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Abstract. In the medical field, federated learning commonly deals with
highly imbalanced datasets, including skin lesions and gastrointestinal
images. Existing federated methods under highly imbalanced datasets
primarily focus on optimizing a global model without incorporating the
intra-class variations that can arise in medical imaging due to different
populations, findings, and scanners. In this paper, we study the inter-
client intra-class variations with publicly available self-supervised aux-
iliary networks. Specifically, we find that employing a shared auxiliary
pre-trained model, like MoCo-V2, locally on every client yields consistent
divergence measurements. Based on these findings, we derive a dynamic
balanced model aggregation via self-supervised priors (MAS) to guide the
global model optimization. Fed-MAS can be utilized with different local
learning methods for effective model aggregation toward a highly robust
and unbiased global model. Our code is available at https://github.com/
xmed-lab/Fed-MAS.

1 Introduction

Federated learning (FL) has emerged as a way to train models with decentralized
data while preserving privacy. Due to the inherent nature of data heterogeneity in
medical imaging, training in a decentralized manner exhibits performance degra-
dation compared to centralized training. With FedAvg [23] as the main base-
line, multiple works proposed to improve the model’s generic performance under
data decentralization [19,20,24]. These methods have been successful in achiev-
ing positive results, assuming a balanced global data distribution. However, they
struggle to address extreme data heterogeneity, especially in highly imbalanced
medical datasets. There have been some methods proposed to address the imbal-
anced setting [21,25]. Nevertheless, these methods shared local features among
clients, which may raise privacy concerns.
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Fig. 1. (a) Skin lesion attribute imbalance, (b) Gastrointestinal findings imbalance
(Ex: tracheleriazation, varices, leukoplakia). (c) Fed-MAS framework.

Label distribution skewness has been studied in the context of FL [33].
FedLC [33], inspired by LDAM [3], showed promising results by adjusting the
local client class distribution. Additionally, multiple works proposed to tackle the
issue of highly skewed label distribution (i.e. long-tailed) by decoupling the clas-
sifier and the feature extractor [5,29,32]. The rationale behind these methods is
rooted in the understanding that the classifier is the bottleneck for majority class
bias [18]. For instance, CReFF [29] retrained a balanced classifier on the server
by leveraging federated features. A notable limitation of classifier re-training is
its inability to address the intra-class attribute imbalance. Recently, [30] showed
that training with imaging data with high attribute imbalance impedes repre-
sentation learning by exacerbating the intra-class variations. In FL, the issue
of intra-class imbalance is critical when dealing with highly imbalanced medical
imaging datasets. As depicted in Fig. 1 (a), different skin tones can arise across
different clients for the same class [1]. For gastrointestinal recognition depicted
in Fig. 1 (b), different findings can arise in different clients for the same class [2].
Hence, the challenge of an unbiased robust global model that takes into account
both the attribute and class imbalance still remains. More recently, FedCE [16]
showed promising results by calculating a fair client contribution estimation in
gradient and data space for medical image segmentation; Nevertheless, it relies
on local validation samples, which may not adequately represent attribute imbal-
ance and rare diseases in highly imbalanced medical image datasets.

Publicly available pre-trained models, such as MoCo-V2 [12] that were
trained without any labels using a large set of naturals images, have been uti-
lized with their batch statistics in calculating image priors [11] and have been
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utilized with their generalizable representation to improve the performance in
highly imbalanced medical imaging tasks [8]. In this paper, we leverage these
pre-trained models locally to propose Fed-MAS as a novel approach to incorpo-
rate the client’s local variations with consistent self-supervised priors, estimating
client contributing ratios toward an unbiased robust global model.

2 Methodology

Figure 1 shows the overview of our Fed-MAS framework. Each local client is pro-
vided with a publicly self-supervised pre-trained model (e.g., MoCo-RN50 [12])
that is not involved in the training or communication process of the federated
learning framework. Consequently, these pre-trained models do not increase com-
munication costs while ensuring that each client can access the same consistent
pre-trained model. With n local clients and one global server, Fed-MAS performs
the following steps in each round: (1) Each client receives the global model to
measure its global class-aware divergence, wk, and update its local model; (2)
Each client trains its local model while estimating its class-aware divergence, ŵk;
(3) Each client corrects ŵk with wk to generate a rescue scalar, RF ; (4) Client
uploads the parameters of its local model and RF to the server; (5) The server
applies our proposed MAS to aggregate a new model from the parameters of the
received client models, weighted by RF ;

2.1 Class Aware Global Observation via Self-supervised Priors

In highly imbalanced medical image datasets, both extreme class imbalance and
inter-client intra-class variations can lead to client drift. Due to the decentraliza-
tion of data, estimating the global intra-class attribute distribution in medical
imaging within the FL framework is a challenge that is yet to be explored.

At the beginning of each round in the FL process, each client receives the
model from the global server θglobal. We study locally the distance between the
distribution of the self-supervised pre-trained model, fξ, and θglob over each
client’s local data.

Given an input image x, we feed x to the local feature encoder g to generate
a representation z = gθ(x). This representation is then fed to an MLP projector
to generate a projection y = MLPθ(z) in a space comparable with the self-
supervised model. From the same discriminative pre-trained model in all clients,
we can get a target representation y′ = fξ(x), where both y and y′ are L2
normalized. We can measure the distribution difference using mean squared error
as:

Lθ
f = 2 − 2 · 〈y, y′〉· (1)

From Eq. 1, we can generate a class-aware distance for class k with Mk total
samples as:

Lθ
k =

1
Mk

Mk∑

i=1

Lθ
f (xk,i). (2)
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Fig. 2. Analysis of MAS on HyperKvasir: (a) The globally aggregated class counts,
Mglobal, client local count, Mlocal, and wk in one round. (b) HyperKvasir non-IID
setting, (c) Client’s Contribution to θglob throughout rounds, (d) Rescue Factor (RF)
on different clients throughout rounds

We define wk = Lθglob

k . The factor wk can help to capture the distance in distri-
bution between the global server and the self-supervised model on each client’s
local data. This divergence can provide insights into the sensitivity of the global
model, θglob, in effectively capturing the specific class attribute in each client’s
local data. A high wk indicates the failure of θglob in capturing a local class k.
In Fig. 2 (a), we can see that wk is inversely proportional to the global class
distribution, even if the local client distribution is not necessarily the same.

2.2 State Estimation via Knowledge Distillation

While wk provides class-aware global divergence measurement with the same
consistent local frozen self-supervised model, a client receives the global model,
θglob, and takes subsequent optimization steps for E local epochs with uncer-
tainty to generate θ′

c. Hence, the client’s drift from the global model is hideous
after its uncertain optimization.

With a running average, a client can provide a class-aware divergence like-

lihood ŵk, where ŵk =
E∑

e=1
Lθ′

c

k . The factor ŵk can help to capture how far the

client drifted from fξ since the global measurement, wk, was taken. A client can
then correct this estimation, ŵk, with the global observation, wk, to generate a
posterior rescue factor, RF , in every round.

RF =
K∑

k=1

wkŵk. (3)

A higher RF indicates that the client has information that the global model
has not appropriately captured.

To train the projector MLPθ(·), we propose to minimize Eq. 1 along with the
local balanced risk minimization [28] to minimize a total loss Ltotal concerning
θ only as:

Ltotal = Lsup + λf Lf , (4)
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Fig. 3. (a) ISIC-FL Attribute Split, (b) Client’s Contribution to θglob throughout
rounds, (c) Rescue Factor (RF) on different clients throughout rounds

where Lsup refers to the original supervised loss and λf as a weighting factor.
This can be seen as restricting the client optimization direction. However, the
self-supervised model ensures clients align with a common reference distribu-
tion and possess implicit regularization capabilities for minority classes through
generalizable features [9].

2.3 Model Aggregation via Self-supervised Posteriors

Inspired by the fact that client-specific models should contribute more to the
global server to capture local variance, we propose a novel model aggregation
via the corrected self-supervised posteriors (MAS) . We use our proposed RF to
indicate client-specific models that should contribute more to the global model
than client-generic models to capture their attribute-class variations. While our
proposed RF can be used for biased client selection [15], we use it to aggregate
a global model. Instead of aggregating based on the weighted samples as in
FedAvg [23], we propose to weight the global model, θglob, based on the RF
value as follows:

R̄F c =
RFc∑

j

RFj
, and θr+1

glob =
C∑

c=1

R̄F cθ
′
c. (5)

For instance, Client 3,4,5 in Fig. 2 (b) have mostly minority classes and con-
tribute the most to θglob in Fig. 2 (c). Morever, in Fig. 3 (a) Client ISIC-3
have mostly underrepresented attribute and contributes the most in Fig. 3 (b).
Additionally, we show in Figs. 2 (d) and 3 (c) that the rescue factor for all
clients is decreasing throughout rounds. This highlights the ability of MAS to
accommodate different clients. (See Algorithm 1 in Appendix).

3 Experiments

Dataset. HyperKvasir [2] is a long-tailed (LT) dataset of 10,662 gastroin-
testinal tract images with 23 classes from different anatomical and pathological
landmarks and findings. We divide the 23 classes into Head (> 700 images per
class), Medium (70 ∼ 700 images per class), and Tail (< 70 images per class)
with respect to their class counts. Additionally, we partition the data across eight
clients with IID (similar label distributions) and non-IID (heterogeneous parti-
tion with Dirichlet distribution). ISIC [7] is a highly imbalanced dataset of skin
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Table 1. Comparison with other methods on HyperKvasir Dataset. All clients are
initialized with ImageNet pre-trained weights; each result is averaged over five runs.

IID non-IID Dir(α = 0.5)

Methods Head Medium Tail All B-acc Head Medium Tail All B-acc

Federated Learning Methods (FL-Methods)

FedAvg [23] 94.1 ± 1.3 72.9 ± 1.3 3.1 ± 0.9 56.69 ± 0.6 58.1 ± 0.6 86.2 ± 2.7 70.3 ± 0.5 8.0 ± 1.2 54.83 ± 1.0 56.17 ± 0.9

FedProx [20] 94.6 ± 0.4 72.1 ± 0.2 3.0 ± 1.2 56.58 ± 0.4 57.93 ± 0.4 88.1 ± 2.2 73.1 ± 2.7 3.6 ± 2.5 54.93 ± 1.3 56.51 ± 1.3

MOON [19] 94.7 ± 0.7 74.6 ± 0.4 4.0 ± 1.8 57.77 ± 0.6 59.23 ± 0.6 84.4 ± 3.6 73.1 ± 1.6 5.5 ± 2.1 54.3 ± 1.2 55.93 ± 1.1

LT-integerated FL Methods

LDAM-FL [3] 95.4 ± 0.5 72.2 ± 1.1 5.7 ± 3.9 57.77 ± 1.4 59.03 ± 1.3 86.9 ± 2.8 70.9 ± 1.2 4.7 ± 4.6 54.16 ± 1.4 55.61 ± 1.4

BSM-FL [28] 93.2 ± 1.5 74.6 ± 2.6 9.1 ± 3.7 58.92 ± 0.6 60.28 ± 0.7 89.6 ± 3.9 68.7 ± 3.0 16.4 ± 5.4 58.24 ± 1.2 59.15 ± 1.3

Label-Skew FL Methods

CReFF [29] 95.1 ± 0.8 72.0 ± 1.5 2.6 ± 1.8 56.53 ± 1.4 57.88 ± 1.4 89.3 ± 0.7 70.1 ± 1.6 9.0 ± 4.5 56.12 ± 1.3 57.34 ± 1.2

FedLC [33] 96.5 ± 0.4 75.3 ± 2.5 7.4 ± 5.5 59.73 ± 1.8 61.08 ± 1.7 95.8 ± 0.6 73.1 ± 2.4 6.6 ± 4.1 58.51 ± 1.5 59.78 ± 1.5

Fed-Mas (ours) 94.3 ± 1.2 72.9 ± 1.0 15.9 ± 2.7 61.05 ± 0.3 62.08 ± 0.2 93.0 ± 0.9 72.5 ± 2.6 16.2 ± 1.3 60.57 ± 1.1 61.61 ± 1.0

lesion images with 8 classes that exhibits skin-tone attribute imbalance [1]. For
instance, melanoma incidence is lower in quantity and higher in mortality rates
in black patients than in others [6]. We partition the dataset on four clients based
on two attributes, light and dark skin tones, with [1] labeling. Additionally, we
split the data between the four clients for training, validation, and testing with
70%, 15%, and 15%, respectively. We also benchmark Fed-MAS over Flamby-
ISIC split [31] with six different hospitals with stratified 5-fold cross-validation.

Implementation Details. For both datasets, we use resnet-18 [13] as the local
target model. For the long-tailed HyperKvasir dataset, we employ an SGD opti-
mizer and a cosine annealing scheduler [22] with a maximum learning rate of 0.1.
For ISIC, we employ Adam optimizer with the 3e–4 learning rate. Additionally,
we employ balanced risk minimization [28] and train methods for 200 commu-
nication rounds with 10 local epochs. We set λf to 3 and provide an ablation
in Table 4 in Appendix.

Evaluation Metrics. We evaluate the model performance of the global model
in this paper. To assess the unequal treatment of each class in HyperKvasir,
we report the top-1 accuracy on shot-based division (head, medium, tail) and
their average results denoted as “All” as existing works [17]. Following prior
work [10,14,27], we also report the Balanced Accuracy “B-Acc”, which calculates
the average per-class accuracy and is resistant to class imbalance. As the test set
of HyperKvasir contains only 12 classes, we follow previous work [10] to assess
the model performance with a stratified 5-fold cross-validation. To evaluate the
performance of attributes in ISIC-FL, we report the “B-Acc” separately for each
attribute (“Light”, “Dark”) and the average of these scores “Avg”. Additionally,
we report the overall “B-Acc” across all attributes and distributions.

3.1 Performance on the HyperKvasir

We compare our methods with FL-methods [19,20,23], LT-integrated FL meth-
ods [3,28], and label-skew FL methods [29,33]

FL-Methods [19,20,23]. One simple solution for federated learning with highly
imbalanced medical data is to apply existing FL methods to our setting directly.
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To this end, we compare our methods with state-of-the-art FL methods, includ-
ing FedAvg [23], FedProx [20], and MOON [19], under the same setting. As shown
in Table 1, we find that our method outperforms the best existing FL method
MOON by 2.85% and 5.68% on “B-acc” in both IID and non-IID settings,
respectively. Notably, our Fed-MAS achieves similar results with MOON [19]
on the “Head” while reaching large improvements on the “Tail” (11.9% on iid
and 10.71% on non-iid), showing that our Fed-MAS can tackle LT distribution
under FL more effectively. The limited results could be attributed to the use of
local empirical risk minimization in MOON [19]. However, even when we applied
a balanced risk minimization [28] in MOON, our method still outperformed it
(60.69% vs. 62.08% on “B-acc” for IID); see results in Table 6 in Appendix.

LT integrated FL Methods [3,28]. To design FL methods for local clients with
long-tailed distribution, a straightforward idea is to directly use LT methods in
each local client and then use an FL framework such as FedAvg to obtain the
final results. In this regard, we implement LDAM-DRW [3] and BSM [28] into the
FedAvg framework and rename them as LDAM-FL and BSM-FL respectively.
From Table 1, we can notice the LT methods utilizing an FL framework have
produced limited results on “Tail” primarily due to the extreme client drifting
phenomenon. Please note that Fed-MAS does not focus on designing any specific
long-tailed training for each local client. Instead, MAS enables the global server
to effectively aggregate the model parameters from long-tailed distributed local
clients. As a result, our Fed-MAS can successfully capture the “Tail” with a
6.84% accuracy gain on IID with lower variance than the best-performing LT
method BSM-FL [28]. Notably, our method consistently outperforms the best-
performing LT method on the “B-acc” with a lower variance (improvement of
1.8% on IID and 2.46% on non-IID).

Label-Skew FL. We compare our method with the state-of-the-art label-skew
FL method, FedLC [33], and the highly labeled skew (i.e. long-tailed) FL method,
CReFF [29]. CReFF, as proposed by [29], involves a method of re-training the
classifier by utilizing learnable features on the server at each communication
round, holding an equal treatment of all clients’ models. However, this tech-
nique fails to accommodate inter-client intra-class variations which could arise.
From Table 1, we can notice that FedAvg with local LT such as BSM-FL [28] can
outperform CReFF [29] on the HyperKvasir dataset in both IID and non-IDD
by 2.4% and 1.8% on “B-acc”, respectively. Our comparative analysis illustrates
that Fed-MAS consistently outperforms CReFF in both IID and non-IID by 4.2%
and 4.27% on “B-acc”, respectively, by incorporating the client’s local variations
with MAS. FedLC [33] proposes a loss function to address label distribution
skewness by locally calibrating logits and reducing local bias in learning. Their
modification yields compelling performance. Nevertheless, our method surpasses
them in both IID and non-IID, achieving improvements of 1.0% and 1.83% on “B-
Acc”, respectively. Remarkably, our method effectively captures the tail classes
with reduced variance in both IID and non-IID, exhibiting improvements of 8.5%
and 9.6%, respectively, while experiencing only a minor drop in performance for
the head classes (96.5% vs 94.3% for IID and 95.8% vs 93.0% for non-IID).
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Table 2. Ablation of minimizing Eq. 1 (KD) and MAS on HyperKvasir non-IID

KD MAS Metrics

All (%) B-acc (%) p-value

BSM-FL [28] (Baseline) × × 58.24 ± 1.2 59.15 ± 1.3 —

[28] w/ KD � × 59.26 ± 1.2 60.19 ± 1.1 <0.001

Fed-MAS � � 60.57 ± 1.1 61.61 ± 1.0 <0.001

Table 3. Experimental Results on ISIC-FL. Results are averaged over 5 folds.

Method Attribute Setting (ours) Flamby-ISIC [31]

Light Dark Avg B-Acc B-Acc

With ImageNet Weight Initialization

FedLC [33] 71.11 ± 1.8 73.64 ± 6.6 72.38 ± 2.9 71.63 ± 1.6 76.54 ± 2.6

BSM-FL [28] (Baseline) 73.88 ± 1.4 74.78 ± 5.4 74.33 ± 2.5 74.49 ± 1.4 78.19 ± 1.8

[28] w/ KD 73.87 ± 1.6 72.44 ± 5.9 73.16 ± 3.0 74.09 ± 1.5 79.17 ± 2.1

Fed-Mas (ours) 73.43 ± 1.6 77.0 ± 6.6 75.21 ± 2.9 74.61 ± 1.4 80.87 ± 2.2

Effectiveness of KD and MAS. As shown in Table 2, minimizing Eq. 1 (KD)
can enhance the “All” and “B-Acc” via 1.02% and 1.04% due to the implicit
regularization of MoCo-V2 on the tail classes for extreme imbalance datasets.
With both KD and MAS, the performance is further improved to the best via
2.33% and 2.46% on “All” and “B-Acc”, respectively. MAS utilizes unbiased
frozen generalizable representations to incorporate the inter-client intra-class
characteristics in FL and combine them with the drifting belief. This combination
helps in capturing client-specific models in the aggregation step.

3.2 Performance on ISIC-FL

We evaluate the best-performing and competitive methods with the ISIC-FL
dataset to shorten the benchmark. While previous studies neglect weight initial-
ization to provide better convergence analysis as pre-trained weights are archi-
tecture dependent. Recently, [26] and [4] studied the impact of pre-training ini-
tialization on reducing the data and system heterogeneity in FL. We present
in Table 3 the results of the most competitive methods with weight initialization
on the ISIC-FL attribute setting. FedLC [33] demonstrates compelling perfor-
mance to address label skewness in Hyperkvasir-FL. Nevertheless, it falls short
in accommodating attribute heterogeneity in ISIC-FL due to its local learning
focus. Our method consistently outperforms FedLC [33] with a notable improve-
ment of 2.8% and 3.0% in terms of the averaged balanced accuracies “Avg”
and balanced accuracy “B-acc” respectively. Compared to the baseline [28],
Fed-MAS notably captured the underrepresented attribute with 2.2% on the
“B-acc” of the “Dark Attribute” with a minimal drop of 0.5% on the “B-acc”
of the “Light Attribute”, balancing the intra-class attribute characteristics in
FL. On the highly heterogeneous Flamby-ISIC split resembling six hospitals,
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Fed-MAS outperform FedLC and the baseline on the “B-acc” with 4.33% and
2.68%, respectively.

3.3 Privacy Concerns

Similarly to traditional FL methods [19,20,23], Fed-MAS shares the model
weights with an additional scalar, RF , which protects data privacy by not reveal-
ing input data or label distribution. The scalar, RF , is calculated in the output
feature space, safeguarding the input data distribution. Moreover, RF poses
uncertainty in approximating the client’s label distribution as it can be influ-
enced by diverse attributes in the majority class or a common attribute in the
minority class.

4 Conclusion

Highly Imbalanced datasets are present in most medical image classifications.
This work presents Fed-MAS to deal with this problem. We show that pub-
licly available self-supervised models benefit the FL training procedure more
than restricting the optimization direction by incorporating the global attribute
imbalance. Future work can explore delayed re-weighting to unleash non-
vanishing terms and explore MAS with different local learning strategies in FL
settings (Tables 4, 5, 7, 8 and Figs. 4, 5).
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A Appendix for Fed-MAS

Table 4. HyperKvasir λf ablation.

Method IID non-IID

λf = 0 λf = 1 λf = 3 λf = 0 λf = 1 λf = 3

Fed-MAS 60.28 61.43 62.08 59.15 61.08 61.61

Table 5. HyperKvasir fξ

ablation non-IID. Note that
features of fξ can be pre-
computed.

fξ All B-Acc

CLIP-ViTB/32 60.34 61.39±2.1

MoCo-RN50 60.57 61.61±1.0
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Table 6. HyperKvasir FL methods with
local BRM [28].

Method All B-Acc

IID non-IID IID non-IID2

FedAvg 58.92 58.24 60.28±0.6 59.15±1.3

FedProx 59.37 58.86 60.47±1.3 59.64±2.0

Moon 59.45 58.72 60.69±0.9 59.66±0.8

Ours 61.05 60.57 62.08±0.2 61.61±1.4

Table 7. Using a plug-in cRT [18]
on HyperKvasir on non-IID.

Method + cRT All B-Acc

Decoupling [18] 54.21 55.6

BSM-FL [28] 62.67 63.11

Ours 65.05 65.11

Table 8. Flamby-ISIC [31] results on the first fold with the global model (gFL) and the
local models (pFL) with ImageNet Weight Initialization. MOON [19] and FedProx [20]
are reported with local BRM [28].

Method Metric Method Metric

gFL pFL gFL pFL

MOON (μ = 0.01) 72.13 80.03 FedProx (μ = 0.1) 72.47 79.82

MOON (μ = 0.1) 72.45 79.64 FedProx (μ = 0.01) 73.25 79.82

MOON (μ = 1) 73.12 79.46 FedProx (μ = 0.001) 73.52 79.70

FedLC [33] 68.07 78.60 BSM-FL [28] 72.83 79.79

[28] w/ KD (λf=1) 72.26 79.66 [28] w/ KD (λf=3) 72.85 80.06

Fed-MAS (λf=1) 72.94 82.73 Fed-MAS (λf=3) 74.12 83.28

Fig. 4. Feature representation with and without the learnable projector MLPθ. We
sample a subset of head (0,1,2), medium (3,4,5), and tail (6,7,8) classes for feature
visualization across different clients. Each point represents the mean feature output for
each class (color) in each client (point).
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Algorithm 1. Pseudocode for Fed-MAS.
1: Notations total number of clients (C), server (S), total communication rounds (R),

local epochs (E), learning rate (η), and a set of client’s data sliced into batches of
size B (B).

2: ServerExecution:
3: Init θ1

glob

4: for each round r = 1, ..., R do
5: for client c ∈ C in parallel do
6: θc, RF c ←LocalUpdate(θr

glob);

7: θr+1
glob ←DLMA(RFc, θ

′
c,c = 1 to C); // Eq. 5

8: Return θR
glob

9: LocalUpdate (θglob):
10: Init ŵk = 0;

11: Init wk = Lθglob

k ;
12: for each local epoch e = 1, ..., E do
13: for each batch b ∈ B do
14: Ltotal = Lsup + λfLf ; // Eq. 4
15: θ′ ← θ′ − η�Ltotal;
16: ŵk ← ŵk + Lf (bk); // running distillation loss mean for each class k

17: RF =
K∑

k=1

wkŵk; // RF ↑≈ divergence θglob, fξ ↑
18: Return θ′, RF

Fig. 5. Higher Value of λf (λf = 7) causes task deviation. λ = 3 show faster conver-
gence (Acc.), and make Lsup/Lf ratio consistent on a toy dataset (CIFAR-100 non-iid).
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