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Abstract. Histopathological images are essential for medical diagnosis
and treatment planning, but interpreting them accurately using machine
learning can be challenging due to variations in tissue preparation, staining
and imaging protocols. Domain generalization aims to address such limita-
tions by enabling the learning models to generalize to new datasets or pop-
ulations. Style transfer-based data augmentation is an emerging technique
that can be used to improve the generalizability ofmachine learningmodels
for histopathological images. However, existing style transfer-based meth-
odscanbecomputationallyexpensive,andtheyrelyonartistic styles,which
may negatively impact model accuracy. In this study, we propose a feature
domain stylemixing technique thatusesadaptive instancenormalization to
estimate style-mixed versions of image features. We compare our proposed
method with existing style transfer-based data augmentation methods and
found that it performs similarly or better, despite requiring lower compu-
tation. Our results demonstrate the potential of feature domain statistics
mixing in the generalization of learning models for histopathological image
analysis.
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1 Introduction

Histopathological images play a critical role in medical diagnosis and treatment
planning, allowing healthcare providers to visualize the microscopic structures
of tissues and organs. However, accurately interpreting these images can be chal-
lenging due to variations in tissue preparation, staining and imaging protocols.
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These variations can result in significant differences in image quality, tissue mor-
phology and staining intensity, making it difficult to develop machine learning
models for analysis that generalize well to new datasets or populations. Domain
generalization is a field of machine learning that seeks to address this limitation
by enabling models to generalize to new domains or datasets. In the context
of histopathological images, domain generalization methods aim to improve the
generalizability of machine learning models by reducing the effects of dataset
bias and increasing the robustness of the model to variations in tissue prepara-
tion, staining, and imaging protocols. Recently, there has been a growing interest
in using style transfer-based data augmentation for learning visual representa-
tions that are independent of specific domains for histopathological images viz.,
[7,13,18]. This technique involves transferring the style or texture of one image to
another while maintaining the original content. By generating new images with
different styles or textures, this technique can be used to augment the train-
ing data and improve the model’s generalization performance [18]. Although the
style transfer based method achieves good results in domain generalization for
histopathological images, it takes a considerable amount of time to generate
the augmented data. Further, the collinearity between the various artistic styles
used for the style transfer may have a negative impact on the model’s accuracy.
Unlike the existing methods, in this work, we propose to apply feature domain
style mixing for the style transfer. Specifically, we use adaptive instance nor-
malization [6] to mix the feature statistics of the different images to generate a
style-augmented version of an image. Feature statistics mixing helps to save a
lot of time and computation power as data augmentation is not required, and
the dependency on the artistic style is also alleviated. We compare the proposed
method with the current state-of-the-art style transfer-based data augmentation
methods, on two image classification tasks and one object detection task. We find
that the proposed method performs similarly or better than the image domain
mixing-based methods, despite having low computation requirements.

2 Related Work

In the field of digital pathology, researchers have developed several deep learn-
ing approaches to address challenges related to domain generalization such as
normalization and style transfer. One example is StainNet [7], which is designed
for stain normalization in digital pathology images. StainNet removes variations
in tissue staining across different samples, making it easier to compare and ana-
lyze images in a consistent manner. Another approach, STRAP [18], uses a deep
neural network to extract features from histopathology images and proposes a
style transfer augmentation technique to reduce the domain-specific information
in these features. This technique generates a new set of images that have the
same content as the original images but in different styles. Domain Adversarial
RetinaNet [16], a modified version of the RetinaNet object detection model, has
been developed that includes domain adversarial training. The idea is to train in
both source and target domain data to address domain generalization challenges.
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Fig. 1. A graphical illustration of FuseStyle. The shaded areas in (b) are the simulated
points for augmentation. The domain label of each sample is colour-coded. There can be
cases where the dot product (correlation) is the least within the domain as highlighted
in the dotted rectangle in (c).

3 Proposed Method

3.1 Background

Huang et al. [6] introduced Adaptive Instance Normalization (AdaIN) for style
transfer based on Instance normalization [15]. AdaIN aims to align the means
and variances of instances of the content features (c) with those of the style fea-
tures (s). It computes the mean (μ(s)) and variance (σ(s)) parameters from
instances of the style input and achieves the style transfer as AdaIN(c) =
σ(s)x−μ(c)

σ(c) + μ(s) , where μ(c) and σ(c) are respectively the corresponding
instance mean and standard deviation of a given content feature tensor. The
above parameter adaption allows for arbitrary style transfer, enabling the mix-
ing of the content and style features in a way that produces a new output with
the parameters of the style.

3.2 FuseStyle: Proposed Feature Domain Style Mixing

Our feature domain style mixing approach, FuseStyle, is inspired by AdaIN. Fus-
eStyle avoids the use of an image generating network that is usually associated
with style transfer based domain generalization. Instead, it regularizes the train-
ing of the neural network at hand (for performing a required task) by perturbing
the style information of the training instances. It can be easily implemented as
a plug-and-play module inserted between the layers of the neural network. So,
the need to explicitly create a new style image does not arise.

FuseStyle, depicted in Fig. 1, combines the feature statistics of two instances
from the same /different domains as a convex sum using random weights to
simulate new styles. As shown in Fig. 1, for an input training batch, x, a reference
batch y is generated by shuffling x across the batch dimension. We then compute
the means (μ) and variances (σ) of the corresponding instances in x and y, and
use them to compute the combined feature statistics as:

γi = λiσ(xi) + (1 − λi)σ(yi), βi = λiμ(xi) + (1 − λi)μ(yi) (1)
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where i denotes the ith instance and λi ∼ Beta(α, α) is computed from a Beta
distribution having both its shape parameters as α. A style-modified training
instance x̃i is then computed as:

x̃i = γi
xi − μ(xi)

σ(xi)
+ βi (2)

where the batch size of x̃ is the same as that of x and y. x is then randomly
(binomial-B(0, .5)) replaced by x̃ as the training batch for domain generalization.

Generating the reference batch y is crucial for achieving better generalization
to unseen domains. While previous studies [20] have used a random sample selec-
tion method for creating the reference batch, a recent study [18] in histopatho-
logical image domain generalization has shown that mixing medically irrele-
vant images, such as artistic paintings, with whole slide images (WSI) results in
improved performance. This suggests that using the least correlated image in the
reference batch could result in a better generalization than using a meaningful
stylized image. With this motivation, we propose a new method of generating the
reference batch that allows the mixing of the features of a sample with the fea-
tures of another sample in the batch that is least correlated to the former. This
method has inherent advantages over existing methods. For example, when we
combine the parameters of two furthest samples linearly, the interpolated param-
eter values are more likely to represent a simulated sample that is far from the
both the original samples than when we combine two close samples (which may
happen during random reference batch generation). This allows us to explore
more regions in the feature space and simulate a wider variety of augmented
domains, as illustrated in Fig. 1b. Consider that FuseStyle is applied between a
layer, fl, and fl+1, and the output feature of the layer fl is zl ∈ R

B×C×W×H (B
- batch dimension). Then, the correlation (ρ ∈ R

B×B) between different samples
of the current batch can be computed by:

ρ = ẑl � ẑT
l (3)

where � represents the matrix multiplication, ẑl ∈ R
B×CWH is the vectorized

version of the zl and T represents the transpose operation. Next, we set ith

sample of the reference batch, that is, yi to be xj , where j = arg minj ρi, and
ρi ∈ R

B is the ith row of the matrix ρ. Then, the ith sample of the batch x is
mixed with ith sample of the batch y as mentioned in Eq.(2) to get x̃i. We set α
of the Beta distribution to 0.3 to generate all the results reported in this paper.
During the learning phase of the neural network model, the probability of using
the FuseStyle method is set at 0.5, but it is not applied during the test phase.

Table 1. Comparison of FuseStyle with SoTA methods on Camelyon17-WILDS.

Methods STRAP FuseStyle LISA Fish ERM V-REx DomainMix IB-IRM GroupDRO

Test Accuracy 93.7% 90.49% 77.1% 74.7% 70.3% 71.5% 69.7% 68.9% 68.4%
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Table 2. Classification using FuseStyle and STRAP on MIDOG′21 Dataset.

STRAP
Test Accuracy(%)

FuseStyle
Test Accuracy(%)

Networks{Train,Test} XR S360 CS XR S360 CS

{S360+CS,XR} 67.33 87.99 84.67 77.56 91.07 90.46

{XR+CS, S360} 88.35 76.78 91.14 90.06 75.16 92.16

{XR+S360,CS} 88.92 92.70 74.28 86.65 88.96 74.10

4 Experimental Details

4.1 Datasets and Task

In our study, we compared our proposed method with the recent state-of-the-art
histopathological domain generalization using two datasets. 1. The MIDOG’21
Challenge dataset [3] consisted of 200 samples of human breast cancer tis-
sue stained with Haematoxylin and Eosin (H&E). Four scanning systems were
used to digitize the samples: Leica GT450, Aperio CS2 (CS), Hamamatsu XR
(XR), and Hamamatsu S360 (S360), resulting in 50 WSIs from each system.
2. The Camelyon17-WILDS [9] dataset comprised 1,000 histopathology images
distributed across six domains, representing different combinations of medical
centres and scanners. In our study, we focused on three tasks: classification
between mitotic figures and non-mitotic figures using the MIDOG’21 dataset,
tumour classification using the Camelyon17 dataset, and detection of mitotic
and non-mitotic figures using the MIDOG’21 dataset. TFor the mitotic figure
detection task, the details regarding dataset preparation can be found in the
supplementary material of our study. For the Camelyon17 WILDS dataset, we
used the default settings and train test split as given on the challenge website.
For the classification task on MIDOG’21, we cropped patches of size 64 × 64
around the mitotic and non-mitotic figure, and we then performed an 80–20
train-test split on the cropped patches keeping the patches from each domain
separate.

4.2 Model Architecture, Training and Methods

Classification: Here, we employ ResNet50 [5] CNN architecture and integrate
FuseStyle after layers 1 and 4 of the network for 15 epochs. We use Binary Cross
Entropy (BCE) Loss for training, while Adam Optimizer [8] with a learning rate
of 1e-4 is utilized. To facilitate smooth training, a scheduler is used, that is,
when no improvement is seen during model training after 2 epochs, the learn-
ing rate is reduced by a factor of 0.01. The batch size is set to 256 for both
Camelyon17-WILDS [9] and MIDOG’21 Challenge datasets [3]. Recent studies
on style transfer indicate that style information can be modified by altering the
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instance-level feature statistics in the lower layers of a Convolutional Neural Net-
work (CNN) while preserving the image’s semantic content representation [4,6],
and hence, we consider layers 1 and 4 of the ResNet to use FuseStyle.

Mitotic Figure Detection: For mitotic figure detection, we utilize RetinaNet
[11] with ResNet50 as the backbone architecture and incorporate FuseStyle on
layers 1 and 4 of the backbone. We use Focal Loss and train the network for
100 epochs on the MIDOG’21 Challenge dataset with a batch size of 6. Adam
Optimizer [8] is used with a learning rate of 1e-4. We use the adaptive learning
rate decay scheduler, that is, when no improvement is seen in model training
after two epochs, the learning rate is reduced by factor of 0.1 for stable training.

Methods: To assess the effectiveness of our proposed approach, we compare
it to eight state-of-the-art domain generalization methods, namely STRAP [18],
LISA [19], Fish [14], ERM [9], V-REx [10], DomainMix [17], IB-IRM [1], and
GroupDRO [12] for classification task on the Camelyon17-WILDS dataset, where
we evaluate the classification accuracy. The best existing approach STRAP [18]
based on the performance data on Camelyon17-WILDS dataset is used further
for comparison with the proposed approach on the MIDOG’21 Challenge dataset,
where both classification and mitotic figure detection are considered. We imple-
mented the networks using the PyTorch library in Python and utilized a GeForce
GTX 2080Ti GPU for efficient processing.

(a) GT (b) RetinaNet (c) STRAP (d) FuseStyle

Fig. 2. Mitotic figure detection by different methods in S360 image with model trained
on XR & CS, where Red box→Mitotic and Blue box→Non-Mitotic. (Color figure
online)

5 Results and Discussion

Classification Task Results: We evaluate the state-of-the-art (SOTA)
methods along with ours based on their classification performance in out-of-
distribution domains, and we use accuracy as the performance metric. Our app-
roach is first compared to the other methods in Table 1, where the Camelyon17
dataset is used for both training and testing (out-of-distribution). The results
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presented in Table 1 demonstrate that our approach outperforms all the methods
except STRAP [18].

One should note regarding STRAP that its performance heavily relies on the
generated stylized dataset used for training. The time required to generate the
stylized data for the Camelyon17- WILDS is around 300 h in our set up and for
the MIDOG’21 Challenge dataset, it is around 75 h. On the other hand, there is
no data generation involved with our FuseStyle. Further, the main operation in
FuseStyle is a dot product, which is computationally cheap, and the complexity
of our feature mixing strategy is negligible compared to existing augmentation
techniques.

Due to the substantial dependence of STRAP on the generated stylized aug-
mentation, careful selection of style images for every dataset becomes funda-
mental to reproduce its similar performance on different datasets. Therefore,
to further investigate the performance of FuseStyle and STRAP, we conduct a
classification experiment on the MIDOG’21 Challenge Dataset, the results of
which are presented in Table 2. As seen, if the network is trained on S360 and
CS, and tested on XR, there is a 10.23% advantage in test accuracy for Fus-
eStyle over STRAP. Furthermore, the accuracy improves by 5.79% and 3.08%
for S360 and CS, which are the seen domains, respectively. In the other cases
of Table 2, the approaches outperform each other almost equal number of times,
but most importantly, the differences in their accuracies are relatively low. This
shows that FuseStyle is at par with STRAP in these cases in spite of it being
significantly less complex. We also infer from the table that FuseStyle produces
consistent performance irrespective of the training and testing domains.

Mitotic Figure Detection Task Results: We conduct an experiment on this
task using three different models: Our FuseStyle, STRAP and RetinaNet [11].
All these models use ResNet50 as their backbone architecture, but Retinanet
does not involve any domain generalization. We provide Precision, Recall and
F1 score as the performance metrics of detection in Table 3. Here the models are
trained using training data from XR and CS scanners. As a result, the images
from S360 represent an out-of-distribution scenario. As can be seen, FuseStyle
outperforms both STRAP [18] and RetinaNet in most cases in terms of F1
score that incorporates both precision and recall. FuseStyle’s superiority over
RetinaNet demonstrates the usefulness of our way of domain generalization.

Table 3. Mitotic Figure Detection Analysis on MIDOG′21 Challenge Dataset.

Network Precision Recall F1 Score

XR S360 CS XR S360 CS XR S360 CS

RetinaNet 0.91 0.93 0.93 0.76 0.3 0.76 0.83 0.45 0.84

STRAP 0.85 0.91 0.88 0.88 0.70 0.95 0.87 0.79 0.92

FuseStyle 0.82 0.92 0.90 0.92 0.76 0.90 0.87 0.83 0.90
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Table 4. Objective evaluation on
MIDOG′21 Challenge Dataset.

Network Methods XR S360 CS Time/epoch
(sec)

Train:
S360 & CS
Test:
XR

M1 76.42 89.45 88.76 08

RA 77.56 91.07 90.46 08

M2 67.05 88.64 90.29 08

M3 74.43 87.18 88.76 111

Train:
XR & CS
Test:
S360

M1 84.09 71.59 85.18 08

RA 90.06 75.16 92.16 08

M2 90.34 75.65 91.65 08

M3 83.07 78.90 89.95 111

Train:
XR & S360
Test:
CS

M1 88.64 89.45 72.40 08

RA 86.65 88.96 74.10 08

M2 87.78 90.91 76.32 08

M3 86.34 87.34 78.02 111

Table 5. Objective evaluation on
MIDOG′22 Challenge Dataset.

Network Methods XR S360 CS Time/epoch
(sec)

Train:
S360 & CS
Test:
XR

M1 75.10 81.16 80.58 28

RA 74.27 83.59 79.74 28

M2 76.78 75.68 68.80 28

M3 78.74 83.28 81.24 331

Train:
XR & CS
Test:
S360

M1 77.06 80.24 78.89 28

RA 80.84 80.24 81.62 28

M2 75.94 81.76 81.53 28

M3 81.26 81.76 79.26 331

Train:
XR & S360
Test:
CS

M1 81.12 81.46 82.28 28

RA 81.34 84.19 82.75 28

M2 73.71 76.60 73.42 28

M3 80.14 83.89 74.08 331

A visual result of mitotic figure detection using FuseStyle, STRAP and Reti-
naNet is shown in Fig. 2a along with the ground truth. As we can see from the
figure, the use of FuseStyle, unlike the use of the other two, results in accurate
detection and classification of all mitotic and non-mitotic figures present. While
the use of RetinaNet results in an unsuccessful classification of a mitotic figure,
the use of STRAP results in detection failure.

Design Analysis of Our Approach: Our investigation has revealed that com-
bining distant features can lead to the extraction of domain-invariant features.
To achieve this, we had proposed using the dot product method, but other tech-
niques for generating a reference batch exist. To explore this further, we conduct
an empirical investigation using four different methods: M1: Mixing with Ran-
dom Shuffle, Reference Approach (RA): Mixing with Least Dot Product (Fus-
eStyle), M2: Mixing with Maximum Euclidean Distance, and M3: Mixing with
Maximum KL Divergence. We study the Euclidean distance based approach and
also experiment with an advanced approach based on KL divergence. To evalu-
ate the robustness of the proposed approach, we train the ResNet50 model on
two scanner datasets and tested it on the third scanner. The comparison of the
results obtained from the study are presented in Tables 4 & 5. The compari-
son is based on the test accuracy (in percentage) of different scanners and the
time required for training. The obtained results reveal the effectiveness of the
proposed approach of sample selection for mixing. The detailed analysis of the
findings is provided in the table, demonstrating the superiority of the proposed
method over the other methods.

Based on the results presented in Table 4, it can be observed that the Dot
Product method is the most consistent in terms of network performance across
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different domains. In contrast, the Random Shuffle method (M1) fails to perform
well in the second case, and the Euclidean Distance method (M2) fails in the first
case for the out-of-distribution domain. The KL Divergence method (M3) does
not perform well in the in-distribution domain, as observed in the second case for
the XR scanner, and it also requires a significantly longer computational time
compared to the other methods. Therefore, the experimental studies suggest that
FuseStyle (RA) provides the most consistent results as well as takes less time
compared to KL divergence method (M3) on the MIDOG’21 Challenge dataset.
For further analysis of our method, we conduct additional experiments on the
MIDOG’22 Challenge dataset [2] as shown in Table 5, using the same reference
batch generation methods. The results demonstrate that the FuseStyle (RA)
performs well for both in-distribution and out-of-distribution domains.

6 Conclusion

We present, FuseStyle, a novel method that computes generalized features by
mixing them in the feature space to address domain shift issues related to
histopathological images. It uses a new approach of feature mixing based on
correlation computation. FuseStyle has lower computational requirements, with
dot product being the main operation in it. We have shown that the performance
of our method in classification and detection tasks is at par or better than the
state-of-the-art on various datasets. We also find from experimental results that
the proposed feature-mixing method has strong domain generalization capabili-
ties. In summary, our method is simple, effective and consistent, and it has the
potential to enhance the out-of-distribution performance of any existing machine
learning method.
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