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Abstract. Machine Unlearning (MU) is an emerging discipline study-
ing methods to remove the effect of a data instance on the parameters
of a trained model. Federated Unlearning (FU) extends MU to unlearn
the contribution of a dataset provided by a client wishing to drop from
a federated learning study. Due to the emerging nature of FU, a practi-
cal assessment of the effectiveness of the currently available approaches
in complex medical imaging tasks has not been studied so far. In this
work, we propose the first in-depth study of FU in medical imaging,
with a focus on collaborative prostate segmentation from multi-centric
MRI dataset. We first verify the unlearning capabilities of a panel of
FU methods from the state-of-the-art, including approaches based on
model adaptation, differential privacy, and adaptive retraining. For each
method, we quantify their unlearning effectiveness and computational
cost as compared to the baseline retraining of a model from scratch after
client dropout. Our work highlights a new perspective for the practi-
cal implementation of data regulations in collaborative medical imaging
applications.
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1 Introduction

With the emergence of new data regulations [1,2], the storage and processing of
sensitive personal data is often subject of strict constraints and restrictions. In
particular, the “right to be forgotten” states that personal data must be erased
upon request, with subsequent potential implications on machine learning models
trained by using this data. Machine Unlearning (MU) is an emerging discipline
that studies methods to remove the contribution of a given data instance used
to train a machine learning model [3].
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Motivated by data governance and confidentiality concerns, federated learn-
ing (FL) has gained popularity in the last years to allow data owners to col-
laboratively learn a model without sharing their respective data. FL is particu-
larly suited for Machine Learning applications in domains where data security
is critical, such as in healthcare [4,5]. With the current deployments of FL in
the real-world, it is of crucial importance to extend MU approaches to feder-
ated unlearning (FU), to guarantee the unlearning of data instances from clients
wishing to opt-out from a collaborative training routine. This is not straightfor-
ward, since current MU schemes have been proposed essentially for centralized
learning, and cannot be seamlessly applied to the federated one without break-
ing the data governance and privacy setting of FL. Recent FU methods have
been proposed in the machine learning literature [6–9], with their effectiveness
being demonstrated on typical machine learning benchmarks [10–12]. Neverthe-
less, these benchmarks mostly focus on cross-device scenarios, with partitioning
based on heuristics which often do not reflect the complex variability of real-
world data analysis problems, such as the cross-site image biases and hetero-
geneity typical of collaborative medical imaging studies. The translation of FU
in medical imaging applications requires the investigation of unlearning through
the setup of realistic cross-silo benchmarks.

This work provides the first study of the effectiveness of existing FU
approaches in a real-world collaborative medical imaging setup, focusing on fed-
erated prostate segmentation. To this end, we develop a benchmark composed
by large publicly available prostate segmentation dataset, and define a realistic
cross-silo FL scenario with heterogeneity depending on acquisition protocol and
scanner. We introduce novel criteria to quantitatively compare the FU methods,
assessing the 1) utility of the model after unlearning, 2) unlearning capability,
and 3) efficiency of the unlearning procedure. Our results identify critical aspects
of current unlearning methods, and show that paradigms based on adaptive
retraining are the only effective FU approaches from the state-of-the-art.

This manuscript is structured as follows. In Sect. 2, we provide formal def-
initions for FL and the different existing FU schemes. We also introduce the
metrics used to measure the effectiveness of an unlearning scheme. In Sect. 3, we
introduce the federated dataset for prostate segmentation used in this work and
verify the effectiveness of all the FU schemes.

2 Methodology

After providing in Sect. 2.1 the formalism of FL, we introduce FU in Sect. 2.2.
We explain the limitations of MU methods for the federated setting in Sect. 2.3
and detail the existing FU schemes investigated in this paper in Sect. 2.4.
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2.1 Federated Learning

FL consists in optimizing the average of local loss functions Li across a set I of
clients, weighted by their importance pi such that

∑
i∈I pi = 1, i.e.

L(θ, I) =
∑

i∈I

piLi(θ), (1)

where θ represents the parameters to be optimized. The weight pi can be inter-
preted as the importance given by the server to client i in the federated optimiza-
tion problem which, without loss of generality, can be considered identical for
every client, i.e. pi = 1/n where n = |I|. We define θ∗ the parameters minimizing
the federated problem (1), i.e. θ∗ := arg minθ L(θ, I).

To estimate the global optimum θ∗, FedAvg [13] is an iterative training
strategy based on the aggregation of local model parameters. At each iteration
step t, the server sends the current global model parameters θt to the clients.
Each client updates the model by minimizing the local cost function Li through
a fixed amount of SGD initialized with θt. Subsequently each client returns the
updated local parameters θt+1

i to the server. The global model parameters θt+1

at the iteration step t + 1 are then estimated as a weighted average, i.e.

θt+1 =
∑

i∈I

piθ
t+1
i . (2)

We define θ̃ the parameters vector obtained after performing FL over T server
aggregations, i.e. θ̃ = θT+1. When the clients’ local loss functions Li are convex,
[14,15] show that θ̃ converges to θ∗ as T goes to infinity.

2.2 Federated Unlearning

Removing a client c from the set of clients I modifies the federated problem (1),
which becomes L(θ, I\c). We define θ∗

−c = arg minθ L(θ, I\c) as the optimum of
this new optimization problem. An FU scheme can be formalized as a function
h taking as input θ̃, the model trained with every client in I, including c, to
return parameters h(θ̃, c) ideally equivalent to θ∗

−c. In practice, due to the non-
convexity and stochasticity characterizing the optimization problems of typical
medical imaging tasks, it is challenging to assess the proximity between the
model h(θ̃, c) and the ideal target θ∗

−c in terms of pre-defined metrics in the
parameters space. For this reason, in this work we quantify the quality of FU
by introducing a series of criteria motivated by the ideal requirements that an
unlearning scheme should satisfy.

To this end, we first notice that the baseline FU approach, here named
Scratch, achieves unlearning by performing a new FedAvg training from
scratch on the remaining clients I \ c. We define θ̃−c the parameters vectors
obtained with Scratch which, by construction, provide perfect unlearning of
client c. We note however that this procedure wastes the contribution of the
other clients which was already available from the training of θ̃, i.e. the set of
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parameters {θt
i}i∈I\c,t∈{1,...,T} gathered during federated optimization. There-

fore, an effective FU methods should be more efficient than Scratch in opti-
mizing h(θ̃, c). These considerations motivate the following criteria to assess the
unlearning quality of FU scheme:

– Utility. The predictive capability of the model with parameters h(θ̃, c) on
the testing sets of the available clients I \ c should be equal or superior to
the one of Scratch for the FU scheme considered. This criterion shows that
the model resulting from FU maintains high predictive performances on the
available clients data.

– Unlearning. Unlearning of client c implies the loss of predictive capabilities
of the model h(θ̃, c) on the training set of this client. If the performance of
the model after unlearning is superior to the one of Scratch, we deduce that
FU was ineffective in removing the information from client c.

– Time. The amount of server aggregations needed to complete the unlearning
of client c should be inferior to the ones achieved by Scratch.

2.3 Machine Unlearning vs Federated Unlearning

Several MU methods have been proposed in the centralized learning setting [3].
Most MU approaches consists in defining h as a Newton step based on the Hes-
sian H and gradients G estimated on all the remaining data points from the
current model θ̃, i.e. h(θ̃, c) = θ̃ − H(θ̃, I \ c)−1G(θ̃, I \ c) [16–21]. The main
drawback behind the use of this approach in the federated setting is that it
requires clients to compute and share gradients and Hessians of the local loss
function. This operation should be avoided in FL, as these quantities are known
to potentially leak information about the training data [22]. Other approaches to
MU consist in applying zero-mean Gaussian perturbations to the model param-
eters, with magnitude of the standard deviation σ depending on the properties
of the data on which unlearning has to be operated [16,23,24]. This approach is
also not practical in a federated setting, as the estimation of the noise amplitude
requires the access to potentially sensitive clients information.

2.4 Federated Unlearning Schemes

To meet the practical requirements of real-world use of FL, we consider FU
methods compatible with the following criteria: 1) no additional work has to be
performed by the clients withdrawing the study, 2) no additional information
beyond model parameters must be exchanged between clients and server, 3)
no modification of data is allowed at client side. Following this consideration,
we identified 4 state-of-the-art FU approaches for our benchmark [6–9], and
excluded a number of methods not satisfying the criteria [25–28]. We provide a
brief description of the selected approaches, and refer to the related publications
for additional details.
Fine-tuning. Fine-tuning of model parameters after excluding client c is a stan-
dard FU baseline [16,18]. Nevertheless, although fine-tuning can be shown to
satisfy the utility criterion, it does not formally guarantee unlearning [9].
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FedAccum [6]. FedAccum implements an heuristic based on the removal of
the contribution of the parameters {θt

c}T
t=1 provided by client during FL opti-

mization. Similarly to Scratch, the server performs the training procedure of
equation (2), while however integrating in the optimization routine the existing
contributions of the remaining clients {θt

i}i∈I\c,t∈{1,...,T}.
FedEraser [6]. This approach performs a retraining from scratch, by however
scaling the new contributions by the norm of the ones computed to obtain θ̃,
i.e. p̃i = pi ‖θt

i‖ /
∥
∥
∥θ̃t

i

∥
∥
∥, every Δt aggregation rounds. FedEraser is faster than

Scratch by requiring a smaller amount of local work from the remaining clients,
and less aggregations.
Unlearning with Knowledge Distribution (UKD) [7]. UKD consists in
subtracting to θ̃, the model trained with every client in I, all the contributions
of client c, i.e. h(θ̃, c) = θ̃ − pi

∑T
t=1 θt

c. The server subsequently applied fine-
tuning to optimize the similarity of the predictions θ̃ and h(θ̃, c) on a control
dataset owned by the server. With UKD, no client needs to participate to the
unlearning phase, while it is required the use of a dataset owned by the server.
Projected Gradient Ascent (PGA) [8]. This FU scheme unlearns client c by
performing a succession of projected gradient ascents (PGA) on θ̃ to achieve low
performance of h(θ̃, c) on the dataset of client c. While PGA requires the dataset
of client c to unlearn it, we consider this FU scheme to show that minimizing
the performances of client c is not sufficient to unlearn it.
Informed Federated Unlearning (IFU) [9]. IFU consists in tracing back the
history of global models {θt}T

t=1 and restart FL from a specific round t∗, which
is identified by fixing a cutoff on the magnitude of the contributions of client
c, measured as

∑
t<t∗

∥
∥θt+1

c − θt
∥
∥. Prior to retraining, the global model θt∗−1

is perturbed with Gaussian noise according to a given unlearning budget (ε, δ),
with an analogy to randomized mechanisms in differential privacy [29].

3 Experiments

We introduce the federated dataset used for prostate segmentation in Sect. 3.1,
and verify in Sect. 3.2 the efficiency of the FU schemes introduced in Sect. 2.4,
based on the criteria introduced in Sect. 2.2. The code for the experiments is
publicly available1.

3.1 Federated Dataset for Prostate Segmentation

Our benchmark consists of a FL application on prostate segmentation from a
large collection of magnetic resonance images (MRIs) dataset. We consider three
publicly available image segmentation benchmarks (Decathlon [30], Promise12
[31], and ProstateX [32]) to create a cross-silo federated partitioning composed by
four centers (C1 to C4), where data split are based on specific image acquisition
properties, as summarized in Table 1.
1

https://github.com/Accenture/Labs-Federated-Learning/tree/FU prostate segmentation.

https://github.com/Accenture/Labs-Federated-Learning/tree/FU_prostate_segmentation
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Table 1. Description of the four centers used for FL and the respective training and
testing DSC, obtained with the model trained with the four of them.

ID Samples Dataset Description DSC Train DSC Test

C1 32 Decathlon Full Dataset 91.8(0.37) 87.4(1.4)

C2 23 Promise12 With Endorectal Coil 96.3(0.15) 81.8(2.7)

C3 27 Promise12 W o Endorectal Coil 95.8(0.14) 84.1(5.7)

C4 184 ProstateX With Scanner Skyra 96.1(0.22) 84.4(5.8)

Decathlon [30] is a dataset composed of medical images of ten different
organs including prostate. We allocate to C1 the 32 publicly available Decathlon
MRIs of prostate segmentation acquired with different scanners. We merge the
masks of the peripheral and transition zone to define the prostate mask.

Promise12 [31] was created for the Prostate MRI Segmentation challenge
of 2012. We partition the 50 published training data samples based on the acqui-
sition method: images acquired with and without endorectal coil (respectively
allocated to C2 and C3).

ProstateX [32] is a collection of MRIs from different medical studies
acquired with two different scanners (Skyra and Triotim, both from Siemens)
and segmentation masks provided for 189 of them [33]. We ignore the five data
points obtained with Triotim and allocate the remaining 184 images to C4.

We note that the images in C2 are the only ones acquired by using the
endorectal coil, thus introducing a specific bias for this center. Prostate MRIs
were resized to a resolution of 320 × 320 × 16. For each center, we randomly
select 80% of its data samples to create a training set and allocate the remaining
20% to a testing set. FedAvg was used to optimized the federated training
problem by optimizing a UNET [34] to maximise the dice score (DSC). To ensure
generality of the results, we consider 5 random federated splits of the data and
5 different model initialization for the FL process. Hence, mean and standard
error of the results reported in this section are estimated across 25 learning and
unlearning scenarios. We detail in Appendix A the tuning of the hyperparameters
for dropout value, learning rate, and amount of local work. We also detail the
implementation of each FU scheme.

The model obtained when training with FL and the four centers has the
performances summarized in Table 1. As expected, C2 is associated with the
lowest testing DSC, reflecting the specific heterogeneity of the data in C2.

3.2 FU Benchmark

The unlearning benchmark here considered consists in unlearning the contribu-
tions of center C2, the only center with MRIs acquired with endorectal coil. We
provide in Table 2 a quantification of the impact of the FU schemes on utility
and unlearning criteria, when the server performs 500 server aggregations to
unlearn center C2 with each FU scheme. The utility of our FU application is
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the average testing DSC of the remaining centers (C1, C3, and C4), while the
unlearning capability is quantified by the DSC on the training data of center C2.

Table 2. Unlearning center C2: FU utility and unlearning criteria described in Sect. 2.2.
We note that only FedEraser and IFU are able to unlearn center C2, while keeping
high utility on the remaining ones.

FU Scheme Scratch Fine-Tun. FedAccum FedEraser UKD PGA IFU

Utility 84.7(3.4) 85.0(3.6) 84.9(3.6) 84.6(3.6) 34.5(3.6) 85.1(3.7) 84.6(3.3)

Unlearning 62.2(3.5) 84.5(1.2) 84.4(1.4) 60.5(4.4) 24.0(2.9) 83.5(1.4) 58.3(4.2)

As discussed in Sect. 2.2, an optimal FU scheme should lead to a model with
utility and unlearning capabilities as close as possible to the ones obtained with
Scratch. Based on the results of Table 2, we note that not all the FU schemes
provide acceptable unlearning and utility properties. In particular:

1. Fine-Tuning and FedAccum have high utility on the remaining centers but
their unlearning criterion is more than 20% higher than Scratch. Figure 1
illustrates this result, where the predictive mask of the model obtained with
Fine-Tuning is almost identical to the ground truth (similar qualitative
results are obtained for FedAccum, and are illustrated in Appendix A).

2. UKD has utility and unlearning performances respectively 50% and 30 %
different from Scratch, which shows that the predictive accuracy of the
model obtained with UKD is degraded on every center. Figure 1 shows that
this method provides poor segmentation results for images from both C2 (to
be unlearnt) and C3 (to be preserved).

3. FedEraser and IFU have identical utility to Scratch, while having only
up to a 4% difference in unlearning capability. We see in Fig. 1 that while the
segmentation performance in C3 is still of good quality, the correct unlearn-
ing of C2 leads to poor segmentation results, similar to those obtained with
Scratch. The slight difference between unlearning performances for IFU,
FedEraser, and Scratch is likely due to the variability between model
parameters as a result of the associated optimization routine.

The ensemble of results shown in Table 2, Fig. 1, and Appendix A, show that
only FU schemes based on adaptive retraining (FedEraser and IFU) provide
satisfactory unlearning capabilities. On the contrary, the other approaches are
either too conservative, thus leading to overly degraded models, or not effective,
thus leading to poor unlearning properties. Concerning time efficiency, we report
for IFU the amount of server aggregations needed for the resulting model to
perform identically to Scratch after 500 server aggregations. For FedEraser,
we vary the frequency Δt at which the server requires contributions from the
remaining centers. Table 3 shows that both IFU and FedEraser achieve the
desired utility and unlearning in a fraction of iterations needed by Scratch

(resp. 2× and 1.9× faster). In addition of being able to unlearn center C2,
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Fig. 1. Prediction Mask on a slice of a sample MRI from center C2 (in blue) and from
center C3 (red), where FU is applied to the data of C2. Additional results for all the
FU schemes in Fig. 2 and 3 are available in the appendix.

IFU provides statistical guarantees for the unlearning of the center C2. We also
provide in Table 6 of Appendix A the impact of the unlearning budget (ε, δ)
associated to IFU on utility and unlearning. These results show that regardless
of the unlearning budget, IFU reaches almost identical utility to Scratch, while
with the increase in budget ε and/or δ, the model is associated with worse
unlearning capabilities.

Table 3. Optimization rounds when unlearning center C2 with IFU for varying unlearn-
ing budget (3a) or with FedEraser (3b). Scratch requires 500 rounds.

δ = 0.01 δ = 0.025 δ = 0.1

ε = 0.1 276(13) 271(15) 271(14)

ε = 1 298(18) 295(16) 298(15)

ε = 10 259(18) 251(18) 228(17)

(a) FL itera-
tions (mean, std)
required by IFU
to unlearn center
C2 for varying
unlearning bud-
get parameters
(ε, δ).

Δt Utility Unlearning FL iter.

1 84.6(3.6) 60.5(4.4) 500(0)

2 84.7(3.3) 61.8(4.1) 250(0)

(b) Utility,
unlearning, and
FL iterations
(mean, std) for
FedEraser to
unlearn center
C2 for varying
frequency Δt.
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4 Conclusion

We provide in this work an investigation of FU in a practical collaborative seg-
mentation task on prostate imaging data. We first define a benchmark from a
collection of large available public dataset, to create a realistic scenario of data
heterogeneity in cross-silo applications. We show that FU methods based on
adaptive retraining (FedEraser and IFU) lead to optimal results in terms of
trade-off between model utility, unlearning, and efficiency.

This study highlights a new perspective for the practical implementation
of new data regulations in collaborative medical imaging applications. Future
extensions of this work will be devoted to the investigation of FU in general
medical applications, and to the assessment of the unlearning properties of the
proposed methods, especially related to the definition of unlearning budget and
parameters. In particular, since FedEraser does not come with specific guar-
antees on the effectiveness of the unlearning, we believe that further assessment
of the unlearning capabilities of this approaches are needed (Tables 4 and 5)..

A Additional Experiments and Experimental Details

Table 4. Hyperparameters fine-tuned to maximise the testing DSC when training with
the four centers on a 5 folds cross-validation scenario, and then used for all our learning
and unlearning scenario.

Description Range Best Value

Amount of Local Work 1 to 100 5

Amount of Server Aggregations – 500

Batch Size – 8

Local learning rate 0.0001 to 0.1 0.001

Dropout value 0 to 0.5 0.2

Table 5. Hyperparameters values for the different unlearning schemes.

Description FU scheme Range Best Value

Unlearning budget parameter ε IFU {0.1, 1, 10} 1

Unlearning budget parameter δ IFU {0.01, 0.025, 0.1} 0.025

Amount of unlearning SGDs PGA – 100

Upper bound on the training DSC of C2 PGA – 0.12

Amount of local work for remaining clients FedEraser – 5
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Table 6. Impact of the unlearning budget (ε, δ) on the difference in utility and unlearn-
ing obtained with IFU and Scratch, when unlearning center C2.

δ = 0.01 δ = 0.025 δ = 0.1

ε = 0.1 .54(.13) .54(.14) .54(.13)

ε = 1 .29(.19) .31(.18) .28(.17)

ε = 10 .42(.15) .46(.15) .55(.15)

(a) Utility

δ = 0.01 δ = 0.025 δ = 0.1

ε = 0.1 −4.2(4.6) −3.7(4.7) −3.9(4.5)

ε = 1 −4.6(3.8) −3.9(3.7) −2.9(3.5)

ε = 10 2.5(5.2) 3.9(4.7) 6.0(4.3)

(b) Unlearning

Fig. 2. Prediction Mask on a slice of a sample MRI from center C2, where FU is applied
to the data of C2.

Fig. 3. Prediction Mask on a slice of a sample MRI from center C3, where FU is applied
to the data of C2.
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