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Abstract. Decentralized machine learning has broadened its scope
recently with the invention of Federated Learning (FL), Split Learning
(SL), and their hybrids like Split Federated Learning (SplitFed or SFL).
The goal of SFL is to reduce the computational power required by each
client in FL and parallelize SL while maintaining privacy. This paper
investigates the robustness of SFL against packet loss on communication
links. The performance of various SFL aggregation strategies is examined
by splitting the model at two points – shallow split and deep split – and
testing whether the split point makes a statistically significant difference
to the accuracy of the final model. Experiments are carried out on a seg-
mentation model for human embryo images and indicate the statistically
significant advantage of a deeper split point.

Keywords: SplitFed Learning · packet loss · human embryo image
segmentation

1 Introduction

Federated learning (FL) [14] enables the training of machine learning models
by multiple clients without sharing data. FL holds great promise for healthcare
because of privacy constraints regarding medical data. In FL, clients train their
local models and send them to the server for aggregation, after which the aggre-
gated global model is sent back to the clients. Although FL addresses privacy
concerns, it requires all clients to train local models that are usually of the same
size as the global model. Since clients might not have the necessary computing
resources (comparable to the server), this presents a challenge, especially for
training large models.

Split Learning (SL) [7,22] was developed to overcome this client-server pro-
cessing disparity. In SL, a model is split into several parts that can reside in
various locations and/or devices. Typically, the front-end of the model (usually
the first few layers) is located on a client device, and the more computation-
ally demanding back-end is located on a server. During model training, features

Supported in part by the Natural Sciences and Engineering Research Council (NSERC)
of Canada under the grants RGPIN-2021-02485 and RGPAS-2021-00038.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 367–377, 2023.
https://doi.org/10.1007/978-3-031-47401-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47401-9_35&domain=pdf
http://orcid.org/0000-0002-1608-8196
http://orcid.org/0000-0002-9114-9112
http://orcid.org/0000-0002-7507-9986
http://orcid.org/0000-0003-3154-5743
https://doi.org/10.1007/978-3-031-47401-9_35


368 C. Shiranthika et al.

are sent from the front-end to the back-end, while gradients are sent from the
back-end to the front-end. Thus, SL can solve the existing computational imbal-
ance between the client(s) and the server in FL. However, SL on its own does
not enable clients to collaborate in model training. Hence, recent research has
blended FL and SL, resulting in hybrid Split-Federated Learning (SFL) [17,20],
which combines the best of both worlds. SFL allows privacy preservation and
collaboration between clients (like FL) while balancing computational resources
between the client(s) and the server (like SL).

Error resilience is a critical challenge in distributed learning. The robustness
of SFL to annotation errors has recently been studied in [9], while the issue of
noisy communication links was tackled in [8]. Packet loss is another frequent
transmission error in real-world communication networks, which occurs when
one or more data packets fail to reach their destination. Several attempts have
been made to address packet loss in the FL literature.

Authors in [18] modeled the link between the clients and the server in FL
as a packet erasure channel and experimentally studied the model convergence
with and without packet loss. Loss tolerant FL (LT-FL) was explored in [24] in
terms of aggregation, fairness, and personalization. Authors used ThrowRight-
Away (TRA) to accelerate the data uploading for low bandwidth devices by
intentionally ignoring some packet losses. In SL, packet loss happens at model
split points. Therefore, the question of where to split directly impacts the loss
resilience. The optimal choice of split points [11,21] and loss resilience [1,3,5]
have been active, but thus far separate, research topics in split inference (SI)
or colloborative intelligence (CI) [2,10]. However, to the best of our knowledge,
there appear to be no existing studies of the impact of the choice of split points
on loss resilience in SL, let alone the more recent SFL paradigm.

This study investigates the impact of model split points on the loss resilience
of SFL. We examine five parameter aggregation algorithms under various con-
ditions such as different numbers of clients facing packet loss and different loss
rates. Section 2 describes the system model and the aggregation methods exam-
ined. Section 3 describes the experiments and provides an analysis of the results.
Conclusions and suggestions for future work are given in Sect. 4.

2 System Model

Figure 1 shows a SplitFed U-Net model for human embryo component segmen-
tation on which our experiments are conducted. The U-Net consists of four
downsampling blocks between the input and the bottleneck, and four upsam-
pling blocks between the bottleneck and the output. Each block contains two
convolutional layers with 3 × 3 kernels, a batch normalization layer, and ReLU
activation. Each downsampling block starts with the aforementioned two con-
volutional layers followed by a 2 × 2 max-pooling layer. The number of filters
in the four downsampling blocks increases as 32, 64, 128, and 256, from input
towards the bottleneck. The bottleneck consists of two convolutional layers with
512 filters. Each upsampling block starts with a 2 × 2 upsampling layer followed
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by a transpose convolutional layer. The number of filters in the four upsampling
blocks increases to 256, 128, 64, and 32 toward the output. The final upsampling
block is followed by a convolutional layer with the argmax function.

We examine two ways of splitting the model: shallow split and deep split,
indicated in Fig. 1. In shallow split, the first convolutional layer (front-end, FE),
and the last two convolutional layers together with the output argmax layer
(back-end, BE) are located on the client side, while the rest of the model is on
the server. In deep split, the first two convolutional layers and the first max-
pooling layer (front-end, FE), and the last three convolutional layers together
with the final upsampling layer (back-end, BE) are located on the client side,
while the rest of the model resides on the server.

Fig. 1. Split U-Net architecture

The training process is as follows. First, initial copies of FE and BE are sent
to each client, and the server makes a separate copy of its own model for each
client. Each client then trains its local FE and BE in collaboration with its own
copy of the server model for a certain number of local epochs. After that, each
client sends its FE and BE models to the server, and aggregation is applied to
all clients’ FEs, BEs, and copies of the server model. The new aggregated global
model consists of FE, server model, and BE. The server sends global FE and
BE to each client to perform local validation. This completes one global epoch.
During the forward pass, the features produced by the FE are sent from the
client to the server. The server processes them through its own model and sends
the resulting features back to the client to be processed by the BE. Client-side
BE produces the prediction, computes the loss, and starts the back-propagation.



370 C. Shiranthika et al.

Gradient updates from the client-side BE are sent to the server, back-propagated
through the server model, and then sent to the client-side FE. Figure 2 shows
the adopted splitFed architecture of the U-Net model.

Fig. 2. SplitFed U-Net architecture [17]

We implemented five well-known parameter aggregation algorithms: näıve
averaging [14], federated averaging (FedAvg) [14], auto-FedAvg [23], fed-
NCL V2 [12], and fed-NCL V4 [12]. In näıve averaging, parameter aggregation
is based on the number of clients, while FedAvg considers the client’s data dis-
tribution. Auto-FedAvg considers client’s current training progress with their
data distribution. In Fed-NCL V2, each layer gets the same weight, while in
Fed-NCL V4, layer weights are proportional to their divergence from the global
model. In both cases, parameter aggregation is based on the client’s data dis-
tribution and local model divergence from the aggregated global model, while
fed-NCL V2 additionally considers training loss of local training data on the
aggregated global model.
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3 Experiments

3.1 Experimental Setup

The dataset consists of 781 human embryo images [13], each with ground-truth
segmentation masks for five components: Background, Zona Pellucida (ZP), Tro-
phectoderm (TE), Inner Cell Mass (ICM), and Blastocoel (BL). Of these, 70
images are saved as the test set, and the rest are used for training. Data are
distributed among 5 clients - 240, 120, 85, 179, 87. Each client reserves 85% of
its data for training and 15% for validation. During training, the input images
are resized to 256 × 256. Augmentation is performed using horizontal and ver-
tical flipping. Soft Dice loss [19] is chosen as the loss function. Adam optimizer
is used with the initial learning rate of 10−4. Mean Jaccard index (MJI) [4]
without background is taken as the performance metric. The system is trained
for 12 local and 15 global epochs. As in [3], each packet is assumed to be one
row of a feature map. Data from the lost packets are assumed to be zero (i.e.,
no sophisticated packet loss concealment is deployed), so packet loss results in
zeroing out some rows in the feature maps and gradient maps at split points.
Figure 3 shows an example of a feature map in the forward pass and a gradient
map in the back-propagation pass in the first epoch of SFL, both subject to 10%
packet loss.

Fig. 3. A feature map (top row) and gradient map (bottom row) subject to 10% packet
loss. Missing data is indicated by black horizontal lines. (a) Client FE feature map
output before loss; (b) Server input after loss; (c) Server output feature map; (d)
Client BE input after loss; (e) Client BE output gradient map; (f) Server input after
loss; (g) Server output gradient map; (h) Client FE input after loss.

3.2 Baseline Experiments Without Packet Loss

First, we verify the performance of our core U-Net model by comparing it with
BLAST-NET [15], a state-of-the-art network for human embryo image segmen-
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tation. We trained our U-Net model without splits, in a centralized manner1 on
the same dataset [16] of 235 images that BLAST-NET was trained on. The MJI
of our U-Net was 81.70%, while the MJI of BLAST-NET [15] is 79.88%. Hence,
our model compares favorably against BLAST-NET. Instead of achieving the
new best embryo segmentation result, the aim of this experiment was simply to
show that our U-Net model is a reasonable one.

Next, we verify the performance of our model in a split-federated scenario
without packet loss. We test the performance of all five aggregation methods
over 10 runs. Average MJI were 82.78%, 82.57%, 82.99%, 83.02%, and 82.95%
for näıve avg, FedAvg, auto-FedAvg, fed-NCL V2 and fed-NCL V4, respectively.

We performed pairwise statistical significance testing for the difference in
these average MJIs. Specifically, if Jmethod1 and Jmethod2 are MJI’s of two param-
eter aggregation methods, the two-tail t-test is

H0 : Jmethod1 = Jmethod2

H1 : Jmethod1 �= Jmethod2

(1)

When the p-value [6] is less than 0.05, the null hypothesis H0 can be rejected
(at the significance level of 0.05) to conclude that the difference is significant.

Most of the MJI differences were not statistically significant (p ≥ 0.05),
except that FedAvg had a significantly lower MJI than auto-FedAvg, fed-
NCL V2, and fed-NCL V4. This is not surprising, as all three methods were
developed to improve over FedAvg.

3.3 Experiments with Packet Loss

In our experiments, packet loss is assumed to be independent and identically
distributed (iid) with probability PL ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 4 shows
the average MJI of the final trained model vs. PL over 10 runs for shallow-
and deep-split models. In each case, six curves are shown: baseline performance
without packet loss (green horizontal line) and the curves for m/5 clients expe-
riencing packet loss, where m ∈ {1, 2, ..., 5}. For PL ∈ {0.1, 0.3, 0.5}, deep and
shallow split curves are close to the performance without packet loss, regardless
of how many clients are experiencing packet loss. When PL = 0.7, MJI starts to
decrease, and more so when a larger number of clients experience packet loss.
When PL = 0.9, the shallow-split model ends up with near-zero MJI, regardless
of how many clients experience packet loss. Meanwhile, the deep-split model
can still be trained close to its no-loss performance when only a single client is
experiencing packet loss, but in all cases ends up with higher MJI values than
the shallow-split model.

Based on Fig. 4, it appears that the deep-split model can be trained to a
higher MJI than the shallow-split model under all conditions. To test this, we
performed 125 pairwise t-tests comparing shallow vs. deep split, for each unique
combination of PL and the number of clients experiencing packet loss. Table 1

1 That is, without distributing data across the clients.
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Fig. 4. MJI vs. PL for shallow split (left) and deep split (right), with various numbers
of clients experiencing packet loss.

shows the p-values of the corresponding one-tailed t-test comparing the MJI
with deep and shallow splits, Jdeep and Jshallow, respectively:

H0 : Jdeep ≤ Jshallow

H1 : Jdeep > Jshallow
(2)

As seen in the table, in all cases we have p < 0.05, so one can reject the null-
hypothesis H0 and conclude that deep split produces a higher MJI than shallow
split at the significance level of 0.05. Moreover, table cells highlighted in green
indicate the cases where p < 0.01, and in all these cases, we can conclude that
deep split is better than shallow split at a stronger significance level of 0.01.
Hence, in SFL over lossy links, the split point has a significant influence on the
final model performance, and a deeper split is better.
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Table 1. Summary of the pairwise t-tests between shallow and deep split under
various conditions. Values less than 0.01 are highlighted in green.

Parameter
aggregation
algorithm

# clients w/loss One-tail p-value
rounded off to 2nd

decimal place

PL 0.1 0.3 0.5 0.7 0.9

Nave avg. 5 0.01 0.02 0.02 0.02 0.02

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.03 0.00 0.02 0.00

2 0.00 0.00 0.02 0.02 0.00

1 0.00 0.00 0.02 0.03 0.00

Fed avg. 5 0.00 0.00 0.00 0.02 0.03

4 0.00 0.00 0.00 0.02 0.02

3 0.01 0.03 0.00 0.00 0.00

2 0.00 0.00 0.01 0.03 0.00

1 0.00 0.00 0.00 0.00 0.00

Auto-Fedavg. 5 0.02 0.01 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

2 0.02 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.03 0.00

Fed-NCL V2 5 0.00 0.00 0.01 0.00 0.00

4 0.01 0.02 0.02 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

2 0.00 0.01 0.00 0.01 0.00

1 0.00 0.01 0.02 0.00 0.00

Fed-NCL V4 5 0.00 0.02 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00

Finally, we examined whether any aggregation methods perform significantly
better than others under the packet loss scenario for the deep-split model. With
five aggregation methods,

(
5
4

)
= 10 pairwise comparisons can be made for five

values of PL and five numbers of clients experiencing packet loss; hence 10 ×
5 × 5 = 250 comparisons. We performed a t-test for each of the 250 cases. Some
methods performed (significantly) better than others in certain cases, but we did
not notice any pattern that would allow us to conclude that a certain method
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is better than others across the board. The full results can be found at https://
drive.google.com/drive/u/0/folders/140f6OGYLRhjqcNQe2aLbnfy1dA7dYt60.
4 Conclusions and Future Work
In this paper, we examined the effects of model split points in split-federated
learning (SFL) under packet loss. Experiments with five state-of-the-art aggre-
gation methods showed that the split point has a statistically significant impact
on the final model performance and that a deeper split is better. The reason for
this is twofold: (1) the deep-split model has more layers available in the client-
side back-end to learn how to recover the lost data, and (2) in our deep-split
U-Net model, the first skip connection was fully located at the client and was
able to transfer some features without packet loss.

It was also observed that SFL with our U-Net model was fairly robust to
packet loss of up to 50%, with both shallow and deep split. This can be due to
two reasons. The first reason is the use of ReLU activations in our split U-Net.
It was reported in [3] that models with ReLU activations tend to be fairly robust
to packet loss, because ReLU activations produce a lot of zeros in their output.
Hence, when a missing feature value is replaced with a zero, much of the time,
the zero value is the actual value that was lost. On the other hand, many high-
performance models for applications in medical image analysis and computer
vision use other activation functions, and such models could be more sensitive
to packet loss. The second reason is that packet loss can act as a regularization
technique, similar to dropout. To test this, we compared the MJI of models
trained under packet loss with PL ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and models trained
with dropout rates that match these values. A split U-Net model was trained on
all training samples ten times for each PL and a matching dropout rate at the
split points. At the significance level of 0.01, there were no statistically significant
differences between the MJI of the models trained with packet loss and dropout
of PL ∈ {0.1, 0.3, 0.5}. For higher loss rates, models trained under packet loss
had significantly lower MJI than those trained with the dropout. Hence, for low
to moderate loss rates, the effect of packet loss is similar to dropout and will not
negatively affect the MJI of trained models.

Other avenues for future work include testing the effectiveness of SFL with
multiple application scenarios that apply diverse semantic segmentation net-
works across multiple split points, studying SFL with more realistic packet loss
models, such as bursty loss or real packet traces, as well as developing more
robust parameter aggregation algorithms for SFL and methods for packet loss
recovery. Some work on missing data recovery in feature maps has been done in
the context of collaborative inference [1,3,5]. However, in SFL, a loss is observed
not only in feature maps but also in gradient maps, creating a new challenge.
As the first study on the effects of packet loss in SFL, we hope that this paper
will stimulate further work on that topic.
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