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Abstract. Skin lesion analysis models are biased by artifacts placed
during image acquisition, which influence model predictions despite car-
rying no clinical information. Solutions that address this problem by reg-
ularizing models to prevent learning those spurious features achieve only
partial success, and existing test-time debiasing techniques are inappro-
priate for skin lesion analysis due to either making unrealistic assump-
tions on the distribution of test data or requiring laborious annotation
from medical practitioners. We propose TTS (Test-Time Selection), a
human-in-the-loop method that leverages positive (e.g., lesion area) and
negative (e.g., artifacts) keypoints in test samples. TTS effectively steers
models away from exploiting spurious artifact-related correlations with-
out retraining, and with less annotation requirements. Our solution is
robust to a varying availability of annotations, and different levels of
bias. We showcase on the ISIC2019 dataset (for which we release a subset
of annotated images) how our model could be deployed in the real-world
for mitigating bias.
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1 Introduction

Spurious correlations between conspicuous image features and annotation labels
are easy to learn, but since they have no actual predictive power they compromise
the robustness of models. In medical image analysis, with datasets much smaller
than the typical computer vision state-of-the-art, their effect is increased. In skin
lesion analysis, one of the most studied confounders are artifacts produced during
image acquisition (such as rulers, color patches, and ink markings). Even if the
correlation of the presence of each artifact with the lesion diagnostic is small, the
combined effect suffices to distract models from clinically-robust features [1,2,8].
Mitigating bias during training is an active research area, but methods still
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Fig. 1. Test-Time Selection (TTS). An annotator provides negative (background, arti-
facts) and positive (lesion area) keypoints, used to rank and select activation units
from the last layer of the pretrained feature extractor. Features related to negative
keypoints are masked to zero.

struggle to surpass strong baselines [10]. A complementary solution is to change
the inference procedure to mitigate biases during test [4]. For that, solutions
have exploited test batch statistics for feature alignment [12,18]. However, test
batch statistics heavily rely on the batch size (the bigger, the better) and on the
homogeneity of the test distribution. For medical data, one attractive option is to
exploit (few or quickly obtainable) extra annotations to infuse domain knowledge
into the models’ predictions, increasing model robustness and trust of medical
practitioners [9].

In comparison to other medical fields, skin lesion analysis researchers have
access to rich annotations to support this path. Besides high-quality images,
there are available annotations regarding segmentation masks, dermoscopic
attributes, the presence of artifacts, and other clinical information such as age,
sex, and lesions’ anatomical site. In particular, segmentation masks experience
the most success, granting more robustness to classification. We build upon this
success to create a solution that dependd on human-defined keypoints, which
are far cheaper to annotate than lesion segmentation masks.

In this work, we propose TTS (Test-Time Selection), a method to incorporate
human-defined points of interest into trained models to select robust features
during test-time. In Fig. 1, we show a summary of our method. In more detail, we
first gather human-selected keypoints of interest (positive and negative). Then,
we rank the last layer activation units based on their affinity to the keypoints.
Finally, we mute (set to zero) the 90% worst features, using only the remaining
10% for classification. There are no changes to the models’ weights, making this
procedure lightweight and easy to integrate in different pipelines.

Our method is compatible with the daily clinical routine to avoid overwhelm-
ing medical practitioners with the technology that is intended to assist them.
The human intervention must be as quick and straightforward as possible while
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granting enough information to steer models away from spurious correlations.
We show that we can improve robustness even from a single pair of positive and
negative interest points that merely identify lesion and background, and achieve
stronger results by using the location of artifacts.

We summarize our contributions as follows:

– We propose a method for test-time selection based on human-defined criteria
that boosts the robustness of skin lesion analysis models1.

– We show that our method is effective throughout different bias levels.
– We show that a single positive and negative interest point is sufficient to

improve significantly models’ robustness.
– We manually annotate the position of artifacts in skin lesion images and use

these selected keypoints in our solution, further improving performance.

2 Related Work

Test-time debiasing can adapt deep learning to specific population characteristics
and hospital procedures that differ from the original dataset. Most methods for
test-time debiasing exploit statistics of the batch of test examples. Tent [18]
(Test entropy minimization) proposes to update batch normalization weights
and biases to minimize the entropy of the test batch. Similarly, T3A [12] (Test-
Time Template Adjuster) maintains new class prototypes for the classification
problem, which are updated with test samples, and finally used for grounding
new predictions. Both approaches rely on two strong assumptions: that a large
test batch is available during prediction, and that all test samples originate from
the same distribution.

Those assumptions fail for medical scenarios, where diagnostics may be
performed one by one, and populations attending a given center may be
highly multimodal. To attempt to work in this more challenging scenario,
SAR [13] (Sharpness-Aware and Reliable optimization scheme) proposes to per-
form entropy minimization updates considering samples that provide more sta-
ble gradients while finding a flat minimum that brings robustness regarding the
noisy samples. Despite showing good performances in corrupted scenarios (e.g.,
ImageNet-C [11]), SAR is heavily dependent on the model’s architecture, being
inappropriate for models with batch normalization layers. In contrast with these
methods, our solution does not use any test batch statistic, does not require
training nor updates to the models’ weights, and does not rely upon any partic-
ular architecture structure to improve performance.

Another approach is to change the network’s inputs to remove biasing factors.
NoiseCrop [3] showed considerable robustness improvements for skin lesion anal-
ysis by using skin segmentation masks to replace the inputs’ backgrounds with
a common Gaussian noise. Despite its benefits, NoiseCrop is hard to integrate
into clinical practice as it depends on laborious segmentation masks annotated

1 Code is available at https://github.com/alceubissoto/skin-tts.

https://github.com/alceubissoto/skin-tts
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Table 1. Comparison of TTS with state-of-the-art test-time debiasing.

Tent [18] T3A [12] SAR [13] NoiseCrop [3] TTS (Ours)

Test-time only ✓ ✓ ✓ ✓ ✓

Human-in-the loop ✗ ✗ ✗ ✓ ✓

No parameter updates ✗ ✗ ✗ ✓ ✓

Robust to changing test statistics ✗ ✗ ✓ ✓ ✓

Architecture agnostic ✗ ✓ ✗ ✓ ✓

Few extra information required – – – ✗ ✓

by dermatologists. Also, NoiseCrop discards relevant information in the patient’s
healthy skin and introduces visual patterns that create a distribution shift of its
own. Our solution does not suffer from these problems since our intervention
takes place in feature space, and we show it is effective using very few keypoints.
We summarize the differences between our method and the literature in Table 1.

3 Methodology

Previous works showed the potential of test-time debiasing, but depended on
weight updates using test batches statistics [12,18] and architecture compo-
nents [13]. We decided instead to use human feedback over positive and neg-
ative image keypoints to steer the models. We aimed at making the annotation
procedure as effortless as possible, allowing to integrate the method into the
clinical practice of skin lesion analysis. The resulting Test-Time Selection (TTS)
is summarized in Fig. 1.

TTS: Test-Time Feature Selection. We assume access to a single test sam-
ple x, associated with a set of positive Kp = {kp1, kp2, ..., kpp} and negative
Kn = {kn1, kn2, ..., knn} human-selected keypoints on the image. The positive
keypoints represents areas of the image that should receive more attention (e.g.,
the lesion area), while the negative points represent area of the image that should
be ignored (e.g., the background, or spurious artifacts). We denote the feature
extractor from a pretrained neural network by f(·), and the associated classifier
by g(·).

For each image x, the feature extractor generates a representation f(x), which
is upsampled to match the original image x size for test-time selection. For
each channel c in f(x), we extract the values corresponding to the coordinates
specified by the keypoints and compute their sums Spc

=
∑

k∈Kp
f(x)c[k], and

Snc
=

∑
k∈Kn

f(x)c[k], where f(x)c[k] denotes the value at the keypoint k for
channel c of f(x). We calculate a score Sc for each channel c as the difference
between the sums of the representations at the positive and negative keypoints:

Sc = αSpc
− (1 − α)Snc

, (1)
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where α controls the strength of the positive and negative factors. We use α = 0.4
to give slightly more weight to the negative keypoints related to the sources of
bias (i.e., artifacts) investigated in this work. If the keypoint annotation confi-
dently locates positive or negative points of interest, α can be adjusted to give
it more weight.

We use the scores to rank the channels with higher affinity to the input
keypoints. We define a set T which consists of the indices corresponding to the
top λ% scores in Sc, i.e., T = {c : Sc is among the top λ% of scores}. In other
words, λ controls how much information is muted. In general, we want to mute
as much as possible to avoid using spurious correlations. In our setup, we keep
only 10% of the original activation units. Next, we form a binary mask M with
values mc defined as: mc = 1, if c ∈ T , or mc = 0, if c /∈ T .

Finally, the masked version of f(x), denoted as f ′(x), is computed by f(x):
f ′(x) = f(x) � M , where � represents the element-wise multiplication. The
masked feature map f ′(x) is the input for our neural network’s classifier compo-
nent g(·), which yields the final prediction. As such procedure happens individu-
ally for each dataset sample, different samples can use the activation units that
best suit it, which we verified to be crucial for the effectiveness of this method.

Keypoints. We always assume having access to the same number of positive
and negative keypoints (i.e., for 2 keypoints, we have one positive and one nega-
tive). We explore two options when selecting keypoints. The first option is more
general and adaptable for most computer vision problems: Positive keypoints
represent the foreground target object (e.g., lesion), while negative keypoints
are placed in the background. To extract these keypoints we make use of skin
lesion segmentation masks2. Using keypoints instead of the whole mask lessens
the impact of mask disagreement (from annotators or segmentation models) in
the final solution.

The second option uses domain knowledge to steer the model’s prediction
further: instead of sampling negative keypoints from the background, we restrict
the points to the artifacts. The main benefit is allowing models to consider the
skin areas around the lesion, which can provide clinically meaningful features.
For that option, we manually annotate the samples on our test sets, adding
negative keypoints on 4 types of artifacts: dark corners, rulers, ink markings,
and patches. Other types artifacts (hair, gel bubbles, and gel borders) are hard
to describe with few keypoints, and were not keypoint-annotated, but were used
for trap set separation. This fine-grained annotation, allows us to boost the
importance of negative keypoints by setting α to 0.2, for example.

Data and Experimental Setup. We employ the ISIC 2019 [6,7,16] dataset.
The class labels are selected and grouped such that the task is always a binary
classification of melanoma vs. benign (other, except for carcinomas). We removed
from all analysis samples labeled basal cell carcinoma or squamous cell carci-
noma. Train and test sets follow the “trap set” separation introduced by Bissoto

2 We employ the ground-truth segmentation masks when available, and infer the seg-
mentation with a deep learning model [5] when they are not.
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Fig. 2. Attention maps before and after our feature selection. Using a few keypoint
annotations, TTS successfully reduces the importance of spurious features in the back-
ground, shifting the model’s focus to the lesion.

et al. [2,3], that craft training and test sets where the correlations are amplified
between artifacts and the malignancy of the skin lesion, at the same time that
correlations in train and test are opposite. Trap sets follow a factor that controls
the level of bias, from 0 (randomly selected sets) to 1 (highly biased). In detail,
for each sample, the factor controls the probability of following the train-test
separation suggested by the solver or assigning it randomly to an environment.

All our models consider Empirical Risk Minimization [17] as the training
objective. Our baseline is doing test-time augmentation with 50 replicas, a stan-
dard in skin lesion analysis [14]. For a more realistic clinical setup, we always
assume to have access to a single test image at each time. The results for TTS
also perform test-time augmentation with 50 replicas, showing that our model
can easily be combined with other test-time inference techniques. The pretrained
models used for all the experiments were fine-tuned for 100 epochs with SGD
with momentum, selecting the checkpoint based on validation performance3.
Conventional data augmentation (e.g., vertical and horizontal shifts, color jit-
ter) are used as training and testing. All results refer to the average of 5 runs
(each with a different training/validation/test partition4 and random seed).

4 Results

We show our main results in Table 2, comparing our solution with the state-
of-the-art of test-time adaptation. All models are evaluated in trap sets, which
create increasingly hard train and test partitions. On training, biases are ampli-
fied. On test, the correlations between artifacts and labels are shifted, punishing
the models for using the biases amplified on training. The “training bias” controls
the difficulty, being 1.0 as the hardest case. In this scenario, traditional trained
models, even with test-time augmentation, abdicate from learning robust fea-
tures and rely entirely on biases. Despite NoiseCrop [3] can highly improve the
3 For choosing these models hyperparameters, we performed a grid-search over learning

rate (values 0.00001, 0.0001, 0.001), and weight-decay (0.001, 0.01, 0.1, 1.0), for 2
runs on a validation set randomly split from the training set.

4 Training/validation/test contains 60/10/30% of the total data.
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Table 2. Main results and ablations (on number and annotation source of keypoints)
for the hardest trap tests (training bias = 1.0). TTS achieves state-of-the-art perfor-
mances while using very few annotated keypoints.

Method #Keypoints Annotation Alpha AUC

baseline Test-Time Aug – – – 58.4 ±1.6

literature T3A [12] – – – 56.7 ±3.2

literature Tent [18] – – – 54.1 ±14.5

literature NoiseCrop [3] 50,176 segm. mask – 72.7 ±3.1

TTS (ours) 40 artifacts 0.2 75.0 ±1.1

ablation TTS (ours) 2 segm. mask 0.4 68.2 ±1.5

ablation 10 segm. mask 0.4 71.6 ±2.2

ablation 20 segm. mask 0.4 72.9 ±2.4

ablation 40 segm. mask 0.4 73.3 ±2.6

ablation 100 segm. mask 0.4 73.9 ±2.5

ablation 2 artifacts 0.4 69.6 ±1.1

ablation 40 artifacts 0.4 73.3 ±0.9

ablation 2 artifacts 0.2 72.2 ±0.9

performance, it requires the whole segmentation mask, which is expensive to
annotate and suffer from low inter-annotator agreement issues [15]. We show
that TTS consistently surpasses baselines using very few annotated keypoints.
By analyzing the attention maps before and after our procedure (Fig. 2), TTS
successfully mitigates bias, diminishing the importance of artifacts. Also, its flex-
ibility allows for better results once the annotated keypoints locate the artifacts
biasing the solution (e.g., dark corners, rulers, ink markings, and patches).

Amount of Available Keypoints. We evaluate the effect of limiting the avail-
ability of keypoints. This is an essential experiment for assessing the method’s
clinical applicability. If it requires too many points to be effective, it may over-
whelm clinical practitioners with annotating duties, which beats the purpose of
using computer-assisted diagnosis systems. In Table 2, we show that our method
can positively impact the robustness of pretrained models even in extreme con-
ditions where a single negative and positive keypoint is annotated. Aside from
the minimum impact in the clinical pipeline, it also shows to be robust to differ-
ent annotators since the improvements are consistent by sampling positive and
negative keypoints at random from segmentation masks.

Keypoint Annotation Granularity. The flexibility of using keypoints
(instead of full segmentation masks) not only allows for easy inclusion in the
daily clinical routine, but also allows for fine-grained concepts to be annotated
without being time-consuming. In this experiment, we manually annotated the
trap test sets with keypoints that locate 4 artifacts: dark corner, ruler, ink mark-
ings, and patches. With fine-grained annotations of artifacts to provide negative
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Fig. 3. Ablation of our TTS over different intensities of bias. TTS consistently out-
performs NoiseCrop [3] across bias intensities while using a fraction of the extra-
information available: NoiseCrop uses the whole segmentation mask, while in this
example, we use 20 positive and 20 negative keypoints.

keypoints, we can increase negative keypoints importance by shrinking α, achiev-
ing our best result. We show our results in Table 2.

Using artifact-specific keypoints instead of background ones does not punish
models for using the lesions’ surrounding skin in the decision process, being
beneficial for diagnosis classes such as actinic keratosis, where the skin itself
provide clinically-meaningful information. This change further boosts previous
gains both when 1 or 20 positive and negative points were available. Our method
can be used in other scenarios, where not only negative but relevant positive
information can be encouraged to be used by models, such as the presence of
dermoscopic attributes.

Different Levels of Bias. We evaluate our solution over different levels of bias
from trap sets. Trap sets allow a better assessment of models ability to generalize.
As the training bias increases, the task becomes increasingly hard for the model,
as correlations between artifacts and labels get harder to pass unnoticed. At the
same time, the higher the bias factor, the better trap test does at punishing
the model for exploiting spurious correlations. When the training bias is low,
robust models are expected to achieve a worse result than unbounded ones,
as exploiting spurious correlations is rewarded by evaluation metrics. However,
even if we can not perfectly measure the bias reliance in intermediate bias,
performing well in these situations is crucial since real-world scenarios might
not present exaggerated biases. In Fig. 3, we show that our solution outperforms
NoiseCrop across all bias factors. We hypothesize that NoiseCrop introduces a
distribution shift when it replaces the inputs’ background with noise. We avoid
this shortcoming by intervening in the feature space instead of the pixel space,
which proved robust to the sparsity induced by our procedure.
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5 Conclusion

We propose a method for test-time debiasing of skin lesion analysis models, deal-
ing with biases created by the presence of artifacts on the ISIC 2019 dataset. Our
method select features during inference taking user-defined keypoints as a guide
to mute activation units. We show that our method encourages the attention
map focus more on lesions, translating to higher performance on biased scenar-
ios. We show that our model is effective throughout different levels of bias even
with single pair of annotated keypoints, thus allowing frugal human-in-the-loop
learning. It benefits from fine-grained annotations, such as artifact locations,
and is lightweight as it does not require training. In future works, we want to
explore the possibility of keeping a memory bank of important previously anno-
tated concepts to consider before each prediction. Muting features is a general
principle, extensible to other data modalities, including text (e.g., from medical
summaries), an idea that we would also like to explore in the future.
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