T , or the assertions (¬C�
D)(a) to satisfy while finding a rank assignment for the named individual a, minimal
and consistent with (T ,A∪ωx

l ∪ ...∪ωz
m) in ALC +TR, where ωx

l ∪ ...∪ωz
m is one of

the possible set of pairs Cr
i −T(Cr

i ) of rank r , plausible to assume nonmonotonically
as abductive hypothesis. In our approach, scenarios are inspired to worlds in Abductive
Logic Programming [1,4]. In ALPp, the integrity constraints ICp ∪ICnp, probabilistic
and non probabilistic, are criteria for selecting worlds, namely KB ∪ Δ |= ICnp and
∀(ici, θj , 1) ∈ σ,KB ∪ Δ |= iciθj , under CWA with (ici, θj , 1) as the atomic choice
for the i-th PIC . On the other hand, introducing integrity constraints in a defeasible
description logic for abduction would lead to several limitations to tackle, among others:
OWA, the main role of T-assumption in drawing conclusions and the “all or nothing”
behavior [15,24,25], avoiding to separately reason on different prototypical properties.

We evaluated two alternative notions of probability: the first one, called R1 and
presented in this work, is based on considering different degrees of admissibility of
exceptions with respect to T-inclusions, where p represents the probability of (not)
finding exceptional individual being Cs but not Ds. Sscenarios are syntactical exten-
sions generated by assuming or not the typicality of the named individual with respect to
concepts occurring in the scope of T, when the associated T-assertions are minimally
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entailed in the underlying ALC + TRaCl
R . Aside, we examined a defeasible description

logic for abduction with probability more similar to the logics in [17,18], based on
DISPONTE [27,28], which recently found several applications [19–21], to represent
the uncertainty about information in KB. In this proposal, still under investigation, a
probability distribution over the worlds is obtained by including (or not) formulas of the
KB, each annotated with a probability, under the assumption that these are independent
from each other. In this way, labeling with a probability – only – typicality inclusions,
namely p :: T(C) � D with p ∈ (0.5, 1) ⊆ R, where p is a degree of belief in the truth
of that inclusion, and one can reason on different worlds as syntactical manipulation of
the terminological knowledge as in [18], surpassing the limit of “all-or-nothing”.

In future research we aim at studying how to combine sets of pairs Cr
i − T(Cr

i )
with different ranks in abductive hypotheses, entailing G under the greatest number of
plausible assumptions and under the probabilistic distribution over those related sce-
narios. Moreover, we aim at developing an implementation of the proposed approach.
Moreover, we aim at considering the use of low complexity DLs of typicality [12,13].
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Abstract. Italian Arthroplasty Registry (Registro Italiano Artro-
Protesi, RIAP) is organized as a federation of regional registries, involved
on voluntary basis, with the purpose of collecting data to monitor joint
prostheses safety and quickly recall patients in case of adverse events.
Data collection flows may differ among the participating regions, there-
fore data have to be properly integrated in a single omnicomprehensive
data repository. The aim of this paper is to report on the application
of the Ontology Based Data Management (OBDM) approach in order
to integrate, standardize and prepare data for analyses and for extract-
ing pieces of information from the different flows converging to RIAP.
From the point of view of Data Management, one of the distinguishing
features of OBDM is to provide well-founded methods for data qual-
ity assessment, which is crucial also for subsequent machine learning
tasks. From the knowledge representation point of view, the ontology
constitutes a fundamental asset for giving proper semantics to concepts,
relationships and rules regarding the arthroplasty domain, as determined
by the expertise of the stakeholders. Thus, the whole approach improves
the RIAP capabilities of handling data, dealing with complex research
questions in the healthcare domain and sharing information with the
international community of Arthroplasty Registries. Finally, the avail-
ability of a SPARQL endpoint to connect the central relational database
to the RIAP ontology paves the way for enabling RIAP to publish open
data with proper semantics.
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1 Introduction

Italian Arthroplasty Registry (RIAP) project started in the 2006 with the ambi-
tious aim of collecting and analyzing demographics and surgery data, in order
to monitor joint prostheses safety and quickly recall patients in case of adverse
events [17]. These healthcare data can be structurally divided into their admin-
istrative part (for example, patient’s demographics and data about hospitaliza-
tion) and the clinical part which is registry-specific and covers all the knowledge
related to the arthroplasty domain [6]. Following this distinction, there exist two
main data flows which have to be linked:

1. hospital discharge data (HDD), containing all the relevant information
about the hospitalizations of patients in Italy.

2. minimum dataset (MDS), regarding more specific information about the
arthroplasties performed during a hospitalization and the relevant implanted
devices.

Establishing a tight collaboration between stakeholders, RIAP achieved to
document a standardized and complete knowledge comprising all the relevant
characteristics of the arthroplasty domain. This information is organized into
documents called recordsets1 (tracciati record) as follows: one recordset contains
all the descriptions of the attributes of the HDD flow, while the other four deal
with the hip, knee, shoulder and ankle joint MDS’s.

The HDD recordset is composed by 41 attributes principally referencing to
a hospitalization occurred in an Italian structure and the associated patient. In
order to give some examples, it is possible to mention:

– (1) hospital code, (2) hospital subcode and (3) hdd progressive,
uniquely identifying the healthcare structure in which a hospitalization occurs
and its assigned progressive code within that hospital;

– (8) patient code, (7) patient gender, (35) patient current age, rep-
resenting, respectively, the SHA-256 2 pseudonimization of the identification
code of a patient, his/her gender and age at the time of the hospitalization;

– (14–19) the ICD9-CM3 codes describing diagnoses characterizing that
patient during the hospital stay;

– (20–31) the ICD9-CM codes describing the procedures (and their dates)
performed on that patient during the hospital stay.

A MDS recordset (with few differences among hip, knee, shoulder and ankle)
is composed by 27–29 attributes comprising all the relevant knowledge regarding
the specific arthroplasty. Some notable examples to mention are:

– (1) hospital code, (2) hospital subcode and (3) HDD progressive, to
link an arthroplasty to the corresponding HDD part;

1 https://riap.iss.it/riap/it/strumenti/documenti-tecnici/tracciati-record-riap/.
2 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.
3 https://www.cdc.gov/nchs/icd/ICD9-CMcm.htm.

https://riap.iss.it/riap/it/strumenti/documenti-tecnici/tracciati-record-riap/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
https://www.cdc.gov/nchs/icd/ICD9-CMcm.htm
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– (6) joint, (7) side,(8) type of surgery, (9), (11) cause of primary
or revision arthroplasty and (15) entry point, dealing with relevant
features of an arthroplasty;

– (22–27) expressing knowledge about the device implanted during the arthro-
plasty4.

All RIAP recordsets contain not only a detailed description of the seman-
tics of each attribute, but also the possible values an attribute can assume and
their definition. This is because the large majority of those values are simply
alphanumeric codes, needing for an associated meaning.

From the point of view of the data, since the Italian Healthcare system is
region-based, each participant to the RIAP project has to supply both HDD
and MDS. For this reason, RIAP provides them with tools capable of collecting
those data with a single and standardized method [1,17]. However, some regions
already had a local arthroplasty registry with data collection implemented with
their own systems. Therefore, information integration [7,8] represents a real
challenge for the national registry, requiring, on the one hand, formal agreements
between Italian National Institute of Health (ISS) and each single local referent
and, on the other hand, an engineering approach for managing data coming from
those extremely heterogeneous sources.

In order to give an example of the complexity of handling these data, let
us consider the following two cases: the referent of region A uses RIAP soft-
wares to transmit data, while the referent of region B has the local registry tool
for data governance. Region A data consist of three files: the first containing
HDD data; the second containing, for each HDD record, one or more arthroplas-
ties; the third containing, for each arthroplasty, one or more associated devices.
Region B data consist of a single file, with a row for each device considered
and the eventually repeated parts of arthroplasties and HDD data. Besides the
highlighted differences, it has to be pointed out that even the same attribute
(e.g., the hospital code of the structure in which an arthroplasty took place)
could have different names in the two situations5. It is easily understandable
how managing this kind of heterogeneity can be challenging.

To summarize the above, RIAP achieved to obtain an extremely precise docu-
mentation about the arthroplasty domain and its specificities within the Italian
Healthcare system, but it has to deal with a complex information integration
task, due to the voluntary nature of the project. Therefore, RIAP is challenged
to improve data quality assessment and to better exploit the huge efforts carried
out with documenting the domain knowledge.

The aim of this paper is to propose a technique for preparing data in a specific
healthcare scenario, thus discussing its application to the RIAP project described
so far. Our method is based on the Ontology-based Data Management
(OBDM) paradigm, which involves a three-level architecture constituted by
the following elements:
4 For example, the class of the implanted device according to the National Classifica-

tion of Medical Devices (CND) [10];.
5 This example is based on real Italian regions, whose actual names are omitted.
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1. ontology: a conceptual description of the relevant domain in the given con-
text, encompassing concepts, concept attributes, concept relationships, and
logical assertions that define the domain knowledge;

2. data sources: repositories where data related to the domain are stored,
typically numerous, heterogeneous, and managed independently of each other;

3. the mappings: specifies the correspondence between the data in the sources
and the elements of the ontology; they act as a reconciling structure between
the two levels.

The main objective of an OBDM system is to deliver several information
services to users by utilizing the conceptual description of the domain, modeled
through the ontology. Rather than simply providing a data structure housing
data from various sources, the system provides a comprehensive and meaning-
ful representation of the pertinent domain concepts and their interconnections.
This differentiation between the ontology and the data sources creates a divi-
sion between the user-oriented conceptual level and the underlying levels of the
information system stored in the sources.

By explicitly representing the domain, the ontology layer in the architecture
facilitates a declarative approach to information integration and data gover-
nance. The ontology and its corresponding mappings provide a common foun-
dation for further documenting all the data in the organization, offering advan-
tages for information system administration and management. Furthermore, the
ontology enables the reusability of acquired knowledge and allows for incremen-
tal integration: new data sources or elements can be added gradually as they
become available or are needed, thereby spreading the cost of integration, which
is not possible when the global schema is solely a unified description of the
underlying data sources. Finally, the mapping layer explicitly defines the rela-
tionships between domain concepts and data sources: it is not only used for
system operations, but also serves additional documentation purposes. Conse-
quently, the overall design can be seen as an incremental process of understand-
ing and representing the domain, the available data sources, and their relation-
ships.

This article is organized as follows: Sect. 2 describes the data modeling, thus
focusing on the ontology and database design choices; Sect. 3 details the process
of information integration and data preparation, needed to improve the quality
of data; Sect. 4 summarizes the design of the mappings between the RIAP
database and the ontology; Sect. 5 discusses the results of the application of
the OBDM methodology both in terms of overall benefits for the registry and
objectives reached thanks to the novel system; finally, Sect. 6 draws conclusions
and future developments.

2 Data Modeling

From an analysis of the literature surrounding arthroplasty ontologies, it comes
out that the most relevant example of knowledge representation of this domain
is a subset of SNOMED CT : a thorough, multilingual clinical vocabulary employed
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in electronic health records and promoting interoperability [2]. Even if it indeed
comprises arthroplasty-related terminology (joints, devices, hip arthroplasty, and
so on), the business rules stated in RIAP documentation expressed a clinical
knowledge going beyond the facts stated in SNOMED CT. However, its ability to
provide a valuable high-level perspective on the phenomenon could frame it more
as a landmark for enhancing RIAP ontology’s interoperability in the future.
Taking all this into account, the first step of data modeling has been the con-
ceptualization of a novel arthroplasty knowledge base via an owl ontology, built
through the usage of Eddy [11]. It is a specialized tool developed with the pur-
pose of building ontologies in GRAPHOL, namely a fully visual ontology language
that holds the same level of expressiveness as OWL 2 [14]. Consequently, Eddy
enables the creation of ontologies by simply drawing diagrams, as opposed to
the more common approach of writing formulas in popular ontology design and
engineering environments [5]. The important fact to point out regarding this
phase is its independence w.r.t. the analysis of the data sources and the map-
pings: at that moment, it was crucial to analyze only the recordsets, in order to
keep this conceptualization as general as possible. Only after a comprehensive
understanding of all the peculiarities of this domain, with tight collaboration
with RIAP stakeholders, in order to avoid inconsistencies, it has been possible
to properly model the ontology [21].

The second step of data modeling is focused on the design of a relational
database on a Microsoft SQL Server, which could also accommodate low
quality data and serve as data source to be mapped to the ontology [21]. The
choice of a relational database is motivated by the structure of the data, more
centred on the entities and their numerous attributes rather than having a high
number of interconnections.

2.1 The Ontology at a Glance

The ontology is modeled following the OWL 2 formalization, using Eddy as a tool
to represent concepts, relations, properties, individuals and axioms graphically.
Table 1 sums up the most important metrics characterizing the ontology, while
Fig. 1 pictures a partial representation of the RIAP ontology. In the conceptual-
ization of such a complex domain as the one of the arthroplasties, modularity is
not optional: interacting in a separate fashion with the various modules allows
a clearer understanding of the expressed knowledge. In addition, allowing query
answering on a subsection of the total ontology, when possible, could improve
performances. These are the four modules of the ontology, each one serving a
specific purpose:

1. the patient module encompasses all the pertinent information regarding the
patients’ demographics;

2. the hospitalisation module comprises all the relevant details pertaining to
each hospital stay, including the hospital where it takes place, the discharge
diagnoses, and the procedures performed;
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3. the surgery module incorporates all the necessary information regarding
both arthroplasty procedures and general surgical activities carried out during
a hospitalisation;

4. the devices module models all the relevant knowledge regarding the arthro-
plasty implant devices utilized within a surgery activity.

One further interesting aspect about this division in modules is its dual role: if
the ontology is taken as a whole, it conceptualizes the knowledge about Italian
arthroplasties, while taking into account only modules 3 and 4, it models general
knowledge about arthroplasties.

Table 1. General metrics characterizing OWL 2 RIAP Ontology.

Metric n

Axioms 3163

Classes 535

Data Properties 96

Object properties 103

Individuals 123

Type of Axiom n

Sub-class of 759

Disjoint classes 163

Sub object property of 60

Class assertions 69

Annotation assertions 513

Fig. 1. A snippet of the ontology, represented through GRAPHOL as a diagram, show-
ing the most relevant classes and their interconnections. Green rectangles represent
concepts, while blue diamonds represent relationships between them.
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During the design of some of the fundamental concepts (e.g., the ones express-
ing knowledge about surgeries and hospitalizations), it turned out that they
have properties denoting a specialization of the described concept itself. This
source of complexity has been tackled through both a role participation,
capturing the associated characteristic, and an ISA concept representing the
class specialization. This represents an example of the OWL 2 punning6: using
the same name to describe both a class and an individual [12]. For example,
a Hospitalization can be a DailyRegime or Ordinary. DailyRegime and
Ordinary are modeled both as sub concepts of (ISA) Hospitalization and
as individuals, being range of the relationship hasRegime, whose domain is the
class Hospitalization. This modeling choice solves one type of integrity con-
straint (IC): IC on the ranges of roles or on the domain of data properties. In
fact, it is sufficient to model the axiom on the interested sub-concept. Conversely,
another type of IC, namely the IC on the inter-relationship between concepts, is
more subtle, as it regards restrictions on the domain of a concept based on the
range of a role. Consequently, those properties also resulted in ISA of concepts
and ISA of relationships. For example, let us consider this piece of knowledge:

1. A hip arthroplasty (HA) can be primary (PHA) if performed for the first
time or revision (RHA) if performed on a failed implant;

2. Every HA has a cause (CHA), linked with HA through the relationship hasCHA;
3. Every PHA has a cause, which is one among a well known subset of CHA (the

same can be stated about every RHA).

Therefore, not only HA is specialized through the ISAs PHA and RHA, but also
hasCHA has to be specialized through relationship ISAs, namely hasCPHA and
hasCRHA, linking each one of the two subtypes of the parent domain concept
(PHA and RHA) to different subsets of the parent range concepts.

2.2 The Relational Database at a Glance

The design of a relational database using the ontology modeled in the previous
stage as a reference provides RIAP with a central repository, to store both data
and metadata. Being a standard for dealing with large-scale data, the usage of
a Microsoft SQL Server is a requirement of the organization [9]7. The RIAP
database is composed of data tables, covering the related key concepts of the
ontology:

– arthroplasty: registry of the arthroplasties;
– device: registry of the prosthetic implants;
– diagnosis: links a hospitalization to the corresponding ICD9-CM diagnoses;
– hospitalization: registry of the RIAP hospitalizations;
– procedure: links a hospitalization to the corresponding ICD9-CM procedures;
– structure: registry of the Italian healthcare structures.

6 http://www.w3.org/TR/owl2-new-features/#F12: Punning.
7 https://www.microsoft.com/en-us/sql-server/sql-server-2022.

http://www.w3.org/TR/owl2-new-features/#F12:_Punning
https://www.microsoft.com/en-us/sql-server/sql-server-2022
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The RIAP database also includes metadata tables with descriptions for each
relevant attribute of hospitalization and arthroplasty tables and for ICD9-
CM codes of diagnosis and procedure.

3 Information Integration and Data Preparation

A procedure has been designed and implemented in python as a pipeline through
which, given a series of files containing RIAP source data described so far, the
information integration and the population of the database can be executed
automatically. The steps performed by the algorithm follow:

1. information integration: this is the core activity, i.e. where the actual
disharmonious data sources are unified and integrated into a single dataset,
representing all the dimensions of interest. This phase involves the RIAP
attributes identification, the merging and possibly the joins between the two
distinct parts of RIAP data sources (HDD and MDS);

2. semantic ripartition: during this phase, data are partitioned in several
separated datasets, according to a semantic differentiation based on a specific
subset of the identified ontology classes8;

3. target database population: through this step, the algorithm actually
populates the target database with all the data coming from the sources,
produced in the previous step; this phase is eased by the previous one, which
allowed to resemble the internal structure of the database tables;

4. quality checks and data preparation: this is the moment in which the
differences between the heterogeneous data are uniformed through specific
data preparation queries on the database9. Furthermore, during this phase,
the quality metadata of the database are filled, assigning a quality score to
each patient, hospitalization and arthroplasty record.

Please note that in the OBDM approach’s depiction, the RIAP database
plays the role of a data source, whereas, concerning the information integration
performed on the raw files, it serves as the target database. The presence of this
integration procedure is motivated by the complex nature of the project: data
are sent annually by various partners and they can change. In this case, a central
repository can act as an intermediate step of the OBDM mappings between the
varying sources and the ontology.

3.1 Data Preparation of RIAP Data

In the step 4 of the described algorithm, we mentioned specific data preparation
queries performed on the raw data in order to improve the general quality of
the content of the RIAP database. It is extremely important to clarify the fact

8 The following ontology concepts: patient, hospitalization, diagnosis, procedure,
arthroplasty and devices.

9 A more detailed description of this process will be provided in the following section.
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that data, at this stage, are uniformed in terms of semantics: each attribute of
a database table should have an unambiguous meaning, therefore its domain
is well known and captured by the axioms of the modeled ontology. However,
due to the heterogeneity of the content, there could potentially be a plethora of
issues. Here is a list of the major sources of inconsistencies and errors, with the
corresponding actions taken:

1. format: data have correct semantics, but wrong format; in this case, a single
and standard format is chosen and used; for example, we found an extreme
heterogeneity of the format of dates (i.e., MMDDYYYY, YYYYMMDD, and so on):
the choice is to use YYYY-MM-DD;

2. representation of the absence of information: data with heterogeneous
representations of NULL in some attributes; in this case, identifying all differ-
ent representations and letting them all converge to NULL, is the straightfor-
ward solution; for example, NULLs are often coded as particular strings (i.e.,
X, # and so on);

3. domain incongruousness: values of an attribute not in the corresponding
and well-known domain; in this case, those values are replaced by the correct
one if it is possible to infer it from other information sources, otherwise they
are simply replaced with a NULL; for example, some ICD9-CM diagnoses and
procedures codes seem to be not existing, but often we found out that they
contain unnecessary leading zeroes (i.e., a diagnosis of 02851 is indeed a 2851);

4. quality: values compliant with their domain, but not with an rule defined
at the ontology level; in this case, those values are replaced by the correct
ones if it is possible to infer them from other information sources, otherwise
they are either replaced with a NULL, or they are kept, recording their quality.
For example, a Hip Arthroplasty (HA) is recorded as type Primary and it has
Infection as a cause. In this case, even if the type of surgery and the cause
of surgery have both legit values, the ontology captures the rule stating that
Infection cannot be a cause for a Primary hip arthroplasty.

Often, dealing with these inconsistencies is a subtle process. One example
deserving to be mentioned is the one of the triplet (hospital code, hospital
subcode, hdd progressive)10. There are cases in which not only the format (1),
but also the domain (3) of one or more elements of the triplet have issues in some
raw records. This is mostly due to the fact that hospital code and hospital
subcode are subject to changes over the years, because of administrative choices
of the healthcare structures in Italy. Fortunately, the table structure of the
database keeps track of the temporal validity of the codes identifying a struc-
ture, thus in the large majority of cases it is possible to consistently update the
quarantined records.

Finally, it should be worthy to highlight the fact that the data preparation
and cleaning is a continuous process: the more the content of the database
is explored broadly, the more some further sources of inconsistency could be
found. This is a natural consequence of the integration of such a heterogeneous

10 In Sect. 1, it is presented as the triplet which links MDS and HDD data flows.
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information. However, the novel updates can be easily added incrementally to
the data preparation queries of the step 4 of the algorithm presented in this
section.

4 The Mappings

The output of the data modeling and preparation described by Sects. 2 and 3
represents the first two elements of the OBDM approach: the data sources, in
our case unified by the relational database, and the ontology. In this section,
we describe the third element: the process through which the mappings from
the database to the ontology are carried out. Monolith [16] is the system
used to accomplish this task, offering a unified environment that encompasses
OBDM services, including ontology inspection, query answering, and data qual-
ity checking. Additionally, it enables querying of ontologies through a SPARQL
endpoint11, to ensure a proper ontology-based data access (OBDA).

In order to set up the SPARQL endpoint, we linked Monolith to the database
and we loaded the ontology modeled through Eddy. At that point, the instances
of each concept, role and data property of the ontology had been properly defined
through views on the database. In this way, each SPARQL query on the RIAP
Ontology is translated into the corresponding SQL query on the RIAP database
at runtime. Each clinically relevant business rule in the documentation results
in different combinations of values at the level of the data source and in a logical
statement involving concepts and roles at the ontological level. It represented
both a motivation for the usage of the OBDM approach and a subsequent chal-
lenge for the definition of the proper mappings to each element of the ontology.

In order to give an example, let us imagine one wants to count how many
hip arthroplasties are in the registry. The SQL query on the database is the
following:
select count(*) as num from arthroplasty where articulation = "A"

The SPARQL query on the ontology is the following:
select (count(?x) as ?num) where { ?x a riap:HipArthroplasty.}

In fact, even a non-clinician user could learn the semantics of the domain
through the exploration of the ontology axioms, to then simply gather the desired
data according to those semantics, without having any clue about the underlying
representation (e.g., the fact that the attribute articulation = "A" of table
arthroplasty identifies the entity HipArthroplasty).

The implementation of the SPARQL endpoint represents not only the last
tile of the OBDM paradigm described in Sect. 1 of this work, but also a valuable
opportunity to enhance RIAP capabilities of publishing open data about Italian
arthroplasties and improving its interoperability within the International Society
of Arthroplasty Registries (ISAR)12.
11 https://www.w3.org/TR/sparql11-protocol/.
12 https://www.isarhome.org/.

https://www.w3.org/TR/sparql11-protocol/
https://www.isarhome.org/
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5 Discussion

Healthcare data, by definition, have to be treated with particular attention to
avoid incorrect or biased analyses [6,19]. However, they often come from hetero-
geneous sources, which could challenge the best practices of data engineering, as
we outlined in the introduction of this paper. On the other hand, the knowledge
surrounding the domain of these data is, equally often, clearly documented as
it takes advantage of the expertise of the stakeholders [13]. Therefore, semantic
technologies and, in particular, OBDM seems to push in the correct direction
to exploit the valuable information provided by the clinicians to build proper
knowledge bases, capable of framing those real-world data and, in parallel, cor-
rectly assessing their quality [15].

RIAP is a relevant example of the aforementioned statements: the application
of the OBDM approach to the arthroplasty domain brings several benefits to
the Italian Registry [20,22]. First of all, through the ontology-guided design of
the database, was possible to integrate all the information gathered over fifteen
years of activity in a central data repository. In addition, this overall process
required to better explore the data and to clean and standardize them, improving
their quality. The definition of proper metadata tables in the database let any
analyses on the data to be more easily human-readable, while the ontology and
the SPARQL endpoint provide RIAP with the possibility of producing machine-
readable outputs. Finally, the clear separation between the database and the
ontology allows to store data with a heterogeneous quality (from the semantic
point of view) within the database, while implementing the documented rules
governing them in a higher layer.

However, as stated in Sect. 3, data cleaning is a continuous process, and
novel sources of inconsistencies can always come out. Furthermore, detecting an
inconsistency does not necessarily mean solving it completely: some issues with
data result in the deletion of a totally inconsistent record or to an update of a
potentially useful dimension of the data to NULL. Moreover, the overall RIAP
completeness13 is around 28%, due to the fact that the participation to the
project is voluntary. Given that one of the primary objectives of an arthroplasty
registry is to perform “survival analyses” on implanted devices, in order to accu-
rately identify issues with the orthopaedic surgeons’ choice of implants, the data
involved in this process also hold temporal significance [6]. In particular, RIAP
aims to monitor the patients’ history, specifically focusing on identifying arthro-
plasty revisions (i.e., implant failures). Unfortunately, achieving this task is cur-
rently unattainable at national level due to the insufficient level of completeness
mentioned earlier, compounded by the unreliability of patient pseudonyms14.

Despite these limitations, the OBDM approach brings the complete automa-
tion of the production of RIAP annual reports and allows the analyses to be
cumulative, covering the entire lifetime of the registry. In addition, further

13 The indicator measuring the ratio between the number of arthroplasties in the reg-
istry and the total number of arthroplasties in Italy.

14 In some regions, the patient’s code is not a real pseudonym, but only a progressive.
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analyses are planned to compare the HDD ICD9-CM codes of diagnoses and
procedures to the corresponding attributes in the MDS part of the data, to
assess the quality of the HDD part from a clinical perspective [3,4,18]. Finally,
if ever allowed by laws regulating the RIAP action, the entire HDD flow, com-
ing from the Italian Ministry of Health, could be mapped to the ontology as an
additional data source in order to partially cover the lack of information about
the 72% of arthroplasty procedures that are not collected by the registry at the
time being.

6 Conclusions

In our previous work, we already discussed the advantages of providing RIAP
with an ontology [21,22] and we presented a poster about the information inte-
gration strategy and the perspective of a SPARQL endpoint as innovations for
enhancing the capabilities of a medical registry [20]. This paper aims to give an
integrated and detailed view of the RIAP data management strategy improve-
ments through the OBDM. Specifically, this approach has been implemented in
the context of the RIAP project to effectively organize, cleanse, and transform
the HDD and MDS flows coming from the local healthcare structures into a
valuable shared asset for future data analytics and machine learning tasks.

Notwithstanding the existence of RIAP standardized tools to upload data and
an extremely clear documentation, significant efforts were invested in integrating
and cleaning the RIAP dataset to achieve a stable state. Nevertheless, it has
to be acknowledged the likelihood of additional cleaning requirements in the
future, arising from the specific demands of forthcoming data analytics tasks
centered around the dataset, as well as the inevitable need for future corrective
maintenance due to the large size of the data.

As a result of the data modeling and preparation detailed in this paper, RIAP
can shift its efforts away from managing its data flows and instead focus on its
primary objective of monitoring the safety of joint prostheses through targeted
data analytics. In fact, the presence of the relational database ensures to keep
track of the content of the data sources from a centralized perspective, rather
than analyzing an incremental set of csv files.

From the knowledge representation point of view, as already highlighted,
the ontology and the SPARQL endpoint represent crowning achievements of the
long-lasting process of knowledge elicitation carried out between RIAP and clini-
cians. Furthermore, the ontology can be seen as the complement of the database:
it imposes rigid rules to be followed by the instances of concepts and relation-
ships, in contrast with the database, which can accomodate also incomplete or
lower quality data.

In conclusion, the OBDM approach could be particularly suitable for many
healthcare domains, which share with the RIAP case study some characteristics
such as the temporal relevance of the clinical events, the need for a clear set
of metadata and a consistent documentation describing the domain. In these
contexts, the ontology can really represent the machine-readable expression of
the scientific expertise of the healthcare stakeholders.
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and oracle: comparative performance analysis (2021)

10. Italy: Art. 57 legge finanziaria n.289 del 27.12.2002. Published into the “Gazzetta
Ufficiale Serie Generale n.305 del 31.12.2002” (2002)

11. Lembo, D., Pantaleone, D., Santarelli, V., Savo, D.F.: Drawing owl 2 ontologies
with eddy the editor. AI Commun. 31, 97–113 (2018)

12. Lenzerini, M., Lepore, L., Poggi, A.: Metamodeling and metaquerying in owl2ql.
Artif. Intell. 292, 103432 (2021). https://doi.org/10.1016/j.artint.2020.103432

13. Maranghi, M., et al.: AI-based data preparation and data analytics in healthcare:
the case of diabetes (2022)

https://doi.org/10.1002/spe.3130
https://doi.org/onlinelibrary.wiley.com/doi/full/10.1002/spe.3130
https://doi.org/onlinelibrary.wiley.com/doi/full/10.1002/spe.3130
https://doi.org/10.1007/978-3-030-56883-2_16
https://doi.org/10.1007/978-3-030-56883-2_16
https://doi.org/10.2106/JBJS.H.00155
https://doi.org/10.1007/s11999-009-0945-0
https://doi.org/10.1007/s11999-009-0945-0
https://doi.org/10.1007/978-1-4614-8265-9_80667
https://doi.org/10.1007/978-1-4614-8265-9_80667
https://iris.uniroma1.it/handle/11573/1665016#
https://doi.org/10.1007/978-3-319-61893-7_11
https://doi.org/10.1007/978-3-319-61893-7_11
https://doi.org/10.1016/j.artint.2020.103432


Ontology-Based Data Management in Healthcare 101

14. Motik, B., et al.: Owl 2 web ontology language: structural specification and
functional-style syntax (2008). https://doi.org/api.semanticscholar.org/CorpusID:
145268373

15. Pop, B., et al.: The role of medical registries, potential applications and limitations.
Med. Pharm. Rep. 92, 7–14 (2019)

16. Santarelli, V., Lepore, L., Namici, M., Ronconi, G., Ruzzi, M., Savo, D.F.: Mono-
lith: an obdm and knowledge graph management platform. In: International Work-
shop on the Semantic Web (2019)

17. Torre, M., et al.: Monitoring outcome of joint arthroplasty in Italy: implementation
of the national registry. Joints 5(2), 70–78 (2017). https://doi.org/10.1055/s-0037-
1603899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672872/pdf/10-1055-
s-0037-1603899.pdf

18. Torre, M., et al.: Registro Italiano ArtroProtesi. Report Annuale 2021. Il Pensiero
Scientifico Editore 2022 (2021). ISBN 978-88-490-0714-5

19. Valentini, R.: Bringing empowered and active telehealth: the modeling of a complex
medical information system (2020). unpublished thesis

20. Valentini, R., Carrani, E., Bacocco, D., Torre, M., Lenzerini, M.: Ontology-based
data integration and open data publication: the case of the Italian arthroplasty
registry. In: Abstract Book ISAR 2022, Poster Presented at ISAR 2022, Dublin,
Ireland (2022)

21. Valentini, R., Carrani, E., Torre, M., Lenzerini, M.: Ontology and data modeling
for the Italian arthroplasty registry. In: Paper Presented at “Ontology Uses and
Contribution to Artificial Intelligence” Workshop, Within KR2021 Virtual Confer-
ence (2021)

22. Valentini, R., Carrani, E., Torre, M., Lenzerini, M.: Ontology modelling for the
Italian arthroplasty registry. In: Abstract Book ISAR 2021: Poster Hosted at ISAR
2021, Denmark (Virtual venue), Copenhagen (2021)

https://doi.org/api.semanticscholar.org/CorpusID:145268373
https://doi.org/api.semanticscholar.org/CorpusID:145268373
https://doi.org/10.1055/s-0037-1603899
https://doi.org/10.1055/s-0037-1603899
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672872/pdf/10-1055-s-0037-1603899.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672872/pdf/10-1055-s-0037-1603899.pdf


Planning



A Structure-Sensitive Translation
from Hybrid to Numeric Planning

Francesco Percassi1(B) , Enrico Scala2(B) , and Mauro Vallati1(B)

1 University of Huddersfield, Huddersfield, UK
{f.percassi,m.vallati}@hud.ac.uk
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Abstract. pddl+ is an expressive planning formalism that enables the
modelling of hybrid domains with both discrete and continuous dynam-
ics. However, its expressiveness makes this language notoriously difficult
to handle natively. To address this challenge, translations from time-
discrete pddl+ into numeric pddl2.1 have been proposed as a way to
reframe the rich expressiveness of pddl+ into a simpler and more man-
ageable formalism. In this work, we first analyse existing translations and
provide a means to compare them in terms of induced state space and the
size of the reformulated tasks. Secondly, we propose a novel translation
leveraging the structure of the problem to generate a compact refor-
mulation. Our experimental results indicate that the novel translation
outperforms the existing ones on a range of benchmarks.

Keywords: AI Planning · Hybrid Planning · Model Translation

1 Introduction

Automated planning is a solid branch of artificial intelligence that aims to design
methodologies for synthesising a sequence of actions to reach a desired goal state,
given a predictive model of the world and the initial state. Planning formalisms
have been introduced to bridge the gap between theory and practical needs,
allowing representation and reasoning for different problem classes [9,10,13].

Hybrid planning [22], involving discrete and continuous changes over time, is
common in real-world applications. pddl+ [10] is one of the planning formalisms
for representing such systems, inspired by hybrid automata [14]. It combines an
agent-oriented formalisation through actions with an explicit representation of
the environment through processes and events. Processes describe how numeric
variables evolve using ordinary differential equations, while events model instan-
taneous changes.

The expressive power of pddl+ enabled its application in many domains,
including traffic control [11,16], train dispatching [6], pharmacokinetic optimi-
sation [1], and video games [21]. However, finding plans in pddl+ remains chal-
lenging, also due to the limited number of planning engines supporting it.

To overcome this problem, a well-known approach is to translate the input
problem into a more supported language (some recent examples [4,5,20]). Two
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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recent translations from time-discretised pddl+ problems to numeric planning
problems in pddl2.1 [9] are the exponential (exp) and polynomial (poly) trans-
lations [19]. They incorporate environmental transitions into the agent’s actions,
requiring them to occur as time progresses. The exp translation anticipates all
possible processes, limiting the increase in the length of the compiled plans com-
pared to the original ones, but resulting in an exponentially large representation.
On the other hand, the poly translation avoids exponential explosion at the cost
of longer plans. Alternatively, the poly

− translation [17] combines the advan-
tages of exp while avoiding exponential blow-up by ignoring certain transitions.
However, unlike exp and poly, poly− is only sound and complete for a syntactic
subclass of pddl+ problems.

This paper takes the occasion to compare the theoretical properties of exist-
ing translations between pddl+ and pddl2.1, focusing the discussion on the
induced state space and the size of numeric translated tasks. This analysis leads
to a new translation, namely exp

L, that maintains soundness and completeness
while limiting exponential blow-up. This is achieved by considering only nec-
essary combinations of processes, resulting in exponential growth based on the
largest set of processes affecting a single numeric variable. These considerations
are supported by an experimental analysis that demonstrates the effectiveness
of the proposed translation, considering a large set of well-known benchmarks.

2 Background

2.1 An Introductory Example: Linear-Car

The physics of a car is modelled using three numeric variables: position (x),
velocity (v), and acceleration (a). At the start, the car is stationary at a specific
position. The car’s acceleration can be increased or decreased within defined
bounds, i.e., amin ≤ a ≤ amax. The goal is to move the car from its initial position
to a desired position by controlling its acceleration while position and velocity
change continuously with ẋ = v and v̇ = a respectively, over time.1 Variables
can also be affected by events, causing instantaneous and deterministic changes
when certain logical conditions are met. Events take priority over actions. For
instance, in this domain, the car’s velocity must not exceed a threshold speed
vthresh to prevent the engine from breaking down. Control over acceleration (a) is
governed by two agent actions: accelerate and decelerate. The physical movement
of the car is governed by the displacement process, while the potential engine
failure is depicted by the engineBlow event. Figure 1 presents a pddl+ encoding
of these elements.

A possible solution plan (not optimal) for reaching a distance of x = 30 start-
ing from x = 0 and stopping the car at x = 30, is the timestamped sequence
〈〈acc, 0〉, 〈dec, 4〉, 〈dec, 7〉, 〈acc, 10〉, 〈dec, 12〉, 〈acc, 13〉〉 where acc and dec are the
contraction of accelerate and decelerate, respectively. Such a plan must be exe-
cuted within the interval 〈0, 13〉.
1 ẋ = y denotes that the first derivative of x is y.



A Structure-Sensitive Translation from pddl+ to pddl2.1 107

Fig. 1. pddl+ encoding of an action (1a), process (1b) and event (1c). The snippet
(increase (x) (* #t (v))) means ẋ = v.

2.2 Problem Formalisation

A pddl+ planning problem, denoted by Π, is a tuple 〈F,X, I,G,A,E, P 〉, where
F is a set of Boolean variables and X is a set of numeric variables taking values
from {�,⊥} and Q, respectively. These variables can be used in propositional for-
mulas with numeric and Boolean conditions. Numeric conditions are of the form
〈ξ �� 0〉 where ξ is a numeric expression over X and Q, and ��∈ {≤, <,=, >,≥}.
Boolean conditions are of the form 〈f = b〉 with f ∈ F and b ∈ {�,⊥}. A for-
mula is therefore a propositional formula using standard connectives from logic
involving numeric and Boolean conditions. I is the description of the initial state,
expressed as a full assignment to all variables in X and F . G is the description
of the goal, expressed as a formula. A and E are the sets of actions and events,
respectively. An action or event is a pair 〈p, e〉 where p is a formula and e is a set
of conditional effects of the form c � e.2 Each conditional effect is such that (i) c
is a formula and (ii) e is a set of Boolean and numeric assignments. A Boolean
assignment has the form 〈f := b〉 where f ∈ F and b ∈ {⊥,�}. A numeric
assignment has the form 〈op, x, ξ〉 where op ∈ {asgn, inc, dec}, x ∈ X, and ξ is
a numeric expression over X and Q. Specifically, op can be the contraction of
the keywords assign (x := ξ), increase (x := x + ξ) and decrease (x := x − ξ).
P is a set of processes and a process is a pair 〈p, e′〉 where p is a formula and
e′ is a set of continuous numeric effects (cne) expressed as pairs 〈x, ξ〉 where
x ∈ X and ξ is a numeric expression defined as above. In a cne, ξ represents the
additive contribution to the first derivative of x as time flows continuously. In
the discrete context, that is the scope of this work, ξ is the additive contribution
to the discrete change of x.

Let a = 〈p, e〉 be an action, event, or process, we use pre(a) to refer to the
precondition p of a, and eff(a) to the effect e of a. In the following, we will use
a, ρ, and ε to refer to a generic action, process, and event, respectively.

A pddl+ plan πt is a pair 〈π, te〉 where π = 〈〈a1, t1〉, ..., 〈an, tn〉〉 is a sequence
of timestamped actions and te ∈ Q≥0 is the makespan within the plan π is
executed. Notably, the timestamps of π are ordered and bounded within [0, te],
ensuring that for every i in {1, ..., n − 1}, 0 ≤ ti ≤ ti+1 ≤ te holds.

2 Conditional effects are an important feature in planning formalisms in which the
effects of an action are state-dependent [2,12].
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A state s is a full assignment of the variables X ∪ F . An action a (event ε)
is applicable (is triggered) in a state s iff s |= pre(a) (s |= pre(ε)). For describ-
ing how a state changes when an action (event) is executed (triggered) we use
the transition function γ(s, a). Given a state s and an action a (event ε), γ(s, a)
(γ(s, ε)) denotes the state resulting from the application of a (ε) in s accordingly
to the effect of the action eff(a) (eff(ε)). For a detailed explanation of the tran-
sition function, the interested reader should refer to [19]. The difference between
actions and events is that the former prescribe may transitions under the control
of the agent and can be executed if the current state meets the preconditions,
while the latter prescribe must transitions, i.e., events are triggered immediately
if their preconditions are met in a state.

A traditional way to handle pddl+ problems is via discretisation [7]. Follow-
ing [19] and [24], we formalise the pddl+ discrete semantics through the notion
of time points, histories and plan projection. A discretisation step δ ∈ Q>0 is
used to discretise the timeline. A time point, denoted by T , is a pair 〈t = δ ·n, n′〉
where n ∈ N and n′ ∈ N; t denotes the clock of T while n′ its counter. Time
points in Q × N are ordered lexicographically. A history, denoted by H, over
an interval I = [Ts, Te] maps each time point in I to a situation. A situation
at time point T is represented by the tuple H(T ) = 〈HA(T ),Hs(T )〉, where
HA(T ) is the action executed at time point T and Hs(T ) is a state, which is an
assignment of values to all variables in X and F at time point T . Hs(T )[v] and
Hs(T )[ξ] represent the value of variable v ∈ F ∪ X and the value of a numeric
expression ξ, respectively, in state Hs(T ) at time T . Etrigg(T ) is a sequencing of
the events triggered at time T . A time point T is considered a significant time
point (stp) when it is associated with an instantaneous or temporal transition.
Instantaneous transitions occur when an action is applied (HA(T ) 
= 〈〉) or a
non-empty sequence of events is triggered (Etrigg(T ) 
= 〈〉), while temporal tran-
sitions relate to the discrete passage of time by a quantity δ. Additionally, time
points resulting from these two types of transitions are also considered stps.

According to [10], we assume that pddl+ problems are event-deterministic
(meaning that if multiple events are triggered in a given state, they can be
sequenced arbitrarily and always produce the same outcome) and have finite com-
plexity, which means that the problem induces a finite number of spontaneous
changes over an interval. [8] described how these properties can be guaranteed.

To formally define when a plan πt is a solution for a pddl+ problem under
discrete semantics, we need to introduce the notion of (discrete) pddl+ plan-
projection, which describes how πt is projected onto a history, taking into account
the effects of actions and changes yielded by events and processes. The plan
projection is defined using a set of rules that describe how history progresses over
time. In the following definition, R1 states that if at least an event is triggered at
a specific time point, a successor state must exist with the same clock time and an
increased counter. R2 states the same for actions. R3 ensures that the actions in
a pddl+ plan are projected over history while preserving their original ordering.
R4 describes how numeric variables change over time when time advances by a
discrete quantity δ. When time progresses, the successor state is determined by
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adding the cnes of all active processes, whose preconditions are satisfied in the
current state, and these effects are discretised using the formula Δ(ξ, δ) = ξ · δ.

Definition 1 (Discrete PDDL+ Plan Projection). Let δ ∈ Q>0 be a dis-
cretisation step, H a history, I an initial state and πt a pddl+ plan. We say
that H is a discrete projection of πt which starts in I iff H induces the stps
TH = 〈T0 = 〈0, 0〉, ..., Tm = 〈te, nm〉〉 where either ti+1 = ti + δ or ti+1 = ti and,
for all i ∈ {0, ...,m}, the following rules hold:

R1 [Instantaneous Transition (events)]
Etrigg(Ti) 
= 〈〉 iff Hs(Ti+1) = γ(Hs(Ti), Etrigg(Ti)), HA(Ti) = 〈〉, ti+1 = ti
and ni+1 = ni + 1;

R2 [Instantaneous Transition (actions)]
HA(Ti) 
= 〈〉 iff Hs(Ti+1) = γ(Hs(Ti),HA(Ti)), Etrigg(Ti) = 〈〉, ti+1 = ti and
ni+1 = ni + 1;

R3 [Actions Ordering] for each 〈ai, ti〉, 〈aj , tj〉 in π, with i < j and ti = tj
there exists Tk, Tz in TH such that ai in HA(Tk) and aj in HA(Tz) where
tk = tz = ti and nk < nz;

R4 [Temporal Transitions] for each pair of contiguous stps Ti = 〈ti, ni〉, Ti+1 =
〈ti+1, ni+1〉 such that ti+1 = ti + δ, we have that ni+1 = 0 and the value of
each numeric variable x ∈ X is updated as:

Hs(Ti+1)[x] = Hs(Ti)[x] +
∑

〈x′,ξ〉∈eff(ρ), x′=x
ρ∈P such that Hs(Ti)|=pre(ρ)

Hs(Ti)[Δ(ξ, δ)]

and values of unaffected variables remain unchanged (frame-axiom).

Definition 2 (Discrete Valid PDDL+ Plan). Let πt be a pddl+ plan and
let H be the plan discrete projection of πt for δ ∈ Q>0; πt is said to be a valid
plan for Π under δ discretisation iff Hs(Tm) |= G and the sequence of actions
HA(T ) is applicable in Hs(T ) for each T in TH.

A pddl2.1 problem can be seen, with a certain degree of approximation,
as a pddl+ problem in which events and processes are not specified, therefore
in which the exogenous component is absent. Said so, a pddl2.1 is a tuple
Π = 〈F,X, I,G,A〉 where each element is specified as the pddl+ definition. A
pddl2.1 plan is simply a sequence of actions π = 〈a1, ..., an〉. A pddl2.1 plan
π is said to be valid iff each action is applicable one after the other, and at the
end, the plan achieves G.

3 From Discretised PDDL+ to PDDL2.1

Before introducing the new translation exp
L, in this section, we describe in detail

the exp translation and an overview of the polynomial translations (poly and
poly

−). For the sake of conciseness, here we focus our attention on event-free
pddl+ problems; the discussed translations can be straightforwardly extended
to handle events [19].
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3.1 Exponential Translation

Given an event-free pddl+ problem Π = 〈F,X, I,G,A, ∅, P 〉, we define a con-
text C to be a non-empty subset of processes and denote with P+(P ) the set of
non-empty subsets of P , that is the set of all possible contexts.

For an event-free pddl+ problem Π, the exponential translation generates a
pddl2.1 problem Πexp = 〈F,X, I,G,A∪{SIM}〉, discretised in δ. Πexp is almost
identical to Π but for the absence of processes and the presence of the special
action SIM playing the role of the simulator, i.e., what changes when time goes
forward. SIM is defined as follows:

pre(SIM) =�
eff(SIM) =

⋃

C∈P+(P )

{contpre(C) � conteff(C)}

contpre(C) =
∧

ρ∈P\C
¬pre(ρ) ∧

∧

ρ∈P∩C
pre(ρ)

conteff(C) =
⋃

x∈X

{〈inc, x,
∑

〈x′,ξ〉∈eff(ρ), x′=x
ρ∈C

Δ(ξ, δ)〉}.

Intuitively, the action SIM organises all possible contexts within a unique
action, delegating to each conditional effect (i) the conditions under which a
context is triggered and (ii) the consequences that such a context has on the
state after some time δ has passed. Point (i) is formalised by conjoining two
conjunctions: the first ensures that no other process of some other context has
its precondition satisfied (

∧
ρ∈P\C

¬pre(ρ)); the second ensures that all the pre-

conditions of a given context are satisfied (
∧

ρ∈P∩C
pre(ρ)). Let x be some numeric

variable of our problem, point (ii) is obtained by summing the contribution of
each process within the context.

3.2 Polynomial Translations

As shown in [19], it is possible to translate a discretised pddl+ problem into a
pddl2.1 problem that is only polynomial w.r.t. the size of the input. The idea is
that poly avoids the exponential representation by translating all cnes of each
process into the set of actions AP . Given a process ρ and a cne ne = 〈x, ξ〉 ∈
eff(ρ), there is an action ane ∈ AP . This action applied in a state s modifies x
according to the discretised effect of ne, i.e., 〈inc, x,Δ(ξ, δ)〉, iff s |= pre(ρ). The
simulation of the advancement of time is realised by the execution of the sequence
of actions 〈start, seq(AP ), end〉, where start initialises the simulation, seq(AP ) is
an arbitrary total order over actions from AP . Finally, end closes the simulation.
Such a sequence incrementally produces a state that is consistent with what is
expected by R4 of Definition 1. Overall, poly prevents the exponential blow-up
of the problem’s size but makes the search tree much deeper.

The idea of poly has been further refined into poly
− [17]. Intuitively, poly−

leverages the advantages of exp, using a single action for simulating the advance
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of a discrete quantum of time, and avoids the exponential blow-up with a schema
that ignores some of the possible transitions. Specifically, all transitions in which
at least two processes act simultaneously on the same numeric variable are
removed from the model. This results in an approach that, differently from both
exp and poly (which are both sound and complete), is sound but complete
only for a syntactic subclass of pddl+ tasks. This class, namely mono left-hand
side pddl+ problem (shortened in 1-lhs) requires that each numeric variable is
influenced by at most one process.

4 Making EXP Sensitive to the Structure of the Problem

Translations that involve performing a single action to simulate the passage of
discrete time, such as exp and poly

−, are ideally more desirable than transla-
tions where simulation involves executing a sequence of actions, as seen in the
case of poly. What limits the practical utility of exp and poly

− is that the
former, generating an exponential number of conditional effects relative to the
number of processes, becomes unfeasible when |P | is large. The second approach,
while highly efficient in certain situations, carries a general risk of making the
problem unsolvable.

We propose a new translation, namely exp
L (L stands for local), which has

the same convenience in terms of search effort of exp and poly
−, but mitigates

their negative aspects. Compared to poly
−, expL provides guarantees of sound-

ness and completeness in the general case while, compared to exp, it produces
numeric tasks that are generally more feasible by exploiting the structure of the
problem. Finally, for 1-lhs tasks, expL produces numeric problems structurally
equivalent to what is produced by poly

−.
The basic idea of exp consists of enumerating all the possible non-empty

contexts C, and, for each of them, generating a conditional effect that will be
activated individually when SIM is applied. As it is possible to note, this app-
roach can become quickly inapplicable with problems having a large number
of processes. expL overcomes this weakness by enumerating, for each numeric
variable x ∈ X, all the contexts in which only the processes that affect x
are considered. To present this translation we need to introduce two new
definitions.

Definition 3. Let x ∈ X. We define the following sets: E(x) = {〈ξ, ρ〉 | 〈x′, ξ〉 ∈
eff(ρ), ρ ∈ P, x′ = x} and EP (x) = {ρ | 〈x, ρ〉 ∈ E(x)}.

E(x) is the set of all the cnes of Π affecting x together with the associated
process. EP (x) is the processes view of E(x). Let x ∈ X, C ⊆ EP (x) is what we
call the local context relevant to x.

For an event-free pddl+ problem Π = 〈F,X, I,G,A, ∅, P 〉, expL generates
a pddl2.1 problem Π

exp
L = 〈F,X, I,G,A ∪ {SIM}〉, discretised in δ where:

pre(SIM) =�
eff(SIM) =

⋃

x∈X

⋃

Cx∈P+(EP (x))

{contpre(Cx,EP (x)) � {〈inc, x,
∑

〈ξ,ρ〉∈E(x),
ρ∈Cx

Δ(ξ, δ)〉}}.
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SIM has a set of conditional effects for each numeric variable x ∈ X. Each set
enumerates all the possible local contexts relevant to x, i.e., Cx ⊆ EP (x). The
function used for generating a logical condition consistent with a given local
context is contpre(C, P ′), with C ⊆ P ′ ⊆ P . Such a function is a slightly revised
version of the contpre(C) function provided for the exp translation and it is
formally defined as:

contpre(C, P ′) =
∧

ρ∈P ′\C
¬pre(ρ) ∧

∧

ρ∈P ′∩C
pre(ρ)

Each of these conditional effects generated is mutually exclusive and has in its
effect a singleton with a single numeric assignment that collects the contribution
of all the discretised cnes affecting x within Cx. Note that if P+(E(x)) = ∅, then
no conditional effects are generated since x cannot be affected by processes.

Theorem 1 (Soundness and Completeness of EXPL). Let Π be a pddl+

problem with no events (E = ∅), and let Π
exp

L = 〈F,X, I,G,A ∪ {SIM}〉 be the
pddl2.1 problem obtained by using exp

L translation discretised in δ. Π admits
a solution under δ discretisation iff so does Π

exp
L .

Proof. (⇒) Let πt = 〈π, te〉 be a solution for Π under δ discretisation. And
let π

exp
L be a pddl2.1 plan constructed such that: (i) for each 〈a, t〉 in π, a′

is in π
exp

L (where a′ is the compiled version of a); (ii) for each 〈ai, ti〉, 〈aj , tj〉
with ai ≺ aj (ai precedes aj) in π, a′

i ≺ a′
j holds in π

exp
L ; and (iii) a sequence,

possibly empty, of SIM actions has to be placed before each action a′
i in π

exp
L

and at the end of π
exp

L with the structure π
exp

L = 〈〈SIM〉 × t1
δ , a′

1, 〈SIM〉 ×
t2−t1

δ , ..., a′
n, 〈SIM〉 × te−tn

δ 〉, where 〈SIM〉 × k represents k repetitions of SIM.
In order to prove that π

exp
L is a valid solution for Π

exp
L , it suffices to show

that, let τ = 〈Hs(T0), ...,Hs(Tm)〉 be the sequence of states associated to each
stp of H, and τ ′ = 〈s0, ..., sm〉 be the sequence of states generated by iteratively
executing π

exp
L , Hs(Ti) and si are equivalent (agree on all values for F ∪X) for

each i ∈ {0, ...,m}. We prove this by induction on τ (τ ′). Note that |τ | = |τ ′|
since for each action in π there is an action in π′, there are no events and for
each temporal transition in H there is a SIM action in π.

The base case (i = 0) is true as Hs(T0) = I and s0 = I. For the induction
step, we assume the statement is true for some i < |τ | and prove it for i + 1 by
examining the two types of transitions that occur between two consecutive stps
in H, i.e., the instantaneous transition (i), caused by the execution of an action,
and temporal transition (ii), caused by the advancement of time by δ.

(i) Let Ti = 〈ti, ni〉 and Ti+1 = 〈ti, ni +1〉 be two stps of H. R2 of Definition
1 implies HA(Ti) = 〈aj〉 
= 〈〉, with j ∈ {1, ..., n}. As πt is a valid solution for Π,
we know Hs(Ti) |= pre(aj), therefore, by the inductive hypothesis, si |= pre(a′

j).
Since aj and a′

j represent the same action, it is easy to see that the outcomes of
the transitions γ(Hs(Ti), aj) and γ(si, a

′
j) are equivalent.

(ii) Let i be an index such that Ti = 〈ti, ni〉 and Ti+1 = 〈ti+δ, 0〉 are two stps
of H. Note that SIM features a set of conditional effects that individually affect a
single numeric variable. Since the semantics of conditional effects prescribes that
these are evaluated in parallel, we can restrict the proof to only a single numeric
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variable and then generalise the result for the remaining ones. Let x ∈ X such
that E(x) 
= ∅. Given EP (x), i.e., the set of processes possibly affecting x, the
action SIM features a conditional effect for each possible local context relevant to
x, i.e., for each Cx ∈ P+(EP (x))). By definition of contpre(·, ·), each conditional
effect is mutually exclusive with the others and at most one of them is activated;
in particular, the local context active in si is C′

x = {ρ ∈ EP (x) | si |= pre(ρ)}.
We can rephrase SIM as SIMj by removing the conditional effects that are not
triggered in si, that is: SIMj = 〈�, {〈inc, x,

∑
〈ξ,ρ〉∈E(x),

ρ∈C′
x

Δ(ξ, δ)〉}, ...〉.
By the inductive hypothesis we know that si = Hs(Ti) and then the local con-

texts induced in si and Hs(Ti) are equivalent, i.e., Cx = {ρ ∈ EP (x) | Hs(Ti) |=
pre(ρ)} = C′

x. By these considerations, it is easy to see that SIMj applied to
si produces the same effect as those produced by R4 of Definition 1 applied to
Hs(Ti) w.r.t. x. For the remaining variables x ∈ X such that EP (x) = ∅, note
that these are left untouched by SIM. Then, we conclude that si+1 = Hs(Ti+1).

(⇐) Let π
exp

L = 〈〈SIM〉 × t1
δ , a′

1, 〈SIM〉 × t2−t1
δ , ..., a′

n, 〈SIM〉 × te−tn
δ 〉 be a

plan solving Π
exp

L structured alternately with an agent’s action and a sequence
(possibly empty) of SIM actions. A valid pddl+ plan πt = 〈π, te〉 can be con-
structed as follows: (i) for each action a′

i in π
exp

L such that a′
i 
= SIM, 〈ai, ti〉 is

included in π where ti is equal to δ multiplied by the number of occurrences
of SIM in π

exp
L before a′

i; (ii) for each a′
i, a

′
j such that a′

i ≺ a′
j in π

exp
L ,

〈ai, ti〉 ≺ 〈aj , tj〉 holds in π; and (iii) te is equal δ multiplied by the number
of SIM in π

exp
L .

To demonstrate the validity of πt thus obtained, we consider its discrete
projection H. Every action 〈aj , tj〉 in π is paired with an stp Ti such that
HA(Ti) = 〈aj〉, with i ∈ {0, ...,m}, which implies an stp Ti+1 = 〈ti, ni + 1〉
and Hs(Ti+1) = γ(Hs(Ti), aj). Between each pair of consecutive actions 〈aj , tj〉
and 〈aj+1, tj+1〉, there are k stps associated with temporal transitions, where
k = tj+1−tj

δ . The number of such stps equates to the number of SIM actions
between a′

j and a′
j+1. After constructing H, we generate τ and, since π

exp
L is

valid for Π
exp

L , proceed by induction over τ and τ ′ similarly to the opposite
direction. ��

5 Properties

In this section, we study the properties of the presented and existing translations
to provide a means for theoretically comparing them.

We evaluate all the schemata in terms of the size of the translated numeric
task, and the structure of the induced search space. More precisely, given a
pddl+ task Π, we define Nmax = max

x∈X
|E(x)| and Ntot =

∑
x∈X

|E(x)|. Ntot is the

overall number of cnes of Π, while Nmax is the maximum number of cnes that
could affect a single numeric variable.

Let Π be an event-free pddl+ problem and let Z ∈ {exp,poly,poly−,
exp

L}, we denote with ΠZ = 〈FZ ,XZ , IZ , GZ , AZ〉 the numeric task obtained
using Z.
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For all Z ∈ {exp,poly−,expL}, Z generates a numeric task ΠZ in which
|AZ | = |A| + 1, |FZ | = |F | and |XZ | = |X|. This is due to the fact that these
schemata add a single action, i.e., SIM , and do not add any new variable.

poly adds an action for each cne of Π, and two actions to initialise and
close the simulation; therefore |Apoly| = |A| + Ntot + 2. Then, poly only adds
predicates pause and done. Therefore, |Fpoly| = |F | + |D| + 1 = |F | + Ntot + 1
with D being the set of done predicates. Finally, to ensure that the simulation
sequence 〈start, seq(AP ), end〉 produces an outcome consistent with the pddl+

semantics, poly doubles the numeric variables; therefore |Xpoly| = 2 · |X|.
To have a clearer picture of the actual size of the problem, we also consider

the number of conditional effects of ΠZ , denoted by |WZ |.
poly associates a conditional effect to each a ∈ AP , which in turn is associ-

ated with a single cne of Π. Hence, |Wpoly| =
∑

x∈X

|E(x)| = Ntot. On the other

hand, poly− associates a conditional effect for each process. These conditional
effects are part of the effects of the SIM action, thus |W

poly
− | = |P |.

exp generates a conditional effect for each possible global context C ∈ P+(P ),
resulting in |Wexp| = 2|P |−1. For expL, a set of conditional effects for each x ∈ X
is added to the effects of the SIM action. The size of each set is equal to the
number of local contexts related to x. Hence, |W

exp
L | =

∑
x∈X

2|E(x)| − 1.

Note that exp
L can generate up to 2|P | − 1 whenever at least one variable

is affected by all processes. Yet, as we will see in the experimental section, we
have observed that this is quite a rare situation, i.e., we often observe that
2Nmax � 2|P |.

Table 1 provides an overview of the main theoretical properties of the trans-
lations and gives an intuition on the size of the translated planning tasks.

Table 1. Properties of soundness and completeness and size of the numeric translated
tasks obtained through Z ∈ {poly, exp, poly−, expL} for a event-free pddl+ task Π.

poly exp poly
−

exp
L

soundness � � � �
Lemma 2 (⇐) Lemma 1 (⇐) Prop. 1 in [17] Thm 1 (⇐)

in [19] in [19]

completeness � � ✗ in the general case �
Lemma 2 (⇒) Lemma 1 (⇒) Prop. 2 in [17] Thm 1 (⇒)

in [19] in [19] � if Π is 1-lhs

Prop. 3 in [17]

|FZ | |F | + Ntot + 1 |F | |F | |F |
|XZ | 2 · |X| |X| |X| |X|
|AZ | |A| + Ntot + 2 |A| + 1 |A| + 1 |A| + 1

|WZ | Ntot 2|P | − 1 |P | O(2Nmax)
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6 Experimental Analysis

To corroborate the above theoretical considerations from an empirical standpoint
we tested our translations with Enhsp20 [23], an automated planning system
that allows solving numeric planning tasks with non-linear dynamics. We con-
sider two optimal search settings: hblind and hmax. We focus on optimal search
because it is more systematic and can crisply shed some light on the relative
usefulness of the translations. We compare the performance over the translated
numeric problems obtained with exp, poly, poly− and exp

L used with δ = 1
followed by the (unchanged) translation that handles events (whose documenta-
tion is provided in [19]). All experiments were run on an Intel Xeon Gold 6140M
CPU with 2.30 GHz. For each instance, we allotted 1800 seconds and limited
memory to 8 GB. We consider the following linear domains: Solar-Rover

(Rover), Linear-Car (Lin-Car), Linear-Generator (Lin-Gen), Urban-

Traffic-Control (UTC) from [25], Baxter from [3] and Overtaking-Car

(OT-Car). We also include two non-linear domains: Descent and HVAC. The
benchmark suite and the translator are available at https://bit.ly/30gMyNW.
Out of the considered benchmark domains, 4 satisfy the 1-lhs property: Rover,
Lin-Car, OT-Car and HVAC. The remaining domains, i.e. Lin-Gen, UTC,
Baxter and Descent, do not satisfy the mentioned property. The obtained
plans were validated using the methodology described in [18].

Table 2 reports on the performance of the optimal search with all the possible
translations when the two heuristics are used. UTC has been omitted because
none of the approaches manages to solve any instance. It is easy to notice that
(i) expL is preferable for both heuristics in terms of coverage, and (ii) poly, due
to the numerous transitions required to make time flow, is penalised compared
to all other approaches. Indeed, all approaches except poly allow a significant
coverage increase when hmax is used in place of hblind. It can also be noted
that in all the 1-lhs domains the performance in terms of expanded nodes is
substantially equivalent among poly

−, exp and exp
L.

Considering hmax, exp performs well in terms of coverage in almost all the
domains because they all have on average few processes, except for Baxter,
which has an average of 56. Indeed, exp does not solve any instance on this
domain. expL manages to handle this domain quite well. Baxter has in fact
the following structure: μ(Nmax) = 9, min(Nmax) = 6 and max(Nmax) = 12.
Notably, poly− allows achieving good coverage performance when hmax is used.
Except for Descent, where no instance is solved, the incompleteness of the
translation did not turn out to be a problem in terms of solvability.

The results seem to support the theoretical considerations. In domains char-
acterised by few processes, SIM -based methods are preferable to poly and are
roughly equivalent. Conversely, when the pddl+ tasks include numerous pro-
cesses, as in Baxter, exp becomes infeasible while exp

L allows delivering the
best performance. Finally, the incompleteness of poly−, although often advan-
tageous in terms of speedup, may lead to cases wrongly detected as unsolvable.

https://bit.ly/30gMyNW
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Table 2. Performance achieved by hblind (upper) hmax (lower) when run on models
generated using the compared translations with δ = 1. Results are presented in terms
of coverage (number of solved instances), average runtime, and average number of
nodes expanded during the search process. Averages are calculated on instances solved
by all approaches. “—” indicates that no instances can be considered for the average
calculation. ✗ denotes domain models that do not satisfy the 1-lhs property.

hblind Coverage Time Exp. Nodes (× 1000)

Domain poly poly
−

exp exp
L

poly poly
−

exp exp
L

poly poly
−

exp exp
L

Rover (20) 1 1 1 1 61.2 20.3 33.7 21.1 12012.8 3622.3 3622.3 3630.7

Lin-Car (10) 10 10 10 10 3.3 3.0 2.9 2.7 199.9 27.1 27.1 27.1

Lin-Gen (10) ✗ 1 1 1 1 3.1 3.2 3.3 2.7 83.9 24.7 22.7 23.7

Baxter (20) ✗ 4 7 0 6 51.3 9.2 — 10.4 1294.4 122.7 — 177.6

OT-Car (20) 5 5 5 5 16.8 3.7 4.6 5.9 2643.7 252.3 252.3 252.3

Descent (20) ✗ 2 0 3 3 19.6 — 8.5 9.6 443.6 — 134.1 166.0

HVAC (20) 0 0 0 0 — — — — — — — —

Σ 23 24 20 26

hmax Coverage Time Exp. Nodes (× 1000)

Domain poly poly
−

exp exp
L

poly poly
−

exp exp
L

poly poly
−

exp exp
L

Rover (20) 1 1 1 1 121.8 28.7 54.1 24.9 11898.0 3512.7 3512.7 3518.8

Lin-Car (10) 10 10 10 10 3.2 2.9 3.3 3.1 39.2 25.1 27.1 25.1

Lin-Gen (10) ✗ 1 2 2 3 3.5 2.7 2.6 2.6 83.9 5.0 2.0 2.0

Baxter (20) ✗ 4 7 0 7 44.8 6.5 — 11.6 1041.4 68.2 — 161.4

OT-Car (20) 5 5 5 5 16.2 5.2 5.5 5.5 1270.7 277.6 277.6 277.6

Descent (20) ✗ 2 0 3 3 13.6 — 8.7 9.2 246.2 — 112.1 152.8

HVAC (20) 0 16 16 16 — 3.5 3.5 3.5 — 6.9 6.9 6.9

Σ 23 41 37 45

7 Conclusion

In this paper, we have investigated a range of translations from discrete hybrid
planning to numeric planning. Our objective was to enhance our understanding
of their characteristics and provide a basis for comparing not only the existing
translations but also potential future ones. The analysis performed guided us
to design a new translation, named exp

L. exp
L shares the benefits of both

exp and poly
−. However, unlike exp, which exhibits exponential behaviour

w.r.t. |P | regardless of the problem’s structure, expL generates numeric tasks
that show exponential behaviour w.r.t. a constant of the problem, i.e., Nmax.
The worst-case scenario for exp

L in practical domains arises when all processes
affect all numeric variables, but this scenario is rare. Generally, it is likely that
Nmax � Ntot holds when P is large. It follows that, statistically, exp

L will
generate more feasible problems than its structure-insensitive exp counterpart.
However, in some contexts, Nmax could be very large and exp

L may still be
infeasible. We see two main avenues for future work. Firstly, we are interested
in exploring the online selection of a translation to be used according to the
structure of the problem considered, in a similar fashion to algorithms selection
approaches [15]. Secondly, we plan to investigate the possibility of automatically
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combining different translations on the same problem, to further mitigate the
weaknesses of existing translations.
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Abstract. This paper proposes a new open-ended learning framework
which aims at implementing an autonomous agent using intrinsic moti-
vations (IM) at two different levels.

At the first level, the IM paradigm is exploited by the agent to
learn new operational skills, described in terms of sub-symbolic options.
After discovering the options, the agent iteratively: (1) executes them
to explore the world, collecting the necessary data and (2) automati-
cally abstracts the collected data into a high-level representation of the
domain, expressed in PPDDL language.

At the second level, the IM paradigm is used to exploit the abstracted
representation of the domain by identifying particular symbolic states
deemed promising according to a specific criterium, which in the present
work is the farthest distance covered by the agent (i.e., the most promis-
ing states are those that rest at the frontier of the visited space). Once
these states are identified, they can be successively reached through an
internally generated high-level plan and used as promising starting points
for discovering new knowledge.

The presented framework is tested in the so-called Treasure Game
domain described in the recent literature. The tests we have performed
show that the proposed idea of implementing intrinsic motivations at two
different levels of abstraction facilitates the discovery of new knowledge,
compared to a previous approach proposed in the literature.

Keywords: Intrinsic Motivations · Open-ended learning · Planning

1 Introduction

Reinforcement Learning (RL, [37]) demonstrated to be an important method
to make agents autonomously learn complex behaviours and solve a wide range
of tasks. In the last decades, it has been extensively proved that temporally-
extended actions [38], also called options, are a good abstraction for flexible
duration behaviours which can speed up the learning of different tasks in both
simulated and real environments [14,20].
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While “standard” RL focuses on the acquisition of policies that maximise
the achievement of assigned tasks (through reward maximisation), the field of
intrinsically motivated open-ended learning (IMOL, [33]) tackles the problem
of developing agents whose aim is to improve their capabilities to interact with
the environment, without any specific assigned task. More precisely, Intrinsic
Motivations (IMs, [1,24]) are a class of self-generated signals that have been used
to provide robots with an autonomous guidance for several different processes,
from state-and-action space exploration [3,12], to the autonomous discovery,
selection and learning of multiple goals [5,8,32]. In general, IMs guide the agent
in the acquisition of new knowledge independently (or even in the absence) of any
assigned task: this knowledge will then be available to the system to solve user-
assigned tasks [35] or as a scaffolding to acquire new knowledge in a cumulative
fashion [11,29,36] (similarly to what has been called curriculum learning [4]).

The option framework has been combined to IMs and “curiosity-driven”
approaches to drive option learning [36] and option discovery [19,23]. In the hier-
archical RL [2] setting, where agents need to chunk together different options to
properly achieve complex tasks, IMs have been used to foster sub-task discovery
[15,22] and the exploration of the environment [3]. Autonomously learning and
combining different skills is a crucial problem for agents acting in complex envi-
ronments, where task solving consists of reaching several (possibly unknown)
intermediate sub-tasks that are dependent on each other. An increasing number
of works are tackling this problem using different approaches [5,25,28], most of
them focused on low-level, sub-symbolic policy learning, in turn combined in
a hierarchical manner using some sort of meta-policy. While promising, these
approaches necessarily face the problem of exploration, which, as the space of
states and actions increase, becomes slower and less efficient.

As opposed to the previous sub-symbolic methods, symbolic approaches and
planning [21] allow the utilization of higher-level objects (symbols, indeed) that
guarantee faster execution and facilitate the combination of complex sub-task
sequences, provided that the high-level representation of the planning domain is
properly given in advance. The need to be provided with an ad-hoc symbolic rep-
resentation of the environment limits the utilization of high-level planning for
artificial agents in unknown or highly unstructured settings, where the acqui-
sition of new knowledge and new skills is a progressive result of the agent’s
autonomous exploration of the environment. Recently, some ideas have appeared
in the literature that propose methodologies for the online learning of how to
properly ground a provided abstract planning domain expressed in PDDL for-
malism [13], in the environment in which the agent operates [7,17,18]. Differently
from the previous works, [16] proposes a methodology for creating from scratch
a PDDL-based symbolic abstraction of the information acquired by an exploring
agent at low level, which allows to explicitly describe all the context necessary
to execute an action on the current state making use of the produced PDDL
symbols.

From all of the above, and inspired by [16], in this paper we devise an arti-
ficial agent that, virtually starting with no previous knowledge, is capable of:
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(i) autonomously acquiring new information and learning new skills at low-level,
through the direct interaction with the environment guided by intrinsic motiva-
tions (e.g., curiosity), (ii) exploring the environment and collecting knowledge
about the transitions between the visited states, (iii) triggering a knowledge
abstraction process, thus autonomously creating a symbolic representation of
the environmentexpressed in PPDDL [39] formalism, (iv) utilizing this represen-
tation to autonomously reach new objectives (i.e., high-level goals) selected on
the basis of a different declination of the intrinsic motivations, ultimately maxi-
mizing the environment exploration capabilities and accelerating the knowledge
acquisition process.

The simulated environment used in this work to test the agent’s capabilities
is the so-called Treasure Game (see Fig. 1), originally presented in [16], in which
the agent’s overall objective is to find a treasure and take it to the the starting
location on top of the maze.

Fig. 1. The Treasure Game environment: a maze-like environment 672× 624 pixels
divided in 182 blocks, 13 rows by 14 columns.

In such environment, an agent can explore a maze-like space by moving
through corridors and doors, climbing stairs, interacting with handles (neces-
sary to open/close the doors), bolts, keys (necessary to unlock the bolts) and a
treasure. The agent starts its activity from the ladder on top of the maze (home
location) and its overall task is to find the treasure and to bring it back to the
starting location. In all our experiments, described in Sect. 4, the agent starts
endowed with no previous knowledge about the possible actions that can be exe-
cuted in the environment; the agent is only aware of the basic motion primitives
at its disposal A = {go up, go down, go left, go right, interact}, respectively
used to move the agent up, down, left or right by 2–4 pixels (the exact value
is randomly selected with a uniform distribution) and to interact with the clos-
est object. The interaction with a lever changes the state (open/close) of the
doors associated to that lever (both on the same floor or on different floors),
the interaction with the key and/or the treasure simply collects the key and/or
the treasure inside the agent’s bag, while the interaction with a bolt opens the
treasure’s room provided that the agent owns the key ; otherwise it has no effect.
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The paper is structured as follows: Sect. 2 provides some background infor-
mation on both the option-based and the abstract representation of the informa-
tion used in this paper, Sect. 3 provides a thorough description of the presented
framework, Sect. 4 presents a preliminary analysis of the obtained results and
performance of the framework, and Sect. 5 provides some concluding remarks.

2 Background

The model of the environment follows the Markov Decision Process (MDP) for-
malism described by the tuple (S,A,R, T, γ) where: (i) S is the set of all possi-
ble states in high-dimensional space, (ii) A the set of all the possible primitive
actions, (iii) R the reward function return a scalar value after executing an
action a ∈ A from the state s ∈ S resulting in s′ ∈ S, the transition function
T (s′|s, a) describing the distribution over the states in which the agent can be
after executing a from s, γ a discount factor. In order to deal with the com-
plexity of the space, primitives are combined to create more complex behaviors
called options [38]. Options are temporally-extended actions which are defined
by a tuple (Io, π,Bo), where Io is the set of states where the option o ∈ O can
start, π is the option policy to be executed and Bo is the termination condition
of the policy π. Passing from primitives to options, results in moving from MDP
to semi-Markov Decision Process (SMDP) framework.

High-level planning uses symbols to describe the state of the environment. In
particular, in set theoretic representation a set of propositions P = {p0, ..., pn}
is used to define the feature of the environment. When a proposition pi has the
boolean value True means that the characteristic described by pi is present in
the environment, False otherwise. Then, each action ai ∈ A is defined by the
tuple (preci, eff+

i , eff−
i ) where preci ⊆ P are the propositions which have to

be True to execute the action ai, eff+
i ⊆ P the propositions True after the

execution of ai and eff−
i ⊆ P the propositions False after the execution of ai.

Recently, it has been proved that the experience collected executing options can
be translated into such symbolic representation [16]. The solution proposed in
literature it is used in the framework described in this article to provide the
agent a way to represent its goals, generated by its IMs, and chase them.

3 Framework Description

In this paper we propose a framework that, by leveraging IMs, allows to inter-
leave the exploration, abstraction and planning phases with the ultimate goal
of efficiently exploring the environment (see Fig. 2), starting from virtually no
previous knowledge and/or capabilities, with the only exception of a number
of basic movements/interaction primitives, as described in the remainder of the
paper.

Basically, the framework is based on the utilization of the intrinsic moti-
vations as the basis for the exploratory behaviour of the agent, declined at
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Fig. 2. The idea of the framework. Four modules: (i) option discovery, finding new
options, (ii) exploration, using the learned options to collect data in the environment,
(iii) abstraction, converting the collected data into a high-level representation and (iv)
planning, to reach any sub-goal which can be described.

two different levels of abstraction, namely at the Option Discovery (i.e., pre-
abstraction) level and at the Planning (post-abstraction) level. The overall result
is the introduction of an exploration paradigm that allows the agent to use
curiosity to steer both the option discovery phase and the high-level goal syn-
thesis phase. What we also intend to demonstrate is that the agent’s ability to
abstract the acquired sub-symbolic information into a symbolic representation
that lends itself to being efficiently reasoned upon, remarkably facilitates the
environment’s exploration by allowing rational decision-making as opposed to a
purely randomic approach.

We begin the system’s description by analyzing Algorithm 1, matching the
execution loop depicted in Fig. 2. Such execution loop is intended to implement
the agent’s life-cycle for a determined number of cycles (line 7); in each cycle,
the agent’s overall objective is to pursuing the acquisition of new knowledge
through a direct interaction with the environment.

Once the necessary initialization steps are performed (lines 2–6) the execution
loop starts (line 9). At the beginning of the loop, the Option Discovery step is
performed (line 8), in which the agent learns a set O of structured skills (i.e., the
options) starting from a set of elementary motion and/or interaction primitives.
The new options Onew are added to the previously collected options O, which
will be available during the exploration phase. This step will be more thoroughly
described in Sect. 3.1, as it represents the procedure where the IMs are used to
drive the option learning mechanism at a lower level of abstraction.

Exploration - Data Collection (line 10–12). The agent starts exploring the
environment acquiring knowledge about the feasibility of executing the options
∈ O from the current state, and the knowledge about the state transitions trig-
gered by executing such options, through the Collect Data() procedure. The
exploration consists in executing dpa eps episodes, where each episode is com-
posed of a number of steps equal to dpa steps. At each step, an option o ∈ O
is randomly selected and its execution is attempted from the state s the agent
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Algorithm 1. Discover-Plan-Act algorithm
1: procedure DISCOVER PLAN ACT(cycles, dpa eps, dpa steps, d eps, d steps)
2: c ← 0 //Cycle initialization
3: O ← {} //Option set initialization
4: ID ← {} //Initiation Data initialization
5: TD ← {} //Transition Data initialization

6: ωEX ← {} //Initially, the high-level plan is empty
7: while c < cycles do //For each cycle

8: O new ← DISCOV ER(d eps, d steps, ωEX) //Learning the available options
9: O ← O ∪ O new
10: IDnew, TDnew ← Collect Data(dpa eps, dpa steps, O, ωEX)
11: ID ← ID ∪ IDnew

12: TD ← TD ∪ TDnew

13: D ← Create PPDDL(ID, TD)
14: starget ← Get Target State()
15: Ptarget ← Generate PPDDL Problem(starget)

16: ωEX ← Plan(D, Ptarget)
17: Check PPDDL V alidity(D)
18: c ← c + 1

is currently in (the scenario is reset to the initial state at the beginning of each
episode, which brings back the agent in its “home” location). Every time an
option o is executed from the state s, two data tuples are saved in the new data
repository, the initiation data tuple and the transition data tuple. The initiation
data tuple takes the following structure (s, o, f(s, o)), where the function f(s, o)
returns the feasibility of executing o from s (True if s ∈ Io and False other-
wise). The transition data tuple takes the following structure (s, o, r, s′, g,m,O′)
tuples, where s′ is the state reached after executing option o from the state s, g is
a flag saying if the final objective of the game has been reached, m is the mask1

of the option and O′ is a list defining the options that can be feasibly executed
from s′. When all the steps of the episode have been executed, the environment
is reset and the next episode is started until the maximum number of episodes is
reached, in which case the Collect Data() procedure terminates, and the stored
data are added to the overall data repository data (line 11–12).

As will be better clarified in the remainder on the paper, a very important
role for the exploration process is played by the plan ωEX produced by the
planner, used as an input parameter of the Collect Data() procedure. In case
ωEX is not empty (i.e., it has length δ(ωEX) > 0) it will be used to guide the
agent towards a specific goal state before the exploration commences, as follows;
each episode will first execute the plan starting from the “home” location, hence
setting the environment in some desired state starget, and then the exploration
will proceed from starget. Conversely, if ωEX = {}, each episode will perform
n = dpa steps option executions, each starting from the “home” location.

Data Abstraction (line 13). The data collected in the previous step is then
used as input for the function Create PPDDL(), which returns a symbolic
representation of the agent’s current knowledge expressed in PPDDL formalism
(PPDDL domain). The main advantage of the obtained PPDDL representation is
that it makes explicit the causal correlations between operators that would have

1 The mask is the list of state variables changed by a specific option [16].
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remained implicit at option level. A thorough description of the data abstrac-
tion algorithm is beyond the scope of this paper; for further details, the reader
is referred to [16]. In the following, we provide a summary description of the
abstraction procedure.

The procedure basically executes the following five steps:

1. Option partition: this step is dedicated to partitioning the learned options
in terms of abstract subgoal options. This operation is necessary as the
(P)PDDL operators are characterized by a single precondition set and a sin-
gle effect set; therefore, options that have multiple termination conditions
starting from the same initiation set cannot be correctly captured in terms of
(P)PDDL operators. As a consequence, before launching the abstraction pro-
cedure it is necessary to generate a set of options each of which is guaranteed
to produce a single effect (partial subgoal option). This operation utilizes the
transition data set collected before, as they capture the information about the
domain segment the option modifies. Option partition is ultimately obtained
by properly clustering the transition data through the DBSCAN algorithm
[10] present in the scikit-learn toolkit [27].

2. Precondition estimation: this step is dedicated to learning the symbols
that will constitute the preconditions of the PPDDL operators associated to
all the options. This operation utilizes the initiation data set collected, and is
performed utilizing the support vector machine [9] classifier implementation
in scikit-learn.

3. Effect estimation: analogously, this step is dedicated to learning the sym-
bols that will constitute the effects of the PPDDL operators. The effect dis-
tribution was modelled through the Kernel density estimation [26,30].

4. PPDDL Domain synthesis: finally, this step is dedicated to the synthesis
of the PPDDL domain, characterized by the complete definition of all the
operators associated to the learned options, in terms of preconditions and
effect symbols.

As described in the previous section, the produced PPDDL domain can be used
to potentially reach any subgoal that can be expressed in terms of the available
generated symbols at any point during the Discovery-Plan-Act (DPA) loop. One
interesting aspect of the proposed DPA framework is that the semantic precision
of the abstract representation increases as the DPA cycles proceed, as will be
described in the experimental section.

Planning (lines 14–16). Mapping the Planning module of Fig. 2 onto the Algo-
rithm 1 breaks down into three different steps: 1) selecting one promising state
from which to continue the exploration of the environment in the next cycle, 2)
translating the selected state in terms of a PPDDL goal, and finally 3) launching
the planner to reach such goal.

Target State Selection (line 14). After the exploration, one of the most
promising states starget is returned by the Get Target State() function. As pre-
viously said, starget will be the on the border of its synthesized knowledge, and
therefore the state the new exploration cycle will start from. This strategy is
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called Distance-based Goal Babbling in the rest of the paper. Obviously, different
and more complex criteria may be devised to identify the most promising states,
hence suggesting different implementations of the agent’s curiosity. Thanks to
the information abstraction process previously finalized, the agent is now able
to rationally reach that state by planning on the currently obtained PPDDL
domain.

Target problem generation (line 15). In this step of the algorithm, the state
starget has to be converted in symbols, needed to define a high-level planning
problem. The function Generate PPDDL Problem() is in charge of creating the
problem description in PPDDL. In order to find the symbols needed to describe
the starget as a goal, the system finds the combination of symbols which represent
better the goal starget.

Fig. 3. Visualization of three target state examples synthesized by the agent over
different iterations.

Figure 3 shows three examples of target states selected by the agent in differ-
ent iterations, expressed in symbolic form. In iteration 1 (a) the agent is inter-
ested in opening the door on the 1st floor, remaining somewhere in column 9 of
the environment, in iteration 7 (b) the agent wants to move somewhere towards
the right side of the environment, and in iteration 11 (c) the agent wants to be
on the second floor, owning the key.

Plan generation (line 16). Taking into consideration D and Ptarget, respctively
generated in line 13 and 15 of the Algorithm 1, it is generated the plan ωEX to
reach starget in the successive cycle of the loop to facilitate the exploration.

3.1 Option Discovery

As anticipated at the beginning of Sect. 3, the agent starts exploring the envi-
ronment by randomly executing a number of basic motion primitives, trying to
learn the necessary skills that will allow it to explore the same environment more
efficiently, through the Discover() procedure at line 8 of Algorithm 1.
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Algorithm 2. Option Discovery
1: procedure OPTION DISCOVERY(d eps, d steps, ωEX)
2: Onew ← {}
3: ep ← 0
4: while ep < d eps do //For each episode
5: T ← 0
6: Reset Game()

7: for option inωEX do // Execute IM plan
8: Execute(option)

9: while T < d steps do //For each step
10: s ← Get State()
11: ap ← Get Available Primitive()
12: while Is Available(ap) and not (New Available Prim()) do
13: Execute(ap)
14: s′ ← Get State()

15: if s �= s′ then
16: if New Available Prim() then
17: at ← Get New Available Prim()
18: o ← Create New Option(ap, at)
19: else
20: o ← Create New Option(ap, {})
21: Onew ← Onew ∪ o

22: T ← T + 1 //End For each step

23: ep ← ep + 1 //End For each episode

24: return Onew

In this section, we will analyze the Discover() procedure in greater details
with the help of the pseudocode depicted in Algorithm 2. By executing the
algorithm, the agent is able to discover a set of options O from scratch; these
options are generated by repeatedly executing a certain primitive a among the
available ones, and collecting the produced changes in the environment.

In more details, the agent creates new options considering a particular defi-
nition of option o(ap, at, I, π, β) where ap is the primitive used by the execution
of π, at is the primitive which stops the execution of π when becomes available,
π is the policy applied by the option, consisting in repeatedly executing ap until
at is available or ap can no longer be executed, I is the set of states from which
ap can run; β is the termination condition of the action, corresponding to the
availability of the primitive at or to the impossibility of further executing ap.
For the sake of simplicity, the option’s definition will follow the more compact
syntax o(ap, at) in the remainder of the paper.

Algorithm 2 describes the option discovery procedure previously cited. For
a maximum number of episodes and steps, the agent save the current state s
and randomly selects a primitive ap which can be executed in s (line 9-11). ap

is repeatedly executed until state s′ where ap is not available or new primitives
becomes available. If s �= s′, the procedure creates a new option o(ap, at) whether
a new option at has been enabled, or o(ap, {}) if there are not new primitives
enabled. For example, given the Treasure Game domain of Fig. 1, let us suppose
that ap = go right and the agent is on a floor where the path at the agent’s
right is free until reaching the wall (i.e., there is no object to interact with or
stairs to climb). In this case, the option o(go right, {}) is generated. Conversely,
if ap = go left and the agent is on a floor where the path at the agent’s left
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leads to a key it can interact with, then the option o(go left, interact) is gen-
erated. In either case, o is added to the set of collected options if it has not been
discovered before. It is important to note that the options are independent on
the state where the agent is, but it is defined by the primitives’ availability. This
definition makes options reusable in different floors and with different objects,
just depending on the agent’s abilities.

4 Experimental Analysis

This section describes the behaviour of our system in the Treasure Game sim-
ulated environment depicted in Fig. 1. As described in Algorithm 1, our exper-
imental setting is for the agent to discover a set of options from scratch (Algo-
rithm 2) and iteratively use them to collect data from the environment, generate
a PPDDL representation, and plan to move towards particularly promising states
expressed as symbolic goals synthesized according to some criteria that encode
the intrinsic motivations at high level. In particular, the agent will be mostly
interested at those states that are the farthest from its starting location, as they
are the current frontier of the explored environment and thus represent good
states from which to reprise the exploration. The selected PPDDL planner to
perform the planning process is Mgpt [6]. In the following sections, the approach
implemented by Algorithm 1 will be referred to as Distance-based Goal Babbling
(DB), to distinguish it from: (i) Action Babbling (AB), in which the IMs are
only used to discover the initial set of options and no abstract representation of
the environment is used to guide the exploration, and (ii) Goal Babbling (GB),
in which the IMs are only used to discover the initial set of options and the
exploration is guided by random abstract goals.

Generated Options. All the strategies execute Algorithm 2 to collect some
options exploiting the agent’s primitives at the beginning of each iteration. In the
Treasure Game environment selected for this work, the agent executes d eps = 1
episodes each composed of d steps = 200 primitive actions. The result is the
following set of learned options (11 in total) expressed as primitives pairs (ap, at),
as described in Sect. 3.1:

O = {(go_up,{}), (go_down,{}), (go_left,{}), (go_left,go_up), (go_left,

go_down), (go_left,interact), (go_right,{}), (go_right,go_up),

(go_right,go_down), (go_right,interact), (interact,{})}

For example, the option (go left, go up) has the following meaning: “keep going
left until it is possible to go up”. It is important to note that in general, the dis-
covered options are not all the possible options but only the ones experienced by
the agent during the exploration. This procedure is incremental, adding options
to the set O each iteration of the Algorithm 1.

Exploration. After the options are generated, the data collection is performed;
in our experimental setting, dpa eps = 4 episodes are executed each composed of
dpa steps = 800 option runs, at each main cycle. Consequently, at each cycle the
agent executes 800 options. If at the beginning of the cycle ωEX �= {}, at each
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episode the agent will first execute the δ planned options (where δ is the plan’s
length), and then it will execute the remaining dpa steps − δ options randomly.
Successively, the accumulated data on the previous step are translated into a
PPDDL representation; this is a very important step, as it is where the causal
correlations between options are made explicit. Relatively to this aspect, it is
very interesting to observe that the symbolic abstraction process also follows an
iterative refinement path; initially, the agent abstracts the concepts which are
easier to be experienced (i.e. the positions of the levers, position of the agent in
the higher floors, etc.) and their correlated operators, while the concepts that
require a deeper exploration of the environment (e.g., “bolt unlocked” and “got
treasure”) are abstracted later.

High-Level Exploration Strategies. As previously stated, the main differ-
ence between the exploration strategies lies in the different target state selection
method. More precisely, AB is the simplest strategy consisting of a pure ran-
dom walking of the agent. In fact, according to lines 14–16 in Algorithm 1, if
starget = NULL, then no plan is generated and executed in the next exploration.
Instead, both Goal Babbling and Distance-based Goal Babbling select a starget

to be reached through planning, choosing a random state and the most distant
state from “home”, respectively.

Result Analysis. The most interesting results that we have obtained in our
experiments are shown in Fig. 4. The figure depicts two fundamental aspects of
the system such as the plan generation (Fig. 4a) and success rate (Fig. 4b) across
the iterations of Algorithm 1 for all the strategies.

Figure 4a shows on the y-axis the length of the plan generated by all the
strategies for each cycle in a specific trial. The red dotted line represents the
length of the optimal plan to solve the game and the circles on the plot the
successful plans. Of course, no plan whose length is shorter than the optimal
plan’s can be successful; similarly, plans whose length is bigger than the optimal
one are not necessarily valid plans. This occurs because of the stochasticity of
the abstraction process which can produce noisy domain representations, thus
leading to plans that do not reach the desired goal.

In the case depicted in the figure, only the DB strategy finds valid plans
(in the cycles 11, 12, 13, 15) focusing on the last cycles, after collecting enough
data. Figure 4b depicts a cumulative representation, showing the success rate
of ten trials over 15 iterations. As anticipated by Fig. 4a, DB strategy reveals
particularly effective on solving the problem, reaching 90% of success rate at
cycle 15, while GB and AB stop, respectively, at 30% and 20%.
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Fig. 4. (a) The plan length of different strategies over time for a trial and (b) the
success rate of planning for each cycle.

5 Conclusions and Future Work

In this paper we have described a new open-ended learning framework propos-
ing an innovative approach for using intrinsic motivations (IMs) at two different
levels of abstraction. The presented framework is tested in the so-called Trea-
sure Game [16] and our empirical analysis gives a preliminary evidence that the
proposed idea facilitates the discovery of new knowledge compared to a baseline
approach described in the literature [34].

The proposed framework opens several directions of future research work.
One is the exploration of new strategies for the definition of target promising
states, proposing more complex criteria beyond the visiting frequency. A second
research track could explore the idea of using classical reinforcement learning
algorithms [37] (e.g., SARSA) to drive the process of data collection within
Algorithm 1. Furthermore, since option discovery plays a fundamental role in
our framework, in the future our intention is to study a more flexible approach
to discover new options using more sophisticated sub-symbolic methods (e.g.
neural networks). In general, we observe that the use of an incremental version
of the framework, which extends the set of training/learned data at each cycle,
poses the problem of limiting the size of the stored data in order to bound the
complexity of the learning process. Last but not least, the possibility of using
a different language for abstracting the discovered options. In particular, one
possibility may be to substitute PPDDL with RDDL [31]. The latter is becoming
a more standard choice in the probabilistic planning community and can express
all PPDDL domains (but not vice versa) with some additional features, like
concurrent actions or independent exogenous stochastic events that could be
considered for the future version of our framework.
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Abstract. The research of arguments in student essays has long been
the subject of automatic approaches to argument mining. The task has
been mostly modeled as a sequence tagging problem, where the text is
either analyzed in its entirety or split into smaller homogeneous units,
such as sentences or paragraphs. However, previous research has high-
lighted how the various essay sections may fulfill different functions, and
thereby how the position of specific argument components obeys precise
structural dependency criteria. Based on such underpinning we propose
an approach that exploits such structural information: in this work we
present a hybrid training approach that takes into account the specific
structural components of the essays, in order to be able to mine different
types of argument components at different levels. Our hybrid approach
achieves an improvement over essay-level and paragraph-level training,
in particular in the extraction of some specific argument components.

Keywords: Argument Mining · Argument Component Classification ·
Persuasive essays · Natural Language Processing · Transformers ·
Machine Learning

1 Introduction

Argumentation is a linguistic realization of the human reasoning [15], and is
employed to justify a viewpoint about a controversial issue [35]. One fundamen-
tal problem with the definition and formal description of argumentation and
argumentative paths is that there is no agreement among theorists about a uni-
versal an uniquely accepted theory. As Van Eemeren et al. [13] state in their
recent survey of the field:

As yet, there is no unitary theory of argumentation that encompasses the
logical, dialectical, and rhetorical dimensions of argumentation and is uni-
versally accepted. The current state of the art in argumentation theory is
characterized by the coexistence of a variety of theoretical perspectives and
approaches, which differ considerably from each other in conceptualization,
scope, and theoretical refinement.
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While the lack of theories covering all possible argumentative structures affects
computational applications, where we observe a gap between theoretical and
computational models, a taxonomy of argumentation models has been proposed
addressing three different categories —micro-level models (or monological mod-
els), macro-level models (or dialogical models), and rhetorical models—, intended
to formalize conversations such as discussions, debates, or negotiations by intro-
ducing rules on how arguments interact [7].

Argument Mining (AM) is a specific area of Natural Language Processing
aimed at mining arguments from natural language texts [21]. AM initially started
with the aim at analyzing structured texts in the legal domain, and at a later
time it was extended to more heterogeneous and unstructured sources from the
web. When dealing with well-structured texts, we are in a paradigm called closed-
domain discourse-level AM [33]. This task has been typically arranged into three
main sub tasks [31]:

– Argument Identification, that is, the recognition and localization of arguments
within a text;

– Argument Classification, which is concerned with the categorization of argu-
ments and their argument components;

– Structure Identification, targeted to the reconstruction of the relations con-
necting the arguments.

All such tasks have been extensively studied in AM, and state-of-the-art
approaches adopt supervised learning and transformer-based architectures such
as BERT or LONGFORMER [6,11].

Among the many kinds of structured texts, we single out persuasive essays.
A persuasive (or argumentative) essay is a text written to argue about a con-
troversial topic while following a particular structure. This makes such kind of
texts an excellent playground to test AM tasks [8]. An open issue, in this set-
ting, is whether to treat arguments as a closed (or at least discrete) system with
local fragments of text influenced by an isolated set of considerations, or to con-
sider them as an open system within a broader spectrum of influence [28]. In
analyzing student essays (a class of persuasive essays) this has resulted in con-
sidering a paragraph-level or an essay-level perspective when approaching the
learning phase. In some cases the former perspective turned out to be prefer-
able: for example, analyzing student essays at paragraph-level lead to better AM
performances than essay-level [12], but contrasting evidence is also reported in
literature [20], and there seems to be some intertwining with the model used.

In previous work we reported about differences stemming from learning at
such different levels [10]; more specifically, we showed that, when employing
a BERT-based model, the essay-level approach is preferable in order to deal
with argument identification, whilst the paragraph-level approach is better when
categorizing arguments. This boils down to the conclusion that mining arguments
at a fine-grained level also needs a fine-grained learning approach. But we are
not sure that the difficulty in mining argument components at essay-level does
not actually depend on BERT limitations, in particular on the size of its memory
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window when considering long texts: so we presently employ LONGFORMER as
well, to investigate whether it may be beneficial in overcoming such limitation.

Another point, then, is that the argument classification task is not scale-
independent [37], since different argument components operate at different lev-
els. Even though essay- and paragraph-level are popular partitions, these are
not, in principle, the only ones that can be taken into account. Our hypothesis
is that such approaches are too simplistic, and fail to capture some intrinsic
and relevant structural characteristics of the argumentative essays, and that a
hybrid-level separation during the training phase might be more suited and effi-
cient to classify argument components. We explore such hypothesis by using
both a BERT-based classifier and LONGFORMER-based classifier. Further-
more, using LONGFORMER we also improved the essay-level classification,
which was particularly lacking with respect to the paragraph-level classifica-
tion based on BERT, showing that in this case the two approaches have analo-
gous accuracy. Finally, we implemented two variants of the hybrid-level (called
hybrid+ and hybrid++), covering some shortcoming of the basic approach and
we registered further improvements when testing using LONGFORMER.

These are the main contributions of this paper: i) We report evidence that
employing LONGFORMER leads to better results when training at essay-level,
and show that a larger window may be helpful in mitigating performance differ-
ences compared to performing training at the paragraph-level; ii) We introduce
a novel hybrid-level approach for learning, showing that it is possible to increase
the performance of Argument Classification by mining the argument compo-
nents at different levels; iii) Finally, we show that there exists a different model
dependency among the three learning approaches and that not only the hybrid
one is better, but it also reduces model dependency.

The paper is structured as follows: in Sect. 2 we survey related work that
precedes and inspires our research. Section 3 provides more details on the Argu-
ment Classification task. In Sect. 4 we present our result and discuss them along
with their implications. Section 5 contains conclusions and an outlook on future
work.

2 Related Work

This paper mainly lays its foundations in the AM research. AM on structured
texts has a long history: among the different application domains we mention
news articles [5], scientific articles [1], legal documents [21], healthcare [17] and
student essays [31]. Most relevant to our work are those approaches that focus
on the classification of argument components in natural language texts. The
first approach to identify the argument microstructure were carried out by [21].
They chose the simplest definition of argument as “a set of propositions, being
all of them premises, except maximum one, which is a conclusion”. So they used
premises and conclusions as argumentative units. Research has continued unin-
terrupted, also with the help of the advances in machine learning and deep neural
architectures: former approaches focused on feature-based models [23,24], but
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with the advances in machine learning and deep neural network techniques, new
approaches were proposed using contextualised word embeddings [29] and adopt-
ing the transformers architecture [17] that alleviate the burden of developing ad
hoc feature selection steps.

In our research we used the Argument Annotated Essay Corpus (AAEC)
developed by Stab and Gurevych, containing 402 student essays annotated with
argumentative information [31]. The argumentative structure is represented here
as a tree, which is a simplified but realistic and useful abstraction for compu-
tational applications. This corpus has been extensively studied in subsequent
research, that has attempted to improve the performances in AM tasks by
using more advanced techniques, and also qualitative accounts have been con-
sidered in literature [9,32]. Essays are acknowledged to have a recurrent struc-
ture [30,36,38], and there are also proper guidelines to annotate them [31]. It is
also important to note that essays considered in the AAEC are written by uni-
versity students. As demonstrated by [3], ‘middle school students’ (11–14 years
old) essays are quite different due to shortcomings in argumentation quality and
conventions.

Eger et al. developed a neural end-to-end model addressing all the AM sub-
tasks using the AAEC corpus [12], and this LSTM-ER model remained the
state-of-the-art for a long time [19]. In their work they also compared the essay-
and paragraph-level approach, showing that the paragraph-level was able to
obtain better results in an easier way, which is also consistent with our own
previous results [10]. However, the fact that text sequences are much longer
when training at essay-level could also be a shortcoming when dealing with
systems who struggle to keep a long memory on these long sequences of text. By
contrast, paragraphs are shorter and contain an argumentative integrity that can
be at least partly analyzed separately like a watertight compartment, since the
argumentation structure in this case is completely contained within a paragraph.
We will show in fact that using LONGFORMER when training at essay-level
substantially dampens this disparity.

Mayer et al. [18] annotated randomized controlled trials for clinical decision
making, and used the same components as Stab and Gurevych [31] but with a
different logic: while major claims are usually defined as a stance of the author
in the AM literature, here they are defined more as general/introductory claims
about properties of treatments or diseases (a general hypothesis to be tested or
an observation of a previous study to be confirmed), which is supported by a
more specific claim, which is instead a concluding statement made by the author
about the outcome of the study. Finally, a premise/evidence is an observation or
measurement (observed facts, empirical evidence or comparisons) in the study,
which supports or attacks another argument component (usually a claim). In
this setting also the absence of change in outcomes plays an important role for
clinical decision making, and is thus considered as an evidence in favour of the
argumentation.

Bao et al. proposed a transition-based model [4] which can perform argument
classification and relation identification simultaneously, increasingly construct-
ing an argumentation graph [4]. The best F1-score were obtained by testing at
the token-level on the argument classification task experimenting on the AAEC,
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while other relevant results include those obtained with the Multi-Task Argu-
ment Mining approach [20]. What emerges from the structural analysis of essays
is that different types of argument components work at different levels within an
essay. Based on this observation, the authors of the work in [37] argue that differ-
ent types of argumentation components should be mined at different levels: this
model obtained a significant improvement on mining major claims and claims
with respect to previous models that only worked at essay- or paragraph-level
for all the components. Our hybrid-level approach was developed by elaborating
on this intuition.

Finally, we have to mention that state-of-art models are cast in a supervised
learning fashion; however, some unsupervised approaches have been devised to
cope with under-resourced settings. Persing and Ng [25] recently obtained inter-
esting results compared with state-of-art supervised models: this research was
concerned with avoiding argument-annotated data, and makes use of heuristics
to bootstrap a small set of labels to self-train a model. These findings are rele-
vant, and suggest to reconsider the unsupervised approach, also in the light of
how difficult and expensive it may be to handcraft annotated data.

3 Methodology

In this paper we propose a novel learning approach for the Argument Compo-
nent Classification (ACC) task, which is central to the field of Argument Mining.
Specifically, ACC consists in the detection of specific argument components in
an argumentative text. It is often treated as a supervised text classification prob-
lem: given a taxonomy describing the argumentative components, an annotated
dataset is exploited to train a system that will perform their automatic recogni-
tion on previously unseen data. The kind of argumentative texts together with
the adopted components taxonomy can affect the shape of the task. Concerning
the taxonomy, most approaches in literature adopt a simplified claim-premise
model [22], while other works rely on more complex component definitions [14],
such as those by Toulmin [34].

In this work we take in consideration the Argument-Annotated Essays Cor-
pus (AAEC) developed by Stab and Gurevych [30,31], which is to date one of
the most widely adopted corpora to experiment on this task. The authors adopt
a model that includes major claim, claim and premise to classify argument com-
ponents in persuasive student essays.

3.1 The Hybrid Approach

In order to explain the intuition behind our approach, we take into consider-
ation the prototypical structure of a student essay, shown in Fig. 1. An essay
usually begins with an Introduction, that describes the controversial topic of the
argumentation, and as such is not argumentative itself. The introduction often
illustrates the ‘Major Claim’, which is the author’s stance towards the topic of
the argumentation. The actual argumentation thus begins after the introduction,
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Introduction

Paragraph 1 Paragraph 2 Paragraph n

Concluding 
Paragraph

Fig. 1. The general structure of an essay. An essay typically starts with an Introduction
where the Major Claim (MC) is stated; a set of Body Paragraphs follow, containing
Premises (P) and Claims (C); finally a Concluding Paragraph possibly containing a
restatement of the MC, summarizes and ends up the essay.

and is developed in a set of Body Paragraphs, each containing an argument in
favour or against the major claim. Each such paragraph has an internal structure
containing a ‘Claim’, which is the central component of each argument, and one
or more ‘Premises’, either supporting or attacking the claim. Finally, we typ-
ically have a Concluding Paragraph, which often summarizes the highlights of
the essay, restating the major claim and sometimes providing recommendations
for future directions (which are also not argumentative themselves). The impor-
tance of the structure is also highlighted by other studies on other corpora,
such as [36]: authors herein found that, similarly to Stab and Gurevych, the
first paragraph usually begins with non argumentative sentences and contains
an introduction together with the major claim (called thesis in their research).
They also highlight the special roles of the first and last paragraph of an essay.

Systems proposed in literature are trained either at essay-level or at
paragraph-level. In the former case the text of the essay is given in input to
the system, and the model is concerned with recognizing all possible argumen-
tative components. In this case the model has access to the entire structure of
the essay, to its tags, and context. In the latter case, instead, paragraphs are
the input unit for the tagger, which has to recognize argumentative components
within much shorter sequences, and without knowing the entire context of the
essay: in fact, if the paragraph is the unit, the model cannot distinguish between
paragraphs from different essays, and can only access structure, tags and context
within individual paragraphs.

We conjecture that both approaches can be improved by exploiting the struc-
tural information available in student essays. In fact, the essay-level training has
to deal with the greater variability in the location of the components and may
encounter difficulties arising from structural components (in particular MC and
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C); the paragraph-level, conversely, may fail to recognize the specific role played
by the individual paragraphs (paragraphs are not structurally equivalent), e.g.,
missing the specificity of introduction and conclusion, that intrinsically differ
from the central paragraphs. Our hypothesis is therefore that we might guide
the system to better trace these components developing an approach to cap-
ture the best of the two previous approaches. We call this approach hybrid-level
training. We have considered three variants: in the basic one (referred to simply
as hybrid), we have arranged the essay into three parts and then trained the
system by feeding it with these three blocks: the introduction, the set of body
paragraphs, and the concluding paragraph. Then, in the first variant (referred to
as hybrid+) we have guided the system to recognize also the boundaries between
the internal body paragraphs by inserting a separator —tagged with a specific
label— between each of them; in the second variant (referred to as hybrid++ we
have inserted another separator (also with its own specific tag) between intro-
duction and body paragraphs and body paragraphs and conclusion, which allows
the essay to be seen again in its entirety as at the essay-level (and no longer split
into three blocks), but with structure boundaries this time.

4 Experiments and Discussion

In previous work we investigated the task of Argument Identification and Argu-
ment Classification [10]; more precisely, we fine-tuned a BERT-model originally
devised by [39]. We presently extend that approach by also employing LONG-
FORMER [6] to investigate the impact of a longer window for the subword
tokenizer and test the effectiveness of competing learning approaches on differ-
ent models. We cast the task to a span classification problem, using the BIO
labeling system as sequence labeling strategy [27]. In this setting, every token is
labeled according to the position within or outside an argument component: the
tag ‘B’ indicates the first token of the argument component, ‘I’ is used to label
tokens included within a component, and ‘O’ is used to mark tokens outside
argument components. Since the ACC task involves recognizing different unit
types, the B-I-O tags are associated to each component: thus [B,I]-MC, [B,I]-C,
[B,I]-P, and O tags for Major Claim, Claim, Premise and Other, respectively.
Nevertheless, when testing we only consider 4 tags (one for each component) and
we do not distinguish between B and I when calculating accuracy metrics, since
they both identify the same component. This means that, at evaluation time, B
and I tags are interchangeable for identifying a given component.

Three different training schemes were employed essay-level, paragraph-level
and hybrid-level, and experiments were carried out in 5-fold cross-validation; a
randomly-chosen 80% of the corpus was used for training and 20% for testing. We
recorded F1-scores using both a token-level and the ‘α-level matching’ method
proposed in [24]; this method considers the matching of spans instead of tokens,
and allows considering both exact (100% α−level) and approximate (over 50%)
matches. In this setting, two text spans are considered an exact match if they
are featured by same boundaries, whilst they are considered as an approximate
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Table 1. Results (F1-scores) on the Argument Classification Task using BERT.

Essay Paragraph Hybrid

Major Claim Token 65.36 70.74 76.09

α 50% 77.20 79.11 84.33

α 100% 51.59 59.78 70.71

Claim Token 50.93 58.64 57.55

α 50% 56.10 65.31 63.43

α 100% 38.89 51.80 51.16

Premise Token 86.28 87.25 87.44

α 50% 87.74 89.59 88.91

α 100% 75.82 76.00 76.16

Other Token 88.18 85.99 87.78

α 50% 96.28 95.07 95.09

α 100% 93.54 90.82 91.08

match if they share over half tokens. This more lenient evaluation metrics is
customarily used also to assess human annotators agreement, which is not always
full in complex tasks, such as in the present one.

Let us start by introducing the results obtained when employing the BERT-
based model. The results on the ACC task obtained by training at essay-,
paragraph- and hybrid-level are illustrated in Table 1. In this case, for the sake
of brevity, we have only considered the hybrid approach in its basic form; the
models hybrid+ and hybrid++ were only tested using LONGFORMER as per-
formances are generally better than BERT. The three metrics essentially reveal
the same pattern. The MC is the component that benefits more from the hybrid
approach, revealing that separating introduction and conclusion from the body
paragraphs during the training helps in classifying such component. We obtain
a 5% improvement with respect to the paragraph-level in classifying MC at
token level, and a 5% and 10% improvement at the 50% and 100% α-level,
respectively. Conversely, the C classification only loses 1% with respect to the
paragraph-level, and also the classification of P registers the best results (by a
reduced margin, though) in terms of F1 Score in 2 out of 3 metrics. The essay-
level is less appropriate in classifying MC and C: our results unveil the difficulty
of the BERT-based model to handle the whole essay, while it is surprisingly
effective in classifying O. In general we observe that C is the hardest compo-
nent to classify, probably because it varies to a greater extent (please also refer
to results in [10]). In fact, training at the paragraph-level is the most suitable
perspective for C, since we have a smaller degree of variability within a single
paragraph with respect to an essay or all the body paragraphs gathered together.
This is also supported by literature: e.g., in [36] regularities were found in the
argumentation flow within body paragraphs, showing that students tend to first
state a claim and then argue for it; also, it was showed that there is a tendency



Mining Argument Components in Essays at Different Levels 145

Table 2. Results (F1-scores) on the Argument Classification Task using LONG-
FORMER.

Essay Paragraph Hybrid Hybrid+ Hybrid++

Major Claim Token 77.50 75.78 78.49 78.97 78.27

α 50% 82.71 83.83 85.48 86.21 85.15

α 100% 70.57 71.31 72.88 73.75 74.11

Claim Token 57.51 61.24 60.89 63.97 60.12

α 50% 62.64 67.23 66.62 68.48 65.58

α 100% 53.81 58.77 57.02 61.01 57.19

Premise Token 88.23 88.12 88.55 89.29 88.83

α 50% 89.62 90.10 89.85 90.60 90.15

α 100% 80.13 78.10 78.0 79.29 81.03

Other Token 89.74 87.05 88.55 88.88 89.71

α 50% 96.07 94.60 95.11 95.45 96.01

α 100% 93.72 90.61 90.75 91.66 93.41

to state the central claim of a paragraph in the very first sentence, followed by
the end of the text [22]. Such tendency to state the central claim at the begin-
ning of a paragraph seems to be a peculiarity of the English language (and of
Anglo-Saxon cultures, more in general), since other studies show that in docu-
ments authored by Asian people the claim is mostly found at the end [16,26].
Even MC can be either posited at the beginning of the essay or pushed into the
middle, mostly when it contains background information about the discussion
topic. In this case, having the introduction separated and more identifiable from
the other paragraphs gives to the model less ambiguity to identify the MC using
semantic and syntactic information.

Table 3. Averaged results (F1-scores) on Argument Classification using BERT and
LONGFORMER.

BERT LONGFORMER

Essay Paragraph Hybrid Essay Paragraph Hybrid Hybrid+ Hybrid++

Token 72.69 75.66 77.21 78.25 78.05 79.12 80.28 79.23

α 50% 79.33 82.27 82.94 82.76 83.94 84.26 85.26 84.22

α 100% 64.96 69.60 72.28 74.56 74.70 74.68 76.37 76.44

The results recorded by employing LONGFORMER (presented in Table 2)
show improved results with respect to those of BERT. Even in this case the
hybrid-level brings a significant improvement for MC, and is in general more
favorable than the other two approaches, as also confirmed in Table 3. More
specifically, we can see that the results obtained by employing LONGFORMER
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Fig. 2. Difference in F1-score when passing from BERT to LONGFORMER (F1-delta)
using the three different approaches (case exact match).

improve over those obtained through the BERT-based models around 2% at
token-level, 1.5% at 50% α-level and 2.5% at 100% α-level for the hybrid-level.
Even more consistent is the improvement for the essay-level which increase 6%,
3.5% and 10% respectively, revealing the relevance of long-memory cutting. Also
the paragraph-level registers improvements in the order of 3.5%, 1.5% and 5%.
In general, the exact-matching is the perspective which benefits the most from
passing from BERT to LONGFORMER, probably due to the fact that it is easier
to improve a lower performance.

Figure 2 shows the F1-delta scores by passing from BERT to LONGFORMER
in the case of exact match; for the sake of brevity, we report the figures for
exact match condition only testing with the the basic hybrid level; token- and
approximate-levels also reveal the same trend. Higher bars illustrate experimen-
tal conditions where LONGFORMER ensures higher improvements with respect
to BERT. This plot also shows that the hybrid approach, in addition to higher
accuracy, also exhibits a lower dependence on the model, since the F1-delta is
the lowest one, while it is clear how the essay-level is highly dependent on the
model in this case. That is, the reduced difference between LONGFORMER and
BERT when adopting the hybrid approach may be explained by a simple effect:
the shorter the text excerpts being processed, the lesser the benefits deriving
from employing a longer memory window (in such a case, almost all texts could
be processed through BERT with little loss). The results obtained experiment-
ing with LONGFORMER at essay-level are also of interest: the classification of
MC is improved by 12%, 5.5% and 19% for token-level, approximate and exact
match, respectively, when passing from BERT to LONGFORMER; the classifi-
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cation of C is improved by 6.5%, 6.5% and 15% instead. Such results illustrate
how the larger memory window of LONGFORMER impacts on the ACC of
argumentative essays.

To complete the assessment, we need to mention that the three approaches
and the two models are also featured by different computational properties.
LONGFORMER requires more computational resources than BERT and the
same holds for the paragraph-level, since there are more chunks of text to anal-
yse.1 This involves that using the hybrid-level is also beneficial in saving compu-
tational resources and, since it has less model dependency, using BERT hybrid-
level also ensures a good computational gain with a loss in accuracy in the order
of 2%. Finally, guided by the encouraging results obtained with the basic hybrid
approach, we developed two variants called hybrid+ and hybrid++ in order to
overcome some shortcoming of the basic hybrid approach, and whose results are
reported in Tables 2 and 3. In the first case (hybrid+) we still have a partition-
ing of the essay in introduction, body paragraphs and conclusion but we have
informed the system about the boundaries of the internal paragraphs through the
insertion of a specific separator (tagged as P-Sep); thanks to this arrangement we
were able to reach a consistent improvement on each component and in particular
on C. In the second case (hybrid++) we used the same separators as in hybrid+,
but instead of considering a partitioning into three blocks we returned to con-
sider the essay in its entirety (since this allows to save computational resources)
and we inserted another separator, tagged as IC-Sep, between the introduction
and the body paragraphs and the body paragraphs and the conclusion (thus
two of these separators for each essay). The last setting is particularly beneficial
when considering the exact matching; it also helps improving the classification
of O, which seams particularly good when considering the whole essay.

Finally, even though our main concern was not to overcome state-of-the-
art accuracy, but rather to compare different learning strategies to investigate
strengths and weaknesses of each one when applying LONGFORMER associated
to our hybrid++ model, we obtained a 76.44 F1 for the exact matching, which
closely approaches the 76.55 F1 obtained by [20] which is, to the best of our
knowledge, the highest reported accuracy on the corpus. For the approximate
matching at 50% level-alpha, we are not aware of recent results in this setting
(except for our own results, [10]) so the 85.26 F1 obtained using the hybrid+
model is currently the highest accuracy obtained on this corpus.

5 Conclusions and Future Work

In this work we have been experimenting on the Argument Component Classi-
fication task: we introduced a novel level (the hybrid level) to train the mod-
els, and compared and commented results obtained through models based on
1 Experiments were performed on machinery provided by the Competence Centre for

Scientific Computing [2]; nodes employed were equipped with 8VCPU, 1x NVIDIA
Tesla T4 GPU and 64GB Memory. Running experiments with LONGFORMER
took 11.5 h to complete 15 epochs at essay-level, while BERT only took 4 h. At
paragraph-level instead, LONGFORMER took 28 h, BERT 9.5.
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BERT and LONGFORMER. In so doing, different strategies were employed to
train the models: in the essay-level setting we used entire essays, and in the
paragraph-level one we arranged the essays into their paragraphs, following two
popular approaches from the literature. We then introduced a novel strategy
named hybrid-level and two variants: in the basic form we differentiate intro-
duction, set of body paragraphs, and conclusion; the first variant also considers
separators between internal body paragraphs; the second variant abandons the
partition into three blocks and considers the entire essay, but with two specific
separators to better mark the structure of the essay and speed up the compu-
tation. It is noteworthy that such hybrid approaches all have in common the
goal to better fit the essay structure of components when mining them. We
found that this learning perspective is beneficial with respect to the classical
essay- and paragraph-level when performing argument classification, using both
BERT and LONGFORMER. Then, comparing the two transformers models, we
found that the results obtained through LONGFORMER consistently improve
on those obtained with BERT, in particular when training at the essay-level:
this fact shows that the longer memory-window of LONGFORMER ensures
better results when analysing text sequences. Finally, we provided experimen-
tal evidence supporting the intuition that argumentation, in particular within
structured texts like argumentative essays, typically follows a particular and
recurrent structure that can be exploited to facilitate the learning phase. Since
our hybrid-level strategy is a model-free solution, we hope that these findings
can be helpful for further research.

Future directions will consider different aspects. For example, in the classi-
fication of claims we recorded lower accuracy with respect to the other com-
ponents, showing that this step is harder and still needs further efforts. Fur-
thermore, to enhance the robustness of this technique there is also the neces-
sity to test the hybrid approach on state-of-the-art systems and on further
types of argumentative texts featured by an underlying recurring structure.
This is a first exploratory step in this direction which has shown encouraging
prospects.
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Abstract. Large pre-trained language models have exhibited unprece-
dented capabilities in producing high-quality text via prompting tech-
niques. This fact introduces new possibilities for data collection and
annotation, particularly in situations where such data are scarce, com-
plex to gather, expensive, or even sensitive. In this paper, we explore
the potential of pre-trained language models to generate and annotate
goal-oriented dialogues, and conduct an in-depth analysis to evaluate
their quality. Our experiments employ ChatGPT, and encompass three
categories of goal-oriented dialogues (task-oriented, collaborative, and
explanatory), two generation modes (interactive and one-shot), and two
languages (English and Italian). Through extensive human-based eval-
uations, we demonstrate that the quality of generated dialogues is on
par with those generated by humans. On the other side, we show that
the complexity of dialogue annotation schema (e.g., for dialogue state
tracking) exceeds the capacity of current language models, a task which
still requires substantial human supervision.

Keywords: Large Language Models · Conversational Agents ·
Goal-oriented Dialogues

1 Introduction

Since its initial release in November 2022, ChatGPT has been tested on vari-
ous AI tasks, including traditional NLP tasks, and on various domains such as
medicine, computer programming, and even on neuro-psychological tests used
for humans. In addition, some attention has been paid to ChatGPT’s ability to
produce annotated data for training purposes [11,18]. In this paper, we specifi-
cally aim to evaluate ChatGPT’s ability to generate novel, human-like dialogues
and to annotate them according to a predetermined semantic schema.

There are two main reasons motivating our work. First, generating high-
quality training data remains essential for developing adaptable dialogue systems
for various domains and conversational contexts. However, collecting human-like
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dialogues often requires complex and expensive settings (e.g., Wizard of Oz [20],
Map Task [1,41]), and reducing the cost of data collection while preserving their
quality is of utmost importance. Second, although dialogue annotation is crucial
for training dialogue models, this is a complex and costly process, as annotation
schemas are often not standardized and human annotation is time-consuming
and error-prone (see the various versions of the MultiWOZ dataset [4]). As a
result, only a few annotated dialogue datasets are currently available, which
cover limited dialogue types and domains, and with insufficient data.

Meanwhile, very large pre-trained language models (LLMs), such as, among
the others, BERT [9], T5 [34], LaMDA [8], have demonstrated unparalleled
ability to generate high-quality text via prompting strategies [23]. Particularly
interesting for our purposes are instruction-tuned models (e.g. IstructGPT [29],
LLama 2 [40]), which have been fine tuned to be aligned with human conver-
sational preferences. While recent studies have examined the potential of LLMs
as annotators [11,15], this area remains largely unexplored, especially regarding
dialogue generation and annotation. We investigate the ability of LLMs both
to generate and to annotate different types of dialogues, in a multilingual set-
ting, so that those data are ready to be used for training dialogue models without
human intervention except for prompt optimization, an effort that unlike annota-
tion is highly scalable as the same prompt can be reused to produce an indefinite
amount of datasets. We consider three dialogue scenarios of varying complex-
ity: (i) task-oriented dialogues involving a user with specific goals and an agent
helping the user to achieve them; (ii) cooperative dialogues where two partici-
pants collaborate to achieve a shared goal; and (iii) explanatory dialogues aimed
at providing clarifications and explanations on a specific topic through dialogue.
To evaluate the quality of the generated dialogues, we conducted a crowd-sourced
evaluation using a questionnaire based on a 6-point Likert scale, comparing both
the dialogues generated by ChatGPT and corresponding human-generated dia-
logues. Additionally, we used standard measures (e.g., for dialogue state tracking)
to evaluate the quality of the annotations performed by ChatGPT.

The contributions of the paper are as follows: (i) We report on the first
experiment, to the best of our knowledge, aiming at generating complex, human-
like dialogues through controlled prompting of a LLM. (ii) We show that the
quality of automatically generated dialogues is comparable to that of reference
human-generated dialogues. (iii) We show that the quality of the annotations
generated by ChatGPT is still not comparable to human annotations and report
a number of critical limitations, including the generation of hallucinations, which
need to be considered in future research.

2 Background and Related Work

We consider three types of dialogues: (i) task-oriented dialogues, (ii) collabora-
tive dialogues, and (iii) explanatory dialogues. As for LLM, for all experiments
we use ChatGPT, a recent conversational model built upon a state-of-the-art
GPT model.
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2.1 Task-Oriented Dialogues

The objective of task-oriented dialogues [26] is to obtain specific pieces of infor-
mation that meet the user’s requirements, such as booking a restaurant, learning
how to open a bank account, or checking tomorrow’s weather. A typical task-
oriented dialogue presumes that the user has a definite objective in mind, which
is then identified by an operator during the conversation. The operator may pose
questions to the user to narrow down the search space and pinpoint the objects
that match the user’s objectives. In some situations, the obtained information
may be in the form of text, as is the case with Frequently Asked Questions
(FAQ) retrieval. In other scenarios, information may consist of objects, such as
movies or restaurants, that have been extracted from a knowledge base.

MultiWOZ 2.4. MultiWOZ [4] is a widely used task-oriented conversational
datasets, consisting of over 10,000 dialogues, collected using the Wizard of Oz
technique, spanning seven different domains, including restaurant reservations
and train ticket purchases. Subsequent versions of the dataset brought incremen-
tal improvements, culminating in version 2.4 [44], which we use in our experi-
ments. Semantic annotations in MultiWOZ follow a commonly used schema for
training dialogue understanding [25] and dialogue state tracking [2] components.
Annotations are based on triplets consisting of domain (e.g., Restaurant),
slot (e.g., Food), and slot-value (e.g., Italian), which are consistent with the
domain ontology. Annotations are incremental, meaning that new slot-values
mentioned in the dialogue are added to previous ones, enabling to maintain a
full belief state of the user’s requirements at each step of the conversation. A
MultiWOZ dialogue with its annotations is reported in Appendix A.1.

2.2 Collaborative Dialogues

Collaborative dialogues require the cooperation of the interlocutors to follow the
execution of a shared plan. For instance, when a user is planning a vacation
with a travel operator, multiple steps must be taken, such as determining the
vacation’s time and location, reviewing various travel agent proposals, making
decisions, and reserving transportation and lodging. Numerous command-based
dialogues, in which one participant requests the other to complete a task (e.g.,
in a car, at home), with varying degrees of complexity, belong to the category
of collaborative dialogues and are now prevalent in many personal assistants.

JILDA. We use the JILDA Corpus [38], a collection of 525 Italian dialogues
between two humans in the job search and offer domain. Dialogues were gathered
using the role-taking method [1] in a two-party online chat, where an Applicant
seeks assistance from a Navigator, who is a job consultant. Compared to dia-
logues collected using the Wizard of Oz approach, JILDA exhibits greater lexical
variety, syntactic complexity, conversational naturalness, and overall length. In
JILDA, similarly to MultiWOZ, semantic annotations are based on domain spe-
cific dialogue acts and slot-value pairs associated with each dialogue utterance.
A JILDA dialogue is reported in Appendix A.2.
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2.3 Explanatory Dialogues

There is nowadays widespread agreement that explaining a concept is primarily a
social and collaborative practice, which is often likened to a dialogue where both
the explainer, typically an expert in the field, and the explainee work together to
construct an understanding of a particular topic [5,27,36]. An example of such
an explanatory dialogue can be observed between a patient and a medical doctor.
Here, the doctor must explain the reasons for a particular diagnosis, while the
patient can seek clarifications and additional information. However, despite the
growing interest in such data, explanatory dialogue datasets are still rare.

WIRED 5 Levels. One of the few resources that cater to explanatory dialogues,
which we used in our experiments, is the WIRED 5 Levels corpus by [41]. This
corpus comprises transcriptions of dialogues from the WIRED video series 5
Levels, all in English, where a field expert (a university teacher) explains over
13 topics (from music harmony to machine learning) to five explainees with
varying levels of proficiency (from children to colleagues). The corpus contains
65 dialogues, with a total of 1550 dialogue turns. Furthermore, each turn was
manually labeled according to three dimensions: i. discussed topic (how is the
discussed topic relevant to the main topic? ); ii. speaker’s goal (what goal does
the speaker pursue with utterance in the given turn? ; iii. speaker’s dialogue
act (how is the goal being pursued in the turn? ). In our experiments, we used
the 5-level dialogues (child, teenager, undergrad, postgrad, colleague) that deal
with the topic of “machine learning”. Refer to Appendix A.3 for an example of
a WIRED dialogue.

2.4 Pre-trained LMs and Prompt-Learning

In recent years, LLMs have been the focus of extensive research, due to their
ability to learn from large amounts of data in a self-supervised fashion and to
achieve impressive results in various tasks [17,33]. One of the latest trends in
utilizing LLMs is the development of prompt-based techniques, where a textual
prompt is given to the model as input to generate the desired output. Such tech-
niques have shown to be highly effective, especially for tasks that require specific
outputs and have the advantage of (i) not requiring any parameter updates in
the LLM; (ii) be human readable, and (iii) not requiring in-domain data, unlike
fine-tuning techniques. An example of such a model is GPT-3 [3], a pre-trained
language model that uses the Transformer architecture and an attention mecha-
nism to generate natural language text. For an extensive survey on prompt-based
techniques, refer to [24].

Given our focus on dialogue, we leverage the “gpt 3.5 turbo” model, which is
the basis of the interactive interface of ChatGPT [28]. GPT 3.5 turbo is part of
the InstructGPT family [30] based on the GPT-3 language model [3]. However,
unlike standard GPT-3.5 models, InstructGPT models are optimized for inter-
active use, are particularly suited to take instructions as input prompts, and can
“learn” from their mistakes throughout a dialogue, making them more aligned
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with users’ requests. GPT 3.5 turbo is generally considered to offer the best
price-performance ratio compared to other GPT versions. This is accomplished
by a reward mechanism called Reinforcement Learning from Human Feedback
(RLHF) [6] used to optimize the model. At training, human trainers engaged
in conversations as both a user and an AI assistant. The model was then fine-
tuned through supervised training, and the AI-generated suggestions were given
to human trainers to produce their responses. The resulting dataset was com-
bined with the InstructGPT dataset and transformed into dialogue format.

2.5 Related Work: LLMs as Annotators

Several recent contributions address the use of LLMs as annotators. [11] explores
the potential of GPT-3 as a data annotator on two tasks, text classification
(sentiment analysis) and named entity recognition. Findings show that employ-
ing GPT-3 annotations can achieve comparable results to those obtained from
human-labeled datasets, at a 5% cost. [14] evaluates the efficiency and perfor-
mance of ChatGPT in comparison to human crowd workers in annotating a
dataset of about 2,400 tweets on 5 tasks with several classes, comparing both
performances with trained human annotations as gold standard. The research
findings show that zero-shot ChatGPT outperforms human annotators on 4 out
of 5 tasks (relevance, stance, topics, and frames detection) at a cost about 20
times cheaper than using MTurk, while showing higher inter-coder agreement
than both crowd workers and trained annotators. [39] adopts a similar method-
ology to test accuracy, reliability and bias of ChatGPT compared to crowd work-
ers and expert annotators. This study evaluates 500 political tweets from Amer-
ican politicians during the 2020 elections and classifies them as originating from
either Democratic or Republican side. For each tweet ten runs are conducted,
with five at a temperature of 0.2 and five at a temperature of 1. Superior accu-
racy is demonstrated at a lower temperature setting. The authors argue that
ChatGPT-4 outperforms human annotators in terms of accuracy and reliability,
while demonstrating an equal or lesser extent of bias. Similarly, [46] reports a
mean accuracy of 0.609 on 5 data annotation tasks on Twitter datasets, with the
highest performance noted in sentiment analysis tasks. Despite promising results,
significant room for improvement remains, as performance is reported to vary
substantially across individual labels. Another critical issue of using ChatGPT
for text annotation and classification is non-reproducibility of outputs, as noted
by [35] that annotated 232 texts, employing different settings with temperatures
at 0.25 and 1, and using 10 distinct instruction prompts. Varying temperatures
and even slightly dissimilar prompts lead to inconsistent outputs, thus raising
concerns regarding ChatGPT’s reliability. Although multiple repetitions may
alleviate this issue, it is advised against the deployment of LLMs for automated
annotation in a wholly unsupervised manner and without any validation of the
model’s performance against human-generated labels, as [31] state.
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3 Methodology

We propose a three-step methodology to investigate the generation and anno-
tation of training dialogues. (i) We select a dialogue from an existing available
repository, as the reference dialogue. We then prompt the language model to
produce a generated dialogue that closely resembles the reference dialogue. (ii)
Next, we prompt the language model to annotate the generated dialogue using
the same annotation schema provided in the existing repository. This results in
an annotated dialogue. (iii) Finally, we carry out an evaluation of both the gener-
ated dialogues (comparing them to the reference) and the annotated dialogues.

3.1 Dialogue Generation

Here the goal is to create appropriate prompts that can generate a dialogue which
is similar in content to a reference dialogue. There are two ways to prompt a
LLM for a dialogue: provide all the instructions in a single prompt and allow the
LLM to generate the entire dialogue at once (one-shot approach), or, instruct the
model to simulate the behavior of one participant only and obtain the dialogue
through interaction with a human who plays the role of the other participant
(interactive approach). For our purposes, i.e., collecting dialogues at a low cost,
we are more interested in the one-shot approach, although the interactive app-
roach can provide important feedback on the ability of the LLM to engage in
a conversation with a real user. For both one-shot and interactive approaches,
we follow a structured prompt format with the following content areas (more
detailed examples are available in the Appendix):

1. High level instruction about the task to be executed. E.g., “Create a dia-
logue between a user and a system.” (or in the case of the interactive setting:
“Simulate to be a system and respond to a user”).

2. Description of the dialogue context. E.g. “The user asks for information on
restaurants in order to make a reservation and the system, called “Cambridge
InfoTown” asks the user all the needed information, tells the user whether
there is availability for the people, time and date requested and finally it
makes the reservation, giving a random reference number. Every user mes-
sage should be followed by a system message. Be polite and don’t forget to
say goodbye. Everything said by “Cambridge InfoTown” needs to be strictly
coherent to the Domain Knowledge that I provide you”.

3. Domain knowledge to be used in the dialogue. E.g., “name: pizza hut city
centre, address: Regent Street City Centre, area: centre, food: italian, phone:
01223323737, postcode: cb21ab, pricerange: cheap”.

4. Dialog-specific instructions to be followed by the user (only for the one-shot
setting). E.g., “For the dialog that you have to generate, the instructions for
the user are the following: You are looking for an Indian restaurant in the
north [...]”.

5. Instructions on how to simulate the system (only for the interactive setting.
E.g., “I will start acting like a user needing information about restaurants in
Cambridge starting from my next message”.



Unraveling ChatGPT 157

We chose the GPT-3.5 turbo model, through OpenAI’s API and the
ChatCompletion method, which allows the model to keep track of previous turns,
and empirically set temperature = 0.8 (the degree of randomness of the model)
and top_p = 0.1 (the cumulative percentage of considered predictions) as this
best reproduces the standard setting in the interactive web interface.

3.2 Dialogue Annotation

We now describe the methodology for annotating a dialogue through prompting
the Large Language Model (LLM). All semantic annotations are added to a
previously generated dialogue (either by humans or by a LLM), as we considered
too complex the option where annotations are generated simultaneously with the
dialogue generation. For the three dialogue types we are experimenting, we use
the annotation schema as provided in the corresponding reference datasets (see
in Sect. 2). The prompt for dialogue annotation has the following structure:

1. High level instruction about the task to be executed. E.g., “Write annotations
about a dialogue that I will send you”.

2. Instructions on annotations. E.g., “Add annotations of the intents and slots
for each one of the dialog turns. The annotations have to follow this format:
[...] The possible intents are: [...] The possible slots are: [...]

3. Dialogue to be annotated. E.g., “The dialogue that you have to annotate is
the following: 1. User: [...] 2. System: [...]”.

3.3 Evaluation Methods

According to the methodology described in Sect. 3.1, we have three versions of
each dialogue we consider: a reference dialogue, a one-shot generated dialogue
and a interactive generated dialogue. Here the goal is to assess the quality of the
generated dialogues, in order to establish whether LLMs are capable of creating
dialogues that are comparable to the ones collected by humans.

Evaluating dialogue quality. Although automatic metrics like BERT-score [45]
exist for scoring the similarity of a text against a reference, such metrics are
insufficient, as they do not capture the peculiarities of dialogue. To address
the issue, we designed a questionnaire to collect human evaluations through
crowdsourcing [7,13,22]. The questionnaire, reported below, assesses dialogue
quality based on six criteria: consistency and quality of content (criteria 1 and
2), formality (3), politeness (4), naturalness (5), and successfulness (6).
Labelers are presented with each criterion as an affirmative declarative clause
and asked to rate their overall agreement on a 6-item Likert verbal scale, rang-
ing from “strongly disagree” to “strongly agree”. Our Likert scale replicates the
commonly used 7-point bipolar disagreement/agreement scale, with increasing
agreement value from left to right. We chose not to provide a neutral middle
option, which would allow respondents to avoid committing to a direction in
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1. Requests and responses are consistent across the dialogue
2. The information that is exchanged by participants in the
dialogue is realistic
3. The level of formality shown by the participants is
consistent in the dialogue
4. Participants are respectful towards each other (e.g., no
offensive language)
5. The participants’ sentences sound spontaneous and natural
in the dialogue
6. The dialogue comes to a conclusion

their opinion itetional commn comments and feedback.agraphDetecting halluci-
nations. To evaluate whether a dialogue generated by a LLM includes hallucina-
tions (i.e., generated text that is “nonsensical or unfaithful to the provided source
input” [19]), we analyze all system turns that reference the domain knowledge
base. We request a domain expert to assess whether the information conveyed
in these utterances is accurate or not, assigning a score equal to 0 if any of
the information provided is inconsistent with the knowledge base, and 1 if all
information is correct. Hallucination accuracy is then averaged across the entire
dialogue (or set of dialogues).

Adherence to Instructions. Here we consider the instructions (i.e., prompts)
related to the user goals in the dialogue (e.g. “user is looking for an Italian
restaurant”) and evaluate whether the generated dialogues comply with the
given instructions. We only take into account utterances that are relevant to
the instructions provided (e.g., utterances such as “Thank you for your help”
are disregarded). For each utterance, a domain expert assigns a score equal to 0
if any of the information presented in the generated dialogue conflicts with the
instructions, and 1 if there is no conflict. The scores for each utterance are then
averaged to obtain the overall score for a dialogue (or for the set of dialogues).

Evaluating Dialogue Annotation Quality. In order to assess the quality of gener-
ated annotations, we rely on a domain expert that determines whether the anno-
tations for the dialogues are correct. For WoZ and Jilda, we use Slot Accuracy
(SA) and Joint Goal Accuracy (JGA) as quality metrics, as they are commonly
used in the literature for dialogue annotation evaluation [10]. To compute SA
and JGA, we ask the experts to define the sets of false negatives (FN) and false
positives (FP ) triplets (domain, slot, slot-value), such as “Restaurant-Food-
Italian”, for each conversational utterance and its corresponding annotation.
Then, we compute SA using the following formula:

SA =
|S| − |FN | − |FP | + |P ∩ Q|

|S|
where S is the set of unique (domain, slot) pairs in the dataset, P is the set
of unique (domain, slot) pairs from FN , and Q is the set of unique (domain,
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slot) pairs from FP . Therefore, P ∩ Q represents the set of domain-slot pairs
that are present in both FN and FP . JGA, instead, is a more strict measure
and is computed by assigning a score equal to 0 to any annotation with at least
one false negative or false positive, and 1 to annotations that are 100% correct.
Finally, we take the average of both SA and JGA values for each conversational
turn to obtain a score for the entire dialogue (or set of dialogues).

For Wired, we cannot rely on the same metrics because the rationale behind
the annotation is different, as it is not constituted by domain-slot-value triplets.
Therefore, following the baselines proposed by the original release paper [41],
we report Macro F1-score for each labelling dimension separately (Topic, Goal,
Dialogue act) as the average of single F1-scores for all the labels.

4 Experiments and Results

The experimental setup for our qualitative analysis comprises three different
types of dialogues, with one dataset per type, a model (ChatGPT) that we uti-
lized for dialogue generation and annotation, a quality assessment procedure for
generated dialogues, based on a questionnaire created through Amazon Mechan-
ical Turk (AMT), two expert evaluations to gauge ChatGPT’s ability to avoid
hallucinations and follow instructions, and a quality assessment method for dia-
logue annotations.

Table 1. Qualitative assessment for dialogue generation via AMT. Scores assigned
through a questionnaire in a Likert scale (inter-rater reliability equal to Krippendorff’s
α = 0.47 [21] computed via the R package “irr” [32] [12]). † indicates scores that are not
statistically different from the correspondent reference quality score (p-value > 0.05).
*Jilda dialogues are in Italian.

Dataset Reference
(humans)

Generated:
One-shot

Generated:
Interactive

Avg.

MultiWOZ 1.81 1.60 1.83† 1.75
JILDA* 2.47 2.38† 2.31† 2.39
WIRED 1.61 1.78† 1.38† 1.59
Avg. 1.96 1.92 1.84 1.91

4.1 Dialogues Generation

We randomly selected five reference dialogues from each of the considered
datasets: MultiWOZ1, JILDA2, and WIRED. Using the one-shot and interactive
dialogue generation methods described in Sect. 3.1, we prompted ChatGPT to
produce two additional versions of each reference dialogue, resulting in 10 gen-
erated dialogues per dataset and a total of 45 dialogues including the reference
1 SNG0548, SNG01611, SNG01425, SNG0524 and SSNG0007.
2 b2, b3, b4, b5 and b22, since they all share the same knowledge base of job offers.
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dialogues. We asked 10 AMT workers to evaluate the overall quality of each
dialogue using the questionnaire described in Sect. 3.3. For rating the JILDA
dialogues, we created an Italian version of the questionnaire. Additional details
are provided in Appendix B, which includes an example of how evaluators were
presented with the task. To facilitate results analysis, we converted the verbal
scale to numerical values ranging from −3 (corresponding to “strongly disagree”)
to +3 (corresponding to “strongly agree”). Table 1 presents the average quality
scores for the three datasets, including the reference dialogue and the two ver-
sions generated by ChatGPT (one-shot generation and interactive generation).
Notably, the quality of both human dialogues (score = 1.96) and dialogues fully
generated by ChatGPT (score = 1.92) was perceived by our annotators as sub-
stantially equivalent. This result was consistent across the six dimensions con-
sidered in the questionnaire. Additionally, the quality of dialogues generated
through interaction between ChatGPT and a human (score = 1.84) was sub-
stantially equivalent to that of human-generated dialogues. We conducted a test
to determine whether the difference in quality between the one-shot and inter-
active generations was statistically significant with respect to the corresponding
reference dialogues. Results, reported in Table 1, show that there was no signif-
icant difference in quality score for almost all of generated dialogues (the only
exception is for MultiWoz one-shot), confirming ChatGPT’s capacity to gen-
erate human-like dialogues. As expected, task-oriented dialogues in MultiWOZ
and JILDA collaborative dialogues achieved higher quality than WIRED, likely
due to the simpler structure of the dialogues (e.g., fewer turns). We also observe
that the use of Italian for JILDA does not affect the quality of ChatGPT gen-
eration. The results obtained for the Italian dialogues are comparable to those
obtained for the English dialogues, since language does not play as much of a
role as the dialogue type in the experiment.

4.2 Assessing Hallucinations

We now assess the extent to which ChatGPT generates dialogues with hallu-
cinating characteristics (see Sect. 3.3). Since the presence of hallucinations is
judged by comparison against domain knowledge, we did not conduct the eval-
uation on the WIRED dataset, as it does not come with a knowledge base. For
MultiWOZ and JILDA we considered both the one-shot and interactive versions.
Results, Table 2, column “Hallucination Accuracy”, show a relatively high adher-
ence to the domain knowledge base, with only a few instances of hallucinations.
As an example, in the MultiWOZ one-shot experiment, the user requested a
Chinese restaurant, but the system suggested a Modern European one; in the
interactive setting, ChatGPT mentioned two restaurants that were not included
in the domain knowledge. While ChatGPT remains adherent to the provided
knowledge base in most of the cases, in a few cases (approximately three out of
every 20 utterances), it returns responses that are highly incorrect. As future
work, we plan to explore other types of hallucinations beyond those related to
domain knowledge, such as hallucinations concerning annotations.
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Table 2. Qualitative assessment of dialogue annotations: slot accuracy, joint goal accu-
racy, adherence to domain knowledge and to instructions for the MultiWoz and Jilda
datasets; topic accuracy, goal accuracy, dialogue act accuracy, and average accuracy
for the Wired dataset.

Dataset Slot
Accuracy

Joint Goal
Accuracy

Halluc.
Accuracy

Instructions
Adherence

MultiWOZ_one-shot 0.88 0.50 0.89 0.83

MultiWOZ_Interactive 0.93 0.52 0.89 –

JILDA_one-shot 0.71 0.03 1 0.92

JILDA_Interactive 0.73 0.05 0.82 –

Dataset Topic
Macro-F1

Goal
Macro-F1

Dial. act
Macro-F1

Average
Macro-F1

WIRED_one-shot 0.93 0.29 0.20 0.47

WIRED_Interactive 0.88 0.21 0.35 0.48

4.3 Evaluating Instruction Adherence

We followed the methodology described in Sect. 3.3 to measure ChatGPT’s abil-
ity to adhere to prompt instructions related to the user goals. The WIRED
dataset could not be used for this evaluation, as it does not provide specific
instructions. Similarly, we could not consider dialogues generated through the
interactive method, as the user’s turns are not generated by ChatGPT. While
results (Table 2 column “Instruction Adherence”) confirm that prompting can
properly condition the model generation (MultiWOZ 0.83, JILDA 0.92) we
report the presence of macroscopic and critical errors. For example, in JILDA,
one of the generated dialogues had the user claiming to possess certain skills
that were not mentioned in the instructions. In another case, in MultiWOZ, the
user made a reservation for a date and time that did not correspond to what
was specified in the instructions.

4.4 Dialogue Annotations

To assess ChatGPT’s ability to generate proper semantic annotations we used
the metrics described in Sect. 3.3. Table 2 shows the results of generated anno-
tations both for the one-shot and interactive dialogues previously generated by
ChatGPT (Sect. 3.1). As for MultiWOZ, slot-filling accuracy (i.e., 0.88 and 0.93
for, respectively, one-shot and interactive) is still relatively lower than current
state of art of recent DST systems, which is around 0.99 [16,42,43].

As for JILDA dialogues, slot accuracy is considerably lower than MultiWoz.
Slot filling hardly ever succeed in comprehensively identify each required slot
and in correctly assigning each of the required values, resulting in extremely low
JGA measure. Also the F1 measure for slot annotation (i.e., 0.49 and 0.43 for,
respectively, one-shot and interactive) is significantly lower than those obtained
by the model proposed in [37], which achieves 71.46. The discrepancy with Mul-
tiWoZ may be due to the longer length of the JILDA’s dialogues, greater lexical
variety and syntactic complexity, and the more intricate annotation schema.
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Similarly, we believe the complexity of the annotation schema and the inher-
ent difficulty of the dialogue metadata annotation task to motivate a discrepancy
in results compared to [14] and [39], where ChatGPT is reported to outperform
human annotators; however, the tasks there concerned, namely tweet classifi-
cation and text classification are relatively simple, compared to the proposed
dialogue annotation tasks.

As for Wired dialogues, we notice a discrepancy between the “Topic” dimen-
sion, which achieves very high scores, and the other two dimensions (“Goal”
and “Dialogue act”). The “Topic” dimension beats the best performing model
reported by [41] (0.52). This is certainly due to the smaller number of classes in
the first dimension (4 vs. 10 classes) and also to the relative simplicity of detect-
ing the relationship of a dialogue turn to the main topic, as opposed to the other
tasks, where our experiments do not achieve SOTA results, but still perform
much higher than a simple “majority” heuristic baseline, which would be 0.06 as
reported by [41]. We hypothesize that prompt optimization, which would also
include a clearer explanation of the single classes, would result in higher scores,
but we leave a more in-depth analysis of this aspect as future work.

5 Conclusion

We presented an extensive human-based evaluation aimed at assessing both the
quality of dialogues and of semantic annotations generated by ChatGPT. This
is, to be the best of our knowledge, the first qualitative analysis that has been
conducted on fully automatically generated dialogues. The experimental setup
included three types of dialogues (task-oriented, collaborative, and explanation-
based), two generation methods (interactive and one-shot), and two languages
(English and Italian). Our findings demonstrate that the quality of the generated
dialogues is comparable to corresponding human generated reference dialogues
in available datasets. In this respect, ChatGPT can be considered as a good
alternative to more expensive dialogue collection approaches, such as Wizard
of Oz. On the other side, although dialogue annotation has shown a number
of relevant limitations (some hallucinations, some instruction failing cases), we
believe that such automatically annotated training data could be an excellent
option for creating silver-data at low-cost, for a number of approaches, including
data augmentation and domain adaptation techniques.

A Appendix: Dialogue Examples

A.1 MultiWOZ Example

User: “I am looking for an expensive Italian restaurant”.

metadata: {“restaurant”: {“pricerange”: “expensive”, “food”: “Italian”}}

System: “There is an expensive Italian restaurant named Frankie and Bennys
at Cambridge Leisure Park Clifton Way Cherry Hinton. Would you like to go
there or choose another?”
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User: “Great yeah that sounds great can you book a table for 5 people at 11:30
on Sunday?”

metadata: {“restaurant”: {“pricerange”: “expensive”, “food”: “Italian”, “people”:
“5”, “time”: “11:30”, “day”: “Sunday”}}

System: “Unfortunately there are no tables available, please try another day or
time slot”.

User: “How about 10:30 on sunday ? And may I have a reference number?”

metadata: {“restaurant”: {“pricerange”: “expensive”, “food”: “Italian”, “people”:
“5”, “time”: “10:30”, “day”: “Sunday”}}

System: “I was able to book a table for 5 at 10:30 on Sunday. Your reference
number is MBC9E6AL. Is there anything else I can help you with today?”

User: “No, that is all. Thank you so much for your help”.

metadata: {“restaurant”: {“pricerange”: “expensive”, “food”: “Italian”, “people”:
“5”, “time”: “11:30”, “day”: “Sunday”}}

System: “You’re welcome. Good - bye”.

A.2 JILDA Example

System: “Buongiorno”
User: “Buongiorno!”
System: “Ciao, sono Giulia! Oggi sono qui per farti da Navigator. Di cosa sei

alla ricerca?:)”
User: “Ciao! Sto cercando lavoro come ricercatore”.
System: “Interessante! Dimmi, in quale settore sei specializzato?”
User: “Sono specializzata in informatica e robotica, vorrei trovare lavoro in

questi settori se possibile”.
System: “Sei alla ricerca di uno stage o preferiresti una posizione lavorativa più

stabile?”
User: “Preferirei una posizione più stabile, a tempo determinato o indetermi-

nato”.
System: “Molto bene. Dimmi, hai già esperienze lavorative nel settore?”
User: “Purtroppo non ho esperienze in azienda, ma ho un dottorato in Ingeg-

neria Robotica”.
System: “Perfetto! Puoi dirmi quali sono i linguaggi di programmazione e i

software con cui hai più confidenza?”
User: “Certo! So programmare molto bene in C++, java e PhP”.
System: “Ok, hai conoscenze di javascript, MySQL e bash Linux?”
User: “Li conosco molto superficialmente”.
System: “Ok, dalle informazioni che mi hai dato ho trovato un lavoro che

potrebbe interessarti. Un’azienda estera sta cercando una persona che ricopra
il ruolo di software engineer. L’annuncio specifica che preferirebbero una per-
sona con esperienze lavorative pregresse in questo settore, saresti comunque
interessato a candidarti?”
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User: “Sì, potrebbe interessarmi. Di che cosa si occupa l’azienda?”
System: “Non viene specificato. Tuttavia il ruolo che dovresti ricoprire con-

sisterebbe nello sviluppare un nuovo progetto in tutte le sue fasi ( Design
+ Coding + Test + Packaging + Delivery) oltre ad aggiornare i progetti
esistenti. Specificano comunque che il lavoro offre la possibilità ai lavoratori
di esprimere la propria creatività rispetto a prodotti usati ogni giorno da
milioni di persone”.

User: “Interessante. Come si chiama l’azienda?”
System: “Il nome dell’azienda è Jobtome, una start up formata da circa 50

persone. Vuoi che ti dia il loro contatto?”
User: “Sì, grazie. Così poi posso contattarli direttamente io”.
System: “info@azienda.com. Hai bisogno di altre informazioni?”
User: “Al momento no, grazie”.
System: “Spero di esserti stata d’aiuto! Buona giornata:)”
User: “Sì, sei stata molto gentile! Buona giornata anche a te:)”

A.3 WIRED Example

Expert: Hi.
Child: Hi.
Expert: I’m Hilary, what’s your name?
Child: I’m Brynn.
Expert: Do you know what machine learning means? Have you heard that

before?
Child: No.
Expert: So machine learning is a way that we teach computers to learn things

about the world by looking at patterns and looking at examples of things. So
can I show you an example of how a machine might learn something?

Child: Sure.
Expert: [Hilary] So is this a dog or a cat?
Child: It’s a dog.
Expert: And this one?
Child: A cat.
Expert: And what makes a dog, a dog and a cat, a cat?
Child: Well, dogs are very playful, I think, more than cats. Cats lick themselves

more than dogs, I think.
Expert: That’s true. Do you think, if we look at these pictures, do you think

maybe we could say, Well, they both have pointy ears, but the dogs have a
different kind of body and the cats like to stand up a little different.? Do you
think that makes sense?

Child: Yeah. Yeah.
Expert: What about this one?
Child: A dog. A cat. I think, a cat? Because it’s more skinny. And also, its legs

are like really tall and its ears are a little pointy.
Expert: This one’s a jackal. And it’s actually a kind of dog. But you made a

good guess. That’s what machines do too. They make guesses. Is this a cat
or a dog?
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Child: [Brynn] None.
Expert: [Hilary] None. What is it?
Child: It’s humans.
Expert: And how did you know that it’s not a cat or a dog?
Child: Because cats and dogs... Because they walk on their paws and their ears

are like right here, not right here, and they don’t wear watches.
Expert: And so, you did something pretty amazing there. Because we asked

the question, Is it a cat or a dog? And you said, I disagree with your question.
It’s a human. So machine learning is when we teach machines to make guesses
about what things are based on looking at a lot of different examples. And I
build products that use machine learning to learn about the world and make
guesses about things in the world. When we try to teach machines to recognize
things like cats and dogs, it takes a lot of examples. We have to show them
tens of thousands or even millions of examples before they can get even close
to as good at it as you are. Do you have tests in school?

Child: Yeah, I have. After every unit, we have a review and then we have a
test.

Expert: Are those like the practice problems you do before the test?
Child: Well, just like everything that’s gonna be on the test is on the review.
Expert: Which means that in the test, you’re not seeing any problems that you

don’t know how to solve. As long as you did all your practice, right?
Child: Yeah.
Expert: So machines work the same way. If you show them a lot of examples

and give them practice, they’ll learn how to guess. And then when you give
them the test, they should be able to do that. So we looked at eight pictures
and you were able to answer really quickly. But what would you do if I gave
you 10 million examples? Would you be able to do that so quickly?

Child: No.
Expert: So one of the differences between people and machines is that people

might be a little better at this, but can’t look at 10 million different things.
So now that we’ve been talking about machine learning, is this something
you want to learn how to do?

Child: Kind of. Because I kind of want to become a spy. And we used to do
coding, so I may be kind of good at it.

Expert: And machine learning is a great way to use all those math skills, all
those coding skills, and would be a super cool tool for a spy.

B Appendix: Questionnaire Used to Assess Dialogue
Quality: Statements and Verbal Tags

B.1 English Version

Statements:

1. Requests and responses are consistent across the dialogue.
2. The information that is exchanged by participants in the dialogue is realistic.
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3. The level of formality shown by the two participants is consistent throughout
the dialogue.

4. Participants are respectful towards each other (no offensive/discriminatory
language is used).

5. The participants’ sentences sound spontaneous and natural in the dialogue.
6. The dialogue comes to a conclusion.

Items:
Strongly disagree, Disagree, Somewhat disagree, Somewhat agree, Agree,

Strongly Agree.

B.2 Italian Version

Affermazioni:

1. Le richieste e le risposte nel dialogo sono coerenti.
2. Le informazioni che i partecipanti si scambiano nel dialogo sono realistiche.
3. Il livello di formalità dei due partecipanti è mantenuto costante per tutto il

dialogo.
4. I partecipanti sono rispettosi l’uno verso l’altro (non usano linguaggio offen-

sivo o discriminatorio).
5. Le frasi dei partecipanti sono spontanee e naturali nel contesto del dialogo.
6. Il dialogo arriva ad una conclusione.

Items:
Fortemente in disaccordo, In disaccordo, Leggermente in disaccordo, Legger-

mente d’accordo, D’accordo, Fortemente d’accordo.

C Appendix: Prompts Used for Dialogue Generation

C.1 One-Shot Approach

JILDA Create a dialogue between a user and a system in Italian. The user asks
for information on job offers in order to find a suitable one for himself or herself
and the system, called Navigator, asks the user all the needed information, tells
the user whether there is availability for the skills, requests of the user and finally
matches the job offer, giving the company e-mail address as contact. Every user
message should be followed by a system message. Be polite and don’t forget to
say goodbye. Everything said by the system needs to be strictly coherent to the
knowledge base that I provide you, and everything said by the user needs to be
strictly coherent to the user’s CV that I provide you.

Knowledge base:
Job offers:

1. job_description1
2. job_description2
3. job_description3
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4. job_description4
5. job_description5

User CV:
user_cv_D1

WIRED Create a dialogue between an Explainer (a University teacher) and an
Explainee. The Explainer and the Explainee hold a conversation on a topic where
the Explainer is an expert. The dialogue is a spoken dialogue. The dialogue is
explanatory: this means that each turn has a relation to the main topic (e.g. main
topic, subtopic, related topic, ...), performs a dialogue act (e.g. check question,
agreeing statement, informing statement, ...), and makes an explanation move
(e.g. test understanding, request explanation, provide explanation, ...).

The dialogue needs to comply to the knowledge base that I provide to you.
Knowledge base: Explainer is a machine learning scientist. Explainee is a

computer scientist named Claudia. Explainee asks about: the Explainer’s view
on the democratization of machine learning and avaialbility of tools, open ques-
tions in the ethics of machine learning, applications of machine learning in fields
like agriculture, Explainer asks about: things that are holding back from applying
machine learning to fields useful to society Explainer talks about: democratiza-
tion and accessibility of tools in machine learning, representativeness of data,
reproducibility, future of machine learning Explainee talks about: transparency
in machine learning, biases in data, students nowadays

The dialogue should be friendly, informative, and provide details and exam-
ples. It should be around 15 turns, and turns can be somehow long. Don’t forget
to greet at the beginning.

C.2 Interactive Approach

JILDA Simulate to be a system and respond to a user in Italian. The user asks
for information on job offers in order to find a suitable one for himself or herself
and the system, called Navigator, asks the user all the needed information, tells
the user whether there is availability for the skills, requests of the user and finally
matches the job offer, giving the company e-mail address as contact. Every user
message should be followed by a system message. Be polite and don’t forget to
say goodbye. Everything said by the system needs to be strictly coherent to the
knowledge base that I provide to you.
Knowledge base:
Job offers:

1. job_description1
2. job_description2
3. job_description3
4. job_description4
5. job_description5
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User CV:
user_cv_D1
I will start acting like a user needing of information about job offers starting
from my next message.

WIRED Let’s play a roleplay. We simulate a dialogue between a system, called
the Explainer (pretending to be a University teacher) and an Explainee. You
play the system (the Explainer), and start with the first turn, and I play the
Explainee. Please DO NOT write sentences for both turns: you must ONLY play
the Explainer, and start the conversation. Then you wait for me to respond.

We hold a conversation on a topic where you are an expert. The dialogue
is explanatory: this means that each turn has a relation to the main topic (e.g.
main topic, subtopic, related topic, ...), performs a dialogue act (e.g. check ques-
tion, agreeing statement, informing statement, ...), and makes an explanation
move (e.g. test understanding, request explanation, provide explanation, ...).
The dialogue needs to comply to the following information:

Explainer (you): “machine learning scientist”. Explainee (me): “computer
scientist” named Claudia. Possible topics: democratization and accessibility of
tools in machine learning, representativeness of data, reproducibility, future of
machine learning, applications of machine learning to fields useful to society,
transparency in machine learning, biases in data, students nowadays, the democ-
ratization of machine learning, availability of tools, ethics of machine learning,
applications of machine learning in socially relevant fields.

D Appendix: Prompts Used for Dialogue Annotation

JILDA Write annotations about a dialogue that I will send you. The annotations
have to follow this format: metadata: {slot_name1: slot_value1, slot_name2:
slot_value2, slot_value3, slot_name3, ...}
The possible slots are: “job_description” (description of the job offered), “con-
tract” (type of contract of the job offer), “duties” (the main duties of the job
position), “skills” (skills requested for the job), “past_experience” (past experi-
ence required for the job), “degree” (degree or qualification required for the job),
“age” (age required for the job), “language” (knowledge of foreign languages),
“area” (the field where the company operates), “company_name” (the name of
the company), “company_size” (the number of workers in the company), “loca-
tion” (the place where the company is).
The annotations are cumulative and need to keep track of all information that
has been provided or selected only by the User until that moment of the conver-
sation.
Example of dialog:
example_dialogue
Example of annotations:
example_annotation
The dialogue that you have to annotate is the following:
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dialogue_D1
Annotate only the User’s turns.
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Abstract. This paper explores the potential of utilizing a unified neural model to
tackle multiple and complex semantic processing tasks in the Italian language.
We applied a state-of-the-art instruction-tuned Decoder-only Large Language
Model to the recent EVALITA 2023 [17] challenge, which encompassed 13 dif-
ferent tasks and 22 subtasks across diverse semantic dimensions, such as Affect
Detection, Authorship Analysis, Computational Ethics, Named Entity Recogni-
tion, Information Extraction, and Discourse Coherence. Our approach focuses on
representing tasks using natural language instructions, for which prompts to the
model are designed able to define the process as well as the desired responses.
Notably, this single neural model achieved first place in 41% of the subtasks and
demonstrated top-three performance in 64% of them. A dedicated experiment
was also conducted to investigate the degree of linguistic generalization achieved
by the LLM specifically, through instruction-tuning it with limited sets of training
data. Results suggest that instruction-tuning is still required to capture dependen-
cies between input and output even in such LLMs.

Keywords: Large Language Models · Multi-task Learning · Semantic
Processing Task · Affect Detection · Authorship Analysis · Computational
Ethics · Named Entity Recognition · Information Extraction · and Discourse
Coherence

1 Introduction

Over the past few years, there has been significant interest in Large Language Mod-
els (LLMs) due to their exceptional performance across a wide range of natural lan-
guage processing (NLP) tasks. Not only have LLMs like T5 [26], mT5 [38], IT5 [33],
and FlanT5 [10] achieved state-of-the-art results in individual tasks, but they have also
demonstrated remarkable capabilities in solving various tasks individually and collec-
tively through multi-task training methods, even in a zero-shot learning scenario [31].
Simultaneously, models such as GPT [25] and GPT3 [7], known for their generative
power, as well as the emergence of foundational models like LLaMA [35], have opened
up new possibilities for utilizing the concept of “prompting”. This approach allows
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inductive tasks to be modeled linguistically, using natural language queries or instruc-
tions, enabling accurate responses from the model. By combining the strengths of LLMs
and the prompting technique, the need for task-specific neural architectures or ad hoc
feature engineering can be alleviated. In this paper, we introduce ExtremITA, an app-
roach applied to the whole set of EVALITA 2023 [17] challenges. It consists in adopting
a unique model and making it capable of addressing a diverse set of tasks by training
a Decoder-only model on the combined datasets available for the challenge. Through
multi-task learning, we assess the effectiveness of a single model in solving multiple
tasks simultaneously. The EVALITA challenge provided an ideal context for evaluat-
ing the capabilities of LLMs across various tasks over texts in Italian, with no specific
architectural requirements. We prompt the model with task-specific queries such as
“Does this text mention any conspiracy? Answer yes or no” or “On a scale of 0 to 5,
how much coherent is the following paragraph?”. An in-depth analysis of the resulting
model allows us to evaluate the ability of such LLMs to effectively solve different tasks
under different scenarios (e.g. increasing amount of available training examples). The
tasks in which the ExtremITA approach participated cover an overall wide range of
semantic dimensions, including Affect Detection, Authorship Analysis, Computational
Ethics, Named Entity Recognition, Information Extraction, and Discourse Coherence:
i) EMit - Categorical Emotion Detection in Italian Social Media [3]; ii) EmotivITA -
Dimensional and Multi-dimensional emotion analysis [13]; iii) PoliticIT - Political Ide-
ology Detection in Italian Texts [28]; iv) GeoLingIt - Geolocation of Linguistic Varia-
tion in Italy [27]; v) LangLearn - Language Learning Development [2]; vi) HaSpeeDe
3 - Political and Religious Hate Speech Detection [16]; vii) HODI - Homotranspho-
bia Detection in Italian [21]; viii) MULTI-Fake-DetectiVE - MULTImodal Fake News
Detection and VErification [6]; ix) ACTI - Automatic Conspiracy Theory Identification
[29,30]; x) NERMuD - Named-Entities Recognition on Multi-Domain Documents [23];
xi) CLinkaRT - Linking a Lab Result to its Test Event in the Clinical Domain [1]; xii)
WiC-ITA - Word-in-Context task for Italian [9]; xiii) DisCoTEX - Assessing DIScourse
COherence in Italian TEXts [8]. Among the 13 tasks and 22 subtasks, ExtremITA,
a single monolithic architecture based on LLaMA [35], achieved first place in 9 sub-
tasks (41%) and ranked within the top three in 14 subtasks (64%): this demonstrates its
effectiveness and large applicability. Recent work [11] further confirms this evidence
on other languages.

The rest of the paper is organized as follows: Sect. 2 presents the related work.
Section 3 describes the LLMs used in our approach. Section 4 presents the results along
with a brief error analysis. Finally, Sect. 5 provides the conclusions.

2 Related Work

Several studies, such as [7], have demonstrated the few-shot learning capabilities of the
Language Models. These models exhibit the ability to generalize information from a
limited number of input examples given through prompting, producing coherent and
accurate output. Motivated by these findings and those of a recent work [4], we inves-
tigate here the training of a unique Transformer-based model in a multi-task setting
to solve a wide range of tasks by extremely increasing the number of tasks they are
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trained on. The Transformer architecture [36] can be divided into two main compo-
nents, each giving rise to distinct families of models. The encoder, represented by BERT
[12], RoBERTa [19], and DeBERTa [14], is responsible for encoding input sequences
and generating meaningful representations (embeddings) using the self-attention mech-
anism. On the other hand, the decoder, exemplified by models like GPT [25], GPT3 [7],
and LLaMA [35], generates output sequences in an auto-regressive manner based on
the input and previously generated output tokens. BLOOM [37] is a particular Decoder-
only Transformer Language Model that was trained in multitask-prompted scenarios in
order to achieve strong performance on a variety of benchmarks. Additionally, there
exists another family of models, the Encoder-Decoder models, such as T5 [26] and
BART [18], which combine the strengths of both the encoder and decoder components.
These models maintain the integration of the two aforementioned blocks and are typ-
ically used in tasks like machine translation, summarization, and question-answering,
where complex input understanding and transduction are required. A notable applica-
tion of an Encoder-Decoder architecture in a multi-task scenario is presented in [26].
Specifically, the pre-training process of the T5 model involves training it on a diverse
text corpus derived from various sources, including books, articles, and websites, as
well as texts related to machine translation, classification, and regression tasks. During
pre-training, T5 employs a denoising objective, similar to other popular Transformer-
based models like BERT and GPT. The model is trained to reconstruct masked or cor-
rupted input text, aiding in the learning of meaningful representations and the capture
of contextual information. T5’s key strength lies in its versatility: by formulating differ-
ent NLP tasks in a text-to-text format, it can be fine-tuned for a specific task by simply
providing a prefix that describes the task and appropriate input-output pairs during fine-
tuning. In practice, this architecture can be exploited by concatenating the task name
with an input text, generating the expected solution in the output, such as a class label
in a classification task or a text span that answers a question. This flexibility eliminates
the need for task-specific architectures or modifications, making it easier to apply T5 in
various scenarios. Recently, this model has been applied to hundreds of tasks in [11],
while [10,31] demonstrate its effectiveness in “zero-shot” or “few-shot” learning sce-
narios. On the other hand, Decoder-only models are typically trained to be triggered by
text, such as natural language requests or text intended for processing. These models
generate text step by step, producing output that can serve as an answer to a question
or a solution to given tasks or requests. The ability to effectively follow instructions is
exemplified by the recent release of ChatGPT1. This characteristic holds greater appeal
as tasks can be linguistically described using prompts, where the input sentence pro-
vides contextual information. InstructGPT [22] is an extension of the GPT [7] language
model specifically designed to excel in multi-task scenarios when used with prompts.
It combines the power of language models with the ability to follow instructions pro-
vided in the form of natural language prompts. Unlike conventional language models
that generate text freely, InstructGPT is fine-tuned using human feedback to understand
and generate text based on a given prompt and select the best sequence that humans
would prefer. The process of following instructions is also known as instruction-tuning.
Another language model that employs this instruction-tuning technique is Alpaca [34],

1 https://openai.com/blog/chatgpt.

https://openai.com/blog/chatgpt
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which builds upon the LLaMA [35] foundational models. In the case of Alpaca, the
authors created 175 sets of English instructions, input sentences, and corresponding
outputs. These were then used as seeds to generate variations using GPT 3.5, resulting
in a collection of approximately 52, 000 instruction examples. The LLaMA model was
further fine-tuned using this extensive dataset, a process referred to as instruction-tuning
to produce Stanford Alpaca. More recently, an Italian counterpart called Camoscio [32]
underwent a similar instruction-tuning process to Alpaca but using Italian data, effec-
tively serving as the Italian equivalent. It is based on the same LLaMA model and was
instruction-tuned using the 52, 000 instructions that were automatically translated into
Italian using ChatGPT. As the size of these models continues to grow, reaching trillions
of parameters, there is a need to effectively fine-tune them using modest GPU resources.
The technique adopted in this paper, known as Low-Rank Adaptation (LoRA) [15],
involves freezing the weights of the pre-trained model and introducing smaller train-
able rank decomposition matrices into each layer of the Transformer architecture. This
approach significantly reduces the number of trainable parameters for downstream tasks
while avoiding additional inference latency.

3 Multi-task Instruction Tuning in ExtremITA

The approach adopted here for the EVALITA challenge focuses on efficiently modeling
all available tasks using a single monolithic architecture, namely extremITLLaMA.
This is an instruction-tuned Decoder-only model built upon the LLaMA foundational
models2, with a total of 7 billion parameters. The initial model was trained using the
LoRA technique on Italian translations3 of Alpaca instruction data, similar to the pro-
cess undergone by Camoscio. This training enables the model to comprehend and fol-
low instructions in Italian. After training the additional matrices, they are merged into
the original model to create an instruction-based model (using the “merge” procedure
from [15]). Finally, this model is further fine-tuned using LoRA on instructions that
reflect the EVALITA task. For each example from EVALITA, an input text is paired
with a manually crafted question simulating an instruction to be solved, accurately rep-
resenting the specific task. The next section details how the 22 subtasks in EVALITA
are encoded as prompts to fine-tune the architecture.

Prompt Engineering in ExtremITA. The methodology employed in this study takes
inspiration from the original LLaMA foundational models. Similar to that approach,
each instance used for training is transformed into a specific format consisting of
an instruction, an input, and an output. In the case of extremITLLaMA, which is
pre-trained to execute instructions, it utilizes a structured prompt containing a textual
description of the task and the desired output format specification. For example, when
applied to the ACTI task, the instruction provided is as follows: “In this text, does the
subject matter involve a conspiracy? Answer yes or no.”. The subsequent sentence to
be evaluated is appended to this instruction. A comprehensive set of such instructions
can be found in Table 1.

2 https://huggingface.co/decapoda-research/llama-7b-hf.
3 https://github.com/teelinsan/camoscio/tree/main/data.

https://huggingface.co/decapoda-research/llama-7b-hf
https://github.com/teelinsan/camoscio/tree/main/data
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Table 1. List of the natural language instruction definition for all tasks for the extremITLLaMA
model.

Task Name Natural language instruction

EMit A “Quali emozioni sono espresse in questo testo? Puoi scegliere una o più emozioni
tra’rabbia’,’anticipazione’,’disgusto’,’paura’,’gioia’,’amore’,’tristezza’,’sorpresa’,’fiducia’, o’neutro’.”

EMit B “Di cosa parla il testo, tra’direzione’,’argomento’,’entrambi’,’non specificato’?”

EmotivITA “Scrivi quanta valenza è espressa in questo testo su una scala da 1 a 5, seguito da quanto stimolo è espresso in
questo testo su una scala da 1 a 5, seguito da quanto controllo è espresso in questo testo su una scala da 1 a 5.”

PoliticIT “Scrivi se l’autore del testo è’uomo’ o’donna’, seguito dalla sua appartenenza politica
tra’destra’,’sinistra’,’centrodestra’,’centrosinistra’.”

GeoLingIt “Scrivi la regione di appartenenza di chi ha scritto questo testo, seguito dalla latitudine, seguita dalla
longitudine.”

LangLearn “Questi due testi separati da [SEP] sono presentati nell’ordine in cui sono stati scritti? Rispondi sì o no.”

HaSpeeDe 3 “In questo testo si esprime odio? Rispondi sì o no.”

HODI A “In questo testo si esprime odio omotransfobico? Rispondi sì o no.”

HODI B “Con quali parole l’autore del testo precedente esprime odio omotransfobico? Separa le sequenze di parole
con [gap].”

MULTI-Fake
-DetectiVE

“L’evento riportato nel testo è’certamente vero’,’probabilmente vero’,’probabilmente falso’, o’certamente
falso’?”

ACTI A “In questo testo si parla di una cospirazione? Rispondi sì o no.”

ACTI B “Di quale teoria cospirazionista parla questo testo, tra’Covid’,’Qanon’,’Terrapiattista’,’Russia’?”

NERMuD “Scrivi le menzioni di entità nel testo, indicandone il tipo: [PER] (persona), [LOC] (luogo), [ORG]
(organizzazione).”

CLinkaRT “Trova i risultati dei test e delle misurazioni nel testo. Per ogni risultato, scrivi’[BREL]’, seguito dal risultato
seguito da’[SEP]’, seguito dal test, seguito da’[EREL]’. Se non trovi nessun risultato, scrivi’[NOREL]’.”

WiC-ITA “La parola compresa tra [TGTS] e [TGTE] ha lo stesso significato in entrambe le frasi? Rispondi sì o no.”

DisCoTEX 1 “Le due frasi precedenti, separate da’[SEP]’, sono coerenti tra loro? Rispondi sì o no.”

DisCoTEX 2 “Quanto è coerente questa frase, su una scala da 0 a 5?”

The output varies depending on the specific task. For a comprehensive collection
of outputs, please refer to Table 2. In binary classification tasks such as LangLearn,
HaspeeDe 3, HODI A, ACTI A, WiC-ITA, and DisCoTEX 1, the model is expected
to respond with either “Yes” or “No”. For instance, for the input “Hanno votato tutti
obbligo vaccinale, green pass, persecuzioni varie” in the ACTI A task, the output would
be “Yes” as the input text reflects a conspiracy theory. In classification tasks involving a
single label, such as EMit B, MULTI-Fake-DetectiVE, and ACTI B, the output simply
represents the label of the target class. For the same aforementioned input, the output
for the ACTI B task would be “Covid” as it pertains to the Covid conspiracy theory.
In certain tasks like PoliticIT [28], where a text is expected to be associated with the
gender and political inclination of the author, multiple labels representing these differ-
ent dimensions are used, e.g., “male left center-left”. In EMit A [3], where multiple
emotions can be evoked, these emotions are provided as a sequence of labels. In regres-
sion tasks such as EmotivITA [13] and DisCoTEX 2 [8], the output is a number that
needs to be predicted within a specific range. In GeoLingIt [27], the models are asked
to detect the author’s geographical region and the corresponding coordinates (latitude
and longitude), solely based on the tweet. For example, the given prompt is: “Write
the region to which the author of this text belongs, followed by the latitude, followed
by the longitude”. If the input sentence is “Daje che je’a famo!”, the model should
provide the answer “Lazio 41.8984164 12.54514535”, considering the use of typical
Roman dialect. This particular task combines both multi-label classification and regres-
sion since it requires determining the region (classification) and providing precise coor-
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Table 2. Output templates for extremITLLaMA. In EMit A the model is requested to generate
one or more labels from the first set (+) or the text “Neutrale” if no emotion is expressed.

Task Output Templates

EMit A {“Rabbia”, “Anticipazione”, “Disgusto”, “Paura”, “Gioia”, “Amore”, “Tristezza”,
“Sorpresa”, “Fiducia”}+∨ “Neutrale”

EMit B {“Direzione”, “Argomento”, “Entrambi”, “Non specificato”}

EmotivITA “Valenza: {0–5} Stimolo: {0–5} Controllo: {0–5}”

PoliticIT “Gender: {“Uomo”, “Donna”} PIB: {“Sinistra”, “Destra”} PIM: {“Sinistra”, “Destra”,
“Centro Sinistra”, “Centro Destra”}”

GeoLingIt “Regione: {Abruzzo, .., Veneto} Latitudine: {} Longitudine: {}”

LangLearn {“Sì”, “No”}

HaSpeeDe 3 {“Sì”, “No”}

HODI A {“Sì”, “No”}

HODI B <HOMOTRANSPHOBIA_MENTION>

MULTI-Fake
-DetectiVE

{“Certamente Falso”, “Probabilmente Falso”, “Probabilmente Vero”, “Certamente Vero”}

ACTI A {“Sì”, “No”}

ACTI B {“Terrapiattista”, “Covid”, “Qanon”, “Russia”}

NERMuD [<ENTITY_TYPE>] <ENTITY_MENTION>

CLinkaRT “[BREL] <RML_ENTITY_MENTION> [SEP] <EVENT_ENTITY_MENTION> [EREL]”

WiC-ITA {“Sì”, “No”}

DisCoTEX 1 {“Sì”, “No”}

DisCoTEX 2 {0–5}

dinates (regression) simultaneously. In HODI B [21], where the objective is to extract
the span of the offending text, the output simply consists of that span. In NERMuD
[23], the expected list of Named Entities is reported as a sequence of text spans, each
associated with the corresponding entity type. CLinkaRT [1] focuses on extracting the
names of medical tests performed on patients from an input text and linking them to the
corresponding test results, treating it as a Relation Extraction problem. Here, the rela-
tions are encoded using a slightly more complex form to summarize a list of relations,
each associating an EVENT with a corresponding measure (or RML). As an example,
the sentence “Il PSA aumentava da 2 a 62 ng/ml.” is associated with “[BREL] 2 [SEP]
PSA [EREL] [BREL] 62 ng/ml [SEP] PSA [EREL]” (where 2 and 62 represent the RML
while PSA is the test event).

4 Experimental Evaluation

Experimental Setup. The training of the model utilized PyTorch and the Huggingface
library, along with the PEFT [20] packages, to implement the LoRA [15] technique.
The training was performed on a unified dataset that included all the tasks of EVALITA
[17]. In general, each example in an EVALITA task corresponded to an example in our
learning setup, with a few exceptions. For the ACTI task, the dataset was expanded, in
order to increase its number in the overall training data, by incorporating some4 sen-
tences from dataset B, and vice versa. This resulted in an increase in the number of
examples from 460 to 1, 909 for ACTI A and from 300 to 777 for ACTI B. In the case
of CLinkaRT, only long documents were available, so we segmented the medical reports

4 Only the positive examples, i.e. the ones that involved any conspiracy theory, are added from
the dataset A to B or vice versa.
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into smaller parts for computational purposes using the Spacy library. The segmentation
process respected sentence boundaries and resulted in a dataset expansion from 83 large
documents to 3, 903 shorter sentences. Additionally, we augmented this dataset with
examples from the dataset provided in TESTLINK@IberLEF 20235, which contained
medical reports in Spanish. Although the language was different, these texts exhibited
similar phenomena related to events and measures that are generally language invari-
ant. This augmentation process recovered over 95% of annotated relations. For the EMit
task, we converted emoji representations into textual descriptions to enhance compati-
bility with language models. In GeoLingIt, we modified the task to solve both task A
and task B simultaneously, enabling a single prediction for both, as we thought that the
model would benefit from the end-to-end prediction. In HODI B, we only considered
sentences expressing homotransphobia, because we modeled this task as a rewriting
process of spans of the input: if the sentence does not contain any homotransphobia con-
tent, there is no span to rewrite. The process resulted in a reduction from 5, 000 to 1, 914
examples. The dataset for the LangLearn task was truncated into sentences with a max-
imum of 100 tokens, for computational purposes. We also added additional examples
with inverted sentence pairs, augmenting the dataset from 3, 377 to 6, 438 examples, in
order to enhance the model capability of solving this task. In MULTI-Fake-DetectiVE,
we disregarded images and removed duplicate examples with the same text but differ-
ent images as we are dealing with Language Models, that are uni-modal. The process
resulted in a decrease from 1, 058 examples to 860. The NERMuD task was transformed
into a sequence-to-sequence task from its original token classification format to enhance
compatibility with language models. For PoliticIT, each text was divided into sentences
with a maximum length of 200 tokens for computational purposes, and a voting strategy
was applied at classification time to select the final class for gender and political ideas,
grouping sentences by the same author. Finally, the WiC-ITA dataset was expanded
by including examples6 with inverted sentence pairs while preserving the same label,
resulting in an increase from 5, 610 to 6, 600 examples. The complete dataset consisted
of a total of 134, 018 examples. The extremITLLaMA model underwent 2 epochs of
training (over 144 hours) with a learning rate of 3 · 10−4 and a batch size of 32. To
optimize the model’s performance, a linear scheduler with warmup was utilized, using
a warmup ratio of 0.1. The training process employed LoRA to refine the transformer’s
Wq,Wk,Wv , and Wo modules, as in [15]. The LoRA matrices had a matrix rank R
of 8 and a parameter α of 16. The training was performed on a single Tesla T4 GPUs
with 16GB of memory. This is particularly interesting as we have implied the smallest
available model, i.e. with 7-billion-parameters, to demonstrate that it can be used even
on standard architectures. It doesn’t rule out the possibility of evaluating larger mod-
els like LLaMA 30B or LLaMA 65B, but currently, they require such computational
power that would limit their applicability in real-world scenarios, due to their extensive
training duration and memory requirements. Initially, the training data was split into a
95% training set and a 5% validation set for hyper-parameter optimization. The source
code for reproducing the experiment and dataset generation is available on GitHub7.

5 https://e3c.fbk.eu/testlinkiberlef.
6 Only the positive examples underwent sentence order flipping in order to rebalance the class

distribution.
7 https://github.com/crux82/ExtremITA.

https://e3c.fbk.eu/testlinkiberlef
https://github.com/crux82/ExtremITA
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Table 3. Performance and rank of our extremITLLaMA instruction-tuned model, the 0-shot
Camoscio model, and the Best Competitor (either that won or placed higher in the ranking) model
for the task of EVALITA 2023. Here each task is divided into the subtasks we participated in. In
bold the rank and the scores of the winning systems. The HM* measure for the DisCoTEX task
refers to the Harmonic Mean between Pearson’s and Spearman’s correlations. The “na” value is
due to missing the official evaluation scripts for the specific tasks at the time of paper writing.

Task SubTask Eval metric extremITLLaMA 0-shot Camoscio Best Competitor

Score Rank Score Score Rank

EMit A F1 0.6028 1 0.0092 0.4994 3
B F1 0.6459 1 0.1325 0.6184 3

EmotivITA B Pears Val 0.8110 1 0.0000 0.8110 2
Pears Aro 0.6330 0.0931 0.6520

Pears Dom 0.6300 0.0000 0.6540

PoliticIT - F1 0.7719 3 0.2965 0.8241 1

GeoLingIt A F1 0.3818 11 0.0205 0.6630 1
B Avg Km 145.15 9 280.14 97.74 1

LangLearn COWS F1 0.5500 8 na 0.7500 1
CITA F1 0.6100 8 na 0.9300 1

HaSpeeDe 3 A F1 - text 0.9034 3 0.3333 0.9128 1
F1 - context 0.9034 3 0.3333 0.9128 1

B F1 - xRel 0.6525 1 0.4558 0.6461 2
F1 - xPolitic 0.9034 3 0.3333 0.9128 1

HODI A F1 0.7942 5 0.3284 0.8108 1
B F1 0.7228 1 0.4790 0.7051 2

Multi-Fake
-Detective

A F1 0.5070 2 0.3800 0.5120 1
ATD F1 0.4640 1 0.2900 0.4600 2

ACTI A F1 0.8565 2 0.3306 0.8571 1
B F1 0.8556 5 0.1603 0.9123 1

NERMUD DAC F1 0.8900 1 na na na

CLinkaRT - F1 0.5916 2 na 0.6299 1

Wic-Ita A F1 it-it 0.5100 10 0.3333 0.7300 1
F1 it-en 0.5400 8 0.3333 0.7400 1

B F1 all 0.5100 10 0.3333 0.7300 1

DisCoTEX 1 Acc 0.8150 1 na 0.7200 2
2 HM* 0.6500 1 na 0.6300 2

Results Discussion. The experimental results are reported in Table 3. We presented
the tasks categorized by sub-task, followed by the specific evaluation metric, and the
scores and ranks achieved by the extremITLLaMA model, the 0-shot application
of Camoscio (as this is the base of our model) and the best competitor. The best-
performing method in terms of score and ranking for each subtask is highlighted in
bold. Our system ranked first in 9 out of 22 subtasks (i.e., 41% of subtasks) in EVALITA
2023, and it ranks in the top-three position in 14 subtasks, i.e., 64% of all tasks. How-
ever, we faced challenges in tasks such as GeoLingIt, LangLearn, and WiC-Ita, where
our monolithic architecture demonstrated limitations. These tasks specifically require
a system to detect and analyze changes in the author’s writing style or the contextual
meaning of words. Our models are primarily designed for sentence classification or
rewriting spans of input text to justify previous decisions (e.g., HODI). There are also
important considerations regarding the computational cost of both training and infer-
ence. Training extremITLLaMA on the entire EVALITA dataset took over 144 hours.
In terms of inference, it processes only 2 or 3 sentences per second. This significant
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delay in processing speed makes the extremITLLaMA model less practical using
“standard” computational resources, despite its performance across a wide range of
tasks. Overall, the above results are quite impressive, especially when considering that
no task-specific architectural choice was applied. Instead, a single LLM was utilized,
demonstrating competitive performance across almost all tasks. The key to achieving
such results seems to lie in properly prompting the model with natural language requests
or employing task-specific encoding techniques for the outputs. On the other hand, the
0-shot application of Camoscio showed poor performance in all tasks. This is to be
expected as the model is not tuned but it is used as is, with the original instruction-
tuning on the 52, 000 instructions from Alpaca. Most of the time, this model predicted
the most frequent class or hallucinated by rewriting parts of the input text. It suggests,
thus, that instruction-tuning using the natural language descriptions of the task is indeed
necessary to guide the model in the generation of the answer. To conduct a more com-
prehensive evaluation and optimization, it would have been beneficial to explore a wider
range of architectures and investigate all the hyper-parameters of the models. The esti-
mation of these parameters was done hastily due to the time constraints imposed by the
EVALITA deadlines and the extensive commitment required for the 13 tasks.

The Impact of Different Training Set Sizes. The extremITLLaMA model is trained
using about one hundred thousand examples, with a significant portion (30-40%) com-

Table 4. Scores of different extremITLLaMA models, where 0, 100, 500 and All refer to the
number of examples the models were trained on. Not all the tasks from EVALITA are reported in
this table as some official evaluation scripts are missing at the time of paper writing and thus the
evaluation could not be performed.

Task SubTask Eval metric TOTAL examples 0 100 500 1000 All

EMit A F1 5688 0.0092 0.2438 0.3526 0.4440 0.6028
B F1 0.1325 0.4013 0.5797 0.4450 0.6459

EmotivITA B Pears Val 7608 0.0000 0.2115 0.6399 0.7043 0.8110
Pears Aro 0.0931 -0.0218 0.3447 0.4398 0.6330

Pears Dom 0.0000 0.1836 0.4441 0.5627 0.6300

PoliticIT - F1 16047 0.2965 0.3129 0.5956 0.5548 0.7719

GeoLingIt A F1 13669 0.0205 0.1163 0.1351 0.1523 0.3818
B Avg Km 280.14 277.32 281.14 267.48 145.15

LangLearn COWS macro-F1 320 0.3347 0.5428 0.4875 0.4804 0.5739
CITA macro-F1 307 0.3326 0.3725 0.4845 0.4918 0.5954

HaSpeeDe 3 A F1 - text 5340 0.3333 0.4212 0.7239 0.8498 0.9034
F1 - context 0.3333 0.4212 0.7239 0.8498 0.9034

B F1 - xRel 0.4558 0.5079 0.6199 0.6500 0.6525
F1 - xPolitic 0.3333 0.4212 0.7239 0.8498 0.9034

HODI A F1 4770 0.3284 0.3653 0.6126 0.6606 0.7942
B F1 1914 0.4790 0.4831 0.5782 0.6122 0.7228

Multi-Fake- Detective A F1 860 0.3800 0.4200 0.4400 0.4700 0.5070
ATD F1 0.2900 0.4200 0.3900 0.4700 0.4640

ACTI A F1 1909 0.3306 0.6129 0.7850 0.7944 0.8565
B F1 777 0.1603 0.3691 0.8471 0.8440 0.8556

WiC-ITA A F1 it-it 5610 0.3333 0.3333 0.3333 0.3333 0.5100

F1 it-en 0.3333 0.3378 0.3333 0.3333 0.5400
B F1 all 0.3333 0.3333 0.3333 0.3333 0.5100
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ing from the NERMUD dataset. While LLaMA and its derived models, Alpaca and
Camoscio, are intended to be used in a 0-shot manner, we conducted additional instruc-
tion tuning using the EVALITA data. In order to evaluate the model’s generalization
capabilities across these domains and its reliance on specific data, we conducted an
experiment to analyze its learning curve based on different training set sizes. For this
experiment on the EVALITA data, we followed the methodology outlined in Sect. 3
for instruction-tuning. We utilized up to 100, 500, and 1000 examples for each task,
whenever available. Additionally, we used the 0-shot application of Camoscio as is,
i.e. using 0 examples with no additional instruction-tuning. Table 4 displays the results
for selected tasks, for which official evaluation scripts were available, categorized by
the trained models: 0, 100, 500, 1000 and the “All” model, which corresponds to
extremITLLaMA as it was trained using all the available data.

Unsurprisingly, the “All” model consistently outperforms the others. For instance,
in the EMit task, where extremITLLaMA achieved first position in both subtasks, we
observe an improvement in model performance as the training set size increases from
0 to 1000. This suggests that performance gains are directly linked to the size of the
training set. This trend is observed in the majority of the tasks, such as EmotivITA,
HaSpeeDe3, HODI, and ACTI. However, some tasks, such as WiC-ITA, seem to be
more challenging, as the models often tend to produce responses aligned with the most
frequent class. Tasks such as GeoLingIt show that even 1000 examples are not sufficient
to capture the relations between the input and the output and the resulting performance
is increasing, yet still poor. Note that for LangLearn we switched the evaluation metric
from F1 of the positive class (used in the official script and in Table 3) to macro-average
F1, to better capture the evaluation of biased models. In fact, the official metric for this
task is artificially high for the 0-shot model even if it always outputs the positive label.
Conversely, the 0-shot application of Camoscio performs the poorest. This model was
developed to comprehend instructions, respond to queries, and fulfill requests using
natural language, all while providing argumentation for its decisions. However, due
to its design, it occasionally fails to strictly adhere to the provided instructions in the
prompt before classifying examples. As a result, the generated text often deviates sig-
nificantly from the intended output and the model struggles to accurately follow instruc-
tions and generate the desired output. This result highlights the significant challenges
presented by EVALITA and emphasizes the continued importance of instruction-tuning
for enhancing the performance of Large Language Models (LLMs) on complex tasks.
Specifically, even with a Decoder-base and relatively smaller, more computationally
efficient models like LLaMa 7B (as discussed in this paper), instruction-tuning applied
to a consistent number of representative examples remains essential. Another interesting
idea is to assess the few-shot learning capabilities of Language Models by leveraging
a limited number of input-output pairs within the prompt. To evaluate this, we selected
only the “HaSpeeDe 3” and “ACTI” tasks (due to space and time constraints, but this
can be expanded in the future). “HaSpeeDe 3” involves binary classification to detect
if the input text contains any form of hate speech. We utilized the Camoscio model
without instruction-tuning but made modifications to the prompt by adding two exam-
ples, one randomly-selected example from the training set for each class. The resulting
prompt, combined with the original task description (see Table 1), included a descrip-
tion of the examples as follows: “This text contains hate: <POSITIVE EXAMPLE>, and
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you should answer yes. This text does not contain hate: <NEGATIVE EXAMPLE>, and
you should answer no.”. We then added the current example to be predicted. This few-
shot version achieves an F1 measure of 0.4486, surpassing the fine-tuned version on
100 examples by more than 2%. This result confirms the few-shot learning capabilities
of LLMs as they exhibit a remarkable ability to capture dependencies and relationships
with just a few examples. Moreover, we evaluated the use of prompts by the 2-shot strat-
egy over the model instruction-tuned on 100, 500, and 1000 examples, with results of
0.60, 0.67, and 0.83, respectively: this thus shows that a good increase in performance is
observed at 100 examples (from 0.42 to 0.60) but then slightly poorer performances are
obtained. We then applied the same strategy on the “ACTI” task, which involves detect-
ing if a text concerns a conspiracy theory and the results are different: the 2-shot model
shows an increase achieving 0.4819, while all the other versions (100, 500 and 1000)
show a drop in performance. One reason could be that recognizing conspiracy aspects
over a brief text may require capabilities that these models still lack, even in a few-shot
scenario. To validate these findings conclusively, further comprehensive experimenta-
tion is necessary. However, we believe that this paves the way for diverse evaluations
and prompting engineering tests of such models.

Error Analysis. Since our team participated in all the tasks, it would be unfeasible
to provide a deeper analysis of each individual result in this report. However, in order
to gain some insight into the inner working of the model, here we present some error
analysis carried out on two tasks. We selected a successful task where our systems
ranked very high, and another one with a much lower ranking.

Fig. 1. F1-measure of our systems on the LangLearn
test set, with texts removed that are longer than an
increasing threshold (horizontal axis).

In the LangLearn task, our sys-
tem ranked quite low, specifically the
8th place. LangLearn is a text pair
classification task where the most
informative features are expected
to be stylistic, rather than seman-
tic, for capturing the text author’s
development in language learning.
With this premise, we were antici-
pating a subpar performance by our
model from the beginning. How-
ever, one relative challenge of this
task is the text length. For compu-
tational limitations, in EVALITA we
had to cut input texts to 100 tokens
or less, therefore neglecting a sig-
nificant portion of the data — we
retained exactly 24.6% of the tokens from the two training sets combined. We checked
the impact of text size on the performance of the extremITLLaMA prediction, under
the hypothesis that longer texts in the test set (cut by our systems to a greater extent) are
penalized due to lack of information. The plot in Fig. 1 shows the F1-measure of our
system, with varying portions of the test set, where texts were filtered by length. The
number on the horizontal axis is thus a threshold on the maximal allowed size in terms
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of characters of the two texts forming an instance. The downward trend of the perfor-
mance of the fully fine-tuned system indicates that its predictions are more accurate
on shorter text pairs, while more and more errors are made on longer, thus underrepre-
sented, texts. The trend is similar, albeit noisier, in the different training size settings,
indicating a greater gain in performance on relatively shorter texts due to the additional
training examples.

Table 5. Performance in terms of Precision, Recall and F1-measure of our system on the EMit A
task. The last column (Support) is the number of positive instances per label in the test set.

Label 0 100 500 1000 All Sup.
Pr. R. F1 Pr. R. F1 Pr. R. F1 Pr. R. F1 Pr. R. F1

Anger .077 .018 .029 .111 .018 .031 .488 .357 .412 .500 .268 .349 .759 .393 .518 56

Antic .000 .000 .000 .310 .106 .158 .542 .376 .444 .621 .424 .503 .675 .612 .642 85

Disgust .480 .073 .126 .476 .412 .442 .632 .333 .437 .586 .455 .512 .674 .588 .628 165

Fear .071 .077 .074 .500 .077 .133 .000 .000 .000 .750 .231 .353 .636 .538 .583 13

Joy .068 .240 .106 .675 .270 .386 .571 .360 .442 .588 .470 .522 .648 .590 .618 100

Love .190 .039 .065 .571 .078 .137 .882 .146 .250 .683 .272 .389 .745 .398 .519 103

Neutral .000 .000 .000 .364 .495 .419 .400 .824 .538 .513 .743 .607 .657 .757 .704 210

Sadness .244 .305 .271 1.000 .105 .190 .742 .242 .365 .667 .358 .466 .750 .537 .626 95

Surprise .081 .157 .107 .000 .000 .000 1.000 .039 .075 .382 .333 .356 .632 .422 .506 102

Trust .339 .618 .438 .429 .735 .542 .556 .570 .563 .648 .562 .602 .698 .673 .685 272

EMit is a multi-label classification problem, where the labels are eight emotions
defined by Plutchik [24] plus “love” and a label for neutral texts. Table 5 reports the
performance of our system broken down by labels. It is interesting to notice that the
advantage shown by extremITLLaMA on the aggregated result comes from address-
ing successfully some underrepresented labels. In particular, while the least represented
labels (Fear and Anger) are predicted with less consistency, other labels at the lower
end of the representation spectrum like Anticipation and Sadness are predicted quite
reliably. While the overall performance of extremITLLaMA on the EMit task is com-
petitive, the figures show how it is also strongly dependent on fine-tuning. In fact, the
difference between the performance even in the 1000-instances instruction-tuning set-
ting is significantly lower than that with access to the full EMit training set, for all
labels.

5 Conclusions

In a recent position paper with a provocative title, “is EVALITA done?” [5], the author
raises concerns about the impact of LLMs and Zero-Shot approaches on the evalu-
ation campaign in NLP. The results presented in this paper confirm that EVALITA
continues to provide a valuable platform for understanding and developing language
resources and tools for the Italian language, as evidenced by the variability in ranking
obtained by our Transformer-based models, despite the huge number of parameters or
the extensive instruction-tuning. Nevertheless, the effectiveness of extremITLLaMA,
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requiring only minor adjustments and instruction-tuning, undeniably pushes the bound-
aries of certain tasks, particularly those involving text classification that relies on text
semantics. Notably, the performance of the “smaller” model used here, i.e., based on
LLaMA composed of 7 billion parameters, even with zero-shot and instruction-tuning
approaches, highlights the need for a significant amount of training data to achieve
competitiveness with state-of-the-art methods. While these smaller models offer sus-
tainability advantages by requiring less computation, they still rely on a substantial
amount of training data. These findings underscore the potential of LLMs in real-world
scenarios, while also highlighting the importance of striking a balance between model
size, computational resources, and the different usage of training data between fine-
tuning and prompting. Further research can explore approaches that optimize the use
of limited training data, such as zero or few-shot learning through prompt engineering
while considering the sustainability aspect of the models.
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Abstract. The extraction of named entities from court judgments is
useful in several downstream applications, such as document anonymiza-
tion and semantic search engines. In this paper, we discuss the applica-
tion of named entity recognition and linking (NEEL) to extract entities
from Italian civil court judgments. To develop and evaluate our work,
we use a corpus of 146 manually annotated court judgments. We use a
pipeline that combines a transformer-based Named Entity Recognition
(NER) component, a transformer-based Named Entity Linking (NEL)
component, and a NIL prediction component. While the NEL and NIL
prediction components are not fine-tuned on domain-specific data, the
NER component is fine-tuned on the annotated corpus. In addition, we
compare different masked language modeling (MLM) adaptation strate-
gies to optimize the result and investigate their impact. Results obtained
on a 30-document test set reveal satisfactory performance, especially on
the NER task, and emphasize challenges to improve NEEL on similar
documents. Our code is available on GitHub.(https://github.com/rpo19/
pozzi aixia 2023. We are not allowed to publish sensitive data and the
NER models trained on sensitive data.)

Keywords: Named Entity Recognition · Named Entity Linking · NIL
Prediction · Italian Civil Court Judgments · Legal · Domain
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1 Introduction

Solutions to extract information from legal texts have a long tradition [37] and
are attracting even greater interest, also due to the performance boost on many
tasks that has been made possible by recent advances in natural language pro-
cessing (NLP) technologies (see Sect. 2). The language in legal text and the
downstream application may differ significantly depending on the domain, a
broad spectrum of specific solutions have been proposed in a variety of domains,
e.g., from law to court judgments, from contracts to criminal investigations [3].
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For example, many approaches have been proposed to extract legal terminol-
ogy [5] and some approach has focused on named entities [37]. In this paper,
we focus on a specific domain: the extraction of named entities from Italian
court judgments, and, in particular, from judgments produced in the context
of civil trials. The work discussed in this paper is part of activities conducted
in two projects developed in cooperation with or funded by DGSIA, the body
that manages information systems of the Ministry of Justice, and the Ministry
of Justice itself.

Entity extraction is applied to enrich court judgment data to support three
main target downstream applications: 1) semantic search, where stakeholders
(mainly judges) can search for previous judgments, and use named entities
therein to filter out results; 2) anonymization, where finding references, especially
to people and organizations, is a prerequisite to anonymize the judgments; 3) cal-
culate advanced statistical analyses, which can use variables that are not found
in trial records and metadata, and can be found only in the actual text (e.g.,
average alimony by district). While additional NLP processing methods may be
required for advanced statistical analyses, named entity extraction remains a
crucial component for solutions targeting this application.

With entity extraction, we refer to a task that goes a bit beyond NER, as
proposed in most of the previous approaches. In fact, for all or some of the
above applications, it is valuable not only to find named entity mentions and
classify them into a set of known classes, but also to consolidate these mentions
into an entity-centric knowledge layer, which supports deeper data integration
functionalities and related downstream functionalities. In particular, deeper inte-
gration can be achieved by: 1) reconciling the mentions of different entities and
linking references to known entities described in background knowledge bases,
e.g., Wikipedia entities (named entity linking - NEL); 2) reconciling different
mentions of entities within a document (entity clustering). Observe that named
entity linking contributes to entity clustering, where mentions with the same link
are implicitly clustered together. Another reason to use NEL in the entity extrac-
tion process is that there are entities in court judgments that are known because
described in background knowledge bases, which makes these links useful. In
fact, in these projects, we developed an end-to-end entity extraction pipeline
that performs the following tasks: NER; NEL; NIL prediction, which decides
whether to link an entity mention to an entity in the KB (the one identified by
NEL) or to consider that the correct entity is not in the KB, i.e., if a mention is
respectively not NIL, or NIL (“not in lexicon”); NIL clustering, i.e., the task of
clustering NIL mentions referring to the same entity. The pipeline is inspired by
and shares some components of the approach described in previous work [24].

In this paper, we focus on discussing the performance that our neural algo-
rithms achieve on named entity recognition and linking tasks (NEEL) including
NIL prediction. To better illustrate the NEEL process, we provide an example
in Fig. 1. We leave out of the focus of this paper the NIL clustering part, mainly
for reasons of space.

In particular, we present a pipeline that combines a transformer-based named
entity recognition (NER) component, a transformer-based Named Entity Linking
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(NEL) component, and a NIL prediction component. While the NEL and NIL
prediction components are not fine-tuned on domain-specific data, the NER
component is fine-tuned on an annotated corpus of civil court judgments. In
addition, we test different masked language modeling (MLM) [10] adaptation
strategies, including adaptation with a larger corpus of civil court judgments
from which the annotated corpus has been taken.

The paper is organized as follows: in Sect. 2 we discuss related work; in Sect. 3,
we present our approach; in Sect. 4 we present the results of our experimental
evaluation; finally, conclusion ends the paper in Sect. 5.

Fig. 1. Overview of NEEL with a NIL (Smith) and a ¬NIL mention (London). The
correct entity for Smith is not present in the KB, indeed, NEL provides a wrong
candidate, and NIL prediction classifies Smith as NIL.

2 Related Work

This section presents an overview of recent advancements in Named Entity
Extraction and Linking (NEEL) techniques, including NIL prediction. We start
by focusing on NEEL approaches in the legal domain, then we proceed with the
status of NEEL for the Italian language. Finally, we briefly highlight recent
developments in general-domain NEEL, additionally discussing the advance-
ments achieved in the three subtasks of NEEL: named entity recognition (NER),
named entity linking (NEL), and NIL prediction. NER identifies mentions of
named entities and classifies them into a predefined set of classes, while NEL
links these mentions to corresponding entities in a knowledge base.; 3) NIL pre-
diction determines if the NEL candidate is correct or if the mention refers to
an entity that is missing from the KB, i.e., an unlinkable entity mention or NIL
(“not in lexicon”) mention.

By examining the related works in these areas, we lay the foundation for our
research and shed light on existing gaps in the field of NEEL with NIL prediction
applied to Italian court judgments.

2.1 NEEL for Legal Documents

Most of the previous work on NEEL for legal documents has focused on the NER
task only. The first NER approaches are based on handcrafted rules and statis-
tical models [37], such as conditional random fields (CRFs) [19]. More recent
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approaches to NER started using BiLSTM-based models combined with CRFs
for Brazilian and German legal texts [37]. After the advent of transformers [33]
and BERT [10], which obtained impressive performance in multiple NLP tasks,
LEGAL-BERT, specialized in the legal domain, has been released [7]. Later,
some work compared LEGAL-BERT with previous approaches [16] for NER find-
ing that LEGAL-BERT performance is comparable to simple models (LSTMs,
CNNs).

A few approaches have studied NEL in legal texts. One of the first approaches
applied NER and NEL on a corpus of judgments of the European Court of
Human Rights [4]. As the background KB, they use a legal-specific ontology
enriched with YAGO1 after an alignment procedure. Another approach targets
the NEL task only on the EUR-Lex law article dataset [11]. Their NEL system
is trained using transfer learning. We study the end-to-end combination of NER,
NEL, and NIL prediction, and we use a more recent NEL approach [35] trained
on a large Italian Wikipedia corpus without fine-tuning on court judgment data.
Another study combined BERT [10] with rule-based techniques for NER and
coupled it with an off-the-shelves NEL service to extract entities from court
decisions in the Finnish language [29]; NEL is performed with a popularity-
based approach. This study is the most similar to ours; however, we focus on
the NIL prediction problem, and we use a BERT-based NEL approach; also, in
this paper, we discuss only the performance of neural algorithms.

Some work that studies NEL with NIL prediction is also evaluated on docu-
ments that are related to the legal domain [17] (the depositions of the 1641 Irish
rebellion2). However, to the best of our knowledge, no prior work has investi-
gated end-to-end NEEL considering the NIL prediction problem on recent legal
data.

2.2 NEEL in the Italian Language

Italian datasets for NER include multilingual resources [22,30], and domain-
specific datasets, such as [6] in the medical domain. Similarly, Italian NEL
datasets comprise multilingual ones, i.e. VoxEL [26] and resources based on
micro-posts [2].

Among the ready-to-use NEEL libraries for the Italian language, notable
options are SpaCy3 and Tint [23] for NER and DBpedia Spotlight [8] for both
NER and NEL. SpaCy provides pre-trained NER models of different sizes (small,
medium and large), but currently does not provide any pre-trained transformer-
based model for Italian. Tint performs NER with a combination of CRFs taggers
and rule-based systems for dates and money. DBpedia Spotlight is a ready-to-use
tool that recognizes and links entity mentions to DBpedia4.

1 https://yago-knowledge.org/.
2 http://1641.tcd.ie/.
3 https://spacy.io.
4 https://www.dbpedia.org/.

https://yago-knowledge.org/
http://1641.tcd.ie/
https://spacy.io
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2.3 NEEL for General Domain

NEEL with NIL prediction dates back to the knowledge base population track
(TAC-KBP) of the Text Analysis Conference5 (TAC), which has included the
NIL prediction task since 2009 [21]. Work focusing on end-to-end NEEL includes
approaches that jointly perform the subtasks [1,18] and pipeline-based sys-
tems [13,15].

Follows a brief overview of the recent developments of the three subtasks.

NER. Recent DL approaches for NER include models based on recurrent neu-
ral networks (RNNs), convolutional neural networks (CNNs), and transform-
ers [28], often combined with CRFs for the final prediction of sequence labels.
Several studies highlighted the importance of word embeddings and character
embeddings for NER, including non-contextualized embeddings and contextu-
alized embeddings [10]. Indeed, the most effective approaches are based on this
latter class of embeddings: the state-of-the-art on CoNLL2003 [31], an impor-
tant benchmark for English NER, is detained by concatenating character-based,
contextualized, and non-contextualized embeddings [34].

NEL. Since 2013, representation learning techniques for NEL have been
explored to obtain dense representations of mentions and entities and calculate
a similarity score (e.g. cosine similarity) to rank linking candidates [12,36]. The
attention mechanism and transformers [33] have played a crucial role in enhanc-
ing dense representations, leading to the development of the bi-encoder and cross-
encoder paradigms [14,35], which are widely used for dense-retrieval and candi-
date re-ranking, respectively. Recently, promising entity linking paradigms that
better leverage the pre-training task of language models are emerging: autore-
gressive entity linking [9], and extractive entity linking [25].

NIL Prediction. NIL entities have been often ignored in the literature of entity
linking: among the 38 approaches compared by the survey [28] only 8 considered
NIL entities. NIL prediction strategies, several of which derive from the TAC-
KBP, include applying a threshold to the entity linking score, representing NIL
with an additional class, and using a binary classifier on top of the linking score
and additional features [28].

3 Named Entity and Linking Algorithms

As discussed in Sect. 1, in this paper we focus on presenting our NEEL approach
for extracting entities from civil court judgments and evaluating its performance
on an annotated dataset. Our approach implements three tasks [24] in a pipeline:
NER, NEL, and NIL prediction. For NER, we focus on neural NER algorithms,

5 https://tac.nist.gov/.

https://tac.nist.gov/
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Table 1. Statistics of ICCJ. Number of NIL annotations is indicated in parentheses.

#Docs #Ann PER ORG LOC DATE MONEY MISC

Train 102 11940 2997 2761 612 2088 791 2691

Validation 14 1688 308 369 77 350 84 500

Test(#NIL) 30 3006(2539) 722(653) 694(443) 195(58) 555 223 617

considering a transformer-based NER module that we fine-tune on an annotated
corpus of court judgments. Given that the NER component can use different
transformers, we also analyze the impact of domain adaptation, based on masked
language modeling (MLM), on downstream performance. Since the classes of
entities considered by NER are related to the annotated corpus, we organize this
section as follows: we first introduce the Italian Civil Court Judgment Corpus;
we discuss the classes used in the NER module; then we provide details about
the NER component, the NEL algorithm, and the NIL prediction.

3.1 Italian Civil Court Judgment Corpus and NER Classes

The gold standard dataset we use for training and evaluation is composed of
146 annotated judgments derived from a corpus of 900,000 legal judgments,
organized as follows: 102 documents as the training set, 14 for validation, and
a test set of 30 documents. Unfortunately, we are unable to publish the corpus
due to the sensitive nature of the data it contains. However, upon request, we
are open to exploring the possibility of sharing it through bilateral agreements.
The annotations in the corpus have been performed by two annotators. The
inter-annotator agreement (IAA) has been calculated using the F1-measure to
assess the coherence between the annotations in terms of both class and span
and using Cohen’s Kappa, obtaining respectively 80.8% and 66.2%.

All the documents have NER annotations considering the following classes:
Person (PER), Organization (ORG), Location (LOC ), Date (DATE ), Money
(MONEY ), and Miscellaneous (MISC ), that includes references to court judg-
ments, law articles, court decrees, or any entity not covered by the above classes.
In total, the dataset is composed of more than 16,000 annotations and each
document counts on average ∼1,900 words. Table 1 reports detailed statistics,
including the number of annotations for each class.

The annotations for named entity linking (NEL) and NIL prediction are only
available in the test set. These annotations are limited to the classes PER, ORG,
and LOC. DATE, MONEY, and MISC mentions have not been annotated for
NEL and NIL prediction because they are expected to be processed by rule-based
algorithms that we do not cover in this work.

For the remainder of this work, we will refer to our annotated corpus of 146
documents as ICCJ (Italian Civil Court Judgment) and to the 900,000 legal
judgment (without annotations) as ICCJ900k.
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Table 2. NER backbones details with the applied MLM-adaptations (one model per
column). Model names indicate the order of applied adaptations. Legal domain data
used for the LGL adaptation vary: *3.7GB legal corpus from the National Jurispru-
dential Archive; **6.6GB legal corpus composed of civil and criminal cases.

ITA ITA+LGL+ICCJ900k ITA+LGL LGL+ICCJ900k LGL

ITA Y Y Y - -

LGL - Y∗ Y∗ Y∗∗ Y∗∗

ICCJ900k - Y - Y Y

3.2 NER with MLM-Adaptation and Fine-Tuning

We use the library SpaCy-transformers6 with the SpaCy transition-based
parser to leverage contextualized token representations obtained from a trans-
former [33].

As the backbone transformer for the NER system, we evaluate five differ-
ent BERT encoders that have been trained with one of three different MLM-
adaptations or with a combination of them. They are further described in Table 2
where ITA (Italian) denotes the pre-training with MLM on general-domain Ital-
ian data, LGL (Legal) the MLM-adaptation to legal-domain data, and ICCJ900k
to our corpus of 900,000 Italian civil court judgments. It is important to note
that some models (LGL and LGL+ICCJ900k) are directly pre-trained on legal
domain data using MLM.

As a baseline, we consider the general-domain model ITA (available pre-
trained on huggingface7). Also, ITA+LGL [20] and LGL8 are available pre-
trained on huggingface, while for the ICCJ900k versions we perform the adap-
tation with MLM. For each backbone, we consider five models with a different
random weight initialization.

Finally, each model has been fine-tuned for the NER task on ICCJ training
set using the SpaCy library with early stopping on the validation set and AdamW
as the optimizer with the initial learning rate set to 5 × 10−5.

3.3 NEL with BLINK-ITA-Bi-encoder

For NEL we use the bi-encoder architecture of BLINK [35]. We initialize the bi-
encoder with the weights from Italian BERT-base9 [27], then we fine-tune them
on 9M training samples from Italian Wikipedia hyperlinks, following the original
work, for 5 epochs (in the last one we train with hard-negatives instead of random
negatives) using AdamW optimizer with the initial learning rate set to 1× 10−5

and a batch size of 20. As the linking KB, we use ∼ 1.5M entities obtained from
Italian Wikipedia10 after filtering out redirects and disambiguation pages.
6 https://spacy.io/universe/project/spacy-transformers.
7 https://huggingface.co/dbmdz/bert-base-italian-xxl-cased.
8 https://huggingface.co/dlicari/Italian-Legal-BERT-SC.
9 https://huggingface.co/dbmdz/bert-base-italian-uncased.

10 https://it.wikipedia.org.

https://spacy.io/universe/project/spacy-transformers
https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
https://huggingface.co/dlicari/Italian-Legal-BERT-SC
https://huggingface.co/dbmdz/bert-base-italian-uncased
https://it.wikipedia.org
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3.4 NIL Prediction

In the NIL prediction component, we use a logistic regression classifier that
receives as input features 1) the score of the top-ranked entity given by the NEL
system and 2) the difference between the top-ranked entity score and the second-
best one [24], and produces an output p ∈ [0, 1], where 1 means the top-ranked
entity is correct for linking the mention, while 0 means the opposite. In this
latter case, we consider the mention NIL, assuming that if the correct entity is
not in the top-ranked position, then it is not in the KB.

4 Experimental Evaluation

In order to evaluate the NEEL pipeline, we study the overall effectiveness of
the pipeline and each component separately. By doing so, we have been able to
independently study the behavior of the NER, the NEL, and the NIL prediction
systems, and finally of NEL with NIL prediction combined. We would like to
remind the reader that the NEL and NIL prediction components are applied
only to mentions classified as PER, ORG, and LOC by the NER component. In
our evaluation, we focus especially on the following objectives:

1. investigating the performance with different backbone transformers and the
impact of different MLM adaptation strategies on the NER performance;

2. investigating which classes of entities are more challenging;
3. investigating the performance of NEL and NIL prediction in a best-case sce-

nario, independently from the NER component;
4. investigating the performance of the end-to-end NEEL pipeline;
5. to discuss the main challenges.

4.1 Evaluation Settings and Measures

Please note that the ICCJ training set is only used to fine-tune the NER com-
ponent. All results refer to the ICCJ test set.

NER. NER is evaluated using strong and partial matching measures, which
is a quite common practice in evaluating NER approaches [32]. Both measures
rigorously require that the predicted class matches the gold standard one, while
they differ with respect to span detection: the former measure considers an anno-
tation correct when the predicted boundaries perfectly match the gold standard,
the latter when there is an overlap between them. Considering both measures
is useful also for two other reasons: 1) we can investigate to what extent some
correct annotations are returned by the algorithms, even when the span of the
mention is not perfectly identified; 2) by considering the gap between strong and
partial matching measures in a per-class performance analysis, we can investi-
gate which classes are more affected by boundary identification issues. For each
of the measures, as in a multiclass classification problem, we calculate precision,
recall, and F1-measure, micro and macro-averaged on the class, and separately
for each class.



Named Entity Recognition and Linking from Italian Civil Judgements 195

Comparison of Backbone Transformers for NER. The comparison of
backbone transformers for NER considers five different random weight initial-
izations for each backbone. We calculate the mean and the standard deviation
of the micro precision, recall, and F1-measure of the five initializations for each
transformer. We identify the top-performing model based on its F1-measure and
utilize it as the foundation of the NER component for subsequent evaluations.

NEL. We evaluate the NEL component in terms of accuracy and recall@100,
similarly to recent work [35], on the ICCJ test set, additionally comparing to
the news-based benchmark VoxEL [26].

It is important to remind that the NEL evaluation and the following ones
(NIL prediction, and end-to-end NEEL) exclusively focus on the classes PER,
ORG, and LOC.

NIL Prediction. The NIL prediction component is evaluated as a binary clas-
sifier with precision, recall, and F1-measure calculated for both classes (NIL
and ¬NIL). It is important to emphasize that, to evaluate the NIL prediction
independently from NEL errors, we consider it correct when the NIL prediction
classifies as NIL the mentions incorrectly linked by the NEL component. We
attribute a positive value to this behavior as it showcases the ability of the NIL
prediction to effectively identify NEL errors, thereby mitigating their impact.

NEL and NIL Prediction. We evaluate NEL with NIL prediction indepen-
dently from NER errors by calculating 1) the recall of the mentions to link, 2)
the recall of NIL mentions, and 3) the accuracy of all the mentions.

NEEL End-to-End. Finally, we evaluate the end-to-end NEEL using strong
and partial matching measures; in this case, an annotation is considered correct
when 1) the predicted class matches the gold standard, 2) the span matches the
gold standard according to the measure, and 3) the mention is linked to the
correct entity (if ¬NIL) or correctly identified as NIL. We calculate precision,
recall, F1-measure micro and macro-averaged for each class, exactly as in the
NER evaluation.

4.2 Results

Comparison of Backbone Transformers. Table 3 shows the results for the
comparison of the 5 backbone transformers for NER. Based on the sample mean,
the encoder that gives the best results is ITA+LGL+ICCJ900k, while the worst
one is LGL+ICCJ900k.

In order to properly analyze the presence of statistical differences based on
the choice of the backbone transformer, we conducted an analysis of variance
(ANOVA) test on the F1-measure. The results reveal a highly significant differ-
ence (with significance level α = 0.05). To further investigate the pairwise differ-
ences, we conducted a Tukey’s HSD test with a significance level of α = 0.05. We
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Table 3. Comparison of the backbone transformers (one per row) for NER on ICCJ
test. Using strong matching we calculate mean (± std) on 5 random initializations.

Precision Recall F1 Score

ITA 81.96(±0.76) 83.77(±1.39) 82.76(±0.63)

ITA+LGL+ICCJ900k 82.08(±0.87) 84.69(±0.52) 83.36(±0.41)

ITA+LGL 81.11(±1.00) 83.57(±1.04) 82.41(±0.55)

LGL+ICCJ900k 80.87(±0.73) 82.62(±1.55) 81.72(±0.52)

LGL 79.90(±1.05) 82.62(±1.36) 81.23(±0.47)

observe that ITA, the pre-training on general-domain Italian data, has a positive
impact on performance: the models ITA+LGL+ICCJ900k and ITA+LGL tend
to perform better than those trained from scratch on domain-specific data (LGL
and LGL+ICCJ900k).

Surprisingly, the findings suggest that employing a domain-specific legal
BERT does not result in a substantial enhancement in NER performance com-
pared to a generic Italian BERT. This observation extends to the adaptation to
the corpus of judgments (ICCJ900k) as well. Furthermore, we emphasize that
the use of a pre-trained generic Italian BERT significantly reduces the effort
required for adaptation in terms of time, costs, and environmental imprint.

NER. The evaluation results for the NER component, as shown in Table 4, are
promising. All the strong matching measures exceed 80%, and all the partial
matching measures surpass 90%, indicating overall proficiency in NER recogni-
tion. The classes MONEY and PER achieve high recognition rates, surpassing
90% with the strong matching measure. However, the performance for MISC is
lower compared to other types. This discrepancy may be attributed to the intrin-
sic heterogeneity of the MISC class. Additionally, MISC exhibits the largest dis-
parity between strong matching performance and partial matching performance.
A significant difference (approximately 12%) between strong and partial match-
ing outcomes also affects the class ORG, highlighting the difficulty in precisely
detecting the boundaries of organization mentions.

We also consider the successful results achieved by the NER component
indicative of the high quality of our annotated corpus ICCJ.

NEL and NIL Prediction. Table 5 reveals that the NEL and NIL prediction
components do not exhibit the same level of effectiveness as the NER compo-
nent. The independent evaluation of the NEL component (NEL⊥) demonstrates
a lower accuracy (73.52%) but achieves a recall@100 of 90.81%, suggesting that
the integration of a re-ranking system could potentially enhance our results.
Additionally, the comparison with the outcomes obtained with the news-based
VoxEL benchmark [26] further underscores the challenges presented by the ICCJ
corpus. We also remind you that the NEL component has not been fine-tuned on
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Table 4. NER evaluation with strong and partial matching on ICCJ test.

Strong Match Partial Match

Prec Recall F1 Prec Recall F1

DATE 83.49 80.18 81.80 92.12 87.84 89.93

LOC 86.34 84.62 85.49 94.24 92.31 93.26

MONEY 96.19 90.58 93.30 99.52 93.72 96.54

ORG 76.58 80.12 78.31 89.12 92.83 90.93

PER 90.37 91.00 90.68 95.77 95.43 95.10

MISC 73.97 70.02 71.94 91.27 85.14 88.10

Macro by Class 84.50 82.75 83.59 93.51 91.21 92.31

Micro 82.70 81.74 82.22 92.53 90.97 91.74

Table 5. NEL and NIL Prediction evaluation on ICCJ test. NEL⊥ and NIL Pred⊥ are
independent from other tasks. NEL & NIL Pred⊥ evaluate the two tasks independently
from NER. *NEL⊥ also reports results on VoxEL [26] for comparison.

NEL⊥ NIL Pred⊥ NEL & NIL Pred⊥

Acc Rec@100 Prec Rec F1 LinkRec 52.95

ICCJ 73.52 90.81 NIL 92.15 86.51 89.24 NILRec 86.31

sVoxEL-it* 88.89 96.83 ¬NIL 58.45 72.02 64.53 OverallAcc 76.85

ICCJ, and that the utilized knowledge base has not been restricted to domain-
related entities. These two factors represent possibilities for enhancing this com-
ponent.

The NIL prediction classifier (NIL⊥) is effective in recognizing the NIL class,
while it suffers with ¬NIL mentions: the low precision of 58.45% highlights that
several NIL mentions are wrongly predicted as ¬NIL.

During the evaluation of NEL with NIL prediction⊥, we notice the overall
accuracy is acceptable (76.85%) and the recall on the NIL mentions is satisfac-
tory at 86.31%. However, we observe that the performance of ¬NIL mentions
(LinkRec), which should have been linked to the knowledge base (KB), is not up
to the desired standard. The errors for this measure include both mentions linked
to incorrect entities and mentions inaccurately identified as NIL. After the NIL
prediction, indeed, only 52.95% of the ¬NIL mentions are correctly classified,
whereas the accuracy of NEL⊥ stands at 73.52%. This substantial 20% decline
in performance can be attributed to the false-NIL predictions.

For these reasons, we consider the NIL prediction to be the most significant
challenge in NEEL. It is important to further study and improve this component
in order to enhance the overall performance and reliability of NEEL systems.

NEEL End-to-End. Lastly, Table 6 presents the comprehensive results for the
end-to-end NEEL task. PER and LOC exhibit similar satisfactory performance
levels. On the other hand, ORG entities appear to be more challenging.
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Table 6. NEEL end-to-end evaluation of PER, LOC, ORG mentions on ICCJ test.

Strong Match Partial Match

Prec Recall F1 Prec Recall F1

LOC 75.92 74.36 75.13 80.10 78.46 79.27

ORG 51.10 53.46 52.25 60.61 63.22 61.88

PER 76.89 77.42 77.16 80.19 80.86 80.52

Macro by Class 67.97 68.41 68.18 73.63 74.18 73.89

Micro 65.39 66.73 66.05 71.53 72.95 72.24

Furthermore, the difference between strong and partial matching is limited for
PER and LOC, but significant for ORG, confirming the difficulty in accurately
detecting boundaries for ORG entities previously observed in the NER results.
Additionally, the relatively modest overall difference of 6% between partial and
strong matching, along with the disparity with NER-only results (72.24% vs
91.74%), highlights that the NEL and NIL prediction components are responsible
for the majority of errors. This observation, combined with the fact that we
fine-tuned only the NER component, suggests that fine-tuning the NEL and
NIL prediction components on the data could potentially enhance the overall
performance of the end-to-end NEEL system.

5 Conclusion

In this paper, we have presented the application of a NEEL pipeline to Italian
civil court judgments and an evaluation of its performance. The experimental
evaluation conducted on 30 annotated judgments suggests that the performance
of our NEEL pipeline is encouraging, especially the performance of the NER com-
ponent, and emphasizes some remaining challenges. Quite surprisingly, the gap
in performance between models that use domain-specific transformers, adapted
with masked language modeling, and those that use transformers trained on
generic Italian text is quite limited and not statistically significant. The chal-
lenges concern especially the NEL and NIL prediction components, which so far
we have not customized for or fine-tuned on domain-specific data. Fine-tuning
these algorithms using limited data is a challenge that we plan to address in
the future. Moreover, we plan to investigate strategies to support human-in-the-
loop NEEL, by improving the extraction quality and minimizing the user effort
during the annotation and validation phases. Finally, a prospective scenario for
future development involves jointly performing NEL and NIL prediction within a
unified module, as recent research indicates that consolidating multiple pipeline
tasks in a single module can significantly reduce error propagation [18]. Despite
the remaining challenges, we believe that the evidence discussed in the paper
suggests that, with further improvements, end-to-end NEEL pipelines could be
effectively applied to court judgments to disclose a variety of downstream appli-
cations.
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Abstract. Customer loyalty is a crucial factor for retail business suc-
cess. This paper illustrates an AI approach, named CENTAURO, to learn
customer loyalty prediction models that may help retailers to run power-
ful loyalty programs and take better decisions. In particular, the proposed
approach learns a classification model from the Recency, Frequency and
Monetary (RFM) value of historical customer shopping data. For this
purpose, the RFM model is extended to monitor Recency, Frequency
and Monetary both over time and over the various categories of products
purchased. Experiments performed with a benchmark dataset explore
the performance of the extended RFM model in combination with sev-
eral classification algorithms (e.g., Logistic Regression, Multi-Layer Per-
ceptron, Random Forest, Decision Tree and XGBoost). Finally, we use an
eXplainable Artificial Intelligence (XAI) technique – SHAP – to explore
the effect of RFM values on the customer loyalty profile learned through
the classification model.

Keywords: Churn Prediction · Customer Loyalty · Classification ·
XAI

1 Introduction

In today’s fiercely competitive markets, organizations are deeply concerned
about retaining their customers and preventing customer churns. The ability to
predict customer loyalty is crucial for business stakeholders who would identify
potential churners early on, in order to employ effective, preventive strategies.
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Particularly in sectors like retail and e-commerce, where customers are not bound
by contracts, the occurrence of non-contractual churn is quite common due to
the low switching costs associated with finding alternative services [9]. On the
other hand, the acquisition of new customers is an expensive activity that may
cost five times as much as retaining existing ones [7]. Therefore, the availability
of accurate loyalty prediction services is crucial to enable retail companies to
identify customer behaviours that show signs of churn and proactively persuade
these customers to stay with the company [10].

In the AI literature, predictive models of customer loyalty are mainly learned
by adopting the RFM (Recency, Frequency, Monetary) value to describe the cus-
tomer behaviour. This is a marketing technique that measures: the recency as
how much time has elapsed since a customer performed the last purchase, the fre-
quency as the number of purchases made by a customer within a reference period,
and the amount of money spent by the customer within a reference period. Sev-
eral AI studies evaluate the performance of various classification algorithms, e.g.,
Logistic Regression and Random Forest [4,6]. However, they commonly compute
a single RFM value per customer. This value is measured on the entire (or recent)
purchase history of the customer without paying attention to represent how the
purchase behavior of a customer changes over time. With the boom of deep
learning, a few recent studies have also started the investigation of the accuracy
performance of deep neural models, mainly Long Short-Term Memory Neural
Networks (LSTMs) and Convolutional Neural Networks (CNNs), trained on cus-
tomers’ sequence data [5]. For example, [1] learns an LSTM for customer loyalty
prediction from data sequences composed of average RFM values progressively
incremented on intervals of growing length over time. On the other hand, some
studies explore the accuracy performance of customer loyalty prediction models
trained by enriching the RFM value of a customer with product-based informa-
tion, e.g., the product category variance [2]. Although these studies account for
information related to product categories, they neglect possible changes happen-
ing in which categories of products have been purchased over time. Finally, we
note that despite several studies explore the accuracy performance of various
classification models learned for predicting customer loyalty in several domains
(e.g., telecommunication services, online gaming, multimedia streaming, banking
and insurance agencies), only a few research studies focus on the problem of cus-
tomer loyalty in retail. This may be due to the lack of public datasets. In fact, the
Brazilian Olist dataset is one of the few public datasets recording purchase data
for studying the problem of customer loyalty prediction in the retail sector. This
dataset has been recently used in [8] to compare the performance of various clas-
sification algorithms used to learn a churn prediction models from demographic,
geographic and purchase data of customers. Although this study describes the
imbalanced condition of non-churn data, it is limited to consider a hypothetical
balanced condition with equal number of churn and non-churn samples.

This work aims to define an XAI-based approach to predict customer loyalty
in the retail sector with a good trade-off between accuracy and explainabil-
ity. Hence, a contribution of this study is the definition of an approach named
CENTAURO (An extended reCency frEquency moNeTary model for explAinable
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cUstomer pRedictiOn), that integrates an extended RFM model, to extract smart
representation of how a customer’s RFM value changes over both the time and
the categories of products purchased. We consider the original data recorded in
the Brazilian Olist dataset, to explore the effect of smart customer data extracted
through the proposed extended RFM model on the accuracy performance of
classification models trained with multiple classification algorithms (i.e., Logistic
Regression, Multi-Layer Perceptron, Random Forest, Decision Tree and XGBoost).
Another contribution is the study of how RFM values measured in a customer
profile has an effect on the customer loyalty classification produced through a
classification model. For this purpose, we use the SHAP explainer [3]. This is an
eXplainable AI, model-agnostic technique that measures the Shapley values to
explain model decisions. The analysis of SHAP explanations allow us to iden-
tify the main dimensions of the RFM model that has the higher effect on the
recognition of churners.

The rest of the paper is organized as follows. Preliminary concepts are pro-
vided in Sect. 2. The customer loyalty prediction approach is described in Sect. 3,
while the experimental results are discussed in Sect. 4. Finally, in Sect. 5, the
conclusions are drawn.

2 Preliminary Concepts

In this section, we introduce the terminology referred to purchase basket, sale
receipt, sale receipt stream, customer trace, RFM value, churn condition and
churn classification model. Given a retail business company, a customer is a
user who performs periodic purchases, while a sale receipt is a receipt associ-
ated with a purchase basket. According to this definition of a sale receipt, a
sale receipt stream is a stream of timestamped sale receipts associated one-
to-one with customers’ purchase baskets. Let C be the set of all customer
identifiers, P be the set of product categories that can be added to a pur-
chase basket and T be the set of all timestamps. Timestamps are formatted
as Month.Day.Y ear Hours : Minutes : Seconds. Let CURRENT TIME
denote the current timestamp. Let us consider time ∈ T , day(time) returns the
calendar day of time, while midnight(time) denotes the midnight of day(time).
For example, day(05.07.23 20 : 01 : 05) = 05.07.23, while midnight(05.07.23 20 :
01 : 05) = 05.07.23 24 : 00 : 00.

Definition 1 (Purchase Basket Item). Given the purchase basket item uni-
verse B = (P × N

+ × R
+), a purchase basket item i ∈ B is a triple i = (p, q, a)

that represents the purchase of q units of product category p at the price of a per
unit.

Definition 2 (Purchase Basket). A purchase basket b ∈ B∗ is a set of pur-
chase basket items.

Definition 3 (Sale Receipt). Given the sale receipt universe S = C ×T ×B∗,
a sale receipt s ∈ S is a triple s = (c, time, b) that represents the purchase of
basket b by customer c at timestamp CURRENT TIME.
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Table 1. An example of a sale receipt stream Σ

Sale Receipt Id Customer Timestamp Purchase basket

s1 Paul 05.01.23 12:00:23 [(apple,3,5), (pasta,2,7)]

s2 Mary 05.01.23 12:00:23 [(apple,3,5), (disk,1,4)]

s3 Elliot 05.01.23 20:00:01 [(disk,3,7)]

s4 Paul 05.02.23 08:00:25 [(apple,5,6)]

s5 Mary 05.03.23 09:00:25 [(book,3,2), (fish,2,6)]

s6 Paul 05.03.23 19:01:05 [(meat,4,7), (fish,1,8)]

s7 Paul 05.03.23 20:01:05 [(meat,2,7)]

s8 Paul 05.04.23 20:01:05 [(flower,5,1)]

s9 Mary 05.04.23 21:01:05 [(disk,2,1)]

s10 Mary 05.06.23 11:21:00 [(disk,1,1),(apple,3,4)]

s11 Elliot 05.07.23 19:00:05 [(flower,5,1)]

s12 Elliot 05.07.23 20:01:05 [(apple,5,1),(book,2,4)]

. . . . . . . . . . . .

Let us introduce the functions: ΠC : S �→ C such that ΠC(s) = c, ΠT : S �→ T
such that ΠT (s) = time and ΠB∗ : S �→ B∗ such that ΠB∗(s) = b.

Definition 4 (Sale Receipt Stream). A sale receipt stream Σ is an (infinite)
sequence of sale receipts N

+ �→ S, that is, Σ = s1, s2, . . . , st, . . . so that ∀t ∈ N
+,

st ∈ S and ΠT (st) ≤ ΠT (st+1).

Given a sale receipt stream Σ, the selection Σ(t) is the t-sale receipt recorded
in Σ. size(Σ) ∈ N

+ is the number of sale receipts recorded in Σ.

Definition 5 (Customer Trace). Given a sale receipt stream Σ and a cus-
tomer c ∈ C, the customer trace σ(c,Σ) is the sequence C × N

+ �→ S∗ of sale
receipts of customer c recorded in Σ, that is, σ(c,Σ) = s1, s2, . . . , sn, such that
∀i = 1, 2, . . . , n − 1, ΠT (si) ≤ ΠT (si+1) and ∀i = 1, 2, . . . , n, ∃t ∈ N

+ with
t ≤ size(Σ) such that Σ(t) = si and ΠC(si) = c.

Given a customer trace σ(c,Σ), the operator observe(σ(c,Σ)) ∈ S returns
the latest sale receipt recorded in σ(c,Σ). For example, let us consider the sale
receipt stream Σ reported in Table 1, and customer Paul,

σ(Paul,Σ) = (Paul, 05.01.23 12 : 00 : 23, [(apple, 3, 5), (pasta, 2, 7)]),
(Paul, 05.02.23 08 : 00 : 25, [(apple, 5, 6)]),
(Paul, 05.03.23 19 : 01 : 05, [(meat, 4, 7), (fish, 1, 8)]),
(Paul, 05.03.23 20 : 01 : 05, [(meat, 2, 7)]),
(Paul, 05.04.23 20 : 01 : 05, [(flower, 5, 1)]),

observe(σ(Paul,Σ)) = (Paul, 05.04.23 20 : 01 : 05, [(flower, 5, 1)]).
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In this study, the RFM value is used to model the purchase pattern of a
customer trace.

Definition 6 (RFM model). Given a customer trace σ(c,Σ) ∈ S∗. The
Recency (R) is a function ρ : S∗×T �→ N so that ρ(σ(c,Σ), CURRENT TIME)
measures the customer recency (i.e., how long ago, with respect to
CURRENT TIME, he/she made a purchase in σ(c,Σ)). The Frequency (F) is
a function φ : S∗ �→ N so that φ(σ(c,Σ)) measures the customer frequency (i.e.,
how often he/she makes purchases in σ(c,Σ)), and Monetary (M) is a function
μ : S∗ �→ R so that μ(σ(c,Σ)) measures the customer monetary value (i.e., how
much money he/she spends in σ(c,Σ)).

For example, let us consider current CURRENT TIME = 05.04.23 24 :
00 : 00, then ρ(σ(Paul,Σ), CURRENT TIME) = 0, φ(σ(Paul,Σ)) = 5 and
μ(σ(Paul,Σ)) = (15+14)+30+(28+8)+14+5 = 114. We note that the recency
will increase by one for each new day that passes without Paul producing a
receipt (e.g., ρ(σ(Paul,Σ), CURRENT TIME) = 1 on CURRENT TIME =
05.05.23 24 : 00 : 00).

Definition 7 (Churn status). Given a sale receipt stream Σ, a churn time
amount ΔT (in days), a customer c stays in a churn status in Σ if ΔT days have
passed since the last sale receipt of c was stored in Σ, that is, churn(c,Σ) = churn
iff CURRENT TIME − ΠT (observe(c,Σ)) ≥ ΔT , non-churn otherwise.

In this study, we assume that the churn status of a customer c is evaluated
at midnight of each day. Hence, if churn(c,Σ) = churn, then t = midnight(ΠT (
observe(c,Σ))) + ΔT denotes the timestamp at which the churn status of c
started in Σ. Let us consider the sale receipt stream Σ reported in Table 1. Let
us assume ΔT = 2 days, the churn status of Paul started on 05.06.23 24 : 00 : 00,
while the churn status of Elliot started on 05.03.23 24 : 00 : 00. We note that
the churn status of a customer can be temporary. For example, the churn alert
on Elliot, which starts on 05.03.23 24 : 00 : 00, is cancelled as soon as a new
sale receipt (Elliot, 05.07.23 19 : 00 : 05, [(flower, 5, 1)]) is recorded in Σ on
05.07.23 19 : 00 : 05.

According to the formulated definition of churn status, there is a delay
between when a sale receipt is recorded in a customer trace and when it will
be known if the customer must be labeled as a churn case in the next future.
A retail business company would know churn cases as soon as possible, if pos-
sible when the last sale receipt of the customer was recorded in the sale receipt
stream. For example, the company would predict the churn of Elliot, started on
05.03.23 24 : 00 : 00, as close as possible to 05.01.23 20 : 00 : 00, that is the time
of registration of the last sale receipt of Elliot inΣ. This customer loyalty pre-
diction problem can formulated as a binary classification problem with labeled
samples produced for customer traces.

Definition 8 (Churn classification model). A churn classification model is
defined as a function MΘ : S∗ × T �→ {churn, non − churn} with the real-valued
parameters Θ ∈ R

m learned from a churn training set D.
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Table 2. A portion of the labeled customer trace set extracted from the sale receipt
stream Σ reported in Table 1. σ denotes the customer trace, t denotes the time and l
denotes the churn label.

σ t l

(Paul, 05.01.23 12 : 00 : 23, [(apple, 3, 5), (pasta, 2, 7)]) 05.01.23 24 : 00 : 00 non − churn

(Mary, 05.01.23 12 : 01.23, [(apple, 3, 5), (disk, 1, 4)]) 05.01.23 24 : 00 : 00 non − churn

(Mary, 05.01.23 12 : 01.23, [(apple, 3, 5), (disk, 1, 4)]) 05.02.23 24 : 00 : 00 non − churn

(Elliot, 05.01.23 20 : 00 : 01, [(disk, 3, 7)]) 05.01.23 24 : 00 : 00 churn

(Elliot, 05.01.23 20 : 00 : 01, [(disk, 3, 7)]) 05.02.23 24 : 00 : 00 churn

(Paul, 05.01.23 12 : 00 : 23, [(apple, 3, 5), (pasta, 2, 7)]), 05.02.23 24 : 00 : 00 non − churn

(Paul, 05.02.23 08 : 00 : 25, [(apple, 5, 6)])

. . . . . . . . .

To create the training dataset for learning a churn classification model, we
take into account that a new customer trace is available as soon as a new sale
receipt of the customer is recorded in Σ. However, the label of this customer
trace is unknown at the observation time. This label is known after some time,
i.e., as soon as the customer makes a new purchase before the churn time passed
(non-churn) or the churn time has passed without a new purchase being made by
the customer (churn). In addition, as the passage of time since the last purchase
modifies the customer RFM value (e.g., it has an effect on the Recency value)
and, consequently, the prediction of churners based on RFM values, we produce
multiple samples for the same customer trace to reproduce the passage of time.
For each new day that has passed since the date of the last purchase, a new
sample is produced with the customer trace associated with the midnight of
that day.

Definition 9 (Churn training set). Given a sale receipt stream Σ and a
churn time amount ΔT , the churn training set D ∈ P(S∗ × T × {churn, non −
churn}) is a set of triples composed of: a customer trace extracted from Σ, a time
at which the RFM of the customer trace is measured to perform a prediction of the
churn condition and the churn label of the customer trace. Let σ(c,Σ) be a cus-
tomer trace updated as soon as a new sale receipt of customer c is recorded in Σ.
Let labelT ime denote the timestamp at which the churn label l of σ(c,Σ) is known
in Σ so that labelT ime ≥ ΠT (observe(σ(c,Σ))). We distinguish two cases:

1. If midnight(ΠT (observe(σ(c,Σ)))) < midnight(labelT ime), then a sequence
of triples (σ(c,Σ), t, l) is produced and added to D with midnight(ΠT (observe
(σ(c,Σ)))) ≤ t < midnight(labelT ime) and midnight(t) = t.

2. If midnight(ΠT (observe(σ(c,Σ)))) = midnight(labelT ime), then a single
triple (σ(c,Σ), t, l) is produced and added to D with t = midnight(labelT ime).

Table 2 reports a portion of the churn training set D that is extracted from
the sale receipt stream Σ shown in Table 1. Let us consider a churn classification
model MΘ and the customer trace σ(c,Σ) whose last sale receipt has been stored
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in the sale receipt stream less than ΔT days ago, MΘ(σ(c,Σ)) can be used to
predict the churn status of customer c within ΔT days of his/her last sale receipt
will be recorded in Σ. We note that if ΔT days have passed since the last sale
receipt stored for c in Σ, there is no reason to predict the churn status of c since
the same has already occurred. For example, let us consider the sale receipt
stream Σ in Table 1. At time stamp 05.07.23 08 : 01 : 05, we know that Paul
has been already recognized as a churner on 05.06.23 24 : 00 : 00, while we are
interested in using a churn classification model MΘ to predict if either Mary
will become a churner at midnight on 05.08.23 24 : 00 : 00 or Elliot will become
a churner at midnight on 05.09.23 24 : 00 : 00.

3 The CENTAURO Approach

The CENTAURO approach allows us to learn a churn classification model for
monitoring customer loyalty in retail sector problems. Let us consider a historical
sale receipt stream Σ and a churn time amount ΔT . In the training stage, CEN-
TAURO extracts the churn training set D ∈ P(S∗ × T × {churn, non − churn})
from Σ with churn period ΔT (see Definition 9) and learns parameters Θ of a
churn classification model MΘ : S∗ × T �→ {churn, non − churn} (see Definition
8) by minimizing a cost function on D. Any classification algorithm can be used
to learn MΘ. Regardless of the classification algorithm chosen, the classifica-
tion algorithm is fueled with a smart feature vector representation of the raw
customer traces associated with samples recorded in D. In CENTAURO, this fea-
ture vector representation is extracted through an extended RFM model. In the
monitoring stage, CENTAURO uses the churn classification model MΘ to moni-
tor an online receipt purchase stream and perform customer loyalty predictions,
in order to recognize churn cases from the time of the last purchase performed
until the time at which the churn (or non-churn) case is finally verified.

The extended RFM model adopted in this study extends the traditional RFM
model (see Definition 6), in order to disclose patterns on how the RFM values
of a customer have changed over time and by the product categories purchased.
For this purpose, the Recency, Frequency and Monetary features of the extended
RFM model are extracted by processing a customer trace with both a temporal
consumer and a product category consumer, respectively. Given a customer trace
σ(c,Σ) ∈ S∗ (see Definition 5), let us consider that the customer purchase habits
may change over time, but the most recent purchase habits are more influential
than the oldest purchase habits in assessing a customer’s loyalty. Based upon
these premises, we account for the sale receipts of σ(c,Σ), which have been
timestamped in the most recent ΔT ×n days, while we forget the oldest ones. n
is a user-defined parameter that represents the number of periods. In the adopted
formulation, each period is as long as a churn period.

Based on the period-based decomposition of σ(c,Σ), two groups of features
can be extracted:
– Temporal RFM: For each period j = 1, . . . , n, the RFM values of a customer

trace are extracted by consuming the sale receipts of σ(c,Σ) recorded in period
j. This schema produces a purchase profile of σ(c,Σ) with 3 · n features.
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– Aggregated Temporal RFM: This schema determines the minimum, maximum,
mean and standard deviation of Recency values, Frequency values and Mone-
tary values measured for σ(c,Σ) on the n periods considered in the Temporal
RFM. It produces a purchase profile of σ(c,Σ) with 12 features.

The two feature schemes reported above allow us to capture how values
of Recency, Frequency and Monetary of a customer have evolved in the recent
customer history. In this study, we further extend the RFM model, to account for
differences in the product categories appearing in the purchase baskets of the sale
receipts of a customer trace. To this aim, for each product category, the RFM
values are extracted from the sale receipts recorded in σ(c,Σ) by considering
the purchase basket items that contain the product category considered. Let
N be the number of distinct product categories. Based on the product-based
decomposition of σ(c,Σ), two groups of features can be extracted:

– Product-based RFM: For each period j = 1, . . . , n, for each product category
p = 1, . . . , N , the RFM values of the customer trace are extracted by consum-
ing the purchase basket items recorded for the product category p in the sale
receipts of σ(c,Σ) timestamped in period j. This schema produces a purchase
profile of σ(c,Σ) with 3 · n · N features.

– Aggregated Product-based RFM: This schemes determines, for each product
category p = 1, . . . , N , the minimum, maximum, mean and standard devia-
tion of the Recency values, Frequency values and Monetary values extracted
on the n periods for product category p with the Product-based RFM. This
schema produces a purchase profile of σ(c,Σ) with 12 · N features.

Finally, CENTAURO integrates a post-hoc eXplainable AI technique to under-
stand how the different characteristics of a customer purchase profile, extracted
through the extended RFM model, can provide useful knowledge to monitor cus-
tomer loyalty. These explanations may help in the root-cause-analysis of churn
cases by disclosing useful information for planning effective alerting strategies to
early recognize customer loyalty. For this purpose, CENTAURO integrates SHAP
[3], an eXplainable AI technique for understanding both the global and local
structure of predictive models. SHAP performs a theoretic game approach, to
determine the contribution of each input feature to the prediction (relevance
value) of a classifier as the average marginal contribution of a feature value for
all possible predictions. Intuitively, if a feature is important, then randomly per-
muting its values will cause the loss to increase. By analyzing what features have
greater relevance on decisions, we can identify the features that contribute the
most to the characterization (and detection) of churn cases.

4 Experimental Results

We conducted a range of experiments on the Brazilian E-commerce public data
set collected from the public repository on Kaggle.com, in order to evaluate the
accuracy performance of CENTAURO. For the experimental study, we used the
implementation of CENTAURO done in Python 3.9 - 64 bit version.
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Fig. 1. OA, FScore and AUC of CENTAURO run with Temporal RFM schema by varying
the number of periods n among 1, 2 and 3 and the classification algorithm among
Logistic Regression (LR), Multi-Layer Perceptron (MLP), Random Forest (RF), Decision
Tree (DT) and XGBoost (XGB)

4.1 Data and Experimental Setting

Brazilian E-commerce dataset1 is a public dataset of real commercial data con-
cerning sale receipts made at Olist Store. The dataset collects 100k sale receipts
from 2016, October 7, to September 2, 2018 made at multiple marketplaces in
Brazil. It contains data on purchase baskets, payments and product categories
(for a total of 74 product categories). In this study, we considered customers
who had made at least two different purchase transactions and we selected sale
receipts produced by these customers. This allowed us to select 3345 sale receipts.
We sorted the selected sale receipts by their timestamps and generated a sale
receipt stream. We considered a churn period of 120 days, that is, the customer
was regarded as a churner as he/she did not produce any sale receipt for consec-
utive 120 days. As we planned to test CENTAURO with RFM values extracted
on customer trace histories composed of one period, two periods and three peri-
ods (n = 1, 2, 3), we considered the customer traces produced in 2017 between
June 6 and October 6 for the training stage. We used the remaining customer
traces produced between 2017 October 7 and 2018 September 9 for the evalu-
ation stage. We adopted the temporal split in order to simulate the real-world
scenario. We processed 34920 churn samples and 8041 non-churn samples in
the training stage, and 305160 non-churn samples and 52156 churn samples in
testing stage. We performed various experiments to analyse the accuracy per-
formance of CENTAURO by considering the classification algorithms: Logistic
Regression, Multi-Layer Perceptron, Random Forest, Decision Tree and XGBoost
using the default hyperparameters configuration as implemented in Scikit-learn
library2. For each configuration, we measured the Overall Accuracy (OA), Macro
Fscore (Fscore) and Area Under the ROC (AUC). In addition, we used SHAP
to explain which dimensions of the RFM model mainly contribute to produce
decisions on churn customer traces.

1 https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce.
2 https://scikit-learn.org/stable/.

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
https://scikit-learn.org/stable/
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4.2 Results and Discussion

We start this analysis by exploring the effect of the number of periods n on
the accuracy of the churn classification model. For this purpose, we analyse the
accuracy performance of churn classification models learned with input features
extracted according to the Temporal RFM schema by varying the number of
periods n among 1, 2 and 3. Results of OA, Fscore and AUC are reported in
Fig. 1. These results show that monitoring RFM values measured on several
periods of the recent history of customers aids in gaining accuracy, regardless
of the classification algorithm. In any case, the highest accuracy performance
is achieved with classification models learned with both Logistic Regression and
Multi-Layer Perceptron.

We continue this analysis by using Logistic Regression and Multi-Layer Per-
ceptron as classification algorithms and exploring the accuracy performance of
classification models learned with these two algorithms by processing input fea-
tures produced with: Temporal RFM, Aggregated Temporal RFM, Product-based
RFM and Aggregated Product-based Temporal RFM with n = 3 (i.e., the best
configuration reported in Fig. 1). Results of OA, Fscore and AUC are reported
in Table 3. These results show that performing aggregations on the sequences
of RFM values computed on customer traces allows us to produce a smarter
representation of customers’ purchase profiles. This representation boosts the
learning of classification models that gain accuracy in the task of churn classifi-
cation. Instead, computing customers’ purchase profiles at the level of product
categories lead us to learn a churn classification model that lacks in general-
ity and, hence, achieves worse accuracy performance in correctly disentangling
churn traces from non-churn traces. These conclusions can be drawn, regardless
of the classification algorithm.

Finally, we analyse the effect of the input dimensions of customers’ purchase
profiles on decisions concerning customer traces in the classes: churn and non-
churn. We perform this analysis on the classification model trained with Multi-
Layer Perceptron using the input feature space produced with the Aggregated
Temporal RFM schema and computing the Shapley values of the model decisions
on the testing samples. Figure 2 shows the Shapley values grouped with respect to
the ground-truth class. Positive Shapley values identify input dimensions which
are relevant for the considered class. Features are ranked by the average of the
measured Shapley value so that the top-ranked features are the most important
dimensions for the class. This analysis discloses some interesting patterns on both
churner and non-churner profiles. In particular, low values of both maximum
Recency and mean Recency are the top-two relevant dimensions of the non-
churn profile, while high values of Standard Deviation of both Monetary and
Recency are the top-two relevant dimensions of the churn profile. Surprisingly,
low values of minimum, maximum and mean Frequency have a relevant effect
on the non-churn profile, while high values of minimum, maximum and mean
Frequency have a relevant effect on the churn profile. This suggests that churners
may appear abruptly in the e-commerce scenario.
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Table 3. OA, Fscore and AUC of CENTAURO run with the feature schemes: Temporal
RFM (RFM), Aggregated Temporal RFM (A-RFM), Product-based RFM (P-RFM) and
Aggregated Product-based Temporal RFM (A-P-RFM) by wrapping Logistic Regression
and Multi-Layer Perceptron as classification algorithm. All features schemes are com-
puted with n = 3. The best results are in bold.

Features Logistic Regression Multi-Layer Perceptron

OA Fscore AUC OA Fscore AUC

RFM 0.80 0.69 0.82 0.81 0.70 0.82

A-RFM 0.84 0.73 0.85 0.85 0.74 0.84

P-RFM 0.72 0.61 0.72 0.74 0.62 0.71

A-P-RFM 0.75 0.64 0.74 0.75 0.63 0.73

RFM+P-RFM 0.78 0.66 0.76 0.76 0.64 0.73

A-RFM+P-RFM 0.77 0.65 0.76 0.75 0.63 0.73

RFM+A-RFM 0.81 0.70 0.83 0.82 0.71 0.82

P-RFM+A-P-RFM 0.74 0.63 0.73 0.74 0.62 0.72

RFM+A-P-RFM 0.75 0.64 0.75 0.76 0.64 0.73

A-RFM+A-P-RFM 0.77 0.65 0.76 0.78 0.65 0.74

RFM+A-RFM+P-RFM 0.77 0.66 0.77 0.75 0.63 0.73

RFM+P-RFM+A-P-RFM 0.77 0.65 0.75 0.76 0.64 0.73

P-RFM+A-RFM+A-P-RFM 0.76 0.64 0.75 0.76 0.63 0.73

RFM + A-RFM+P-RFM 0.76 0.65 0.76 0.76 0.64 0.74

RFM+A-RFM+P-RFM+A-P-RFM 0.77 0.65 0.75 0.76 0.64 0.73

Fig. 2. Shapley values of the input dimensions of the Aggregated Temporal RFM schema
for the classes: churn and non− churn. Shapley values are computed using the Multi-
Layer Perceptron classification model on the testing samples, that have been grouped
with respect to the ground-truth class.
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5 Conclusion

This study illustrates an AI approach for customer loyalty monitoring in retail
sector. The proposed approach allows us to learn a churn classification model
from the RFM value of a customer. In particular, we introduce an extended
RFM model to describe the possible variations in the RFM value of a customer
over time and over various categories of products. Experiments performed with
a benchmark dataset explores the effectiveness of the proposed approach by
varying the classification algorithm. Finally, we use SHAP to explain the effect
of the RFM value on the decisions of the churn classification model. As future
work, we plan to extend this investigation to new datasets (collected outside the
retail sector). In addition, we plan to extend the proposed approach to a data
stream scenario, in order to detect and handle concept drifts in retail data.
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Abstract. Machine Learning (ML) strongly relies on optimization pro-
cedures that are based on gradient descent. Several gradient-based
update schemes have been proposed in the scientific literature, especially
in the context of neural networks, that have become common optimiz-
ers in software libraries for ML. In this paper, we re-frame gradient-
based update strategies under the unifying lens of a Moreau-Yosida
(MY) approximation of the loss function. By means of a first-order Tay-
lor expansion, we make the MY approximation concretely exploitable
to generalize the model update. In turn, this makes it easy to evaluate
and compare the regularization properties that underlie the most com-
mon optimizers, such as gradient descent with momentum, ADAGRAD,
RMSprop, and ADAM. The MY-based unifying view opens to the pos-
sibility of designing novel update schemes with customizable regulariza-
tion properties. As case-study we propose to use the network outputs to
deform the notion of closeness in the parameter space.

1 Introduction

Gradient based optimization procedures are arguably one of the main ingredi-
ents of Machine Learning (ML). As a matter of fact, the success of deep learn-
ing strongly relies on the efficiency of Stochastic Gradient Descent (SGD) to
solve large scale optimization problems [3]. It is pretty common to introduce
the gradient descent method in Euclidean spaces, leveraging on the geometrical
interpretation of the direction of steepest descent [5], that yields the definition of
gradient descent by means of an iterative procedure. In particular, we are given a
function f which we aim at minimizing, and which depends on some parameters
w ∈ R

N . If wk are the values of the parameters at the k-th step of the gradient
descent, their update scheme is given by

wk+1 = wk − τ∇f(wk), (1)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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for some initial w0 = w0 ∈ R
N and τ > 0 (learning rate, step size), being ∇f the

gradient of f with respect to w. The ML literature includes several works aimed
at providing adaptive values for τ , eventually considering a specific learning rate
for each component of w, or introducing further terms in the update rule [7,10,
19,22]. Despite their large ubiquity in implementations of ML-based solutions,
such works are inspired by different principles and they are presented starting
from different problem formulations, that make it hard to quickly compare them.
Moreover, simply looking at the final update rules they devise is not enough to
fully grasp what are the expected effects they bring to the optimization. Delving
into their details to trace connections among them is definitely possible, but it
is not straightforward.

Motivated by these considerations, in this paper we propose to reconsider
the aforementioned update rules, casting them all into a unified view in which
wk+1 is presented as the solution of a newly introduced optimization problem
with well-defined and clearly interpretable regularity conditions. Such conditions
constrain the variation between wk and wk+1, thus making it easier to under-
stand the expected properties of the solution (wk+1) and to compare different
approaches. Our idea is rooted on the so-called Moreau-Yosida (MY) approx-
imation of a function [1], that we apply to the loss f , and it is motivated by
evident analogies between the stationary points defining the MY approximation
and update rules in the form of Eq. (1). It turns out that directly dealing with
such approximation is not enough to recover the update scheme of Eq. (1), thus
we investigate the first-order Taylor expansion of f in the MY approximation
to devise a related optimization problem whose solution is indeed equivalent
to Eq. (1) under certain regularity conditions. Beyond the benefits introduced
by the interpretability of the proposed unified view, it is important to remark
that our main goal is to provide researches with a formulation that more easily
opens to the development of novel, more informed, optimizers. A related app-
roach is well-known and exploited in the specific context of the online learning
community [4], still not widely known to a wider ML audience.

In order to emphasize the usefulness of the proposed uniform view, we con-
sider a case-study in which data is continuously streamed and learning pro-
ceeds in a continual manner [6,12,18]. Since our contribution is theoretical, our
goal is to showcase the flexibility of the MY view in injecting problem-related
prior knowledge in the update scheme, while proposing powerful experimentally-
validated optimizers goes beyond the scope of this paper. In particular, we exploit
the MY approximation to design a novel update scheme for the weights of a neu-
ral network , modulating the strength of the updates in function of the variations
of the predictions over time. In the considered setting it is widely known that it is
hard to find a good trade-off between plasticity and stability [18], and we follow
the assumption for which strong output variations might be associated to sig-
nificant changes in the data, thus they require the network to be more plastic in
order to adapt to the novel information. Differently, small variations triggers less
significant updates, preserving the already learned information, thus favouring
stability. We notice that while the use of a regularization based on information
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from the output space of a model is a well-known principle behind Manifold Reg-
ularization [2,15], here we show how it can be exploited in continual learning
by direct injection in the update rule of the model parameters. Moreover, recent
approaches to continual learning exploited related heuristics to improve the qual-
ity of the learning process [13], even if without a clear theoretical formalization
behind them.

The paper is organized as follows (see Fig. 1): Sect. 2 is devoted to the descrip-
tion of the MY approximation, its properties, the uniform view of gradient-based
learning, and its relationships with proximal algorithms. Section 3 revisits com-
monly used optimization methods in Machine Learning in the context of the
proposed uniform view, describing all of them in a unique, common, framework.
In Sect. 4, we present a case-study based on an output-modulated update scheme.
Section 5 concludes the paper with our final discussions.

Fig. 1. Conceptual scheme of the organization of the article, that highlights the main
theoretical contributions.

2 From Moreau-Yosida Approximations
to Gradient-Based Learning

In this section we formally introduce the Moreau-Yosida (MY) approximation
that we consider in the context of this paper, Definition 1. Then, we will exploit
such notion to setup an update scheme, Eq. (9), based on a related optimiza-
tion problem whose minima are described by the same recursive rule of gradi-
ent based methods. This fully connects the MY approximation and gradient-
based learning, yielding a uniform view that we will exploit in the rest of the
paper. For completeness, we also discuss its relations with proximal algorithms
(Sect. 2.1).

Definition 1 (Moreau-Yosida Approximation). Given a non-negative,
lower semicontinuous function f : RN → R, such as for many implementations
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of the empirical risk in Machine Learning, the Moreau-Yosida approximation [1]
of f evaluated in point w, referred to as fMY(w), is1

fMY(w) := min
w′∈RN

f(w′) +
1
2τ

‖w′ − w‖2, (2)

where ‖ · ‖ is the Euclidean norm and τ > 0.

The objective function in the optimization problem of Eq. (2) is composed of
two terms: the left-most one is the value of f in w′ (for example, a loss function
aggregated over the available data), being w′ the variable of the minimization
problem, while the right-most term is a regularizer that penalizes strong varia-
tions between such w′ and the target point of the approximation, i.e., w. As a
result, given w� that minimizes the objective of Eq. (2),

w� ∈ arg min
w′∈RN

f(w′) +
1
2τ

‖w′ − w‖2, (3)

we have that
fMY(w) = f(w�) +

1
2τ

‖w� − w‖2,
where smaller values of τ forces w� and w to be closer (in the sense of standard
Euclidean topology). See Fig. 2. In the case of hard-constrained optimization,
the problem of Eq. (2) is conceptually equivalent to the following constrained
optimization problem,

min
w′∈RN

f(w′);

s.t. ‖w′ − w‖ ≤ ε,

for some ε > 0 (that increases when τ decreases), that makes evident the notion
of spatial locality of the MY approximation.2 When f ∈ C1(RN ;R), the sta-
tionary points of the objective function in Eq. (2) are those w� for which the
gradient ∇f of f is null,3 thus

∇f(w�) +
1
τ

(w� − w) = 0, (4)

from which we get
w� = w − τ∇f(w�), (5)

that is an alternative representation of Eq. (3).
1 Notice that the minimum here exists since f + ‖ · −w‖2/2 is lower semicontinuous

(because f is lower semicontinuous) and coercive since f ≥ 0 and ‖ · −w‖2/2 is
coercive (then the sublevels of f + ‖ · −w‖2/2 are contained in the sublevels of
‖ · −w‖2/2, which are compact). The existence of the minimum then follows from
Weierstrass. .

2 Of course, this formulation calls for Lagrange multiplier theory to be solved.
3 Notice that in general in Eq. (2) such strong assumption on differentiability is not

required, since the MY approximation is general and can be applied even in contexts,
like functional analysis, where the notion of gradient could not be clear.
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Fig. 2. Three different optimization steps. In (a) it is represented the global optimiza-
tion step from w0 to wk+1 ∈ arg minw′ f(w′). In (b) the global step is made local by
requiring that the minimization should be done around (magenta strip) the previous
step wk as described in Eq. (2). In (c) we graphically show the equivalence between the
local step and the one induced by the MY regularization as it is described by Eq. (7).
Picture (b) and (c), as it is noted in Eq. (8), are equivalent to an implicit gradient
descent step.

Bridging Gradient-Based Learning. Let us consider the sequence of points
(wk)k≥0 defined by the classic recursive relation of gradient-based methods with
learning rate τ , as the one of Eq. (1),{

w0 = w0 ∈ R
N ;

wk+1 = wk − τ∇f(wk), k > 0.
(6)

where w0 is a fixed initial point. We can exploit the MY approximation of f
in Eq. (2) and, in particular, the expression of the argument that minimizes
its optimization problem, Eq. (3), to devise another related recursive relation,
replacing w� with wk+1 and w with wk,{

w0 = w0 ∈ R
N ;

wk+1 ∈ arg minw′∈RN f(w′) + 1
2τ ‖w′ − wk‖2, k > 0,

(7)

that, accordingly to Eq. (5), is equivalent to4{
w0 = w0 ∈ R

N ;
wk+1 = wk − τ∇f(wk+1), k > 0.

(8)

It is evident that Eq. (8) describes an implicit scheme, from which wk+1 cannot
be immediately computed, since it belongs to both the sides of the equation. This
is different from Eq. (6), that is indeed an explicit scheme. For ML application it
is critical to rely on explicit schemes, since solving the implicit Eq. (7) is usually
unfeasible. A further step can be done to recover the explicit gradient descent
4 In the reminder of the paper we will omit to write explicitly the initialization of the

method w0 = w0 and we will just describe the recursion relation for k > 0.



A Moreau-Yosida View of Gradient-Based Learning 223

method from MY approximation. The basic observation is that whenever f is
smooth, at least in the neighbourhoods of wk, we can approximate the value of
f using a Taylor expansion truncated to the first order,

f(w′) ≈ f(wk) + ∇f(wk) · (w′ − wk),

where · is the standard scalar product in R
N . Using this approximation in

Eq. (7), and considering that f(wk) is a constant for the optimization problem
reported in such an equation (thus it can be dropped), we get

wk+1 ∈ arg min
w′∈RN

∇f(wk) · (w′ − wk) +
1
2τ

‖w′ − wk‖2, k > 0. (9)

Following the same procedure we already applied in Eq. (4), we can write down
the equation of the stationary points of the newly introduced Eq. (9), that holds
for w′ = wk+1, ∇f(wk) + (wk+1 − wk)/τ = 0, which ultimately yields wk+1 =
wk − τ∇f(wk), that is exactly the explicit gradient descent method of Eq. (6).
Equation (9) represents the MY view on gradient-based methods of Eq. (6).
Figure 2 qualitatively depicts the connections between classic gradient descent
and the MY view.

Uniform View. The MY scheme in Eq. (9) allows us to clearly spot the
role of the variation between w′ = wk+1 and wk, that is involved both in the
squared regularizer (weighed by learning rate τ), and in the modulating term of
the gradient of loss function f . Equation (9) is a powerful tool that is general
enough to describe several variants of gradient-based updates, also referred to as
optimizers. This is achieved by tweaking the regularizer ‖w′ − wk‖2 or adapting
∇f , thus clearly showing what are the expected properties of the resulting update
rule, that is the topic covered in the following Sect. 3. Differently, in Sect. 4 we
will use this framework to describe a case-study in which a new gradient-based
method is introduced, as a proof-of-concept of the versatility of this view toward
the design of novel optimizers.

2.1 Relations with Proximal Algorithms

In is interesting to formally analyze the relations of the MY view and proximal
algorithms. A proximal algorithm is an algorithm that solves a convex opti-
mization problem making use of the proximal operator of the objective function
(see [17]). The simplest example of this class of methods, which is called “proxi-
mal minimization algorithm”, defines a minimizing sequence that is obtained by
the repeating application of the proximal operator proxτf (that we will formally
define shortly) to an initial point w0:{

w0 = w0 ∈ R
N ;

wk+1 = proxτf (wk), k > 0.
(10)

Such method is closely related to the Moreau-Yosida approximation of the objec-
tive function f , once we provided and discuss the definition of the proximal
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operator. Let us suppose that f , in addition of being lower semicontinuous and
non-negative (hence proper), is also convex (we recall that what we presented
so far did not have such a requirement, introduced here only with the goal of
discussing proximal algorithms). Then, the function f(w′) + 1/(2τ)‖w′ − w‖2 of
which we are taking the minimum in Eq. (2) is strongly convex. This implies
that the minimizer of Eq. (2), that we will denote as w′

w, is unique. The operator
implementing the mapping w �→ w′

w is called proximal operator or proximation
(for more details, see [17,21]). In order to be able to write an explicit represen-
tation of this operator, let us recall from subdifferential calculus [21] that if f is
convex, and if g is C1 near w, being w a point that minimizes f + g, then

−∇g(w) ∈ ∂f(w),

where ∂f is the subdifferential of f . If we apply this result to f(w′)+1/(2τ)‖w′−
w‖2 with g(w′) = 1/(2τ)‖w′ − w‖2 we immediately have

∂f(w′
w) +

1
τ

(w′
w − w) 	 0,

which is the relation that uniquely characterizes w′
w and that, in particular,

guarantees that the operator proxτf , implemented as

proxτf (w) := (I + τ∂f)−1(w) ≡ w′
w,

is uniquely defined. It should now be apparent that the proximal operator and
the MY approximation of Definition 1 are very closely related. For instance,
when f is convex we can write

fMY(w) = f(proxτf (w)) +
1
2τ

‖proxτf (w) − w‖2,

and we can relate the gradient5 of fMY with the proximal operator as follows,

proxτf (w) = w − τ∇fMY(w).

Finally we notice that in the convex case the arg min in Eq. (7) becomes a
singleton and hence the algorithm in Eq. (7) coincides with the one in Eq. (10).
For completeness, we mention that there exists scientific literature that studies
proximal algorithms also in the non-convex case [9,11].

3 Moreau-Yosida View of Popular Optimizers

In this section we will discuss how the MY view of Eq. (9) is general enough to
can describe several existing optimizers widely employed in the ML community.
In particular, we will consider the case of Stochastic Gradient Descent (SGD)

5 It is indeed a standard result that under the convexity assumption fMY is differen-
tiable.
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[20], Heavy Ball method (gradient descent with momentum) [19], AdaGrad [7],
RMSprop [22], and ADAM [10].

SGD. The largely popular Stochastic Gradient Descent method [20] is based
on a stochastic objective that involves a fraction of the available data at each
iteration. We use it as starting example to introduce further notation that will
be helpful in the following, being it a pretty straightforward case to cast in
the MY view. We consider a training set with n samples, and we assume that
f = (1/n)

∑n
i=1 fi, being fi the loss evaluated on the i-th example. At each

iteration of gradient descent, a mini-batch of independently (randomly) sampled
data is considered. If we indicate with Ik the set of m indices of the examples in
the k-th mini-batch, and with (1/m)

∑
i∈Ik

fi(wk) the loss function evaluted on
it, then the standard update scheme in the SGD algorithm is

wk+1 = wk − τ
1
m

∑
i∈Ik

∇fi(wk), k > 0.

The MY view is obtained without applying any changes to the squared regu-
larized, as expected, and by simply replacing the term ∇f(wk) in Eq. (6) with
(1/m)

∑
i∈Ik

∇fi(wk),

wk+1 ∈ arg min
w′∈RN

gk · (w′ − wk) +
1
2τ

‖w′ − wk‖2, k > 0, (11)

where we introduced the notation gk := (1/m)
∑

i∈Ik
∇fi(wk), that we will keep

using in the following, since it allows us to be general enough to go back to
classic full-batch gradient descent by setting gk to ∇f(wk).

Heavy Ball Method. Also known as gradient descent with momentum [19], is
based on an explicit formula that involves the latest variation wk−wk−1 between
the learnable parameters,

wk+1 = wk − αgk + β(wk − wk−1), k > 0, (12)

with α, β > 0. The MY view be obtained introducing a higher order regulariza-
tion term and by writing the constants α and β as α = μτ/(μ+τ), β = τ/(μ+τ),

wk+1 ∈ arg min
w′∈RN

gk · (w′ − wk) +
‖w′ − wk‖2

2τ
+

‖w′ − 2wk + wk−1‖2
2μ

, k > 0.

Interestingly, the MY view clearly shows that, compared to vanilla gradient
descent, here we also have an addition regularity term (weighed by 1/(2μ)), that
enforces second-order information on the update step. An alternative definition
of the method is sometimes given using exponential averages, that can still be
cast in the MY view. Let (ak)k≥0 be a sequence, then the exponential moving
average with discount factor δ of (ak)k≥0 is the sequence (〈a〉δ

k)k≥0 where the
k-th term is computed as

〈a〉δ
k := (1 − δ)

k∑
j=0

δk−jaj . (13)
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Using such a notion, a popular alternative form of the update rule of Eq. (12) is
wk+1 = wk − τ〈g〉β

k . In this case, using Eq. (13) we can rewrite the MY view as

wk+1 ∈ arg min
y∈RN

〈g〉β
k · (y − wk) +

1
2τ

‖y − wk‖2, k > 0,

i.e., by replacing the gradient term gk with its exponential moving average with
decay factor β. The higher-order regularity is replaced by a smoothing operation
on the gradient term gk. We will use this alternative form also when describing
the ADAM algorithm.

AdaGrad and RMSprop. Both methods (see [7] and [22]) can be cast in the
MY view in a related manner. Their update schemes are defined as

wk+1 = wk − τ(Hk)−1gk, k > 0.

where Hk is a diagonal matrix with the following elements in the diagonal,

(Hk)ii :=

⎧⎨
⎩

ε +
√∑k

n=0(g
n
i )2; for AdaGrad

ε +
√∑k

n=0〈g2i 〉β
n, for RMSprop,

where ε > 0, i ∈ {1, 2, . . . , N}, gk
i is the i-th component of the gradient and,

for i fixed in {1, . . . , N}, ((g2i )n)n≥0 is the sequence of the square of the i-
th component of the gradient, where (g2i )n := (gn

i )2. The MY view can be
described by changing the metric with which we assess the closeness of the next
point with respect to the current value of wk. In particular, both the methods
are obtained from Eq. (11) with the substitution ‖w′ − wk‖2/(2τ) −→ (w′ −
wk) · Hk(w′ − wk)/(2τ), that clearly emphasizes the change of metric induced
by matrix Hk when evaluating the regularization term in the variation of the
learnable parameters.

ADAM. As it is well known, ADAM [10] consists in a specific way to put
together gradient descent with momentum and RMSprop. In order to see exactly
how it can be expressed in the regularization approach à la Moreau-Yosida, first
we need to introduce a further definition of normalized exponential moving aver-
age. Let (〈a〉γ

k)k≥0 be the exponential moving average of the sequence (ak)k≥0

with discount factor δ, then we define

〈̂a〉δ

k :=
〈a〉δ

k

1 − δk+1
, k ≥ 0. (14)

The update scheme of ADAM is then,

wk+1 = wk − τ(Ĥk)−1〈̂g〉β1

k , k > 0,

where Ĥk is a diagonal matrix with

(Ĥk)ii = ε +

√√√√ k∑
n=0

〈̂g2i 〉β2

n , i ∈ {1, . . . , N},
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and β1 and β2 are the customizable parameters of the ADAM algorithm. Follow-
ing the exact same procedure we described in the case of the Heavy Ball method,
using Eq. (14) we can describe ADAM in the context of the MY view as

wk+1 ∈ arg min
y∈RN

〈̂g〉β1

k · (y − wk) +
1
2τ

(y − wk) · Ĥk(y − wk), k > 0, (15)

where it can be easily noticed both (i.) the change of metric in the regularity
term due to the role of matrix Ĥk, and (ii.) the smoothing operation on gk,
that, as discussed in the case of the Heavy Ball method, indirectly introduces a
higher-order regularity condition on the variation of the weights.

4 Case Study: Output-Modulated Update Scheme

When introducing the MY view of Sect. 2, we discussed essentially how a gradient
step is equivalent to solving a local minimization problem on a risk f around
the current step wk. As a proof-of-concept of the versatility of this view toward
the design of novel optimizers, we consider a specific use-case based on neural
networks.

Scenario. Let ν(·, w) : Rd → R
p be a neural network that, given a set of

weights w ∈ R
N , maps some input data x ∈ R

d into an output ν(x,w) ∈ R
p.

The risk f is a measure of the performance of the network ν. We focus on a
continual learning scenario, in which the data samples are not i.i.d., for example
due to the fact that tasks and task-related data are presented in a sequential
manner, where the data distribution changes over time [8,14,18]. In this case, the
learning process might be plagued by several similar/related samples streamed
in neighboring steps, and by abrupt changes in the data when switching from
one task to another. The plasticity of the model should then adapt over time,
being the network more plastic when never-seen-before data is provided, while it
should not be too prone to overfitting data that was already shown several times
in the last time frame. We make the hypotetis that the variations in the network
outputs could indirectly tell if we are in front of data that is similar to what was
just observed, or if we are switching to different data. Of course, there are no
attempts to solve catastrophic forgetting issues of to propose a novel continual
learning algorithm, since what we are presentin is just a case-study to support
the simplicity of injecting novel knowledge in the update procedure by working
on the MY view.

Output-Based Modulation. In Eq. (7) the notion of closeness in the space
of parameters is given by the term ‖w′ − wk‖2/(2τ). Here the general idea is to
modify this natural Euclidean topology by taking into account the way in which
the changes in the parameters, induced by learning, is affected by the variations
of the outputs of the model. The simplest way in which we can achieve this is by
introducing a modulation function ψ(ν) that takes into account the outputs of
the network ν in order to appropriately weigh the regularization term in Eq. (7);
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what we are proposing hence is to study variants of a gradient descent method
that are obtained thought the following transformation of the “distance” term:

1
2τ

‖w′ − wk‖2 −→ ψ(ν)
2τ

‖w′ − wk‖2. (16)

The MY-view, by explicitly showing the regularizer of the variation of the
weights, allows us to immediately connect the modulated term with its effects
in the update rules, as we are going to investigate by providing the precise form
and structure of ψ(ν). Since the output of the network depends on the input
data other than the value of the parameters, we also need to define a protocol
with which data is introduced to the learner. At each time step, we are given a
mini-batch of data of size m, with sample indices collected in the already intro-
duced Ik, and using the same definition of gk we presented in the case of SDG,
i.e., gk = 1

m

∑
i∈Ik

∇fi(wk). We are now in position to discuss our proposal for
the modulation function ψ, that we select to be

ψ(ν) :=
1
γk

∥∥∥∥ 1
m

∑
i∈Ik

ν(xi, w
k) − 1

m

∑
j∈Ik−1

ν(xj , w
k−1)

∥∥∥∥
−2

, (17)

being γk > 0 a normalization factor that can eventually vary over time (that is
the reason for its subscript). When the average outputs of the network produced
at step k−1 are similar to the ones at time k, then ψ(ν) is small, and vice-versa.
The MY view is then

wk+1 ∈ arg min
w′∈RN

gk · (w′ − wk)

+
1
2τ

‖w′ − wk‖2

γk

∥∥∥ 1
m

∑
i∈Ik

ν(xi, wk) − 1
m

∑
j∈Ik−1

ν(xj , wk−1)
∥∥∥2 , k > 0,

(18)

from which it is easy to compute the stationarity condition of the objective
function to get

wk+1 = wk − τγk

∥∥∥∥ 1
m

∑
i∈Ik

ν(xi, w
k) − 1

m

∑
j∈Ik−1

ν(xj , w
k−1)

∥∥∥∥
2

gk,

for k > 0. The last equation shows the update rule of our newly designed opti-
mizer, which embeds our knowledge/intuitions on the learning problem at hand.
The whole process we followed in devising it, shows how the such knowledge was
initially injected into the MY view having a clear understanding of the regular-
ization properties we aimed at enforcing, and only afterwards we obtained the
update rule, in which the gradient of the loss is shown jointly with what comes
from the proposed regularization.

5 Conclusions and Future Work

In this work we discussed how Moreau-Yosida approximation can be a powerful
tool to efficiently devise optimization methods for Machine Learning. We pre-
sented a framework that offers a unified view on many existing gradient-based
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methods, but that also gives new insights and suggests different interpretations
of them. We used the Moreau-Yosida view in the context of a continual learn-
ing use-case, devising a customized output-modulated gradient-based step, with
a mechanism that inhibits updates of the parameters in presence of stationary
outputs of a neural network. Future works will focus on the usage of the Moreau-
Yosida view of this paper to design novel optimizers for Machine Learning, inject-
ing well-defined and understandable properties in the optimization problem that
yields the update scheme of the model parameters. While this paper is focused
on the theoretical aspects of the proposed approach, in future work we plan to
experimentally investigate the impact of novel optimizers designed within our
uniform view, also considering modern benchmarks and learning scenarios [16].
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Abstract. Jaipur is a challenging two-player score-based strategy game
where the players take turns to trade and sell cards for points, with the
objective of having more points than the opponent at the end of the
game. This game contains multiple factors which make self-play learning
challenging, such as being partially observable, having stochastic actions,
and having a very large action space of 25,469 possible discrete actions.
Moreover, the game contains both immediate and long-term rewards,
and the players have the possibility of adopting different strategies as
the game is adversarial. In this work we benchmark the state-of-the-art
PPO, A2C, DQN and DDQN reinforcement learning algorithms using
self-play without any domain knowledge and starting from random play.
Due to the large action space of the game, we propose to use action
masks. The policy generated by each algorithm was evaluated quantita-
tively against typical Jaipur scores, and also qualitatively by checking
which actions each agent was selecting. The results show that all the
algorithms converged to policies that played the game strongly, with the
PPO algorithm obtaining the best results.

Keywords: Reinforcement Learning · Multi-agent · Score-based ·
Large Action Space · Turn-based · Adversarial

1 Introduction

Reinforcement Learning has proven to be very successful in perfect-information
deterministic adversarial games such as Go, Chess and Shogi [20,21]. These tech-
niques take advantage of such characteristics by rolling out a Monte Carlo Tree
Search (MCTS) to prune out less attractive search branches. However this app-
roach becomes more challenging when the problem being solved is characterised
by partial-observability and stochasticity. If not all information about the cur-
rent environment state is known, and the effect of an action cannot be predicted
reliably, or there is a significant number of possible outcomes (such as drawing
a card from a shuffled deck), modelling and solving the problem as a Partially
Observable Markov Decision Process (POMDP) can become intractable [13].
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Having a large action space makes the problem even harder, increasing the com-
plexity exponentially due to the high branching factor.

In literature, two different approaches to reduce the high branching factor
have been proposed. The first of which is vector embedding, where the action
space is encoded as a vector [29], similar to the embedding techniques used
in Natural Language Processing (NLP). This approach is useful when several
actions have similar effects, and the embedding process captures such similarities.
The second approach is through the use of action masks, where inapplicable
actions in a specific state are explicitly filtered out as part of the feedback to the
reinforcement learning algorithm [30]. In this work, we adopt the latter approach
in order to solve the partially-observable stochastic adversarial two-player score-
based game of Jaipur1.

The partial observability aspect comes from the fact that each player’s hand
is hidden from the opponent. Furthermore, it also makes use of a shuffled deck
facing downward, making it hard to predict what cards will be drawn next from
the deck. The game has a large action space, with a total of 25,469 possible
discrete actions. By comparison, chess only has 4,672 possible moves [21]. Nev-
ertheless, just like in Chess, not all actions are applicable in each state, making
action masks a viable approach to reduce the branching factor and help the
policy learning converge faster.

In this work, we propose a scheme to encode the state of the game from the
perspective of each player. We use a multi-agent reinforcement learning approach
so that each player has its own policy which only learns from the data observed
by the respective player. The algorithms start with zero knowledge of the game,
and the policies improve through self-play against each other. The reward func-
tion follows the score structure of the game. The action space represents all the
possible actions that can be taken in the game, but through the use of action
masking, any invalid actions can be filtered out. This approach was tested using
the state-of-the-art PPO, A2C, DQN and DDQN reinforcement learning algo-
rithms. Our results show that the learnt policies produced strong agent players
that obtained high scores, comparable to those of human players.

2 The Jaipur Card Game

Jaipur is played by two players who take turns to trade or sell cards to get points.
The game consists of two types of cards; Goods cards and Camel cards. There
are six different types of Goods cards, in descending order of value: Diamond
(D), Gold (G), Silver (Si), Cloth (C), Spice (Sp) and Leather (L). During game-
play, each player can have up to seven Goods cards in his ‘hand’ which are only
visible to the respective player as well as any number of Camel cards in his ‘herd’
which are visible to both players. Moreover, the game consists of a ‘marketplace’,
which contains five cards that are always visible to both players. The remaining
cards are shuffled and assigned to the deck facing downwards, as shown in Fig. 1.
1 Jaipur is a strategy card game created by Sébastien Pauchon and published by Space

Cowboys (Asmodee).
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Fig. 1. Screenshot of the Digital Jaipur Game

Whenever a player takes cards from the marketplace, it is replenished from
the deck so that it contains five cards at all times. The game also has a set of
tokens which carry points for when a Goods card is sold. The tokens are ordered
highest value first, such that selling the Goods earlier in the game yields higher
points. On the other hand, the game also has bonus tokens which are given to
the player when sets of 3, 4 or 5 cards of the same Goods type are sold at once.
This creates an opportunity for players to strategise whether to sell early, or
wait until more cards of the same Goods type are in hand. Camel cards have
no value during the game, except for currency to trade them with cards in the
marketplace. However, at the end of the game, the player with the most Camel
cards gets the Camel Bonus token which is worth 5 points. The game ends when
either all tokens of three Goods types have been taken or when there are no
more cards in the deck to replenish the cards taken from the marketplace. The
player with the most points wins the game. In each turn, the player can choose
to: i) take one Goods card from the marketplace, ii) take all the Camel cards
present in the marketplace, iii) trade two or more cards from the player’s hand
or herd with the equivalent number of Goods cards from the marketplace, and
iv) sell Goods cards of the same type for tokens.

There are some rules as to how trading can take place. Only Goods cards
can be taken from the marketplace, and they must not be of the same type
being traded by the player. The trade must consist of at least two cards. The
player can also use Camel cards in the trade, as long as the hand does not result
in more than seven cards. When selling Goods cards, the more valuable Goods
types (Diamond, Gold and Silver) are restricted to only be sold in pairs, while
the less valuable ones (Cloth, Spice and Leather) can be sold as single cards.
For the latter, there are some strategic actions that one could adopt, such as
selling the first card early to take the only 5-point token of that Goods-type,
or selling cards of the same type one-by-one, instead of together, to purposely
avoid risking putting new cards into the marketplace which could be beneficial
for the opponent.

The game of Jaipur contains numerous factors which make the problem chal-
lenging and somewhat interesting for self-play reinforcement learning. While
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there are some strategies human players have suggested, there is no known dom-
inant strategy. The fact that the opponent’s hand is not known introduces an
element of partial observability, where the belief state carries an element of
uncertainty, depending on what prior information was available during the game.
Furthermore, there is an element of chance, both from the players’ initial hand,
and also from what cards get dealt from the deck to replenish the marketplace,
making the effect of the first two actions stochastic.

What makes this game particularly interesting from a Reinforcement Learn-
ing perspective is that the actions could have good immediate rewards but bad
long-term consequences. Furthermore, strategically postponing actions that give
an immediate reward can potentially lead to higher future rewards (for example,
selling more cards of the same Goods type at one go), or lower future rewards
(because the opponent sells cards of the same Goods type before and gets higher
points). This aspect fits into the characteristics of Reinforcement Learning, which
learns to choose actions that maximise the return (the sum of all discounted
future rewards) rather than the immediate rewards [22].

3 Related Work

To our knowledge, there is very little research on implementing an AI agent to
play this game, and this is the first study that provides an in-depth analysis of
using Deep Reinforcement Learning techniques to learn how to play the game
with no prior knowledge. In this section, we review work where problems with
some of the aforementioned characteristics have been solved, with the intention
of reusing some of the ideas available in this literature if applicable.

The agents developed to play DouDizhu and Go, which are both multi-agent
board games, make use of the MCTS algorithm improved with deep learning
[2,31,34]. While Go is a perfect-information fully deterministic game, DouDizhu
has an element of partial observability and chance. For board game learning,
training a neural network was also proposed [3,11,27], in combination with the
TD algorithm to approximate a game-theoretic value of an action. Moreover,
Huang et al. [6] discuss the use of the PPO and A2C algorithms in game AI
for a diversity of games including board games and complex multi-agent games.
Yu et al. [32] concluded that the PPO algorithm proved to be a good baseline
for multi-agent reinforcement learning when tested on four different multi-agent
games. Meanwhile, A2C had a satisfactory performance on Blood Bowl, which
is a multi-player turn-based stochastic board game [7], albeit fully observable.

The DQN algorithm achieved great results, similar to those achieved by a
professional human game player, when it was tested on various Atari games
[15,16]. It outperformed the other learning algorithms that were tested and was
considered to be the first AI agent capable of performing well on a variety of
challenging games [16].

Various approaches have been proposed to deal with large-scale action spaces.
The first of which involves combining multiple different actions into a single
meta-action based on some similarity metric. When the actions are continuous,
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they can also be combined into a single discrete action. Alternatively, actions
that are unlikely to lead to a good result can be pruned out [8,33]. Yao et
al. [29] proposed the use of a Markov Decision Process to encode the action
space for Axie Infinity by generating a small set of actions from all the pos-
sible actions, and selecting the most optimal action. Meanwhile, Dulac-Arnold
et al. [1] proposed what they refer to as the Wolpertinger architecture, which
combines action embedding with the Actor-Critic reinforcement learning archi-
tecture. Prior knowledge about the actions is embedded into a continuous space
and the Deep Deterministic Policy Gradient algorithm is then used to perform
policy iteration and train the policy and critic networks.

Tang et al. [23] proposed the use of action masking with the PPO algorithm
to which the improved algorithm returned better results as the action mask
specifies which actions are valid and which are invalid based on the state of the
environment. The implementation of an action mask resulted in the algorithm
converging quicker and obtaining a higher return value. The use of an action
mask was also incorporated in MOBA games to enhance the efficiency of the
algorithm’s training by eliminating the irrational possibilities [30]. Moreover, Liu
et al. [12] conducted a study regarding reinforcement learning on tactical driving
decision-making where the use of an action mask was proposed to enhance the
reinforcement learning process by filtering out the invalid actions immediately
instead of waiting for the agent to potentially learn to avoid them.

4 Background

This section provides a detailed explanation of different reinforcement learning
algorithms which are compatible with discrete action spaces.

4.1 Deep Q-Network (DQN)

A Deep Q-Network (DQN) is an example of a deep reinforcement learning value-
based algorithm which is a combination of deep learning and Q-learning [17].
DQN makes use of two neural networks; the Q-network and the target Q-network
[5,24]. The target Q-network is similar to the Q-network with the difference being
that it has fixed weights which are updated periodically to be equal to the weights
of the Q-network [16,24]. This algorithm makes use of the deep neural network,
the Q-network, to approximate the Q-value of each action from the given state
and then chooses the action with the highest Q-value [17]. To do this, DQN
performs experience replay by storing the agent’s past experiences; observations,
actions and rewards for each time-step, in a replay buffer to sample from during
learning [5,24]. During training, DQN makes use of the epsilon-greedy policy to
either perform exploitation by choosing an action based on the Q-network’s value
prediction, or perform exploration by choosing a random action with probability
ε [24]. The algorithm will calculate the target Q-value with the target update
function shown in Eq. 1 [5]:
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yDQN
t = rt+1 + γ max

a
Q(st+1, a; θt) (1)

where rt+1 is the reward obtained from applying the last action at in state,
st, at time step t, and θt refers to the weight parameters of the target Q-network,
Q, at time step t, which predicts the value of each possible action, a, applied to
the subsequent state, st+1. The discount factor, γ ∈ [0, 1], influences the value
of rewards obtained in the future with respect to instant rewards [5,24]. Similar
to conventional Q-Learning [25,26], it chooses the action that maximises the
state-action value.

To stabilize training, a separate target network is maintained that is only
updated periodically, while the prediction network is updated after each time
step. The loss function to train the Q-network is typically set to be the Mean
Squared Error (MSE) [10] between the predicted network and target network,
as shown in Eq. 2, which is used :

L(θ) = [((r + γ max
at+1

Q(st+1, at+1; θtarget)) − Q(s, a; θpred))2] (2)

The target network is then updated after a number of time steps to have the
weights of the prediction network. Furthermore, Deep Q-Learning makes use of
Experience Replay, where past state transitions are stored in a replay buffer and
reused for training, thus increasing sample efficiency. Samples from the replay
buffer are taken randomly, to break the sequential correlation. The use of a
neural network function approximation enables this off-policy algorithm to work
in environments with high-dimensional state spaces, while stabilising the deep
reinforcement learning process [17].

4.2 Double Deep Q-Network (DDQN)

Similar to the conventional Q-Learning [25,26], the DQN algorithm has a ten-
dency to overestimate action values [17]. The Double Deep Q-Network (DDQN)
algorithm [5] adopts the same concept of Double Q-Learning [4] to address this
overestimation by evaluating the policy’s value using a second set of weights.

Whilst DQN makes use of one neural network to update the target values,
DDQN makes use of two neural networks; the target network and the online
network [5]. The online neural network determines the greedy policy and is used
to select the actions, whilst the target neural network estimates the target Q-
values. Moreover, this algorithm performs the policy update by making use of
two different sets of weights, θ for the online neural network and θ′ for the target
neural network. Hence, whereas DQN makes use of the target update function
explained in Sect. 4.1 to update the Q-values, DDQN uses the modified update
function shown in Eq. 3 to update the Q-values with the use of the target and
online networks [5]:

yDDQN
t = rt+1 + γQ(st+1, arg max

a
Q(st+1, a; θt); θ′

t) (3)
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4.3 Actor-Critic Algorithms

Actor-Critic algorithms were developed to combine policy-based methods and
value-based methods in order to provide more stable and efficient reinforcement
learning agents [22]. These algorithms consist of an actor component, which
makes use of the policy-based method, and a critic component to perform the
value-based method. The actor handles the policy of the algorithm and performs
exploration and exploitation of actions. Meanwhile, the critic calculates the state
or state-action value function to estimate how favourable the policy is and pro-
vides feedback, referred to as the TD error, to the actor in order to optimise the
policy in terms of the expected cumulative reward.

The two popular actor-critic algorithms used in this work are Proximal Policy
Optimisation (PPO) and Advantage Actor Critic (A2C). An explanation of both
algorithms is provided below.

Advantage Function. The advantage function is used to stabilise the agent’s
learning as it reduces the policy networks’ high variance [19,24]. It is used in
both PPO and A2C. The advantage function provides an estimation of whether
an action is better or worse when compared to the average value that would be
returned for a particular state and is calculated as follows [24]:

A(s, a) = Q(s, a) − V (s) (4)

where Q(s, a) is the expected state-action value of applying action a on state
s, and V (s) is the expected state value of s.

Alternatively, the advantage value can also be calculated using just one value
function V (s) together with the TD error calculated from the reward r, taking
into account the discount factor γ [22]:

A(s, a) = r + γV (s′) − V (s) (5)

4.4 Proximal Policy Optimization (PPO)

The PPO algorithm [19] was designed to be an improvement on Trust Region
Policy Optimisation (TRPO) [18]. It ensures that the policy updates are stable
by implementing a “proximal” constraint on the updates to limit how much
the policy can change from one update to another, lowering the variance of the
updates. There are two variants of PPO which are PPO Penalty and PPO Clip.
Typically, PPO Clip is more popular since it is easier to implement and performs
better than PPO Penalty. The PPO Clip variant contains a restriction on how
much the policy may change by specifying the clipping range and ignoring any
advantages accomplished that are not within the specified range. To update and
improve the policy, Schulman et al. [19] state that this PPO variant makes use
of the following surrogate objective function:

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1 − ε, 1 + ε)At)] (6)
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where A is the advantage value which was estimated at each time step in
the batch, θ refers to the policy’s parameters, and r(θ) represents the proba-
bility ratio of the change between the old policy and the updated policy for
each time step in the batch. Meanwhile, the hyper-parameter ε determines the
clipping range. Furthermore, the first term of this equation inside the min func-
tion, rt(θ)At, maximizes the surrogate objective. However, the maximisation of
this function would result in the policy update being extremely large. There-
fore, the second part of the min function, clip(rt(θ), 1 − ε, 1 + ε)At, is used to
clip the probability ratio from the surrogate objective. The minimum value from
the calculated unclipped and clipped values is chosen. The expected value over
a number of experiences, t, is taken. Schulman et al. [19] state that with this
function, the probability ratio change only comes into play when it causes the
objective to be worse, in order to avoid performing large policy changes which
could have a negative impact on the policy’s performance and lead to instability.

4.5 Advantage Actor Critic (A2C)

The A2C algorithm is a deep reinforcement learning actor-critic algorithm which
was developed as a synchronous variant of the Asynchronous Advantage Actor
Critic (A3C) algorithm [28], which was developed as an asynchronous actor-
critic variant to perform better by making use of multiple independent actors
learning in parallel, each on a different copy of the environment [9,14]. During
learning, A3C performs optimisation of the deep neural network controllers with
the use of the asynchronous gradient descent [14]. After an update is performed,
each agent will reset their parameters to correspond to the parameters of the
deep neural network, prior to continuing their independent training [9]. Mnih
et al. [14] state that the A3C algorithm is very powerful, being very successful
on both discrete and continuous action spaces along with being very efficient on
2D and 3D games, and stated that it was considered to be “the most general
and successful reinforcement learning agent to date” [14].

However, the asynchronous updating strategy of A3C had a drawback of
causing some of the agents to make use of the older version of the deep neural
network parameters during training [9]. The synchronous version of the A3C
algorithm, A2C, was developed in order to overcome this drawback. A2C also
makes use of multiple agents during learning, but instead of the agents updating
the deep neural network asynchronously, the algorithm will only update the
deep neural network parameters and reset the agents when all the agents have
finished their training segment [9]. Being an actor-critic algorithm, A2C combines
features of both policy-based algorithms and value-based algorithms to perform
optimisation on the deep neural network controllers [14]. Wu et al. [28] state
that A2C is a first-order gradient algorithm which means that the actor neural
network is updated with the use of the policy gradient. Moreover, the A2C
algorithm also makes use of the advantage function, explained in Sect. 4.3, to
learn the advantage values which will be used to improve the policy.

During interaction with the environment, for each time step, each agent will
gather the necessary information such as the observations prior to and after an
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action is applied, the reward received and the action performed. The actor and
critic are updated, with the use of the gathered environment information, as well
as the calculated advantage values and the cumulative sum of rewards, either
when a terminal state is encountered or when the maximum amount of time
steps have been performed. Moreover, as explained in Sect. 4.3, since A2C is an
actor-critic algorithm, it is able to learn in environments where the actions have
both immediate and long-term rewards.

5 Methodology

Since there is no publicly available research on how the game should be imple-
mented, the entire game and all its rules had to be implemented from scratch.
The implementation takes care of maintaining the game state for the two players
and offers the functions for each player to take actions, as described in Sect. 2.
The code was developed in Python, and is available publicly on Github2.

Since we are using self-play with two agents playing against each other, we
have to have a reinforcement learning environment that partitions the states and
rewards observed by each adversarial agent. A custom PettingZoo3 environment
was created with the appropriate action and observation spaces to perform multi-
agent reinforcement learning on the game environment. In contrast with the
conventional single-agent Gymnasium Environment4, this environment allows
for the agents to have their own reward, termination and truncation variables
and their own observation and action spaces. It also allows the multiple agents to
take turns to sequentially take in their observation, perform an action and receive
the respective reward. Furthermore, each agent will have its own policy, trained
from its respective actions and feedback. This environment provides a function
which applies the chosen action, and returns the new reward from applying
the action, the new observation (state information of the game), and additional
information such as whether the new state is a terminal state (the game ended).
An additional piece of information used in this work is the action mask, which
indicates which actions are possible.

The four main action types that the player can choose from in this game
were all split into more detailed actions, making up a total of 25,469 possible
discrete actions, for the agent to be able to distinguish between them and learn.
The action space for each agent was thus set to a Discrete space of size 25,469
to represent all the possible actions that an agent can choose from. The action
mask for the current player’s possible actions is also created as a NumPy array
of 25,469 elements with each element set to 1 if the corresponding action is valid
or 0 if the action is invalid.

The observation space was constructed as a Dict space (a set of key-value
pairs, with each value corresponding to other data structures), with two Box
(n-dimensional continuous space) spaces named ‘observation’ and ‘action mask’.
2 https://github.com/Cristina0702/JaipurRL.
3 https://pettingzoo.farama.org/.
4 https://gymnasium.farama.org/.

https://github.com/Cristina0702/JaipurRL.
https://pettingzoo.farama.org/.
https://gymnasium.farama.org/.
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The observation element represents the player’s cards and score, the opponent’s
Camel cards, the marketplace cards and the remaining tokens. Meanwhile, the
action mask element contains the player’s action mask which proved to be a
crucial component for the algorithm to converge quickly since the action space
is very large.

The RLlib5 library was used to apply the chosen Reinforcement Learning
algorithms, as it contains ready-made and tested algorithms that are compat-
ible with PettingZoo environments. This library also contains multiple action
masking models which can be used with the algorithms for action masking to be
performed during training.

Since the custom PettingZoo environment makes use of a Discrete action
space, algorithms which are compatible with Discrete action spaces were used.
The PPO, A2C, DQN and DDQN algorithms were trained in this environment,
with the RLlib action masking mechanism.

The PPO, DQN and DDQN algorithms were trained with 1 local worker
whilst the A2C algorithm was trained with 2 rollout workers since this algorithm
make use of multiple workers. Training of the A2C algorithm was performed
with the Learning Rate set to 0.01 and the Gradients Clip set to a value of 30.
For PPO, the KL Divergence coefficient was set to 0, the Gamma value was
set to 0.9 and the Learning Rate was set to 0.01. For the DQN and DDQN
algorithms, the replay buffer used was the MultiAgentPrioritizedReplayBuffer
with size set to 1,000. The replay buffer’s prioritized replay alpha was set to
0.6 and the prioritized replay beta was set to 0.4. Furthermore, the batch mode
was set to ’complete episodes’. The listed hyper-parameters were set to the
recommended default values while the remaining hyper-parameters of all the
algorithms were left as the default values. This was performed as, at the time of
writing, experimentation on the hyper-parameters was limited and impractical
due to the very high training times of the algorithms.

For each of these algorithms, two different policies were trained so that each
agent has its own policy, to ensure that the agents do not learn to help each other.
The total number of steps trained, games played, which were all unique as the
deck is shuffled randomly, and the training time taken for the final models are
displayed in Table 1. All the final models were trained using an Intel Core i5 6th
Generation processor and 16 GB RAM. The trained models were then evaluated
quantitatively on 1000 unique games which were not part of the training set.

Table 1. Number of Steps Trained and Time Taken

Algorithm Number of Steps Trained Games Played Time Taken

PPO 2,000,000 37,166 40 h

A2C 939,680 16,700 11 h

DQN 1,027,663 17,700 25 h

DDQN 2,055,485 36,200 50 h

5 https://docs.ray.io/en/latest/rllib/index.html.

https://docs.ray.io/en/latest/rllib/index.html.
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6 Results

All the algorithms were evaluated quantitatively, by comparing their scores with
scores achieved by human players, and qualitatively, by checking which actions
the policies were selecting. The algorithms were evaluated based on the mini-
mum, mean and maximum rewards obtained per episode, and by each individual
player. These metrics were selected as they give a clear indication of how each
trained agent performs. These were also inspired from forums about the game678,
which are related to the Jaipur game where players were discussing their scores.
From these sources, the data gathered was that most players’ high score is around
80 to 100 with their average score being around 60 to 75 and players were getting
scores as low as 16 points.

The quantitative results obtained from the trained algorithms after they were
played for 1000 unique games, which were not part of the training set, are dis-
played in Figs. 2 and 3. From these figures, it can be seen that all the algorithms
generated results similar to each other, with the PPO algorithm performing the
best. Moreover, these figures also show that the results generated by all the
algorithms are similar to the results discussed in the forums. Therefore, it can
be concluded that quantitatively, all the algorithms perform well with this game
environment. Furthermore, Fig. 4 displays the difference in the scores obtained
by the trained Player 1 and Player 2 policies of all the algorithms, throughout
the 1000 unique games. From this figure as well as from Figs. 2 and 3, it can
be noted that for all the algorithms, the Player 2 policy performed better than
the Player 1 policy. Therefore, the results show that the PPO Player 2 policy
obtained the highest scores.

Fig. 2. PPO and A2C Results

6 https://boardgamegeek.com/thread/702405/what-your-best-round-score-jaipur.
7 https://www.reddit.com/r/boardgames/comments/dhxwa4/data analysis on jaipu

r games between my wife and/.
8 https://imgur.com/gallery/GizBVGW.

https://boardgamegeek.com/thread/702405/what-your-best-round-score-jaipur.
https://www.reddit.com/r/boardgames/comments/dhxwa4/data_analysis_on_jaipur_games_between_my_wife_and/
https://www.reddit.com/r/boardgames/comments/dhxwa4/data_analysis_on_jaipur_games_between_my_wife_and/
https://imgur.com/gallery/GizBVGW.


242 C. Cutajar and J. Bajada

Fig. 3. DQN and DDQN Results

Fig. 4. PPO, A2C, DQN and DDQN Player 1 vs Player 2 Policies

The trained algorithms were also evaluated qualitatively, to check if the
actions they were selecting were intelligent actions based on the game’s state.
During the qualitative testing, it was noted that the algorithms were all per-
forming smart actions throughout the gameplay, similar to actions chosen by
rational human players.

7 Conclusions and Future Work

This work presents four well-performing agents on the game of Jaipur. This
game has some characteristics which make self-play reinforcement learning chal-
lenging, such as having a large-action space and being adversarial, which were
addressed by implementing action masking and by training a separate policy for
each player. From the results obtained from this work, we found that despite
these challenges, the four deep reinforcement learning algorithms, PPO, A2C,
DQN and DDQN, obtained good quantitative results and learned to perform
smart actions with the PPO algorithm obtaining the best results.

For future work, this research could be taken further by evaluating the poli-
cies against professional human players. Furthermore, while for this work little
hyperparameter optimisation was performed due to the significant time needed
for training, performing such optimisations could result in even better policies.
Finally, the use of action masking to reduce the action space could be compared
with other techniques such as vector embedding of actions by similarity.
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Abstract. Numerous algorithms process face images to perform tasks such as
person identification and estimation of attributes such as the race and gender.
While previous work has focused on biases in face recognition systems, rela-
tively limited work has considered the full face processing pipeline to determine
if other components also exhibit any biases related to a person’s demographic
attributes. An evaluation of popular and state-of-the-art methods in the face pro-
cessing pipeline reveals that, although the overall performance may appear satis-
factory, numerous differences are uncovered when digging deeper to consider the
performance not just within a single demographic group, but also across different
types of groups. Several avenues of future work are also provided.

Keywords: face recognition · face attribute estimation · bias · demographics ·
computer vision · machine learning · museums

1 Introduction

Facial images depicting one or more faces of human beings have been used for a number
of tasks, including for Face Recognition (FR) [12] and for Face Attribute Estimation
Systems (FAESs) [17,44], which estimate attributes such as a person’s sex, race, age,
and facial expression, among others.

These tasks tend to be used in important applications such as those related to security
[3,15,16] or for customer behaviour analysis in museums and shops [32], which require
accurate information about subjects of interest. Handling all subjects fairly, without any
prejudices, is vital in such applications. However, face processing systems have often
come into the limelight after it was noted that certain demographic groups might be
handled differently than others [18,35]. This phenomenon has also been observed in
the context of the human ability to recognise faces of people belonging in different
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demographic groups to their own, known as the “other-race effect” [11,14]. Indeed, it
could be argued that automated systems could be leveraged to mitigate this problem.

The study of demographic bias has been considered in previous works, but this has
often centered on face recognition systems. Whilst undoubtedly important, there are
other types of algorithms that operate on faces and which could pose detrimental effects
if found to be biased. Such algorithms include those used for pre-processing, such as
face detectors, and algorithms to estimate the demographic attributes of a person, that
could be used to filter out subjects not matching the desired criteria.

In this study, a number of popular and State-of-The-Art (SoTA) FR and FAES meth-
ods that are publicly available (and thus can easily be used by anyone) are evaluated.
In the case of attribute estimation, the focus is on gender and race since they are typi-
cally among the most important types of information. In contrast to most evaluations,
the choice of face detector that is often used as a pre-processing step to detect, crop,
and normalise faces is also considered to determine whether it significantly affects the
performance of subsequent steps.

The main contributions of this paper are thus as follows:

– The effect on demographic biases of each component in the processing pipeline (not
Face Recognition Systems (FRSs) only) is investigated.

– It is shown that the face detector can significantly affect the downstream perfor-
mance, highlighting the lingering sensitivity of machine learning methods to vari-
ances in the appearance of an image

– The investigation focuses on methods that are freely and readily available to use by
anyone (even those who may not be well-versed with potential issues)

– It is shown that even a method designed for fairness may yield labels that are wildly
different to the actual ones, with high confidence. This again indicates that some
Machine Learning (ML) methods may not be truly learning the actual problem.

The rest of this paper contains an overview of existing literature in Sect. 2, followed
by a description of the evaluation methodology in Sect. 3. Results are provided and
discussed in Sect. 4, with concluding remarks and directions for future work finally
given in Sect. 5

2 Literature Review

There exist numerous approaches that can perform face recognition and attribute esti-
mation. An overview of popular and state-of-the-art methods will first be provided, fol-
lowed by a discussion of existing work where biases across demographic groups have
been considered.

2.1 Face Recognition Systems

Face recognition is a topic of research that has long attracted attention since the face is
a biometric trait that is quite distinguishable among subjects and is easy to capture even
without a person’s direct cooperation. Methods capable of automatically identifying
persons are referred to as Face Recognition Systems (FRSs).
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Modern methods are primarily based on deep learning, with one of the pioneering
approaches being the VGG-Face method [29] that was based on the VGG16 architecture
[41] designed for object recognition and then tuned using face images in the VGG-Face
dataset (also presented in [29]). VGG-Face was first trained for the task of classification
and is then tuned using triplet loss to train a fully-connected layer tasked with yielding
features that can be used for verification.

An extension of the work in [29] was performed in [6], whereby a new dataset called
VGGFace2 was used to train models based on ResNet-50 [20] and SE-ResNet-50 [21].
It was demonstrated that SoTA performance was attained when using the IJB-A [24],
IJB-B [45], and IJB-C [27] benchmarks.

The Additive Angular Margin Loss (ArcFace) function [10] improved on learning
an embedding using triplet loss, by employing an arc-cosine-based function to increase
feature discriminability and allowing for sub-classification within classes. It aims to
minimise the distance between a sample and its corresponding sub-class while max-
imising the distance to other sub-classes. ArcFace achieved SoTA performance.

2.2 Attribute Estimation

There exist several attributes that can be used to describe humans, one of which is sex.
Generally, the labels of ‘male’ and ‘female’ are utilised. Race and ethnicity are by far
the hardest to quantify provided that it is difficult to segregate individuals into particular
classes [26]. A race is generally described by society and is composed of people sharing
distinctive physical traits, whereas ethnicity is based on cultural practices [4].

There exist several methods capable of estimating a person’s attributes and which
are also publicly available, thereby being easily accessible. For example, the Deep-
Face (DF) library1 contains implementations for a number of face detectors, FRSs
[40], and models capable of estimating a person’s gender, age, race, and facial expres-
sion/emotion [39]. The work in [36] served as inspiration to the models designed for
age and gender [38]. These FAESs apply transfer learning to the pre-trained VGG-Face
network [29], modified to output the required classes.

The FairFace dataset [22] aims to address racial bias by providing an equal represen-
tation of various races, namely ‘White’, ‘Black’, ‘Latino’, ‘Middle Eastern’, ‘Indian’,
‘East Asian’ and ‘Southeast Asian’. An architecture trained on the FairFace dataset
capable of classifying face, age, and gender was also proposed. This is denoted as Fair-
Face (FF) in the rest of this paper. FF utilises the dlib library [23] to perform face detec-
tion using a Convolutional Neural Network (CNN)-based approach and the ResNet-34
[20] network as the backbone for all the attributes considered.

Lastly, the method in [46] employs the Face Recognition library2 that is based on the
well-known dlib library [23] to perform facial feature extraction. Specifically, the face
encoding function from this library is used to represent the input as a face embedding
vector, while the Histogram of Orientation Gradients (HOG)-based face localisation

1 Available at: https://github.com/serengil/deepface.
2 A facial recognition library that recognises and manipulates faces. Available at https://github.
com/ageitgey/face_recognition.

https://github.com/serengil/deepface
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
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Fig. 1. Architecture of the evaluation pipeline used in this work

algorithm is used to perform face detection. The Multi-Layer Perceptron (MLP) classi-
fier available in the scikit-learn package [30] is utilised to narrow down the input data
sets to a set of appropriate outputs consisting of gender and race categories.

2.3 Biases in Face Processing Systems

Amidst a growing global concern on the use of FR and FAESs, various research works
are exploring and evaluating the effects of biased and unfair algorithms [34] within dif-
ferent demographic groups. It is claimed that while ML has great commercial value,
society is still not readily able to fully trust its widespread use, due to inherent biases.
However, the authors of [34] also highlight the “other-race effect” [11,14] where bias is
not limited to ML systems but also found in human evaluations, after subjects demon-
strated better recognition of persons within their own demographic.

Other works [9,19] propose initial efforts that not only evaluate the level of bias,
but also aim at mitigating it across different demographic groups. The de-biasing face
recognition network (DebFace) proposed in [19] learns the disentangled representation
for gender, race, age estimation, and face recognition simultaneously using adversar-
ial learning, which in turn is used to reduce bias across the recognition and attribute
estimate stages. The authors of [9] outline a similar concept using a multi-task CNN
approach, by employing joint dynamic loss weight adjustment to minimise bias when
predicting age, race, and gender.

The reader is also referred to the studies in [8,11,43], which contain several insights
on biases in biometrics predominantly in face recognition.

3 Evaluation Methodology

The architecture of the evaluation pipeline is shown in Fig. 1. A face image is first
processed by a face detector to (i) determine the coordinates of the face within the
image, (ii) crop the image such that it depicts primarily the face of a subject, and (iii)
optionally aligns and normalises the image, for example to reduce the angle between
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Table 1. Statistics of the 866 subjects in the Color FERET dataset used in this study.

MALE FEMALE

ASIAN BLACK WHITE ALL ASIAN BLACK WHITE ALL

# OF SUBJECTS 113 34 362 509 57 44 256 357

PERCENTAGE OF TOTAL 13.05 3.93 41.80 58.78 6.58 5.08 29.56 41.22

the eyes to zero degrees. Normalisation has been found to improve performance, e.g.
in face recognition systems [29]. Hence, the effect of the face detector on performance
will also be analysed to determine its importance in subsequent processing steps.

The face image output by the detector is then sent to two types of systems: (i) FRSs,
to determine the identity of the subject from a gallery set of images having face photos
of subjects with known identities, and (ii) FAESs, which can estimate attributes such
as the age, gender, or race of the subject in the image. Some FAES methods may be
capable of estimating more than one attribute at a time.

3.1 Dataset

It is hard to find a good dataset that was not used to train any of the models (to ensure no
unfair advantage to any method). To this end, the Color FERET dataset [31] was used
in this study. It contains a substantial number of good quality frontal images with vari-
ations across age and race. The use of good quality frontal images helps to ensure that
any differences in performance among demographic groups are primarily due to such
biases, rather than the image quality (thereby reducing potential confounding factors).

The demographic distribution of subjects is shown in Table 1, while some examples
are shown in Figs. 1 and 4. There may be some shadows due to the lighting setup,
striking a good balance between images that are neither too easy nor too difficult.

For most subjects in the dataset, there exist at least two frontal face images. One of
these images is used in the probe set3, for which the identity needs to be determined
using a gallery set of images where the identities corresponding to the subject in each
image are known. The gallery is composed of the second image of the subject.

In the case of the FAESs, the probe and gallery sets are merged such that each
subject is represented by two images. The predicted attributes (gender, race) are then
extracted for each subject and compared with the ground-truth labels.

It should be noted that some labels may not correspond exactly with the labels
used to train a race estimation method. Moreover, some groups contain a relatively
small number of subjects, which may yield unreliable results. Hence, only the subjects
belonging to ‘White’, ‘Black’, and ‘Asian’ categories are used, which are also consid-
ered to be among the major divisions of the human race [1]. Most methods are capable
of predicting all three groups since they were trained on datasets having these labels.

3 Also known as a query set.
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Fig. 2. Examples of the face detector outputs, for the image in Fig. 1

3.2 Methods and Evaluation Protocol

There exist two main types of methods, namely FRSs and FAESs, the latter which
can be further sub-divided into methods performing estimations of gender and race. As
mentioned in Sect. 3, a face image first needs to be processed by a face detection system
to ensure that the subsequent face processing systems are provided images containing
normalised faces. More information will now be given.

Face Detection. The first step in the pipeline of any FRS or FAES is typically a face
detector. Hence, the performance of any methods utilising this image depends on the
quality of the detector employed. To determine the extent of a detector’s impact on
performance, three methods are considered:

– Multitask Cascaded Convolutional Networks (MTCNN) [47], which outperformed
SoTA methods across a number of benchmarks and was used for VGG-Face with
the ResNet-50 backbone [6]

– OpenCV’s Haar cascade method [5], the default detector for DF [39]
– dlib [23], where a CNN-based model is used by default for FF [22]. The method in
[46] uses a HOG-based implementation in the ‘face_recognition’ library [2] that is
based on dlib. The implementation in DF [39] uses dlib’s default face detector that
is also based on HOG, which is used for methods marked with ‘dlib’ in Sect. 4.

Examples of outputs for each face detector are shown in Fig. 2. The attributes esti-
mated by DF [39] were predominantly considered for this evaluation, since the library
in which they are provided also includes the implementations of the face detectors con-
sidered and thus ensures compatibility between the algorithms.

Face Recognition. The FRSs considered include:

– VGG-Face (VGG16): VGG-Face based on the VGG-16 architecture [29]
– VGG-Face (ResNet-50): ResNet-50 trained on the VGGFace2 dataset [6], a more

modern variant of the original VGG-Face and attained SoTA performance
– ArcFace [10], which outperformed SoTA methods
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The implementations in the DeepFace library are used for the VGG16-based VGG-
Face and for ArcFace. It should be noted that the original implementation of VGG-Face
was trained first for the task of classifying 2,622 subjects, followed by tuning for verifi-
cation using the triplet loss to yield a feature embedding. However, the implementation
in the DeepFace library yields 2,622-D vectors. Whilst this implementation is retained,
an alternate implementation that appears to be more closely aligned with the original
model described in [29] is also considered, available at [25]4 which is also used for the
VGG-Face method using ResNet-50 as the backbone architecture.

The metrics used to evaluate FRS performance include (i) accuracy, representing
how many subjects are correctly identified as the best match, (ii) the Equal Error Rate
(EER) corresponding to the error rate at the Receiver Operating Characteristics (ROC)
operating point where the False Match Rate (FMR) is equal to the False Non-Match
Rate (FNMR), and (iii) the Area under Curve (AuC), denoting the area under the ROC
curve. Accuracy and AuC should be maximised (maximal values of 100% and 1, respec-
tively) whilst minimising the EER (minimal value of 0).

Attribute Estimation. The methods considered for attribute estimation (each capable
of estimating both the race and gender) include:

– DeepFace (DF) [39]
– FairFace (FF) [22] trained on a dataset containing balanced demographic groups
– The implementation in [46], which also performs face detection

Evaluation of these methods was performed using the well-known accuracy, preci-
sion, recall, and F1-score metrics. An algorithm with a low recall but high precision
is unable to detect a class well but is reliable when it does, while an algorithm with a
high recall but low precision is capable of detecting the class well but then also includes
incorrectly classified samples within that category.

The AuC is also computed since the methods considered additionally output confi-
dence scores for each class, except for DF which does not output such values for gen-
der labels. Furthermore, the following are also computed: (i) the probability/confidence
score when the predicted class is correct (which should be high), (ii) the score when the
predicted method is incorrect (which should be minimised), and (iii) the score for the
correct class when the prediction is incorrect (which should be maximised). These val-
ues give an indication of the confidence of an algorithm when it is right and when it is
wrong. Inspired by the field of explainable AI, this enables a glimpse into the black box
that such algorithms (especially those based on deep learning) tend to be, and enable a
better understanding and interpretation of their predictions [7,28].

The variant of FF that is capable of estimating four racial groups is chosen over
the variant predicting seven groups since it is more closely aligned with the labels used
in this study. Confusion matrices considering an additional number of labels that are
present in the dataset and which can be predicted by the algorithm are also shown, to
give a more complete picture of any biases involved and the main sources of confu-
sion. Furthermore, these are combined with the gender to delve deeper into any biases
between demographic groups.

4 Available at: https://github.com/rcmalli/keras-vggface.

https://github.com/rcmalli/keras-vggface
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Table 2. Gender estimation methods performance, for each gender. All values in %. ‘Prec.’ and
‘Rec.’ denote ‘Precision’ and ‘Recall’, respectively.

METHOD MALE FEMALE

PREC. REC. F1 PREC. REC. F1

FF 96.85 99.90 98.35 99.85 95.38 97.56

[46] 88.19 99.80 93.64 99.65 80.90 89.30

OPENCV + DF 75.17 99.70 85.71 99.20 53.14 69.21

MTCNN + DF 77.99 99.90 87.60 99.77 59.80 74.78

DLIB + DF 76.31 100.00 86.56 100.00 55.68 71.53

Table 3. Performance of race estimation methods, for each racial group. All values in %.

METHOD ASIAN BLACK WHITE

PRECISION RECALL F1 PRECISION RECALL F1 PRECISION RECALL F1

FF 96.62 98.47 97.53 96.73 100.00 98.33 99.83 99.00 99.41

[46] 92.86 80.29 86.12 83.53 91.61 87.38 96.60 99.03 97.80

OPENCV + DF 69.47 74.92 72.09 84.55 77.04 80.62 99.40 67.56 80.45

MTCNN + DF 63.87 97.16 77.07 94.55 70.75 80.93 99.37 89.12 93.97

DLIB + DF 95.35 94.99 95.16 92.00 97.18 98.87 99.53 98.87 99.20

4 Results

The results obtained for each method will now be provided and discussed, starting with
an analysis of the face detector’s effect on the performance of subsequent steps.

4.1 Effect of Face Detector on Performance

As shown in Tables 2 and 5 and Fig. 3b, the detector can affect the performance of the
downstream gender attribute estimation methods. The default detector for DF, OpenCV
[5], attains the worst overall performance across all metrics considered while MTCNN
[47] generally enables the best performance. It was also noted that the OpenCV detector
tends to struggle more than the other algorithms in detecting faces, despite utilising
relatively high-quality images as found in the dataset considered in this study.

Differences in performance are more evident in the case of the race attribute esti-
mations by DF, as shown in Table 6. The systems using OpenCV and MTCNN yield
performance values that are quite similar with each other, but are significantly worse
than the system using dlib.

There also exist differences among racial groups, as shown in Table 3 and Figure 3a.
For example, the system using dlib attained a slightly higher value for precision than
recall for ‘Asian’ subjects, in contrast to the other two detectors which also obtained sig-
nificantly lower precision values. However, the OpenCV and MTCNN-based detectors
also attained higher values for precision than recall for ‘White’ and ‘Black’ subjects.
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The effect of the face detector on face recognition performance is also fairly evident,
as shown in Table 4. For instance, ArcFace was able to correctly determine the identity
of all subjects when using dlib, but its performance noticeably degraded when using
OpenCV as the detector and normaliser. Similar observations can also be made when
considering individual demographic groups, as shown in Tables 8 and 9.

Fig. 3. F1-scores of the methods considered over different (a) race and (b) gender groups

The subsequent discussions will consider the performance using the default face
detector for each architecture where applicable, as outlined in Sect. 3.2.

4.2 Face Recognition Performance

The choice of face detector affects the performance of FRSs. VGG-Face with ResNet-
50 as the backbone architecture [6] is the least affected by the detector choice, con-
sistently performing well as shown in Table 4. However, significant differences arise
among demographic groups, as shown in Tables 8 and 9 and Figs. 5 and 6. For example,
using the MTCNN detector leads to lower performance for ‘Male’ ‘Asian’ subjects.

VGG16-based VGG-Face achieves the best performance for “Male” “White” sub-
jects, followed by “Male” “Asian” and “Male” “Black” subjects. This is a trend that is
fairly consistent among all the face detection/recogniser systems considered, although
it does not always hold. For example, ArcFace attains better performance for ‘Male’
‘Black’ subjects than ‘Male’ ‘Asian’ subjects and is also superior to ‘Male’ ‘White’
subjects when utilising the OpenCV detector.

Gender differences are also observed, with ResNet-50-based VGG-Face performing
better on “Female” subjects, while OpenCV and ArcFace perform better for ‘Male’ sub-
jects. OpenCV-based pipelines yield inferior performance for ‘Female’ subjects. Per-
formance is generally better for ‘Female’ ‘Black’ subjects than not only ‘Male’ ‘Black’
subjects, but also in many cases ‘Female’ ‘Asian’ and ‘Female’ ‘White’ subjects.

Some methods focus on external details like glasses, which may introduce biases.
As an example, for the subject shown in Fig. 7, three of the top five best matching
subjects (including the best match) are seen to wear glasses, as is the case for the subject
in the query image. This suggests that the face recogniser might be using glasses as a
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means of discrimination, which is not entirely desirable given that it is very easy to
wear or remove glasses and as such is not a discriminating factor of a person’s identity.

Lastly, the DeepFace library’s implementation of VGG-Face performs worse due to
architectural differences (specifically the use of the classification layer rather than the
feature embedding layer as originally recommended in [29]). This highlights the need
to use methods as intended to ensure fair and valid comparisons.

Table 4. Performance for FRSs across all demographic groups. [DF] denotes that the method as
implemented in the DeepFace library. The rest of the methods use the implementations in [25].

METHOD ACC. EER AUC

MTCNN + VGG-FACE (RESNET-50) 98.69 0.30 0.999

OPENCV + VGG-FACE (RESNET-50) 97.41 1.14 0.995

DLIB + VGG-FACE (RESNET-50) 99.90 0.00 1.000

MTCNN + VGG-FACE (VGG16) 90.74 3.53 0.990

OPENCV + VGG-FACE (VGG16) 86.01 6.85 0.977

DLIB + VGG-FACE (VGG16) 95.16 1.51 0.999

MTCNN + VGG-FACE (VGG16) [DF] 89.02 5.75 0.976

OPENCV + VGG-FACE (VGG16) [DF] 85.91 7.26 0.976

DLIB + VGG-FACE (VGG16) [DF] 95.36 1.11 0.999

MTCNN + ARCFACE [DF] 98.99 0.60 0.998

OPENCV + ARCFACE [DF] 91.81 8.30 0.943

DLIB + ARCFACE [DF] 100.00 0.00 1.000

4.3 Attribute Estimation Performance

Focusing on the performance between different FAESs when using the default detectors,
it can be observed in Table 5 that FF attains the best overall performance for gender
estimation, followed by the method in [46] and DF.

However, delving deeper into the performance across genders reveals further
insights. For instance, FF attains fairly consistent performance for both ‘Male’ and
‘Female’ subjects. However, FF is similar to the other approaches in attaining a higher
recall than precision for ‘Male’ subjects, but then attaining higher precision than recall
for ‘Female’ subjects. This means that the methods considered may struggle to detect
‘Female’ subjects but are quite reliable when they do, whereas they are capable of
detecting almost all ‘Male’ subjects but may also incorrectly label ‘Female’ subjects as
‘Male’. This can also be observed graphically in Fig. 8, particularly in the case of DF
where it is clear that the model is able to correctly classify almost all ‘Male’ subjects
but is then often confused in the case of ‘Female’ subjects and is hardly any better than
the flip of a coin. This suggests that the models considered are more predisposed to
classifying subjects as ‘Male’ than ‘Female’.

In the case of race estimation, DF is also outperformed by the other methods, with
FF generally attaining the best performance. However, the AuC for FF is marginally
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inferior to the approach in [46], indicating that the probability/confidence values gener-
ated by the latter are able to better distinguish between true matches and false matches.

More insightful observations can also be derived when considering individual
demographic groups as shown in Table 3. In general, all methods perform better when
considering ‘White’ subjects than the rest of the racial groups, except for some cases
where the recall values are inferior to the other races. For instance, FF and DF with
OpenCV attain higher recall for ‘Black’ subjects than ‘White’ subjects, with the latter
also exhibiting a higher recall for ‘Asian’ subjects.

FF, which was trained on a balanced dataset, also exhibits overall lower perfor-
mance for ‘Asian’ subjects. In terms of precision, the performance on ‘White’ subjects
is noticeably higher than the other racial groups. However, as shown in Table 7, the
confidence values when incorrectly classifying subjects as ‘Asian’ are generally quite
high, indicating that the model is highly confident of making the correct prediction even
when it is wrong. The confidences for ‘White’ subjects are also higher than the other
methods, but lower than for the ‘Asian’ demographic. The values for ‘Black’ subjects
could not be estimated since all incorrect predictions were classified as ‘Indian’ by FF,
and were thus removed from evaluation. An example is shown in Fig. 4. While it could
be argued that there are some similarities between the appearances of subjects in the
two demographics, it would be expected that the confidences reflect this uncertainty.

Fig. 4. Some incorrect results by FF: (a) actual race is ‘White’ but predicted race is ‘Black’
(59.47% confidence), (b) actual race and gender are ‘White’ ‘Female’, predicted are ‘Indian’
‘Male’ with confidences of 77.94% and 96.12%, respectively, (c) ‘Black’ subject classified as
‘Indian’, with a 91.97% confidence (actual race given a score of just 7.91%).

All methods generally perform better on ‘Black’ subjects than ‘Asian’ subjects,
although the difference is starker for DF while FF achieves a 100% recall. The method
in [46] achieves lower precision for ‘Black’ subjects than ‘Asian’ subjects, indicating
that it classifies several subjects as ‘Black’ but a number of them are actually incorrect.

Figure 4 shows some examples where FF is incorrect. In one case, both the gender
and race are incorrect, with the model being 96.12% confident of having predicted the
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correct gender. However, it can be argued that the lighting in this image is sub-optimal,
which might have affected the model. In the second case, the image has no such issues
and the subject is clearly visible, but FF predicts the race to be ‘Black’ rather than
‘White’, albeit with a relatively low probability score of 59.47% with the true label
having a score of 35.70%. However, as previously mentioned, the subject in the third
example is given an incorrect label with a high probability score of 91.97%.

5 Conclusions and Future Work

This paper has presented and discussed performance differences across demographic
groups of not only FRSs as is normally done, but also of FAESs. The considered meth-
ods (some of which have attained SOTA performance and all of which are freely avail-
able) generally attained good performance, which is unsurprising since the dataset was
chosen to contain relatively good quality images. Nevertheless, the study in this work
has exposed a number of cases where performance is lacking, particularly in terms of
biases against demographic groups.

FF was designed to counteract the effect of biases, and generally exhibited the most
consistent performance across demographic groups. This highlights the importance of
using balanced datasets or techniques to counteract the issue of class imbalance. Never-
theless, it still showed several inconsistencies across demographic groups. A number of
incorrect labels were also given high confidence values. This worrying behaviour under-
lines the need for more work to truly understand how machine learning models operate,
in order to enable the design of approaches that counteract these issues [11,13,42].

It was also noted that performance differences across demographic groups may be
further exacerbated by the choice of the face detector employed to crop and normalise
face images that are then input to the attribute estimation methods and FRSs. Hence,
care should be taken in the choice of pre-processing methods employed in order to
maximise the performance potential of subsequent algorithms. It is also vital that any-
one using such algorithms is aware of their weaknesses and ascertains that they are
acceptable for the task at hand, lest there be undesired and potentially detrimental con-
sequences.

Most methods consider a fairly limited spectrum of races (typically ‘White’,
‘Asian’, and ‘Black’). It could be argued that the limited number of categories might
artificially increase algorithms’ performance, since the likelihood of choosing the cor-
rect category is higher. However, there do exist other labels that are more descriptive and
which cater for a wider gamut of races (e.g. ‘Hispanic’, ‘Middle-Eastern’, etc.). This is
arguably a severe limitation of most current approaches and is thus also an avenue of
future work.

Future work can also consider the use of more datasets and techniques to make
FAESs more robust across demographics, perhaps by using other network architectures,
loss functions, and evaluation metrics. An analysis could also be done to determine the
factors contributing the most to mitigating bias.

The reasons as to why the ML models can be highly affected across demographics,
even by changes that appear small to the naked eye, need to be better understood. For
example, techniques such as Grad-CAM [37] and LIME [33] could be used to visualise
the salient regions as determined and used by the models.
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ML models can be applied in numerous domains, such as computation of museum
visitor statistics and attributes to enable the design of better exhibits. Whilst manual pro-
cesses already exist, they may still be biased due to the ‘other-race effect’, subjectivity,
and inconsistent practices. By transitioning to ML models, museums can streamline
their data collection processes and improve efficiency. However, it is crucial to address
the biases that can arise from these models. This work provides a framework and bench-
mark for evaluation of a wider spectrum of methods and datasets, to ensure that any
models deployed in the real-world minimize biases in such sensitive applications.
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A Appendix: Supplementary Information

This appendix contains additional images and tables that supplement the discussion in
the main manuscript, as follows:

– Table 5 and Table 6 show the performance of the gender and race estimation meth-
ods, respectively, across all subjects.

– Table 7 contains the confidence scores for the race estimation methods, for each race
considered.

– Table 8 and Table 9 contain the performance of the FRSs when evaluated on male
and female subjects, respectively.

– Fig. 5 and Fig. 6 show the accuracy scores of the methods considered over different
racial groups for male and female subjects, respectively

– Fig. 7 depicts examples of an incorrect match by OpenCV + VGG-Face (VGG16)
[DF].

– Fig. 8 shows the confusion matrices for the gender and race estimation methods.

Table 5. Performance of the gender estimation methods, across all subjects. ‘C’ and ‘I’ refer to
the mean confidence values output by the method when the prediction is correct and when the
prediction is incorrect, respectively. ‘A’ represents the confidence score of the correct label when
the prediction is incorrect. All values in %.

METHOD ACCURACY PRECISION RECALL F1 AUC C I A

FF 98.04 98.09 98.04 98.03 99.05 96.21 82.61 13.02

[46] 92.02 92.91 92.02 91.86 99.30 79.15 23.16 6.40

OPENCV + DF 80.48 85.09 80.48 78.90 – – – –

MTCNN + DF 83.37 86.97 83.37 82.31 – – – –

DLIB + DF 81.74 86.07 81.74 80.37 – – – –
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Table 6. Performance of the race estimation methods, across all subjects. ‘C’ and ‘I’ refer to
the mean confidence values output by the method when the prediction is correct and when the
prediction is incorrect, respectively. ‘A’ represents the confidence score of the correct label when
the prediction is incorrect. All values in %.

METHOD ACCURACY PRECISION RECALL F1 AUC C I A

FF 99.01 99.03 99.01 99.01 96.22 96.21 66.97 24.15

[46] 94.68 94.70 94.68 94.57 96.96 79.15 23.16 6.40

OPENCV + DF 89.89 91.92 89.89 90.38 95.58 74.02 45.90 15.57

MTCNN + DF 88.82 92.20 88.82 89.50 95.70 75.18 43.12 15.52

DLIB + DF 98.02 98.05 98.02 98.03 97.02 77.61 54.92 13.93

Table 7. Confidence scores for race estimation methods, for each race. ‘C’ and ‘I’ denote confi-
dence scores when the predicted label is correct and when the predicted label is incorrect, respec-
tively. ‘A’ represents the confidence score of the correct label when the prediction is incorrect.
All values in %.

METHOD ASIAN BLACK WHITE

C I A C I A C I A

FF 98.25 81.95 0.30 – – – 95.70 61.98 32.10

[46] 81.24 19.62 2.69 61.23 26.00 12.08 80.77 39.83 20.96

OPENCV + DF 82.25 59.40 13.88 91.75 37.22 15.77 69.34 45.76 15.83

MTCNN + DF 83.08 63.41 8.39 88.01 41.80 14.44 71.50 42.21 16.41

DLIB + DF 84.51 66.40 9.19 88.53 52.80 22.92 74.55 43.19 16.07

Table 8. FRS performance for ‘Male’ subjects in each demographic group. [DF] denotes that the
method as implemented in the DeepFace library. The rest of the methods use the implementations
in [25]. ‘Acc.’ denotes ‘Accuracy’.

METHOD ASIAN BLACK WHITE ALL

ACC. EER AUC ACC. EER AUC ACC. EER AUC ACC. EER AUC

MTCNN + VGG-FACE (RESNET-50) 93.81 4.16 0.994 100.00 0.00 1.000 99.17 0.35 0.999 98.04 0.35 0.998

OPENCV + VGG-FACE (RESNET-50) 99.06 0.12 0.999 96.30 0.12 1.000 97.23 0.71 0.990 97.57 0.71 0.992

DLIB + VGG-FACE (RESNET-50) 100.00 0.00 1.000 100.00 0.00 1.000 99.72 0.12 1.000 99.80 0.12 1.000

MTCNN + VGG-FACE (VGG16) 84.96 7.05 0.976 79.41 7.28 0.953 90.61 4.39 0.988 88.61 5.55 0.983

OPENCV + VGG-FACE (VGG16) 86.79 5.11 0.975 74.07 10.82 0.951 86.70 5.83 0.979 86.03 7.73 0.976

DLIB + VGG-FACE (VGG16) 92.92 0.93 0.997 88.24 1.16 0.998 94.48 1.62 0.998 93.71 1.62 0.998

MTCNN + VGG-FACE (VGG16) [DF] 85.84 8.90 0.967 76.47 11.91 0.922 89.78 5.32 0.982 88.02 6.47 0.974

OPENCV + VGG-FACE (VGG16) [DF] 85.85 7.85 0.977 70.37 12.13 0.954 87.26 6.30 0.976 86.03 6.66 0.975

DLIB + VGG-FACE (VGG16) [DF] 93.81 2.20 0.998 85.29 1.39 0.999 94.48 1.39 0.999 93.71 1.39 0.999

MTCNN + ARCFACE [DF] 94.69 3.24 0.988 97.06 0.12 1.000 99.72 0.12 0.998 98.43 1.39 0.996

OPENCV + ARCFACE [DF] 93.40 2.02 0.966 96.30 0.12 0.969 95.84 0.12 0.971 95.34 2.02 0.970

DLIB + ARCFACE [DF] 100.00 0.00 1.000 100.00 0.00 1.000 100.00 0.00 1.000 100.00 0.00 1.000
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Table 9. FRS performance for ’Female’ subjects in each demographic group. [DF] denotes that
the method as implemented in the DeepFace library. The rest of the methods use the implemen-
tations in [25]. ‘Acc.’ denotes ‘Accuracy’.

METHOD ASIAN BLACK WHITE ALL

ACC. EER AUC ACC. EER AUC ACC. EER AUC ACC. EER AUC

MTCNN + VGG-FACE (RESNET-50) 100.00 0.00 1.000 100.00 0.00 1.000 99.22 0.12 1.000 99.44 0.12 1.000

OPENCV + VGG-FACE (RESNET-50) 100.00 0.00 1.000 100.00 0.00 1.000 94.86 2.62 0.995 96.26 1.31 0.996

DLIB + VGG-FACE (RESNET-50) 100.00 0.00 1.000 100.00 0.00 1.000 100.00 0.00 1.000 100.00 0.00 1.000

MTCNN + VGG-FACE (VGG16) 92.98 1.50 0.999 93.18 1.27 1.000 92.58 1.85 0.996 92.72 1.50 0.997

OPENCV + VGG-FACE (VGG16) 84.21 6.18 0.990 97.37 1.31 1.000 80.24 9.87 0.963 82.76 7.73 0.971

DLIB + VGG-FACE (VGG16) 96.49 0.58 1.000 93.02 0.93 1.000 98.05 1.27 0.999 97.19 0.93 0.999

MTCNN + VGG-FACE (VGG16) [DF] 91.23 3.47 0.993 68.18 17.34 0.893 92.58 3.24 0.990 89.36 5.09 0.979

OPENCV + VGG-FACE (VGG16) [DF] 84.21 5.35 0.989 92.11 0.12 0.999 80.63 10.82 0.964 82.47 9.63 0.972

DLIB + VGG-FACE (VGG16) [DF] 100.00 0.00 1.000 93.02 0.93 0.999 97.66 0.35 1.000 97.47 0.81 1.000

MTCNN + ARCFACE [DF] 98.25 0.23 1.000 100.00 0.00 1.000 100.00 0.00 1.000 99.72 0.12 1.000

OPENCV + ARCFACE [DF] 87.72 0.59 0.899 94.74 0.12 0.975 82.21 8.92 0.876 84.48 8.92 0.891

DLIB + ARCFACE [DF] 100.00 0.00 1.000 100.00 0.00 1.000 100.00 0.00 1.000 100.00 0.00 1.000

Fig. 5. Accuracy scores of the methods considered over different racial groups for male subjects
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Fig. 6.Accuracy scores of the methods considered over different racial groups for female subjects

Fig. 7. Example of an incorrect match by OpenCV + VGG-Face (VGG16) [DF]. Three of the top
five subjects wear glasses, like the query subject.
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Fig. 8. Normalised confusion matrices for the gender and race estimation methods. Labels the
same as those used by the methods considered.
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Abstract. We present a study about the prediction of long-COVID
sequelae through multi-label classification (MLC). Data about more than
300 patients have been collected during a long-COVID study at Ospedale
Maggiore of Novara (Italy), considering their baseline situation, as well
as their condition on acute COVID-19 onset. The goal is to predict the
presence of specific long-COVID sequelae after a one-year follow-up. To
amplify the representativeness of the analysis, we carefully investigated
the possibility of augmenting the dataset, by considering situations where
different levels in the number of complications could arise. MLSmote
under six different policies of data augmentation has been considered,
and a representative set of MLC approaches have been tested on all
the available datasets. Results have been evaluated in terms of Accu-
racy, Exact match, Hamming Score and macro-averaged AUC; they show
that MLC methods can actually be useful for the prediction of specific
long-COVID sequelae, under the different conditions represented by the
different considered datasets.

Keywords: multi-label classification · data augmentation ·
long-COVID syndrome

1 Introduction

In the last years, the intelligent analysis of clinical data has become a cornerstone
of modern biomedical research. An increasing number of projects focus on the
definition of biomedical databanks, and on their analysis through machine and
deep learning techniques. Notably, databanks can be fed from different sources
(e.g., electronic health records, clinical trial data, laboratory analysis results),
which are usually updated over time. In such contexts, it is useful to provide
practitioners with direct and easy access to sophisticated AI-driven data analysis.

In this paper, we move a step forward in such a direction, by studying how
machine learning techniques can be adopted in order to work with a real-world
databank. This work is part of the TECNOMED-HUB research project [1], which
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aims to build a research platform supporting the collection and intelligent anal-
ysis of long-COVID data, but with the long-term goal of being applicable to a
wide range of other diseases. In particular, the goal of this study is to define a
framework for predicting long-COVID sequelae, based on patients’ clinical data
collected during the acute phase of COVID infection.

Following the characterization in [15], post(long)-COVID-19 syndrome con-
sists of signs and symptoms (sequelae) consistent with COVID-19 that are
present beyond 12 weeks of the onset of acute COVID-19 infection, and not
ascribable to alternative causes (i.e., other diseases). From the machine learning
point of view, considering the syndrome to be defined as the persistence of at
least one of such symptoms, the characterization of the problem can be viewed
as a Multi-Label Classification problem (see Sect. 2), where instances are the
patients’ data collected at hospitalization, and the labels are the long-COVID
symptoms persisting at follow-up.

Notably, such a kind of task characterizes a wide range of applications in
the field of individualized predictive modelling where the onset of comorbidi-
ties is analyzed in a precise context; examples are reported for diabetes [26],
heart failure [13] and dyspnea [3]. Notice that differently from these works, our
study focuses on the prediction of specific symptoms, rather than on the risk
of comorbidities, making the clinical context slightly different, since the physi-
cian suspecting the insurgence of a given symptom can directly take this into
account (for instance with specific therapies avoiding undesirable effects of such
symptoms).

Coping with individualized predictive modelling in real-world settings implies
working in a low-data regime and unbalanced labels. As a consequence, upsam-
pling techniques must be adopted. However, such an aspect conflicts with the
evidence-based nature of the medical research field. To this end, one of the goals
of our work is to evaluate which upsampling techniques can be considered a
valid trade-off between the need for a more balanced dataset and keeping the
synthetic data close to the real-world ones.

The results of the work described in this paper are twofold:

– from the medical point of view, we investigated the correlation between long-
COVID syndrome and the patients’ data, providing a framework to predict
long-COVID sequelae;

– from the technological perspective, we defined a framework for the multi-label
classification of symptoms working in a low-data regimen, that can be easily
adapted for different tasks in the field of individualized predictive modelling.

The paper is organized as follows: Sect. 2 summarizes the MLC framework and
the adopted algorithms and evaluation criteria; Sect. 3 presents the case study
with the characterization of the collected data; Sect. 4 describes the experimental
part whose results are reported in Sect. 5; finally conclusions are drawn in Sect. 6.
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2 Multi-label Classification

Multi-Label Classification (MLC) can be defined as follows [6,14]. Let us consider
an instance space X = {x1, . . . xn} where each xi ∈ X is a tuple of size D = |xi|,
a label space L = {λ1, . . . λQ} of Q = |L| possible labels, a set of instances
E = {(xi,Yi)|xi ∈ X ,Yi ⊆ L, 1 ≤ i ≤ n}; a quality criterion q. The objective
of MLC is to find a function h : X → 2L that maximizes q. The goal is to
obtain a function h able to predict the subset of labels associated with a given
example. To this end, the problem is usually tackled by considering the set of
labels represented as a binary vector of size Q, where 0 means that the label is
absent (or not predicted) and 1 means the label is present (or predicted). The
problem can be generalized to label ranking by learning a function h : X ×L → R
such that h(xi, λj) = r is the prediction score for label λj in the example xi.
Usually, the score is the probability of label λj given xi, and the presence of
the label can be predicted if it exceeds a given threshold (usually 0.5). Given an
instance (xi,Yi) ∈ E we define Yi as the label-set of xi. Usually, the number of
label-sets in a given instance space (dataset) is much less than 2|L|, making the
label-set space very sparse.

2.1 MLC Methods

MLC can be approached in two different ways: problem transformation and algo-
rithm transformation [6]. Methods in the former category transform the multi-
label dataset into one or more datasets that are then targeted using traditional
single-label classification algorithms; they finally build one or multiple single-
label models. Methods in the latter adapt traditional single-label algorithms to
the multi-label setting such as decision trees, functional models (SVM or NN),
instance-based models and probabilistic models.

In the present study we concentrate on the problem transformation category
of approaches, which is the most widely adopted in MLC; in fact, most of the
algorithm transformation methods actually rely on an internal problem trans-
formation in order to solve the MLC task. Moreover, this allows in principle to
experiment with a larger number of base classifiers.

Concerning problem transformation methods, they can further be divided
into binary, multi-class or ensemble methods [6]. In binary methods, each pair
of labels is considered to produce a quadratic number of single-target binary
datasets following a one-vs-all strategy; the results is the construction of |L|
binary classifiers one for each possible label. Methods belonging to this cate-
gory are Binary Relevance (BR) [11] and different versions of classifier chain
such as CC [18] or BCC [25]. Multi-class methods, on the contrary, build one
single multi-class classifier: the target class has a set of possible values equal to
the cardinality of the label-sets. The Label Powerset or Label Combination (LC)
algorithm [11] and the Pruned Set (PS) method [19] are examples of this kind
of approach. Finally, ensemble methods adopt ensemble-like techniques in order
to train multiple single-label classifiers; important representatives of such meth-
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ods are the Conditional Dependency Network (CDN) [12] and the RAkEL [24]
algorithms.

2.2 MLC: Characterization and Evaluation Measures

MLC dataset characterization is a very important aspect, especially in terms of
label distribution and balancing. Different measures can be used to characterize a
dataset for MLC [23] starting from basic measures such as number of instances,
number of attributes, number of labels, number of distinct label-sets. Another
characterization can be given in terms of label distribution through measures
such as label cardinality (average number of labels in the examples) and label
density (the cardinality divided by the number of labels), as reported in Eq. 1.

Card(E) =
1
n

n∑

i=1

|Yi|; Dens(E) =
1

|L|Card(E) (1)

Imbalance level measures are also important in order to characterize how fre-
quent or rare are certain labels. The most relevant measures are the Imbalance
Ratio per Label (IRLbl) and the Mean Imbalance Ratio (MeanIR) which are
reported in Eq. 2 and Eq. 3 respectively.

IRLbl(λ) =
maxλ′∈L

∑n
i=1 h(λ′,Yi)∑n

i=1 h(λ,Yi)
; h(λ,Yi) =

{
1 if λ ∈ Yi

0 if λ �∈ Yi
(2)

MeanIR =
1

|L|
∑

λ∈L
IRLbl(λ) (3)

IRLbl(λ) is the ratio between the occurrence of the majority label and the
current label λ; IRLbl is ≥ 1 (1 only for majority labels), and the larger the
value the greater the imbalance of the label. MeanIR characterises the level
imbalance of the whole dataset. In addition, the standard coefficient of variation
of IRLbl (CV IR, the ratio between standard deviation and mean) can be useful
to measure if labels experience a similar level of imbalance or if there are large
differences, in terms of imbalance, among them.

Finally, the Scumble metric [8] provides a way to understand the level of
concurrence between minority and majority labels; values are in the [0, 1] range,
and the higher the value the more instances sharing minority and majority labels
exist in the dataset. It is based on the computation of the Atkinson index [2]
over the IRLbl of the labels occurring in each instance; the final score is the
average over all the instances of the dataset (see [8] for details). A small value
of Scumble (usually ≤ 0.1) denotes a low concurrency between minority and
majority labels; this is a proxy for the possibility of adopting data augmentation
techniques without the risk of increasing in a significant way the label imbalance.
In particular, oversampling techniques such as MLSmote [7] are well justified and
applicable when the dataset Scumble is low [8,17].

Concerning evaluation measures for MLC, several metrics have been pro-
posed with very different aims. They can be categorized as bipartition-based and
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ranking-based [11]. In our setting, bipartition-based are more significant, since
the emphasis is on predicting the right set of long-COVID symptoms, rather
than a correct ranking. In the present study, we then consider some of the most
popular and natural bipartition-based metrics. Let Yi be the ground-truth label-
set of instance xi, Zi the predicted label-set and Δ the symmetric set difference
operator:

HammingScore=1- HammingLoss where Hamming Loss evaluates how many
times, on average, an example-label pair is misclassified.

HammingLoss =
1
n

n∑

i=1

|YiΔZi|
|L|

Accuracy or Jaccard Index evaluates the average proportion of labels correctly
classified on the total number (predicted and actual) of labels, and averaged over
all instances.

Accuracy =
1
n

n∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

ExactMatch evaluates the percentage of label-sets that are correctly predicted
as a whole

ExactMatch =
1
n

n∑

i=1

1(Yi = Zi)

Notice that the Hamming Score is somewhat lenient, since when several labels
are absent in a label-set, the score may find several correct matches; however,
it is an important metric since the correct prediction of an absent label should
be relevant in several applications, as in our case study. On the contrary, Exact
Match is a very strict measure, since partial predictions are completely ruled out.
A somewhat intermediate metric is the Accuracy/Jaccard Index, where however,
due to the nature of an MLC problem, one can hardly expect to get results close
to 1 (as can be in the case of single-label classification). Jaccard Index of about
0.65/0.7 can be regarded as good results (see [14]).

We will finally consider the AUC (Area Under Roc Curve) in the macro-
averaged version (the metric is computed independently for each label and then
averaged). Since in our case all labels have the same importance (they should be
treated equally as one of the symptoms of long-COVID), macro-average is pre-
ferred to micro-averaging (where the specific measures of each class are combined
together).

3 The Case Study: Long-COVID Syndrome

3.1 Problem Characterization

The focus of the present paper refers to a long-COVID study realized at Ospedale
Maggiore of Novara in Italy, where data about 324 patients, hospitalized for
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acute COVID-19 onset during the first three waves of the pandemic, have been
collected [4,5]. As already reported in Sect. 1, a patient is considered suffering
from long-COVID if she shows at least one sequela (symptom) of acute COVID-
19 after a minimum of 12 weeks from the onset [15]. In the present study, we
consider a follow-up time of about one year after the first hospitalization due to
acute COVID-19, and we focus on some specific sequelae for which data has been
collected. In particular, the following symptoms are considered: arthromyalgia,
asthenia, cough, diarrhea, dysgeusia, anosmia. They are all represented as binary
features denoting the absence/presence of the corresponding symptom at follow-
up time. In addition, we also consider the results of the respiratory test mMRC
(modified - British - Medical Research Council questionnaire), which is a reliable
indicator for dyspnea. Clinicians have then summarized it into a binary variable
(mMRC cat) representing the absence/presence of severe dyspnea. In summary,
we consider a total of 7 sequelae at follow-up.

Concerning patient characterization, baseline data indicate features of demo-
graphic and medical history of the patient, while hospitalization data refer to
the patient’s symptoms at hospitalization (acute COVID-19 onset). Baseline
data are not directly related to COVID-19 infection but are important factors
to take into account in order to make an accurate diagnosis or prediction. Fea-
tures in the baseline data can be grouped in terms of demographic characteristics
(sex, age, smoking attitude, ...) and of prior comorbidities (obesity, chronic liver
disease, hypertension, anxiety and depression, ...). Hospitalization data include
the patient’s symptoms at COVID-19 onset (fever, cough, dyspnea, arthralgia,
...), drugs administered (hydroxychloroquine, monoclonal antibodies, glucocor-
ticoids, antivirals, ...), and hospitalization information (duration, oxygen admin-
istration, ICU intubation, ..) All the baseline and hospitalization data result in
a total of 57 features, among which 47 binary and 10 numeric.

The classification problem can then be described as follows: predict the pres-
ence of specific long-COVID sequelae at follow-up, using baseline and hospital-
ization information. This problem can be addressed as an MLC problem with
|L| = 7.

3.2 Dataset Analysis

The dataset produced in our long-COVID study (named orig in the following)
resulted in n = 324 instances (324 different patients under study) with D = 57
features (47 binary features and 10 numeric features). No missing value was
reported1. The cardinality of the label-set is |L| = 7 since we consider 7 long-
COVID sequelae (see Sect. 3.1).

Some distributions concerning label and instances are reported in Fig. 1, while
the first row of Table 1 shows the main characterization measures. We can notice
that the imbalance level (as measured by MeanIR) is significant, even if a low

1 Actually the collected data concerned much more hospitalized patients, but we have
been able to work only with those patients who decided to partecipate in the study
and for which reliable data were available [5].



A Multi-label Classification Study for the Prediction 271

Fig. 1. Original dataset

Table 1. Main features of considered datasets; n: number of instances, #ls: cardinality
of label-set, #pl: number of label-set with more than one label

Dataset n #ls #pl Card Dens MeanIR CVIR Scumble

orig 324 36 54 0.670 0.096 2.303 0.417 0.012

k3I 424 36 54 0.592 0.085 2.173 0.415 0.009

k3R 424 38 79 0.814 0.116 1.762 0.373 0.007

k3U 424 48 154 1.752 0.250 1.566 0.239 0.008

k5I 424 36 54 0.512 0.073 2.303 0.417 0.009

k5R 424 36 54 0.599 0.086 2.089 0.466 0.008

k5U 424 48 154 1.745 0.249 1.602 0.311 0.009

CV IR shows that there are similar level of imbalance among the labels. More-
over, the Scumble metric S = 0.012 is relatively low, showing a low level of
interactions (concurrency) between minority and majority labels. This suggest
that data augmentation techniques through resampling can be attempted, in
order to get more significant data; this is very important in the present context,
since the study was able to process just a few hundreds real patients, and the
possibility of increasing the dataset size (even if with a limited increase of data)
is considered as fundamental. We choose MLSmote [7], an oversampling tech-
nique producing new synthetic data by first identifying minority labes (using
IRLbl measures), followed by a kNN search and a feature generation from such
search as in the standard SMOTE technique [9]. Finally, label-sets for the syn-
thetic instances are generated, using 3 possible criteria: Intersection (I): labels
appearing in the reference sample and in all the neighbors are added to the new
sample; Union (U) labels appearing in either the reference sample or in any of
the neighbors are added to the new sample; Ranking (R): labels present in more
than half of the reference and neighbor samples are added to the new sample
(majority voting).



272 M. Dossena et al.

We started from the original dataset (orig) and generated 6 data augmented
datasets using MLSmote with k = 3, 5 (number of considered neighbors) and
the intersection, union and ranking generation (datasets k3I, k3U, k3R, k5I,
k5U, k5R respectively). The number of synthetic instances to introduce has
been set to 100, in order to increment the available examples in a reasonable
way (the increase is less than 1

3 of the original size, but allows us to consider
a situation with a significant number of additional potential patients). Table 1
shows a summary of the characterization measures for each considered dataset.

We can notice that the more aggressive the augmentation (U more aggressive
than R more aggressive than I), the larger the number of label-sets and the
presence of label-sets with several labels, as reflected by cardinality and density
as well. This allows also to reduce the label imbalance, by also keeping the
Scumble index under control. To this end, considering a smaller number of
neighbours in the instance generation (k = 3) seems to take the label imbalance
more under control.

4 Experimental Framework

The experimental analysis has been performed using Meka [20], a multi-label
extension to Weka [10]. We considered the following problem transformation
approaches to MLC:

– BR (Binary Relevance): a set of 7 independent binary classification models
(one for each possible label) has been built and results have been merged;
label correlation information is completely neglected in this case.

– CC (Classifier Chain): labels are processed in a random order by a set of
binary classifiers; each classifier predicts the presence of the corresponding
label, by considering the classification produced by the previous ones, i.e.,
classifier Ci (2 ≤ i ≤ 7) uses problem features augmented with the label
values predicted by classifiers Cj (1 ≤ j ≤ i − 1). Classifier C1 uses only the
problem features.

– BCC (Bayesian Classifier Chain): as the CC method, but the order in which
labels are processed is not random; we tested two possible versions of BCC
corresponding to different label ordering: BCC(I), where the label order is
induced by the mutual information among labels, and BCC(C) where label
ordering is determined by label co-occurrence counts.

– LC (Label Combination): the problem features are augmented with a class
attribute taking discrete values in the range [1,#ls] where #ls is the cardi-
nality of the label-sets; the problem is then solved as a standard single-label
multi-class classification.

– PS (Pruned Set): first it prunes all examples having label-sets that occur
less than p times in the training set (we set p = 2 in our analyses); then
it subsamples the label-sets of these examples for label subsets that occur
more frequently in the training data. It then attaches these label sets to the
example, creating new examples and reintroducing them into the training set;
after these steps, it trains a standard LC classifier.
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– CDN (Conditional Dependency Network): it builds a fully-connected network
where nodes are the labels, then it builds a set of binary classifiers (7 in
our case) one for each label λj , predicting p(λj |xi, λ1, . . . λj−1, λj+1, . . . λQ);
inference is performed through Gibbs sampling [21] over a set of I iterations,
and by collecting results from last Ic iterations (in our case we set I = 500
and Ic = 100).

– RAkEL (RAndom k-labEL Pruned Sets): it randomly draws M subsets of
labels, each with k labels, from the set of labels, and trains PS upon each one
(in our case we set PS as indicated above, M = 10 and k = 3).

The tested MLC methods are 4 binary methods (BR, CC and the two versions
of BCC), 2 multi-class methods (LC and PS), and 2 ensemble methods (CDN and
RAkEL). We tested the above methods with several base classifiers (from lazy
classifiers, to neural nets, SVM and tree-based classifiers), and we have finally
found that a 200-trees Random Forest provided the most interesting results. In
the following, we will report results concerning the above transformation-based
methods using this base classifier.

It is worth to remark that multi-class methods rely on the label-sets which
are actually present in the data. A suitable data augmentation strategy could
be really important to consider potential label-sets which are not occurring in
the original dataset.

5 Results

This section presents the comparative results obtained by the MLC algorithms
described in Sect. 4, on the considered datasets. We tested all the methods using
5 runs of 10-fold cross-validation, and we finally averaged the results. In the
following tables, we highlight in bold the best results obtained for each considered
dataset; the last row reports the average performance of each MLC method
over all the datasets (in bold are shown the best results). Table 2 shows the
Accuracy/Jaccard Index for the various datasets and tested methods. We can

Table 2. Accuracy (Jaccard Index)

Datasets BCC(C) BCC(I) BR CC CDN LC PS RAkEL

orig 0.604 0.605 0.420 0.604 0.415 0.604 0.605 0.604

k3I 0.646 0.647 0.507 0.649 0.503 0.653 0.673 0.651

k3R 0.615 0.615 0.546 0.613 0.527 0.660 0.643 0.652

k3U 0.637 0.639 0.577 0.638 0.537 0.637 0.624 0.651

k5I 0.666 0.666 0.488 0.669 0.466 0.646 0.680 0.641

k5R 0.645 0.648 0.499 0.645 0.496 0.648 0.668 0.647

k5U 0.651 0.649 0.582 0.649 0.552 0.648 0.637 0.666

Avg 0.638 0.638 0.517 0.638 0.500 0.642 0.647 0.645
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Table 3. Exact Match

Datasets BCC(I) BCC(C) BR CC CDN LC PS RAkEL

orig 0.601 0.603 0.383 0.601 0.377 0.604 0.605 0.601

k3I 0.641 0.643 0.475 0.645 0.471 0.644 0.668 0.642

k3R 0.590 0.593 0.479 0.590 0.461 0.620 0.623 0.614

k3U 0.559 0.564 0.460 0.568 0.431 0.589 0.594 0.586

k5I 0.666 0.666 0.473 0.669 0.449 0.646 0.680 0.641

k5R 0.641 0.645 0.472 0.640 0.468 0.639 0.664 0.640

k5U 0.571 0.571 0.472 0.580 0.435 0.586 0.594 0.593

Avg 0.610 0.612 0.459 0.613 0.442 0.618 0.633 0.612

Table 4. Hamming Score

Datasets BCC(I) BCC(C) BR CC CDN LC PS RAkEL

orig 0.904 0.904 0.847 0.903 0.844 0.904 0.904 0.904

k3I 0.915 0.915 0.874 0.915 0.875 0.911 0.922 0.913

k3R 0.903 0.903 0.874 0.903 0.871 0.908 0.910 0.908

k3U 0.873 0.876 0.850 0.876 0.839 0.859 0.856 0.876

k5I 0.918 0.918 0.868 0.918 0.869 0.908 0.922 0.909

k5R 0.913 0.914 0.872 0.913 0.874 0.909 0.922 0.911

k5U 0.881 0.880 0.859 0.882 0.842 0.861 0.858 0.883

Avg 0.901 0.901 0.863 0.901 0.859 0.894 0.899 0.900

notice that multi-class methods have better performance, with chain classifiers
showing very close results (independently from label ordering). The use of an
ensemble (RAkEL) does not actually improve the basic PS version. As also
outlined in Sect. 2.2, reported scores can be regarded as quite satisfactory results.

Similar considerations apply for the Exact Match score as well, where PS
method is definitely the better (see Table 3). Since this metric is much more
strict than Jaccard Index, the obtained results can be considered very satisfac-
tory. Notice that augmented datasets produced with MLSmote(U) have a larger
cardinality and density: this decreases the probability of getting and exact match
as shown in the table.

The last bipartition-based metric we have considered is the Hamming Score
and results are shown in Table 4. The obtained scores are in general very good,
again with comparable performances of multi-class methods and classifier chains.

Finally, we computed the macro-averaged AUC as shown in Table 5. In this
case, the results of all methods are comparable over all datasets; a slightly better
performance can be noticed for basic BR method and for the ensemble algorithm
CDN. This can be explained by the fact that in these approaches the contribution
of labels more represented dominates on the aggregated ROC, disregarding the
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Table 5. Area under ROC (macro-averaged)

Datasets BCC(C) BCC(I) BR CC CDN LC PS RAkEL

orig 0.504 0.504 0.543 0.503 0.547 0.501 0.500 0.501

k3I 0.535 0.537 0.574 0.533 0.579 0.563 0.560 0.550

k3R 0.621 0.618 0.727 0.622 0.731 0.673 0.639 0.666

k3U 0.763 0.765 0.847 0.768 0.836 0.746 0.724 0.778

k5I 0.496 0.496 0.452 0.496 0.459 0.490 0.497 0.491

k5R 0.529 0.531 0.544 0.532 0.560 0.553 0.551 0.550

k5U 0.785 0.784 0.870 0.787 0.846 0.760 0.737 0.797

Avg 0.605 0.605 0.651 0.606 0.651 0.612 0.601 0.619

contribution of some minority labels (that is usually better captured by multi-
class methods).

In conclusion, the performances of MLC methods highlight the capability of
a multi-label classifier to obtain interesting predictions concerning long-COVID
syndrome on the collected data (baseline and hospitalization); such results can
be improved with a suitable data augmentation, taking into careful consideration
the main characteristics of the original data.

6 Conclusions

We have presented a study about the prediction of long-COVID sequelae through
multi-label classification (MLC). We have initially considered data about more
than 300 patients, considering their baseline situation, as well as their condition
when hospitalized after contracting severe COVID-19 infection. The goal was to
study the presence of specific long-COVID sequelae after a one year follow-up.
Since the original set of patients under study was limited and could suffer of
under-representativeness, we carefully investigated the possibility of augmenting
the dataset, by considering situations where different levels in the number of
complications could arise. MLSmote under six different policies of data augmen-
tation has been considered, and a representative set of MLC approaches have
been finally tested on all the available datasets.

Results have been evaluated in terms of Accuracy, Exact match, Hamming
Score and macro-averaged AUC. They showed that MLC methods can actually
be useful for the prediction of specific (label-based) long-COVID sequelae, under
the different conditions represented by the different considered datasets. Multi-
class MLC methods appear to be very promising, and binary approaches based
on chains could be a valid alternative in order to take into account label corre-
lation. Currently, we are integrating our approach with the TECNOMED-HUB
databank. As future works, on the side of the long-COVID syndrome study, we
aim at integrating additional clinical information such as the level of several
cytokines, which are indicators of specific inflammatory processes supposed to
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be involved in the long-COVID syndrome. Moreover, on the side of the appli-
cability of our approach to a general databank, we aim to test it with different
diseases and to complement it with explanation techniques for MLC (see, e.g.,
[16,22]), to make our approach usable in practice by physicians.
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Abstract. In this paper, we introduce PAUL-2, an algorithmic composer
for two-track piano pieces of specifiable difficulty levels, as a ground-up
redesign of its predecessor system PAUL. While PAUL was designed using
a long short-term memory neural network, along with a sequence-to-
sequence network, PAUL-2 is based on the state-of-the-art transformer
architecture and makes use of relative attention. A shortcoming of PAUL
was that it generated unsatisfying accompanying tracks and allowed for
only few difficulty levels. PAUL-2 overcomes these limitations and the-
oretically supports an arbitrary number of difficulty classes due to the
fact that it utilises an additional encoder for handling difficulty informa-
tion. We also carried out a medium-scale survey which showed that the
output of PAUL-2 was evaluated quite favourably by the participants.

Keywords: Algorithmic composition · Transformers · Music education

1 Introduction

Algorithmic composition (AC) refers to the process of composing music by means
of formalisable methods. While this includes the creation of music by humans
based on specific rules or algorithms, a method which exists already for centuries,
modern AC techniques deal with the automated generation of music without
direct human intervention. Many different approaches have been proposed in
the literature to this end, like methods based on Markov models [3,8], generative
grammars [10,15], genetic algorithms [3,5], logic-based approaches [20], cellular
automata [19], agent-based systems [13,14], and neural networks [7,12,21]. Espe-
cially the latter approaches based on neural networks showed impressive results
in recent years, like the Music Transformer [12], or OpenAI’s MuseNet [21] and
Jukebox [6], which are all based on the transformer architecture [26].
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In this paper, we introduce the algorithmic composer PAUL-2 for two-track
piano pieces, one track for representing the lead and the other for represent-
ing the accompaniment. The particular feature of PAUL-2 is that it allows to
specify the difficulty level of the generated pieces, representing how challenging
the pieces would be for a human pianist. This possibility of parameterising the
output of PAUL-2 is essential for the designated usage of PAUL-2 as being part of
an educational environment, teaching piano students how to sight-read.1 Here,
students would be provided with phrases generated by PAUL-2 that conform to
their level of skill in order to challenge but not overwhelm them. Consecutive
correctly played bars would result in them receiving harder prompts, while the
opposite would reduce the difficulty of the provided music.

PAUL-2 itself is a complete redesign of the algorithmic composer PAUL [22,24]
which was designed for the same purpose as PAUL-2.2 While PAUL is based on a
long short-term memory (LSTM) network [11] to produce the lead track and a
sequence-to-sequence neural network [25] for the realisation of the accompanying
track, PAUL-2 makes use of an advanced transformer neural network architec-
ture [26] and the enhancements introduced by Huang et al. [12] as part of the
Music Transformer approach.

The redesign of PAUL was motivated by the fact that its output for the
accompanying track was unsatisfactory and that it admits only three difficulty
levels. PAUL-2 overcomes these limitations and produces output which is superior
to that of PAUL and additionally supports a theoretically arbitrary number of
difficulty levels. The latter property is achieved by using an encoder to inject
information about the desired difficulty instead of training different versions of
the network to produce pieces of a specific singular difficulty as done with PAUL.
We furthermore introduce a single-out mask in order to efficiently attend over
the desired difficulties, greatly reducing the computational complexity for this
specific case.

Other works on algorithmic composition such as, e.g., Music Transformer [12]
or MuseNet [21] are mostly concerned with creating either single-track music, or
creating multiple tracks at the same time. Furthermore, their focus lies on gen-
erating pleasant sounding output alone. In contrast to these endeavours, with
PAUL-2 we aim to create two separate tracks in sequential fashion that are
not only musically interesting but inhibit good characteristics regarding being
playable by a human. We also incorporate the aforementioned difficulty param-
eter, in order to make PAUL-2’s output usable in an educational environment.

The paper is organised as follows: In the next section, we provide some back-
ground on music theory and the transformer architecture on which PAUL-2 is
based upon. Then, in Sect. 3, we give the details of PAUL-2. Section 4 reports
on the training of the networks as well as on an analysis and an evaluation of
PAUL-2, and Sect. 5 concludes the paper.

1 Sight-reading refers to the act of performing sheet music without having studied it
beforehand.

2 PAUL is named after the well-known Austrian pianist Paul Badura-Skoda (6th Octo-
ber 1927 - 25th September 2019).
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Fig. 1. A visual representation of the transformer architecture.

2 Background

Let us begin with some very basic terminology from music theory. For more
information about this topic, we refer the reader to the well-known works of
Benward [4], Aldwell [1], and Laitz [16].

In musical scores notes are used to denote pitch. The higher the note on the
score, the higher the corresponding pitch will be. These notes have values, which
tell the reader how long a note lasts. Rests are similar to notes in the sense that
they have values, although they tell the player to pause for a specified amount
of time. This, in combination with note values, allows for the construction of
rhythm.

Relevant for our purposes is also the MIDI file format [18], which is an indus-
try standard for connecting electronic music and audio devices. MIDI files con-
tain a number of note on and note off messages, which represent, e.g., the
pressing and releasing of a piano key. Furthermore, subsequent messages specify
how many ticks (units of time) to wait between them.

Let us now turn to the transformer architecture which was introduced in
2017 by Vaswani et al. [26] and, in contrast to, e.g., LSTM-based networks [11],
does not use any recurrent neural networks. Instead, a transformer relies on the
use of the so-called scaled dot-product attention mechanism to model temporal
dependencies within and in-between input sequences, as given by the function

sdpa(Q,K, V,M) := softmax
( 1√

dM
QKT + M

)
V,

where Q,K, V ∈ R
sL×dM are matrices containing a set of queries, keys, and

values, respectively, which are the result of linear transformations of the internal
representation of the network, while M ∈ R

sL×sL is a mask used to disregard
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the padding values. Here, sL and dM give the maximum sequence length and the
size of the internal representation dimension, respectively. Moreover, KT denotes
the transpose of K and softmax is a function which produces a probability
distribution matrix based on an input matrix X ∈ R

m×n as follows: for X = (xij)
and softmax (X) = (yij),

yij =
exij

∑j
k=1 exik

, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

This attention mechanism determines the importance and influence of all
messages of the input sequence for the next prediction. Self-attention describes
the practice of applying attention over a network’s own previous outputs and
allows the transformer to consider past predictions for future decisions. This app-
roach facilitates the parallelisation of the training process, considerably reducing
the time needed to train a network.

The transformer is based on the encoder-decoder paradigm [25], where an
encoder generates a fixed-size representation from an input sequence, e.g., a
musical lead sequence, and this representation is then fed to a decoder, which
from it extrapolates information and produces an output sequence, e.g., an
accompanying bass sequence.

Figure 1 shows a visual representation of the transformer architecture. Note
that the dashed sections mark an encoder layer (or, respectively, a decoder
layer) that can be stacked multiple times. Furthermore, layer normalisation [2]
is applied after both attention and feed-forward layers, forming a so-called resid-
ual block. For more information on the transformer architecture, we refer to the
work of Vaswani et al. [26].

3 The PAUL-2 System

As mentioned earlier, PAUL-2 is a transformer-based [26] algorithmic composer.
It is capable of sequence-to-sequence translations where the sequences consist of
either musical information or musical meta-information in the form of difficulty
values.

3.1 Overview

PAUL-2 consists of two distinct models. Both of these models have different
internal architectures and support a different set of hyperparameters. As well,
they both need to be trained separately and have a different set of weights. The
models of PAUL-2 are the following:

(i) P2L, a sequence-to-sequence transformer for composing polyphonic lead
tracks, based on an input difficulty sequence, and

(ii) P2A, a multi-sequence-to-sequence transformer for composing polyphonic
accompanying tracks, based on an input lead track and a difficulty sequence.
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With the preceding system PAUL [24], six different models needed to be
trained, since each model only supported a single difficulty level for a total of
three distinct difficulty levels. This induced a large overhead and lowered the
potential of the models, since only sequences that contained subsequent bars of
the same assessed difficulty could be used to train the networks. With PAUL-2,
however, we drop these constraints altogether, supporting a theoretically arbi-
trary amount of difficulty classes, settling on ten in practice. We argue that
ten classes serve as a good starting point as this amount provides an adequate
balance between being too finely and too coarsely grained.

For P2L, we use the encoder solely to encode the desired difficulty values of
the output lead track, from which we then construct the generated sequence.
For P2A, we were inspired by the enhancements introduced by Libovický, Helcl,
and Marecek [17] to modify the transformer architecture to be able to generate
accompanying sequences from both an input sequence consisting of difficulty
values and an input sequence consisting of musical information representing
the lead track. We also utilise the enhancements made by Huang et al. [12],
who introduced the performant relative self-attention mechanism. Using this
enhanced attention, the decoder of the transformer is able to better attend to
its own input, i.e., the sequence generated so far. As a result, the structures of
the sequences generated by the model contain better long-term dependencies.
The source code of our project can be found at its git repository located at

https://github.com/FelixSchoen/PAUL-2.

3.2 Architecture

We now cover the structure of P2L and P2A. In order to produce musical pieces of
varying difficulty levels, we use one encoder to encode a sequence of ten different
difficulty values. Rather than encoding a single integer value, we opted to encode
a sequence difsi := (dif i,1, . . . , dif i,sL) having the same length as the desired
output, consisting of exactly one difficulty value for each (potential) message
(representing, e.g., the pressing or releasing of a key) of the output sequence,
where difsi defines the difficulties of the ith musical sequence in a batch and dif i,j

refers to the (integer) difficulty value of the jth message in this sequence. We
conjectured that, this way, the network will be better able to learn to accurately
generate pieces of the desired difficulty. We note that this approach would in
theory allow for us to use any number of difficulty classes and to set difficulty
values per message, although we did not make use of this in practice but rather
only allowed for one difficulty class per bar.

We can use masks for the attention mechanism in order to prevent the model
to attend to values it is not supposed to. In order to ensure that each message is
only able to attend to its designated difficulty value, we introduce a single-out
mask M so = (mso

ij ) as follows:

mso
ij :=

{
0 if i = j,

1 otherwise,

https://github.com/FelixSchoen/PAUL-2
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for 1 ≤ i, j ≤ sL. Here, each element is only able to attend to the element sharing
its index of the sequence to attend to.

In order to apply the mask to the product QKT, it has to be scaled as follows:

scaleMask(ω,M) := ωM,

where ω = −109 is used in order to approximate negative infinity. This way we
can ensure that the subsequent application of the softmax function sets all those
entries of QKT to (a value close to) zero providing mij = 1, for M = (mij).
More specifically, for

softmax
( 1√

dM
(QKT + scaleMask(ω,M))

)
= (yij),

if mij = 1, then
lim

ω→−∞ yij = 0.

Note that, as an immediate consequence of the previous equation, we get

lim
ω→−∞ softmax

( 1√
dM

QKT + scaleMask(ω,Mso)
)

= I,

where I ∈ {0, 1}sL×sL is the identity matrix (recall that V ∈ R
sL×dV). Thus,

lim
ω→−∞ softmax

( 1√
dM

QKT + scaleMask(ω,Mso)
)
V = V.

As a consequence, we obtain an improved formulation of the scaled dot-
product attention when using a single-out mask together with a padding mask
Mp ∈ {0, 1}sL×sL, given by sdpaSingleOut(V,Mp) = (v′

ij), where

v′
ij =

{
vij if mp

ij = 0,

0 otherwise,

with V = (vij) and Mp = (mp
ij). This reduces the time complexity of the

operation to O(sL · dM), with no need for expensive matrix multiplications.
Figure 2 shows the simplified architecture of the lead and accompanying net-

work. For the lead network, shown in Fig. 2a, we adapted an architecture similar
to the standard transformer, utilising sinusoidal encodings, multi-head atten-
tion [26], and layer normalisation [2]. We use an encoder to encode the diffi-
culties from which we create an output sequence using the decoder. The main
differences include our usage of the relative attention mechanism [12] for the
decoder’s self-attention and the fact that we apply the single-out mask instead
of a normal padding mask (which ignores padding-only messages) used in the
original paper [26] for both the encoder’s self-attention and the cross-attention
of the decoder over the encoder’s output values.

Figure 2b shows the simplified architecture of the accompanying network. We
modified the standard transformer architecture to utilise a total of two encoders,
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Fig. 2. Architectures of P2L and P2A.

one encoding the desired difficulty of the piece while the other encodes the lead
sequence to create an accompaniment for it.

For the self-attention of the lead sequence encoder, we use a padding mask as
attending over future positions is valid here even during the generation stage. For
the self-attention of the difficulty encoder, we apply the same single-out mask
as we did with P2L. In order to incorporate the output of both encoders, we
opted for a serial connection of two subsequent attention blocks in the decoder.
Libovický, Helcl, and Marecek [17] state that the serial approach outperformed
other architectures for multi-source machine translation tasks.

We initially apply single-out masked attention over the output of the difficulty
encoder after which we apply regular padding masked attention over the output
of the lead sequence. We experimented with the order of the cross-attention
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blocks and found that this configuration produced the best results. Finally, we
apply an output mask to the output probabilities.

As part of the development of PAUL-2, we furthermore introduced S-Coda,
a Python music preprocessing library. With S-Coda, we are able to create a list
of musically valid next messages for an existing musical sequence, which we can
utilise to create an output mask to restrict the next predicted output messages,
which we use for both P2L and P2A. This ensures that all further predictions
made by the network are based on a valid musical sequence. More information
about both S-Coda and PAUL-2 can also be found in the first author’s thesis [23].
Furthermore, S-Coda is publicly available at

www.github.com/FelixSchoen/S-Coda/.

As stated previously, the intended usage of PAUL-2 is to be used in a tutoring
system, teaching piano students how to sight-read. Here, a balance between the
current sight-reading skill of a student and the difficulty of the pieces has to
be found and adjusted over the course of the learning process, which is where
we imagine PAUL-2 to come in. In such a system, the students could use MIDI
keyboards to perform the musical prompts, allowing for the system to judge
their performances and based on these metrics adjust the difficulty of the pieces.

4 Training, Analysis, and Evaluation

We now discuss some details about the input data for the training of the under-
lying neural networks of PAUL-2. Afterwards, we briefly analyse the achieved
results of PAUL-2, and lastly we report on a user study for assessing the musical
quality of the generated music files of PAUL-2.

4.1 Retrieval and Processing of the Dataset

In order to train neural networks, large amounts of input data are necessary. Both
the quality and quantity of the data are of great importance, as the network can
only learn to make correct predictions if the data itself is valid and there is
enough material to train on.

We used a combination of the piano-midi.de and ADL Piano MIDI [9]
dataset, as they both contain the necessary sequenced MIDI files. Such files
are created manually in a step-by-step process, inserting notes by hand. With
this technique one can add information about, e.g., which tracks the inserted
notes belong to, which is generally not possible when recording a MIDI perfor-
mance. It is essential for the training of PAUL-2 that the MIDI files separate
the sequences into the lead and the accompanying track. Since we want to be
able to generate an accompanying track for a given input lead track, we need
to provide the network with training data consisting of two separate tracks as
well. In a preprocessing procedure, we sorted out any file that did not conform
to our needs, e.g., having too few tracks or a too large number of empty bars.

www.github.com/FelixSchoen/S-Coda/
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This left us with a total of 2,147 MIDI files, almost a seventeen-fold increase
over the dataset used for PAUL.

In order to be able to produce music of varying difficulty levels, the pieces
of the dataset needed to be assigned such values beforehand. Using S-Coda, we
were able to assign difficulty values to musical bars of the dataset based on
seven different metrics. We settled on using ten difficulty levels as we believe
that this serves as a good middle ground between being too finely- and too
coarsely-grained. A fewer amount of levels could result in jumps between them
being too substantial to be used in an educational environment, while using a
too large amount could result in the network not being shown enough training
data for each level.

The metrics we used to assess difficulties are the following: (i) the amount
of concurrent notes and the amount of overall notes in a bar, (ii) the distances
between notes, (iii) the key signature of a bar, (iv) the amount of note classes,
(v) the note values of all the notes in the bar, (vi) the rhythm, and (vii) potential
note patterns.

These metrics were designed based on multiple factors, such as correspon-
dence with an expert on music theory, personal investigation and experience,
and intuition. We note that although we are confident that the difficulty assess-
ment reflects the difficulty of a piece rather accurately as shown with PAUL [24],
at the moment it still serves as a proof of concept only. Our main goal was to
show that our model is capable of producing pieces that conform to a specific
difficulty assessment, not to make this assessment as accurate as possible.

4.2 Analysis of Results

For the training process, we utilised a set of two NVIDIA RTX 3090 GPUs,
allowing us to greatly increase the capacity of the model compared to PAUL.
As for the choice of hyperparameters, we settled on using 6 layers, 4 attention
heads, a dropout rate of 0.2, 512 neurons per layer for the feed-forward networks,
and a dimensionality of 256 and 512 for P2A and P2L, respectively. We used a
combination of grid search and Bayesian optimisation to arrive at this combina-
tion of parameters. We note that due to the additional encoder used for P2A,
we had to reduce the dimensionality due to hardware limitations.

We are able to report that the output of PAUL-2 is vastly superior to that
of PAUL, both in terms of temporal structure and melodic quality. In contrast
to PAUL which sometimes creates pieces with ten or more concurrent notes,
PAUL-2 is able to compose humanly playable accompaniments. For the training
of PAUL, only sequences of bars of the same assessed difficulty level could be
used. This approach would not be feasible with PAUL-2 as the pieces are assigned
one of ten different difficulty classes. This diversification would result in almost
no sequences of consecutive bars containing more than a single bar, since the
number of training samples per difficulty class would linearly decrease with the
amount of classes.

Figure 3a shows a confusion matrix of the specified difficulty versus the gen-
erated difficulty of bars generated using the lead network. For each difficulty



PAUL-2 287

Fig. 3. Confusion matrices of specified difficulties versus generated difficulties of bars
generated by P2L and P2A.

class, 80 bars were generated. For the easier difficulty classes, the network seems
to perform quite well. Here, a correlation between specified and generated class
is clearly visible. When it comes to the more difficult classes, the network tends
to either produce bars of the most difficult class or bars that are substantially
easier than specified.

Figure 3b shows the confusion matrix for the accompanying network, where
we created pieces based on a lead sample from the test set. Interesting to note
is the fact that the network tends to produce bars that are easier than specified,
which could be attributed to the fact that accompanying sequences for piano
music are often less difficult in general. Other than that, a clear correlation
between specified and generated difficulty is visible again. Arguably, for the
accompanying network, the difficulties are somewhat less scattered than for its
lead counterpart.

Overall, the results shown by the confusion matrices are very promising. We
note that the metrics used to assess the difficulty of the input pieces are very
abstract and at the moment serve as a proof of concept only. Nonetheless, the
networks are able to rather accurately produce pieces exhibiting the desired
characteristics.

Figure 4 shows example outputs generated by PAUL-2 in score representation.
We decided on providing samples of three different difficulty classes in order to
highlight some of the differences induced by the difficulty specification. The
output of PAUL-2 consists of valid musical pieces that can potentially be used
in a tutoring environment. The sequences are characterised by their rhythmic
validity.

Although a clear rhythmic dependence between lead and accompanying track
is observable, sometimes the output of PAUL-2 lacks melodic consistency between
the tracks. The system tends to create pieces that can sound unpleasant to the
listener’s ear due to dissonances between the notes of the two tracks. We note
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Fig. 4. Three output samples of different difficulties generated by PAUL-2.

that the individual output of both tracks sound musically valid to our ears and
we believe that the quality could be further improved with access to a larger
dataset.

4.3 User Study

We conducted a medium-scale study with 60 participants in order to assess
the musical quality of the output of PAUL-2. Participants were presented with
18 pairs of short musical phrases and asked to decide on a sample-by-sample
basis whether they believed them to be genuine or computer-generated. Each of
the questions consists of one sample generated by either P2L or P2A and one
sample from the test dataset. At the end of the study, we asked participants
to self-assess their level of musical proficiency, to rate how confident they were
in their assessments, and to rate the quality of the samples they believed to be
computer-generated.

Table 1 shows the main results of the study. With an overall score of 26% of
the computer-generated samples having been selected as genuine ones, PAUL-2
does not yet pass our “Turing test”, as ideally we would see values closer to 50%.



PAUL-2 289

Table 1. Results of the study per self-reported musical proficiency. Values rounded to
two decimal places. Standard deviation given in parenthesis.

Subset Selected Generated Quality
Mean (σ)

Confidence
Mean (σ)

Number
Samples

Overall Results 26% 3.20 (1.05) 2.52 (1.07) 60

Proficiency 1 22% 3.44 (1.01) 2.56 (1.01) 9

Proficiency 2 29% 3.10 (1.10) 2.30 (1.06) 10

Proficiency 3 32% 3.57 (0.93) 2.43 (0.98) 21

Proficiency 4 23% 2.75 (1.13) 2.56 (1.15) 16

Proficiency 5 19% 2.75 (0.96) 3.25 (1.50) 4

The results obtained by the study still indicate that the quality of the output of
PAUL-2 is quite good, which is especially impressive considering the drastically
smaller datasets PAUL-2 was trained on compared to state-of-the-art approaches
like MuseNet or Jukebox.

We asked the participants to rate the quality of the samples they believed
to be computer-generated. With an average of 3.20, we argue that the musical
quality of PAUL-2 shows good promise. We note that participants were never
told which samples were genuine, which in turn means that it is likely that for
this question participants will have only considered the worse of the two samples,
independently of whether that sample was the computer-generated one or not,
resulting in a downwards skew of the quality scores.

Participants were asked to report their confidence regarding their evaluations
on a scale of one to five. We note that for proficiency levels one through four,
these scores are quite low. This score is higher for level five although here the
standard deviation is quite large. This leads to believe that even though the par-
ticipants performed quite well regarding the separation of computer-generated
and genuine samples, it could be the case that this was based on subconscious
feelings alone rather than logical reasoning.

We would have assumed that the difficulty of the samples would also play
a role in the percentage of the correctly classified ones. Contrary to our expec-
tations, however, there seems to be only a small difference in the amount of
wrongly categorised samples between the groups of different difficulties.

5 Conclusion

In this paper, we introduced PAUL-2, a transformer-based [26] algorithmic com-
poser of two-track piano pieces capable of generating piano pieces that conform
to a difficulty specification consisting of ten difficulty levels. In future work,
we plan to compare different methods of representing musical sequences and to
improve upon the relative attention mechanism. Furthermore, we want to imple-
ment an educational system utilising PAUL-2 which provides piano students with
sight-reading prompts conforming to their skill.
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Abstract. Place recognition, the task of recognizing a previously vis-
ited location, has a decisive role in the autonomous driving field since
it enables rough global localization in GNSS-denied environments. In
the last few years, LiDAR-based place recognition and deep learning
approaches achieved outstanding results also within challenging scenar-
ios. However, the use of DNN-based methods is still limited due to the
safety-critical nature of the task and the difficulty in detecting potential
model failures. Determining the uncertainty of DNN-based outputs is a
useful technique to discover unreliable predictions. Among the existing
approaches, Deep Ensemble represents a popular sampling method to
estimate epistemic uncertainty by exploiting multiple models. However,
an in-depth investigation of its application for LiDAR-based place recog-
nition is missing and only one approach has been recently proposed [22].
Our ultimate goal is to gain a deeper understanding of the strengths
and weaknesses of Deep Ensemble methods. To achieve this, we propose
a Deep Ensemble strategy that uses a knowledge-distillation approach
and we compare it to [22] by evaluating its recall and failure detection
capabilities.

1 Introduction

Accurate localization is essential for the safe and efficient navigation of self driv-
ing cars. Among the many available techniques to perform localization, the recog-
nition of previously visited locations offers a powerful alternative to standard
Global Navigation Satellite System (GNSS) methods. This technique, known as
place recognition, allows the car to achieve a global estimate based on previously
mapped areas, retrieving the most likely location that matches its sensor read-
ings. This can be particularly useful in environments where other localization
methods, such as GNSS, may be unavailable or unreliable. In recent years, several
Deep Neural Network (DNN) based approaches [2,9,16,25] have demonstrated
outstanding performance in the retrieval task, making them valuable tools also
for Simultaneouos Localization And Mapping (SLAM) systems [6]. Incorporating
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Basili et al. (Eds.): AIxIA 2023, LNAI 14318, pp. 295–309, 2023.
https://doi.org/10.1007/978-3-031-47546-7_20
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Fig. 1. In this work, we propose an ensemble-based method to address the LiDAR-
based place recognition task. We train different models with a teacher-student training
approach to produce similar feature spaces and to enable uncertainty estimation, that
can be used to detect localization failures. Finally, we compare our approach with other
ensemble-based strategies by exploring the advantages and flaws of each methods.

these approaches into production autonomous driving systems presents several
challenges. One major issue is that neural networks provide estimates without
any associated information about their reliability. Using this data without con-
sidering their potential uncertainty can lead to treacherous situations and have
serious consequences when making decisions during navigation, endangering the
safety of both passengers and other road users. Therefore, the ability to accu-
rately estimate the uncertainty associated with the output of DNN models is
of paramount importance for mitigating the risks inherent in the deployment of
these technologies. This will allows us to make more informed decisions during
navigation, reducing potential hazards. From a technical perspective, uncertainty
refers to situations where information is incomplete or unavailable, often arising
due to the inherent complexity of an environment or the limitations of a model
in accurately representing a specific aspect of reality. As a result, uncertainty can
be divided into the following two categories: aleatoric and epistemic. Aleatoric
uncertainty arises from the inherent variability and randomness of data and is
irreducible, representing the intrinsic property of observing the real world. On
the other hand, epistemic uncertainty arises from the limitations of the proce-
dure used for training neural networks, where a limited amount of data leads to
incomplete knowledge of the world. This type of uncertainty can be reduced by
incorporating more data during the training stage of a DNN model. In the spe-
cific context of place recognition, there have been relatively few approaches to
estimate uncertainty, with the majority of these approaches focusing primarily
on aleatoric uncertainty.

In this study, we introduce and assess a novel approach for accurately esti-
mating uncertainty during the retrieval process. Our strategy incorporates mul-
tiple models that share a common feature space, as well as a threshold-based
technique for eliminating unreliable observations. Figure 1 provides a visual rep-
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resentation of our place recognition pipeline. The first step involves multiple
models generating distinct feature-based representations of input point clouds,
from which we derive feature-wise uncertainty. Next, our method only performs
localization if the total uncertainty falls below a specific threshold.

2 Related Work

2.1 LiDAR-Based Place Recognition

In the last decade, many deep learning-based approaches emerged to deal with
the place recognition problem by exploiting observations gathered from different
sensors. In the literature, we can identify techniques that use only image data
[2], 3D data such as LIDAR [25], and multi-modal based methods [5].

Deep learning-based LiDAR place recognition demonstrated superior perfor-
mance than other modalities by showing robustness across challenging scenarios
[16,17,25,27]. Due to such promising results, we decided to focus on this cate-
gory. One of the groundbreaking works in this field is PointNetVLAD [2], a DNN
that combines PointNet [24] for extracting features and VLAD [11] for comput-
ing the final descriptor from a point cloud. More recently, Komorowski et al.
[16] proposed MinkLoc3D, a DNN that exploits sparse convolutions to extract
discriminative descriptors.

In this work, we decided to focus on those two methods with the idea of
understanding the effect of ensembles on two different architectures which extract
global features with different techniques.

2.2 Uncertainty Estimation Methods for DNNs

Nowadays, uncertainty estimation in neural network approaches represents a
particularly discussed topic. One of the first attempts at modeling uncertainty
is through Bayesian Neural Networks (BNNs) [8,23], where a prior is associated
with each model’s weight. However, their application is limited to light-weighted
architectures due to the intractability of the posterior distribution.

To overcome the previous issue, Kingma et al. [14] and Lakshminarayanan
et al. [19] proposed two sample-based strategies for estimating epistemic uncer-
tainty: the former exploits dropout sampling, the latter uses a set of predictions
provided by an ensemble. More recently, Amini et al. [1] proposed an approach
for a direct estimation of uncertainty in DNN models named Deep Evidential
Regression (DER). In particular, this approach can estimate both aleatoric and
epistemic uncertainty with a single step.

2.3 Uncertainty Estimation in Place Recognition

In recent years, localization approaches that deal with the uncertainty estima-
tion problem emerged [7,12,26] and more recently also in the place recognition
field. For instance, Cai et al. [4] proposed STUN: a DNN-based approach that
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Fig. 2. Pipeline followed by our method to create ensemble members. Firstly, we train
a teacher DNN with a standard metric learning approach (top-left), then we train a
student model to imitate the teacher feature space (bottom-left). By doing that, we are
able to train different ensemble members to which correspond similar feature spaces
(bottom-right). As we will show later, when training different models with a standard
triplet loss, we obtain unique feature spaces (top-right) where a direct aggregation of
results leads to undesired effects.

exploits a knowledge-distillation technique for estimating aleatoric uncertainty
in a visual place recognition task. Another notable work is proposed by Latoje
et al. [18] by integrating an aleatoric uncertainty-aware visual place recognition
model within a SLAM system. Please note, the previous approaches estimate
aleatoric uncertainty, while we aim to model the epistemic component.

Regarding Light Detection And Ranging (LiDAR) based place recognition,
Mason et al. [22] recently proposed an ensemble-based strategy for estimating
epistemic uncertainty. In particular, they train multiple DNNs with different
parameters initialization to extract discriminative point-cloud global descriptors.
Then, they represent a navigation map as a set of n database copies, where n
corresponds to the number of models used. For each model, they compute the
similarity score between an input query and the corresponding database entries.
Considering all models, the final match is the location with the highest average
similarity score over the different copies.

To the best of our knowledge, only their work exploits an ensemble-based
method for place recognition. However, such an approach presents some flaws
that we aim to overcome. For instance, such a method requires different database
replicas, and epistemic uncertainty corresponds to similarity variance rather
than features variance, making more arduous to obtain a model introspec-
tion in presence of challenging inputs. As we will describe later, our method
exploits a knowledge-distillation learning technique to allow us a direct compar-
ison between feature spaces created by each model.
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3 Method

3.1 Ensemble-Based LiDAR Place Recognition

In the context of place recognition, we achieve the main goal by generating a
compact and discriminative representation of an input observation, such as an
image or point cloud. This representation, commonly referred to as Embedding
Vector (EV), is then used to find previously visited locations that have been
encoded using the same strategy. From a technical perspective, an EV is a vec-
tor of m real numbers denoted as v = (f1, ..., fm) designed to represent an input
observation in such a way that observations belonging to the same location are
positioned in close proximity within the feature space, while observations from
different locations are more distant to each other. By generating accurate and
robust EVs, it is possible to effectively match and retrieve previously visited
locations, thereby facilitating effective navigation and localization. DNN models
designed for place recognition are typically trained with a metric learning app-
roach. This involves the use of a loss function that aims to create a discrimina-
tive feature space by comparing positive and negative pairs of samples. Positive
examples consist of observations corresponding to the same place, while negative
ones consist of samples belonging to different locations. In an ensemble-based
approach, multiple networks are trained independently, and the output of the
system is generated by aggregating the predictions of these individual networks.
This allows for the computation of metrics such as mean and variance, which
can be used to represent previously visited locations together with the associ-
ated epistemic uncertainty. For example, given a set of EVs V = {v1, ..., vn}, the
output of an ensemble could be the mean and variance of each feature:

E [μv] =
1
n

·
n∑

i=1

vi, V ar[μv] =
1
n

·
n∑

i=1

(vi − E [μv])2 (1)

where i corresponds to the i-th member of the ensemble. While the applica-
tion of an ensemble-based approach may appear straightforward in theory, it is
important to note that the process of averaging features can sometimes lead to
undesired results in practice. This is because a direct comparison of the vectors
within the set V may not always be meaningful, and can result in inaccurate
or unreliable estimates. One potential issue arises from the randomization pro-
cesses that occur during a standard training procedure. Since metric learning
is generally an unsupervised process, it is difficult to ensure that each member
of the ensemble produces the same feature space and, although a ground-truth
is used to build positive and negative sample pairs, it is not possible to explic-
itly control how each model learns the final feature space. As a result, even if
two independent models are able to extract effective EVs from the same input
observation, the actual values of the vectors may differ.

To address the issue of variability in the feature spaces generated by different
members of an ensemble, we propose the use of a popular method known as
knowledge distillation. This approach allows us to create an ensemble in which
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each member is capable of representing similar feature spaces. This is achieved
through a two-step process. First, a DNN model, referred to as the teacher, is
trained using the triplet loss function in Eq. (2) to produce a target feature
space. In the equation, v is a generic EV, a, p, n refer to anchor, positive and
negative samples respectively, d is a distance metric and m represents a margin:

Ltriplet =
n∑

i=1

[d(vp, va) − d(vn, va) + m]+ (2)

The target feature space serves as a reference for the other members of the
ensemble, known as the student. Put differently, we train additional models with
the goal of imitating the EVs generated by the teacher. To achieve this, we use
the teacher network to produce ground-truth EVs of the training set. These
ground-truth EVs are then used to train the different student models that will
become part of the ensemble. By using the teacher-student approach, we employ
the loss function in Eq. (3) to train each member of the ensemble.

Lts = d(f(pi), g(pi)) (3)

This loss function is designed to optimize the performance of the ensemble mem-
bers and ensure that they are able to accurately imitate the EVs generated by the
teacher model. In the equation, f and g are the teacher and student model respec-
tively, d is a distance measure computed over the output EVs, e.g., smoothL1
in our case, and pi is an input point cloud. Please note, only the student model
g(·) is trained in this case, while the f(·) weights do not change. In Fig. 2, we
show the difference between creating an ensemble where members are trained
with a triplet loss and a knowledge-distillation approach.

3.2 Exploiting Ensemble Predictions

Once our ensemble is trained, we are able to extract features mean and variance
from a generic set of predictions V by using Eq. (1). As desired from an ensemble-
based approach, we expect to obtain an increment of the overall performance,
that in the case of a retrieval system should result in a better recall. To match
an input query with a map location, we simply compute the similarity between
query and database EVs and choose the match with the highest similarity score:

s(EVq, EVdb) =
EVq · EVdb

||EVq|| ||EVdb|| (4)

Moreover, we can take advantage of ensemble uncertainty to detect possible
failures and decide to not exploit a particular prediction for localization. More
practically, given the ensemble EV = (vμ, vσ2) we can compute the total amount
of uncertainty uEV as:

uEV =
m∑

i=1

fσ2

i (5)
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where fσ2

i represents the variance associated to feature i obtained from vσ2 .
Once obtained uEV , we can decide to discard or not the associated predictions
according to a threshold.

3.3 Comparison with Existing Approaches

To the best of our knowledge, only Mason et al. [22] recently proposed a deep
ensemble method for addressing the task of LiDAR-based place recognition.
However, there are some differences between their work and the approach pro-
posed in this manuscript. In particular, we propose a method to produce feature-
wise uncertainty estimates, while they represent uncertainty as a degree of accor-
dance between ensemble members. From a technical perspective, their method
produces n replicas of a query and database set, for each EV they compute a
similarity score between a selected EV and each database entry, and then, given
the database element with the highest average similarity, a possible representa-
tion of uncertainty is the similarity variance of EV copies. As we will describe in
Sect. 4, the previous method has the advantage to considerably improve the over-
all recall capability at the expense of maintaining distinct database instances.
Instead, our approach has the ability to encode ensemble predictions with a sin-
gle representation and to better detect localization failures in order to improve
the recall capability of the proposed system.

3.4 Training Details

A DNN architecture for place recognition comprises two main components: a fea-
ture extractor followed by a feature aggregation layer. Our experimental setup
is based on the implementation of two widely used DNNs for 3D place recog-
nition: MinkLoc3D [16] and PointNetVLAD [25]. MinkLoc3D requires a sparse
voxelized representation of the scene as input and employs a Feature Pyramid
Network architecture [20] to extract relevant features. On the other hand, Point-
NetVLAD [25] extracts features directly from a point cloud using PointNet as
its feature extractor. For feature aggregation, MinkLoc3D uses a Generalized
Mean Pooling (GeM) layer, while PointNetVLAD employs a VLAD layer [3]. No
modifications were made to the architecture of either neural network considered
in this study.

From a technical perspective and inspired by the training configuration of
MinkLoc3D, we fixed the configuration settings for both the teacher-student and
triplet-loss training methods as well as both DNNs. Specifically, the batch size
expansion described by Komorowski et al. [16] was disabled and the batch size
was fixed to 64. Moreover, due to limited memory space available on the GPU,
the batch size for training MinkLoc3D and PointNetVLAD using the Knowledge-
Distillation pipeline was reduced to 32 and 8 respectively. Initially, we trained
models for 40 epochs, but we observed that halving the epochs improved the
uncertainty quality for the teacher-student approach.

With regard to the training methods, for the triplet-loss function [10] we
trivially used Eq. (2). However, the teacher-student method involves comparing



302 M. Vaghi et al.

the feature vector extracted by the student network with the corresponding
ground-truth vector extracted by the teacher network. To evaluate the distance
between these vectors, we used smoothL1 distance as the cost function.

Table 1. Triplet vs knowledge-distillation feature space interchangeability: from left
to right, we represent the R@1 of MinkLoc3D trained using triplet loss (left) and
knowledge-distillation (right) loss functions. Only the knowledge-distillation method
allows us to exchange database and query sets across different student models.

QUERY

m1 m2 m3 m4 m5

m1 92.37 0.75 0.25 0.28 1.40

m2 0.87 92.20 0.49 0.48 0.21

m3 0.58 1.31 91.86 0.74 0.49

m4 1.34 0.76 1.25 92.33 0.93D
A
T
A
B
A
S
E

m5 0.98 0.55 0.77 0.14 92.07

QUERY

m1 m2 m3 m4 m5

m1 93.44 92.49 92.94 92.83 92.99

m2 92.93 93.36 93.09 93.07 93.14

m3 92.85 92.66 93.60 93.14 93.07

m4 93.05 92.89 93.30 93.48 93.23D
A
T
A
B
A
S
E

m5 93.24 92.82 93.15 93.11 93.63

4 Experimental Activity

In the following section, we report our extensive experimental activity to compare
the ensemble-based methods previously discussed. In particular, we compare our
teacher-student ensemble with [22] and with a naive ensemble approach that fol-
lows a similar idea to our method but without using a knowledge-distillation
technique. In particular, we evaluate the recall gain obtained by each ensem-
ble modality and the capability of detecting localization failures according to
a threshold-based strategy that exploits system uncertainty generated by the
ensemble. Such an assessment is performed across different datasets never used
during the training stage of ensemble members.

4.1 Datasets

To train DNN models and to validate our approach, we choose three popular
automotive datasets: Oxford Robotcar [21], NUS InHouse [25] and MulRan [13].
Please note, for all the methods considered we used only the Oxford Robotcar
dataset for training, while others were only used to validate our system.

Oxford and NUS InHouse datasets are characterized by urban scenes col-
lected during multiple traversals of the city of Oxford and Singapore, respec-
tively. Scenes depicted in these datasets can present tricky examples for a place
recognition system due to the presence of external actors, e.g., cars, bicycles, and
pedestrians, that may occlude relevant scene constituents. Furthermore, the pres-
ence of different light and weather conditions causes an increasing recognition
difficulty. Similarly, MulRan also comprises tricky environments characterized
by repetitive scenarios, inducing perceptual aliasing.
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Regarding Oxford Robotcar and NUS InHouse datasets, we exploit the
benchmark provided by Uy et al. [25]. For the MulRan dataset, we considered
DCC and Riverside locations by selecting two runs for each: one for building
a database set and the other for a query set. In particular, we exploited the
pre-processed point clouds provided by Knights et al. [15].

When training models with a triplet-loss, we consider positive correspon-
dences as point clouds with a maximum distance of 10 m, whereas negative
matches are point clouds situated more than 50 m apart. Differently, during
evaluation, a match is positive if the retrieved database sample is at a maximum
distance of 25 m from the query.

Point clouds belonging to each dataset are pre-processed by applying a set of
transformations following the pipeline described by Uy et al. [25]. In particular,
such transforms comprehend ground plane removal and 3D downsampling to
obtain point clouds with 4096 points. Finally, points coordinates are re-scaled
within a range of [−1; 1].

4.2 Evaluation Strategy and Metrics

For the evaluation, we follow a similar method reported in [16,22,25]. We con-
sider a dataset D = {d1, d2, ..., dn}, where each element di corresponds to the
i − th traversal. We represent a query set as Q = {q1, q2, ..., qn}, where qj refers
to the j−th traversal. We compare each di with all the queries in Q by excluding
qj when i = j. The goal is to evaluate only queries recorded during a different
traversal than d. We label a match as correct if the spatial distance between the
query point cloud and database is within 25 m. To assess the retrieval capabil-
ity of the approaches considered, we employ the recall R@1, R@5, and R@10.
We use the recall measure also to highlight the feature spaces differences in the
exchangeability test shown in the following subsection.

Finally, to understand if a method can detect localization failures, we observe
the recall trend when progressively removing queries according to a dynamic
threshold applied on uEV . Ideally, higher uncertainties should correspond to a
higher likelihood of prediction errors. For each step, the recall is computed only
considering the number of queries considered reliable.

4.3 Feature Space Interchangeability: Triplet vs TS Ensemble

In the following experiment, we compare the feature spaces produced by each
trained model. In particular, we aim to demonstrate that only using student
models allows us to exchange feature spaces without altering recognition perfor-
mance, that is features from different models are directly comparable. Consider-
ing a set of models M = {m1, ...,mn}, we employ the following protocol: we use
one model mk to create a set of EVs representing a database Dk, the remaining
members to produce different query sets from Qj and, finally, we observe the
R@1 following the protocol described in Sect. 4.2. In Table 1, we demonstrate
the comparability between the database built with a model and the query set
obtained from another ensemble member when using a knowledge-distillation
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approach. In that case, we can achieve similar performance no matter how we
build a pair (Dk, Qj). Please note, experiments were performed on the test set
of the Oxford dataset.

4.4 Recall Capability

In Table 2, we report the recalls R@1, R@5, R@10 of the baseline approaches
[16,25] and the Δ recalls obtain by the other methods. Our evaluation scheme
comprises a variation of the backbone architecture and the training method.
In particular, columns indicated with T-S refers to the results obtained with a
single network trained in a knowledge-distillation strategy, Naive Ensemble is
an ensemble where members were trained with a standard triplet loss, and T-S
Ensemble is the method proposed in this paper. Finally, we also report the per-
formance obtained with an ensemble that relies on different query and database
replicas [22]. At first glance, we can see a difference between the performance
achieved with our method across the two different architectures. As explained
in Sect. 3.4, we trained the teacher-student models by reducing the overall num-
ber of epochs since we noticed that model over-training leads to better recall in
general but also to a lower uncertainty quality. With MinkLoc3D, we found the
optimal trade-off between the number of training epochs and the recall perfor-
mance. Unfortunately, we could not achieve similar results with PointNetVlad.

Table 2. In this table, we show different recalls r@1, r@5 and r@10 achieved by the
baseline model [16] across different datasets. For the other approaches, we report the
Δ recall with respect to the baseline method. All the methods reported were trained
only on the Oxford Robotcar dataset

PNVlad Baseline T-S
Naive

Ens.

T-S

Ens. (ours)

Mason

et al. [22]

Datasets R@1 R@5 R@10 Δ1 Δ5 Δ10 Δ1 Δ5 Δ10 Δ1 Δ5 Δ10 Δ1 Δ5 Δ10

Oxford 71.1 86.6 91.7 -2.9 -1.7 -1 0.7 0.3 0.3 -1.9 -1.1 -0.6 1.7 1.2 0.9

U.S. 66.8 84.3 90.2 0.3 -0.5 -0.6 1.2 -0.3 -0.1 1.2 0.4 0.5 2.1 0.2 -0.2

R.A. 62.7 80.5 85.6 -2.8 -1.8 -0.2 1.5 0 -0.1 -1.1 -1.2 -0.9 2 1.1 0.9

B.D. 63.8 81.7 87.2 -1.5 -3 -2 1.8 -0.2 0.2 -0.7 -1.1 -0.7 2.6 0.5 0.8

DCC 62.8 65.9 67.8 0 0.4 0.6 1.9 1.4 1.5 0.1 0.7 0.6 1.8 1.4 1.2

Riverside 54.9 67.4 72.3 -1.9 -1.4 -1.3 1.9 0.7 -0.1 -0.6 -0.1 -0.2 2.2 0.9 0.4

MinkLoc3D Baseline T-S
Naive

Ens.

T-S

Ens. (ours)

Mason

et al. [22]

Datasets R@1 R@5 R@10 Δ1 Δ5 Δ10 Δ1 Δ5 Δ10 Δ1 Δ5 Δ10 Δ1 Δ5 Δ10

Oxford 92.4 97.9 98.8 0.9 0.2 0.1 -0.3 -0.3 -0.3 1.3 0.3 0.1 2.2 0.5 0.2

U.S. 84 94.5 96.4 0.7 0 0.3 1.9 0 -0.1 3.1 1.3 0.9 4.9 2 1.4

R.A. 75.9 89.8 93.1 4.2 3.5 2.1 4.5 3 2.1 6.6 4.4 2.8 9.5 5 3.4

B.D. 80 93.3 96.3 1.6 -0.2 -0.3 0.1 -0.6 -0.5 3.1 0.7 0.2 5.7 1.7 0.9

DCC 76.9 86.4 89.5 2.1 -0.6 -1.3 3.5 1.8 1 2.3 -0.4 -1.2 4.5 2 1.2

Riverside 56.4 69.1 74.9 -0.1 -1.9 -2.4 0.4 0.5 -0.5 0.8 -0.7 -2.1 2.1 1 0.7
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Fig. 3. Uncertain queries removal test on Oxford [21] and InHouse [25] datasets. x-
axis represents the percentage of query removed in the interval of [0%, 90%], while
y-axis reports the Δ% R@1, R@5 and R@10. We compare Naive Ensemble (Left),
Ours (Centre) and [22] (Right) approaches.

Fig. 4. Uncertain queries removal test on MulRan [13] dataset. x-axis represents the
percentage of query removed in the interval of [0%, 90%], while y-axis reports the Δ%
R@1, R@5 and R@10. We compare Naive Ensemble (Left), Ours (Centre) and [22]
(Right) approaches. Due to the worse recall obtained by all the reported methods, we
consider this dataset more challenging.
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In general, the approach of Mason et al. [22] slightly outperforms the other meth-
ods. However, with this method we need to maintain separated replicas of the
database and queries implying n simultaneous searches to extract the most likely
match, where n represents the number of ensemble members. Furthermore, as
we will report in the next section, while this method achieves higher recall, it
produces lower quality uncertainty.

4.5 Localization Failures Detection

A desirable behavior from an uncertainty-aware system is to provide the possi-
bility of detecting possible failures. In the context of place recognition, we would
like to decide whether a prediction is reliable or not to perform localization, i.e.,
by fixing a threshold on the total feature uncertainty and discard EVs accord-
ingly.

We use a similar evaluation protocol of Sect. 4D. However, for each dataset
and each traversal, we order queries in descending order according to the total
uncertainty computed with Eq. (1), and we progressively discard queries to
observe the presence of an increasing trend in terms of R@1, R@5, R@10. Since
we compute a new ordering for each run, the results show the average recall
obtained by simulating multiple traversals of a vehicle within the navigation
map. We aim to observe the recall capability of our system on a subset of queries
that we label as reliable. We report the results in Fig. 3 and Fig. 4 by splitting
the evaluation datasets into two groups. If our deep ensemble approach achieves
a R@1 ≥ 80% on a particular dataset, we label such dataset as trivial and chal-
lenging in the opposite case. Our goal is to observe the uncertainty quality of the
considered approaches in the presence of those two different scenarios. From the
results obtained with our approach (center column), it is possible to determine a
strong relation between high uncertainty and wrong matches. In fact, by gradu-
ally removing uncertain queries we are able to ensure a better recall capability of
our system. Furthermore, our method shows excellent results within challenging
scenarios as reported in Fig.4. The approach of Mason et al. also shows improve-
ments but after discarding a considerable amount of queries. This suggests that
feature-wise variance is more powerful than similarity variance to represent the
model’s uncertainty. As expected, uncertainty extracted with a Naive Ensemble
does not produce the desired results.

5 Conclusions

In this work, we provide an in-depth study of the deep ensemble effect in LiDAR-
based place recognition. In particular, we propose a deep ensemble implemen-
tation that exploits a knowledge-distillation approach to approximate a unique
feature space between members, and we compare it with the method of Mason
et al. [22], which instead relies on different feature space replicas. From our
extensive experimental activity, we can conclude that both strategies increase
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the overall system recall. In particular, the approach of Mason et al. achieves
slightly better performance, but our method better associates wrong predictions
to high uncertainty estimates. Furthermore, our feature-level uncertainty demon-
strates its effectiveness especially in challenging scenarios never represented in
the training set, and we perform query-to-database search only once since we
exploit a unified feature space. Finally, since our method estimates uncertainty
directly on EV, it enables the discovery of features that generate anomalies giv-
ing a better introspection of the neural network model. This aspect put the basis
for future works to improve the explainability of such systems.
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Abstract. Most commercially available Light Detection and Ranging
(LiDAR)s measure the distances along a 2D section of the environment
by sequentially sampling the free range along directions centered at the
sensor’s origin. When the sensor moves during the acquisition, the mea-
sured ranges are affected by a phenomenon known as “skewing”, which
appears as a distortion in the acquired scan. Skewing potentially affects
all systems that rely on LiDAR data, however, it could be compensated
if the position of the sensor were known each time a single range is mea-
sured. Most methods to de-skew a LiDAR are based on external sensors
such as IMU or wheel odometry, to estimate these intermediate LiDAR
positions. In this paper, we present a method that relies exclusively on
range measurements to effectively estimate the robot velocities which
are then used for de-skewing. Our approach is suitable for low-frequency
LiDAR where the skewing is more evident. It can be seamlessly inte-
grated into existing pipelines, enhancing their performance at a negligible
computational cost.

Keywords: Range Sensing · Sensor Calibration · Mapping

1 Introduction

Accurate and reliable mapping, localization, and navigation are essential for a
wide range of robotics applications from autonomous driving, logistics, search
and rescue, and many others. To this extent, Light Detection and Ranging (Li-
DAR) sensors are a popular choice since they allow us to sense both the free
space and the location of obstacles around the robot. A planar LiDAR measures
the distance of an object by deflecting laser beams around the sensor’s axis of
rotation.

In this work we focus on low-grade 2D LiDARs such as the InnoMaker-LD-06
or the RPI-Lidar A1 which at the time of writing can be bought for less than 100
Eur. The major shortcoming of these devices is their relatively slow angular speed
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Fig. 1. Effect of de-skewing. (a) Unprocessed (raw) scan acquired by a rotating robot,
while (b) is the corresponding ground truth scan, and finally (c) is the same scan in
(a), processed (de-skewed) using our proposed approach.

which results in a full sweep of measurements becoming available at a frequency
between 5 to 10 Hz. In contrast to more expensive models, these devices are
not equipped with an inertial measurement unit or other means to estimate the
proprioceptive motion of the sensor while it moves. In such devices, the scan
acquisition(a full sweep of laser beams around the vertical axis of the sensor) is
not instantaneous, hence when the robot carrying the LiDAR moves, the origin of
the beam in the world frame changes for each sensed range. Neglecting this fact,
and assuming that all measurements gathered during one rotation are sampled at
the same time resulting in a distorted or skewed scan as shown in Fig. 1. Despite
this consideration, most perception subsystems in a navigation stack treat the
scans as rigid bodies, however, the effect of skewing leads to undesirable decay
in accuracy that can result in failures as analyzed by Al-Nuaimi et al. [1].

A common way to compensate for the motion of the LiDAR is to integrate
external proprioceptive measurements (dead reckoning and/or Inertial Measure-
ment Unit (IMU)), to estimate the origin and orientation of the laser beam
each time a range is acquired [4,7,13]. High-end 3D LiDARs already contain a
synchronized IMU, which is not available on the inexpensive models previously
mentioned.

In this paper, we propose an approach to estimate the velocities of the robot
carrying the LiDAR, based solely on the range measurements, that are processed
as a stream. Our method is based on a non-rigid plane-to-plane registration
algorithm, where the velocity of the platform carrying the sensor is estimated
by maximizing the geometric consistency of the stream of ranges. We conducted
several statistical experiments on synthetic and real data. Results verify that
our de-skewing method is effective in estimating the motion of the robot, at
negligible computation.

In Fig. 1 we illustrate the effects of our approach on measurements acquired
with a constantly rotating LiDAR, with a rotational velocity 3 rad/s. In the
remainder of this paper, we first review the related work in Sect. 2, subsequently
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we describe in detail our de-skewing method for 2D LiDAR data Sect. 3. We
conclude the paper by presenting some synthetic and real results in Sect. 4, that
show the ability of the proposed system. And finally, we draw some conclusions
on the benefits and the limitations of our approach.

2 Related Work

In this section, we review the most recent approaches to de-skew LiDAR data.
Existing approaches for de-skewing mostly use either wheeled odometry or
IMU to estimate the relative motion of the sensor/robot while a scan is being
acquired. This process involves motion integration relying on estimators that
process the raw proprioceptive data such as a filter or an integrator that directly
provides an estimate of the sensor position each time a single range is mea-
sured.

These methods fall in the class of loosely-coupled, since they do not use the
LiDAR information to refine the proprioceptive estimate. Among this class, we
find the work of Tang et al. [9] that proposes to match subsequent scans to
compute the relative motion, where the initial relative orientations are provided
by an IMU. Subsequently, He et al. [4] proposed a method to estimate rela-
tive motion between IMU poses and de-skew subsequent ranges by using these
smoothed poses.

In contrast to loosely-coupled approaches, tightly-coupled methods jointly
process LiDAR and IMU. These methods are typically based on either smoothing
or filtering. Wei et al. [11] uses a pre-integration scheme to estimate the LiDAR’s
ego-motion based on the inertial measurements, and updates the IMU biases in
the correct step of an iterative EKF whenever a scan is completed. Shan et al.
[8] includes the states of IMU in the factor-graph, updating IMU biases through
the optimization process, adapting a well-known computer vision work [3] to
the LiDAR case. These ideas have been further extended in [10,12] where the
authors resort to full factor-graph optimization to obtain a state configuration
that is maximally consistent with all the IMU measurements and LiDAR ranges.

For coupled approaches, accurate time synchronization between the sensors
is essential. Unfortunately, this is not straightforward to obtain on inexpen-
sive small devices due to the unpredicted communication latencies that affect
the communication channels. These issues, however, can be completely avoided
when using only LiDAR data to perform de-skewing. At their core LiDAR only
methods have a registration algorithm, which aims to compute the velocities of
the sensor while the robot moves. The basic intuition is that if the correct veloc-
ities were found, the sequence of range measurements could be assembled in a
maximally consistent scan. In this context, Moosman et al. [6] propose to linearly
interpolate scans between the last known pose, and the currently estimated pose,
de-skewing the scan at both poses. However, this double approximation might
hinder the accuracy when the initial registration fails, resulting in even worse
estimates.
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Al-Nuaimi et al. [1] propose a weighting schema based on their adapted
Geometric Algebra LMS solver, where they assume that consecutive relative
translation and angular motion are equal, which might be inaccurate due to the
existence of drift and friction.

In this paper, we propose a planar LiDAR-only approach that addresses
the de-skewing problem by continuously registering the sequence of range mea-
surements. The registration is carried on by estimating the LiDAR’s planar
velocity, which iteratively minimizes a plane-to-plane metric between the de-
skewed endpoints. Our results demonstrate that our methodology is accurate
in estimating the velocity of the robot, only based on the laser measure-
ments.

3 Our Approach

Our method leverages some mild assumptions about the motion of the sensor
mounted on the robot and the structure of the environment to operate on a
continuous stream of range measurements. More specifically we assume to have
a 2D slow LiDAR sensor, hence, we define each measurement as zi = 〈ri, αi, ti〉.
Here, ri is the range, αi is the angle of the laser beam with respect to the origin
of the sensor and ti is the timestamp. We assume the environment consists of
a locally smooth surface and that the robot velocities change mildly within a
LiDAR beam revolution.

Our method estimates these velocities by registering the stream of measure-
ments {zi} onto itself. The most likely velocities are the ones that if applied
for de-skewing renders the measurement maximally consistent. Consistency is
measured by a plane-to-plane metric applied between the corresponding LiDAR
endpoints. More formally, let x = (v ω)T be the translational and angular veloc-
ity of the robot we want to estimate x∗, such that

x∗ = argmin
x

∑

〈i,j〉∈C
ρ‖e(x, ti, tj)‖2. (1)

Where e(x, ti, tj) denotes an error vector between two planar scan patches com-
puted around two corresponding range measurements at the time ti and tj . The
optimization step estimates new velocities x = (v ω)T under the current set of
correspondences C, using Iterative Reweighted Least-Squares (IRLS). In Eq. (1)
ρ denotes the Huber robust estimator.

Our algorithm is an instance of Iterative Closest Point (ICP) since it pro-
ceeds by alternating between the data association and optimization steps. In
the data association step, the corresponding endpoints are found using the near-
est neighbor strategy based on current velocity estimates. In the optimization
step, the velocities are refined from the new correspondences found by the data
association.
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3.1 Velocity Based De-Skewing

Whereas our approach can be applied to more complex kinematics, for the sake
of simplicity we detail the common case of a unicycle mobile base. Our goal is
to estimate the location T(x, ti) =

(
xi yi θi

)T of the mobile base at time ti,
assuming it starts from the origin and progresses with constant translation and
angular velocities over sampling time x = (v ω)T . After a time ti, the robot
would have traveled for a distance li = v · ti and its angle is θi = ω · ti. The base
will move along an arc of radius R, such that:

R =
vi

ωi
=

li
θi

. (2)

From this consideration, we can easily compute T as

T(x, ti) =
(

R sin θi

R(1 − cos θi)

)
= v · ti︸︷︷︸

li

(
sin θi

θi
1−cos θi

θi

)
(3)

Assuming the sensor (LiDAR) is located at the center of the mobile base, if
at time ti the beam has a relative angle αi and reports a range measurement ri,
we can straightforwardly find the 2D laser endpoint pi as follows:

pi(x, ti) = R(θi + αi)
(

ri

0

)
+

(
xi

yi

)
. (4)

Here R(θi + αi) ∈ SO(2) is 2D rotation matrix of θi + αi. Applying this process
to all the measurements and mapping all reconstructed points back to the pose
where the acquisition of the current scan was started, results in the desired
de-skew operation.

3.2 Error Metric

To evaluate a plane-to-plane distance the algorithm needs to compute the normal
vectors, which are based on the endpoints. Since the position of the endpoints
is a function of the estimated velocities x, also the normal vectors are. Hence
the algorithm has to recompute both endpoints and normals at each iteration.
Furthermore, when subsequent endpoints are too close, the noise affecting the
range might result in an unstable normal vector, which hinders the error metric.
To lessen this effect, before each iteration, we regularize the scan to retain only
temporally subsequent measurements that are sufficiently far from each other
to ensure a stable normal. In our experiments, we set this threshold to 0.15 m.
Similarly, if there is a large distance gap between two subsequent endpoints
(>0.4 m), likely, the surface is not continuous at that point, hence we drop those
measurements too. At the end of this regularization step, we end up with a set
of reasonably stable measurements we can use for the remainder of the compu-
tation. For each temporally subsequent pair of endpoints, we compute a planar
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patch mi = 〈ci,ni, ti〉, characterized by a center ci, a normal vector ni, and a
timestamp ti, such that:

ci =
1
2

(pi+k + pi) , (5)

ni =
(

0 1
−1 0

)
pi+k − pi

‖pi+k − pi‖ , (6)

ti =
1
2

(ti+k + ti) . (7)

Here, the index k > 0 accounts for endpoints suppressed during regularization.
If two planar patches mi and mj corresponds to the same portion of the envi-
ronment, we can calculate an error vector e(x, ti, tj) accounting for both their
differences in position and orientation. The error vector is a function of the veloc-
ities, since the patches mi and mj are computed based on the endpoints. The
latter is related to the velocities by (4).

Let e(x, ti, tj) ∈ R
3 be the error vector, whose components are defined as

follows:

e(x, ti, tj) =
(

1
2 (ci − cj)T (ni + nj)

nj − ni

)
. (8)

Here the first dimension accounts for the distance between two corresponding
planar patches mi and mj projected along the average of their normals. The
other two account for the difference between the normal vectors. (8) is differ-
entiable in the velocities x, hence we can minimize (1) by Iterative Reweighted
Least Squares.

3.3 Data Association

To determine the correspondence we proceed at each iteration by de-skewing the
sequence of measurements, to get a set of updated endpoints pi. Subsequently,
we apply the regularization to discard those measurements whose endpoints fall
either too close or too far from their temporal neighbors. This gives us a set
of sequential stable measurements we can use to extract the planar patches.
Figure 2 demonstarates the data association procedure.

Once this is done, for each mi we seek for those other patches mj that fulfill
all the following criteria:

– their centers are close enough |ci − cj | < τc,
– their normals are sufficiently parallel ni · nj > τn,
– their timestamp are sufficiently distant |ti − tj | > τt.

Within this set we select as correspondence for mi, which is the mj having the
smallest projective distance (ci − cj)T (ni + nj).
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Fig. 2. Illustration of the planar patches calculation and the correspondence search
between two matching patches mi and mj .

Fig. 3. Iterative evolution of the de-skewing process. Purple points represent skewed
points, green points are the ground truth points, and blue lines represent the data
association. Initial configuration, instance of full scan acquisition, with RMSE = 0.4 m.
After 4 iterations of processing (de-skewing) the raw scan with the proposed approach,
with decreased RMSE error to = 0.2 m. After 20 iterations, we ended up with a de-
skewed scan closer to the ground truth, with RMSE = 0.074 m. (Color figure online)
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4 Experimental Validation

In this section, we present quantitative evaluations to demonstrate the accuracy
of the velocities estimated by our approach, and its effect on the processed
data, using only LiDAR measurements. To this extent, we carried out statistical
experiments under changing velocities.

The goal of the first experiment is to compare the velocities of the robot
calculated by our approach with the ground truth applied. As mentioned before
utilizing the estimated velocities by our approach, renders measurements geo-
metrically consistent as seen in Fig. 3.

Virtual synthetic scans were created with a skewing effect based on the
addressed velocities. We proceed by de-skewing twice, the first time we com-
pute the ground truth measurement by setting the applied velocities, and the
second time we compute the de-skewed scan by using our velocity estimate. The
consistency is measured as the distance between corresponding endpoints in the
two scans. In Table 1 each cell contains 3 rows in which: The first row is the
estimated translational velocity(̄v) ± std(m/s), while the second row is the esti-
mated angular velocity(̄ω)± std(rad/s), and finally the third row is the point to
point Root Mean Square Error (RMSE) (m) for the de-skewed/skewed respec-
tively with respect to their ground truth counterpart, for each combination of
velocities.

Table 1. Evaluation of the proposed approach using different combinations of trans-
lation and angular velocities.

�����ω(rad/s)

v(m/s) −2.000 −1.000 −0.500 0.500 1.000 2.000

−2.000

−1.936± 0.090 −0.950± 0.068 −0.471± 0.050 0.470± 0.047 0.962± 0.052 1.910± 0.092

−1.952± 0.081 −1.933± 0.115 −1.958± 0.066 −1.962± 0.052 −1.952± 0.070 −1.932± 0.103

0.090/0.404 0.083/0.399 0.059/0.351 0.061/0.414 0.055/0.460 0.081/0.579

−1.000

−1.890± 0.131 −0.979± 0.031 −0.477± 0.035 0.482± 0.034 0.946± 0.069 1.897± 0.073

−0.949± 0.069 −0.986± 0.023 −0.973± 0.037 −0.979± 0.026 −0.953± 0.059 −0.950± 0.056

0.067/0.297 0.058/0.308 0.055/0.296 0.049/0.354 0.054/0.336 0.062/0.399

−0.500

−1.929± 0.085 −0.978± 0.063 −0.479±0.054 0.492± 0.033 0.935± 0.064 1.906± 0.062

−0.487± 0.020 −0.493± 0.022 −0.477± 0.035 −0.495± 0.009 −0.484± 0.026 −0.482± 0.022

0.040/0.308 0.035/0.345 0.041/0.188 0.043/0.200 0.060/0.218 0.084/0.338

0.500

−1.955± 0.024 −0.954± 0.044 −0.474± 0.071 0.481± 0.048 0.969± 0.042 1,967± 0.036

0.483± 0.012 0.495± 0.018 0.476± 0.045 0.485± 0.026 0.488± 0.020 0.496± 0.012

0.119/0.158 0.029/0.140 0.044/0.112 0.052/0.132 0.059/0.161 0.159/0.271

1.000

−1.844± 0.130 −0.976± 0.064 −0.472± 0.057 0.495± 0.028 0.969± 0.059 1.98± 0.038

0.933± 0.077 0.976± 0.053 0.940± 0.053 0.992± 0.015 0.970± 0.048 0.992± 0.017

0.063/0.261 0.063/0.225 0.024/0.231 0.055/0.302 0.058/0.303 0.039/0.335

2.000

−1.906± 0.116 −0.941± 0.076 −0.465± 0.081 0.480± 0.065 0.940± 0.083 1.947± 0.069

1.904± 0.142 1.919± 0.120 1.912± 0.104 1.905± 0.137 1.922± 0.116 1.963± 0.069

0.074/0.416 0.071/0.368 0.081/0.358 0.075/0.435 0.076/0.494 0.091/0.424

We repeated this experiment on the real robot and the velocity plots in Fig. 4
confirm that our system can effectively recover the robot’s velocities, correctly
de-skewing the scan, in real indoor scenarios.
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Fig. 4. Evolution of estimated and real velocities.

4.1 De-Skewing in a SLAM System

In our final experiment, we used our de-skewing mechanism to pre-process the
input of our 2D LiDAR Simultaneous Localization and Mapping (SLAM) system
[2]. We run SLAM on three different inputs: the raw (skewed) scans, the ones
de-skewed by using the proposed approach, and finally the data de-skewed by
using the ground truth. We simulated different exploration runs of the same
environment while changing the velocity bounds of the robot. Figure 5 illustrates
the three different maps obtained.

Furthermore, we measure the Absolute Trajectory Error (ATE) between the
ground truth trajectory computed by the simulator and the ones estimated by
SLAM using the two types of scans. ATE measures the distance between cor-
responding points of the trajectories, after computing a transformation that
makes them as close as possible. For trajectory registration, we used the Horn
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Fig. 5. SLAM Results. (a) Ground truth map (reference). (b) Map constructed using
raw scans acquired directly from the LiDAR. (c) Map constructed using processed
LiDAR measurements de-skewed by our proposed approach. (d) Estimated trajectories
from SLAM, produced by scan matching between consecutive measurements.

Table 2. SLAM comparison

Velocities ATE(m)

vmax (m/s) ωmax(rad/s) w/o deskewing deskewed

0.5 0.5 0.329 0.113

0.5 1.0 0.246 0.232

1.0 1.0 1.018 0.977

1.0 1.5 1.586 1.520

2.0 2.0 11.18 1.805

method [5], while the corresponding poses are associated based on the times-
tamps. The results are summarized in Table 2. Consistently, the trajectories
obtained by using de-skewed data are substantially closer to the ground truth
compared to their skewed counterpart as shown in Fig. 5d. This is confirmed
by the maps generated based on the trajectories and illustrated in Fig. 5. These
results are consistent and confirm the importance of the de-skewer since these
measurements might induce systematic unrecoverable errors in the registration
process.
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5 Conclusion

In this paper, we presented a simple and effective planar LiDAR de-skewing
mechanism based on plane-to-plane registration criteria. To the best of our
knowledge, this is the only de-skewing pipeline that does not rely on additional
sensors (i.e. IMU, wheel encoders), targeting specifically slow and inexpensive
LiDARs, and enhancing the quality of the scan. For future work, we are planning
to integrate the proposed approach in more complex systems, while generalizing
the approach for 3D data.
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Abstract. Detecting 3D objects in images from urban monocular cam-
eras is essential to enable intelligent monitoring applications for local
municipalities decision-support systems. However, existing detection
methods in this domain are mainly focused on autonomous driving and
limited to frontal views from sensors mounted on the vehicle. In con-
trast, to monitor urban areas, local municipalities rely on streams col-
lected from fixed cameras, especially in intersections and particularly
dangerous areas. Such streams represent a rich source of data for appli-
cations focused on traffic patterns, road conditions, and potential haz-
ards. In this paper, given the lack of availability of large-scale datasets of
images from roadside cameras, and the time-consuming process of gen-
erating real labelled data, we first proposed a synthetic dataset using the
CARLA simulator, which makes dataset creation efficient yet acceptable.
The dataset consists of 7,481 development images and 7,518 test images.
Then, we reproduced state-of-the-art models for monocular 3D object
detection proven to work well in autonomous driving (e.g., M3DRPN,
Monodle, SMOKE, and Kinematic) and tested them on the newly gen-
erated dataset. Our results show that our dataset can serve as a refer-
ence for future experiments and that state-of-the-art models from the
autonomous driving domain do not always generalize well to monocular
roadside camera images. Source code and data are available at https://
bit.ly/monocular-3d-odt.

Keywords: Dataset · Object Detection · 3D Vision · Roadside
Camera

1 Introduction

Monocular cameras play an important role in urban areas, in which they are
commonly used in intersections and other high-risk locations to capture valu-
able data. Detecting objects in images from monocular cameras is critical for
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developing intelligent monitoring applications that can assist local municipali-
ties in making timely and informed decisions [1–4,15,16]. With such applications,
governments can obtain real-time and accurate information regarding traffic pat-
terns, road conditions, and potential hazards. Differently from traditional 2D
object detection methods [8,18,21–24,30,31,42], applying 3D object detection
approaches offer significant advantages. By providing a more complete under-
standing of the scene and enabling the detection of occluded objects, they can
improve the accuracy and reliability of object detection in complex environ-
ments, and better describe object pose and shape. Usually approaches that rely
on monocular cameras are also less expensive and can be easily deployed in urban
areas, if compared to the more complex LIDAR methods [12,20,32,38]. However,
3D object detection from monocular cameras still poses several challenges and
shows significant limitations. First, the lack of depth information in 2D images
makes it difficult to accurately estimate the size and position of objects; second,
environmental factors, such as occlusions, shadows, and weather conditions, can
also affect their operational accuracy and reliability.

To overcome such issues, recent advances in autonomous driving solutions
have shown promising results, among which the most noteworthy works are
M3DRPN [5], Kinematic [6], SMOKE [25], Monodle [26], and FOC3D [36],
to name a few. Additionally, a growing number of datasets [7,10,17,19,27–
29,35] are being adopted to further improve the effectiveness of this technol-
ogy. Notwithstanding these advancements, this field remains an active area of
research, and further investigation is necessary to strengthen the performance
of monocular camera-based 3D object detection models. Applying such models
developed for autonomous driving to roadside cameras is possible, since these
cameras usually provide a wider coverage area and greater robustness to occlu-
sion, remain stable for extended periods of time, and are more suitable for event
recognition. However, since the scenario is different from that of vehicle use,
several questions on their generalizability are open. To improve performance in
this context, novel datasets, such as Ko-PER [34], Rope3D [39], BAAI-VANJEE
[13], BoxCars [33], and DAIR-V2X [41] have been proposed, but most of them
are not public.

Motivated by the above limitations, in this paper, we designed a novel syn-
thetic dataset, hereafter named as MonoRoadCam, with the twofold aim of: a)
facilitating the adaptation of 3D object detection methods for use on roadside
cameras; b) examine in this context the performance of existing methods bor-
rowed from autonomous driving, in a consistent and unified setting. To generate
such a dataset, we opted for the CARLA simulation environment [14], for its abil-
ity to provide complex data that mimics real-world scenarios. We also employed
the widely adopted KITTI format [17] in order to guarantee standardization
and reproducibility of the evaluation tests. Our contribution is threefold:

– We generated a synthetic dataset for monocular 3D object detection from
roadside cameras using the CARLA simulator, compliant with the KITTI
format. To provide a fair evaluation, we removed the overlap between the
training and validation sets by excluding sequence frames;
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– We verified the reproducibility of existing state-of-the-art monocular 3D
object detection approaches, originally proposed for autonomous driving, on
the roadside context, sharing our framework publicly.

– We conducted a comparative study between 3D object detection datasets
from roadside and frontal cameras, observing that state-of-the-art solutions
from the autonomous driving domain result in significant potential yet crucial
limitations when applied to monocular roadside camera images.

The rest of this paper is organized as follows. Section 2 outlines the research
methodology. Section 3 illustrates the obtained results. Finally, Sect. 4 concludes
the paper, highlighting the prominent future research directions.

2 Research Methodology

In this section, we describe the reproducibility process, which involves (i) sur-
veying the existing datasets and 3D object detection methods for monocular
cameras; (ii) carrying out an analysis of the context, also by collecting the orig-
inal source codes and adapting them to our unified framework; (iii) generating
the MonoRoadCam dataset and adopt it for evaluating the reproduced models.

2.1 Problem Formulation

Given a set of training images I = {i1, i2, ...in} and calibration information P of
a monocular camera, where P represents the projection matrix, each image i ∈ I
is represented as a set of 2D projected points. Suppose that B = {b1, b2, ...bm}
represents a set of bounding boxes for all objects in the image in 3D space,
where each bi ∈ B included object type C, in addition to T = (tx, ty, tz),
D = (dx, dy, dz), and O = (ϑ, Φ, ϕ) which represent the centroid, dimension, and
orientation of the object, respectively. The goal is to optimize the parameter θ
in order to solve f(i, P, θ) = B ∀i ∈ I. Usually, convolution neural networks are
used to provide the map, and the optimization is run on θ.

2.2 Paper Collection

In order to gather existing 3D datasets for the study, a systematic search has been
conducted about the recent publications in computer vision-related top-tier con-
ferences and journals, such as CVPR, ECCV, ICCV, and IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI). Additionally, we searched
relevant repositories, such as the Waymo Open Dataset, the KITTI Vision
Benchmark Suite, and the ApolloScape dataset. Our search keywords included
3D object detection, monocular 3D object detection, roadside 3D dataset.

Not only datasets providing 3D object information using RGB cameras have
been taken into consideration, but also those that used other methods in addition
to RGB. Additionally, we limited our search to datasets designed for traffic mon-
itoring using monocular cameras. We excluded datasets that focused on other
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Table 1. Comparison of existing publicly available datasets for autonomous driving
(AD) and roadside object detection, including their year of release, database type,
whether the data is real or simulated, range of data, RGB resolution, number of RGB
images, number of 3D boxes, presence of rain/night data, and availability to the public.
The last row represents the dataset we propose in this paper.

Dataset Year Type Source Range Resolution Images 3D Boxes Rain/

Night

Public?

Kitti [17] 2013 AD Real 70m 1392 × 512 15K 80K No/No Yes

KoPER

[34]

2014 Roadside Real – 656 × 494 – – No/No Yes

Apollscape

[19]

2018 AD Real 420m 3384 × 2710 144K 70K No/Yes Yes

BoxCars

[33]

2018 Roadside Real – 128 × 128 116K 116K No/No Yes

nuScenes

[7]

2019 AD Real 75m 1600 × 900 1.4M 1.4M Yes/Yes Yes

Argoverse

[10]

2019 AD Real 200m 1920 × 1200 22K 993K Yes/Yes Yes

H3D [28] 2019 AD Real 100m 1920 × 1200 27.7K 1M No/No Yes

A*3D [29] 2020 AD Real 100m 2048 × 1536 39K 230K Yes/Yes Yes

Waymo

Open [35]

2020 AD Real 75m 1920 × 1080 230K 12M Yes/Yes Yes

DAiRV2X

[41]

2021 AD/Other Real 200m 1920 × 1080 71K 1.2M –/Yes No

BAAI-

VANJEE

[13]

2021 Roadside Real – 1920 × 1080 5K 74K Yes/Yes No

ONCE [27] 2021 AD Real 200m 1920 × 1080 7M 417K Yes/Yes Yes

Rope3D

[39]

2022 Roadside Real 200m 1920 × 1200 50K 1.5M Yes/Yes No

Ours 2023 Roadside Simulated 150 m 1280 × 384 15K 39.345K No/Yes Yes

tasks or used different data collection methods. After conducting the search and
filtering process, we identified 13 relevant datasets that met our criteria for
inclusion in our study. Among them, 8 datasets were related to autonomous
driving focusing on the frontal view of the road, 4 datasets were based on road-
side cameras, and 1 dataset focused on autonomous driving and infrastructure.
Table 1 summarizes their general characteristics.

As a second step of our study, we surveyed papers proposing monocular 3D
object detection methods. Despite their efficiency, we excluded models that rely
on LiDAR and point cloud data [12,20,32,38] from our study, given our focus
on contexts with only monocular cameras. Additionally, we excluded models
that heavily rely on external sub-networks for performing depth estimation [37]
or pseudo point cloud generation [11], given the need of efficiency. Similarly to
the dataset selection process, we targeted works from top-tier conferences and
journals that propose an approach for monocular 3D object detection and that
make that approach reproducible by sharing the source code. Based on these
criteria, we were able to select four models: M3DPRN, Kinematic, SMOKE, and
Monodel. All of them are autonomous driving-based models. During our search,
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we also found two roadside models leveraging monocular cameras [43] and [9],
but unfortunately the authors did not provide any source code.

2.3 Research Context Analysis

Based on datasets and the monocular 3D object detection models we have exam-
ined, we observed that approximately about 68% of them focused on autonomous
driving, assuming that DAiRV2X is an autonomous driving dataset. However we
also found that only 32% of the work focused on roadside cameras. These models
can be useful in various applications, such as sports analysis, traffic monitoring,
security systems, road safety, and wildlife monitoring. In addition to this, we
found that this area lacks publicly available datasets until the date of this study.
Rope3D [39], DAiRV2X [41], BAAI-VANJEE [13] are not publicly available. On
the other side, we analyzed the training and testing datasets used by the state-
of-the-art models surveyed in our study. From Table 2, we observed that most of
surveyed 3D monocular object detection models still rely on the KITTI dataset
for their training and testing, despite the availability of diverse publicly available
datasets for autonomous driving, especially those that focus on the frontal view.
This might be attributed to either the pioneering role of KITTI.

Table 2. Overview of the considered 3D object detection methods.

Method Year Type1 Status2 Datasets Datasets size3

M3DRPN [5] 2019 AD R KITTI [17] 3,712-3,769-7,518

Kinematic [6] 2020 AD R KITTI [17] 3,712-3,769-7,518

SMOKE [25] 2020 AD R KITTI [17] 3,712-3,769-7,518

Monodle [26] 2021 AD R KITTI [17] 3,712-3,769-7,518

FCOS3D [36] 2021 AD R nuScenes [36] 700-150-150∗

UrbanNet [9] 2021 Roadside R Synthetic Only [9] 500-0-100

Zou et al. [43] 2022 Roadside R Real + Synthetic [43] Synthetic: 64,000/Real: 8,000

Type1: AD - Autonomous driving model; Roadside - Roadside model

Status2: R - Reproducible model; R - Non-Reproducible.

Datasets size3: Training set - Validation set - Testing set.
∗ These values represent the ratio of the scenes instead of the dataset size.

Given all this information, and due to the lack of publicly available datasets
for roadside 3D object detection and the convenience of using the same for-
mat as in KITTI, we opted to generate our own synthetic dataset with a focus
on roadside 3D object contexts and to format it as the KITTI dataset. This
allowed us to evaluate state-of-the-art methods (M3DRPN, Monodle, SMOKE,
Kinematic - see Table 2) with our dataset smoothly. We chose synthetic data as
a reference since it is cost-effective in a preliminary phase and selected Carla [14]
as our platform since it is built on a foundation for learning reinforcement and
imitation models, making it as simple as possible to resemble the real world.
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2.4 Methods Reproduction

Data Generation. We generated the synthetic dataset using the Carla 0.9.13
simulator and placed an RGB camera at an intersection area in TOWN5.
Detailed information about the software and hardware specifications can be
found in the source code repository (Camera type: RGB Camera; Image res-
olution: 1280× 384; Camera location: x = 10 y = 0 z = 10; Camera pitch, yaw,
roll: 0; Field of view: 120). Specifically, our synthetic dataset, MonoRoadCam, is
composed only of car objects at the intersection area, and includes 7,481 devel-
opment images and 7,518 test images with annotations provided in the same
format as the KITTI dataset. For every frame of both the development and test-
ing sets, we ensured that at least one object is present. Each object in the dataset
is defined by its type, size, location, and orientation. For simplicity, we set the
occlusion and truncation levels to 0. Notably, the development images are not
sequential, and the test images only include 10 continuous frames. This diversity
provides a rich set of training and testing data. We extended the diversity of
the dataset by incorporating three weather conditions: night, cloudy, and sunny.
The statistics for the development and test sets are summarized in Table 3.

Table 3. Object size statistics in our dataset and in KITTI (car objects only).

Dataset Statistic Height [m] Width [m] Length [m]

KITTI (car object) Average 1.53 1.63 3.53

Ours (car object) Average 1.73 1.86 4.47

Std. Dev. 0.49 0.50 1.38

Min 1.20 0.33 1.49

Max 3.83 2.89 8.47

Data Pre-processing. We generated the 3D boxes automatically in Carla.
However to ensure that the data is free from any imprecise boxes, we performed
data preprocessing in three steps. Firstly, we removed the boxes placed outside
the road by determining the boundary of the road. Secondly, we removed too
small boxes. Finally, we replaced images that did not contain any objects with
other images. Figure 1 explains the data preprocessing phase in detail.

Model Creation. In our experiment, we evaluated two types of monocular 3D
object detection methods: anchor-based and keypoint-based.

The anchor-based methods, Kinematic [6] and M3DRPN [5], aim to improve
the accuracy of 3D estimation from a monocular camera. Kinematic incorporates
uncertainty reduction, Kalman filtering, and ego-motion to extract scene dynam-
ics. M3DRPN is built on the Faster R-CNN [31] concept and uses depth-aware
concepts to improve accuracy. Both M3DRPN and Kinematic use predetermined
3D bounding boxes (i.e., anchors) and estimate the deviation from the anchor
using offsets. On the other hand, the keypoint-based methods, Monodel [26] and
SMOKE [25], do not rely on predetermined bounding boxes. Monodel focuses on
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Fig. 1. Preprocessing steps for the images included in our dataset. In (a), we removed
all the boxes outside the road. In (b), we removed small boxes by setting a threshold.
In (c), we detected images not including any objects and replaced them. Blue (red)
bounding boxes denote images before (after) preprocessing. (Color figure online)

improving dimension estimation and considering localization errors as a source
of 3D detection inaccuracies. SMOKE estimates 3D objects directly without esti-
mating the 2D bounding box. Both methods are anchor-free and use DLA34 [40]
as a backbone. Despite the promising results, we decided not to include FCOS3D
[36], which separates the 2D and 3D attributes of objects and redefines the cen-
terness of objects based on the 3D center, since it required substantial steps to
receive data in our required format, going beyond the scope of this study.

In addition to the monocular 3D object detection methods, we also exam-
ined two roadside methods. The first method [43] proposed 3D object detection
and tracking using the point detection concept, then estimating the object’s
3D pose and size. It predicts the object’s 3D bottom center and uses a pre-
calibrated plane-to-plane homography to lift the prediction to 3D space. The
second method, UrbanNet [9], incorporated urban maps into the image to pro-
vide additional information to improve 3D estimation. Both these methods used
synthetic datasets. Specifically, the first method used CARLA and UrbanNet
used Grand Theft Auto V and KITTI. We excluded these methods from our
analysis due to the lack of public source code and data set.

Evaluation. In order to reproduce monocular models in both the KITTI and
MonoRoadCam datasets, we followed the same training/validation split proto-
col as proposed in [11], which is widely accepted in the field as a benchmark
for evaluating the performance of monocular models. This protocol consists of
3,712 training and 3,769 validation images, and is commonly used to evaluate the
performance of monocular models on the KITTI dataset. For our MonoRoad-
Cam dataset, we confirmed that there were no sequential frames, but we still
applied the same split protocol as in KITTI to unify the numbers of training
and validation sets. This allowed us to perform a fair comparison.
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For each trained model, we computed the evaluation metrics proposed and
used for the KITTI dataset. Specifically, we included the 11-point and 40-point
recall interpolated Average Precision (AP11 and AP40) and the Average Orien-
tation Similarity (AOS), which is used to measure the detector performance on
rotated rectangle detection. These metrics are defined as follows.

AP11 =
1
11

∑

r∈0,0.1,...,1

pinterp(r), (1)

where pinterp(r) is the maximum precision for any recall value r′ ≥ r.

AP40 =
1
40

∑

r∈0,0.025,...,1

pinterp(r), (2)

where pinterp(r) is the maximum precision for any recall value r′ ≥ r.

AOS =
1
11

∑

r∈0,0.1,...,1

maxr′≥rs(r′) (3)

where s(r) is the orientation similarity.

s(r) =
1

|D(r)|
∑

i∈D(r)

δi · 1
2
(cosΔθ

(i)
i + 1) (4)

where D(r) is all object detection at recall rate r, δi is a binary variable that is
set to 1 if detection i has been assigned to a ground truth bounding box (overlaps
by at least 50%), and Δθ

(i)
i is the difference in angle between the estimated and

ground truth orientation of detection.
It should be noted that AP40 provides a more fine-grained evaluation than

AP11, by computing the precision at 40 different recall levels. AP11 computes
precision at only 11 recall levels. Therefore, we used AP40 to perform a more
detailed comparison of the different models. We used AP11 only for M3DRPN.

3 Experimental Results

3.1 RQ1: Status of Reproducibility

In Table 4, we report the full reproducibility results under the KITTI validation
set for Kinematic, Monodle, M3DRPN, and SMOKE, together with the original
results reported in their respective papers on the same validation set. Regarding
M3DRPN, we conducted the same experiment as reported in the paper, using
AP with 11 recall points, whereas for the other methods, we used 40 recall points
for the AP calculation for the car object.

Our reproduced results showed a drop in performance for all the evaluated
methods when compared to the same results reported in the original papers.
However, on average, the decrease was not substantial, except for the SMOKE
method. We conjecture that the decrease for the latter can be attributed to a
misalignment in hyper-parameter values during training and decided to carefully
consider this aspect while training models with SMOKE on our dataset.
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Table 4. Comparison between the reproduced (Ours) and the original (Orig) results
for the Kinematic, Monodle, M3DRPN, and SMOKE methods on the KITTI dataset,
within the car object detection task. We report Average Precision (AP) values for both
3D and Bird’s Eye (BEV) views, both at easy, moderate, and hard levels. (*) denotes
AP for 11 recall points (40 recall points are used where not otherwise specified).

Method AP3D (IoU ≥ 0.7) APBEV (IoU ≥ 0.7)

Easy Mod Hard Easy Mod Hard

Ours Orig Gap % Ours Orig Gap % Ours Orig Gap % Ours Orig Gap % Ours Orig Gap % Ours Orig Gap %

M3DRPN* [5] 14.37 20.40 −29.56 11.67 16.48 −29.19 9.23 13.34 −30.81 20.94 26.36 −20.56 15.35 21.15 −27.42 16.72 17.14 −2.45

Kinematic [6] 17.76 19.46 −8.74 13.45 14.10 −4.61 10.65 10.45 1.91 25.41 27.83 −8.70 18.79 19.72 −4.72 15.16 15.10 −0.40

SMOKE [25] 0.59 14.76 −96.00 0.58 12.85 −95.49 0.36 11.50 −96.87 1.60 19.99 −92.00 1.26 15.61 −91.93 1.21 15.28 −92.08

Monodle [26] 11.40 17.45 −34.67 9.10 13.66 −33.38 7.55 11.68 −35.36 16.97 24.97 −32.04 13.26 19.33 −31.40 11.89 17.01 −30.10

3.2 RQ2: Influence of the Context

The context in which 3D object detection methods are applied can have a sig-
nificant impact on their performance. Therefore, we examined the performance
of the methods, training models from scratch on our synthetic dataset. We used
the Average Precision (AP) metric for both 3D object detection and bird’s eye
view (BEV) object detection. The results were computed separately for easy,
moderate, and hard difficulty levels to provide a comprehensive evaluation.

Table 5. Comparison between the results obtained on the autonomous driving (AD)
scenario (i.e., Ours in Table 4, calculated on the KITTI dataset) and on the roadside
cameras (RC) scenario (i.e., our synthetic dataset) by the considered models, within
the car object detection task. We report the Average Precision (AP) for both 3D and
Bird’s Eye (BEV) views, at easy, moderate, and hard levels. (*) denotes AP for 11
recall points (40 recall points are used where not otherwise specified, as in Table 4).

Method AP3D (IoU ≥ 0.7) APBEV (IoU ≥ 0.7)

Easy Mod Hard Easy Mod Hard

AD RC Gap % AD RC Gap % AD RC Gap % AD RC Gap % AD RC Gap % AD RC Gap %

M3DRPN* [5] 14.37 51.14 255.90 11.67 50.43 332.13 9.23 50.43 446.40 20.94 54.12 158.45 15.35 53.73 250.03 16.72 53.73 221.35

Kinematic [6] 17.76 56.49 218.07 13.45 54.15 302.60 10.65 54.15 408.45 25.41 59.40 133.77 18.79 57.27 204.80 15.16 57.27 277.77

SMOKE [25] 0.59 0.15 −74.58 0.58 1.30 124.14 0.36 1.30 261.10 1.60 0.61 −61.88 1.26 6.20 392.10 1.21 6.20 412.40

Monodle [26] 11.40 10.78 −5.44 9.10 9.91 8.90 7.55 9.91 31.26 16.97 11.89 −29.94 13.26 12.59 −5.05 11.89 12.59 5.89

Table 6. Results on the validation set of our synthetic dataset using the Kinematic,
Monodle, M3DRPN, and SMOKE methods. The table reports Average Precision (AP)
with 40 recall points in 3D and Bird’s Eye View (BEV) - the same results reported in
Table 5 - column RC, but organized here to ease the comparison across models - and
the Average Orientation Similarity (AOS) for the easy, moderate, and hard levels.

Method AP (IoU>=0.7) AOS

Easy Mod Hard Easy Mod Hard

AP3D APBEV AP3D APBEV AP3D APBEV

M3DRPN [5] 51.14 54.12 50.43 53.73 50.43 53.73 46.01 46.09 46.09

Kinematic [6] 56.49 59.40 54.15 57.27 54.15 57.27 45.52 46.73 46.73

SMOKE [25] 0.15 0.61 1.30 6.20 1.30 6.20 2.25 8.56 8.56

Monodle [26] 10.78 11.89 9.91 12.59 9.91 12.59 61.53 63.75 63.75
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Fig. 2. Qualitative comparison across models on the validation set of our dataset.

Comparing results across contexts (autonomous driving and roadside views)
in Table 5, it can be observed that most of the methods perform better on
our synthetic dataset (RC) compared to our experiment in the original KITTI
dataset (AD). For example, the Easy mode in the Kinematic method exhibited a
substantial gap, with a score of 56.49 in our dataset compared to 17.76 in KITTI.
However, it is crucial to consider the variations in object diversity between the
two datasets, particularly concerning object boundaries in our CARLA environ-
ment. We specifically tested the intersection area of a single scene. Although we
took precautions to prevent overlap between the training and validation sets,
and even in the training and validation phases, by excluding sequential frames,
it is possible that the inherent boundary characteristics from our CARLA setup
could still influence the results. Furthermore, it can be observed that the perfor-
mance of all methods decreases as the difficulty level increases in both datasets.
This is expected as the difficulty levels correspond to objects with smaller sizes
(we avoided occlusion and truncation in our dataset).

Comparing results across models (Kinematic, Monodle, M3DRPN, SMOKE)
in Table 6, it can be observed that Kinematic achieved the highest performance
in both AP 3D and AP BEV, with the best result being 59.40 in the Bird’s Eye
View easy mode. M3DRPN ranked second with strong AP scores. Conversely,
despite having lower AP scores compared to Kinematic and M3DRPN, Monodle
showcased impressive results in terms of AOS (63.75) under moderate and hard
difficulty levels. SMOKE reported the lowest overall performance, consistently
scoring lower in all metrics and difficulty levels among the four methods. Based
on such results, we concluded that the models exhibit effectiveness in the roadside
scenario of our synthetic dataset, especially when Kinematic is used.

3.3 RQ3: Qualitative Inspection

We finally conducted a qualitative comparison of the models, by employing spe-
cific challenging images chosen from the validation set. Images in Fig. 2 cover
various scenarios involving big and small cars as well as cars in close proximity.
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We found that Kinematic exhibited good projection accuracy, by accurately
localizing objects within the scenes. On the other side, M3DRPN displayed a
few false positives in some images (see columns 1–3). When it comes to Mon-
odle, we noticed limitations in terms of IOU scores in columns 1–2, indicating
that it struggles to precisely capture object boundaries. Furthermore, Monodle
generated a false negative in column 3. Interestingly, both M3DRPN and Mon-
odle detected truncated objects in column 2. As for SMOKE, we observed some
limitations in terms of IOU scores, false positives, and false negatives. Notably,
the latter faced noticeable challenges in accurately detecting larger cars.

4 Conclusions and Future Work

In this study, we shed a light on the scarcity of publicly available datasets for 3D
object detection from monocular cameras in roadside contexts. To address this
issue, we introduced a synthetic dataset generated through the CARLA simu-
lator, which is compatible with the popular KITTI format and can be seam-
lessly integrated into existing frameworks. Furthermore, we showed the feasibil-
ity of our dataset by verifying the reproducibility of state-of-the-art monocu-
lar autonomous driving models on roadside contexts, yielding promising initial
results.

Our findings suggest that our synthetic dataset could serve as a valuable
resource for researchers and practitioners in the field of autonomous driving,
facilitating the development and evaluation of 3D object detection algorithms
for roadside scenarios. Therefore, as next steps, from a data perspective, we
plan to extend the generated dataset with more examples and situations and
to explore innovative ways for gathering real-world annotated datasets. From a
methodological perspective, we plan to devise models that can lead to more effec-
tive and efficient computation under the considered roadside scenario. Finally,
to assess the impact of our work on the real world, we plan to run applicative
studies involving local municipalities.
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Abstract. When acquiring sparse data samples, an interpolation
method is often needed to fill in the missing information. An example
application, known as “depth completion”, consists in estimating dense
depth maps from sparse observations (e.g. LiDAR acquisitions). To do
this, algorithmic methods fill the depth image by performing a sequence
of basic image processing operations, while recent approaches propose
data-driven solutions, mostly based on Convolutional Neural Networks
(CNNs), to predict the missing information. In this work, we combine
learning-based and classical algorithmic approaches to ideally exploit
the performance of the former with the ability to generalize of the lat-
ter. First, we define a novel architecture block called IDWBlock. This
component allows to embed Shepard’s interpolation (or Inverse Distance
Weighting, IDW) into a CNN model, with the advantage of requiring
a small number of parameters regardless of the kernel size. Second, we
propose two network architectures involving a combination of the IDW-
Block and learning-based depth completion techniques. In the experi-
mental section, we tested the models’ performances on the KITTI depth
completion benchmark and NYU-depth-v2 dataset, showing how they
present strong robustness to input sparsity under different densities and
patterns.

Keywords: Shepard’s Interpolation · Inverse Distance Weighting ·
Depth Completion · CNN · Sparse convolution

1 Introduction

A dense and accurate depth map is beneficial to many computer vision tasks
such as 3D object detection [3,23,33], and reconstruction [21,22,24], optical
flow estimation [26,41], and semantic segmentation [37,39]. The popular LiDAR
depth sensors produce reliable observations, and are widely employed in real-
world applications such as autonomous driving [14] or in industrial setups [34].
However, the resulting depth maps are too sparse, with about 5% of the acquired
pixels having a valid depth value [33]. For several applications such data are not
sufficient, and methods aiming at densifying sparse data samples are needed.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Basili et al. (Eds.): AIxIA 2023, LNAI 14318, pp. 336–350, 2023.
https://doi.org/10.1007/978-3-031-47546-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47546-7_23&domain=pdf
http://orcid.org/0009-0002-7738-1297
http://orcid.org/0000-0001-6273-290X
http://orcid.org/0000-0001-6668-1556
https://doi.org/10.1007/978-3-031-47546-7_23


Embedding Shepard’s Interpolation into CNN Models 337

In this context, depth completion is usually regarded as the task of recovering
an accurate dense depth map from a sparse input. The literature counts sev-
eral approaches to perform depth completion, ranging from classical algorithmic
methods [2,11,29] to learning-based techniques [1,10,32]. Non-learning-based
approaches are based on predefined rules, do not require training data and rely
only on image processing operations. However some of them, such as [11], out-
perform learning-based methods. Regarding learning-based approaches, state-of-
the-art methods are based on deep convolutional neural networks (CNNs). When
the network input is sparse and the values are irregularly distributed, applying
conventional convolutions gives inaccurate results since not all the input val-
ues are actually observable [8]. There are several approaches designed to solve
the input sparsity problem with CNNs. This includes the naive approach which
assigns a default value to all missing pixels [12], to more effective approaches
that apply sparse convolutions to weight the elements of the kernel according
to a validity mask [10,32]. The former method does not lead to optimal results,
as the learned filters must be invariant to all possible validity patterns. The
method proposed in [32] overcomes the problem by introducing a novel sparse
convolution, while Zixuan et al. [10] proposed an extension with a multi-scale
encoder-decoder CNN.

In this paper, we revisit the idea of sparsity invariant convolution and propose
a family of hybrid CNN architectures that mix learning-based elements and a
classic interpolation technique to perform unguided depth completion (i.e. based
only on depth data). Specifically, we adopt Inverse Distance Weighted (IDW)
interpolation, originally presented in [29], which can be easily reformulated as
a convolution operation, and embed it in a CNN. To do so, we define the novel
IDWBlock, which is able to adjust IDW parameters during training according
to local data sparsity and distribution of observable input samples. Such block
is combined with trainable sparse convolution layers in two alternative architec-
tures which effectively mix the two approaches in a single or multi-scale fash-
ion. This enables the proposed hybrid model to generate a dense and accurate
depth map with clear boundaries. We tested the two proposed IDW-embedding
architectures on the KITTI depth completion benchmark [32] and NYU-depth-
v2 dataset [30] and show that they offer a more accurate reconstruction with
respect to the simple sparse convolution approach.

2 Related Work

Data Interpolation. The problem of scattered data interpolation consists in
fitting a continuous function of two or more independent variables that interpo-
lates values that are measured at some scattered points. The sparse observations
can be located in a grid or can be distributed with a non-uniform pattern, mak-
ing the task even more challenging. A considerable number of methods have
been proposed to perform this task, from early approaches [7] to more recent
solutions [20]. The inverse distance weighted (IDW) interpolation, also known
as Shepard’s method [29] consists in computing the values of missing points as
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a weighted average of the observed points, with weights being a power of the
inverse of their distance. The authors of [19] applied inverse distance weighted
interpolation for topographic surface modeling, while in [6] it is used for particu-
late matter (PM) estimation and mapping. Another popular method is based on
radial basis function (RBF) [31,36,42]. In these approaches the interpolant is a
weighted sum of radial basis functions (e.g. Gaussian, polynomial), that depend
only on the distance between the input and a fixed point. Since the technique
involves the solution of a linear system that depend on the number of points, it
is unpractical in real-world applications due to computational complexity.

Depth Completion. Depth completion task is a specific instance of data inter-
polation, where observations are scattered depth data and the goal is to recover
dense depth maps. Depth completion approaches can be classified into differ-
ent categories, depending on different criteria. The first categorization for depth
completion methods is algorithmic or learning-based. Learning-based approaches
are typically based on deep neural networks, whereas algorithmic solutions rely
on a sequence of image processing techniques. Ku et al. [11] proposed to use of
a sequence of well-known image processing algorithms to transform the sparse
input into dense depth maps. The proposed work first utilizes morphological
operations, such as dilation and closure, to make the input depth map denser,
and then fills holes to obtain the final output. Based on the input data, depth
completion algorithms can be divided into guided and non-guided : the former
method works with an aligned RGB image used as a guide in addition to the
sparse input, while the latter only works on the sparse input. Fangchang M.
et al. [16] used color images as guidance in their proposed model that learns a
direct mapping from sparse depth to dense depth. Alex W. et al. [35] introduced
a method to infer dense depth from camera motion and sparse depth using a
visual inertia odometry system, while other works [27,38] applied a transformer-
based architecture to produce a dense depth map from the given RGB image
and sparse input. Fabian M. et al. [18] used a segmentation map instead of RGB
image as guidance in their vgg05-like architecture. Other papers proposed by
Uhrig et al. [32], Huang et al. [10], and Chodosh N. et al. [5] used the sparse
depth only for depth completion, and thus are classified as non-guided. To handle
sparse inputs and sparse intermediate feature maps, Uhring et al [32] proposed
a non-guided sparsity-invariant convolution to replace the conventional convo-
lution in CNNs. The sparsity-invariant CNN involves sparse convolution layers
which weight the kernel elements according to the pixel validity. Additionally,
a second stream carries information about the pixel validity to subsequent lay-
ers. Huang et al. [10] proposed three novel sparsity-invariant operations, based
on which, a sparsity-invariant multi-scale encoder-decoder network (HMS-Net)
is proposed to handle sparse data at different scales. Additional RGB features
could also be incorporated to further improve the performance.
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3 Combining IDW and Sparsity-Invariant CNNs

We start by discussing how Shepard’s interpolation can be expressed in terms of
convolutions. Then, we observe how a recent approach based on Convolutional
Neural Network can be seen as a special case of such an interpolation algorithm,
but with trainable kernel weights. Therefore, we describe how to combine the two
so that the learnable part can be trained with a reduced number of parameters
regardless of the network receptive field size.

3.1 Inverse Distance Weighted Interpolation

Inverse Distance Weighted (IDW) interpolation, also known as Shepard’s
method, is an old yet effective spatial interpolation approach for scattered
data [29]. It creates estimates for locations without data based on values at
nearby locations. The advantage of IDW interpolation includes its simplicity,
ease of use, and fast execution time [13].

Suppose to have a scattered set of 2D point samples x1, . . . ,xN with associ-
ated values v1, . . . , vN . Such values can represent any scalar field of interest, from
terrain elevation of some topographic data to temperature values measured by an
array of thermometers in an area. The IDW principle is to interpolate the value
at any point x̂ as a weighted average of the values at the neighboring points.
Weights are computed according to the distance between x̂ to each sampling
point xi, i = 1, . . . , N as:

wp(x̂,xi) =
1

(√
x̂Txi

)p (1)

where p ≥ 0 is a free parameter that governs the relative importance to the point
closer to x̂ with respect to the ones farther away.

To get the interpolated value v̂ at a point x̂, IDW simply computes the
weighted average:

v̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N∑

i=1

wp(x̂,xi)vi

N∑

i=1

wp(x̂,xi)

, if x̂Tx �= 0 ∀i

vi, if x̂Tx = 0 for some i.

(2)

Note that if x̂ coincides with any of the given points, the interpolated value is
given directly by vi since w(x̂,xi) would be undefined in that case. This also
agrees with the mathematical definition of “interpolation” which provides a con-
tinuous function passing exactly at the given samples. It is easy to observe that
the higher the value of p, the more v̂ will converge to the value of the nearest
neighbour of x̂, as its relative weight will dominate the others. On the other
hand, small values of p tend to produce a smoother interpolation since v̂ is aver-
aged among several neighbouring values. In the extreme case, when p = 0, all
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the interpolated values will be equal to the average of the given values v1 . . . vN .
The original formulation described so far can be used for any scattered point set
but involve the computation of distances between the interpolated points and
the given data points. Since we are dealing with sparse depth images, point coor-
dinates are restricted to the image lattice. In such a case, we can precompute the
weights among pixel pairs at certain distances and perform the same operation
in terms of convolutions.

Let S be the size of a sparse depth image I1. Let M be a binary mask of the
same size of I containing 1 for each valid pixel in I and 0 for the missing values.
We can compute the S × S correlation kernel:

KS,p =

⎛

⎜
⎝

k−S
2 ,−S

2
. . . kS

2 ,−S
2

...
. . .

...
k−S

2 ,S2
. . . kS

2 ,S2

⎞

⎟
⎠ , ki,j =

⎧
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(
i j

)T
,0

)
, otherwise
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weighting the contribution of the neighbouring pixels with respect to the center

of the kernel. For example, K3,1 =
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It is easy to see that the interpolation in (2) can be expressed in terms of
convolution as follows:

Î = M · I + (1 − M) · I � K
M � K (4)

Since M is a binary mask, M � K computes the sum of the weights for each
given sample used to normalize the weighted average defined in (2). To enforce
the resulting value to be equal to vi at each sample xi, the interpolated value is
overwritten by the original value in I by the linear combination with the binary
mask. For this reason, it has to be noted that K(0, 0) can be chosen arbitrarily
without affecting the resulting Î since each produced value is overwritten every
time the convolution kernel is centered on a given sample.

Considering IDW in terms of convolutions allows us to modify its formulation
providing an additional parameter controlling the resulting interpolation. Indeed,
the described operation is well-defined even if the size of the kernel is smaller
than S. In that case, instead of computing the value in x̂ as the weighted average
of all the given samples, we restrict the average to the neighbouring samples
closer to x̂ by half the kernel size. This allows the control of the interpolation
“receptive field” to limit the contribution of samples farther away even with low
power values. We define the Convolutional-IDW interpolator as follows:

CIDWs,p(I,M) = M · I + (1 − M) · I � Ks,p

(M + ε) � Ks,p
(5)

1 We can assume without loss of generality that I is square and that S = 2a+1, a ∈ N.
If that is not the case, I can be padded with zeros to meet such condition.
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where ε > 0 is a small constant to avoid division by zero. Since s < S, CIDW
will not produce a valid value if no sample falls within the area encompassed by
the convolution kernel. Therefore, the interpolation produced by the function is
undefined in all the pixels where the output mask M ′ = sign(M � Ks,p) is zero.

3.2 Sparsity-Invariant CNNs

The sparsity-invariant CNNs proposed in [32] is an effective way to modify con-
ventional convolutions in a CNN to handle sparse input feature maps (i.e. when
the input layer x can only be partially observed at the locations in which the
binary mask m is 1). The sparsity-invariant convolution is formulated as:

fu,v(x,m) =

a∑

i,j=−a

m(u + i, v + j)x(u + i, v + j)w(i, j)

a∑

i,j=−a

m(u + i, v + j) + ε

+ b (6)

where w is a learnable kernel of size (2a + 1) × (2a + 1), b is a scalar bias, and
ε is again a small constant to avoid division by zero at locations where none of
the input values are observed.

Such formulation can be seen as a generalized version of CIDW in which the
weights are fully trainable instead of being a function of samples’ location as in
(1). However, the normalization component is conceptually different. In CIDW
we compute the weighted arithmetic mean of input values with the kernel values.
In the sparsity-invariant convolution, instead, the linear combination between
input and weights is normalized by the number of observed values encompassed
by the kernel, regardless of the weights’ values. Also in the case of sparse con-
volutions, some output values might be invalid. The authors propose to produce
the output mask by doing a max-pooling operation with a unitary stride and
the same kernel size as the one used for the convolution. This produces the same
result as computing the output mask M ′ as we described before.

3.3 IDWBlock: Embedding CIDW in a Sparse CNN

Since the Shepard’s interpolation can be formulated in terms of convolutions (as
shown in Eq. 5), we studied the idea of embedding such operation into a classical
CNN model. In particular, we define a new architectural block, called IDWBlock,
with a limited set of parameters that learns the optimal way to combine a set of
CIDW outputs performed with different trainable power values p1 . . . pN .

The architecture of an IDWBlock is sketched in Fig. 1. The upper part per-
forms several CIDW operations with different combinations of kernel sizes and
power values. Kernel sizes are hard-coded into the block architecture and there-
fore cannot be trained. We observed that 5 × 5, 17 × 17, and 37 × 37 are good
values for the most popular datasets for depth completion. For each kernel size,
CIDW is executed with a set of different power values. Specifically, the 5 × 5
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Fig. 1. The Proposed IDWBlock architecture. See text for details.

kernel is applied with 3 power values (p1, p2, p3), the 17×17 with 4 power values
and 37 × 37 with 3. All the p1, . . . , p11 are randomly chosen at the beginning
and optimized during the training together with all other network weights. Out-
puts of each of the 11 CIDW operations are stacked depth-wise to produce a
W × H × 11 tensor C, where W,H are the width and height of the input image.

The lower part of the block learns the relative importance of the produced
CIDW outputs C according to the local density of the given samples. Indeed,
we expect that the optimal combination of CIDW kernel size and power value
is significantly different if the input samples are very close or far away in a
certain region. To approximate the density, we convolve the input binary mask
M with unitary (non-trainable) kernels with size 5 × 5, 17 × 17, and 37 × 37.
Outputs are stacked together in a W × H × 3 tensor and processed with a
classical feed-forward convolutional network to expand into a W×H×11 tensor V
representing the relative weight of each CIDW output for each pixel. Since some
of the CIDW outputs might be invalid (especially with small kernels), we must
force the corresponding weights to zero. The validity information corresponds
to pixels where the local density for a certain kernel size is greater than zero.
Therefore, we compute the sign of local densities and multiply it element-wise
to V. Finally, CIDW outputs are rescaled with the element-wise product C � V,
and the resulting Io is returned with the per-element validity information Mo.

3.4 Adding IDWBlock into Sparsity Invariant CNNs

We propose two different ways to arrange IDWBlocks in a sparsity invariant
CNN. The first (IDWNet) is sketched in Fig. 2 and contains just a single IDW-
Block used in parallel with a sequence of sparse convolutions (SparseConv) fol-
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lowed by ReLU activations, as described in [32]. Output images of the IDWBlock
are concatenated with the output feature maps of the SparseConvs, as well as the
respective output masks. To match the channelwise dimension of the IDWBlock
mask, the one-channel SparseConv mask is replicated before concatenation. After
the concatenation, the resulting multi-channel I and M tensors are processed
with additional SparseConv blocks to obtain the final interpolated image. Note
that, at this point, within the SparseConv module the input multi-channel mask
is squeezed into a single-channel mask by channel-wise summation followed by
sign operation: this is done because a single-channel mask with max-pooling
operation is propagated from layer to layer as proposed in [32].

Fig. 2. IDWNet architecture. The input is processed by our IDW block and by a
sequence of three trainable sparse convolution layers. Results are concatenated and
processed by a second sequence of sparse convolutions.

Fig. 3. MS-IDWNet architecture. Input is processed at different scales (original, 2× and
4×) and concatenated. Dense output is produced by a sequence of sparse convolutions.

The second architecture (MS-IDWNet) is shown in Fig. 3. This time we inves-
tigated a multi-scale arrangement in which three parallel IDWBlocks are fed with
the original input image and a 2×, 4× down-scaled version respectively. Down-
scaling is performed by doing average pooling on both the image and the mask
and then normalizing the obtained image with the down-scaled mask. The effect
is equivalent as computing the average only on valid samples. For the up-scaling,
we perform a nearest-neighbour interpolation on both the image and the mask.
The two operations are not trainable. Finally, outputs of all the IDWBlocks are
concatenated and fed to a sequence of sparse convolutions as in the previous
architecture.
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Fig. 4. Testing robustness of our method varying input sparsity levels. First row shows
results on KITTI depth completion benchmark: the values on x-axis show the percent-
age of randomly abandoned input points. Second row shows the same evaluation on
NYU dataset for different sparsity levels (number of input samples).

4 Experimental Section

To evaluate our approach, we conducted our experiments on both the KITTI
depth completion dataset and NYU-depth-v2 dataset.

KITTI-Depth dataset [32] includes sparse depth maps (5% of the pixels avail-
able) from projected LiDAR point clouds that were matched against the stereo
cameras. The dataset has 86k training images, 7k validation images, and 1k test
set images with no access to the ground truth. We used all the 86k depth maps
for training and a validation subset of 1k images for evaluation. As the top part
of the images have no valid values, we removed the top 103 rows and center crop
for training and validation. For testing, we used the original image size.

NYU-depth-v2 [30] is an RGB-D dataset for indoor scenes, captured with a
Microsoft Kinect with size 640×480. Similarly to [4,17], we used the official split
with roughly 48k images for the training and 654 for testing. Each input image
was randomly sampled with a uniform distribution.

We trained both our models on an NVIDIA GeForce RTX 4080 using the
Mean Squared Error (MSE) loss function. All parameters were randomly ini-
tialized and updated with ADAM optimizer configured with an initial learning
rate of 0.01. During the train we applied the Learning rate decaying equation
described in [10]. In all our experiments we used the proposed IDWNet (Fig. 2)
for the KITTY dataset and MS-IDWNet (Fig. 3) for NYU-depth-v2.
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4.1 Evaluation

We started by testing the effect of different input sparsity for our technique.
Figure 4 shows the reconstruction error varying the test set sparsity. Plots on the
left show Root Mean Squared Error (RMSE), while plots on the right display
the MAE. The first row analyses the behaviour when abandoning an increasing
number of points on KITTI dataset. The subsampling was performed by ran-
domly deleting samples with an increasing probability (from 0 to 0.8), keeping
the points distribution consistent with the original data by performing the opera-
tion with a sliding window. We compared our IDWNet (combining CIDW blocks
with sparse convolutions) with the sparsity invariant CNN as described in [32].
Our proposed model exhibits a consistent improvement in terms of both MAE
and RMSE at any density level. The second row shows the same experiment
performed on NYU dataset: since ground truth is dense, we uniformly sampled
the data to obtain different sparsity levels (from 50 up to 5000 points per image).
Also in this case, our approach performs better with respect to the sparse con-
volutions approach, since IDWBlock is able to adapt to different sparsity levels,
even for significantly sparser samples.

Table 1 reports quantitative results of our IDWNet versus other encoder-
decoder and unguided depth completion techniques on the KITTI validation
set. We report the RMSE and MAE values (in mm) for U-Net [28], FRRN [25],
PSPNet [40], FPN [15], He et al. [9], HMS-Net [10] and SparseConv [32]. Our
approach performs better with respect to other methods, and it is comparable
with the HMS-Net architecture (especially the MAE), which however involves
a complex multi-scale structure. Table 2 reports comparisons on NYU test set
while handling very sparse inputs (200 and 500 samples). In this case, we included
the Sparse-to-dense [16] and SPN [4] that were designed to work well with a
low number of samples (with and without RGB guidance). Also for this case,

Table 1. Comparisons of different methods against the validation set of the KITTI
dataset [32]. Data of SegGuided [18] is as reported in the paper, Other competing
methods are as reported in [10].

Method RMSE (mm) MAE (mm)

U-Net [28] 1387.35 445.73
FRRN [25] 1148.27 338.56
PSPNet [40] 1185.39 354.21
FPN [15] 1441.82 473.65
He et al. [9] 1056.39 293.86
HMS-Net [10] 994.14 262.41
SegGuided [18] 1146.78 278.75
SparseConv [32] 1314.23 409.17
IDWNet (our) 1045.34 265.08
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Table 2. Errors by different methods on NYU-DEPTH-V2 test set. The values are
taken from their respective papers. “w/RGB” indicates RGB image used.

Method RMSE (m) REL (m) δ1 δ2 δ3

200 points SparseConv [32] 1.065 0.257 0.550 0.752 0.880
Sparse-to-dense [16] 0.259 0.054 0.963 0.992 0.998
HMS-Net [10] 0.233 0.044 — — —
MS-IDWNet (our) 0.255 0.055 0.955 0.991 0.988

500 points SparseConv [32] 0.801 0.159 0.739 0.861 0.933
Sparse-to-dense [16] w/RGB 0.230 0.044 0.971 0.994 0.998
SPN [4] w/RGB 0.162 0.027 0.985 0.997 0.999
MS-IDWNet (our) 0.190 0.038 0.975 0.996 0.999

our method shows good results against other state of the art methods while
exhibiting a substantially simpler architecture.

Finally, Fig. 5 and Fig. 6 display qualitative outputs on KITTI and NYU
datasets respectively. In both the cases, we compare our approach with the spar-
sity invariant CNN as we did for the experiment shown in Fig. 4. In general, we
observe that our multi-scale IDW architecture offers sharper edges with respect
to the results obtained from SparseConv.

Fig. 5. Visual qualitative example of the result obtained on the KITTI validation set
by our method and the Sparsity Invariant CNN (SpConv) [32].



Embedding Shepard’s Interpolation into CNN Models 347

Fig. 6. Visual results for IDWNet and sparseConv [32] from NYU dataset. Our IDWNet
produces objects with sharp and clear boundaries.

5 Conclusions

In this paper we proposed two CNN architectures for unguided depth com-
pletion. Both models includes the novel IDWBlock, which embeds Shepard’s
interpolation with sparse convolutions. We show that by mixing algorithmic and
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learning-based interpolation approaches can offer better performances with a
minimal increase in the number of training parameters. Moreover, our approach
predicts accurate depths, without requiring different treatment for different spar-
sity levels. Experimental results showed the advantage of the proposed method
for depth completion without adding too much complexity.
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Abstract. RGB-D cameras have become essential in robotics for accu-
rate perception and object recognition, enabling robots to navigate envi-
ronments, avoid obstacles, and manipulate objects precisely. Such cam-
eras, besides RGB information, allow the capture of an additional image
that encodes the distance of each point in the scene from the camera.
Popular depth acquisition techniques include active stereoscopic, which
triangulates two camera views, and Time-of-Flight (T-o-F), based on
infrared laser patterns. Despite different technologies, none of them is
yet able to provide accurate depth information on the entire image due
to various factors such as sunlight, reflective surfaces or high distances
from the camera. This leads to noisy or incomplete depth images. Neu-
ral network-based solutions have been researched for depth completion,
aiming to create dense depth maps using RGB images and sparse depth.
This paper presents a comparison of the data provided by different depth-
sensing technologies, highlighting their pros and cons in two main bench-
mark setups. After an analysis of the sensors’ accuracy under different
conditions, several state-of-the-art neural networks have been evaluated
in an indoor scenario to assess if it is possible to improve the quality of
the raw depth images provided by each sensor.

Keywords: Depth completion · RGB-D camera · Image guidance

1 Introduction

Depth images play a crucial role in computer vision research and have various
applications in industries like robotics, autonomous driving, and augmented real-
ity (AR). These images provide information about the distance from the sensor
of objects in the scene. A common approach to obtain such kind of information
is the use of RGB-D cameras, which provide both a color image of the scene
and a depth image. RGB-D cameras employ various acquisition modes, such
as stereoscopic techniques that capture multiple images from different angles,
Time-of-Flight (T-o-F) techniques that project structured infrared (IR) laser
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patterns and measure deformations to calculate distance, or LiDAR techniques
that employ an 860 nm infrared laser projection. Each acquisition technique has
important considerations that can adversely affect the depth image produced:
one of the major problems faced by stereoscopic cameras is the presence of noise
within the depth image, due to the difficult triangulation of featureless objects
(e.g., white walls) or objects more than 3.5m away from the sensor. Another
problem, especially for T-o-F and LiDAR cameras, is the invalidation of pixels
on object edges or near corners, due to an interference factor between IR beams
that can occur around discontinuous surfaces. In cases where a pixel value is
invalidated, the camera processor will immediately assign it a value of 0. Various
techniques have been proposed to address the issue of incomplete depth maps.
These techniques involve filling in invalid pixel holes and reducing noise using
dilation [13] or bilateral filtering [20,21]. However, these handcrafted strategies
may not fully utilize the geometric information in RGB images and may not
be accurate enough for certain applications like autonomous driving. A more
sophisticated approach is to use depth completion neural networks [8–10]. Gen-
erally, these networks take an incomplete depth image with invalid pixels and
estimate a new dense depth map by leveraging geometric information in incom-
plete depth data, and auxiliary information such as image patterns in RGB
images. State-of-the-art depth completion models are typically trained on out-
door datasets, particularly the KITTI dataset [23]. In contrast, indoor datasets,
like the NYUv2 Depth Dataset [22], are more limited in availability and often
rely on artificially generated data from a dense depth image, where only a small
percentage is sampled to generate a new sparse depth image. Currently, there is
a lack of indoor datasets that adequately represent the challenges faced by RGB-
D cameras, resulting in architectures that have not been extensively trained to
handle holes within inhomogeneous depth maps in real-world indoor scenarios.

In this work, the performance of state-of-the-art depth completion networks
will be analyzed on specific indoor scenarios, in order to highlight how well net-
works trained on such limited datasets are suitable for general use on real-world
scenarios, and what major performance limitations still exist. Specifically, a main
contribution of this work is the proposal of two different benchmarks to analyze
in detail the accuracy and robustness of different depth acquisition techniques
on indoor data. These benchmarks evaluate several aspects, including measure-
ments’ precision as the distance from the sensor increases (Depth Accuracy for
indoor scene), as well as the accuracy of depth measurements within a narrower
mask of the depth map (Depth Accuracy for objects). For each benchmark,
various types of commercial RGB-D cameras were analyzed by highlighting the
main causes of errors and holes in the depth image. Based on such results, the
performance of current state-of-the-art networks for depth completion are ana-
lyzed. Although achieving good performance for poorly scattered or noisy depth
images, such methods are generally unable to fill and refine correctly sparse
depth images. The paper is organized as follows. Section 2 provides an overview
of the most recent works on depth completion. Section 3 explains how common
RGB-D cameras technology works. The proposed depth quality benchmarks and
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results are discussed in Sect. 4 and 5. In Sect. 6 state-of-the-art depth completion
have been evaluated on indoor data. Finally Sect. 7 draws the conclusions.

2 Literature Review

The objective of depth completion is to generate a dense depth map by filling
in the missing values of a sparse depth map. With a sparse depth map of the
image and other potential auxiliary information as inputs, the new depth map
needs to have as much smoothness within normal surfaces and a valid geometric
consistency around object edges and borders. Hu et al. [8] proposed a taxonomy
of the currently used method for depth completion task. Based on the usage
of RGB as input throughout the entire training and testing process, the two
primary categories of depth completion employing neural networks are defined
as follows: i) Unguided depth completion [6,10,16,23], which aims at directly
completing the sparse depth map, used as input; ii) RGB guided depth comple-
tion [4,9,17,24], where the neural network requires both the sparse depth map
and the RGB of the acquisition as input. Thanks to the use of RGB images it
is possible to find more geometrical cues that may help in the identification of
semantic information.

RGB-guided networks are valuable for addressing the issue of sparse depth
maps with numerous invalid pixels lacking depth information. As a result,
unguided depth completion neural networks often struggle in these scenarios,
leading to a shift in research focus towards RGB-guided methods. Hu et al. [8]
have identified various techniques for RGB-guided depth completion. One such
technique is the Early Fusion [11,17] method, which involves concatenating the
RGB image and sparse depth and feeding the result as input to the network.
Although the Early Fusion technique stands out because of its simplicity and low
complexity, its being particularly straightforward makes feature extraction fall
entirely within the CNN network. In order to broaden the analysis beyond a sin-
gle CNN network, the Late Fusion method is employed. This approach involves
the fusion of data obtained from RGB and sparse depth inputs into two separate
branches: Global and Local Depth Prediction [14,24]. The distinction between
the two lies solely in their input sources: the Global branch operates as an Early
Fusion network, whereas the Local branch exclusively utilizes sparse depth infor-
mation. In FusionNet [24], the two branches work in such a way as to obtain two
different dense depth maps, with attached confidence maps, that focus on dif-
ferent locations in the image. Further alternatives were also proposed following
the Late Fusion scheme such as the Double Encoder-Decoder [9,18]. This gave
rise to PENet [9] first and SemAttNet [18] later, an extension of the former net-
work with an additional semantic branch. Fusion modes have also shifted from
simple concatenations to more complicated strategies [7], such as the correla-
tion between RGB and depth or fusion at multiple spatial scales [15]. A variant
of these fusion techniques is the use of the Spatial Propagation Network-based
(SPN) models [3,4,19], which refine an initial sparse depth map through the use
of an additional Encoder-Decoder branch, and are currently at the forefront of
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RGB-guided depth completion. Already present in the Early Fusion technique,
the idea of having to refine an initial coarse sparse depth map resulted useful
for a more accurate final depth, especially around corners and edges [5], albeit
through the use of an additional Encoder-Decoder branch. The NLSPN [19] is
one of the most famous examples of Spatial Propagation Network-based depth
completion models that posed most of its computational part in the refinement
process.

3 Overview of the Depth Technology

Different technologies have been proposed for estimating depth information with
cameras: stereoscopy, Time-of-Flight and LiDAR. In this section, we will explore
the characteristics and depth acquisition techniques of different RGB-D cameras,
highlighting the strengths and weaknesses of the camera used later in the experi-
ments, namely the Microsoft Kinect V2, Microsoft Kinect Azure, Intel Realsense
D455, Intel Realsense L515 (Fig. 1).

Fig. 1. RGB-D cameras used for the benchmark analysis.

Stereoscopic techniques use multiple viewpoints to capture and analyze
images, creating a perception of depth. By using cameras with two lenses, these
techniques capture the same scene from slightly different perspectives, resulting
in disparity between corresponding objects in the images. The Intel RealSense
D455 [2] (Fig. 1c) is an RGB-D camera that uses stereo depth technology and
active IR pattern projection. One of its major problems faced is the presence
of noise within the depth image, which can adversely affect the accuracy and
reliability of depth measurements. This noise is particularly prominent when
triangulating featureless objects, such as uniform walls or objects located at dis-
tances exceeding 3.5 m from the sensor. The Time-of-Flight (ToF) sensors include
typically the use of an RGB and infrared camera, as shown with the Kinect V2
(Fig. 1a) [25] and the Azure Kinect (Fig. 1b): an array of IR emitters sends out
from the camera a modulated signal that travels to the measured point, then the
signal gets reflected and will be received by the CCD of the sensor. The actions
of the IR emitter and depth sensor are coordinated by a timing generator inside
both the Kinect. The depth image generated by these cameras are accurate but
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can have some invalidation points when they are outside of the active IR illumi-
nation mask due to the saturation of the IR signal and the presence of corners
and edges in the image. At the same time, a pixel may be invalidated when the
sensor does not receive a signal strong enough. The LiDAR technique uses laser
technology to capture high-resolution 3D depth data: projecting an infrared laser
at 860 nm wavelength as active light source, the depth 3D data is obtained by
measuring the Time-of-Flight (ToF) of the light. The Intel RealSense L515 [1]
(Fig. 1d), which follows the LiDAR technique for capturing depth images, emits
a continuous beam of laser light that is modulated or “coded” with a specific
pattern. There are two main situations that can negatively impact the L515’s
performance. Firstly, in environments with ambient light, such as sunlight, the
camera may struggle to differentiate between the transmitted laser light and the
natural light. Secondly, smooth and reflective surfaces, which exhibit specular
reflection, can cause noise issues.

Fig. 2. Setup for the experiments a)RGB-D camera; b) view of the setup.

4 Experimental Setup

The setup (Fig. 2) was designed and built: a system of aluminum profiles was
designed to analyze the data collected from all cameras, with the same pose
framing the same scene without major variations in orientation or proximity to
objects (Fig. 3).

The room used for the acquisition process has windows, allowing the investi-
gation of the sunlight’s impact on the depth measurement of the different RGB-D
sensors in the experiments. Two benchmarks were proposed to assess the perfor-
mance of the RGB-D cameras considered in the paper. The first benchmark is
the “Depth Accuracy for objects” analysis, which examines the accuracy of the
depth map for a plane object placed at various angles, small orientations of 20◦,
and distances, between 1 and 7 m, within the room. The second benchmark is
the “Depth Accuracy for indoor scene” analysis, which evaluates the consistency
and reliability of the depth map for planes that move along the depth z-axis.
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Fig. 3. RGB and depth images taken of Depth Accuracy benchmark.

(a) (b)

Fig. 4. Image of a) the three centers detected found in /tag detections topic; b) syn-
thesized version of plane estimation given three points.

Since the goal of this part of the paper is to analyze the depths obtained with all
RGB-D cameras, it was necessary to synthetically construct a ground truth for
each acquisition in each benchmark. Three Apriltags [12] markers were utilized
for each plane in order to accomplish this, as depicted in Fig. 4, considering as
ground truth plane the plane that fits the 3D centers of the three markers.

5 Depth Accuracy Evaluation

It was possible to analyze how much the sensor acquisition method itself can
impact the image quality by comparing the various metrics collected during the
acquisitions. The metrics analyzed for both the benchmarks are the following
Root Mean Squared Error (RMSE) and the custom Percentage of Valid Pixels
(PVP), expressed as follows

PV P =
total valid pixel

total pixel
· 100 (1)

where total valid pixel = len({ŷ(i)|ŷ(i) �= 0}Ni=0). This metric was added as a
complementary parameter to the RMSE so that we could know both the quantity
and quality of the data.
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(a) (b)

Fig. 5. Experiments with sunlight. RMSE [mm] between depth acquisition and ground-
truth plane. a) orientation 1 (0◦); b) orientation 2 (+20◦).

5.1 Depth Accuracy for Objects Benchmark Results

Figure 5 reports the performance of each camera in the sunlight environment.
Time-of-Flight (ToF) cameras regularly maintained average Root Mean Square
Error (RMSE) values of less than a few centimeters, together with a high rate of
valid pixels, which reached about 98%. In contrast, the RealSense D455, based on
stereoscopic technique, experienced a noticeable degradation in RMSE beyond
a distance of 3.5 m. However, it consistently maintained 100% valid pixels across
all orientations. This behavior was also observed in a neon light environment
(Fig. 6), indicating that stereo depth acquisition faced significant noise issues
during triangulation. The RealSense L515 displayed a different behavior in dif-
ferent light conditions. For sunlight conditions, the RMSE worsens at distances
greater than 6 m for orientations of +20◦ and -20◦, but remains stable for 0◦ ori-
entation, suggesting that the destructive interference between the LiDAR laser
beam and solar beams is mitigated along the optical axis. In neon light con-
ditions, the L515 demonstrated stability and comparable performance to the
Kinect V2 and Kinect Azure, even at a distance of 7 m.
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(a) (b)

Fig. 6. RMSE [mm] and PVP between depth acquisition and plane estimated. (Neon
light)

(a) (b)

Fig. 7. Images of the planes considered inside the Depth Accuracy for indoor scene
benchmark in a) input RGB image; b) ground truth annotations.

5.2 Depth Accuracy for Indoor Scene Benchmark Results

Even though analysis at closer ranges can yield greater accuracy, some planes,
typically walls and the floor, can especially extend along the depth axis (Fig. 7).
The first finding that can be drawn from Fig. 8, is that there is a lot of noise in
the RealSense L515 acquisitions when sunlight is present. Regardless of the plane
observed, when passing from sunlight to neon light scenario, there is an average
decrease in RMSE of 80% and an increase in the percentage of valid pixels of
an average 40%. This observation shows that the noise level of the pixels, rather
than their number, is what really counts. The RealSense D455 turns out to be
the noisiest camera, supporting the conclusions made in the previous section on
depth accuracy, especially for planes flying at a distance greater than 3.5 m. The
only problem that arises from the analysis of the Kinect V2 is that it works
worse on corners. Actually, plane #2 in Fig. 7, which has fewer corners, is the
plane where the RMSE performs best. This issue arises because in Kinect V2
camera at corners and intersections of planes, such as in our case between the
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(a)

(b)

Fig. 8. RMSE and PVP of Depth Accuracy for indoor scene benchmark with a)Sun
and b)Neon Light

walls and the floor, there is a rounding of the contours and subsequently an
incorrect approximation of depth.

6 Depth Completion

Experiments using various sensors have shown that, depending on the tech-
nology employed, a variety of issues can appear in the depth images acquired.
The most frequent of them are pixel sparsity (for example, LiDAR in sunlight)
or inaccurate estimated values (stereo at very large distances). In this section,
we investigated whether utilizing the state-of-the-art neural network for depth
completion can enhance the depth map’s accuracy in relation to the raw data
acquired with an RGB-D sensor. It will be analyzed how well the network gen-
eralizes the depth completion process with indoor data even when trained with
outdoor ones. For this analysis, the neural networks were compared with an
additional baseline that uses only morphological operations such as dilation to
fill the depth holes. Further analysis will be devoted to the NLSPN network,
trained with an outdoor dataset but presenting a homogeneous distribution of
valid pixels within the sparse depth map.
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(a) Kinect Azure input. (b) PENet result. (c) SemAttNet result.

Fig. 9. Depth completion neural network output using Kinect Azure depth.

Table 1. RMSE [mm] of the dense output depth with Sun light source. In bold the
process with the lowest RMSE [mm], underlined the second lowest RMSE.

SUN LIGHT - RMSE [mm]

Net Kinect Azure Kinect v2 RealSense D455 RealSense L515

FusionNet 2859.00 1793.37 1319.42 3468.13

PENet 2205.68 2443.38 1147.75 4011.12

SemAttNet 1223.40 1457.67 2943.39 2098.36

NLSPN 790.85 859.47 945.09 2754.73

Baseline 540.32 797.28 724.87 1913.83

6.1 Neural Network Generalization Performance

When the networks that were trained on the “KITTI depth completion” dataset,
PENet [9], FusionNet [24] and SemAttNet [18], are inferenced with indoor data, a
decline in RMSE accuracy can be noted in relation to the input raw data (Fig 9).
A lack of generalization by the neural network is evident in the generic RMSE
in both light source scenarios for all RGB-D cameras (Table 1 and Table 2),
which varies from 1200 mm to 4000 mm and performs worse than the baseline
technique in every case. The depth range of the “KITTI depth completion”
dataset, is the reason for this failure to generalize: unlike acquisitions made in
the experiments, which do not go deeper than 7 m, the depth images in the
“KITTI depth completion” dataset have a much greater depth range, spanning
from 2 to 30 m. As seen in Fig. 9, where there is a hole above the wall at the
back of the room, the incorrect pixels denote a higher depth, and the networks
overestimate that value anyway, speculating that it might be the bottom of the
street, a frequent occurrence in the KITTI dataset. From the analysis in Sect. 5,
the RGB-D RealSense L515 camera’s depth map is the only one that is affected
by sunlight. A large number of invalid pixels have incorrect values with errors
larger than 1 m (Table 3) and their influence is inevitably negative for the depth
completion task (Table 4).
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Table 2. RMSE [mm] of the dense output depth with Neon light source. In bold the
process with the lowest RMSE, underlined the second lowest RMSE.

NEON LIGHT - RMSE [mm]

Net Kinect Azure Kinect v2 RealSense D455 RealSense L515

FusionNet 2909.21 1864.60 1440.89 4094.90

PENet 2413.49 2466.57 940.38 2978.02

SemAttNet 1568.80 1452.53 3061.97 1491.88

NLSPN 720.98 828.39 885.30 1822.90

Baseline 515.02 802.29 758.54 451.71

Table 3. RMSE [mm] of invalid pixels in dense output depth.

SUN LIGHT - RMSE pixel invalid[mm]

Net Kinect Azure Kinect v2 RealSense D455 RealSense L515

FusionNet 3519.45 1656.11 2453.86 3471.50

PENet 3621.58 1905.65 1192.36 4011.47

SemAttNet 1889.90 1193.20 2779.23 2100.97

NLSPN 1452.60 1224.46 2040.03 2758.23

Baseline 1941.41 2134.89 1164.90 4813.36

(a) 10% (b) 40% (c) 80%

Fig. 10. Sample images with varying density percentages used in NLSPN.

6.2 NLSPN - Different Density Ratio Experiment

Differently from the other models considered, the NLSPN [19] network is trained
using an outdoor dataset that presents a homogeneous distribution of valid pixels
inside the sparse depth map. In light of this logic, the experiment described below
was conducted: how does masking the sparse depth map in the input influence
the RMSE of the image when compared to the total number of valid pixels?
The RMSE on the total invalid pixels in the input was then checked. More
percentages of valid pixels than the total were chosen in the input depth map,
ranging from 10% to 100% with a step of 10% (Fig. 10). Except for the RealSense
L515, which still has a lot of noise on the majority of its acceptable pixels,
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Table 4. RMSE [mm] of invalid pixels in dense output depth using NLSPN net.

NLSPN - SUN LIGHT - RMSE pixel invalid[mm]

Density Level Kinect Azure Kinect v2 RealSense D455 RealSense L515

10% 692.89 889.99 944.84 2893.18

30% 736.76 903.43 952.20 2803.26

50% 787.71 991.82 946.22 2742.17

70% 893.96 962.00 948.66 2709.51

90% 1144.79 1075.77 951.94 2735.17

Full density 1452.60 1224.46 2040.03 2758.23

the RMSE of invalid pixels worsens as data density increases (Table 3). The
motivation discovered was that the NYUv2 network was trained with valid pixel
depth homogenously distributed throughout the image. The RGB-D Kinect V2
camera was used to capture the dense depth map in the NYUv2 pictures, which
were then artificially pre-processed to serve as a sparse depth map for the depth
completion benchmark. The pre-processing used is a simple random masking
over the entire image of a very precise depth. Our Kinect V2 and Kinect Azure
acquisitions have large holes in the image and the only 100% dense depth images
we have are from the RealSense D455, which has noisy depth information above
3.5 m. As a result, the model does not generalize with data like the Depth Wall
benchmark. Hence, even though the RMSE drops as data density increases, this
does not suggest that the error for the invalid pixels decreases as data densities
decrease; rather, the average is reduced because a greater number of defective
pixels are found among neighbors that contain correct pixels.

7 Conclusions

In this paper, we focused on depth completion. In particular, we investigated
how state-of-the-art neural network for depth completion can improve accuracy
and overall quality of depth images acquired in real indoor scenarios. Except the
RealSense D455, all cameras inevitably produce erroneous pixel holes in depth
maps, either as a result of interferences like those in the L515 or as a result of
corners and edges for RGB-D cameras made by Microsoft Kinect V2. It is proven
that there is no improvement in the network’s ability to perceive depth using
the current state-of-the-art in depth completion, which prevents tangible results
from fulfilling accurate depth map completion and refining. Even if decreased
accuracy was expected for neural networks trained on outdoor datasets due to
a considerably bigger depth range bias, the accuracy of the NLSPN network
trained on indoor datasets does not beat a straightforward dilation technique,
as the baseline method. Future research should investigate whether the state-of-
the-art depth completion algorithm employs a simple interpolation procedure or
if there are more complex mechanisms at play. Evaluating the average inaccuracy
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in previously invalidated pixels within large and smaller holes using dense data
at a 10% ratio, similar to the NLSPN network study, could shed light on this.
Additionally, conducting experiments with indoor data to retrain networks like
PENet, Fusion-Net, and SemAttNet, or using outdoor data to assess the impact
of narrowing the depth range on inference stability, would be valuable.
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Abstract. Probabilistic Answer Set Programming under the credal
semantics (PASP) describes an uncertain domain through an answer set
program extended with probabilistic facts. The PASTA language lever-
ages PASP to express statistical statements. A solver with the same name
allows to perform inference in PASTA programs and, in general, in PASP.
In this paper, we investigate inference in PASP, propose a new inference
algorithm called aspcs based on Second Level Algebraic Model Counting
(2AMC), and implement it into the aspmc solver. Then, we compare it
with PASTA on a set of benchmarks: the empirical results show that,
when the program does not contain aggregates, the new algorithm out-
performs PASTA. However, when we consider PASTA statements and
aggregates, we need to replace aggregates with a possibly exponential
number of rules, and aspcs is slower than PASTA.

Keywords: Second Level Algebraic Model Counting · Probabilistic
Answer Set Programming · Inference

1 Introduction

Algebraic Model Counting (AMC) [18] is an umbrella term that comprises sev-
eral well-known tasks, among the other, SAT, #SAT, weighted model counting,
and probabilistic inference. All these tasks require to aggregate the models of a
program according to a certain criterion. For instance, model counting requires
counting the models while probabilistic inference, e.g., in the probabilistic logic
language ProbLog [11], requires summing the probabilities associated with the
different models. Other tasks, such as decision theoretic inference [7], MAP and
MPE inference [4,5,22], and probabilistic inference under the smProbLog lan-
guage [23], require to aggregate the results obtained via inference, so they need
two levels of aggregations. These tasks they were recently identified as Second
Level Algebraic Model Counting (2AMC) tasks [17].

Probabilistic Answer Set Programming under the credal semantics (PASP,
for short) [2,8] is one of the possible formalisms to express uncertainty in Answer
c© The Author(s) 2023
R. Basili et al. (Eds.): AIxIA 2023, LNAI 14318, pp. 367–380, 2023.
https://doi.org/10.1007/978-3-031-47546-7_25
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Set Programming (ASP) [14], since it extends ASP with ProbLog probabilistic
facts [11]. PASP has been recently adopted in the PASTA framework [3] to
encode statistical statements [16], that represent statistical information about a
given domain. During inference, these are converted into choice rules and con-
straints with aggregates [1]. Then, the PASTA solver performs projected answer
set enumeration [13]. As a first contribution, we discuss how to represent infer-
ence in PASP as a 2AMC task. Then, we implement our approach on top of
the state of the art aspmc solver [12], that adopts knowledge compilation [10] to
compactly represent a program, and we call it aspcs. Tests on different bench-
marks show that when programs do not contain aggregates, aspcs is significantly
faster than PASTA. However, aspmc, and so aspcs, currently does not support
aggregates, so to represent PASTA statistical statements we manually convert
constraints with aggregates into a set of ground rules. In this case, aspcs perform
worse than PASTA, probably due to the possibly exponential number of rules
that come from the conversion of the aggregates.

The paper is structured as follows: Sect. 2 introduces the needed background
knowledge. In Sect. 3 we cast inference in PASP as a 2AMC task and in Sect. 4
we test an implementation on top of the aspmc solver against the PASTA solver.
Section 5 concludes the paper.

2 Background

ProbLog probabilistic facts [11] are one of the most used syntactical constructs
to represent uncertainty within a probabilistic logic program [19]: they are of the
form fi::Πi where fi is a logical atom and Πi ∈ [0, 1] is its probability value. Its
meaning is that: fi is true with probability Πi and false with probability 1−Πi.
These are considered independent. A choice of a truth value for every probabilis-
tic fact defines a world w, whose probability is, according to the Distribution
Semantics (DS) [21],

P (w) =
∏

fi∈w

Πi ·
∏

¬fi∈w

(1 − Πi).

Every ProbLog program has 2n worlds, where n is the number of proba-
bilistic facts. The DS requires that every world has exactly one model. A
probabilistic clause is a clause with a probabilistic fact in the head, such as
0.4::f(X) :− b(X,Y ). The meaning is that f(X) is true with probability 0.4 if
the body b(X,Y ), which can also be a conjunction, is true. A probabilistic clause
can be translated to a normal clause by inserting in the body a fresh probabilistic
fact with the same probability and variables X and Y . The previous clause can
be rewritten as f(X) :− b(X,Y ), aux1(X,Y ), where aux1 is a new probabilistic
fact with an associated probability of 0.4.

If we consider Answer Set Programming [14], the credal semantics [2,8] gives
a meaning to answer set programs extended with probabilistic facts. We use the
acronym PASP to denote both Probabilistic Answer Set Programming under
the credal semantics and a probabilistic answer set program following the credal
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semantics. The intended meaning will be clear from the context. Under this
semantics, every world w is an answer set program, the one obtained by fix-
ing to true the probabilistic facts true in the world w and by removing the
probabilistic facts false in the world w, that has zero or more answer sets (or
stable models [14]). Let us denote with AS(w) the set of answer sets for a
world w. Furthermore, the probability of a query q, i.e., a conjunction of ground
atoms, is characterized by a lower and an upper probability bound. That is,
P (q) = [P (q), P (q)] where:

P (q) =
∑

wi|∀m∈AS(wi), m|=q

P (wi), P (q) =
∑

wi|∃m∈AS(wi), m|=q

P (wi). (1)

A world w contributes to the lower and upper probability bounds if the query
is true in every answer set of w. A world w contributes only to the upper prob-
ability bound if the query is true in some of the sets of w. Example 1 shows an
example of PASP modeling a scenario where some people buy some products.
A crucial point for the credal semantics is that every world must have at least
one stable model. If this does not hold, some probability mass is lost. There are
alternative semantics that handle worlds without answer sets, such as the credal
least undefined semantics [20] or the smProbLog semantics [23], that we do not
consider in this paper.

Example 1. This program models a scenario with three different people, Alice,
Bob, and Carl, that may shop or not (probabilistic facts shops/1), with different
probabilities.

0.3:: shops(alice ).
0.2:: shops(bob).
0.6:: shops(carl).

buy(beans ,alice) ; buy(spaghetti ,alice) :- shops(alice ).
buy(spaghetti ,bob) ; buy(steak ,bob) :- shops(bob).
buy(tomato ,carl) ; buy(garlic ,carl) :- shops(carl).

cs(C):- #count{X : buy(spaghetti ,X)} = C0 ,
#count{X : buy(garlic ,X)} = C1 ,
C = C0 + C1.

ce(C):- #count{X,Y : buy(Y,X)} = C.

:- cs(S), ce(C), 10* S < 3*C.

The three disjuncive rules for buy/2 state that each one of the three people can
buy different products. For instance, the first disjunctive rule stats that if Alice
shops she can buy beans or spaghetti. The cs/1 and ce/1 rules contain aggregates
in the body. The former unifies the number of people that buys spaghetti or garlic
to variable C. These two values are computed via the #count aggregates. For
instance, #count{X : buy(spaghetti,X)} = C0 unifies with C0 the number
of element X such that buy(spaghetti,X) holds. Similarly, ce/1 unifies with C
the number of pairs (X,Y ) such that buy(Y,X) is true. Lastly, a constraint
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Table 1. Worlds, number of answer sets with the query q = buy(spaghetti, alice) true
(#ASq), and total number of answer sets (#AS) for every world of Example 1.

id shops(a) shops(b) shops(c) P (w) #ASq #AS

0 0 0 0 0.224 0 1
1 0 0 1 0.336 0 1
2 0 1 0 0.056 0 1
3 0 1 1 0.084 0 3
4 1 0 0 0.096 1 1
5 1 0 1 0.144 2 3
6 1 1 0 0.024 2 3
7 1 1 1 0.036 4 7

states that at least 30% of the people that buy something buy spaghetti or
garlic. We are interested in computing the probability that Alice buys spaghetti.
The program has 23 = 8 worlds, listed in Table 1. If we consider the query
q = buy(spaghetti, alice), its probability is given by P (q) = [P (w4), P (w4) +
P (w5) +P (w6) +P (w7)] = [0.096, 0.096+ 0.144+ 0.024+ 0.036] = [0.096, 0.3].

2.1 Statistical Statements

The authors of [3] proposed to represent statistical statements of the form “the
fraction of A’s that are also C’s is between lp and up” with lp, up ∈ [0, 1] with
the syntax (C | A)[lp, up] where C is an atom and A a conjunction of literals.
All the variables in C also appear in A. They call this language PASTA. For
example, if we want to state that at least 60% of the birds (bird/1) of a fixed
domain fly (fly/1) we can write (fly(X)|bird(X))[0.6, 1]. To perform inference,
a statistical statement is translated into three answer set rules: a disjunctive rule
and two constraints with aggregates. The just described example becomes:

fly(X);not_fly(X) :− bird(X)
:− #count{X : fly(X), bird(X)} = FB,#count{X : bird(X)} = B,

10 · FB < 6 · B

:− #count{X : fly(X), bird(X)} = FB,#count{X : bird(X)} = B,

10 · FB > 10 · B

(2)

The last rule can be omitted since the value of the variable FB cannot be
greater than B. The lb and ub values are multiplied by 10 since ASP does not
support floating point values. Note that this example can be rewritten with only
one count aggregate instead of two, but we stick with the previous notation for
clarity.

For a conditional (C | A)[lp, up], if at least one of the literals in A is proba-
bilistic, the program is interpreted as a PASP. Thus, we can compute the prob-
ability of a query with Eq. 1, leveraging the PASTA solver [3]. The inference
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process of the PASTA solver is the following: first, probabilistic facts are con-
verted into choice rules. For a query q, PASTA introduces two additional rules,
qr :− q and nqr :− not q. Then, it enumerates the projected answer sets [13]
on the (converted) probabilistic facts and qr/0 and nqr/0 atoms and extracts
the probability for every world w where the query is true and the contribution
of w to the probability bounds.

2.2 Second Level Algebraic Model Counting

Weighted Model Counting (WMC) consists in summing the weights associated
with the models of a given propositional formula (program). Algebraic Model
Counting (AMC) [18] generalizes WMC by providing a generic definition based
on semirings [15], that can be applied to many different tasks (see [18] for a com-
prehensive list), such as probabilistic inference. AMC can be solved via knowl-
edge compilation [10], that involves representing the problem in a compact form
where the solutions can be efficiently computed. As discussed in [17], some tasks
such as decision theory and MAP inference require two levels of AMC, since
they need two semirings for two different groups of variables. Thus, they belong
to the class of Second Level Algebraic Model Counting (2AMC) [17] problems
that can still be solved via knowledge compilation.

Let us introduce 2AMC more formally by following [17]. Given a tuple
A = (Π,Xin,Xout, win, wout,Rin,Rout, f), where Xin and Xout are a partition
of the variables in the propositional theory Π, Rin = (Ri,⊕i,⊗i, ei

⊕, ei
⊗) and

Rout = (Ro,⊕o,⊗o, eo
⊕, eo

⊗) are two commutative semirings, win and wout are
two weight functions associating each atom of the program with a weight, and
f is a transformation function from the values of Rin to Rout, 2AMC requires
solving:

2AMC(A) =
⊕o

Iout∈σ(Xout)

⊗o

a∈Iout

wout(a)⊗o

f(
⊕i

Iin∈δ(Π|Iout)

⊗i

b∈Iin
win(b))

(3)

where σ(Xout) are the set of possible assignments to Xout and δ(Π | Iout) are
the set of possible assignments to Π that satisfy Iout. AMC is a special case
of 2AMC, where the set Xout is empty and the transformation function is the
identity function. At a high level, the 2AMC task requires solving an AMC task
on the variables Xin (inner semiring) for every possible set of assignments of Xout

(outer semiring). The result of the inner AMC task is converted into an element
of the outer semiring (with the function f) and another AMC task is solved, now
on Xout. 2AMC has been adopted to perform inference in smProbLog [23], an
extension of the ProbLog language that allows programs where worlds may have
zero or more answer sets. A probability is assigned to every answer set in this
way: the probability of a world is equally distributed among its answer sets. The
probability of a query is then the sum of the probabilities of the answer sets where
the query is true. If we consider a smProbLog program Π = L∪F with Herbrand
base H and query q, where F is the set of probabilistic facts and L is the logical
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part of the theory, Xout = F , Xin = H \F , Rin = (N2,+, ·, (0, 0), (1, 1)), Rout =
([0, 1],+, ·, 0, 1) (i.e., the probability semiring), win associates all the literals to
(1, 1) except for not q, that is mapped to (0, 1), wout associates p and 1 − p to
respectively g and not g for every probabilistic fact p::g and 1 to all the remaining
literals, and the transformation function is f(n1, n2) = n1/n2 where n2 is the
number of models and n1 the number of models where the query is true. In other
words, the inner semiring counts both the number of models (n2) and the number
of models where the query is true (n1), the transformation function computes
the ratio n1/n2, and the outer semiring performs probabilistic inference. In the
next section we show how we adapted this formulation to perform inference in
PASP.

3 Inference in PASP as 2AMC

Recall from Sect. 2 that the probability of a query in a probabilistic answer set
program is given by a range. The worlds in which the query is true in all the
answer sets contribute to both the lower and upper bound while the worlds in
which the query is true in some of the answer sets only contribute to the upper
bound. If all the worlds have exactly one answer set, the task reduces to AMC
since we just need to sum the probabilities of the worlds where the query is
true. In the general case, the inference task is similar to the one of smProbLog
described in the previous section: in smProbLog, the probability of a query is
a sharp probability value, and every answer set is weighted by the probability
of the world divided by the number of its answer sets. In PASP, we have a
probability range, so we need to modify both the transformation function and
the outer semiring. We consider a transformation function f(n1, n2) that returns
a pair of values flp and fup where

flp =

{
1 if n1 = n2

0 otherwise
fup =

{
1 if n1 > 0
0 otherwise

where n2 is the number of models and n1 the number of models where the
query is true. flp is adopted for the computation of the lower probability
while fup for the upper probability. We propose as outer semiring Rout =
([0, 1]2,+, ·, (0, 0), (1, 1)), which is the probability semiring extended to two
dimensions, where the operations + and · are applied component-wise. Now,
wout associates (p, p) and (1 − p, 1 − p) to respectively g and not g for every
probabilistic fact p::g and (1, 1) to all the remaining literals. In other words, the
inner semiring counts the models and computes two values, n1 and n2. These
are combined according to the above f(n1, n2) function that also returns a pair
of values. Then, the outer semiring performs the actual probability computation
by considering these two values simultaneously and returns the lower and upper
probability bounds for the query.

Inference in smProbLog is implemented in the aspmc solver [12] by means
of tree decompositions and knowledge compilation with sd-DNNF [9] as target
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Fig. 1. Results for the qrnqr1 and qrnqr2 datasets.

language. At a high level, the goal of tree decomposition is to represent a graph
as a tree, where each vertex of the tree is a bag, i.e., a subset of the nodes of the
graph. Every graph has one or more tree decompositions. The width of a tree
decomposition is the size of its largest possible bag minus one. The treewidth
of a graph is the minimum width of all its tree decompositions and represents
how close a graph is to being a tree, and it is usually a good indicator of the
hardness of a task [6]. We modify aspmc for smProbLog inference by introducing
the novel transformation function and semiring. The knowledge compilation is
still performed once even if the transformation function returns two values, since
both are computed on the same semiring, and so the sd-DNNF is traversed only
once. We call this algorithm aspcs. A limitation is that aspmc currently does
not support aggregates, which are needed to represent PASTA programs. To
overcome this, in the experiments of the following section we manually translate
aggregates into ground rules. This, however, results in an exponential number of
generated rules.

4 Experiments

In this section, we compare the PASTA solver1 with the previously introduced
technique based on 2AMC (aspcs) implemented on top of the aspmc solver [12] on
6 different datasets. For all the datasets, except for the cases where we explicitly
describe the instance, the number of probabilistic facts defines the size of the
instance. All the considered datasets have at least one answer set for each world,
i.e., admit the credal semantics. We use the c2d compiler [9] already available in
aspmc. We ran the experiments on a computer with Intel R© Xeon R© E5-2630v3
running at 2.40GHz with 8 Gb of RAM and a time limit of 8 h. Execution times
are computed with the bash command time and reported values are from the
real field.

The first dataset, qrnqr1, consists of programs with an increasing number n
of probabilistic facts a(i), where i ∈ [0, n − 1], all associated to a probability

1 Available at: https://github.com/damianoazzolini/pasta.

https://github.com/damianoazzolini/pasta
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Fig. 2. Results for the coloring and smoke datasets.

Fig. 3. Results for the bird and viralmarketing datasets.

of 0.4. This is an arbitrary value, since the probability of a probabilistic fact
does not influence the execution time of the algorithm. For each index i, we
include a rule qr :− a(i) if i is even and two rules qr :− a(1), not nqr and
nqr :− a(1), not qr (these are equivalent to the disjunctive rule qr;nqr :− a(i))
if i is odd. The query is qr. For example, the instance of size 4 is:

0.4::a(0). 0.4::a(1). 0.4::a(2). 0.4::a(3).
qr:- a(0).
qr :- a(1), not nqr. nqr :- a(1), not qr.
qr:- a(2).
qr :- a(3), not nqr. nqr :- a(3), not qr.

The qrnqr2 dataset is similar to qrnqr1. Given an instance of size n, we have
3 rules: the first rule has qr in the head and all the probabilistic facts a(i) with
i ∈ [0, n − 1] and i even in the body. The second rule has qr in the head and all
the probabilistic facts a(i) with i ∈ [0, n− 1] and i odd and not nqr in the body.
The last rule has nqr in the head, all the probabilistic facts a(i) with i ∈ [0, n−1]
and i odd, and not qr in the body. The query is qr. For example, the instance
of size 4 is:

0.4::a(0). 0.4::a(1). 0.4::a(2). 0.4::a(3).
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Fig. 4. Number of bags (#bags), treewdth, and number of vertices (# vertices) for the
qrnqr1 and qrnqr2 datasets.

Fig. 5. Number of bags (#bags), treewdth, and number of vertices (# vertices) for the
coloring and smoke datasets.

qr:- a(0), a(2). qr :- a(1), a(3), not nqr.
nqr :- a(1), a(3), not qr.

The coloring dataset encodes a graph coloring task, where edges in the graph
are associated with a random probability. Some nodes have a fixed color. The
program of size 7 is:

0.6:: edge (1 ,2). 0.1:: edge (1,3).
0.4:: edge (2 ,5). 0.3:: edge (2,6).
0.3:: edge (3 ,4). 0.8:: edge (4,5).
0.2:: edge (5,6).
node (1..6).
red(X) :- node(X), not green(X), not blue(X).
green(X) :- node(X), not red(X), not blue(X).
blue(X) :- node(X), not red(X), not green(X).
e(X,Y) :- edge(X,Y). e(Y,X) :- edge(Y,X).
:- e(X,Y), red(X), red(Y).
:- e(X,Y), green(X), green(Y).
:- e(X,Y), blue(X), blue(Y).
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Fig. 6. Number of bags (#bags), treewdth, and number of vertices (# vertices) for the
bird and viralmarketing datasets.

red (1). green (4). green (6).
qr:- blue (3).

The query is qr. We generate increasing instances of this dataset by adding
random probabilistic edges.

The dataset smokers is from [23]: it encodes a network of people, indexed
with increasing integers starting from 1, where some have asthma (probabilistic
rule asthma/1), some are stressed (probabilistic rule stress/1), and some smoke
due to stress (probabilistic rule smokes/1), with probability 0.1, 0.3, and 0.4,
respectively. If a person Y smokes and influences (probabilistic fact influences/2)
a person X, then X will also smoke. Smokers have probability of 0.4 to have
asthma. Finally, an asthmatic cannot smoke. The base instance, i1, is:

0.1:: asthma(X) :- person(X).
0.3:: stress(X) :- person(X).
0.4:: smokes(X) :- stress(X).
smokes(X) :- influences(Y,X), smokes(Y).
0.4:: asthma(X) :- smokes(X).
:- smokes(X), asthma(X).
person (1). person (2).
0.3:: influences (1,2). 0.6:: influences (2,1).

We are interested in the probability of smokes(1). Increasing instances are: i2 =
i1 ∪ {person(3).}, i3 = i2 ∪ {person(4).}, i4 = i3 ∪ {0.2::influences(2, 3).},
i5 = i4 ∪ {0.7::influences(3, 4).}, i6 = i5 ∪ {0.9::influences(4, 1).}. PASTA
does not support probabilistic rules, so we manually ground the rules, remove
the probability in the head and add a probabilistic fact in the body, a different
one for every grounding.

We tested the two algorithms also on statistical statements. Since aspmc, and
so aspcs, currently does not support aggregates, we manually translate them into
ground rules. In the worst case, we get 2n rules (

∑
k

(
n
k

)
= 2n), where n is the size

of the instance. The bird dataset contains an increasing number of probabilistic
facts 0.4::bird(i), i ∈ [0, n − 1], and a conditional of the form:
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(fly(X) | bird(X))[0.6 ,1].

which is equivalent to

fly(X) :- bird(X), not not_fly(X).
not_fly(X) :- bird(X), not fly(X).
:- #count{X:fly(X),bird(X)} = FB,

#count{X:bird(X)} = B, 10*FB <6*B.

The query is fly(1). The instance of size 3 with the constraint with aggregates
converted into ground rules is:

b1:- bird (1). b1:- bird (2). b1:- bird (3).
:- b1, not fb1.
b2:- bird(1),bird (2). b2:- bird(1),bird (3).
b2:- bird(2),bird (3).
:- b2, not fb2.
b3:- bird(1),bird(2),bird (3).
:- b3, not fb2.
fb1:- fly (1). fb1:- fly (2). fb1:- fly (3).
fb2:- fly(1),fly (2). fb2:- fly(1),fly (3).
fb2:- fly(2),fly (3).

Predicate bk/0, k ∈ {1, 2, 3}, indicates that at least k probabilistic facts bird(i)
are true. Predicate fbk/0, k ∈ {1, 2} indicates that at least k facts fly(i) are
true. Note that the last constraint is :− b3, not fb2 because given the lower
bound 0.6, we have :− 10 · FB < 6 · 3, so :− FB < 2. If the lower bound had
been, for example, 0.7, the constraint would have been :− b3, not fb3 with an
additional rule fb3 :− fly(1),fly(2),fly(3). This translation of the conditionals
yields 1420 rules for the instance of size 10, 3048 for size 11, 5694 for size 12,
12301 for size 13, and 22874 rules for size 14.

The viralmarketing dataset models a viral marketing scenario, where there
is uncertainty on the people (probabilistic facts person/1) present in a network.
These people advertise (predicate advertise/2) a product to other people. A per-
son is reached by the advertisement if it is either directly advertised or advertised
by a friend. If advertised, a person can buy or not the product. Finally, a con-
straint states that at least 70% of the people reached by an advertisement buy
an item. The program of size 5 is the following:

0.1:: person (1). 0.2:: person (2).
0.3:: person (3). 0.4:: person (4). 0.5:: person (5).
advertise (1,2):- person (1), person (2).
advertise (2,3):- person (2), person (3).
advertise (2,4):- person (2), person (4).
advertise (3,5):- person (3), person (5).
advertise (4,5):- person (4), person (5).
reach(A,B):- advertise(A,B).
reach(A,B):- advertise(A,C), reach(C,B).
reached(X):- person(X), reach(_,X).
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reached(X):- person(X), advertise(X,_).
{buy(X)} :- reached(X).
:- #count{X:reached(X),buy(X)} = RB ,

#count{X:reached(X)} = R, 10*RB < 7*R.

As before, for aspcs, we replace the constraint with aggregates with a set of
ground rules. This yields 2016 rules for the instance of size 10, 4055 for size 11,
8141 for size 12, 16322 for size 13, and 32330 for size 14. An instance of size
n adds a new individual (person/1 probabilistic fact) and a random connection
between two individuals (that are not already connected) to the instance of size
n − 1. In addition to the execution times (Fig. 1, 2, and 3), we also plotted
(Fig. 4, 5, and 6) some statistics of the tree decomposition adopted in aspmc (so
aspcs), namely, number of bags, treewidth, and number of vertices.

Overall, when the program does not contain aggregates, aspcs outperforms
PASTA in all the datasets. This is due to knowledge compilation adopted in
aspmc and so on aspcs. This is particularly evident in Fig. 1b, where the exe-
cution time of aspcs seems to be almost constant, possibly because the number
of bags, one of the main parameters that drives the construction of the com-
pact form obtained by knowledge compilation, of all the instances is low (77 for
the instance of size 50, see Fig. 4). A similar behavior is also present in Fig. 2b.
In all the instances, PASTA reaches the time limit. In Fig. 1a, aspcs stops due
to the memory limit. When aggregates are present (Fig. 3), aspcs stops due to
the memory limit. This can be explained by the statistics of the tree decompo-
sition, where the numbers of bags and vertices increase exponentially (Fig. 6).
The biggest instance solved by aspcs for both datasets is 15. For these two
datasets, PASTA is faster than aspcs, possibly because enumerating the answer
sets is faster than encoding them into a propositional formula and compiling it
with knowledge compilation. However, note again that the instance of size 14
of the viralmarketing dataset has 32330 rules, so aspcs can handle programs of
significant size.

5 Conclusions

In this paper, we proposed aspcs, an algorithm based on aspmc to perform
inference in probabilistic answer set programs following the credal semantics via
Second Level Algebraic Model Counting. We tested our implementation against
the PASTA solver on 6 different datasets. The first four have no aggregates, and
aspcs is significantly faster than PASTA. The last two datasets contain statistical
statements, and therefore aggregates, which must be manually translated into
ground rules, since aspcs does not support them. This translation introduces
many more rules, possibly an exponential number, making aspcs slower than
PASTA.
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Abstract. Modal symbolic learning is an emerging machine learning
paradigm for (non)-tabular data, and modal decision trees are its most
representative schema. The underlying idea behind modal symbolic
learning is that non-tabular (e.g., temporal, spatial, spatial-temporal)
instances can be seen as finite Kripke structures of a suitable modal logic
and propositional alphabet; from a non-tabular dataset, then, modal
formulas can be extracted to solve classic tasks such as classification,
regression, and association rules extraction. Although this paradigm has
already been proven successful in different learning tasks, a provably cor-
rect and complete formulation of modal decision trees has only recently
been found. In this paper, we prove that correct and complete modal
decision trees are also efficient, learning-wise.

Keywords: Modal symbolic learning · Decision trees · Efficient
implementation

1 Introduction

Symbolic learning is the sub-field of machine learning focused on approaching
classic tasks (such as classification or regression) via the extraction of logical
formulas from data. While often seen as less versatile and statistically accu-
rate, symbolic learning has the advantage of extracting intelligible informa-
tion that can be later discussed with the domain experts, corrected if nec-
essary, and combined with background knowledge. Out of all possible sym-
bolic learning schemata, decision trees are probably the best known ones, and
they are also emblematic for a whole range of other symbolic models, such
as decision lists [13,40], bootstrap aggregation or bagging [7], typically based
on independent decision trees as in random forests [8], boosting [25], and, in
particular, gradient boosted trees (e.g., [12,24]); hybrid models combining the
strengths of both symbolic and connectionist methods, when based on decision
trees, become neural-symbolic decision trees [21,44], and tree-based neural net-
works [2,26,33,34,42,43], among others.

The origin of modern decision trees dates back to [3]. In [32] the authors
proposed Automatic Interaction Detection (AID) as an alternative to functional
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regression. Whereas AID is used for regression tasks, Theta AID [31] and Chi-
Squared AID [23] extend AID for classification tasks by introducing new impurity
information-based functions. The Classification and Regression Trees (CART) [9]
method follows the same greedy approach as the AID-based methods, but adds
several features as, for example, pruning techniques to regularize the resulting
model to cope with overfitting. Later, Quinlan [37] formalized the development
of an inductive process for knowledge acquisition, which resulted in the so-called
Iterative Dichotomizer 3 (ID3) algorithm, extended with pruning techniques
some years later by the same author [39], and improved in terms of learning
algorithms with the introduction of C4.5 [38] to cope with the main limitation
of ID3 of handling only categorical data. A more complete survey on decision
trees can be found, for example, in [18,27,28]. Modal decision trees have been
introduced in [10], in their temporal form, as a generalization of propositional
ones, and later extended and applied to a variety of non-tabular data, both in
the temporal and in the spatial case, such as respiratory diseases diagnosis [30],
land cover classification [35], and electroencephalogram recordings reading and
interpreting [16], among others [41]. Modal decision trees, and modal symbolic
learning in general, are based on the idea that instances of a non-tabular (that
is, temporal, spatial, spatial-temporal, but also text-based and graph-based)
dataset can be seen as a set of finite Kripke structures, so that modal (that
is, temporal, spatial, and so on) logical formulas can be extracted from such a
dataset to solve, for example, classification or regression tasks.

Propositional decision trees are complete for the classification task with
respect to propositional logic, that is, given a dataset, there always exists an
optimal tree for it, able to correctly classify each of its instances, whose class is
identified by a propositional formula. Learning a minimal optimal tree from a
dataset is NP-hard [40]; thus, sub-optimal algorithms such as information-based
algorithms became the de-facto standard (examples of such algorithms include
ID3 and C4.5, mentioned above). In this sense, propositional decision trees are
also provably efficient in terms of learning, because an optimal (but not necessar-
ily minimal) decision tree can be learned by a polynomial-time information-based
algorithm from a dataset. While modal decision trees have already been shown
to be able to extract useful, accurate, and interpretable models, their properties
have only recently been studied [19]. As it turns out, modal decision trees too
are complete for the classification task with respect to modal logic. This solves
a problem that was open since the first proposals concerning methods for non-
propositional logical formulas extraction from data [5,6,17], but leaves as open
the question of whether modal decision trees are also efficient, that is, whether
there exists a polynomial-time information-based algorithm that learns an opti-
mal decision tree from a dataset. In this paper, we prove that modal decision
tree are weakly efficient, which means that there exists a polynomial algorithm
that, given a dataset, returns a t-optimal tree for it, able to classify in the perfect
way each of its instances whose class is determined by a modal formula of length
less than or equal to t; we also discuss in detail the problem of minimizing the
experimental complexity of an implementation of such an algorithm, by lever-
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aging the nature of the modal formulas that are actually examined during the
learning process and by exploiting a suitable memoization approach.

2 Propositional Decision Trees

Definition 1. A tabular dataset is a finite collection of m instances I =
{I1, . . . ,Im}, each described by the value of n variables V = {V1, . . . , Vn}, and
associated to a unique label from a set L = {L1, . . . , Lk}.

Several problems are associated to tabular datasets: classification (when labels
are categorical – in this case they are also called classes), regression (when labels
are numerical), association rules extraction (when labels are absent or ignored).
In the symbolic context, datasets are naturally associated to a logical alpha-
bet P of propositional letters (which represents an inductive bias, in a learning
context), from which formulas are built. While in some cases alphabets are the
result of a suitable variable selection and/or domain filtration, from a purely
methodological point of view we can always assume that:

P = {V �� v | V ∈ V, a ∈ R, �� ∈ {<,≤,=, �=,≥, >}},

where �� is a test operator; whenever necessary, for a given variable V , we shall
refer to its domain, defined as the set of all and only distinct values that V
takes in a given dataset. Tabular datasets can be also defined as propositional
datasets, as follows.

Definition 2. A propositional dataset is a finite collection of m instances I =
{I1, . . . ,Im}, each described as a propositional model over a given alphabet P
and associated to a unique label from a set L = {L1, . . . , Lk}.

The purpose of symbolic classification is to extract from a dataset I a (set of)
logical formula(s) to be used as rule(s) for classifying instances of a dataset J
drawn from the same distribution as I. Decision trees allows one to do so in a
very convenient way. In the classical setting, formulas are written in propositional
logic.

Let τ = (V, E) be a full binary directed tree with nodes in V and edges in
E ⊆ V × V. We denote by V� the set of its leaf nodes (or, simply, leaves), and
by Vι the set of its internal nodes (i.e., non-root and non-leaf nodes). Given a
tree τ , we denote its root by ρ(τ), and its nodes (either root, internal or leaf)
by ν, ν1, ν2, . . . and leaves by �, �1, �2, . . . Each non-leaf node ν of a tree τ has
precisely two children, the left child �(ν) and the right child

�
(ν), and each non-

root node ν has a parent � (ν). For a node ν, the set of its ancestors (ν included)
is denoted by � ∗(ν), where � ∗ is the transitive and reflexive closure of � ; we also
define � +(ν) = � ∗(ν) \ {ν}, and we say that if ν′ ∈ � ∗(ν), then ν is a descendant
of ν′. Moreover, given a tree τ , a path π = ν0 � νh in τ of length h ≥ 0 between
two nodes ν0 and νh is a finite sequence of h + 1 nodes such that νi = � (νi+1),
for each i = 0, . . . , h − 1. We denote by π1 · π2 the operation of appending the
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path π2 to path π1. A branch of τ is a path π�, for some � ∈ V �. For a path π
and a node ν, πν denotes the unique path ρ(τ) � ν. Finally, given two paths
π1, π2, we denote by π1 � π2 the fact that π1 is a not necessarily proper prefix
of π2.

Definition 3. Let I be a dataset with set of classes L and set of associated
propositional letters P, and define the set of propositional decisions Λ = {p,¬p |
p ∈ P}. Then, a propositional decision tree (over Λ) is an object of the type:

τ = (V, E , l, e),

where (V, E) is a full binary directed tree, l : V� → L is a leaf-labelling function
that assigns a class from L to each leaf node in V�, e : E → Λ is a edge-labelling
function that assigns a propositional decision from Λ to each edge in E, such that
e(ν, �(ν)) ≡ ¬e(ν,

�
(ν)) for all non-leaf node ν. For a path π = ν0 � νh in τ ,

the path-formula ϕπ is defined as:

ϕπ = 
 ∧
∧

νi∈π,i<h

e(νi, νi+1).

For a leaf �, the leaf-formula ϕ� is defined as:

ϕ� = ϕπ�
,

and for a class L ∈ L, the class-formula is defined as:

ϕL =
∨

l(�)=L

ϕπ�
.

Finally, the run of τ on I from ν, denoted by τ(I, ν), is defined as follows:

τ(I, ν) =

⎧
⎪⎨

⎪⎩

l(ν) if ν ∈ V�;
τ(I, �(ν)) if I |= ϕπ �

(ν)
;

τ(I,
�
(ν)) if I |= ϕπ �

(ν)
,

and the run τ(I) of I on τ is simply τ(I, ρ(τ)). An instance I is classified into
L ∈ L by τ if and only if τ(I, ρ(τ)) = L.

Definition 4. A decision tree is said to be optimal for a dataset I with respect
to a logic if and only if, for every instance I whose class is identified by a formula
of that logic, τ(I) = L if and only if I is labelled by L.

Definition 5. A family of decision trees is correct if and only if every tree
classifies every instance into exactly one class. Furthermore, it is complete with
respect to a logic if and only if, for every dataset, there exists the optimal tree for
it with respect to that logic. Finally, it is efficient with respect to a logic if and
only if there exists a polynomial-time algorithm that, for every dataset, learns
an optimal tree for it with respect to that logic.

It is well-known that the family DT of propositional decision trees is correct,
complete, and efficient with respect of propositional logic.
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3 Modal Decision Trees

Symbolic learning is founded on the idea that patterns (in our context, classifica-
tion patterns) are expressible in propositional logic. Non-tabular data, however,
may be too complex to be adequately described using propositional logic. Modal
logic extends propositional logic by assuming the existence of many propositional
worlds, connected by binary relations. Each world plays the role of a proposi-
tional model; in the standard, philosophical formulation, the relation plays the
role of accessibility among worlds. So, given a set of propositional letters P,
formulas of modal logic are generated by the following grammar:

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ,

where p ∈ P. The remaining classic Boolean operators can be obtained as short-
cuts; similarly, we use �ϕ to denote ¬♦¬ϕ. The modality ♦ (resp., �) is usually
referred to as it is possible that (resp., it is necessary that), and called diamond
(resp., box). The semantics of modal logic is given in terms of Kripke structures.
A Kripke structure, over P, K = (W,R,V) consists of a non-empty (possible
infinite, but countable) set of (possible) worlds W, a binary accessibility relation
over worlds R ⊆ W × W, and a valuation function V : W → 2P , which asso-
ciates each world w with the set of proposition letters V(w) ⊆ P that are true
on it. The truth (relation) K, w � ϕ, for a (Kripke) model K, a world w (in that
model), and a formula ϕ, is defined by induction on the complexity of formulas:

K, w � p iff p ∈ V(w), for all p ∈ P;
K, w � ¬ψ iff K, w �� ψ;
K, w � ψ1 ∧ ψ2 iff K, w � ψ1 and K, w � ψ2;
K, w � ♦ψ iff there exists w′ s.t. wRw′ and K, w′ � ψ.

We write K � ϕ as an abbreviation of K, w0 � ϕ, where w0 is the initial world
of K. Modal logic is paradigmatic for propositional temporal, spatial, spatial-
temporal logics, as well as description logics, epistemic logics, and many others.
Indeed, most classic temporal logics [14,22,36] and spatial logics [1,29] are in
fact specializations of modal logic with more than one (possibly non-binary)
accessibility relations (and associated modalities), subject to constraints that
range from very simple and intuitive ones (e.g., transitivity, antisymmetry) to
very complex ones (e.g., when worlds are assumed to be intervals and modalities
are assumed to mimic relations between intervals).

Inspired by the generalization from propositional to modal logic, we can now
define modal datasets.

Definition 6. A labelled modal dataset is a finite collection of m instances I =
{I1, . . . ,Im}, each described as a finite Kripke structure over a given alphabet
P and associated to a unique label from a set L = {L1, . . . , Lk}.

The link between non-tabular datasets and modal ones, as well as the role and
the nature of the variables in modal datasets can be explained with an example.
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Consider the case of temporal data. In its most general setting, a temporal dataset
is a collection of m temporal instances, where a temporal instance is a multi-
variate time series, described by a set of n temporal variables V = {V1, . . . , Vn},
each taking a value at each of N distinct instants. A possible way to extract
logical information from a temporal dataset is to consider a set of feature extrac-
tion functions F = {F1, . . . , Fs}, each defined as Fi : R × . . . × R → R (e.g.,
the generalized mean, or the number of local maxima), and then apply them to
every interval (i.e., to the set of values that a temporal variable takes between
an ordered pair of temporal points) of the temporal domain [1, . . . , N ]. In this
way, each interval can be seen as a world, and the alphabet becomes:

P = {F (V ) �� v | F ∈ F , V ∈ V, v ∈ R, �� ∈ {<,≤,=, �=,≥, >}},

and the different relations between any two intervals can play the role of binary
accessibility relations, resulting into an instance of Halpern and Shoham’s modal
logic for time intervals (HS). Reasoning with intervals is clearly not the only
way to extract information from temporal data, but it is a very convenient one;
it has been successfully used in [11,30], among others. This approach can be also
generalized to spatial data, by considering a multi-dimensional generalization of
HS, as in [35]. Other types of non-tabular data, such as graph-based data, can
be even more naturally treated in the same way, as Kripke structures are, in fact,
graphs. However, all kinds of non-tabular data share the notion of variable, so
that the above definition of propositional letters (P) can be considered relatively
general. Therefore, in the following, we shall assume that a modal dataset is, in
fact, characterized by n variables, as it is in the propositional case.

It is natural to ask if, and how, decision trees too can be generalized from
propositional to modal logic. This has been first proposed in [10] in the special
case of the temporal logic HS; in their prototypical version, modal decision trees
were not able to express every possible modal formula. Successive extensions
have improved several aspects of modal decision trees, but a provably complete
version has been proposed only in [19]; notably, other, incomplete, versions of
modal decision trees had been proposed earlier, again in the temporal case [6,17].
The idea behind modal decision trees is that the tree structure must be enriched
in order to design an information-based learning algorithm that does not need
to explore an exponential number of formulas. Completeness and efficiency can
be obtained together at the propositional level because propositional formulas
can always be expressed in disjunctive normal form. While there are several
proposals for modal disjunctive normal forms, they all share a definition of literal
whose modal prefix has an arbitrary number of modalities (see, e.g., [4]), and
are therefore unsuitable for a straightforward implementation of modal decision
trees. At a closer look, it appears evident that the main obstacle on the road
to efficiency of modal logic decision trees learning is the fact that diamonds
(resp., boxes) do not distribute over conjunctions (resp., disjunctions), that is,
modal logic is not separable. As a consequence, learning modal formulas in an
inductive, information-based fashion, requires building complex formulas along
the branches of a tree.
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Fig. 1. A modal decision tree τ (right) and all its relevant path-, leaf-, and class-
formulas (left). For each node, non-displayed backward-edges and forward-edges are
assumed to be self-loops.

Definition 7 ([19], modified). Let I be a modal dataset with set of classes L
and set of associated propositional letters P, and define the set of modal decisions
Λ = {p,¬p, | p ∈ P} ∪ {
,⊥,♦
,�⊥}. Then, a modal decision tree (over Λ) is
an object of the type:

τ = (V, E , l, e, b, f),

where (V, E) is a full binary directed tree, l : V� → L is a leaf-labelling function
that assigns a class from L to each leaf node in V�, e : E → Λ is a edge-labelling
function that assigns a modal decision to each edge in E, b : Vι → Vι is a
backward-edge function that links an internal node to one of its ancestors, and
f : V \ V� → Vι is a forward-edge function that links a non-leaf node to one of
its descendants, such that, for all ν, ν′ν′′ ∈ V:

1. if ν, ν′ ∈ V� and � (ν) = � (ν′), then l(ν) �= l(ν′),
2. if ν /∈ V�, then e(ν, �(ν)) ≡ ¬e(ν,

�
(ν)),

3. if b(ν) = ν′, then ν′ ∈ � ∗(ν),
4. if b(ν) �= ν and b(ν′) �= ν′, then b(ν) �= b(ν′),
5. if b(ν) = ν′, ν′ ∈ � +(ν′′), and ν′′ ∈ � +(ν), then ν′ ∈ � +(b(ν′′)),
6. if (ν, ν′) ∈ E, ν′ �∈ V�, and e(ν, ν′) ∈ {⊥,�⊥}, then b(ν′) �= ν′, and
7. if f(ν) = ν′, then ν ∈ � ∗(ν).

For a path π = ν0 � νh in τ , with h > 1, the contributor of π, denoted by
ζ(π), is defined as the only node νi ∈ π such that νi �= ν1, with 0 < i < h, and
b(νi) = ν1, if it exists, and ν1, otherwise. Moreover, given two nodes νi, νj ∈ π,
with i, j < h, we say that they agree, denoted by A(νi, νj), if νi+1 = �(νi) (resp.,
νi+1 =

�
(νi)) and νj+1 = �(νj) (resp., νj+1 =

�
(νj)); otherwise, we say that

they disagree, denoted by D(νi, νj). Furthermore, we say that a modal formula
ϕ is implicative if it has the form ϕ1 → ϕ2 or �(ϕ1 → ϕ2), and we denote by
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Im the set of implicative formulas. The path-formula ϕπ is defined inductively
as 
 if h = 0, e(ν0, ν1) if h = 1, and, if h > 1, λ = e(ν0, ν1), π1 = ν1 � ζ(π),
and π2 = ζ(π) � νh, then ϕπ is:

– λ∧(ϕπ1 ∧ϕπ2), if λ �= ♦
,A(ν0, ζ(π)), and ϕπ2 �∈ Im, or λ �= ♦
,D(ν0, ζ(π))
and ϕπ2 ∈ Im;

– λ → (ϕπ1 → ϕπ2), if λ �= ♦
,D(ν0, ζ(π)), and ϕπ2 �∈ Im, or λ �=
♦
,A(ν0, ζ(π)), and ϕπ2 ∈ Im;

– ♦(ϕπ1 ∧ ϕπ2), if λ = ♦
,A(ν0, ζ(π)) and ϕπ2 �∈ Im, or λ = ♦
,D(ν0, ζ(π)),
and ϕπ2 ∈ Im;

– �(ϕπ1 → ϕπ2), if λ = ♦
,D(ν0, ζ(π)) and ϕπ2 �∈ Im, or λ =
♦
,A(ν0, ζ(πτ )) and ϕπ2 ∈ Im.

For each leaf � ∈ V�, the leaf-formula ϕ� is defined as:

ϕ� =
∧

π�π�

ϕπ,

and for each class L, the class-formula ϕL is defined as:

ϕL =
∨

l(�)=L

ϕπ�
.

Finally, the run of τ on I from ν, denoted by τ(I, ν), is defined as follows:

τ(I, ν) =

⎧
⎪⎨

⎪⎩

l(ν) if ν ∈ V�;
τ(I, �(f(ν)) if I � ϕπ �

(f(ν))
;

τ(I,
�
(f(ν)) if I � ϕπ �

(f(ν))
,

and the run of τ on I, denoted by τ(I), is defined as τ(I, ρ(τ)). An instance I
is classified into L ∈ L by τ if and only if τ(I, ρ(τ)) = L.

An example of modal decision tree can be seen in Fig. 1. The idea behind modal
decision trees is that backward-edges allow one to add conjuncts and disjuncts
to a leaf-formula at any modal depth. Compared with the original definition
in [19], the addition of forward-edges straightforwardly allows one to improve the
completeness result by formalizing the idea of lookahead, that is, the possibility
for a modal decision tree to classify using complex formulas on top of simple
decisions.

Theorem 1 ([19], modified). The family MDT of modal decision trees is
correct and complete with respect to modal logic.

As it turns out, a learning algorithm for modal decision trees can still be
implemented in an efficient way, but to a lesser extent compared with proposi-
tional ones; intuitively, in order to have polynomial time learning, we can only
guarantee optimality up to a certain formula length. ModalCART, shown in Algo-
rithm 1, is the adaptation of the well-known (family of) algorithm(s) known as
CART, on which the more famous C4.5, ID3, among many others, are based.
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It is an information-based approach to decision tree learning, whose main step
is founded on computing the amount of information contained in a dataset (via
entropy, Gini index, or similar measures), which drives a locally optimal choice.
The function SubTrees, given the set of decisions Λ, a height i and a set of
ancestors N , returns all trees of height i with exactly two nodes at any given
level greater than 0, with edge labels chosen from Λ, where (consistently with
Definition 7) all outgoing backward-edges lead to a node in N , and whose root
is linked via forward-edge to the (only) non-leaf node at level i − 1. Thus, Find-
BestSubTree generalizes the operation of finding the best split to the case of
lookahead t; in this way, if a class is determined by a modal formula of length
less than or equal to t, such a formula will be certainly found and expressed a
branch of the tree, which implies that Algorithm 1 correctly finds a t-optimal
tree.

Definition 8. A decision tree is said to be t-optimal for a dataset I with respect
to a logic if and only if, for every instance I whose class is identified by a formula
of that logic with length less than or equal to t, τ(I) = L if and only if I is labelled
by L. A family of decision trees is weakly efficient with respect to a logic if and
only if there exists a polynomial-time algorithm that, for every dataset, learns a
t-optimal tree for it with respect to that logic when t is constant.

Algorithm 1: High-level description of ModalCART.
function ModalCART (I, Λ, t):

τ ← Initialize()
ρ(τ) ← Learn(I, Λ, ∅, t)
return τ

end
function Learn(I, Λ, N , t):

if no stopping condition applies then
ν ← FindBestSubTree(I, Λ, N , t)
f(ν).left ← Learn(I �

(f(ν))
, Λ, N ∪ {ν}, t)

f(ν).right ← Learn(I �
(f(ν))

, Λ, N ∪ {ν}, t)

else
ν ← CreateLeafNode(I)

return ν
end
function FindBestSubTree(I, Λ, N , t):

(ε, εν) ← (−∞, nil)
foreach i ∈ 1, . . . , t do

foreach ν ∈ SubTrees(Λ, N , i) do
I �

(f(ν))
← subset of I satisfying ϕ �

(f(ν))

I �
(f(ν))

← subset of I satisfying ϕ �
(f(ν))

if ε < Info(I �
(f(ν))

, I �
(f(ν))

) then

(ε, εν) ← (Info(I �
(f(ν))

, I �
(f(ν))

), ν)
return εν

end
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Lemma 1. Given a dataset I with m instances, each with n variables and N
distinct worlds, a set of nodes N , and given a lookahead amount t, the running
time of FindBestSubTree(I, Λ,N , t) is:

O(t(nm2N)tmN).

Proof. As per Definition 7, a single split in a tree is the result of model-checking
one path-formula (and its negation) on every instance I of the current dataset,
at the world w0; given a generic modal formula ϕ, one can simply apply a
finite model-checking algorithm that labels every world with the truth value of
all sub-formulas (in non-decreasing order of length). Using a technique similar
to [15], the cost of such a check, for all instances, is O(|ϕ|N2m). Approaching
FindBestSubTree naïvely would imply to repeat such a process for all possible
formulas that could be generated at a given step; moreover, with lookahead t,
this single step requires trying all sub-trees of height at most t. However, the
weak completeness guarantees that one may limit the exploration of incomplete
sub-trees with exactly two nodes at each given height. Given a set of ancestors
N to which backward-edges may lead, the number of structurally different such
sub-trees, of height 1 ≤ i ≤ t, is bounded by 2i−1(|N |+ i − 1)i; for each of such
sub-trees, we must check (2nmN + 4)i different formulas which are obtained by
choosing a different decision on each edge (observe that, given that one formula
differs from another one by at least one of the i decisions, the number of different
formulas is determined by the number of decisions |Λ|; the latter, in turn, is
bounded by the number of different variables, n, times the cardinality of the
domain of an variable, mN , times 2 different test operators – observe that with
numerical variables and finite domains, limiting �� ∈ {≥, <} suffices to explore
all propositional letters, plus 4, which is the cardinality of {♦
,�⊥,
,⊥}).
Summarizing, a naïve implementation of FindBestSubTree runs in time:

O(Σt
i=12

i−1(m + i − 1)i(2nmN + 4)im2N2) = O(t(nm2N)tm2N2),

considering that, during the execution, both the number of any set of ancestors
and the length of any formula are bounded by m and that every element of
the summation can be bounded by 2t−1(m + t − 1)t(2nmN + 4)t. For a small
enough t, it makes sense to reduce the above complexity by exploiting the nature
of propositional letters via memoization. Observe that at any given step some
formulas to be checked have the same structure, only differing by the numerical
constants within the propositional letters. By way of example, consider checking
a set of formulas ♦(V < a) on a single world w of an instance I. The number of
worlds that are accessible from w is bounded by N , and the domain of the vari-
able by mN . Thus, a single check of all such formulas takes O(mN2). If, instead,
we compute and store the minimum of the values for V on every world accessible
from w (which takes time O(N)), we can check each of the mN similar formulas
in time O(1), by comparing a with the computed value. Generalizing, consider
now the case where t = 1. In such a case, the execution of FindBestSubTree con-
sists of exploring at most |Λ|m different formulas; the factor m depends on the
possible backward-edges of the newly formed tree, and the factor |Λ| depends on
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the element that changes from one formula to another. The set of formulas can,
then, be partitioned into 2n + 4 groups. All formulas within a single group are
siblings, that is, they share the structure of the syntax tree and differ by exactly
a numerical constant at a leaf; the groups that emerge from decisions that are
not propositional letters are singletons. The key idea is that we can compute,
save, and use a single scalar value for each of such groups in order to check all
siblings within the group. We now describe a memoization structure, keyed in
a triple formed by a formula ϕ, an instance I, and a world w, and returning a
single number that suffices to check the truth of every sibling formula of ϕ on
I, w. For a given ϕ generated by the grammar in Definition 7, we denote the
biggest sub-formula that contains the variable part (that is, the single leaf that
identifies an element which its group of its siblings) by ϕ̄. For convenience, let
us define the special values 
(≥) = ∞,
(<) = −∞,⊥(≥) = −∞,
(<) = ∞.
We inductively define the memoization structure, denoted by T , fixed I and w,
and fixed V and �� that identify the variable part of ϕ, as follows:

T [�] = �(��) T [♦�] =

{
�(��) if |{(w, w′) ∈ R}| > 0,

⊥(��) otherwise

T [p̄] = H[I, w, V ] T [V ′ ��′ a] =

{
�(��) if H[I, w, V ′] ��′ a,

⊥(��) otherwise

T [ϕ ∧ ϕ̄′] =

{
T [ϕ̄′] if I, w � ϕ

⊥(��) otherwise
T [♦(ϕ ∧ ϕ̄′)] =

⎧⎨
⎩

ζ
w′∈W (I,w,ϕ)

T [ϕ̄′] if I, w � ♦ϕ

�(��) otherwise,

where ζ = max (resp., min) if �� = ≥ (resp., <), W (I, w, ϕ) is the set of worlds
in I where ϕ holds and are accessible from w, and H holds the value of each
variable V , at each world w of each instance I; the missing cases can be treated
in a similar way. Fixed a formula ϕ̄ that belongs to the group of sibling formulas
varying the value a for a specific propositional letter built on V and �� (let us
denote such a formula by ϕ̄V,��(v)), it holds that:

I, w � ϕ̄V,��(v) ⇔ T [ϕ̄V,��] �� v.

As noticed before, within a call to FindBestSubTree the number of structurally
different sub-trees of height i that are tested is at most 2i−1(m + i − 1)i. Each
of the sub-trees gives rise to 2n(2nmN + 4)i−1 groups of mM siblings, plus
4(2nmN + 4)i−1 singletons; within each group, the formulas differ from each
other by the decision taken at level i. One key observation at this point is that,
in order to find the best formula (with respect to a given information measure)
from a group of mN sibling formulas induced by ϕ̄V,��, we do not need to check
the truth of every one of them on every instance that reached the node. In fact,
we only need to check the m formulas that correspond to ϕ̄V,��(v) with a equal
to the corresponding T [ϕ̄V,��] value of any instance I; this requires O(m2N2)
time for pre-computing m values T [ϕ̄], plus O(m2N2) for performing m checks.
Therefore, the overall cost becomes:

O(Σt
i=12

i−1(m + i − 1)i(2nmN + 4)i−1(2n + 4)m2N2) = O(t(nm2N)tmN).
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Lemma 2. Given a dataset I with m instances, each with n variables and
N distinct worlds, and given a lookahead amount t, the running time of
ModalCART(I, Λ, t) is:

O(m2(t+1)+1),

in the worst case, and:
O(m2(t+1) lg(m)),

in the average case, assuming constant n,N, and t.

Proof. ModalCART is a recursive procedure whose complexity can be
approached via a recurrence; even with lookahead t > 1, each step consists, at
most, of 2 recursive calls. Assuming constant n and N corresponds to studying
the complexity of ModalCART as the number of instances grows without chang-
ing in nature; assuming constant t is equivalent to fixing a learning parameter.
In the worst case, every split of a dataset of cardinality m ends up assigning
exactly one instance to a branch and exactly m − 1 instances to the other one,
so that the recurrence is:

T (m) = T (m − 1) + O(m2(t+1)),

which ends up being bounded by:

T (m) = O(m2(t+1)+1).

In the average case, however, we can assume that all splits are equally likely in
terms of relative sizes. Thus the recurrence that describes the time complexity
becomes:

T (m) = 1
m−1

∑m−1
i=1 (T (i) + T (m − i)) + O(m2(t+1))

= 2
m−1

∑m−1
i=1 T (i) + O(m2(t+1)).

We claim that T (m) = O(m2(t+1) lg(m)), and we prove it by substitution, that
is, by proving that there exists a constant α such that T (m) ≤ αm2(t+1) lg(m)
for large enough values of m. Let us fix k = 2(t + 1). Then:

T (m) = 2
m−1

∑m−1
i=1 T (i) + O(mk)

≤ 2
m−1

∑m−1
i=1 αik lg(i) + O(mk)

≤ 2
m−1α lg(m)

∑m−1
i=1 ik + O(mk)

≤ 2α lg(m)
m−1

(
(m−1)k+1

k+1 + (m−1)k

2 + k(m−1)k−1

12

)
+ O(mk)

= 2α lg(m)
(k+1)(m−1)

(
(m − 1)k+1 + (k+1)(m−1)k

2 + (k+1)k(m−1)k−1

12

)
+ O(mk)

≤ 2α lg(m)
(k+1)(m−1)

(
(m − 1)k+1 + (m−1)k+1

2 + (m−1)k+1

12

)
+ O(mk)

= 2α lg(m)(m−1)k

(k+1) (1 + 1
2 + 1

12 ) + O(mk).
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using (a further bounded version of) the Faulhaber formula [20], and taking into
account that assuming constant t implies k ≤ m − 2, and therefore, k < k +1 ≤
m − 1. For large enough values of m, all of the above amounts to proving that:

19
6(k+1)α lg(m)(m − 1)k ≤ α lg(m)mk,

which is implied by:
19

6(k+1)m
k ≤ mk,

which is true for k ≥ 13
6 that is, k ≥ 3, which is always true as t ≥ 1.

Theorem 2. The family MDT of modal decision trees is weakly efficient.

4 Conclusions

In the past few years, modal symbolic learning in general, and modal decision
trees in particular, have proven themselves to be a very useful tool for extract-
ing complex knowledge from non-tabular data, in both the temporal and the
spatial case. Admittedly, however, current implementations of modal decision
trees could not guarantee the completeness of the approach in the logical sense.
Building upon a very recent result in which a complete version of modal deci-
sion trees has been proposed, in this paper we provided an assessment of their
computational complexity, proving that, in fact, modal decision trees are both
complete and efficient. Modal decision trees can be seen as prototypical of a large
family of symbolic learning tools based on more-than-propositional logics; their
development can now rest on a more solid theoretical background. Future work
includes the empirical evaluation of their behaviour.
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Abstract. Natural Language Processing (NLP) techniques are power-
ful tools for analyzing, understanding, and processing human language
with a wide range of applications. In this paper we exploit NLP tech-
niques, combined with Machine Learning clustering algorithms, to find
good solutions to a traditional combinatorial problem, namely, the com-
putation of a partition with high modularity of a graph. We introduce
a novel framework, dubbed Clique-TF-IDF, for computing a graph par-
tition. Such a framework leverages dense subgraphs of the input graph,
modeled as maximal cliques, and characterizes each node in terms of
the cliques it belongs to, similarly to a term-document matrix. Our
experimental results show that the quality of the partitions produced
by algorithm Clique-TF-IDF is comparable with that of the most effec-
tive algorithms in the literature. While our focus is on maximal cliques
and partitioning algorithms, we believe that this strategy can be gen-
eralized to devise AI solutions for a variety of intractable combinatorial
problems where some substructures can be efficiently enumerated and
exploited.

Keywords: TF-IDF · Graph embedding · Hierarchical clustering ·
Graph partitioning

1 Introduction

The strictest definitions of community are those based on graph-theoretic proper-
ties such as maximal cliques, k-plexes, or γ-quasi cliques (see [26] for a survey).
A clique is a set of nodes with all the possible edges among them. Although
the problem of computing maximal cliques is computationally hard [21], several
centralized [4,5,17,22,37] and distributed [7,8,11,40] algorithms are available
to efficiently enumerate all the maximal cliques of real-world networks. Unfor-
tunately, there are so many overlapping graph-theoretic communities that it
becomes challenging for a user to take advantage of them in order to break down

This research was supported in part by MUR PRIN Projects no. 2022TS4Y3N
(EXPAND) and no. 2022ME9Z78 (NextGRAAL).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Basili et al. (Eds.): AIxIA 2023, LNAI 14318, pp. 396–410, 2023.
https://doi.org/10.1007/978-3-031-47546-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47546-7_27&domain=pdf
http://orcid.org/0009-0008-6266-3324
http://orcid.org/0000-0002-6394-6798
http://orcid.org/0000-0001-9806-7411
https://doi.org/10.1007/978-3-031-47546-7_27


Clique-TF-IDF 397

and analyze a network effectively. In contrast, the definition of community that
is most intuitive for the user is that of partition, where the node set is divided
into blocks and each node belongs to exactly one block. The target is usually
that of maximizing a quality measure, such as the modularity of the partition
(see Sect. 2 for a formal definition). The problem of partitioning a network while
maximizing modularity is NP-complete [3] and exact algorithms are not possi-
ble even if the network is sparse. Therefore, most of the available approaches for
network partitioning are heuristics. A state-of-the-art about them is provided in
the related work section.

Contributions of the Paper. In this paper, we attempt to bridge the gap
between graph-theoretically defined communities, which admit exact algorithms,
and node partitions, whose computation relies on heuristics. Our strategy is to
use the solutions of the former problem as a hint for an AI approach to solve
the latter one. More precisely, we first encode maximal cliques into a matrix,
with a row for each node and a column for each clique, which is analogous to
the term-document matrix widely used in natural language processing. Second,
we perform a weighting operation on the aforementioned matrix analogous to
the TF-IDF function: our goal is to obtain higher values for maximal cliques
that are both large and weakly connected to the rest of the network. Third, we
cluster the matrix rows based on their similarity in order to compute a partition
of the network.

An experimental analysis on real-world graphs rounds off the paper. The
results are promising and encouraging, showing that the quality of the partitions
produced by our approach, called Clique-TF-IDF, is comparable with that of the
most effective algorithms in the literature. In application contexts where running
time is not a major issue, this kind of approach provides high-quality solutions
alternative to the traditional ones.

While our focus is on maximal cliques and partitioning algorithms, we believe
that this strategy can be generalized to devise AI solutions for a variety of
intractable combinatorial problems where some substructures can be efficiently
enumerated and exploited. For example, max-cut problems could leverage the
efficient computation of maximal bipartite subgraphs. Vertex-coloring of dense
graphs could leverage the efficient computation of independent sets. On the
one hand, these hybrid approaches would benefit of both combinatorial and AI
techniques. On the other hand, they could open up new application areas for
multidisciplinary research.

Related Work. The graph partitioning problem has been widely studied,
attracting interest in both theoretical and practical circles. Several variants of
the problem have been considered in the literature and a few previous works
exploit AI techniques to solve different issues. When the input graph has node
attributes that must be taken into account in the produced partition, contrastive
learning along with graph neural networks make it possible to learn clusterable
features and compute a partition that is measurably good with respect a ground
truth [16]. More traditional algorithms for partitioning attributed graphs are
discussed in [10].
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In correlation partitioning edges have quantitative attributes, which may
be negative values to indicate dissimilarity, and the measure to be maximized
increases when negative edges span different blocks of the partition [1,34]. The
online version of these problems has also been considered in [23].

In structural clustering, the blocks of the partition are required to contain
nodes that have the same “role” in the graph. Graph neural networks have been
widely used in this setting to address various graph-related problems such as
node classification and graph classification (see, e.g., [6,15,41]). Other results
related to structural embeddings may be indicative of the feasibility of perform-
ing cluster analysis [32].

In contrast to the aforementioned works, in this paper we focus on positional
clustering of graphs without attributes, where the similarity of the nodes is
determined by their adjacencies and the quality of the partition is measured in
terms of its modularity. Several combinatorial algorithms have been presented in
the literature to solve this problem. The algorithm described in [9] employs an
agglomerative hierarchical process aimed at maximizing the modularity measure
of the partition. The same approach is pursued, with significant improvements in
terms of both efficacy and efficiency, by the algorithm in [2] and its subsequent
refinement in [38]. An algorithm based on label propagation can be found in [14].
Random walks in the graph are leveraged to infer good partitions by exploiting
a similarity matrix [29] or information theory techniques [33]. Statistical physics
models are used by [31]. Other heuristic approaches, which exhibit lower levels
of performance, can be found in [19,28,30].

As in the case of structural clustering, node embeddings based on positional
information may be exploited for the computation of a good partition of the
graph [20,27,41].

Organization of the Paper. The remainder of this paper is structured as fol-
lows. Section 2 provides preliminary notation and definitions that will be used
throughout the paper. Section 3 describes our approach in detail. Section 4 com-
pares algorithm Clique-TF-IDF against a variety of state-of-the-art competitors
in terms of both effectiveness and efficiency. Conclusions and future work are
discussed in Sect. 5.

2 Background

In this section we provide notation and basic definitions that will be used
throughout the paper. Let G = (V,E) be an undirected graph with node set
V = {v1, . . . , vn} and edge set E = {e1, . . . , em}, such that E ⊆ V × V . Let
n = |V | denote the number of nodes and let m = |E| denote the number of
edges. Let A denote the adjacency matrix of G: for any pair of nodes u and v,
Auv (and, symmetrically, Avu) is 1 if u and v are connected, and 0 otherwise.
Also, let δu denote the degree of node u. A partition of G is a subdivision of V
into non-empty blocks {V1, . . . , Vk}, such that

⋃k
i=1 Vi = V and Vi ∩ Vj = ∅ for

every i �= j. The blocks of the partition are meant to represent portions of the
graph that are internally dense and weakly connected to the rest of the graph.
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Modularity. An effective quality measure for graph partitions is modularity,
which is defined as follows [9]:

Q =
1

2m

k∑

i=1

∑

u,v∈Vi

(

Auv − δuδv

2m

)

(1)

Notice that δuδv

2m represents the probability that an edge between nodes u and
v exists in a random network model that preserves the vertex degrees of the
nodes. The modularity measure Q is defined in the interval

[− 1
2 , 1

]
, where non-

zero values are deviations from randomness and higher values indicate a better
community structure.

Even if partitioning a network while maximizing modularity is NP-hard [3],
this measure has been widely used in the literature to evaluate the quality of
the computed communities, especially in graphs for which ground-truth is not
available or its quality has to be validated [2,9,38].

TF-IDF. Let D = {d1, . . . , dr} be a collection of r documents that contain
overall a set T = {t1, . . . , ts} of s terms. Let τt,d be the number of occurrences
of term t into document d and let δt be the number of documents that contain
term t. The inverse document frequency for a term t is defined as γt = log( |D|

δt
).

Finally, the TF-IDF weighting function can be defined with respect to a term t
and a document d as ωt,d = τt,d ·γt [25]. The value obtained from the function is
higher when term t is frequent in a small subset of documents, and lower when
term t is not frequent in document d or is common in D.

Hierarchical Clustering. Let P = {p1, . . . , pn} be a set of n points in a d-
dimensional space. Given an integer k, the goal of geometric clustering is to
partition P into k non-empty clusters {P1, . . . , Pk} such that

⋃k
i=1 Pi = P and

Pi ∩ Pj = ∅ for every i �= j.
Hierarchical clustering is a flexible approach to compute clusters in P and

it is widely used for its ability to reveal both global and local structures. One
of the most used techniques is the so-called agglomerative clustering [36], that
starts with individual points as clusters and iteratively merges them into larger
ones. This approach requires three main ingredients: (i) the distance or simi-
larity metric between data points, (ii) the “linkage criterion”, i.e., the distance
metric between clusters that is used to identify those to be merged, and (iii)
the stopping criterion to end the computation at a suitable level of the hierar-
chy. Differently from other alternatives (e.g., centroid-based or density-based),
hierarchical clustering guarantees that the output is independent of the initial-
ization phase. Also, it has the advantage of only considering distances, rather
than absolute coordinates, which may have a wider range of applications.

3 Methodology

In this section we present our approach to compute a partition of a graph G. We
leverage graph-theoretic substructures of G that can be efficiently enumerated.
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Fig. 1. Pipeline of algo-
rithm Clique-TF-IDF.

Overview of the Approach. Our approach for the
computation of a partition of the graph consists of a
pipeline with the following steps (Fig. 1):

– First, we compute all maximal cliques of the graph
and we define a node-community matrix Z, in which
values are proportional to the magnitude of each
maximal clique.

– Second, we perform a weighting operation on Z anal-
ogous to the TF-IDF function. Our goal is to obtain
higher values for maximal cliques that are both large
and weakly connected to the rest of the network.

– Lastly, the partition of the graph is calculated
by clustering the matrix rows, using a binary
search strategy based on the modularity measure. In
this way the number of clusters, and consequently
the number of partitions, can be automatically
determined.

Given a graph G with n nodes, we enumerate all maximal cliques using the
algorithm introduced in [4] and improved in [5,37]. Let C = {c1, . . . , cd} be the
set of all maximal cliques, with d = |C|. We use the following data structures.

Clique-incidence Matrix Y. Matrix Y ∈ N
n×d is an incidence matrix telling

the nodes contained in each maximal clique. More formally:

Yi� =
{

1 if node vi belongs to maximal clique c�

0 otherwise

For example, the graph depicted in Fig. 2(a) contains three maximal cliques c1,
c2, and c3 and the corresponding Y matrix is shown in Fig. 2(c). We aim at
clustering the rows of Y based on their similarity: if two nodes belong to very
similar sets of maximal cliques, they are likely to be in the same partition. For
instance, nodes v1 and v2 are more similar than nodes v1 and v5 in Fig. 2(c).

Co-participation Matrix X. If we used Y as it is, we would not take into
account the sizes of the maximal cliques the nodes belong to. Furthermore, nodes
that do not share any maximal clique (as nodes v1 and v4 of example graph G)
would correspond to very different rows even if they had many common neighbors
in several maximal cliques (see rows 1 and 4 in Fig. 2(b)). Therefore, we define
a co-participation matrix X ∈ R

n×n: intuitively, for each pair of nodes vi and
vj , Xij is related to the size of the maximal cliques shared by vi and vj . More
formally, Xij is the sum of the sizes of the maximal cliques including both vi

and vj . Given a clique c�, we use as a measure of its size the number of its edges,
which we denote by w�.

Matrix X is symmetric. Xii contains the sum of the sizes w� of the cliques
c� that node vi belongs to. For example, in Fig. 2(b), X3 2 = 6 because nodes v3
and v2 belong to two cliques both of size 3.
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Fig. 2. Data structures used in our approach.

Node-community Matrix Z. The node-community matrix Z is defined as
Z = X · Y ∈ R

n×d. Observe that the value of Zi� is the sum of terms of two
distinct types:

– Direct participation of node vi in clique c�: these terms have value |c�| · w�

(see for example Z1 1 in Fig. 2(d), where Z1 1 = |c1| · w1 = 3 × 3 = 9).
– Indirect participation of node vi in clique c�. Namely, for every node vj ∈ c�

that shares with vi clique c�′ , we sum to Zi� a term w�′ . For example, node
v1 participates indirectly in clique c2 because of its neighbors v2 and v3.
Hence, value Z1 2 = 6 is the sum of the two terms X1 2 × Y2 2 = w1 = 3 and
X1 3 × Y3 2 = w1 = 3.

TF-IDF Transformation. Matrix Z can be contrasted with the TF matrix
used in Information Retrieval, that traditionally represents the occurrences of
terms into documents. In our setting, nodes play the role of documents and
maximal cliques play the role of terms. As for the Information Retrieval appli-
cation domain, it makes sense to consider more relevant the contribution of a
clique (term) for a specific node (document) when the clique has very few values
different from zero (i.e., when the term is rare). Intuitively, the less the clique
intersects with other cliques, the less we would like to split it with the bound-
ary of a block of the partition. Therefore, we compute an IDF vector with as
many cells as cliques. Element � of the IDF vector contains the value log( n

|δ�| ),
where δ�, in analogy with the Inverse-Document-Frequency, is the number of
non-zero elements of column � of Z. We reassign the values of Z by multiplying
each row Zi of Z with the IDF vector element by element. In the example of
Fig. 2, the TF-IDF value for the cell Z4 1 of clique c1 with respect to node v4 is
ω1,4 = τ1,4 · γ1 = Z4 1 · log( n

|δ1| ) = 6 · 0.8 = 4.8.
Finally, we normalize each row of Z to obtain an embedding for the nodes of

G such that each node corresponds to a vector of length one.

Clustering. Matrix Z can be viewed as a set of n points (the nodes in V ) into a
d-dimensional space (the cliques). Hence, we can compute a geometric clustering
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by partitioning the set of n points into a desired number k of clusters. In order
to do so we exploit an agglomerative clustering approach [36]: at the beginning,
each point falls into a distinct cluster and iteratively the two nearest clusters are
joined, where the distance between two clusters is the average distance between
their nodes. The process stops when the desired number k of clusters is reached.

Table 1. Real-world networks used in the experimental analysis. Entries labeled with
∗ only refer to the giant component of the networks.

Network Alias Nodes Edges # Maximal cliques

arenas-email arenas 1133 5451 3267

ca-grqc∗ grqc 4158 13422 3385

ca-hepth∗ hepth 8638 24806 9357

ca-hepph∗ hepph 11204 117619 14588

citeseer∗ cite 2120 3731 2722

email-eu-core∗ email 1005 16706 42709

karate karate 34 78 36

lastfm-asia lastfm 7624 27806 17957

p2p-gnutella p2p 10876 39994 38497

sociopatterns socio 410 2765 1247

Choosing the Number of Clusters. Since the number of clusters k is an
input of the above algorithm, we exploit a simple heuristic, based on a binary
search on the possible values of k, to choose a value that corresponds to a high
modularity measure. The efficiency of such a search is guaranteed by the fact
that the agglomerative clustering hierarchy can be computed a single time at
the beginning of the process.

4 Experimental Analysis

We performed an experimental study to evaluate the effectiveness and efficiency
of algorithm Clique-TF-IDF. The source code of our implementation can be
found at https://github.com/mdelia17/clique-tf-idf.

4.1 Experimental Setup

We evaluated our approach against a variety of state-of-the-art algorithms,
including Walktrap [29], CNM [9], Infomap [33], LP [14], Pott [31], and Lei-
den [38]. We couldn’t compare with [16] because the code is not public available
yet.

We also compared the network embedding phase of Clique-TF-IDF against
other embedding approaches (Node2Vec [20] and DeepWalk [27]) by completing

https://github.com/mdelia17/clique-tf-idf
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Fig. 3. Effectiveness measures. This figure shows the quality (modularity) obtained by
the various algorithms. The networks on the x-axis are ordered based on the average
modularity of the algorithms.

them with the two phases of Clique-TF-IDF that compute a geometric clustering
and that compute the number of clusters.

We used a data set consisting of ten real-world networks of different sizes
(from tens to ten thousand nodes) taken from the SNAP repository [24] and
typically used as benchmarks in this domain. Their characteristics, including the
number of maximal cliques, are listed in Table 1. Since algorithm Pott [31] only
accepts connected networks, entries labeled with ∗ refer to the main connected
component of the networks (which typically have a giant component which con-
tains a significant proportion of the nodes in the network). All the experiments
were performed on a commodity workstation equipped with Intel R© Core-i5TM

1135G7 CPU and 8 GB of RAM.

4.2 Experimental Results

Evaluation of Clique-TF-IDF. Here we discuss the efficiency and the effec-
tiveness of Clique-TF-IDF comparing its performances with those of the algo-
rithms listed in Sect. 4.1.

Our approach is among those that compute partitions with high modularity,
although algorithm Leiden, one of the most effective in the literature, is con-
stantly above Clique-TF-IDF (see Fig. 3). Algorithm Pott also exhibits a very
good performance in terms of effectiveness, at the cost of running times that are
at least one order of magnitude higher than those of its competitors.

Figure 4 shows that algorithm Clique-TF-IDF has, however, large computa-
tion times, even if not as high as algorithm Pott. This is mostly due to the binary
search for the best number k of clusters and to the high number of maximal
cliques exhibited by some networks. Indeed, a profiling of Clique-TF-IDF (see
Fig. 5) reveals that the percentage of time spent in Clustering phase dominates
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Fig. 4. Efficiency measures. This figure shows the times (in seconds) used by the various
algorithms. The networks on the x-axis are ordered based on Clique-TF-IDF running
time.

Fig. 5. Percentage of the running time for the phases of algorithm Clique-TF-IDF.

the overall running time. There are two notable exceptions to this pattern, i.e.,
networks sociopatterns and, especially, email-eu-core. To understand this
phenomenon, we analyzed the distribution of the sizes of the maximal cliques.
The results of this analysis are shown in Fig. 6, highlighting that these networks
have a large number of maximal cliques with a non-scale-free distribution, which
resembles a binomial distribution in the case of email-eu-core. On these net-
works, a large percentage of time is spent for maximal clique computation (X
and Y matrices in Fig. 5).

Evaluation of the Embedding Phase of Clique-TF-IDF. In order to verify
that our graph embedding based on maximal cliques is a good starting point
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Fig. 6. The distribution of maximal clique sizes for the networks used in the experi-
mental analysis.
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Fig. 7. Modularity and running times (restricted to the embedding phase) obtained by
replacing DeepWalk and Node2Vec to the clique-based approach of Clique-TF-IDF.

to compute a partition, we replaced the first two phases of our pipeline (the
synthesis of matrix Z and the computation of TF-IDF on it) with state-of-the-
art graph embedding algorithms. Figure 7 shows the results of the experimental
comparison obtained with Node2Vec [20] and DeepWalk [27], where the two
algorithms have be run with their default parameters. We used a subset of the
datasets described in Sect. 4.1, on which the two aforementioned approaches
could compute a solution within a time bound of 15 minutes.

As it can be seen in Fig. 7(a), the modularity of the partitions produced
by Clique-TF-IDF is larger than that of DeepWalk and comparable or larger
than that of Node2Vec (with the only exception of the small graph karate).
In addition, Fig. 7(b) shows that the running times exhibited by DeepWalk and
Node2Vec are several order of magnitude higher that those of Clique-TF-IDF
(we remark that the y-axis of Fig. 7(b) has a logarithmic scale).

In Fig. 8 we repeated the above experiments providing DeepWalk and Node-
2Vec with different combinations of parameters. In particular, we varied the
dimensionality d of the embedding in the set d ∈ {32, 64, 128} and the length �
of the random walks � ∈ {20, 40, 80}. We fixed to 10 both the number of random
walks and the number of epochs. For the remaining parameters we kept the
default values. The settings denoted S, M, and L in Fig. 8 correspond to d = 32
and � = 20, d = 64 and � = 40, and d = 128 and � = 80, respectively. As it
can be observed in Fig. 8, changes in the parameters do not seem to significantly
impact the performances of the algorithms.
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Fig. 8. Modularity and running times measured with different input parameters for
DeepWalk and Node2Vec.

5 Conclusions and Future Work

We introduced a novel framework for computing graph partitions. Such a frame-
work leverages dense subgraphs of the input graph, modeled as maximal cliques,
and characterizes each node in terms of the maximal cliques it belongs to. Our
experimental results show that the proposed approach is promising: the qual-
ity of the produced partitioning is comparable with that of the most effective
algorithms in the literature. However, this is obtained at the cost of a high
computation time. Overall, in application contexts where running time is not a
major issue, the approach presented in this paper provides high-quality solutions
alternative to the traditional ones. We believe that one of the most intriguing
outcomes of our study is that our heuristic, which leverages AI techniques in
conjunction with cutting-edge combinatorial algorithms to identify basic struc-
tures in the input data, achieved results that are on par with the most advanced
algorithms for complex problems that have been the focus of decades of research.

As a future work, we aim at tuning the approach to improve both its effec-
tiveness and its efficiency. We believe that a clique sampling technique might be
helpful to reduce the running times on networks with a large number of max-
imal cliques with a non-scale-free distribution. Also, it would be interesting to
apply a similar strategy to the computation of structural clusterings [32,35,41]
and to explore other basic dense structures (such as k-plexes [12], fixed-size
cliques [13,18] or trusses [39]) instead of maximal cliques as a starting point for
the embedding.
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Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp.
121–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-
7 12

4. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457).
Commun. ACM 16(9), 575–576 (1973)

5. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theor. Comput. Sci. 407(1–3), 564–568 (2008)

6. Chen, Y., et al.: SP-GNN: learning structure and position information from graphs.
Neural Netw. 161, 505–514 (2023). https://doi.org/10.1016/j.neunet.2023.01.051

7. Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in
massive networks. ACM Trans. Database Syst. 36(4), 21 (2011)

8. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration
with limited memory. In: KDD, pp. 1240–1248 (2012)

9. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)
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Abstract. Word embeddings play a significant role in today’s Natural
Language Processing tasks and applications. However, there is a sig-
nificant gap in the availability of high quality-word embeddings spe-
cific to the Italian medical domain. This study aims to address this
gap by proposing a tailored solution that combines Contrastive Learn-
ing (CL) methods and Knowledge Graph Embedding (KGE), introduc-
ing a new variant of the loss function. Given the limited availability of
medical texts and controlled vocabularies in the Italian language, tra-
ditional approaches for word embedding generation may not yield ade-
quate results. To overcome this challenge, our approach leverages the
synergistic benefits of CL and KGE techniques. We achieve a significant
performance boost compared to the initial model, while using a consid-
erably smaller amount of data. This work establishes a solid foundation
for further investigations aimed at improving the accuracy and coverage
of word embeddings in low-resource languages and specialized domains.

Keywords: Contrastive Learning · Knowledge Graph Embeddings ·
Metric Learning · Self-Supervised Learning

1 Introduction

Text has always represented a significant portion of all the clinical data pro-
duced every day in the world, from Emergency Room reports to clinical diary
of patients, drugs prescriptions and administrative documents. Recent digital-
ization has paved the way for new applications by leveraging automatic data
analysis. It is therefore necessary to develop tools capable of understanding the
content of documents and their contextual nuances in order to be able to extract
useful information. This is one of the main objectives of Natural Language Pro-
cessing (NLP), which in recent years – thanks to the deep-learning revolution –
has led to extraordinary results.

Many of these successes can be attributed to foundational models, which
are large neural networks that have been trained over a vast collection of
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unannotated data. These models can be adapted or fine-tuned to perform various
downstream tasks with minimal modifications.

However, it is difficult to train a generic model suitable for every kind of
text. For this reason, and starting from a pretrained model of the language of
interest, a new specific embedding model is created for a given domain. This
is done by continuing the training on a specific selection of texts. Although
less expensive than newly training from scratch, there are still many difficulties,
especially when dealing with languages with limited resources, such as Italian,
which lacks extensive corpora of freely accessible clinical texts. Due to limited
resources, these models should be even more capable of operating in contexts of
few annotations with regard to downstream tasks. In these cases, a more accurate
representation of similarity is therefore necessary and turns out to be useful in
many circumstances. For example, in [16] the semantic similarity between med-
ical terms has been exploited to reduce lexical variability by finding a common
representation that can be mapped to IDC-9-CM. Starting from this work, and
with the aim of improving the measure of semantic similarity, we have applied
recent techniques of contrastive learning as a tool for representation learning,
by approaching pairs of semantically similar or possibly equivalent terms (i.e.
synonyms) and distancing dissimilar pairs.

Born in the Computer Vision field, contrastive learning is increasingly being
applied in NLP [23], with still unexplored potential. However, the biggest diffi-
culty lies in the efficient sampling of negative cases and the selection of positive
examples, an even more difficult task in a low-resource language such as Italian.

To compensate for the lack of synonyms listed in the Italian vocabularies of
the Unified Medical Language System (UMLS)1, we directly exploit the Knowl-
edge Graph Embedding (KGE) representation derived from the UMLS semantic
network. In doing this, we modify the contrastive Multi Similarity (MS) loss [19]
so that its parameters are tied to the similarity calculated on KGEs, and we
exploit the context surrounding the terms, treating it as an augmented view of
the term. To the best of our knowledge, this is the first time that MS loss, con-
texts and KGE have been combined in a single model. This solution has made
it possible to train a new model capable of exceeding the performances of multi-
lingual state-of-the-art models applied to the Italian language. Compared to the
original training methodology, our proposal is able to obtain comparable or bet-
ter results, while using a significantly lower amount of data. Data, source code
and pretrained model are available at https://github.com/rogerferrod/MedITA
embeddings.

2 Related Work

In the literature, there are many works that aim to specialize a word embed-
ding model on a specific domain, like [4,5,8]. Similar studies exist for Italian,
for example [15], but not for the medical domain. To the best of our knowledge,
1 UMLS is a collection of controlled vocabularies which comprises a compre-

hensive thesaurus and ontology of the biomedical sciences; it is available at
https://www.nlm.nih.gov/research/umls.

https://github.com/rogerferrod/MedITA_embeddings
https://github.com/rogerferrod/MedITA_embeddings
https://www.nlm.nih.gov/research/umls/index.html
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there is no publicly available embedding model for the medical domain in Ital-
ian. There are several possible strategies to train new pretrained models, such as
the possibility of training a model from scratch (like SciBERT [1]) with consid-
erable associated costs, or to continue the pre-training on new domain-specific
documents (BioBERT [8]).

In some domains, and in particular in the biomedical field, the knowledge
is explicitly distilled in semantic networks (or knowledge graphs) that define
entities (e.g. objects, events, concept) and relations between them. Knowledge
graphs are usually big, dynamic and incomplete, though. Moreover, their graph
structure is not efficient to be traversed, nor is compatible with common machine
learning frameworks. For these reasons, various techniques have been proposed
to overcome these limitations, introducing the concept of Knowledge Graphs
Embeddings (KGEs). In analogy to word embeddings, a Knowledge Graphs
Embedding model maps similar entities closer in a dense low-dimensional vector
space. TransE [2] was one of the first method proposed, that despite its simplicity
is still commonly used today. Then, other models follow, such as DistMult [20],
ComplEx [18], RotatE [17] and SimplE [7]. We experiment with these solutions,
that differ for their working principle, for encoding the UMLS semantic network.

Our research draws direct inspiration from two key works in the field: Sap-
BERT [9] and CODER [21]. SapBERT was the first to use contrastive learning
on UMLS synonyms in order to enhance the representation of biomedical embed-
dings. On the other hand, CODER integrated relational information from the
UMLS semantic graph by incorporating a loss function inspired by DistMult. The
authors of CODER have subsequently developed an extension of CODER called
CODER++ [22], which introduces dynamic hard pair sampling. This technique
leverages the model itself to include the most informative samples in batch. By
providing online hard negative pairs to MS loss, CODER++ surpasses previous
results and establishes itself as the new state-of-the-art model.

While SapBERT and CODER are limited to decontextualized terms, KRISS-
BERT [24] expands upon SapBERT by incorporating contexts, extracted from
PubMed, in which the UMLS synonyms are used. This additional contextual
information helps manage term ambiguity. Furthermore, KRISSBERT incor-
porates UMLS relationships, although it focuses exclusively on the taxonomic
relationships of the ontology in textual form.

It is important to note that while CODER is available in a multilingual
version, and a multilingual extension has recently been released for SapBERT
[10], CODER++ and KRISSBERT are currently not compatible with the Italian
language.

3 Method

Due to the challenges posed by data scarcity in low-resource languages like Ital-
ian, the classical training methods for natural language processing tasks are not
easily applicable. Consequently, we propose a synergistic approach that maxi-
mizes information extraction from limited textual data and a restricted domain
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vocabulary using multiple preexisting solutions. Our proposed method revolves
around utilizing a domain ontology and an unlabeled text corpus, enabling us
to address these challenges effectively and efficiently.

3.1 Self-supervised Mentions

Contrastive learning involves bringing together the representations of different
views of a single entity within the representational space. These views are gen-
erally called positive samples, and in a case of some previous works the posi-
tives were obtained directly from the ontology, leveraging the synonymy relation.
However, there are very few Italian synonyms in UMLS, which makes contrastive
learning on the terms themselves impossible. Following KRISSBERT [24], that
locates the UMLS medical terms in an unlabeled textual corpus, we adopt the
same strategy, but focused on a specific subset of the Metathesaurus that encom-
passes three main Italian vocabularies: ICPCITA, MDRITA, and MSHITA. Fur-
thermore, we narrow down our attention to a subset of semantic categories2,
which we refer to as UMLSITA. Consequently, we conduct a search for all terms
belonging to UMLSITA within our plain text corpus derived from different Ital-
ian sources, as reported in Table 1. Upon locating these terms, we extract a
fixed-sized context window around each mention. In cases where certain terms
overlap, such as “fever” and “hay fever,” we always choose the longest matching
term. By employing this approach, we successfully identify 2.2 million mentions
referring to 26, 432 unique terms.

Table 1. The corpus contains the collection of scientific pages of wikipedia-italian,
divulgative web pages of the ministry of health, medical websites and blogs (such as
Nurse24, MyPersonalTrainer, Dica33 etc.), material from university medical lectures,
the E3C raw-dataset [12] and degree thesis.

Source Words

Wikipedia 9,068,684 25%

Ministry of Health 1,120,952 3%

Medical websites & blogs 9,528,004 26%

PubMed 2,242,367 6%

Medical Lectures 958,802 3%

E3C 7,660,558 21%

Medical Degree Thesis 5,762,792 16%

TOTAL 36,342,159

2 Body Part, Organ, or Organ Component (BP), Body Substance (BS), Chemical
(C), Medical Device (MD), Finding (F), Sign or Symptom (SS), Health Care Activ-
ity (HCA), Diagnostic Procedure (DP), Laboratory Procedure (LP), Therapeutic
or Preventive Procedure (TPP), Pathologic Function (PF), Physiologic Function
(PhF), and Injury or Poisoning (IP).
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3.2 Contrastive Learning

Once the mentions are obtained, we utilize contrastive learning to train a
transformer-based encoder, aiming to bring closer the contextualized mentions
of the same entity while pushing mentions of different entities farther apart. A
schematic overview of this process is represented in Fig. 2. The mention context
m can be formally defined as:

[CLS]ctxl[Ms]mention[Me]ctxr[SEP]

where ctxl, ctxr denote the left and right contexts respectively, [CLS], [SEP] are
special tokens, [Ms], [Me] are special tags delimiting the mention. To encode m,
we employ a transformer-based encoder. Subsequently, we obtain the contextual-
ized entity mention representation e by applying average pooling to the last-layer
hidden state of the wordpiece tokens that compose the mention, as illustrated
in Fig. 1.

Fig. 1. Mention context encoding

During training, we construct every minibatch by first sampling n entity con-
texts [e1, ..., en]. Then, for each anchor ei we randomly sample k positives, i.e.
the contexts that share the same concept unique identifier (CUI) with the anchor,
[pi1, ...,pik]. We prioritize selecting positives that use a different synonym, as
those samples are more informative. Subsequently, we use a hard sample mining
mechanism to retrieve m possibly hard negatives (i.e. samples with the highest
cosine similarity with respect to the anchor). The rationale behind this mech-
anism is that at the beginning of training, many negatives will be included in
the top-m similarity set. As training progresses, the model learns to bring posi-
tives closer together, saturating this set with positives. Meanwhile, the negatives
belonging to the top-m similarity will be the hardest for the model to distinguish,
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thereby providing the most informative samples for learning. The implementa-
tion details of the hard negative sampling mechanism will be further discussed
in Sect. 4.1.

3.3 Loss Function

We have chosen to employ the Multi-Similarity (MS) Loss function for our con-
trastive learning approach, based on its success in biomedical natural language
processing tasks. The MS Loss function is defined as follows:

LMS =
1
m

m∑

i=1

{
1
α

log[1 +
∑

k∈Pi

e−α(Sik−λ)] +
1
β

log[1 +
∑

k∈Ni

eβ(Sik−λ)]

}
, (1)

where λ is a fixed similarity margin, Si,j the similarity of the i, j pair, b the batch
size, Pi,Ni the positive and negative sets, respectively, and α, β are hyperparam-
eters of the loss function. Furthermore, the multi-similarity loss has an in-batch
hard pair mining mechanism built-in. Specifically, a negative pair is selected by
comparing it to the hardest positive pair (i.e. with the lowest similarity), while
a positive pair is selected by comparing it to a negative pair that has the high-
est similarity. Formally, given an anchor xi its positive set Pi is constructed as
follows:

xj ∈ Pi if Sij < max
yk �=yi

Sik + ε, (2)

likewise for the negative set Ni holds:

xj ∈ Ni if Sij > min
yk=yi

Sik − ε, (3)

where ε is a hyperparameter of the loss function and y the label.
Throughout our experiments, we noticed that splitting the λ-term into two

independent thresholds for positive and negative pairs, as it was done in the
general pair-based weighting loss [11], led to noticeable improvements. We refer
to this modification as MS loss v2:

LMSv2 =
1
m

m∑

i=1

{
1
α

log[1 +
∑

k∈Pi

e−α(Sik−λp)] +
1
β

log[1 +
∑

k∈Ni

eβ(Sik−λn)]

}
,

(4)
where λp, λn are independent thresholds for positive and negative pairs respec-
tively.

This observation prompted us to further investigate the role of the threshold
in the learning process. Therefore, we aimed to find a more informative replace-
ment for the traditional scalar threshold term. Drawing inspiration from the
vast knowledge encoded in the UMLS semantic network, we explored the utiliza-
tion of similarities between medical entity nodes encoded using the Knowledge
Graph Embedding (KGE) technique. The main idea behind this approach is that
incorporating these informative similarities can guide the penalization assigned
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to pairs more effectively, taking into account the underlying relations between
terms when pulling them closer or pushing them apart. Therefore, we propose a
modified version of the loss function, referred to as MS Loss v3, which is defined
as follows:

LMSv3 =
1
m

m∑

i=1

{
1
α

log[1 +
∑

k∈Pi

e−α(Sik−|Sik−SKGE
ik |)]

+
1
β

log[1 +
∑

k∈Ni

eβ(Sik−(1−|Sik−SKGE
ik |))]

} (5)

where SKGE
ij is the similarity of the i, j pair in the knowledge graph embedding

space. Notably, we do not simply replace the threshold term with SKGE
ij ; instead,

we introduce an agreement-based mechanism. The impact of this mechanism is
evident in the weights assigned to pairs. For positive pairs, we calculate the
weight contribution as the partial derivative of LMSv3 with respect to a positive
similarity Sij :

w+
ij =

1 − Sij − SKGE
ij

|Sij − SKGE
ij |

e−α(|Sij−SKGE
ij |−Sij) +

∑
k∈Pi

e−α(Sik−Sij+|Sik−SKGE
ik |−|Sij−SKGE

ij |) . (6)

Similarly, for the negative pairs:

w−
ij =

1 +
Sij − SKGE

ij

|Sij − SKGE
ij |

eβ(1−Sij−|Sij−SKGE
ij |) +

∑
k∈Ni

eβ(Sik−Sij+|Sik−SKGE
ik |−|Sij−SKGE

ij |) . (7)

From these formulas, it is evident that the weight contribution for any sample
pair can zero out. For positive samples, this occurs when their similarity exceeds
the similarity observed between concepts in the KGE. In our case, this cannot
occur, as the KGE similarity will always be 1. Instead, the more interesting case
involves negative pairs. For negative samples, the weight contribution is reduced
to zero if the pair similarity is less than the KGE similarity. Unlike in the other
versions, the pair is not penalized if it is already dissimilar enough. There may
be some benefits to this for those negatives related to the anchor, which should
not necessarily be penalized as strictly as those not related to the anchor. For
instance, given “fever” as the anchor, the negative term “hyperthermia” should
not be penalized in the same way as “hypothermia”.
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Fig. 2. Overview of the training process; for each medical term available in UMLSITA

we retrieve its context, taken from our unlabeled corpus, and we exploit the contrastive
learning loss for reorganizing the embedding space by approaching positive pairs (i.e.
synonyms or different contexts of the same entity) and distancing negative ones. The
applied correction depends on the Knowledge Graphs Embedding (KGE) similarity
computed on the UMLS semantic network.

3.4 Knowledge Graph Embedding

We train Knowledge Graph Embedding models on a subset of UMLS knowledge
graph concerning the entities in UMLSITA. We leverage both semantic and taxo-
nomic relationships between these concepts. To ensure the quality of the training
data, we applied filtering techniques to exclude rare and inverse relations. This
filtering process resulted in a dataset comprising 415, 170 triplets, encompassing
69, 193 entities and 171 distinct relationships.

We then use 90%/6%/4% training/test/validation split ratio. We carefully
partitioned the data in such a way that the test and validation sets exclusively
consisted of entities and relationships that were already present in the training
set.

4 Experiments

To validate our methodology, we apply the techniques described in the previous
section to both SapBERT3 and CODER4, as illustrated more in details in the
following paragraphs.

4.1 Implementation Details

Regarding the hard negative sampling, to find contexts with top-m similarities
we would need to perform a matrix multiplication between all contexts in our
3 cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR-large.
4 GanjinZero/coder all.
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dataset. This operation is clearly unfeasible to perform on the fly, therefore we
use the FAISS index [6] instead. The index is updated at the start of each epoch
using the current state of the model. Specifically, the index we use is IndexFlatIP,
which stores all 2.2 million normalized contexts embedding. This choice of index,
combined with normalization, enables efficient cosine similarity search.

The training of the model was conducted over four epochs on a single NVIDIA
A40 GPU with 48 GB of memory. At each training step we construct the batch
sampling 10 anchor contexts. For each anchor we then sample k = 20 posi-
tives, and m = 50 possible hard negatives. Several experiments were performed
to explore different combinations of loss hyperparameters, but no significant
improvements were observed. Therefore, we retained the original configuration
with α = 2, β = 50, ε = 0.1. The remaining hyperparameters were set as follows:
a learning rate 2e − 5, weight decay of 0.01, a maximum gradient norm of 1,
and 10, 000 warm-up steps. Additionally, during the training, we use gradient
accumulation over 8 steps.

In light of an unconventional approach to constructing training batches,
where certain samples are selected multiple times during the same epoch, we
have opted to minimize the pool from which the anchors are sampled. However,
we still sample positives and negatives from the entire dataset. Prior to training,
we randomly choose 3 representative contexts for each term and use this subset
to sample the anchors. This decision significantly reduces computational burden
while ensuring adequate exposure to the complete dataset. Our experiments have
demonstrated nearly identical results between training with the entire dataset
and training solely with this subset, affirming its efficacy.

4.2 Evaluation Metrics

We evaluated our model on three similarity-oriented metrics: Medical Conceptual
Similarity Measure (MCSM), term clustering and semantic relatedness. MSCM
is based on the UMLS taxonomy, developed by [3] and used in CODER. It is
defined as:

MSCM(V, T, k) =
1

V (T )

∑

v∈V (T )

k∑

i=1

1T (v(i))
log2(i + 1)

(8)

where V is a set of concepts, T the semantic type according to UMLS, k the
parameterized number of neighborhood, V (T ) a subset of concepts with type T ,
v(i) the ith closest neighbor of concept v and 1T is an indicator function which
is 1 if v is of type T , 0 otherwise. Given this formulation and the default settings
(k = 40 as used in CODER) the score ranges from 0 to 11.09.

Given its importance in low-resource language, where pre-trained tools for
entity recognition and linking are lacking, we have also included the term clus-
tering task. Already experimented in [16] to unify lexically different but semanti-
cally equivalent terms, the task is defined more formally by CODER++, where
two terms are considered synonyms if their cosine similarity is higher than a
given threshold (θ) meanwhile true synonyms are taken from UMLS.
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For semantic relatedness, since there are no datasets of this kind for Ital-
ian and given their development costs (which would require the intervention of
several domain experts), we rely on two English datasets, manually translating
the entities involved. MayoSRS and UMNSRS were introduced by [14] and [13]
with a manual annotation of a relatedness score for 101 and 587 medical term
pairs, respectively. The values vary from 1 to 10 for MayoSRS and 0–1600 for
UMNSRS. Due to the lack of an appropriate translation for some terms, the
number of pairs for the UMNSRS dataset is reduced to 536 tuples.

4.3 Results

Upon initial evaluation of the state of the art, it is observed that SapBERT,
and specifically its multilingual version, still outperforms CODER on several
tasks, despite CODER having an advantage according to its original publica-
tion. Regarding the training of Knowledge Graph Embeddings (KGEs), the out-
comes of various models evaluated on link prediction and similarity tasks are
presented in the Table 2. Among these, ComplEx has been selected as the refer-
ence model due to its positive results on similarity datasets and a representation
that remains comparable to other models. The remarkable results achieved, as
illustrated in Table 4, cannot be solely attributed to a simple fine-tuning process
on the Italian biomedical domain. Instead, they can be largely attributed to the
significant impact of the MS loss v3. This conclusion is supported by the lack of
improvement in the results of the original multi-similarity loss, which was used
to continue the pre-training of the SapBERT model. The benefits of the MS loss
v3 are clearly shown in Table 3, where we compare the fine-tuning of the Sap-
BERT multilingual model with its original loss (MS loss v1) and our proposal
(MS loss v3).

Table 2. Evaluations of Knowledge Graph Embeddings over link prediction task
(hits@k, Mean Rank, Mean Reciprocal Rank) and similarity tasks (MSCM score and
Spearman’s coefficient over relatedness scores).

model hits@1 hits@3 hits@10 MR MRR MCSM MayoSRS UMNSRS

TransE 0.07 0.21 0.38 1619 0.17 9.76 0.45 0.49

ComplEx 0.07 0.19 0.34 1918 0.16 9.96 0.55 0.45

RotatE 0.14 0.25 0.42 3382 0.17 9.42 0.52 0.40

SimplE 0.09 0.17 0.30 2608 0.16 9.68 0.47 0.41

More in details, Tables 4 and 5 show the model performances on each evalu-
ation task, by comparing the baseline models (mBERT and BERT), the multi-
lingual state of the art used as starting point (SapBERT and CODER) and our
proposal. It is not possible to identify a single model capable of obtaining the
best results in every task, though. Indeed, we have noticed a different behavior
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Table 3. Comparison between SapBERT continual pre-training done with its original
MS loss (v1), MS loss with separate margins (v2) and our proposal (v3).

model MCSM (avg) Clustering (F1) MayoSRS UMNSRS

MS loss v1 6.10 25.00 0.27 0.32

MS loss v2 6.40 30.10 0.30 0.34

MS loss v3 6.71 28.68 0.33 0.36

of the model depending on the task on which it is evaluated. In particular, the
human annotated semantic relatedness seems to be in contrast with the metrics
defined automatically from UMLS: each improvement of human metrics corre-
sponds to a worsening of UMLS-based metrics and vice versa. The choice of
the pooling strategy is also not optimal for every task. By replacing the mean
pooling with the CLS tag, both during training and validation, we obtain higher
than state-of-the-art scores on the MayoSRS and UMNSRS datasets, yet this
choice is ineffective for MSCM and term clustering. The chosen hyperparame-
ters, therefore, represent a compromise between the different evaluation tasks.

Table 4. Evaluation of baselines, state of the art and our models with the MSCM
similarity score.

Model BP BS C MD F SS HCA DP LP TPP PF PhF IPs AVG

mBERT 3.19 0.76 8.98 2.36 6.65 3.72 4.02 3.43 3.04 6.17 9.07 2.85 6.27 4.65

BERT 2.97 0.78 8.72 2.57 6.3 3.27 3.84 3.81 2.86 6 9.07 2.66 6 4.53

SapBERT 6.06 1.79 10.19 4.38 7.54 4.82 5.48 6.69 4.39 7.92 9.52 4.46 6.98 6.17

+ MS loss v3 6.81 2.1 10.41 5.68 8.02 5.02 5.47 7.64 5.52 8.89 9.8 4.51 7.36 6.71

CODER 4.1 1.22 9.63 2.99 6.57 3.94 4.95 4.01 3.2 6.04 9.08 3.29 5.87 4.99

+ MS loss v3 5.54 1.41 10.23 4.68 7.44 4.36 5.31 5.53 4.64 7.74 9.66 3.87 6.83 5.93

Table 5. a) Results of the term clustering task (i.e. automatic detection of synonyms),
with the θ threshold optimized with respect to the F1 score; b) Spearman’s coefficient
over two semantic relatedness datasets: MayoSRS (with 1–10 range) and UMNSRS
(0–1600).
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5 Conclusion and Future Works

In this paper, we present a novel approach to address the lack of domain-specific
word embeddings for the Italian language by combining pre-existing state-of-
the-art solutions with a new variant of the Multi-Similarity loss. Our method
leverages the Knowledge Graph Embedding (KGE) representation derived from
the semantic network to compensate for the scarcity of controlled medical terms
and synonyms, effectively reorganizing the embedding space and improving per-
formance on semantic similarity-related tasks.

With regard to metric learning and representation learning, contrastive learn-
ing is currently the most suitable and widely adopted method. We used the
Multi-Similarity loss, its hard pairs mining and the dynamic sampling mecha-
nism, combined with KGE and contexts. Indeed, unlike other works, language
models trained on the Italian language have to overcome more substantial chal-
lenges, due to limited resources available. The use of contexts has proved to be
essential, not only to capture different nuances of the same term, but more in
general to expand the number of positives, which would have been not enough
for a successful training if we had limited ourselves to synonyms. To overcome
these difficulties, and leverage as much as possible the information available,
we have exploited to our advantage the information contained in the KGEs, by
adapting the MS loss in order to take into account the similarity computed on
them. This contribution represents the major novelty of this work, since – to the
best of our knowledge – such an initiative had never been proposed before.

Our proposed method demonstrates comparable or superior results to the
current state-of-the-art approaches. However, there are still several limitations
that need to be addressed. Firstly, limited computing power restricts the number
of samples that can be utilized and impedes further development. Additionally,
the quality and availability of domain-specific texts are crucial factors. The col-
lected corpus is skewed towards blogs and informative articles, which often lack
specific terms and medical jargon found in medical records. Finally, considering
the relevance and usefulness of multilingual models, it would be interesting to
extend this work to multilingual environment once the aforementioned limita-
tions have been overcome.

We hope that this work could ultimately promote the advancement of new
domain-specific word embeddings in low-resource languages, paving the way for
future research directions in the Italian NLP community.
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Abstract. Recognizing attributes of unknown artworks relies on more
than visual information: prior knowledge and emotional context can play
a crucial role. Building an AI system mimicking this perception requires a
multi-modal model integrating computer vision and contextual factors.
In this paper, we propose a new model that uses vision transformers
and graph attention networks to learn new artworks’ visual and contex-
tual features and predict their style, genre, and emotion. Contextual fea-
tures are acquired from an extended version of our ArtGraph knowledge
graph, enriched with emotion information from the ArtEmis dataset.
Our inductive end-to-end multi-task architecture enables real-time exe-
cution and resilience to graph evolutions. Combining computer vision
and knowledge graphs could facilitate a deeper understanding of the
fine arts, bridging the gap between computer science and the human-
ities (The new version of the graph is available at https://doi.org/10.
5281/zenodo.8172374, while the code is available at https://github.com/
CILAB-ArtGraph/multi-modal-end-to-end-art-classifier).

Keywords: Computer vision · Deep learning · Digital humanities ·
Emotion recognition · Knowledge graphs

1 Introduction

The digitization of art collections has practical implications for computer vision
applications in areas such as automatic indexing and cultural heritage analy-
sis. This intersection of computer vision and art has the potential to deepen
our understanding of the fine arts and make them more accessible to a broader
audience. In particular, recent advances in deep learning have demonstrated the
potential of artificial intelligence systems in art, including predicting style, genre,
and emotion [6,9,20,22]. However, pure computer vision methods have limita-
tions in capturing the “contextual” knowledge needed for a complete understand-
ing of art. Artworks are influenced by historical, social, and contextual factors,
contributing to a richer interpretation beyond the visual aspect.
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Recent research has explored integrating contextual information into knowl-
edge graphs (KGs) to improve computer vision methods in various domains,
including art [13–16]. However, the existing literature mainly adopts a “trans-
ductive” approach, which requires costly re-training and relies on how test data
are distributed and linked to the KG. These limitations hinder real-time appli-
cations, especially when it comes to predicting the attributes of individual test
instances. In our previous work [5], we addressed some of these limitations
by proposing an “inductive” method that used the features of our art KG,
ArtGraph. However, our approach used a projection mechanism, preventing an
end-to-end architecture and neglecting the contextual features of new artworks.
Moreover, our model focused only on predicting style and genre, neglecting the
important attribute of evoked emotions.

The availability of digital image collections has sparked interest in automatic
methods for inferring viewers’ emotions, with applications ranging from semantic
retrieval of images to aesthetic evaluation and opinion mining [19,21]. However,
the emotion classification of images is a challenge because of human feelings’ com-
plex and subjective nature. This difficulty is amplified in the fine arts domain,
where works are abstract and may lack easily identifiable subjects, making it
more difficult to discern the artist’s intentions [1,10]. Developing an automated
system with a high-level understanding of the fine arts requires addressing the
challenges of incorporating affective skills.

In this paper, we contribute in the following ways:

– We present an updated version of ArtGraph, which now incorporates emo-
tions by integrating information from the ArtEmis dataset [1]. A preliminary
study of this integration was reported in [2].

– We develop an end-to-end classification model that combines visual and
knowledge graph embeddings to recognize artworks’ style, genre, and emo-
tion. The model follows an entirely inductive strategy, which makes it suitable
for real-time applications.

– Experimental results demonstrate the effectiveness of the proposed model,
which exceeds the current state-of-the-art. Moreover, our model proves robust
when operating on a graph enriched with its own predictions, simulating a
real scenario in which the graph “evolves”.

The rest of the paper is structured as follows. Section 2 reviews related work.
Section 3 explains the data used and the steps required to extend ArtGraph.
Section 4 illustrates the proposed classification method. Section 5 discusses the
experimental results. Finally, Sec. 6 concludes the article and outlines potential
future research directions.

2 Related Work

Deep neural networks have shown promise in deriving complex patterns from
art. Previous methods (e.g., [17,22,23]) have used convolutional neural networks



Recognizing the Style, Genre, and Emotion of a Work of Art 429

(CNNs) to recognize attributes of artworks, such as the school of painting. How-
ever, recognizing specific attributes from visual content alone remains challenging
because of their high variability.

Researchers have incorporated contextual information encoded in knowledge
graphs alongside visual features to address this challenge. One approach, Con-
textNet [16], combines visual and contextual features by representing the art-
work using ResNet50 for visual features and node2vec for contextual ones. How-
ever, this method has limitations because it uses contextual knowledge only to
“adjust” the visual features and does not consider the content of the graph nodes.

To improve attribute prediction, a new model called GCNBoost [14] extends
ContextNet by incorporating graph convolutional networks (GCNs). It performs
a preliminary prediction using ContextNet and then extends the KG using the
predicted attributes as “pseudo-labels”. The GCN is then used to determine the
final result. Although this approach overcomes some limitations of ContextNet,
the generation of the extended knowledge graph can be complex and inefficient.

In our previous work [5], we addressed these problems by proposing a mul-
timodal model based on graph attention networks (GATs). During training, we
extract visual and contextual features from our proposed KG, ArtGraph. The
embeddings are then concatenated, and the resulting feature vector is used for
prediction. Since contextual information is unavailable during testing, we use a
“projection” function to project the visual features into the pre-optimized con-
text space. This approach follows an inductive strategy and allows us to develop
a real-time predictive model that predicts attributes based solely on the visual
appearance of an artwork. However, the projection mechanism prevents using
an end-to-end architecture, as it requires pre-training of the GAT. In addition,
the model in our previous work predicts only style and genre attributes.

Regarding predicting emotions evoked by works of art, Achlioptas et al. [1]
introduced the ArtEmis dataset and proposed a method based on a pre-trained
ResNet32 to minimize the KL divergence between the predicted and empirical
user distributions. They also explored sequence models based on textual descrip-
tions. Fine-grained emotion prediction proved to be more challenging than binary
classification. Bose et al. [4] developed transformer-based models using textual
descriptions and visual features, outperforming methods with separate embed-
dings but requiring descriptions at the time of testing. We also tried to tackle the
problem of emotion recognition in the fine arts domain by combining visual and
contextual information. In a previous study [2], we harnessed the capabilities of
ResNet50 for visual feature extraction, combined with TransE [3] for contextual
representation learning. However, although TransE leverages the logic schema
of the graph for the learning process, it does not handle a real scenario in which
the graph grows over time since it learns the embeddings in an unsupervised
manner.

We aim to develop an inductive method for real-time style, genre, and emo-
tion prediction based on visual and contextual features. Unlike our previous
work [5], we enrich ArtGraph by integrating emotional data from ArtEmis. Our
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approach avoids artifacts such as projection functions and exploits the graph’s
style, genre, and emotion nodes for predictions, enabling end-to-end training.

3 Materials

3.1 ArtGraph
ArtGraph [5] is a KG in the art domain that can represent and describe many
concepts related to artworks and artists. For example, regarding artwork nodes,
the hyperlink to the image, the date of creation, and where it is exhibited
are encoded. In addition, much information is included as connections between
nodes, such as an artist’s influence on another. To build the graph, we scraped
WikiArt, and since this encyclopedia does not provide rich information about
artists, we also exploited DBpedia to retrieve artists’ metadata. ArtGraph is
modeled as a Neo4j database, which can be used to perform information retrieval
and knowledge discovery tasks even without explicitly training a learning algo-
rithm.

3.2 ArtEmis

In its first released version, ArtGraph did not include emotion information. To
fill this gap, we exploited ArtEmis [1]. It is a large-scale dataset that associates
artworks with human emotions and contains natural language explanations of the
motivations behind each emotion triggered. The dataset was built on WikiArt
and contains 80, 031 unique artworks by 1, 119 artists covering 27 styles and
45 genres. The authors collected emotions by asking at least five annotators to
express their dominant emotional reactions. Specifically, after looking at an art-
work, the annotators were asked to indicate their dominant reaction by choosing
from anger, disgust, fear, sadness, amusement, awe, contentment, excitement,
and something else. This is thus the categorical emotional model proposed by
Mikels et al. [18], expanded with the ninth category something else, indicating a
neutral emotion. As mentioned, the annotators were also asked to explain their
choice, but our study did not use these data.

3.3 Combining ArtGraph and ArtEmis

To enrich the graph with emotions, we integrated the emotion labels provided
by ArtEmis into ArtGraph. We identified the artworks in both datasets, obtain-
ing 65, 236 distinct artworks spanning 30 styles and 18 genres. The ArtEmis
dataset contains various details for each entry, including the artwork, the emo-
tion elicited, an annotator’s explanation of the choice of emotion, and a score
indicating the level of arousal. Accordingly, as schematized in Fig. 1, we added in
ArtGraph an edge between each “artwork-emotion” pair to represent the domi-
nant emotional reaction as reported by the evaluators. However, since multiple
annotators recorded their choices for each artwork, we used a majority approach
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Fig. 1. Logic schema of ArtGraph after integrating emotions.

Table 1. Comparison of ArtGraph and the new version with emotion nodes.

KG # nodes # edges # artists # artworks

ArtGraph 135, 038 875, 416 2, 501 116, 475

ArtGraph + ArtEmis 135, 047 1, 092, 544 2, 501 116, 475

to select the dominant emotion with the highest score. Specifically, in this study,
while incorporating all triggered emotions into the graph, we focused on predict-
ing the most recurrent reaction for the emotion recognition task. To illustrate the
evolution, we provide a comparison between the previously published version of
ArtGraph [5] and the extension presented in this article in Table 1. Significantly,
emotions were added only to artworks in both datasets, while those exclusive
to one dataset were not considered for emotion recognition. Finally, integrating
emotion information into ArtGraph provides significant benefits to end users by
enabling them to perform information retrieval and knowledge discovery tasks
using the graph. For example, users can navigate the graph to search for art-
works or artists based on dominant emotions. Currently, ArtGraph is one of
the most extensive knowledge graphs on art, encompassing 116, 475 artworks by
2, 501 artists, comprising 32 styles, 18 genres, and metadata describing them.

4 Methods

We propose a new multi-task classification method that combines graph repre-
sentation learning and visual features to predict artworks’ style, genre, and emo-
tion simultaneously. Our multi-modal architecture, depicted in Fig. 2, integrates
visual and contextual features for improved prediction. By leveraging multiple
inputs, a multi-modal and multi-task approach captures different perspectives
on artworks, enhancing performance in understanding art-related attributes.

Our previous work [5] surpassed the state-of-the-art but had limitations. It
involved a two-step process, learning graph embeddings and then a projection
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Fig. 2. Architecture of the proposed model. The artwork is encoded using ViT. All
class “prototypes” are encoded using a GAT. Then, using a concatenation layer, the
visual and contextual embeddings form a single feature vector that is finally fed into a
classification head (“MLP”) to provide the final output.

encoder, which required contextual embedding at test time. In the method pro-
posed here, we encode all styles, genres, and emotions as contextual embeddings
and concatenate them with visual features for prediction. This approach offers
advantages such as using true contextual embeddings during testing, avoiding
surrogate features, and leveraging the knowledge graph as background knowl-
edge, which remains applicable even with new data. In contrast, extracting con-
textual embedding for a specific artwork relies heavily on the feature projector
and lacks handling the data drifts commonly found in this domain.

In the following subsections, we provide a more detailed description of our
multi-modal and multi-task approach, focusing on embedding generation and
the specific inductive inference method employed.

4.1 Visual Embedding Generation

As for the visual embeddings, each three-channel artwork image is first resized
to 224 × 224 pixels and then encoded by a vision transformer (ViT) [12] pre-
trained on ImageNet and fine-tuned on the artworks in ArtGraph. ViT consists
of a transformer-like architecture, which considers an image a series of patches.
The patches are linearly embedded and added to position embeddings. Then,
the resulting features are fed into a standard transformer encoder. It is worth
noting that, to perform fine-tuning, a supervised learning task is usually solved.
To this end, the chosen task was style recognition since the features learned
for style may be more general than those learned for genre or emotion. Indeed,
while style is usually independent of the content of an artwork, the same genre
can be expressed through many styles. Emotions, on the other hand, are highly
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subjective. For this reason, as a common practice, we first fine-tuned the net-
work by freezing all the layers except the classification head to prevent the loss
magnitude from destroying previously learned weights. Then, we unfroze the
last feature extraction layer to improve feature representativeness. As a result,
we take the final output learned features which result in a visual embedding
hv ∈ R

128.

4.2 Context Embedding Generation

We use a graph attention network (GAT) [24] to extract contextual embeddings
from ArtGraph. The GAT learns iterative node representations, where each node
embedding hg is computed based on the node’s neighborhood and attention coef-
ficients. The GAT captures the importance of different neighbors in representing
each node by performing message passing and aggregation.

A GAT is particularly useful for our heterogeneous graph, as it considers mul-
tiple types of information and relationships. By aggregating information from
the linked artwork nodes, we encode the nodes representing style, genre, and
emotion. This allows us to capture contextual knowledge and enhance the rep-
resentativeness of the embeddings. The GAT’s non-linear transformation and
attention mechanism improve the representativeness of the aggregation, consid-
ering particular neighbors more than others during classification. For the artwork
nodes, we use the same features extracted by ViT as a content representation,
while scalar features are used for other node types. This approach accommo-
dates the addition of new nodes and edges to the graph without requiring the
retraining of the encoder module.

Unlike our previous work [5], all features have been refined along with ViT to
solve the same classification task. As a result, the output of the GAT encoding
is a set of node embeddings hg ∈ R

128 for each node in the graph. Unlike
node2vec, which encodes embeddings solely based on topology, our approach
treats encoding as a supervised task within an end-to-end model. The GAT learns
the most suitable embeddings for the defined task, enhancing their feasibility.

4.3 Model Inference

When adopting an inductive approach, a significant challenge arises in provid-
ing contextual features to the model during testing, especially for “isolated”
target artworks where only visual information is available. Previous methods
have employed pseudo-labels [14] or projection strategies [5,16] to address this
issue and maintain contextual features during inference. This paper proposes
a novel approach that extracts embeddings from class nodes, including styles,
genres, and emotions. As mentioned above, the GAT produces a set of node
embeddings, and our method considers all embeddings related to styles, gen-
res, and emotions. These features serve as “prototypes” representing each genre,
style, and emotion in ArtGraph. By doing so, we enable the model to handle
unseen artworks without relying on their specific contextual information during
testing while encoding the contextual information as background knowledge.
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This approach offers several practical advantages. Firstly, it utilizes true
embeddings encoded in the graph rather than surrogate features, improving per-
formance. Secondly, it eliminates the need to differentiate the model’s behavior
between the training and testing phases, as previously done. Consequently, we
can build an end-to-end architecture that simultaneously refines all features,
including the GAT and the final classification layer. Lastly, the class proto-
types can adapt and refine as the graph evolves with the addition of new nodes,
facilitating the encoding of new knowledge and enabling the model to learn
increasingly generalizable patterns in a “continual” learning setting.

Specifically, after encoding the visual features with ViT, we concatenate them
with the context embedding of each class, represented by the GAT. This results
in a combined feature vector [hv,hg1 , . . . ,hgC ] ∈ R

7,680, where C denotes the
number of classes for the three tasks. These features are fed into a softmax-
activated fully-connected output layer, with as many neurons as there are classes
to predict. Thus, to optimize the model, we use a multi-task loss function:

L =
T∑

t=1

C∑

c=1

� (ytc, ŷtc) ,

where T is the number of tasks, i.e. three, ytc is the ground truth for task t and
class c, ŷtc is the corresponding model prediction, and � (yti, ŷtc) = −ytclog(ŷtc)
is the classic cross-entropy loss.

5 Experiments

To evaluate the effectiveness of the proposed model, some experiments were
performed. In this section, we describe the experimental setup and discuss the
results obtained.

5.1 Experimental Setup

The experiments were conducted on a desktop PC with an AMD Ryzen 7 3700X
processor, 16 GB of RAM, and an NVIDIA RTX 3070 GPU. The proposed model
was compared with three baselines:

– ViT: it is the backbone of our proposed model and uses only visual features
to determine the target attribute of a given artwork [12].

– ContextNet : proposed by Garcia et al. [16], this model aims to predict artwork
attributes by exploiting visual and contextual knowledge. Visual features are
extracted using ResNet50, while contextual features are obtained through
node2vec.

– Our previous method: presented in [5], this method involved concatenating
the visual features extracted with ViT solely with the contextual feature vec-
tor of the artwork. Visual features were projected into the context space dur-
ing testing to provide a “proxy” for graph embeddings. Because this method
did not consider emotions, the output level was adjusted to predict emotions.
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In addition, the proposed model was evaluated in two settings: single-task and
multi-task. In the single-task setting, separate models were trained to recognize
each attribute. On the other hand, a single model was trained in the multi-task
setting that could simultaneously predict all three attributes, i.e., style, genre,
and emotion. The original model, as proposed, operates in the multi-task setting.
All models were implemented in Python using the popular PyTorch and PyTorch
Geometric libraries, which are well-suited to graph architectures. It is important
to note that we did not include methods that employ a transductive strategy
since they are not suitable for real-time applications, and their performance
depends on the characteristics and topology of the test graph. In other words,
during testing, we assumed that the model knew only the visual appearance of
the artwork.

It is crucial to consider that learning graph embeddings by considering the
whole graph could introduce a bias into the model. To mitigate this problem, we
used an inductive approach, partitioning the whole graph into separate training,
validation, and test graphs. Specifically, the training set forms an interconnected
graph, while the validation and test sets are only composed of isolated nodes.
We adopted an 80/10/10 partitioning criterion, ensuring that the division was
stratified by class. In this way, we ensured that the distribution of classes in the
training set was approximately preserved in the validation and test sets.

As for preprocessing the artworks, we resized them to a standardized size
of 224 × 224 pixels and performed normalization using the mean and standard
deviation values of the ImageNet dataset. For optimization, we used the Adam
optimizer with a learning rate of 10−4 and a batch size of 128. Dropout regu-
larization was applied to both the contextual encoding and final classification
layers, with a dropout probability of 0.25. An early stopping with a patience
of 2 and a learning rate schedule based on reducing the learning rate on the
plateau were also employed to avoid overfitting. The validation set helped tune
other hyperparameters. In particular, we found that the most effective activa-
tion function for the graph encoder is tanh, while the leaky-ReLU function was
chosen for the final classification layer.

The problem concerns multi-class classification. In addition, we introduced a
coarse-grained emotion classification, grouping emotions into positive and neg-
ative classes and treating something else as a distinct class. The result was a
ternary classification. To evaluate the effectiveness of the method, we used sev-
eral performance metrics. Top-1 and top-2 accuracy were calculated to determine
the frequency with which the correct class appeared among the first two pre-
dicted classes. Moreover, we used the macro F1-score, which involves calculating
the F1-score for each class and the subsequent average.

To simulate a realistic execution of the method, in which the knowledge graph
is dynamically adjusted after each prediction of new artworks, we conducted
experiments to study the impact of “updating” the graph. This updating process
involved adding links between the test artworks and their predicted outputs
(style, genre, and emotion), thus incorporating this new knowledge into the graph
and updating the embeddings accordingly. Although this approach introduces
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the possibility of noise and potential performance degradation, it allows us to
measure the resilience of the graph to evolving content and assess its ability to
adapt to and learn from new information.

5.2 Results

The results of the proposed method and the baselines in the single-task setting
are presented in Table 2. Analyzing the results, some observations can be made.
First, integrating contextual features consistently improves performance over
relying solely on visual features. This finding supports previous studies in the
literature that have highlighted the benefits of leveraging visual and contextual
features for attribute prediction [5,16]. In particular, this improvement is most
evident in the style classification task, indicating that style recognition greatly
benefits from the knowledge encoded within the graph. On the other hand, the
impact on genre and emotion classification is relatively minor, suggesting that
visual features more influence these tasks. In other words, while visual stimuli
play a crucial role in classifying genre and emotion, prior knowledge appears to
be less critical. Second, the proposed method consistently outperforms all base-
lines, including our previous work. This result indicates that the new end-to-end
inductive strategy allows the model to learn more effective representations. This
improvement validates the effectiveness of the proposed approach and highlights
the importance of the new learning framework employed.

Regarding the multi-task strategy, presented in Table 3, quantitative results
show that this learning strategy is generally preferable to the single-task app-
roach. The simultaneous prediction of style, genre, and emotion allows the tasks
to help each other synergistically. Particularly noteworthy is the influence of
the other tasks on the recognition of evoked emotions, suggesting a correlation
between them. However, as expected, classifying coarse-grained emotions was
much easier than fine-grained ones, considering all labels. It is worth noting
that, to have a fair comparison between the single- and multi-task setting, we
excluded all artworks for which there was no label related to the emotion elicited.
Notably, all methods were trained, validated, and tested using the same split.

As for the update strategy tested, the model performance remains constant
or even improves as new, albeit uncertain, knowledge is introduced into the
graph. This is a promising result, considering the potential real-world application
where the graph evolves and the model needs to self-improve. In the case of
contemporary art, for example, which lacks extensive annotations and requires
a well-defined taxonomy, this fact is particularly relevant. Also, because we use
a graph attention network to compute contextual features, there is no need to
retrain, unlike other algorithms like node2vec. This aspect further highlights the
efficiency of our approach.

Finally, in addition to presenting quantitative results, our model was sub-
jected to a qualitative evaluation. Figure 3 shows examples of the predictions
made for three distinct works of art. The first artwork, entitled “The Seine at
Argenteuil”, received correct classifications in all labels, confirming the overall
effectiveness of the proposed model. However, the remaining paintings did not
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Table 2. Comparison between the state-of-the-art and the proposed model in the
single-task setting. The best result for each metric per task in both tables is in bold.

Method Style Genre Emotion (multi-class) Emotion (ternary)

Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1

Fine-tuned ViT 47.21 65.91 33.05 66.19 81.90 50.20 39.23 57.25 21.92 61.10 85.24 47.31

ContextNet [16] 48.12 67.58 33.16 65.11 80.90 46.90 40.95 59.37 20.29 63.17 87.55 43.19

Previous work [5] 53.27 71.24 40.69 68.78 84.27 54.74 42.06 59.91 22.17 62.94 86.73 44.76

This work (no update) 63.12 80.65 48.60 74.48 88.13 61.94 44.75 63.23 25.66 65.90 88.09 48.23

This work (with update) 63.11 80.70 48.57 74.52 88.47 62.06 44.84 63.18 25.66 65.90 88.07 48.56

Table 3. Comparison between the state-of-the-art and the proposed model in the
multi-task setting. The best result for each metric per task in both tables is in bold.

Method Style Genre Emotion (multi-class) Emotion (ternary)

Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1

Fine-tuned ViT 57.14 64.28 32.55 64.28 78.71 47.89 42.85 57.14 27.49 75.00 85.71 42.48

ContextNet [16] 46.34 65.11 29.76 64.04 79.60 43.72 41.74 60.36 21.03 63.41 87.18 43.33

Previous work [5] 44.44 70.37 36.12 74.07 81.48 57.61 40.74 66.66 15.53 77.77 96.29 44.27

This work (no update) 63.29 80.49 47.43 75.35 88.50 63.80 45.42 63.90 27.29 66.32 87.93 50.43

This work (with update) 63.29 80.52 47.45 75.32 88.50 63.69 45.51 63.86 27.32 66.31 88.04 50.44

Fig. 3. Comparison between model predictions (P) and ground truth (GT): in (a),
an ideal scenario is represented in which our model accurately recognizes the correct
attributes for all three tasks; (b) presents a case of misclassification, in which the model
assigns a class that is semantically similar to the correct class, but still incorrect; (c)
shows a case in which the model completely fails to predict the correct labels for the
tasks. The labels follow the order of style, gender, and emotion.
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fare as well. In particular, in the case of “Night Responds to My Complaints”,
the model generated incorrect predictions for all tasks. However, it is worth not-
ing that the model’s predictions closely resembled the ground truth, indicating
that it had difficulties with ambiguous classifications comparable to humans.
The complexities arising from ambiguous class membership are evident in the
consistently higher top-2 accuracy than top-1. The third painting, titled “The
Wahdoosee Question”, further highlights the intricate nature of the heritage
domain. In this case, the model predictions were inaccurate, and the correct
classes differed significantly from those predicted.

6 Conclusion

In this paper, we have focused on the prediction of artwork attributes by intro-
ducing a method that combines visual and contextual features, where the latter
are derived from a knowledge graph. Our central hypothesis is that incorpo-
rating knowledge of past artworks could improve the performance that visual
features alone could achieve. We have taken a significant step in this direction
by supplementing our previously proposed ArtGraph with the ArtEmis dataset.
Leveraging the potential of graph neural networks and the increasingly popular
vision transformers, we have developed a new predictive model for analyzing
art. This model is based on a fully inductive end-to-end architecture, enabling
real-time predictions when only visual information of new artworks is avail-
able. However, we recognize that fine-grained classification of emotions remains
a challenging task. Categorizing the specific emotion evoked by a work of art is
inherently complex, as emotion labels are subjective in nature. To address this,
future work could explore unsupervised or semi-supervised learning approaches
to better identify emotion categories without relying solely on personal and
potentially conflicting human labels [7]. Furthermore, investigating mechanisms
based on attention or patches [11] could be a promising avenue to explore. In
paintings, for example, artists often incorporate specific details to evoke partic-
ular emotions in viewers, and these mechanisms can help capture those nuances
more effectively.

In future work, we aim to explore an additional task that is highly relevant
in this domain: artwork captioning [8]. The framework we have developed, which
combines visual and knowledge graph embeddings, could also incorporate textual
descriptions for a deeper understanding of the semantic aspects of art. This way,
our model could not only predict evoked emotion but also generate expressive
and historically informative descriptions of the perceived artwork. Integrating
knowledge bases into computer vision systems can help bridge the gap between
the humanities and computer science communities, enabling better understand-
ing and collaboration in this interdisciplinary field. This integration can improve
interpretability and provide meaningful insights into artworks, fostering a deeper
appreciation of art from a computational perspective.
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Abstract. In this paper we propose an approach that combines genetic
algorithms and temporal constraint satisfaction for generating personal-
ized tourist itineraries. Not only does the personalization process take
into account user preferences about the places to visit but also a num-
ber of temporal constraints (e.g., opening hours, time for visiting each
place, time to move among places) and time-related user preferences
(e.g., number of days of the visit, preferring a dense schedule vs having a
lot of free time, variety of the types of attractions during a day of visit).
In the paper, we discuss our approach and the results of a preliminary
evaluation of a prototypical implementation that generates personalized
itineraries for the city of Turin.

Keywords: Recommender Systems · Tourist Itinerary
Recommendation · Genetic Algorithms · Temporal Knowledge and
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1 Introduction

Planning an itinerary is a very common activity when organizing a visit to a
tourist location. In doing that we usually take into account a number of dimen-
sions. On the one hand, we consider the Places of Interest (PoI in the following)
to be included based on our tourist interests. On the other hand, we take into
account a variety of (i) temporal constraints such as the opening hours of the
PoIs, the amount of time for visiting each PoI, the time to move from each PoI
to the others, information about crowding at different times and (ii) temporal
preferences such as the desire to visit as many PoIs as possible or to be more
relaxed, the desire to have a lot of free time to stroll, the different alternatives
for moving among PoIs.

Tourist recommender systems have been developed to support this process
[1,2]. In particular, the combination of PoIs in an itinerary attracted a lot of
attention in the last decades, with the main objective to recommend an itinerary
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that maximizes a global profit/reward and can be completed within a specific
budget [10,17,18].

Although many recommender systems based the creation of itineraries on the
popularity of the attractions [26,27], a number of approaches that generate per-
sonalized itineraries by considering incorporating user interests and preferences
can be found in the literature [5,11,13,14,30].

In this paper, we propose an innovative approach for generating personalized
itineraries that combines different aspects.

First of all, our proposed approach can inter-operate with any tourist recom-
mender. The module that generates the itineraries takes a ranked list of PoIs as
its input and we do not make any assumption on how this list is generated. It
could be the output of any recommender that generates it based on any type of
user preferences about PoIs. The advantages of this choice, especially as regards
the evaluation of the approach, will be discussed later in the paper.

Second, we consider a number of time-related user preferences. We carried
out a user study to understand which of these dimensions are relevant and how
they are taken into account by different types of users [6]. The dimensions we
considered range from the density of the itinerary (some users prefer to visit as
many PoIs as possible while others prefer to visit fewer PoIs in more depth), the
preference to visit PoIs when they are less crowded, the preference of having a
lot of free time vs that of having a completely scheduled plan, the preference
of mixing PoIs of different types vs that of having homogeneous itineraries with
PoIs of the same type.

Third, we consider a number of temporal constraints such as the time to
move between each pair of PoIs, the opening hours, the estimated minimum
and maximum time to visit a PoI and the number of days of the visit. We
thus include a temporal constraint propagation and satisfaction module in the
itinerary generator.

Finally, we decided to design our itinerary generation module using genetic
algorithms. These types of algorithms are very suitable for the problem we are
facing which can be seen as a constrained optimization one. Indeed, genetic and
evolutionary algorithms have already been used for this task in the literature,
see for example [8,27–29,34]. A peculiarity of our approach is that the temporal
preference dimension will play an essential role in the evaluation function of the
genetic algorithm and constraint satisfaction will be used to prune itineraries
that violate them and thus are not temporally consistent.

The paper is structured as follows. In Sect. 2, we provide an overview of the
relevant state-of-the-art work. Section 3 discusses the temporal dimensions that
we take into account in the generation of itineraries and introduces the structure
of the temporal knowledge base. In Sect. 4, we discuss our genetic algorithm that
generates itineraries taking into account temporal preferences and knowledge,
while Sect. 5 illustrates the design and implementation of our prototype and
its evaluation. Finally, in the last part of the paper, we discuss limitations and
future works.
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2 State of the Art

Recommender systems for itinerary generation have a long history in the state
of the art. As seen in the introduction, much research has aimed to recommend
an itinerary that maximizes a global profit within a specific budget [10,17,18].

In recent years, more proposals have incorporated user interests and/or spe-
cific preferences to personalize the construction of itineraries [5,9,11,13,14,19,
24,26,27,30]. Other approaches aim to recommend itineraries that consider per-
sonalized requirements such as attractions visit sequence [16], mandatory attrac-
tion categories [20] or group interest satisfaction [15,21].

Time is a crucial aspect to be managed in recommenders for tourism [3,23,31]
and especially in the case of itinerary recommendations. However, time is usually
considered as a constraint more than an object of user preference as other aspects
(categories of place, time of accommodation, etc.). To our knowledge, very few
works consider user preferences on temporal dimensions [32,33].

Evolutionary algorithms have been adopted in the literature for generating
touristic itineraries. One of the first works in which a genetic approach was
used to solve the itinerary planning problem was that of Chen et al. [8]. In
their recommender system, a list of 30 PoIs is produced through a collaborative
filtering method and then two distinct genetic algorithms are used: the first
one to limit the number of recommended places to 10, minimizing the sum of
expenses without exceeding the total available time; the second one to sort them
minimizing the travelled distance. Representing a first attempt to use GAs in this
domain, the proposed solution was only able to produce a path consisting of an
ordered set of PoIs; following researchers tried to include in the recommendation
a number of constraints and factors such as real visiting times, places’ opening
hours, etc.

Other works designed algorithms to generate itineraries where the number
of PoIs is not determined in advance. For example, Ostrowski [22] proposed
a system which takes into account attractions’ opening hours and estimated
travel times by walk or bus. Zheng et al. [34] also introduced two additional
factors (aesthetic fatigue and the variable sightseeing value) in the profit formula,
adopting a combination of a GA with a differential evolution algorithm.

The work in [28] investigated for the first time the insertion of restaurants
in trips generated by a genetic-based recommender system. In their work, the
opening hours of the tourist places and the location at which the user wants to
start and end the trip are considered as constraints, while the only parameter
taken into account to calculate the results’ fitness is the ranking value of the
attractions and restaurants.

Compared with previous work, Tarantino et al. [25] developed an
evolutionary-based recommender system that includes a greater number of pref-
erences on context features (break intervals, PoI category) and various item
characteristics, such as the location accessibility for disabled people and the
type of PoI to be preferred (indoor/outdoor depending on the weather forecast).
Furthermore, travel times are estimated taking into account the tourist’s walking
speed and the queues at the PoIs.
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Tenemaza et al. [27] tried to create multi-day itineraries by separating the
itinerary recommendation problem in two parts: in their work, a k-means algo-
rithm (with k equal to the number of available visiting days) is first used to
cluster the best PoIs depending on their location and then a genetic algorithm
is exploited to optimize the visit schedule for each geographical sector.

Yochum et al. [29] used an adaptive genetic algorithm to personalize touristic
itineraries based on the quantity of PoIs present in the solution, their popularity,
their overall rating, their cost and the user desire to visit certain places.

With respect to the works discussed in the literature, the genetic algorithm
we propose recommends travel itineraries taking into account a wide range of
temporal factors modelled as user preferences (e.g., the travel time, the presence
of free time, the avoiding of estimated hours in which attractions are crowded)
and constraints (e.g., the estimated visiting time for each PoI, the opening hours
of recommended places, the start and end dates of the trip and the lunch breaks).
The aspects that are personalized according to user preference also cover other
factors, including the variety and quantity of PoIs, the desire to visit specific
places and the ranking of the recommended PoIs. The advantages of consider-
ing user preference for all these factors are presented in Sect. 5. Furthermore,
our recommender system is able to produce both single-day and multiple-day
itineraries; in the latter case, itineraries presenting imbalances between the sin-
gle days are assigned a penalty score and thus are unlikely to be suggested. In
this way, especially for long trips, we expect the various visit days to be equally
enjoyable for the user.

3 Temporal Dimensions and Temporal Knowledge Base

In this section we discuss the temporal dimensions that we take into account
in the generation of itineraries and we present the structure of the temporal
knowledge base.

We assume that the following temporal information about PoIs is available:

– Opening hours for each PoI, for each day of the week.
– Spatial coordinates of each PoI and thus time to transfer (on foot, by public

transport or by car) between each pair of PoIs.
– The average time for visiting each PoI, expressed either as an average duration

or as an interval distinguishing between minimal time for a quick view and
maximum time for an extensive visit.

– (Qualitative) information
about estimated crowding (e.g., “low”,“medium”,“high”) at different times
of each day.

All the pieces of information above are available or can be easily obtained from
the Internet. Indeed, in order to design our prototype for the city of Turin we
extracted all the information from Google services. Opening and closing times
are then expressed as points on the time line, crowded times can be expressed
as time intervals, while the time to move between PoIs and visiting times are
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expressed as bound on differences [12], which is thus the formalism we adopted
to represent all the temporal constraints in the knowledge base [4].

As regards users’ temporal preferences, the following dimensions are taken
into account:

– Time (e.g., number of days) available for the visit: date and time of arrival
and date and time of departure.

– User preference on maximizing the number of PoIs to be included in the
itinerary. Some people may be interested in visiting as many places as possible,
while others may prefer to have more relaxed times between the planned
activities.

– User interest in visiting heterogeneous PoIs. If this information is provided by
the individual, the itinerary recommender will try to include different types
of PoIs in (each day of) the itinerary (e.g., natural parks, museums, religious
places, historical places and buildings, etc.).

– Willingness to avoid crowding, i.e., whether the user desires to keep away
from crowded PoIs or at least crowded times of the day.

– Willingness to have some free time during the day, i.e., whether the user
prefers dense or sparse itineraries. In the latter case, a break interval is added
to each day of the itinerary.

– User preference concerning means of transport and the desire of minimizing
transfer times.

These pieces of information constitute the User Model which will be exploited by
our algorithm to generate itineraries. We carried out a study on whether these
preferences can be correlated to user’s personality and how the personality traits
can be used to shape itinerary factors in recommender systems [6].

In the prototype, we derived the user model from a simple questionnaire filled
out by the users.

4 Combining Genetic Algorithms and Constraint
Satisfaction for Generating Itineraries

In this section, we discuss the algorithm that generates a ranked list of itineraries
that are most suitable for a given user. The approach relies on a genetic algorithm
which exploits constraint satisfaction in the evaluation process, as we will clarify
in the following subsections.

4.1 Inputs to the Algorithm

The algorithm starts by taking the following inputs:

– A list L of PoIs, ranked according to the user’s interests. As we noticed in the
introduction, our itinerary generation process can be coupled with any tourist
recommender. We only assumed that a ranked list is produced in some way.
This assumption allowed us to decouple the analysis (and evaluation) of the
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itinerary recommender from one of the algorithms that suggest to a user the
PoIs that are most suitable for her/him. Moreover, in this way, our system
can inter-operate with any tourist recommender.

– The temporal knowledge base, as discussed in the previous section.
– A user model with user preferences concerning the temporal dimensions, as

discussed in the previous section.

4.2 Genetic Algorithm

The genetic algorithm works on a population of itineraries. Thus an itinerary is
an individual in our approach. In more detail, an itinerary is an allocation of
PoIs along the timeline whose extension depends on the duration of the visit to
be planned. An itinerary is valid if it is temporally consistent, i.e., if the time
constraints concerning the opening times of the PoIs, the time to move from a
PoI to the next one in the itinerary and those concerning the visit times are
consistent.

The genetic algorithm starts with an initial population of random valid
itineraries and loops producing subsequent generations until the “quality” of
the population is “satisfactory”. Let us analyze the process in more detail.

Evaluating the Fitness of Individuals. An individual, i.e. an itinerary
receives a fitness evaluation taking into account two aspects:

– The evaluation of the PoIs in the itinerary according to the ranking in the
list L. In this way, an itinerary containing PoIs that have a higher ranking in
L receives a better evaluation.

– The evaluation of the itinerary according to the user temporal preferences.
Each type of preference is considered separately and we adopted a number of
heuristic evaluation criteria:
• The itineraries are ranked according to the number of PoIs they contain;

this ranking contributes positively to the evaluation of an itinerary if
the user expressed a preference for maximizing PoIs during the visit,
negatively otherwise.

• Similarly, itineraries are ranked as regards the amount of free time and
also in this case the ranking can contribute positively or negatively based
on the user’s preference.

• The presence of PoIs visited during crowded times can impact negatively
the evaluation if the user prefers to avoid crowding.

• The heterogeneity of PoIs contributes positively if the user prefers this
type of itinerary, and negatively otherwise.

• High transfer times can impact negatively if this dimension is relevant to
the user.

• In case planning involves multiple days, balancing among days is taken
into account. Itineraries where the fitness in each day is similar are evalu-
ated better than the others. Those that are unbalanced receive a penalty
score that negatively impacts the fitness value. Fitness similarity is cal-
culated using standard deviation.
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As a result each itinerary receives an evaluation which allows us to rank them
inside the population.

Crossover: Generating Descendant Individuals. At each iteration, some
individuals in the current population are combined to generate individuals in
the new population. The higher the fitness value of the individuals the more
likely they are to be combined. Given two individuals I1 and I2, a descendant
I3 can be generated in different ways combining parts of I1 with parts of I2;
for example, the algorithm may take the morning parts of I1 and the afternoon
parts of I2 or it can alternate PoIs from I1 to PoIs from I2. We analyzed both
of these strategies and in the current implementation, we selected the first one
mentioned above that seemed to provide better results.

Aborting Temporally Inconsistent Individuals. When a new individual
I3 is generated, we run the constraint satisfaction algorithm to check whether it
is temporally consistent. If it is not, the individual is aborted and it will not be
part of the new population.

Mutations. Periodically some mutations are introduced in the population. An
individual I is mutated by randomly selecting some PoIs in the itinerary and
replacing them with other ones (possibly with better ranking). Mutated individ-
uals must pass the constraint satisfaction check to enter the new population.

Termination and Solutions. The process above is iterated producing a num-
ber of generations. We made experiments with two termination strategies: (i) a
fixed number of iterations and (ii) iterating until there is no significant improve-
ment in the evaluation of the best itineraries in the population (see Sect. 5).
When the process is terminated a ranked list of itineraries is produced and can
be presented to the user.

5 Prototype: Recommending Itineraries in Turin

In order to evaluate our approach, we developed a prototype providing person-
alized recommendations of itineraries for our town. The goal of the prototype is
twofold. On the one hand, it was used to make experiments with and tune the
algorithm. On the other hand, it was exploited to perform a preliminary user
evaluation.

To this aim, we fist developed a knowledge base with 30 PoIs in Turin,
including a variety of attractions (museums, parks, churches, historic buildings,
historic squares . . .). We then collected all temporal information about the PoIs
thus creating the temporal knowledge base.

Tuning of the Algorithm. During the design of the algorithm, we made many
experiments varying the dimensions of the population, the crossover and muta-
tion rate, and the number of iterations, so as to find the optimal parameter
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Fig. 1. Two example PoIs for users to evaluate in our prototype

setting for our application case. This allowed us to tune the algorithm, with the
aim of providing optimal results through our prototype. As far as the number
of iterations is concerned, we observed that 30 iterations produce stable rank-
ings, but we cannot claim that this can be generalized. Thus, we believe that
further experiments should be carried out to better assess the approach and its
sensitivity to changes.

Preliminary User Tests. In order to evaluate our approach, we designed an
online experiment consisting of several steps, where participants are asked to
evaluate different sets of itinerary recommendations. We carried out a prelimi-
nary evaluation with 20 people, aged from 18 to over 60, recruited among the
acquaintances of the authors using a convenience sampling strategy. Participants
were asked to explicitly express their preferences (i) about the PoIs in our knowl-
edge base (see Fig. 1), and (ii) about temporal dimensions (namely: minimization
of transfer times, maximization of the number of PoIs per itinerary, maximiza-
tion of the heterogeneity among PoIs in a certain itinerary, maximization of the
number of PoIs they have a strong preference for, the inclusion of free time slots,
busy hours avoidance), using a Likert-like scale ranging from 1 (minimum) to 5
(maximum) in both cases.

Then, we ran the itinerary recommender to generate personalized itineraries
for each user (Fig. 2): once excluding temporal dimensions (R0), once taking such
dimensions into account, but with predefined weights (R1), equal for all partici-
pants, and, finally, once considering participants’ preferences over the temporal
dimensions (R2). Each participant was therefore presented with three alternative
itinerary recommendations (randomized to avoid order effects) and was asked to
assess, for each of them, how good the recommended itinerary is on the whole
(overall evaluation).

The results we obtained are encouraging. In fact, itinerary recommenda-
tions generated taking into account participants’ preferences over the temporal
dimensions (R2) were evaluated more positively than the other two types of
recommendations. More specifically, R2 recommendations obtained an average
score of 3.4 (st. dev: 0.94) for the “overall evaluation” aspect, which is higher
than the scores obtained by R1 (avg: 3.1, st. dev: 1.07) and R0 (avg: 3.2, st. dev:
0.89) recommendations.



Combining Genetic Algorithms and Temporal Constraint Satisfaction 449

Fig. 2. An itinerary example

6 Concluding Remarks

In this paper, we presented an approach for generating personalized tourist
itineraries using genetic algorithms coupled with temporal constraint satisfac-
tion. The approach is independent of the way PoIs are ranked based on user’s
interest and can thus be coupled with any tourist recommender providing this
ranking. This choice was motivated by the aim of focusing on evaluating the
approach for building itineraries independently of the approach for ranking PoIs.
The approach we proposed uses a number of heuristics in the evaluation of the
suitability of an itinerary with respect to user’s temporal preferences. These
heuristics could be improved in many different ways and indeed we are currently
studying the impact of changing the heuristics.

The preliminary evaluation we performed with the prototype provided very
encouraging results: in fact, recommendations which take into account temporal
dimensions appear to be better in terms of their overall evaluation. A more
extensive evaluation will be carried out with a larger number of participants,
following the same experimental protocol, in order to confirm these results and
test for their statistical significance.

Furthermore, as future work, we will work on incorporating negative prefer-
ences in order to fine-tune our personalized algorithm [7].
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Abstract. Relay-based Railways Interlocking Systems (RRIS) carry out
critical functions to control stations. Despite being based on old and
hard-to-maintain electro-mechanical technology, RRIS are still perva-
sive. A powerful CAD modeling and analysis approach based on symbolic
logic has been recently proposed to support the re-engineering of relay
diagrams into more maintainable computer-based technologies. However,
the legacy engineering drawings that need to be digitized consist of large,
hand-drawn diagrams dating back several decades. Manually transform-
ing such diagrams into the format of the CAD tool is labor-intensive
and error-prone, effectively a bottleneck in the reverse-engineering pro-
cess. In this paper, we tackle the problem of automatic digitalization of
RRIS schematics into the corresponding CAD format with an integrative
Artificial Intelligence approach. Deep learning-based methods, segment
detection, and clustering techniques for the automated digitalization of
engineering schematics are used to detect and classify the single elements
of the diagram. These elementary elements can then be aggregated into
more complex objects leveraging the domain ontology. First results of
the method’s capability of automatically reconstructing the engineering
schematics are presented.

Keywords: Computer vision · Deep learning · Engineering drawings

1 Introduction

Engineering Drawing (ED) is derived from descriptive geometry, which is the
science that aims to represent three-dimensional objects in the plane (drawing
sheet, drawing board, etc.), thus allowing the resolution of infinite problems
on the paper plane. For many years, technical EDs have been made by hand,
requiring designers to spend a considerable amount of time developing the draw-
ing and editing it. Nowadays, technical drawings for engineering are developed in
Computer-Aided Design (CAD) software, where it is possible to make alterations
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easily and quickly. However, the projects that were made before the populariza-
tion of CAD software remain archived on paper [1].

When it is necessary to use a not digitized project, a big effort goes into
interpreting what has been designed and redesigning the project in CAD. For
this reason, many authors have been researching ways to interpret EDs through
computer vision methods, and in particular deep learning-based techniques show
promise for accomplishing this task [2].

In digitizing EDs through deep learning, several techniques can be applied
to improve the model’s ability to classify objects in the projects. In this context,
preprocessing is performed to highlight the image variations; for this purpose,
thresholding techniques can be applied. After preprocessing, shape detection
can be performed in specific or holistic categories, features extracted, and the
classification process is conducted [3].

According to Günay, Köseoğlu, and Yıldırım [4] Convolutional Neural Net-
works (CNNs) may be applied to classify drawings made by hand, their research
shows that CNNs perform well in the classification of electrical circuit drawings.
One of the major challenges in identifying electrical components in hand-drawn
drawings is the great difference between designs since there is no linear pattern of
hand-drawing development [5]. Classification accuracy using CNNs can achieve
acceptable results in this task applied to EDs.

In the railway signaling domain, the Railway Interlocking Systems (RIS) con-
trol the movement of trains, allowing or denying their routing according to safety
rules. Relay diagrams are a commonly used abstraction for modeling relay-based
RIS, describing such systems by graph-like schematics that show the connections
between the electrical components. However, verifying these diagrams for safety
is challenging due to their complexity and the lack of tools for automatic verifi-
cation [6].

Several EDs of the RIS remain on paper because these systems were designed
before the popularization of CAD. With models based on CNN becoming increas-
ingly faster and capable of classifying images with high accuracy, the interpre-
tation of ED of RIS becomes relevant research. From a model that can interpret
the drawings, transform this information into matrices, and verify the semantics,
it will be possible to have a tool that will help update these projects. So far, the
application of machine learning related to railways is based on the analysis of
RIS automation or improved timetable analysis [7], having room and need for
ED evaluation using deep learning techniques, as presented here.

The proposed method presented in this paper has a combination of several
techniques, its overall workflow is: Initially, the You Only Look Once (YOLO)
[8] Deep Neural Network is applied for object detection, and based on the found
objects a new drawing without them is used to focus especially on the seg-
ments. To identify the segments, the Probabilistic Hough Transform (PHT) [9]
combined with the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [10] is applied. Based on the segments found a graph is built to
evaluate the electrical circuits of the EDs.
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The contributions of this work to the digitization of EDs for RIS are sum-
marized in the following:

– developing an automatic method for digitizing engineering schematics. The
proposed approach is capable of redrawing EDs that are printout and is faster
than the manual labor required to render these EDs in executable machines.

– improving segment detection using the Density-based Spatial Clustering of
Applications with Noise in the Probabilistic Hough Transform. Using a clus-
tering method, it is possible to group overwritten segments, improving the
quality of the digitalization of these elements.

– proposing a graph problem based on the electrical connections of the RIS.
Building on the ontological characterization of the domain, this paper pro-
poses a graph-based problem to aggregate the basic elements into more com-
plex objects.

The remainder of this paper is organized as follows: Sect. 2 brings a literature
review on works related to EDs. Section 3 presents the applied methodology.
Section 4 brings the evaluation of the proposed approach. Finally, Sect. 5 presents
a conclusion and discusses future works.

2 Related Works

Technical drawings have a large application in industrial processes because they
provide important information about the structure where the project is applied,
besides interconnections between equipment. EDs are used in different industries,
such as oil and gas, mechanical, construction, and other fields of engineering
[11]. Nowadays, digitizing these designs is becoming extremely important, and
to update the projects, it is necessary to have them digitized.

In industrial projects, the specific identification of components is difficult to
achieve since there is a similarity between the standard graphic symbols used.
According to Yun et al. [12], to perform the object identification process in EDs,
it is necessary to have a structure composed of several steps: region proposal
evaluation, feature extraction, and classification. From the results of this eval-
uation, it is possible to classify the proposed regions and extract the symbolic
information by means of dummy detection.

To recognize and extract important information from engineering diagrams,
it is necessary to perform a preprocessing stage in which the alignment of the
drawing, the removal of outer edges, and the title box withdrawal are performed
[13]. This information can make it difficult to identify objects and, at this stage
does not contribute to the classification since, in the initial analysis, the object
is not related to the place where it is installed.

The relationship between the location of the object and the place where it
belongs is important as soon as there is global knowledge of the project, so it
is possible to make a validation of what has been identified. Mani et al. [14]
presented a strategy using graph search to traverse a diagram through its lines
and discover interconnected symbols.
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An essential aspect to be considered is that CNNs may perform well for object
classification; however, they may have difficulty identifying text characters, lines,
and tables. For this reason, to improve the interpretability of EDs, it is promis-
ing to use combined models, in which part of the network is used specifically
for character detection, making the solution more powerful [15]. Deep learning-
based models can be used especially for classification, making the network more
accurate for this task.

In the work of Kim et al. [16] the interpretation of EDs is conducted using
high-resolution images through specialized models for symbol detection and text
recognition after preprocessing the images. The selection of symbols into labels
makes object identification a clearer task to be performed. The Generalized
Focal Loss (GFL) and feature selective anchor-free methods can show slightly
better results for localizing objects in projects compared to other CNNs. Using
different backbones applied to GFL can further improve the results in symbol
identification, highlighting the Residual neural Network (ResNet) using 50 layers
has resulted in an accuracy of 0.970 for this task.

Specialized models such as the Character Region Awareness For Text detec-
tion (CRAFT) proposed by Baek et al. [17] and the Convolutional Recurrent
Neural Network (CRNN) presented by Shi, Bai, and Yao [18] stand out for text
recognition. With this, Kim et al. [16] showed that to have a better performance
in the analysis of EDs, it is required to use specific techniques for text detection,
such as CRAFT and CRNN, and other techniques for object identification, such
as GFL. Even with a large number of classes, this approach results in a complete
and robust solution for interpreting EDs.

Li, Yuhui, and Xiaoting [19] developed a CNN-based analysis for classifying
EDs using three categories: mechanical EDs, text drawings, and electrical EDs.
In their study, argumentation techniques were applied to increase the size of
the dataset by rotating, slicing, and including random noise. This practice is
common due to the need for a large database to train the CNN model. The
results showed that it is possible to have an accuracy of up to 0.987 for the
classification of different project types. For their application, the use of four
convolutional layers resulted in higher accuracy than using three.

An important issue to take into account in ED classification is the large
number of different classes with a little variation and imbalance that makes this
even more challenging. In the research of Elyan, Jamieson, and Ali-Gombe [20], a
combined approach is proposed to deal with all these challenges. In the proposed
method, bounding box detection is initially performed to locate and recognize
symbols. A deep generative adversarial neural network is used to deal with class
imbalance. From this approach, it is possible to train the network with a small
number of images and achieve highly accurate results.

To deal with the problem of the small database faced in this type of analy-
sis, Bickel, Schleich, and Wartzack [21] presented an approach to augment the
dataset based on randomly creating symbols and illustrations. From this, a deep
learning network can be used to test the dataset and recognize the symbols in the
EDs using more images. Since there are a large number of classes to be classified,
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a promising strategy in the first stage is to group similar circuit components,
and in the next stage, the circuits belonging to the same group can be classified
using CNN-based models. According to Dey et al. [22], using a 2-stage structure
with 20 classes of circuit components, a classification accuracy of 0.973 can be
achieved, which is higher than single-stage models.

Since Relay-based RIS (RRIS) contain thousands of combinations of compo-
nent instances, the interpretation of ED manually is a hard task. In this context,
deep computer vision is an outstanding solution. Since besides object detection
it is also needed to detect segments, this paper proposes a method that com-
bines techniques to achieve this goal, which is innovative for this application, the
proposed method is explained in the next section.

3 Proposed Method

The method proposed in this paper combines deep learning-based models with
probabilistic methods and clustering techniques. To meet the project goal, the
eighth generation of the You Only Look Once (YOLOv8) is applied for object
detection, and the PHT combined with the (DBSCAN) are employed for segment
detection.

3.1 Data Preparation

The EDs of the Italian railway company (Rete Ferroviaria Italiana - RFI) have
high-resolution, reaching more than 30,000 pixels wide by 4,000 pixels high, with
images having different electrical connections from different parts of the railway
stations. The first step in this project, in order to be able to apply machine
learning models, was to make standardized cutouts of the engineering drawings.
The 640, 1280, and 2560-pixel cutouts were considered, as in the examples in
Fig. 1.

Since drawings have different sizes (height and width), with horizontal dimen-
sions larger than vertical dimensions it is necessary to standardize the images to
be considered. Therefore, it was standardized to use 640-pixel cutouts, and with
this, the dataset for training and validation of the model was created and orga-
nized. Given this size variation, the number of cutouts depends on each project’s
original size.

The cutouts are disjoint from the complete ED, and then for the training the
symbols that were not wholly presented were not considered. Since not complete
symbols were disregarded the model was trained based on identifying only whole
symbols as needed for the reconstruction of the EDs. After identifying all symbols
and labels, a reconstruction of the entire drawing is performed and objects in
the borders are manually evaluated.

Training the model using images only of each symbol (from a pallet) did not
have effective results in the testing phase (inference). For this reason, no dataset
augmentation was used. In the initial experiments, including augmented data
reduced the model’s ability to be effective for real applications. Since the best
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Fig. 1. Engineering drawing of a relay-based railway interlocking system.

results were obtained using real images, only this type of image was used to
improve the applicability of the proposed model.

Symbols are the main objects to be identified in the project since electrical
connections occur between them. The labels and specifiers are additional infor-
mation that is attached to the symbols. The specifiers, labels, and connection
points (dots) were annotated to obtain a complete dataset. The total classes
considered in the project are 133: letters [0 to 9, a to z, A to Z], dots [0 to 11
variations], specifiers [arrows up or down], and symbols [C00 to C56]. Regarding
the letters, the Tesseract Optical Character Recognition (OCR) [23] was used as
a baseline comparison to the YOLO results.

3.2 Object Detection Method

The YOLO is a single-shot algorithm, meaning the detection and classification
are performed in a single run. The model has been improved over the years, and
the latest version released by Ultralytics [24] is the eighth generation (YOLOv8).

The images under consideration are divided into a S × S grid, where each
grid square predicts the object’s bounding box, corresponding to its degree of
confidentiality [25]. Thus, the confidence of classes (cl) of objects (obj), is denoted
by:

pr(cli | obj) · pr(obj) · IoU truth
pred = pr(cli) · IoU truth

pred . (1)

where i is the respective class under evaluation, considering the intersection over
union (IoU) of the predicted (pred) bounding boxes compared to the ground
truth (truth) [26]. In this paper, 133 classes are considered. Once the image is
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divided into grids, a class probability map is computed to identify the target
objects and bounding boxes to determine if the desired objects are situated in
this confidence region.

3.3 Segment Detection to Create Connections

The Hough Transform (HT) is employed to determine the parameters of features
as lines in an image [27]. In EDs of the RFI, the lines (segments) are used to
connect electrical components (symbols) and create a logic for the control of the
RIS. It should be noted that the symbols have rules to be connected; thus, there
is a need to identify the segments properly. Therefore evaluations of the system
logic can be performed to improve the safety of the RIS.

To apply the HT, a binary image is used as input, where each active pixel
is part of an edge feature, and the HT maps every pixel in the Hough space.
The Canny edge detector was applied to have the input image binarization [28].
For line detection, a single edge pixel is mapped to a sinusoid in parameter
space (θ, p), representing all possible lines that could pass through the point in
the image. If several points are collinear, their sinusoids in parameter space will
intersect. Finding the points in parameter space where most of the sinusoids
intersect provides the parameters for the lines in the input image. The process
is referred to as the search stage [29].

The standard HT returns lines that cross the entire image, then the PHT
is used to have the start and end points of the segments. The PHT is defined
as the logarithm of the probability density function of the output parameters,
taking into account all input features [30].

Let’s consider an input image with a set Xn of feature x1, x2, ..., xn and a
specified point in the parameter space y. The probability density function in
Hough space H(y) is p(y | Xn) and then the PHT is denoted by:

H(y) = ln[p(y | Xn)] (2)

which, by the Bayes’ rule, is

H(y) =
n∑

i=1

ln[p(xi | y)] + ln[p(y)] + C (3)

where the probability distribution p(y) is considered uniform and C is the arbi-
trary constant. The PHT result may have short segments instead of a complete
segment since preprocessing using canny edge detection is required before com-
puting the PHT. Therefore, the detection may be a set of small segments that
can be nearby and overwritten, based on which clustering of the segments must
be performed.

In this paper, DBSCAN is applied to connect segments that are close apart
or overwritten. This method is a non-parametric density-based clustering algo-
rithm. Taking a set of points in a given space, it clusters the close points, scoring
as outliers the points that are isolated in low-density regions [31]. Therefore,
combining DBSCAN with PHT is promising for reconstructing the detected seg-
ments. The complete architecture applied here is presented in Fig. 2.
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Fig. 2. Architecture of the proposed method.

4 Results and Discussion

In this section, the results of the application of the proposed method will be pre-
sented. An analysis will be performed regarding the use of a CNN, focusing on the
detection of labels, electrical connections, specifiers, and symbols. The detection
of labels will be compared to the well-established Nanonets and Tesseract OCR.
From the identification of the objects under evaluation, the results of segment
detection, clustering, and the final outcome of the automatically reconstructed
drawing will be presented.

4.1 Experiment Setup

The proposed approach is based on the PyTorch library using Python program-
ming language. The experiments were conducted on a cluster, with a Graphics
Processing Unit (GPU) NVIDIA Tesla V100 and 32 GB of random-access mem-
ory. To maximize processing time, the experiments of random initialization were
run in parallel using five GPUs, with the same requirements to be computed.
The performance evaluation measures are the standard for this kind of task:
precision, recall, F-measure, and mean Average Precision (mAP).

4.2 Object Detection and Classification

The YOLOv8 (nano) is evaluated considering all considered 133 classes being
these labels (letters), electrical connections (dots), specifiers, and symbols. For
the training of the models, five RFI projects were considered, containing 850
cutouts of 640 pixels in which 2,323 symbols are shown having their respective
labels and specifiers.

The results presented here are relative to the model validation scores, since
in the test phase using inference images the used metric is confidence in the
predictions given a threshold. For a complete assessment, the maximum (max),
minimum (min), mean, median (med.), and standard deviation (std dev.) of the
performance measures are computed. In Table 1 the influence of starting weights
is presented considering 50 experiments with different random seeds.

The major goal of this model is to detect the objects to continue with image
processing, for this reason, the average of the mAP@[0.5] equal to 0.80276 is
an acceptable value. There was a difference of 4.32% comparing the highest
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Table 1. Statistical analysis considering different seeds.

Measure Max Min Mean Med. Std dev.

Precision 0.83 0.72 0.78 0.79 2.82× 10−2

Recall 0.81 0.74 0.77 0.77 1.89× 10−2

F1-score 0.81 0.74 0.78 0.77 1.37× 10−2

mAP@[0.5] 0.82 0.78 0.80 0.80 1.01× 10−2

mAP@[0.5:0.95] 0.39 0.34 0.38 0.38 8.09× 10−3

and lowest mAP values. This result shows that there may be some variation in
the model due to network initialization, however, this is acceptable for object
detection needed at this stage.

To avoid the influence of the data selection, the k-fold cross-validation using
5-folds was used. The results of this evaluation are presented in Table 2. An
observation to be made is that when images with higher levels of noise are used
for validation, the training time becomes considerably longer.

Table 2. Evaluation of cross-validation.

Measure Max Min Mean Med. Std dev.

Precision 0.78 0.69 0.74 0.76 3.95× 10−2

Recall 0.80 0.57 0.72 0.73 7.60× 10−2

F1-score 0.79 0.63 0.73 0.75 5.59× 10−2

mAP@[0.5] 0.82 0.64 0.75 0.78 6.29× 10−2

mAP@[0.5:0.95] 0.47 0.36 0.42 0.42 3.64× 10−2

The utilization of noisy data to perform the model validation resulted in an
average reduction of mAP@[0.5] of 4.93%. Although this is a high reduction in
mAP, this variation is given by the characteristics of the data used. Even with
high noise data, the model is still capable of achieving an average mAP@[0.5]
equal to 0.75349.

The output of the model is a text file that has the class of the found object,
the bounding box that determines the geometric position of the object, and
the prediction confidence of the detection. The resulting text file is used as a
reference for segment detection since the objects identified in this phase should
not be considered when segment detection is performed.

4.3 Evaluation of Standard OCR Methods

For comparison, an experiment is conducted using Tesseract and Nanonets for
character recognition on EDs of the RFI. The preliminary results showed that
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because these standard models were trained for text identification based on stan-
dard fonts, character identification using these techniques was inefficient.

Using the Tesseract engine, the results were under 40% for both precision
and recall, by using the Nanonets, the results were under 55% for these same
metrics. It was observed that these methods were suitable only for identifying
characters in the project legends. Based on these results, the YOLO is defined
for label recognition, where all characters are new classes.

4.4 Results of Segment Detection

To detect the segments properly, the symbols, specifiers, electrical connections,
and labels are removed. In this procedure, the output of the YOLO is used as a
reference to define the locations that should not be considered segments because
they are objects. A new image is then created in which the bounding boxes
of the identified objects are redrawn blank and are disregarded in the segment
detection. Then, the PHT is applied as presented in Fig. 3A.

Fig. 3. Probabilistic Hough Transform applied in the ED of the RFI: A) original PHT,
B) DBSCAN applied to the PHT, C) reconstructed ED.

The use of PHT results in the detection of multiple segments, instead of
one complete segment, i.e. instead of identifying a connection between two sym-
bols the method overwrites segments. For this reason, DBSCAN was applied,
whereby segments that have a short distance between them and are in the same
direction (vertical or horizontal) are clustered. The result of the application of
this technique in the PHT is presented in Fig. 3B.

Using this clustering approach to join smaller segments, the proposed method
had acceptable results and can be applied even to other engineering problems.
After defining the new segments, the drawing can be reconstructed, considering
the position of the identified objects beyond the segments. The results of this
combination are presented in Fig. 3C.

The misclassification in object detection is not a problem for segment detec-
tion considering that only the position of the bounding box is used to remove
the objects and apply the PHT and DBSCAN. Missing objects can be a problem
given that the PHT would recognize them. To solve this issue only horizontal
and vertical segments are considered with a maximum variation angle of 5◦.
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4.5 Electrical Connection Graph

To improve the meaning of the connection of the identified objects, logical rea-
soning rules can be applied to validate the connection of the symbols. Since
symbols are the focus of electrical connections, specifiers and labels can be con-
sidered as additional information. To build the graph of electrical connections,
Identifier Numbers (IDs) are defined for each identified object and segment, as
presented in Fig. 4.

Fig. 4. Drawing with IDs of segments and objects. (Color figure online)

For standardization, the object IDs are shown in blue with values between
100 and 199, and the segment IDs are shown in red and have values between 200
and 299. Due to the low sharpness of some segments of the schematics, these
may not be identified using this method, such as the segment below the symbol
ID 108 (Fig. 4). This characteristic is related to the available dataset and makes
the task even more challenging.

In general, the method is able to identify in an acceptable way the segments
and objects under consideration, especially the symbols which are the focus of the
analysis. Based on the proximity of the segment to the edges of the bounding
boxes of the symbols and the electrical connections (points in the drawing) a
graph is created, as shown in Fig. 5.

In the presented example of the resulting graph all the connections were
identified, this occurred mainly because, in the distance calculation, the edges
of the bounding boxes were considered, preliminary evaluations using the center
of the symbols resulted in lower accuracy. In this example, the detected graph
meets the expectations in comparison with the ground truth.
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Fig. 5. Electrical connection graph: A) ground truth, B) detected connections.

5 Conclusion and Final Remarks

The digitization of engineering drawings is a necessity in many fields since many
projects come from a legacy in which they were originally hand-designed. Iden-
tifying text is a challenge because handwritten drawings do not follow a font
standardization, making this challenge even more difficult. Established OCR
techniques are not enough to solve this task, therefore it is necessary to train
specific models for the identification of each character.

The proposed method successfully had the ability to identify text, symbols,
specifiers, and segments in EDs. With a mean F1-score of 0.77513, and a mean
mAP@[0.5] of 0.80276, considering 50 experiments, the YOLOv8 had acceptable
results to be applied in the field. Especially for segment detection, the segmenta-
tion and clustering techniques were combined, resulting in a promising approach
to automate the redrawing EDs.

These results highlight that the redraw of ED based on deep learning meth-
ods is flexible. The presented method returns the symbols and label positions
with acceptable results, being a functional approach that represents the original
EDs. Given the importance of accuracy in reconstructing EDs of the RRIS, the
verification and approval of an expert is still necessary, therefore the proposed
method aims to speed up the manual task of redrawing from scratch.

In future work, the electrical connections between symbols can be used to
strengthen the specification of electrical components. Furthermore, using graphs,
a more adequate determination of labels and specifiers can be achieved since
their use in the projects follows a pattern, and using logical reasoning graphs
can improve the redrawing of the projects, besides being a tool for verification
and validation of what is being presented.
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Abstract. Several elections run in the last years have been character-
ized by attempts to manipulate the result of the election through the
diffusion of fake or malicious news over social networks. This problem
has been recognized as a critical issue for the robustness of our democ-
racy. Analyzing and understanding how such manipulations may occur
is crucial to the design of effective countermeasures to these practices.

Many studies have observed that, in general, to design an optimal
manipulation is usually a computationally hard task. Nevertheless, lit-
erature on bribery in voting and election manipulation has frequently
observed that most hardness results melt down when one focuses on the
setting of (nearly) single-peaked agents, i.e., when each voter has a pre-
ferred candidate (usually, the one closest to her own belief) and prefer-
ences of remaining candidates are inversely proportional to the distance
between the candidate’s position and the voter’s belief. Unfortunately,
no such analysis has been done for election manipulations run in social
networks.

In this work, we try to close this gap: specifically, we consider a set-
ting for election manipulation that naturally raises (nearly) single-peaked
preferences, and we evaluate the complexity of the election manipulation
problem in this setting: while most of the hardness and approximation
results still hold, we will show that single-peaked preferences allow to
design simple, efficient and effective heuristics for election manipulation.

1 Introduction

Nowadays, online social networks have become a ubiquitous, fast, easily acces-
sible source of information: e.g., Matsa and Shearer [31] showed that about
one-fifth of American adults consults social media to read news. Interestingly a
significant part of the interviewed people declared that social media news some-
how altered their opinion [31]. This makes social networks a powerful tool that
can be exploited to manipulate people’s minds about a particular theme, spread-
ing targeted news to specific users. Indeed, this spread of information has been
apparently exploited in many recent elections [2,18,26,27]. The most prominent
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example has been the 2016 U.S. election: in the campaign preceding this event,
fake news spreading has been so relevant that some commentators argued that
the election’s outcome could have changed if the campaign had been fair [2].

The relevance of the topic leads the AI community to investigate about the
problem of manipulating elections by spreading information over social networks.
Specifically, the problem has been modelled as follows: let G = (V,E) be a graph
representing the (online) social network of the voters, with V being the set of
voters and E being the set of (possibly directed) social relationships between
voters. Each voter v ∈ V has a political opinion that somehow implies particular
preferences over the set C of candidates that, in turn, imply a particular vote
according to the voting rule that controls the election. The manipulator has a
(possibly unlimited) budget B to spend to hire some voters, bribe them, and
make them act as influencers to spread some news in favour of or against a tar-
get candidate c∗ ∈ C. As a result of such influence, some voters (depending on
their influenceability and the effectiveness of the hired influencers) will update
their opinions and change their votes in favour of or against the target candidate.
The aim of the manipulator is to choose the best set of influencers (not violating
the budget constraint) to optimize a specific objective function that encodes the
chances of victory of the target candidate c∗. Wilder and Vorobeychik [35] have
been the first to deal with this problem. They indeed prove that it is hard to
compute both the set of influencers that maximizes the probability of victory
of c∗, and the one that optimizes the expected difference between the number
of votes of c∗ and the number of votes of the best candidate different from c∗.
However, for the latter problem there is a greedy algorithm that computes a
constant approximation of the optimum [35]. These results have been extended
to more complex settings, focusing, e.g., on different models of information dif-
fusion, different voting rules, and different messages to spread [1,19,20].

These works complement the large literature in AI and social choice about
bribery in elections [12–14,23]: they focus on ways of altering the outcome of
an election by changing the preference of a few voters. Anyway, all these works
do not take into account the possibility that manipulators could use voters’
social relationships to spread the manipulation. Most of the results in these
works imply that it is computationally hard to compute the best way to alter
an election. Still, most of these hardness results have been showed to melt down
when the preferences of voters satisfy the realistic hypothesis of being single-
peaked or nearly single-peaked [16,24,25,33], where single-peakedness implies
that candidates can be seen as ordered (e.g., along the political spectrum), voters
have a preferred candidate (e.g., the one that is closest to their own political
belief) and the preference towards remaining candidates decreases as the distance
between their position and the one of the preferred candidate increases.

Our Contribution. Election manipulation involving information spreading in
social networks has not been explicitly studied for the setting in which pref-
erences are single-peaked. In this work we address this issue, by studying the
problem of election manipulation through social influence in single-peaked sce-
narios. Specifically, we will build over known models of election manipulation
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in order to embed into them the principles of single-peakedness. Namely, in our
model, each voter has an opinion on the topic of the voting and their ranking
of alternatives depends on the distance between the candidates’ positions and
the voter’s belief. Here, the diffusion of information has the effect to change the
opinion of the voter, and hence it may alter her ranking, but still guaranteeing it
to be single-peaked. This model can be also easily extended to encompass nearly
single-peaked preferences: these, indeed, may simply arise from voters having a
noisy view of candidates’ position. Given this model, the problem is to find, sub-
ject to a budget constraint, the set of “seeds” from which to start the information
campaign that maximizes the margin of victory of the desired candidate.

It is not hard to check that previous hardness results extend also to this
setting. Moreover, we show that there exists an approximation algorithm for
the problem guaranteeing to return a set of seeds able to achieve at least a
constant fraction of the margin of victory that would be achieved by selecting
the optimal set of seeds whenever the target candidate is the one that receives
the largest benefit from the campaign1. The proposed algorithm is based on a
greedy approach, and it is built on Monte Carlo simulations in order to estimate
the performance of a seed selection [28]. Unfortunately this algorithm, even if
it guarantees a polynomial time complexity, turns out to be computationally
expensive, even for very small instances of the problem.

This motivates the need to design more efficient algorithms, trying to speed
up computations while preserving the effectiveness of the manipulation. To this
aim, this work proposes and compares several fast heuristics to identify the best
voters to influence the electorate; we experimentally show that the best of these
heuristics is a variant of the standard PageRank. We show that the performance
of this approach overwhelms the one of the approximation algorithm, improving
execution times by a factor of (up to) 3000 on average. And this improvement
comes with a relatively small loss in terms of effectiveness. Moreover, the pro-
posed heuristics turn out to be robust against altered voters’ views of candidates’
positions generating only nearly single-peaked preferences: the performances of
the heuristics clearly degrade with the amount of noise in the voter’s view, but
they are very close to the single-peaked case when this noise is limited.

Other Related Works. The problem of election manipulation over social networks
has been only recently formalized in [35]. However, several works considered sim-
ilar issues. E.g., [32] studies a plurality voting scenario in which the voters can
vote iteratively and shows how to modify the relationship among voters to make
the desired candidate win an election. [4–6] show that in some scenarios, when
there are only two candidates, a manipulator controlling the order in which
information is disclosed to voters can lead the minority to become a major-
ity. [9] shows that a similar manipulator can lead a bare majority to consensus.
These results do not extend to more than two candidates [8,10]. [17] shows how

1 For example, this may not occur when a message is spread in favour of an extremist
party when there are few supporters of an half-extreme party and many supporters
for a moderate party: the message causes many votes to move from the moderate
towards the half-extreme party, while few votes are conquered by the target party.
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this manipulator must select the seeds diffusing information in a two-candidate
election. [22] considers a similar issue, but its model does not directly embed
the diffusion of information over networks. Our model for election manipula-
tion is also largely inspired by models of election manipulations under metric
preferences [3,36].

2 The Model

Consider an election with a set of voters V and a set of candidates (or alterna-
tives) C = {c0, c1, ..., cm−1}. Let c∗ ∈ C be a special target candidate such that
we want to alter the election in her favour. We consider a plurality voting rule:
the voters cast a single vote for their preferred candidate (we assume that they
do not misreport the preferred candidate to alter the election outcome), and the
winner of the election is the candidate receiving the largest number of votes.

A candidate c is associated with a position xc (e.g., their position on the polit-
ical spectrum). For simplicity, we assume henceforth, that positions are included
in [−1, 1]. Each voter v also is associated with a position xv in [−1, 1] reflecting
her belief. The preference of v over candidates depends on her position xv and
her view of the candidates’ positions. Indeed, we assume that voters may not
have a clear picture of the political positions of the parties. For instance, a pure
moderate party can be perceived as moderate-left by some voters and moderate-
right by others. To model this, we associate with each candidate c a random
variable Xc that presumably depends on the true position xc of the candidate;
the blurred view of each voter v consists of a random realization xv

c of Xc. Note
that the noisy positions of the candidates in the views are clipped in [−1,+1]
to ensure that they remain in the allowed range. Hence, the blurred position of
candidate c in the view of voter v can be expressed as xv

c = [xc + η(xc)]
+1
−1, where

η(xc) is the noise term depending on the real position of the candidate, and [·]+1
−1

indicates the clip operation. We assume that η(xci) and η(xcj ) are independent,
for any ci �= cj . We will consider different ways to generate the noise term.

The ranking of voter v with respect to candidate c is then defined with
respect to the goal of minimizing the absolute value of the difference between xv

and xv
c : i.e., the most preferred is the one that minimizes |xv − xv

c |, the second
most preferred one achieves the second smallest value of this function, and so
on. It is immediate to check that, whenever the view of voters corresponds to
real candidates positions, the preferences built in this way are single-peaked, i.e.,
for each voter v there is a preferred candidate c, and for each pair of candidates
c′, c′′ such that xc′ < xc′′ ≤ xc (xc′ > xc′′ ≥ xc), c′ is less preferred than c′′ by
v. This method also allows to model nearly single-peaked voters: if the variance
of the noise is high, the chances of swapping adjacent candidates on the political
spectrum are high, too. Hence, the higher the noise, the higher is the number of
swaps necessary to make the resulting ranking single-peaked, a common measure
of distance from single-peakedness [21]. We stress that preferences of voter v are
always single-peaked according to her own view, even if they are not single-
peaked according to the real positions of candidates or other voters’ views.
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A manipulator can spread information supporting c∗ among voters. For-
mally, we suppose that voters are arranged on the nodes of a social network
G = (V,E, p), where E is the set of edges (u, v) connecting voter u to voter
v, and p(u, v) ∈ [0, 1] encodes the strength of this relationship, namely how
probable is that the information that u sends to v affects the opinion of v. The
manipulator is then supposed to select a subset S of voters, of size not larger
than a given budget B, from which the information is sent. As most of the previ-
ous literature about election manipulation through social networks [1,19,35] we
assume that information spreads through the network according to the Indepen-
dent Cascade Model [28]: it starts with S0 = S and, at each time step t, if St−1

is not empty, each voter u in St−1 sends the information to each neighbor v that
has not been yet affected, and this neighbor v is affected, and hence inserted
in St, with probability p(u, v). When a voter v is affected by the news spread
by the manipulator (i.e., v belongs to St for some t ≥ 0), her belief is updated.
Specifically, the voter’s position is moved by a constant amount δ towards the
position (in her view) of the target candidate. If the voter is closer than δ to the
position of c∗, then she simply moves to xv

c∗ . Formally, the voter’s new position
x̂v is x̂v = xv +min(δ, |xv

c∗ − xv|) · sign(xv
c∗ − xv).

As in previous literature [1,19,20,35], we assume that the goal of the manip-
ulator is to choose the set of seeds S of size at most B that maximizes the
increment in the margin of victory of c∗. Specifically, the goal of the manip-
ulator is to maximize the expected change of margin of victory ΔMoV (S) =
|V ∗

c∗ | −maxc �=c∗ |V ∗
c | − (|Vc∗ | − maxc �=c∗ |Vc|), where, by |Vc| and |V ∗

c |, we mean,
respectively, the number of votes for the candidate c before and after the manip-
ulation. Essentially ΔMoV is the increase of the advantage of c∗ over its best
opponent before and after the manipulation (that is guaranteed to be always
non-negative). Note that the manipulator knows exactly the real position of
candidates and of the voters, but she does not know the voters’views.

It is not hard to see that by considering the special case of zero-noise, only
two candidates and δ large enough to guarantee that the least preferred can-
didate becomes the most preferred candidate for each voter v activated by
the spread of information, our model reduces to the one considered in [35].
Hence, the hardness result described there for the election manipulation prob-
lem clearly extends to our model. For this reason, in the rest of this work we
only look for algorithms able to approximate the optimal choice of the manip-
ulator. Specifically, we say that an algorithm is α-approximate, for α ≤ 1 if it
always returns a set of seeds S such that E[ΔMoV (S)] ≥ αE[ΔMoV (S∗)], where
S∗ = argmaxS E[ΔMoV (S)] : |S| ≤ B is the optimal seed set.

In this work we will also consider an extension of previous models: we allow
the manipulator to run a multi-round campaign, by choosing in each round the
seeds from which the information spreads, and the electorate evolves accordingly.

Throughout the rest of the paper we assume the reader is familiar with two
tools that will turn out to be particularly useful in the design of our algorithms:
Influence Maximization approximation algorithms, and PageRank measure. Due
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to page limits, we also omit many proofs and experimental details. For the reader
interested in these details, we refer to the full version [7].

3 Approximation Algorithm

We here propose a greedy algorithm, that returns a constant approximation
of the optimal solution to the Election Manipulation problem in the setting
described above whenever the view of voters corresponds to the real position of
candidates. The design of the algorithm directly mimics the ones proposed in
[19,35]. The crux of the algorithm is identifying the voters that, if influenced,
will change their minds and vote for the target candidate c∗. Then, the problem
is solved by simply computing the set of seeds that maximizes the weighted
influence maximization [28] for which weights w(v) = 1 are assigned to such
voters and 0 to all the other nodes. Indeed, nodes that already support the
target candidate can be useful for spreading information, but reaching them will
not modify the margin of victory of the target candidate; similarly, influencing
a voter that cannot be convinced to vote for the target candidate apparently
cannot improve the margin of victory. Unfortunately, influencing a voter that
will never vote for c∗ after the manipulation is not that pointless: even if the
number of votes of the target candidate does not increase, this voter may change
her preferred candidate and erode votes for the best opponent of the target
candidate, possibly increasing the margin of victory of c∗. So we need to prove
that, even if this contribution is not accounted by our algorithm (i.e., it only
focuses on influencing nodes that can be made to support the target candidate
but do not actually do), we still achieve a constant approximation whenever the
campaign for the target candidate does not advantage other candidates more
than the target itself2.

Since our approximation algorithm relies on the influence maximization algo-
rithm discussed above, it is easy to see that its computational complexity is
O (B · |V | · MI), where B is the budget, |V | is the number of nodes in the graph,
and MI is the cost of estimating the marginal influence of a node via Monte
Carlo simulations, that depends on the margin of error that one is willing to
accept in the computed estimation. It is not hard to check that MI also poly-
nomially depends on the size of the input, allowing us to conclude that our
algorithm is polynomial.

Moreover, observe that the set of influencers returned by our algorithm has
a size that does not exceed the budget, and hence is feasible. We next show
that it returns a constant approximation of the optimal seed set whenever the
view of all voters coincides with candidates’ real positions and the campaign for
the target candidate does not advantage other candidates more than the target
itself. Specifically, let X(S) be the expected maximum – among all candidates
c �= c∗ – of the number of voters that do not vote for c and they will do after
2 In [35], it is not necessary to account for this case since essentially only two candidates

are considered. In [19], instead, this case is considered, but the algorithm is showed
to provide a constant approximation on stronger assumptions than in our setting.
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receiving a message supporting candidate c∗ starting from nodes in S (where the
expectation is taken over the probabilities of receiving this message). Then we
have the following theorem.

Theorem 1. The set of influencers Ŝ ⊆ V returned by our algorithm is such
that E[ΔMoV (Ŝ)] + X(Ŝ) ≥ 1

3 · (
1 − 1

e

) · maxSE[ΔMoV (S)] whenever xv
c =

xc for each v ∈ V and each c ∈ C. Hence, our algorithm returns a constant
approximation whenever X(Ŝ) = O(E[ΔMoV (Ŝ)]).

Note that in case of nearly-single-peaked voters the algorithm still works,
but its performances in terms of ΔMoV (·) depend on the amount of noise: the
higher the noise, the more the inconsistency between reality and blurred views of
the voters, the lower the effectiveness of the manipulation since the manipulator
estimates wrong weights w(v) for each voter v ∈ V .

4 The Heuristics

The approximation algorithm presented in the previous section provides a formal
guarantee of the quality of the solution. However, it inherits from the weighted
influence maximization algorithm used as black box the drawbacks of being
computationally expensive, even if it is polynomial in the size of the input.
Specifically, the proposed algorithm requires a large number of simulations in
order to estimate the marginal influence of each node. Even if faster algorithms
have been proposed for the influence maximization problem (see, e.g., [15]), it
is often solved in practice through fast heuristics based only on the structure of
the network: they, indeed, assign scores to the nodes in the graph defining their
“importance”, and then they simply return the nodes with the highest scores.

In this work, we propose to extend this approach in order to encompass
the problem of election manipulation. Specifically, this work introduces several
heuristics in that sense: they are based on both the structure of the networks
and centrality metrics adapted to the election context. We here only present
in detail the one that happens to achieve the best experimental performances,
namely SPpagerank1.0_pos. This heuristic approach mimics PageRank, by dis-
tributing at each time step the rank over voters’ neighbors, and updating the
rank correspondingly, until rank becomes stable. However, in our heuristics, the
rank of node u is not shared uniformly among all its neighbors (as in the standard
PageRank), but proportionally to a score ŝ assigned to each node. The score ŝ of
v considers political information about voters in the neighbourhood of v: specif-
ically we define ŝ(v) = 1/d(v, c∗) +

∑
u∪ : (v,u)∈E and d(u,c∗)>0 p(v, u)/1/d(u, c∗)

for the node v, where d(u, c∗) = 0 if u votes for c∗, and otherwise measures the
distance on the political spectrum between c∗ and voter u. Thus, nodes that are
more likely to influence others in favour of c∗ are assigned a higher weight.

5 Experimental Results

Experimental Setting. We run extensive experiments to evaluate the algorithms
described above both in terms of the effectiveness of the manipulation, as mea-
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sured by the margin of victory MoV and the change of margin of victory ΔMoV
resulting from the simulated manipulations, and the execution time of the algo-
rithms. As for the valuation of the running time, we stress that we compare
Python implementations run on a single core, without any code optimization.

In general we compared different algorithms in election scenarios with a set
of voters of sizes 20, 50, and 100. All the experiments involved five candidates.
Both voters and candidates were assigned positions in the range [−1,+1] cho-
sen uniformly at random. This should create scenarios in which all the parties
are almost equally supported by the voters. When dealing with nearly-single-
peaked electorates, the noise was chosen to be independent of the positions of
the candidates, namely η(xc) = η. Specifically, we considered uniform noise
η = U(−0.2; 0.2); Gaussian noise with low variance η = N (0; 0.08); and Gaus-
sian noise with high variance η = N (0; 1). These values were chosen to test
different levels of nearly single-peaked average swap distances [21]. In fact, when
normalized with respect to the number of voters, for an election with 20 vot-
ers and 5 candidates randomly placed on the political spectrum, the average
distances from single-peaked scenarios are ∼0.5, ∼1, and ∼2 swaps.

As for the parameters describing the power of the manipulator, we consider
budget B such that B

|V | ∈ {5%, 10%, 15%}; the maximum number of manipu-
lation campaigns was set to 10; the parameter δ that represents the influence-
ability of the electorate has been chosen in {0.1, 0.2, 0.3, 0.4}; the target candi-
date of the manipulation process was chosen randomly among all the candidates
{c0, c1, c2, c3, c4} unless stated differently.

Monte-Carlo simulations necessary for the approximation algorithm have
been repeated 300 times. Moreover, estimates of ΔMoV have been evaluated
over a number of simulation sufficient to achieve statistical guarantees.

All the variants of the models and algorithms described above have been
tested against both synthetic and real-world networks. Specifically, we used: (i)
Watts-Strogatz graphs [34] with nodes uniformly distributed in the 2D square

whose side is
√

|V |
20 (thus, the density of the nodes remains the same increasing

the size of the electorate); strong ties with a radius r = 0.13; k = 2 weak ties
distributed inversely to the distance with a power law of exponent q = 2. Since
the density does not change when the number of nodes increases, the degree
of each node remains almost the same. (ii) Preferential attachment graphs [11],
created by setting the probability of linking preferentially to 0.25 and 0.75.

For these networks, tests were performed on several combinations of parame-
ters. Specifically, for each pair (|V |, B/|V |) ∈ {20, 50, 100}×{0.05, 0.10, 0.15}, the
simulated scenarios involved (in all the possible combinations): 8 random place-
ments of voters and candidates on the political spectrum; 10 randomly generated
graphs (Watts-Strogatz or preferential attachment models); 10 randomly gener-
ated sets of diffusion probabilities on edges. This led to 8×10×10 = 800 electoral
scenarios. Due to the large running time of our approximation algorithm, it has
been tested only with: 31 random placements of voters and candidates; 5 ran-
domly generated graphs (Watts-Strogatz models only); 5 randomly generated
sets of diffusion probabilities. This led to 775 random elections.
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The real case study involves a snapshot of the Facebook social network [29]
available at SNAP [30]. The network has 4039 nodes and 88234 undirected edges.

Among all the tested algorithms, the best one (considering both manipula-
tion performances and computational complexity) was tested in terms of scal-
ability on very large graphs. The experiment is executed on Watts-Strogatz
graphs built as explained above. The tested number of nodes of the graphs
are [200, 500, 1000, 2000, 5000, 10000, 20000]. The algorithm is allowed to run for
three hours for each graph size, repeatedly generating random graphs and elec-
tions. This experiment was repeated for η = 0, η = N (0; 0.08), η = N (0; 1).

Results. We start by comparing the different heuristics on Watts-Strogatz net-
works, in order to find the one that guarantees the best performances. In Fig. 1
we show the performances of a subset of some of the heuristics that we designed
(we refer to the full version of this paper [7] for their details). We can check that
the algorithm with the best performances is SPpagerank1.0_pos, because it con-
siders the whole network, while almost every other ones focus on local properties
of the graph.

Fig. 1. Performances of the algorithms.

We next compare the best heuristic method and the approximation algo-
rithm. Since the approximation algorithm is computationally heavy (see below),
the tests only use the following subset of parameters: δ ∈ {0.1, 0.3} and
B/|V | ∈ {5%, 10%}. Moreover, in the 75% of the considered instances the
approximation algorithm is guaranteed to achieve a constant approximation (i.e.,
in these instances no candidate is more advantaged than the target candidate
by messages in favour of the latter). Performances are graphically shown in
Fig. 2. Results show that the approximation algorithm actually performs bet-
ter than SPpagerank1.0_pos only in the initial campaigns. For a higher number
of rounds, SPpagerank1.0_pos performs better, and on average, after ten cam-
paigns, it gets more votes for the target candidate.

Results in Fig. 3 show the performances of algorithm SPpagerank1.0_pos in
nearly single-peaked scenarios. Note that the blurred views of the voters make
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Fig. 2. Performances of SPpagerank1.0_pos and of the approximation algorithm.

the initial MoVs of the simulations different from the initial MoVs in the per-
fectly single-peaked cases. For this reason, comparisons based on MoV cannot
be made. While it may appear that blurred views increase the performances, this
only depends on the initial conditions of the simulated scenarios being different.
However, this only happens when the noise has low variance: with η = N (0; 1),
performances are definitely worse than the single-peaked case (even if the initial
MoV is higher). Nevertheless, even with η = N (0; 1) and η = N (0; 0.08) that
are very strong noises, performances are not that much worse than the ones in
single-peaked scenarios. For this reason, our heuristics has been tested also with
noises not having the peak of the probability distribution function in 0, namely
η2 = 1

2N (−0.7; 1) + 1
2N (+0.7; 1). The corresponding plots in Fig. 3 show that

performances slightly drop when the peak of the distribution of the noise is not
0 (and thus manipulator’s estimates of xv

c are not maximizing likelihood).

Fig. 3. Performances of SPpagerank1.0_pos for η = N (0; 0.08) and η = N (0; 1) and
η = 1

2
N (−0.7; 1) + 1

2
N (+0.7; 1).
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Until now, the shown experiments only involved electorates made up of 20
voters. We now analyze how performances change when testing electorates of
20, 50, and 100 voters. The algorithms were only tested with a single, medium
budget: 10% of the electorate. Moreover, the target candidate was fixed to the
right-most one on the political spectrum. Figure 4 illustrates the results. Note
that performances increase when the number of voters increases. Similar results
hold even for noisy single-peaked preferences (details in the full version [7]).

Fig. 4. Performances of SPpagerank1.0_pos in perfectly single-peaked scenarios.

Fig. 5. Performances of SPpagerank1.0_pos for η = 0 and p ∈ {0.25, 0.75}.

Next we evaluate whether results showed above are robust against different
graphs. We first present the experiments that were performed on preferential
attachment graphs. Tests were performed with η = 0, |V | ∈ {20, 50, 100}, δ ∈
{0.1, 0.3}. The target candidate is the right-most one. Since results for different
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sizes of the electorates were almost identical, only the ones for |V | = 50 are
displayed. Figure 5 displays the normalized ΔMoV and the MoV . Observe that
the manipulator benefits from the rich-get-richer phenomenon.

Finally we show how our heuristics performs on the real Facebook network.
The results of the experiment are shown in Fig. 6. Plots only show the margin
of victory; ΔMoV can be plotted by simply shifting the curve up, such that the
value before the first manipulation campaign is 0.

Fig. 6. Average margin of victory for the test on the Facebook network.

Note that candidates are in {−1,−0.5, 0, 0.5, 1}, and voters are initially
placed such that c2 (at position 0) loses the election; in fact, his margin of vic-
tory is negative. Nevertheless, in single-peaked electorates, the algorithm only
needs two campaigns (when δ = 0.1) or one campaign (when δ = 0.3) to make
c2 win the election. Moreover, when voters are easily manipulable, the algorithm
reaches unanimity in a few campaigns. Even in nearly-single-peaked electorates,
the manipulator can make c2 win, although performances are worse.

Finally, we tested the scalability of SPpagerank1.0_pos (since its execution
time happens to be thousands of times faster than the approximation algorithm)
on networks up to 20000 nodes as described above. Interestingly, on a common
PC, the algorithm can be executed 15 times in three hours on graphs of 20000
nodes. Since simulations require additional code to prepare the electoral setting
and include 10 manipulation campaigns, the number of tests runnable in three
hours is even higher: hence, a manipulator would be able to execute the proposed
algorithm even on large graphs. A more thorough analysis about the bottleneck
of the running time of our heuristics can be found in the full version [7].

6 Conclusion

In this work we considered the problem of election manipulation through social
influence when agents have single-peaked or nearly single-peaked preferences.
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For this purpose, we first propose a new manipulation model that intrinsically
generates single-peaked preferences of the voters. We provided an algorithm with
constant approximation guarantees whenever there is no candidate that is more
advantaged than the target candidate by a campaign in favour of the latter. We
also provided an heuristic approach that has been proved to perform very well
in simulations and to be computable very efficiently. These results highlight the
huge risk of election manipulation in the single-peaked setting.

It would be desirable to further extend and deepen our analysis. Moreover,
it would be interesting to design efficient and effective counter-measures against
manipulation. Our analysis, by highlighting those aspects that simplify or com-
plicate the manipulation, may be an useful starting point in this direction.
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Abstract. Artificial intelligence’s (AI) progress holds great promise in tackling
pressing societal concerns such as health and climate. Large Language Models
(LLM) and the derived chatbots, like ChatGPT, have highly improved the natu-
ral language processing capabilities of AI systems allowing them to process an
unprecedented amount of unstructured data. However, the ensuing excitement
has led to negative sentiments, even as AI methods demonstrate remarkable con-
tributions (e.g. in health and genetics). A key factor contributing to this senti-
ment is the misleading perception that LLMs can effortlessly provide solutions
across domains, ignoring their limitations such as hallucinations and reasoning
constraints. Acknowledging AI fallibility is crucial to address the impact of dog-
matic overconfidence in possibly erroneous suggestions generated by LLMs. At
the same time, it can reduce fear and other negative attitudes toward AI. This
necessitates comprehensive AI literacy interventions that educate the public about
LLM constraints and effective usage techniques, i.e. prompting strategies. With
this aim, a pilot educational intervention was performed in a high school with 21
students. It involved presenting high-level concepts about intelligence, AI, and
LLMs, followed by practical exercises involving ChatGPT in creating natural
educational conversations and applying established prompting strategies. Encour-
aging preliminary results emerged, including high appreciation of the activity,
improved interaction quality with the LLM, reduced negative AI sentiments, and
a better grasp of limitations, specifically unreliability, limited understanding of
commands leading to unsatisfactory responses, and limited presentation flexibil-
ity. Our aim is to explore AI acceptance factors and refine this approach for more
controlled future studies.
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1 Introduction

Artificial Intelligence (AI) technologies have gained significant prominence in contem-
porary society, permeating various facets of everyday life. AI is increasingly assuming
a vital role in driving progress toward sustainable development worldwide in fields like
healthcare, education, climate action [1, 2, 42, 48, 52, 58]. As an example, AI has already
contributed to tackling medicine and health issues by improving diagnosis [9], develop-
ing new treatments [15, 25, 53], and supporting the overall care process atmultiple scales.
It also promises to help to deal with the chronic lack of expert personnel that is affect-
ing many developing countries [62] both through training personnel and simplifying
the medical procedures [52]. However, with all this potential comes big responsibility.
While in the medical domain, the critical lack of personnel reduces the importance of
the impact of the issue of jobs loss, several other problems must still be addressed. First,
limited AI literacy may limit the gain for the countries where these tools would be more
useful. A second issue is patient privacy, as the absence of a transparent and reliable
process in place could lead to health data being used for unrelated applications of differ-
ent entities, e.g. impacting patient access to job, insurance, and financial services [32].
Care must also be taken when applying AI decisions at multiple levels of the healthcare
process as they may produce biassed results [41] resulting from biassed objectives and
datasets. Moreover, determining the responsibilities in case of bad consequences of AI
decisions is a complex topic that has been discussed for decades [37, 67].

With the magnitude of the contrasting positive and negative potential outcomes com-
bined to the astonishing speed and complexity of theAIfield, itwas to be expected the rise
of highly contrasting attitudes toward AI, extending from enthusiasm to phobia. Despite
positive outcomes of AI systems, the recent advancements in AI have also sparked fears,
anxiety, and negative attitudes particularly when machines begin to perform mindful
tasks traditionally associated with humans [13, 22].

Media representations have often amplified these concerns by emphasising the neg-
ative consequences of AI and frequently depicting scenarios involving killer robots [30].
Such portrayals contribute to themagnification of AI anxiety. The impact of this negative
sentiment toward AI can be dramatic, hindering trust and the acceptance and adoption
of AI technologies and blocking the contributions they can provide. For instance, while
AI diagnosis performance reaches or surpasses those of expert physicians, it will pro-
vide a real clinical benefit only if physicians will take into account its predictions [14].
Thus enabling healthcare professionals to achieve the right balance between trust and
suspicion is crucial for achieving the full AI potential in medicine [14, 57]. The same
balance is crucial to not miss the important opportunities that AI can provide in many
domains and that anxiety-driven rejection or banswould hinder [23, 35, 40]. Understand-
ing the causes of this anxiety is crucial for addressing these concerns. [24] identified
three primary factors contributing to AI anxiety: (i) an overemphasis on AI programs
without considering the involvement of humans, (ii) confusion regarding the autonomy
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of computational entities and humans, and (iii) a flawed understanding of technological
development. Addressing these factors through targeted literacy interventions is crucial
in alleviating public concerns regarding AI advancements. Positive experiences with AI
[43] and an understanding of how they work can shape positive attitudes towards AI [50]
promoting its usage and acceptance among the public [20, 35]. Moreover, by delving
into the inner workings of AI, individuals can develop critical perceptions toward these
technologies [54] and become empowered to confidently embrace them.

1.1 The Case of Large Language Models

The recent introduction of Large Language Models (LLM) like ChatGPT to the public
may have been the tipping point for exasperating AI attitudes [18, 21]. LLM are machine
learning models with a high number of parameters (from hundreds of millions for early
models like BERT to hundreds of billions for GPT4) which are pre-trained to create
lossy compression of large datasets through simple tasks, e.g. complete a statement or
predict the next word, and can perform a variety of domain-independent tasks with little
or no specific training and data [40, 59, 66]. LLM functioning is widely different from
cognitive processes in biological brains and several LLM limits and vulnerabilities keep
emerging [3, 4, 34, 56, 61, 65].

In particular, the tendency to make up responses to factual questions when they are
not able to respond [1, 12]. Notwithstanding these limitations, the linguistic capabilities
of LLM and ChatGPT have led to the strongest reactions comprising a letter signed by a
number of experts calling for a stop of development of largemodels [2].However, this call
has been considered impractical or even counterproductive for democratic governance
of these tools [23, 40] and was not followed even by some of its main authors [39].
However, it still added fuel to the fire of AI phobia and anxiety.

Despite the growing familiarity with ChatGPT and its capabilities, there remains a
lingering apprehension about the potential dominance of AI in various aspects of society.
Some initial concerns have also emerged regarding its potential impact on educational
aspects [17]. Educators, policymakers, and researchers are increasingly voicing concerns
about the use of generative AI systems like ChatGPT in educational settings. One major
concern revolves around the ethical considerations related to the use of generative AI
systems by students [45]. Unethical practices, like using AI-generated content without
appropriate attribution or engaging in plagiarism, pose challenges to academic integrity
and raise questions about the responsibilities of both students and educators in the AI
era. However, excluding ChatGPT from the classroom is not a viable solution, as its
inclusion presents a valuable opportunity to familiarise students with the capabilities
and limitations of generative AI tools [38, 60]. By explicitly incorporating ChatGPT
into classroom activities, educators can provide students with insights and strategies
for its proper utilisation, enabling them to effectively utilise this technology within a
controlled and educational environment.

Students have a positive view of using ChatGPT as an educational tool, valuing its
capabilities and finding it helpful for study and work. While acknowledging its poten-
tial for learning, students recognize the need for improvements and are mindful of its
limitations [49]. The utilisation of ChatGPT in the classroom opens up opportunities for
interactive and engaging learning experiences and prepares students for an increasingly
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AI-driven world. ChatGPT’s capabilities in the classroom extend far beyond merely
familiarising students with AI, as it demonstrates remarkable proficiency in covering
diverse learning materials, spanning from coding [46] and microbiology [7] to media-
related topics [44]. However, an essential aspect of utilising the full potential of ChatGPT
lies in employing effective prompting strategies [64].Carefully crafted prompts canguide
ChatGPT’s responses, leading to more accurate and informative outputs. This approach
allows educators to align the AI system’s responses with specific learning objectives,
resulting in more targeted and meaningful interactions [29].

An important target for AI literacy, involving LLM, is defusing the rising and mis-
leading feeling of being able to access and process any form of knowledge to solve
problems in any domain with no effort or previous expertise in AI or problem domain.
This widespread phenomenon stems from the lack of literacy on the inherent limita-
tions of current LLMs, such as hallucinations, limited understanding, and reasoning
constraints [1, 12]. By disregarding the boundaries of LLMs, individuals may fail to
recognize the potential risks and inaccuracies that can arise from relying solely on their
outputs. The recent widespread acceptance of generative AI LLM tools such as Chat-
GPT, highlights the necessity for informative interventions that educate users about
realistic and comprehensive understandings of LLMs’ capabilities and limitations. Such
interventions can encourage users to exercise critical thinking when interpreting and
applying knowledge generated by these models. Educators and researchers have been
actively exploring and implementing diverse approaches to raise awareness and promote
AI literacy within school environments [26, 51]. Recognizing the importance of going
beyond theoretical aspects, these efforts aim to provide students with opportunities to
expand their learning through hands-on experiences by incorporating practical activities,
projects, and real-world applications of AI [26, 31].

As we embrace the new era of accessible AI tools, there is a noticeable lack of
research on AI literacy interventions utilising ChatGPT. To address this gap and build
upon existing concerns, this study aims to develop and evaluate an intervention focused
on AI literacy, providing hands-on experience with ChatGPT. The primary goal is to
assess the impact of this intervention on adolescents, exposing them to non-trivial tasks
with ChatGPT to demonstrate its limitationswhilemitigating fears and negative attitudes
towards AI. By engaging participants directly with the ChatGPT interface, the interven-
tion aims to foster a deeper and more critical understanding of the technology and its
potential limitations. This study specifically focuses on introducing adolescents to the
strategy of prompting and examines their perceptions, emotions, interaction evaluations,
and opinions toward ChatGPT. By evaluating the effectiveness of this educational app-
roach, the study aims to offer valuable insights into reducing fear and promoting positive
attitudes towards AI as well as introducing highly needed educational activities for the
classroom about the novel concepts of prompting and LLMs.
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2 Methodology

2.1 Participants and Study Design

A pilot study was conducted at a high school in Palermo, Sicily with a sample size of 21
students (n = 21; 33.3% male, 66.7% female; Ages 16 to 18, mean age = 16.3, SD =
0.57). The studywas conductedwithin a formal school settingwith students participating
in a two hour-long AI workshop. Prior to the study students were informed about the
research objectives and the purpose of the workshop and were asked to sign an electronic
form to provide their consent to their participation in the study.

2.2 Learning Design and Study Procedure

The pilot study was conducted as an informative educational workshop on AI. The aim
of the workshop was to introduce students to the topic of AI and encourage them to
explore and question the capabilities and limitations of ChatGPT. The study procedure,
depicted in Fig. 1, was designed to facilitate learning through active exploration. In
particular, the educational learning plan saw two phases, the first one introduced student
to AI and allowed them to freely explore the capabilities and limitations of ChatGPT and
the second phase introduced students to prompting techniques to enhance ChatGPT’s
capabilities.

Fig. 1. Study design and educational learning plan.

The studyprocedure consistedof several key steps. Firstly, tominimize technical inci-
dents influencing the results, students were instructed to access the ChatGPT page before
they accessed the pre-questionnaire. After the completion of the pre-questionnaire, the
instructor proceeded to deliver a presentation to introduce participants to topics related to
AI applications, LLMs, and human intelligence vs artificial intelligence. Students were
then provided with instructions for an activity that involved utilising ChatGPT. During
this first activity students were asked to instruct ChatGPT to act as a personal teacher
to educate in regards to the fundamental concepts of democracy (prior to the study the
students had discussed the topic in class due to the Italian National Day and Republic
Day, an initial internal trial was also conducted to verify ChatGPT’s outputs for accuracy
from an educational standpoint). The set of instructions included a variety of key points
that the students should have as an outcome of their interaction. A few of the highlighted
key points: ChatGPT should interactively explain the main concepts of democracy in a
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natural and not boring way. It should avoid long bulleted lists and alternate brief expla-
nations with questions addressed to the user. Moreover, students were provided with a
set of educational objectives the ChatGPT interaction would eventually generate.

The first ChatGPT activity lasted approximately 20 min and aimed to give first-hand
experience to students in regard to the limited ability of ChatGPT to follow complex
instructions. At its completion, the instructor proceeded to elaborate the limits of Chat-
GPT and then introduced the concept of prompting, providing a few simple examples.
After receiving this information, students were given a second opportunity to instruct
ChatGPT to act as a personal teacher. The task briefing was the same as in the first
activity. At the end of the activity students accessed the post-questionnaire where they
could also upload their interaction with ChatGPT.

2.3 Measures

Perceived Level of Realistic and Identity Threat. To measure the perceived level of
realistic and identity threat generated by ChatGPT, a set of questions was adapted from
the study of [63]. The questions were adapted to AI conversational skills and included
items such as “In the long term, artificial intelligence is a direct threat to man’s well-
being and safety” and “Recent progress in artificial intelligence is challenging the true
essence of what it means to be a human being”. These sets of questions were part of
both the pre and post questionnaires and were rated on a 7-point scale, with responses
ranging from Strongly disagree (1) to Strongly agree (7).

Self-reported Emotions After Interaction. We proceeded to measure participants’
emotions after their interaction with ChatGPT using the “The Discrete Emotions Ques-
tionnaire” adapted from [16]. Participants were then asked to report the degree of emo-
tions they felt after the interaction with ChatGPT (anger, fear, disgust, anxiety, sadness,
desire, happiness, joy) The items were anchored with (1) not at all to (7) very much.

InteractionQuality Evaluation (UX).Additionally, in the post-questionnaire, we pro-
ceed to collect data regarding the interaction quality. The subscales of “Semantic Differ-
ential Pragmatic dimension”, “Semantic Differential Hedonic dimension”, “Semantic
Differential Human likeness”, and “Social presence” were used from [19].

Functionality of ChatGPT. Moreover, in the post-questionnaire, a set of measures
focused on evaluating students’ perception of ChatGPTs functionality was included.
Items were included to measure: (a) effort perceived to achieve desired ChatGPT behav-
ior, after their initial interaction with the AI tool, (b) perceived interaction improvement,
after being introduced to prompting and engaging to a second interaction with the tool,
and (c) ChatGPT capabilities.

Open-Ended Question. Lastly, to collect students’ opinions regarding the interaction
with ChatGPT, the post-questionnaire included three open-ended questions to collect
student’s opinions and thoughts in regard to; (a) positive aspects of the interaction, (b)
negative aspects of the interaction, and (c) any additional noteworthy thoughts they
wished to share.

Besides these measures, we collected students’ demographic data, their previous
experiences withAI andChatGPT, and in the post-questionnaire students were requested
to paste their ChatGPT chat history.
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2.4 Data Analysis

To code and categorize the responses to open questions provided by participants, we
used a classical social cognition model, the Stereotype Content Model (SCM), devised
to describe the process of impression formation of social actors and groups, traditionally
of human beings [10, 11]. According to this theory, humans form and update their
impression of others based on two fundamental dimensions: warmth, which involves
characteristics such as friendliness, kindness, and trustworthiness – and competence –
the ability to reach one’s goals effectively. In the last decade, this model was applied
to non-human agents like animals [47], brands [27], but also robots [6], chatbots [28],
and artificial intelligence [36], showing promising results. In previous studies where
people adopted warmth and competence to describe their AI interaction partner, they
tend to express more competence-related judgments, and evaluate these agents as more
competent than warm [36]. This may also depend on the AI system. In this study,
we decided to adopt this approach which summarizes social perception in two main
dimensions. Some students’ answers, though, were not targeting the perception of the
chatbot per se but the whole educational activity and interaction with the composed
system, referring to issues like creating an account or the excitement for their first
interaction with an AI. Consequently, we devised a third category named “system”
aimed at grouping these divergent records.

An attention check was included in each set of questions during data collection,
resulting in varying participant counts per questionnaire. The results section provides
the number of valid participants who passed the test.

3 Results

Perceived Level of Realistic Threat.To create a composite measure for realistic threat, all
five items on the scale were averaged together similar to previous work [13, 63]. Using
this measure, a dependent t-test revealed significant differences (p < 0.05) between the
pre (mPre = 4.17, SD = 1.39) and post (mPost = 3.73, SD = 1.42) questionnaires.
This suggests that participants’ (n = 20) realistic threat caused by AI decreased after
the intervention. A closer look into the individual items, saw a significant decrease in
participants’ belief that AI is causing work loss for men (mPre= 4.6, SD= 1.05, mPost
= 3.3, SD = 1.49, p < 0.05). However, participants’ belief that AI will not replace
workers from their duties remained unchanged after the intervention (mPre = 3.46, SD
= 1.25, mPost= 3.46, SD= 1.68, p> 0.05). The remaining items saw a non-significant
decrease after the intervention.

Perceived Level of Identity Threat. A composite measure was created for identity
threat by averaging all five items from the scale similar to previous work [13, 63]. A
dependent t-test revealed a significant difference (p < 0.05) between the pre (mPre =
4.08, SD = 1.39) and post (mPost = 3.57, SD = 1.54) questionnaires. This finding
indicates that participants’ (n = 20) AI identity threat significantly decreased after the
intervention. A closer look into the individual items, saw a significant decrease in partic-
ipants’ belief that boundaries between man and machine are becoming less clear (mPre
= 4.6, SD= 1.29, mPost= 3.73, SD= 1.48, p< 0.05). Despite improvements observed
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in the post-questionnaire, no statistically significant differences were identified among
the remaining items of the scale.

Self-reported Emotions After Interaction. Participants (n = 21) exhibited signifi-
cantly higher positive emotions after their interaction with ChatGPT (mPositive= 3.48,
SD = 1.79, mNegative = 1.35, SD = 0.91, p < 0.05). The higher negative emotion
was Anger (m = 1.55, SD = 1.43) whilst higher positive emotion was Serenity (m =
3.65,SD = 1.63). The lowest negative emotion was Sadness (m = 1.2, SD = 0.52) and
lowest positive emotions were both Desire (m = 3.4,SD = 1.98) and Joy (m = 3.4,SD
= 1.81).

Interaction Quality Evaluation (UX). Under the first subscale “Perception of human
likeness” students (n=20) perceived the interactionwithChatGPTmore as an interaction
with a machine rather than a human (m = 2.9, SD = 1.51), unnatural (m = 3.6, SD =
1.87), and artificial (m= 3.1, SD= 1.95). In the second subscale “Social Presence” the
participants gave a substantially below average evaluation to the social aspects of the
interaction (m= 3.5, SD= 1.67). With the highest rated item being that the chatbot was
efficient in responding to the activities (m = 4.6, SD = 1.49) and the lowest rated item
being that the chatbot engaged in a common task with them (m= 2.9, SD= 1.47). In the
third subscale “Semantic Differential Hedonic dimension” participants overall found
the experience enjoyable (m = 4.75, SD = 1.37) with the adjectives “Elegant, Good
Quality, New, Created connections, Innovative, Presentable, and Engaging” receiving
higher rating than their negative counter adjectives. In the final subscale “Semantic
Differential Pragmatic dimension” the interaction was found predictable (m= 4.85, SD
= 1.52) and manageable (m = 5.52, SD = 1.53).

Functionality of ChatGPT. In the first subscale, “Effort perceived to achieve desired
ChatGPT behaviour” students’ (n = 21) responses indicated a neutral stance, with no
strong agreement or disagreement on average. Participants reported that achieving the
desired behaviour from ChatGPT required little effort (mean= 3.78, SD= 1.62), some-
what many attempts (mean = 4.47, SD = 1.61), somewhat more attempts were needed
to refine the request (mean = 4.63, SD = 1.77), and the desired behaviour required
increased understanding of how ChatGPT works (mean = 4.63, SD = 1.53).

After being introduced to the prompting strategies and completing the second activity
students were asked to compare the two interactions. Compared to the first attempt,
students found the results of the second interaction to be better (mean = 2.45, SD =
1.19), slightly more natural (mean = 4.55, SD = 1.61), and clearer (mean = 5.25, SD
= 1.11). However, there was no agreement if the interaction was passively repeating
content or more interactive (mean = 4, SD = 1.83).

Finally, in regards to the subscale of “ChatGPT capabilities”, participants found
ChatGPT intelligent rather than confused (mean = 3, SD = 2.01), intuitive instead of
unable to adapt to requests (mean = 3.17, SD= 1.99), understanding of their questions
(mean= 3.39, SD= 1.77), knowingwhat they asked (mean= 3.28, SD= 1.99), adapting
to their questions rather than repeating the same mistakes (mean = 3.67, SD = 1.76),
however, they reported the interactions as reading from an encyclopaedia rather than
communicating with a human (mean = 3.67, SD = 1.76).
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Open-Ended Question. The dimension that was most widely covered in the open
answers was competence, with the theme that emerged most strongly being that Chat-
GPT was responsive and provided answers. This theme was supported by the responses
of 8 participants. The responses were characterized by terms such as “immediate,” as
emphasized by participants P06 and P13, “correct” (P09), “exhaustive” (P04), and “in-
teresting” (P10). A student also observed that the system was able to provide summa-
rizations on request (P06). Another theme that emerged within this dimension with the
support of 5 students is the system’s usefulness. A student commented that this use of
ChatGPT “could be useful for practicality and timing” (P20).

Negative aspects of competence that students commented on were repetitiveness,
both in terms of themneeding to repeat their questions andChatGPT repeating responses.
These were supported by the writing of 4 students each. The first one of these was
mentioned with comments along the lines of “it started repeating the same things” (P06),
and the second - along the lines of a student saying they “had to repeat several times to
explain [themselves] again and more clearly the topics” (P11). One student also wrote
that they had “to repeat [to the system to] to go slowly several times” (P12). Another
theme of criticism, related to this need for repetition was supported by 5 students, and
represented by writings stating that the system “did not answer as [the student] wanted
to questions” (P17) and “the chat was purely notionistic” (P01). When it comes to the
warmth dimension, only 3 students provided positive comments, giving a somewhat
different spin to similar responses from the competence dimension. The main difference
being that the focus in the responses is not on the system sharing its knowledge, but
on it complying to students’ requests. This is well represented by a student who wrote
“that asking it to explain again in a clearer way, it acceded and fulfilled my requests”
(P11). Criticisms that fall within the warmth dimension were about ChatGPT not being
“natural” enough (P09) and not giving a sense of “a conversation with a human” (P20),
“the little feeling in the replies” (P21), supported by 5 students. More precisely, they
suggested that it should “briefly answer the questions that are asked” (P09) and it should
not provide “answers that are taken from an encyclopedia” (P10), both also suggested it
should be more human-like.

Finally, the third dimension that emerged was the perception of the system. Positive
comments concerned the possibility to interact with artificial intelligence (supported by
3 students), and with a novel system (7 students). The two points were brought together
by a student that expressed satisfaction of “dealing with a new reality, such as that of
artificial intelligence” (P03). One student wrote to have found out “how much artificial
intelligence can be useful in daily life […] it helps to save time without being superficial
in research” (P08). Others seconded that by writing that it “will surely be used for the
future” (P17). In many of their negative comments regarding this dimension, students
expressed views that the system needs to be improved, one saying that it’s “still at an
embryonic stage” (P02).

4 Discussion and Conclusion

This study aimed to develop an AI literacy workshop using ChatGPT to enhance adoles-
cents’ understanding of AI limitations and mitigate fears and negative attitudes towards
AI. The intervention successfully reduced adolescents’ fears related to realistic and
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identity threats posed by AI advancements. The initial levels in the responses to the cor-
responding metrics demonstrated the presence of such a fear, similar to previous work
[13]. Our study revealed that offering opportunities for guided non-trivial interactions
with ChatGPT can effectively reduce the fear associated with AI advancements. A sig-
nificant decrease was noticed in the items of fear of job loss and belief in the blurring
boundaries between humans and machines. This positive shift in attitudes indicates that
the exposure of adolescents to generative AI capabilities provided them a better under-
standing of how AI systems function and the impact they may have on various aspects
of society, including the job market and human identity.

Regarding the overall experience, students rated the interaction with ChatGPT as
enjoyable, eliciting positive emotions such as desire, serenity, and happiness. In some
instances, students reported feelings of anger, which may be attributed to factors beyond
the interaction with ChatGPT, such as their difficulties during the registration phase or
the survey. This claim is further supported by comments students left in the open-ended
responses.

Concerning evaluating the interaction of ChatGPT in terms of human likeness, stu-
dents perceived ChatGPT as more of a machine than a human-like entity, describing it
as unnatural and artificial [29]. This finding was persistent in the open-ended answers
with students further describing their interactions with ChatGPT as repetitive. The social
presence perceived during the interaction was limited with students reporting that the
chatbot did not engage in common tasks with them. However, despite these perceptions,
students found the experience enjoyable and manageable. When comparing the two
ChatGPT activities, the initial one without prompting strategies and the second one after
being introduced to prompting, the students rated the second interaction with ChatGPT
clearer, more natural, and better than the initial attempt. A look into students’ requests
within ChatGPT, we observemore structured prompts as the interactions went on. Due to
limitations in collecting the majority of students generated prompts, it was not feasible
to derive more concrete results in regards to prompting skills improvement, however
students reported perceived improvement in interaction with ChatGPT and understand-
ing of its capabilities. Moreover, the incorporation of prompting strategies in the second
ChatGPT activity had a profound impact on students’ perceptions and evaluations of
the overall interaction. Highlighting the importance of providing users with appropriate
guidance and education to fully leverage the capabilities of AI systems [64].

Overall, the findings indicate that participants had a positive view of ChatGPT’s
capabilities, appreciating its intelligence, understanding, and adaptability similar to pre-
vious work [49]. However, despite these positive evaluations of ChatGPT’s capabilities,
participants perceived the interactions as more akin to reading from an encyclopedia
rather than engaging in human-like communication [29]. This suggests that while stu-
dents recognized the intelligence and adaptability of ChatGPT, they also acknowledged
a limitation in its ability to emulate human-like interactions. However, it is essential
to consider that this perception may also be influenced by a possible misunderstanding
of the question from the students’ point of view. The novelty of interacting with Chat-
GPTmight have led them to expect encyclopedic-style answers to their natural language
questions.
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Findings from the student open-ended responses provide further valuable insights
into their experiences and perceptions of ChatGPT in three distinct dimensions: com-
petence, warmth, and system perception. On a warmth level, it was considered low
while acceding to help the user, however, this could be part of the alignment fine tun-
ing applied to ChatGPT. Finally, the dimension of system perception received positive
comments, centred around the excitement of interacting with AI. Students proceeded
to share individual thoughts of how they believed that AI, as represented by ChatGPT,
is likely to become increasingly valuable in various aspects of daily life and education.
To our knowledge this is the first study that offers an exploration about the need and
an approach to learn to prompt with LLMs in the classroom and how this facilitates
reflection about AI limits. The qualitative answers to the open questions provide a deep
understanding about the aspects under exploration, but they cannot be generalised. Even
if in case studies in other contexts we expect similar conditions (e.g., limited current
familiarity with ChatGPT), more studies will be needed to determine the generality of
our findings.

As with any study we report the following limitations. Our choice of interpretation
model for the open questions followed from our data. The concise qualitative answers
did not allow for a fine-grained classification like the one proposed by [19] that we
adopted in our quantitative interaction quality evaluation. In a naive parallel between
these measures, the warmth dimension can efficiently capture the hedonic, social pres-
ence, and human-likeness dimensions,while the pragmatic quality dimension alignswith
the competence aspect. However, it must be noted that the SCM was mostly designed
with human actors and human-level linguistics [5] and functional cognitive capabilities
inmind [34]. Instead, [19] proposesmeasures that were initially applied to classical chat-
bots whose interaction capabilities were more restrictive, e.g., fixed agent-led instead
of mixed-initiative dialog. Those chatbots were designed to effectively complete a spe-
cific task with a limited focus on natural and versatile interaction. The pragmatic value
for these models usually refers to the complexity of the task and domain at hand, e.g.,
acquiring all the data necessary from the user and completing the operations requested.
This measure may not directly map pragmatic linguistic skills [5], which were too lim-
ited in most old commercial chatbots. While later UX chatbot measures like those of
[19] have been applied to more complex chatbots, they don’t clearly split the perception
of different types of linguistic [5] and emotional skills, which may affect items present
in all four dimensions: pragmatic quality, hedonic quality, human-likeness, and social
presence. SCM would instead collapse in the competence dimension both the semantic
and pragmatic linguistic skills while the latter is domain independent and connected to
the social domain. The disagreement between these measures was often reflected by
disagreement between the annotators. For example, the issues about repetitiveness of
responses or need to repeat and reformulate a query were considered by the majority
as lack of competence, thus following the selected SCM approach, a minority as social
competence, following a line of reasoning more in line with the view of UX chatbot
measure. This may explain the contrast between the interaction quality evaluation (that
finds the system competent, and the open-ended answers analysis that presents several
negative points on this aspect.
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The UX chatbot and SCM measures may not be fully suited to cover for both ver-
satility and fragility of modern LLM-based chatbots and the interaction between their
broader but fallible capabilities [34] as the tendency to diverge into hallucinations [55],
especially during complex natural conversations [29], and the unnatural almost hard-
wired safeguard responses they present [8, 33]. To get a more detailed measure of users’
perception of ChatGPT skills we added specific semantic differential measures “Func-
tionality of ChatGPT” that non conclusively suggest a positive perception of ChatGPT’s
capabilities while being still limited in terms of natural interaction. In our future studies,
we will extend the measures collected to account for these issues, for example adopting
automatic tools for measurement of semantic and pragmatic precision [5]. The study
was carried out as a field study within a school environment, but encountered certain
challenges related to the accessibility of the ChatGPT website. Additionally, in some
instances, students worked in pairs to complete the activity due to malfunctioning of
some machines. While most students reported improving quality of the interaction dur-
ing the activity only nine uploaded their in-class interaction due to technical issues. Only
five out of nine interactions showed more than three attempts to improve the conver-
sation modifying the prompts. Moreover, the number of questions in the survey may
have tired the students and affected their answers. It is important to note that this was an
exploratory pilot study with a relatively small sample size which necessitates caution in
generalizing the findings.

In conclusion, our study suggests a significant impact of designing and developing
AI literacy workshops with hands-on experience using ChatGPT. While with a lim-
ited number of participants, the intervention has shown to be an effective approach in
enhancing participants’ understanding of ChatGPT limitations and capabilities whilst
also diminishing fears of identity and realistic threats caused byAI advancements. Lastly,
the study successfully introduced participants to the effective use of prompting strate-
gies, enhancing their interactions with ChatGPT. To conclude, we highlight the need for
novel measures of the linguistic aspects of user interaction with LLM based chatbots
considering their non-transparent mechanisms and limitations as well as dealing with
large amounts of data [5]. In future research, we aim to replicate the study with a larger
sample size, enabling more comprehensive analysis and correlation exploration.

Acknowledgements. This work has been partially funded by the Volkswagen Founda-
tion (COURAGE project, no. 95567). TIDE-UPF also acknowledges the support by
AEI/10.13039/501100011033 (PID2020-112584RB-C33, MDM-2015-0502) and by ICREA
under the ICREA Academia programme (D. Hernández-Leo, Serra Hunter) and the Department
of Research and Universities of the Government of Catalonia (SGR 00930). The authors thank
Marco Marelli for the useful discussions on pragmatic linguistic skills.

References

1. Bang, Y., et al.: A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning,
hallucination, and interactivity. arXiv preprint arXiv:2302.04023 (2023)

2. Bengio, Y., Russel, S., Musk, E., Wozniak, S., Harari, Y.N.: Pause Giant AI Experiments: An
Open Letter. Future of Life Institute (2023). https://futureoflife.org/open-letter/pause-giant-
ai-experiments/

http://arxiv.org/abs/2302.04023
https://futureoflife.org/open-letter/pause-giant-ai-experiments/


Learning to Prompt in the Classroom to Understand AI Limits 493

3. Bishop, J.M.: Artificial intelligence is stupid and causal reasoning will not fix it. Front.
Psychol. 11, 2603 (2021)

4. Borji, A.: A categorical archive of ChatGPT failures. arXiv preprint arXiv:2302.03494 (2023)
5. Bunt, H., Petukhova, V.: Semantic and pragmatic precision in conversational AI systems.

Front. Artif. Intell. 6, 896729 (2023)
6. Carpinella, C.M., Wyman, A.B., Perez, M.A., Stroessner, S.J.: The robotic social attributes

scale (RoSAS) development and validation. In: Proceedings of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, pp. 254–262 (2017)

7. Das, D., Kumar, N., Longjam, L., et al.: Assessing the capability of ChatGPT in answer-
ing first- and second-order knowledge questions on microbiology as per competency-based
medical education curriculum. Cureus 15(3), e36034 (2023). https://doi.org/10.7759/cureus.
36034
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