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Abstract. Federated learning is a promising direction to tackle the pri-
vacy issues related to sharing patients’ sensitive data. Often, federated
systems in the medical image analysis domain assume that the participat-
ing local clients are honest. Several studies report mechanisms through
which a set of malicious clients can be introduced that can poison the
federated setup, hampering the performance of the global model. To over-
come this, robust aggregation methods have been proposed that defend
against those attacks. We observe that most of the state-of-the-art robust
aggregation methods are heavily dependent on the distance between the
parameters or gradients of malicious clients and benign clients, which
makes them prone to local model poisoning attacks when the param-
eters or gradients of malicious and benign clients are close. Leveraging
this, we introduce DISBELIEVE, a local model poisoning attack that cre-
ates malicious parameters or gradients such that their distance to benign
clients’ parameters or gradients is low respectively but at the same time
their adverse effect on the global model’s performance is high. Exper-
iments on three publicly available medical image datasets demonstrate
the efficacy of the proposed DISBELIEVE attack as it significantly low-
ers the performance of the state-of-the-art robust aggregation methods
for medical image analysis. Furthermore, compared to state-of-the-art
local model poisoning attacks, DISBELIEVE attack is also effective on
natural images where we observe a severe drop in classification perfor-
mance of the global model for multi-class classification on benchmark
dataset CIFAR-10.
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1 Introduction

The success of deep models for medical image analysis [13] greatly depends on
sufficient training data availability. Strict privacy protocols and limited avail-
ability of time and resources pose challenges in collecting sizeable medical image
datasets [12]. Although different medical institutions may be willing to collabo-
rate, strict privacy protocols governing patients’ information restrict data shar-
ing. Federated learning (FL) offers a promising solution that allows different
institutions to share information about these models without revealing personal
information about the patients [6,18,20]. Federated Learning is a machine learn-
ing paradigm that learns a single shared global model by collaboratively learning
from different local models on distributed systems without sharing the data.

A federated learning setup involves multiple clients and a global server [18].
The global server initializes the global model and sends the parameters back to
the clients. The clients then train their local models on the data present locally.
Once the local models are trained, the parameters are sent to the global model for
aggregation. The global model then uses an aggregation algorithm to aggregate
all the parameter updates and transmits the updated parameters back to the
clients, and the cycle repeats until convergence. The federated learning setup
allows the clients to preserve the privacy of their data. The success of a federated
learning system is majorly dependent on the use of an aggregation algorithm. For
example, Federated Averaging [18] is an aggregation algorithm in which all the
parameters accumulated at the global server from different clients are averaged.
However, not all clients would act truthfully in real-world scenarios, and there
may be some byzantine clients. A client is said to be a byzantine client if it acts
malicious intentionally due to the presence of an adversary or unintentionally
due to faulty equipment or hardware issues [26]. Studies report that even a single
byzantine worker can seriously threaten the FL systems [4].

A malicious byzantine worker with an adversary who knows the client’s data
and model parameters can induce local poisoning attacks to degrade the perfor-
mance of the global model in an FL system. A local poisoning attack in an FL
system is a process through which the training of the global model is adversely
affected due to either data perturbation or perturbation in model parameters
(or gradients) at the local client’s side. These attacks are termed as local data
poisoning attacks or local model poisoning attacks, respectively. Several studies
indicate that state-of-the-art aggregation methods, for instance, using federated
averaging in the presence of a byzantine client, will reduce the performance of
the global server. Therefore, to defend against attacks by byzantine clients, the
global server uses robust aggregation algorithms [25,26]. This research studies the
efficacy of state-of-the-art robust aggregation methods for FL systems for med-
ical image analysis and highlights their vulnerability to local model poisoning
attacks. We observe that the state-of-the-art robust aggregation methods heav-
ily rely on the distance between malicious and benign client model parameters
(or gradients). We argue that some model poisoning attacks can exist when the
parameters or gradients of malicious clients are close in Euclidean space to those
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of benign clients that circumvent the existing state-of-the-art robust aggregation
methods.

Research Contribution: We introduce the DISBELIEVE attack that
demonstrates the limitation of state-of-the-art robust aggregation methods for
FL on medical images in defending against local model poisoning attacks. The
novelty of the proposed attack lies in the fact that it maximizes the objective
loss function while ensuring that the Euclidean distance between the malicious
parameters and benign parameters is kept marginal. As a result, the attacker
can optimally reduce the global model’s performance without being detected by
the aggregation algorithms. Experiments on three publicly available datasets of
different medical image modalities confirm the efficacy of DISBELIEVE attack
in significantly reducing the classification performance of the global model (by
up to 28%). We also benchmark two current state-of-the-art local model poison-
ing attack methods and demonstrate that the proposed DISBELIEVE attack
is stronger, leading to higher performance degradation. Lastly, we demonstrate
that DISBELIEVE attack also effectively works on natural images, as similar
trends are reported on the CIFAR-10 dataset.

2 Related Work

2.1 Robust Aggregation Algorithms

Robust aggregation algorithms are defense methods that prevent malicious
clients from significantly affecting parameter updates and global model perfor-
mance. KRUM [3] is among the earliest methods for robust aggregation and
proposes that for each communication round, only one of the clients is selected
as an honest participant, and updates from the other clients are discarded. The
client that is chosen as honest is the one whose parameters are closer in Euclidean
space to a chosen number of its neighbors. On the other hand, Trimmed Mean
[26] assumes malicious clients to have extreme values of parameters and proposes
to avoid malicious clients by selecting parameters around the median. Recently,
the Distance-based Outlier Suppression (DOS) [1] algorithm was proposed to
defend against byzantine attacks in FL systems for medical image analysis. DOS
proposes to detect malicious clients using COPOD, a state-of-the-art outlier
detection algorithm [15]. Subsequently, it assigns less weight to the parameters
from those malicious clients. Specifically, it uses Euclidean and cosine distances
between parameters from different clients and computes an outlier score for each
client. Later, these scores are converted to weights by normalizing them using
a softmax function. We note that all these state-of-the-art robust aggregation
algorithms assume that malicious clients’ parameters (or gradients) are signif-
icantly different from benign clients’ parameters (or gradients). However, we
hypothesize that an attack can be introduced such that parameters (or gradi-
ents) of malicious and benign clients are only marginally different, while it can
still severely degrade the global model’s performance.
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2.2 Attacks in Federated Learning

There are various kinds of attacks in a federated learning paradigm, such as
inference attacks, reconstruction attacks, poisoning attacks [5,11,16]. In infer-
ence attacks, the attacker can extract sensitive information about the training
data from the learned features or parameters of the model, thus causing privacy
issues. Reconstruction attacks, on the other hand, try to generate the train-
ing samples using the leaked model parameters [5]. GAN’s [7] have successfully
extracted private information about the client’s data even when model param-
eters are unclear due to the use of differential privacy [9]. Poisoning attacks in
a federated learning paradigm can be categorized as data poisoning attacks or
model poisoning attacks. Both these attacks are designed to alter the behavior
of the malicious client’s model [17]. In data poisoning attacks, the attacker tries
manipulating the training data by changing the ground truth labels or carefully
poisoning the existing data [23]. In model poisoning attacks, the attacker aims
to alter the model parameters or gradients before sending them to the global
server [17].

In this research, we design a model poisoning attack that can bypass state-
of-the-art robust aggregation algorithms such as DOS, Trimmed Mean, and
KRUM. We evaluate the performance of existing state-of-the-art model poi-

(a) Model Poisoning Attack on Parameters (b) Model Poisoning Attack on Gradient

Fig. 1. Intuition behind our proposed local model poisoning attack: (a) Green
nodes represent the parameters of benign clients, Pink node represent the parameters of
malicious clients, Yellow node represents the mean of malicious clients parameters (i.e.
average of parameters of Pink nodes), Red node represents the malicious parameters (of
model M). We ensure that the shift in parameters of model M from mean is less than
the threshold Pdist where Pdist is the maximum distance between any two attacked
clients parameters. (b) Green nodes represent gradients of benign clients, Pink nodes
represent the malicious clients gradients, Yellow node represents the mean of malicious
clients gradients (i.e. average gradients of Pink nodes), Blue node represents gradient of
trained malicious model M , Red node represents gradient of malicious model M after
scaling. We ensure that after scaling gradients the distance from mean of gradients
is less than threshold Gdist where Gdist is the minimum distance between any two
attacked clients gradients.
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Algorithm 1. DISBELIEVE Attack on Parameters
1: Calculate mean of parameters:

µparam =
1

f

f∑

i=1

Wmal
i

2: Set the threshold value:

Pdist = Maxi,k∈f i�=k||Wmal
i − Wmal

k ||22
3: Combine all the training data from malicious clients
4: Initialize the malicious model M with parameters µparam

5: Train M with Loss = −Lossclass until:

||Wmal
model − µparam||22 ≤ Pdist

6: Return Wmal
model

Algorithm 2. DISBELIEVE Attack on Gradients
1: Calculate the mean of parameters and gradients:

µparam =
1

f

f∑

i=1

Wmal
i µgrad =

1

f

f∑

i=1

Gradmal
i

2: Set the threshold value:

Gdist = Mini,k∈f i�=k||Gradsmal
i − Gradsmal

k ||22
3: Combine all the training data from malicious clients
4: Initialize the malicious model M with parameters µparam

5: Train M with Loss = −Lossclass
6: Gradsmal

model ← Gradients of M
7: start ← 0.001, end ← 1000
8: while |start − end| > 0.01 do
9: sf ← (start + end)/2

10: Gradsmal
new = sf ∗ Gradsmal

model

||Gradsmal
model||

11: diff = ||Gradsmal
new − µgrad||22

12: if diff > Gdist then start = sf else end = sf
13: end while
14: Return the Gradsmal

new

soning attacks such as LIE attack [2] and Min-Max attack [19]. We note that
the LIE attack forces the malicious parameters (or gradients) to be bounded in a
range (μ−zσ, μ+zσ) where μ and σ are the mean and standard deviation along
parameters of the malicious clients, and z is a parameter that sets the lower
and upper bounds for deviation around the mean [2]. On the other hand, Min-
Max adds deviation to parameters or gradients and then scales them such that



302 I. Joshi et al.

their distance from any other non-malicious parameter is less than the maximum
distance between two benign updates. However, instead of relying on standard
deviation to approximate the range across which malicious clients’ parameters
(or gradients) can be manipulated, the proposed attack computes the malicious
parameters (or gradients) by maximizing the classification loss (as opposed to
minimizing it) to degrade the global model’s performance. Additionally, we pro-
pose to approximate the range across which the parameters (or gradients) can be
perturbed by evaluating the distance between the malicious clients’ parameters
(or gradients) in Euclidean space.

3 Proposed Method

Formally, we assume a total of n federated learning clients out of which f clients
(1 < f < n/2) have been compromised such that rather than improving global
models’ accuracy, the compromised clients work towards decreasing the per-
formance of the global model. We further assume that all the attackers cor-
responding to different malicious clients are working together or that a single
attacker controls all the malicious clients. The attacker thus has access to all
the malicious client’s model parameters and training data. Our goal is to cre-
ate malicious parameters or gradients that can bypass the robust aggregation
algorithms and reduce the performance of the global model. In this direction,
this research introduces a model poisoning attack (DISBELIEVE attack) that
creates a single malicious model (M) with access to parameters, gradients, and
training data of all the f clients. M serves as a proxy for f clients and aims
towards pushing the output of the global model away from the distribution of
the ground truth labels.

To be specific, the malicious model (M) is trained to generate malicious
parameters or gradients by minimizing the loss Lmodel = −Lclass as opposed to
benign clients where the loss given by Lmodel = Lclass is minimized. Here Lclass

refers to cross-entropy loss. Once the malicious parameters (or gradients) are
computed, M forwards these malicious values to all the f clients, which then
transmit these values to the global model. Note that all the f clients receive the
same malicious parameters (or gradients) from M . Our work leverages the short-
comings of robust federated learning aggregation algorithms such as KRUM [3]
and DOS [1], which are based on the assumption that malicious parameters or
gradients are significantly different from the parameters or gradients of benign
clients in euclidean space respectively. Therefore, to reduce the defense capabili-
ties of these aggregation algorithms, it is essential to perturb the parameters (or
gradients) so that their Euclidean distance from benign clients’ parameters (or
gradients) does not become significant. This can be ensured if the Euclidean dis-
tance between the malicious parameters (or gradients) and the mean of benign
clients’ parameters (or gradients) remains bounded. Due to the normal distribu-
tion of data, it is safe to assume that the mean of parameters (or gradients) of
clients controlled by the attacker is closer to the mean of benign clients param-
eters (or gradients) respectively in the Euclidean space [2].
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The local model poisoning attack can be introduced on model parameters or
gradients [1,2]. However, the critical difference between parameters and gradi-
ents is that gradients have direction and magnitude, whereas parameters only
have magnitude. Hence, we propose different attacks on parameters and gra-
dients. Details on the strategy for attacking parameters or the gradients are
provided in Sect. 3.1 and Sect. 3.2, respectively. The attacker initially chooses
the clients it wants to attack and accumulates the chosen clients’ model parame-
ters, gradients, and training data. Subsequently, the attacker computes the mean
of chosen (attacked) clients’ model parameters (μparam) and gradients (μgrad)
and initializes a new malicious model M with these mean values.

μparam =
1
f

f∑

i=1

Wmal
i μgrad =

1
f

f∑

i=1

Gradmal
i

Here, Wmal
i and Gradmal

i refer to the model parameters or gradients of the ith

malicious client respectively.

3.1 DISBELIEVE Attack on Parameters

The initialized malicious model, M , is trained on the accumulated training data
for minimizing the loss function Lmodel = −Lclass until the Euclidean distance
between the malicious model’s (M) parameters and the mean values is less than
the maximum distance between any two attacked client’s parameters.

||Wmal
model − μparam||22 ≤ Pdist where, Pdist = Maxi,k∈f i�=k||Wmal

i − Wmal
k ||22

Here, Wmal
model refers to the malicious parameters after training of the malicious

model M , and Pdist refers to a threshold. The threshold Pdist is critical to ensure
a successful attack as it controls how far the malicious parameters can be from
the mean of parameters in Euclidean space. Through the proposed attack, we
suggest setting this value to the maximum Euclidean distance between any two
malicious client parameters. Intuitively this is a reliable value within an upper
bound on the malicious parameters by which they can deviate within a fixed
bounded Euclidean space around the mean (see Fig. 1a). The pseudo-code for
the attack is given in Algorithm 1.

3.2 DISBELIEVE Attack on Gradients

For attacking gradients, as described in Algorithm 2, we train the malicious
model M with the similar loss function, Loss = −Lossclass, however, without
any thresholding. Once the model M is trained, we accumulate the malicious
gradients (Gradsmal

model) and scale them by a scaling factor sf to make sure that
their distance from the mean of gradients of malicious clients (μgrad) is smaller
than the minimum distance between any two malicious client’s gradients (Gdist)
(see Fig. 1b).

Gdist = Mini,k∈f i�=k||Gradsmal
i − Gradsmal

k ||22



304 I. Joshi et al.

To find the optimum scaling factor (sf), we use a popular search algorithm
known as binary search [19]. We initialize a start value of 0.001 and an end
value of 1000. An optimal sf is computed using the divide and conquer binary
search algorithm in between these values, which makes sure that after scaling
the unit gradient vector, its distance to the mean of gradients (μgrad) is less than
Gdist

||sf ∗ Gradsmal
model

||Gradsmal
model||

− μgrad||22 ≤ Gdist

For calculating gradients, the minimum distance (Gdist) is preferred over the
maximum distance (Pdist) when attacking parameters. This preference arises
because maximizing the objective loss function results in gradients pointing in
the opposite direction compared to the direction of benign gradients. By using
the minimum distance, we can prevent malicious gradients from becoming out-
liers.

4 Experiments

4.1 Datasets

CheXpert-Small: CheXpert [10] is a large publicly available dataset contain-
ing over 200,000 chest X-ray images for 65,240 patients. However, consistent with
the experimental protocol used by state-of-the-art DOS [1], we use the smaller
version of CheXpert, also known as CheXpert-small, that contains 191,456 X-
Ray images of the chest. The dataset contains 13 pathological categories. A
single observation from the dataset can have multiple pathological labels. Each
sample’s pathological label is classified as either negative or positive. Consis-
tent with the state-of-the-art aggregation method DOS [1], we preprocess all the
images by rescaling them to 224×224 pixels using the torchxrayvision library.

Ham10000: Ham10000 [24] or HAM10k is a publicly available benchmark
dataset containing dermatoscopic images of common pigmented skin lesions. It is
a multi-class dataset with seven diagnostic categories and 10000 image samples.
As suggested in [1], we use this dataset to evaluate the model performance in
non-iid settings where each image is resized to 128×128.

Breakhis: The breakhis dataset [22] is a public breast cancer histopathological
database that contains microscopic images of breast cancer tissues. The dataset
contains 9109 images from 82 different patients. The images are available in
magnifying scales such as 40X, 100X, 200X, and 400X. Each image is a 700 ×
460 pixels sized image, and we rescale each image to 32 × 32 for our classification
task. We use this dataset for binary classification of 400X magnified microscopic
images where we classify cancer present in images as either benign or malignant.
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CIFAR-10: The Cifar-10 [14] is a popular computer vision dataset that contains
60000 natural images of size 32 × 32. The dataset contains ten classes, and each
class has 6000 images. 50000 images are reserved for training, and 10000 images
are used for testing.

4.2 Experimental Setup and Implementation Details

The experimental setup used in this research is consistent with the experimental
protocols suggested in [1]. Subsequently, we use Chexpert-Small [10] and Ham10k
datasets [24] for parameter-based attacks. Likewise, the CheXpert-small dataset
is used to train the Resnet-18 [8] model with a batch size of 16 for 40 communi-
cation rounds, and the number of local epochs is set to 1, whereas the Ham10k
dataset is trained on a custom model with two convolutional layers and three
fully connected layers with a batch size of 890 for 120 communication rounds
and the number of local epochs were set to 3. For both datasets, the number of
clients is fixed at 10, the number of attackers is fixed at 4, and the learning rate
is set to 0.01.

For preserving the privacy of clients and their data, federated learning setups
usually share gradients instead of model parameters. Hence, we also evaluate our
attack for gradient aggregation on the Breakhis [22]. Furthermore, to assess the
generalization ability of the proposed DISBELIEVE attack on natural images,
we evaluate the proposed DISBELIEVE attack on the CIFAR-10 dataset with a
gradient aggregation strategy at the global server. For experiments on Breakhis
dataset, VGG-11 [21] model is trained for binary classification. Training occurs
for 200 communication rounds with a batch size of 128 and a learning rate 0.0001.
For the CIFAR-10 dataset, we use the VGG-11 [21] model with ten output classes

Fig. 2. Performance of different attacks on Ham10k (top-row) and CheXpert (bottom-
row) datasets under different parameter aggregation methods. Left to right (in order):
AUC scores when attacks are made on DOS, Trimmed Mean and Krum.
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Fig. 3. Performance of different attacks on Breakhis (top-row) and CIFAR-10 (bottom-
row) datasets under different gradient aggregation methods. Left to right (in order):
AUC scores when attacks are made on DOS, Trimmed Mean and Krum.

for 500 communication rounds with a batch size of 1000 and a learning rate of
0.001. Adam optimizer was used for both datasets. The total number of clients
and attackers for both datasets is fixed at 10 and 3, respectively.

Table 1. Area Under the Receiver Operating Characteristic Curve (AUC) scores with
different types of poisoning attack on model parameters

Dataset Attack DOS Trimmed Mean KRUM

Ham10k No Attack 0.72 0.75 0.70

LIE Attack 0.70 0.74 0.70

Min-Max Attack 0.61 0.68 0.58

Ours 0.52 0.70 0.51

CheXpert No Attack 0.71 0.71 0.70

LIE Attack 0.69 0.71 0.65

Min-Max Attack 0.59 0.70 0.59

Ours 0.44 0.52 0.43
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Table 2. Area Under the Receiver Operating Characteristic Curve (AUC) scores with
different types of poisoning attack on model gradients

Dataset Attack DOS Trimmed Mean KRUM

Breakhis No Attack 0.81 0.78 0.83

LIE Attack 0.84 0.77 0.79

Min-Max Attack 0.50 0.74 0.72

Ours 0.50 0.75 0.50

CIFAR-10 No Attack 0.83 0.84 0.81

LIE Attack 0.64 0.71 0.60

Min-Max Attack 0.50 0.60 0.50

Ours 0.50 0.78 0.50

5 Results and Discussions

5.1 Baselines

The DISBELIEVE attack is evaluated against three state-of-the-art defense
methods: DOS [1], Trimmed Mean [26], and KRUM [3]. Comparisons are also
made with prominent attacks, including LIE [2] and Min-Max [19], under differ-
ent defense methods. Under any defense, AUC scores are highest in the absence of
attacks. The LIE attack slightly reduces AUC scores while remaining relatively
weaker due to parameter bounding. Conversely, introducing noise and scaling
parameters makes the Min-Max attack more potent, consistently reducing AUC
scores more significantly across various aggregation methods.

5.2 Vulnerability of State-of-the-Art Defense Methods

The proposed DISBELIEVE attack reveals the vulnerability of the current state-
of-the-art robust aggregation algorithms (Trimmed Mean [26], KRUM [3], and
DOS [1]) over local model poisoning attacks. We empirically validate that our
proposed local model poisoning attack (DISBELIEVE attack) can successfully
circumvent all three state-of-the-art robust aggregation algorithms (refer Figs. 2,
3). For both parameters and gradient aggregation, DISBELIEVE attack consis-
tently reduces the global model’s area under the curve (AUC) scores on all three
benchmark medical image datasets. Furthermore, to assess the effectiveness of
the proposed DISBELIEVE attack on natural images apart from the specialized
medical images, we additionally conduct DISBELIEVE attack on a popular com-
puter vision dataset, CIFAR-10. For natural images, we also find (refer Fig. 3)
that the DISBELIEVE attack reduces the global model’s AUC score for differ-
ent state-of-the-art aggregation algorithms DOS, Trimmed Mean, and KRUM.
Tables 1 and 2 show that when subjected to DISBELIEVE attack, the AUC
scores fall drastically for all datasets compared to the AUC scores in case of no
attack. Therefore, these results demonstrate the vulnerability of state-of-the-art
robust aggregation methods to the proposed local model poisoning attack.
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5.3 Superiority of DISBELIEVE Attack over State-of-the-art Local
Model Poisoning Attacks

The state-of-the-art robust aggregation algorithm for medical images DOS is
only evaluated against additive Gaussian noise, scaled parameter attacks, and
label flipping attacks. We additionally benchmark the performance of two state-
of-the-art model poisoning attacks, namely Min-Max [19] and LIE [2] on all the
three medical image datasets (refer Figs. 2 and 3). Results establish the superi-
ority of the proposed DISBELIEVE attack over state-of-the-art model poisoning
attacks on different medical image datasets. While using DOS and KRUM aggre-
gation, the DISBELIEVE attack reduces the global model’s AUC score by a more
significant margin than both Min-Max and LIE for all the datasets. In the case of
trimmed mean, the results of DISBELIEVE attack are comparable on Ham10k
(parameter aggregation) and Breakhis (gradient aggregation) datasets with the
Min-Max attack and better on CheXpert (parameter aggregation) dataset when
compared to the Min-Max and LIE attacks. To compare the effectiveness of DIS-
BELIEVE attack with state-of-the-art model poisoning attacks on the natural
image dataset (CIFAR-10), we observe that DISBELIEVE attack performs bet-
ter than LIE and Min-Max on DOS and KRUM defenses. Tables 1 and 2 compare
state-of-the-art model poisoning attacks and the proposed DISBELIEVE attack
under different state-of-the-art robust aggregation algorithms for parameter and
gradient aggregation, respectively.

6 Conclusion and Future Work

This research highlights the vulnerability of state-of-the-art robust aggregation
methods for federated learning on medical images. Results obtained on three
public medical datasets reveal that distance-based defenses fail once the attack
is designed to ensure that the distance between malicious clients and honest
clients’ parameters or gradients is bounded by the maximum or minimum dis-
tance between parameters or gradients of any two attacked clients, respectively.
Moreover, we also demonstrate that the proposed DISBELIEVE attack proves
its efficacy on natural images besides domain-specific medical images. In the
future, we plan to design a robust aggregation algorithm for federated learning
in medical images that can withstand the proposed local model poisoning attack.
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(IMI945358).
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