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Abstract. Automated segmentation of ultrasound images can assist
medical experts with diagnostic and therapeutic procedures. Although
using the common modality of ultrasound, one typically needs separate
datasets in order to segment, for example, different anatomical structures
or lesions with different levels of malignancy. In this paper, we consider
the problem of jointly learning from heterogeneous datasets so that the
model can improve generalization abilities by leveraging the inherent
variability among datasets. We merge the heterogeneous datasets into
one dataset and refer to each component dataset as a subgroup. We pro-
pose to train a single segmentation model so that the model can adapt to
each sub-group. For robust segmentation, we leverage recently proposed
Segment Anything model (SAM) in order to incorporate sub-group infor-
mation into the model. We propose SAM with Condition Embedding
block (CEmb-SAM) which encodes sub-group conditions and combines
them with image embeddings from SAM. The conditional embedding
block effectively adapts SAM to each image sub-group by incorporat-
ing dataset properties through learnable parameters for normalization.
Experiments show that CEmb-SAM outperforms the baseline methods
on ultrasound image segmentation for peripheral nerves and breast can-
cer. The experiments highlight the effectiveness of CEmb-SAM in learn-
ing from heterogeneous datasets in medical image segmentation tasks.
The code is publicly available at https://github.com/DongDong500/
CEmb-SAM

Keywords: Breast Ultrasound · Nerve Ultrasound · Segmentation. ·
Segment Anything Model

1 Introduction

Image segmentation is an important task in medical ultrasound imaging. For
example, peripheral nerves are often detected and screened by ultrasound, which
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has become a convention modality for computer-aided diagnosis (CAD) [20]. As
entrapment neuropathies are considered to be accurately screened and diagnosed
by ultrasound [2,3,25], the segmentation of peripheral nerves helps experts iden-
tify anatomic structures, measure nerve parameters and provide real-time guid-
ance for therapeutic purposes. In addition, Breast ultrasound images (BUSI) can
guide experts to localize and characterize breast tumors, which is also one of the
key procedures in CAD [27].

The advancements in deep learning enable an automatic segmentation of
ultrasound images, though they still require large, high-quality datasets. The
scarcity of the labeled data motivated several studies to propose learning from
limited supervision, such as transfer learning [24], supervised domain adapta-
tion [19,22] and unsupervised domain adaptation [6,12,17]. In practice, separate
datasets are needed to train a model to segment different anatomical structures
or lesions with different levels of malignancy. For example, peripheral nerves can
be detected and identified across different human anatomic structures, such as
peroneal (located below the knee) and ulnar (located inside the elbow) nerves.
Typically, the annotated datasets for peroneal and ulnar nerves are separately
constructed, and models are separately trained. However, since the models per-
form a similar task, i.e., segmenting nerve structures from ultrasound images,
one may use a single model to be jointly trained with peroneal and ulnar nerves
in order to leverage the variability in heterogeneous datasets and improve gen-
eralization abilities. A similar argument can be applied to breast ultrasound. A
breast tumor is categorized into two types, benign and malignant, and we exam-
ine the effectiveness of a single model handling the segmentation of both types
of lesions. While a simple approach would be incorporating multiple datasets for
training, the characteristics of imaging vary among datasets, and it is challeng-
ing to train models which deal with distribution shift and generalize well for the
entire heterogeneous datasets [4,26,28].

In this paper, we consider methods to train a single model with heterogeneous
datasets jointly. We combine the heterogeneous datasets into one dataset and call
each component dataset as a subgroup. We consider a model which can adapt to
domain shifts among sub-groups and improve segmentation performances. We
leverage recently proposed Segment Anything model (SAM) which has shown
great success in natural image segmentation [14]. However, several studies have
shown that SAM could fail on medical image segmentation tasks [5,9,10,16,29].
We adapt SAM to distribution shifts across sub-groups using a novel method
for condition embedding, which is called SAM with Condition Embedding block
(CEmb-SAM). In CEmb-SAM, we encode sub-group conditions and combine
them with image embeddings. Through experiments, we show that the sub-group
conditioning guides SAM to adapt to each sub-group effectively. Experiments
demonstrate that, compared with SAM [14] and MedSAM [16], CEmb-SAM
shows consistent improvements in the segmentation tasks for both peripheral
nerves and breast lesions. Our main contributions are as follows:
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– We propose CEmb-SAM, which jointly trains a model over heterogeneous
datasets leveraging Segment Anything model for robust segmentation perfor-
mances.

– We propose a conditional embedding module to combine sub-group represen-
tations with image embeddings, which effectively adapts the Segment Any-
thing Model to sub-group conditions.

– Experiments on the peripheral nerve and the breast cancer datasets demon-
strate that CEmb-SAM significantly outperforms the baseline models.

Fig. 1. (A) CEmb-SAM: Segment Anything model with Condition Embedding block.
Input images come from heterogeneous datasets, i.e., the datasets of peroneal and ulnar
nerves, and the model is jointly trained to segment both types of nerves. The sub-group
condition is fed into Condition Embedding block and encoded into sub-group repre-
sentations. Next, the image embeddings are combined with sub-group representations.
The image and prompt encoders are frozen during the fine-tuning of Condition Embed-
ding block and mask decoder. (B) Detailed description of Condition Embedding Block.
The sub-group condition is encoded into learnable parameters γ and β, and the input
feature F in is scaled and shifted using those parameters.
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2 Method

The training dataset is a mixture of m heterogeneous datasets or sub-groups.
The training dataset with m mutually exclusive sub-groups D = g1∪g2∪· · ·∪gm

consists of N samples D = {(xi, yi, y
a
i )N

i=1} where xi is an input image, yi is a
corresponding ground-truth mask. The sub-group condition ya

i ∈ {0, . . . , m − 1}
represents the index of the sub-group the data belongs to. The peripheral nerve
dataset consists of seven sub-groups, six different regions at the peroneal nerve
(located below the knee) and a region at the ulnar nerve (located inside the
elbow). The BUSI dataset consists of three sub-groups: benign, malignant, and
normal. The detailed description and sub-group indices and variables are shown
in Table 1.

2.1 Fine-Tuning SAM with Sub-group Condition

SAM architecture consists of three components: image encoder, prompt encoder,
and mask decoder. Image encoder uses a vision transformer-based architecture [7]
to extract image embeddings. Prompt encoder utilizes user interactions, and
mask decoder generates segmentation results based on the image embeddings,
prompt embeddings, and its output token [14]. We propose to combine sub-
group representations with image embeddings from the image encoder using
the proposed Condition Embedding block (CEmb). The proposed method, SAM
with condition embedding block (CEmb-SAM), uses a pre-trained SAM (ViT-
B) model as the image encoder and the prompt encoder. For the peripheral
nerve dataset, we fine-tune the mask decoder and CEmb with seven sub-groups.
Likewise, we fine-tune the mask decoder on the breast cancer dataset with three
sub-groups. The overall framework of the proposed model is illustrated in Fig. 1.

2.2 Condition Embedding Block

We modified the conditional instance normalization (CIN) [8] to combine sub-
group representations and image embeddings. Learnable parameters Wγ ,Wβ ∈
R

C×m where m is the number of sub-groups of the datasets, and C is the num-
ber of the output feature maps. A sub-group condition ya is converted to one-
hot vectors, xa

γ and xa
β which are fed into Condition Embedding encoder and

transformed into sub-group representation parameters γ and β using two fully
connected layers (FCNs). Specifically,

γ = W2 · σ(W1 · Wγ · xa
γ), β = W2 · σ(W1 · Wβ · xa

β) (1)

where W1, W2 ∈ R
C×C are FCN weights, and σ(·) represents ReLU activation

function.
The image embedding x is transformed into the final representation z using

the condition embedding as follows. The image embedding is normalized with
mini-batch B = {xi, y

a
i }Nn

i=1 of Nn examples as follows:
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Table 1. Summary of the predefined sub-group conditions of peripheral nerve and
BUSI datasets. FH: fibular head, FN: fibular neuropathy. FN + α represents the mea-
sured site is α cm away from the fibular head. m represents the total number of sub-
groups.

Study Region Sub-group m = 7 Study Region Sub-group m = 3

Nerve Peroneal FH 0

FN 1 Benign 0

FN+1 2 BUSI Breast

FN+2 3 Malignant 1

FN+3 4 Normal 2

FN+4 5

Ulnar Ulnar 6

CIN(xi|γ, β) = γ
xi − E[xi]√
Var[xi] + ε

+ β (2)

where E[xi] and Var[xi] are the instance mean and variance, and γ and β are
given by Condition Embedding encoder. The proposed CEmb consists of two
independent consecutive CIN layers with convolutional layers given by:

Fmid = σ(CIN(W3×3 · xi|γ1, β1)) (3)

z = σ(CIN(W3×3 · Fmid|γ2, β2)) (4)

where F ∈ R
c×h×w represents an intermediate feature map, W3×3 denotes con-

volution kernel size with 3×3. Figure 1 (B) illustrates the Condition Embedding
block.

Table 2. Sample distribution of peripheral nerve and BUSI datasets. FH: fibular head,
FN: fibular neuropathy. FN + α represents that the measured site is α cm away from
the fibular head.

Dataset Region Sub-group #of samples Dataset Region Sub-group #of samples

Nerve Peroneal FH 91

FN 106 Benign 437

FN+1 77

FN+2 58 BUSI Breast Malignant 210

FN+3 49 Normal 133

FN+4 29

Ulnar Ulnar 1234

Total 1644 Total 780
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Table 3. Performance comparison between U-net, SAM, MedSAM and CEmb-SAM
on BUSI and Peripheral nerve datasets.

Study Region DSC (%) PA (%)

U-net SAM MedSAM Ours U-net SAM MedSAM Ours

BUSI Breast 64.87 61.42 85.95 89.35 90.72 87.19 90.89 92.86

Nerve Peroneal 69.91 61.72 78.87 85.02 92.59 90.58 91.81 93.90

Ulnar 77.04 59.56 83.98 88.21 96.49 94.89 96.66 97.72

3 Experiments

3.1 Dataset Description

We evaluate our method on two datasets: (i) a public benchmark dataset, Breast
Ultrasound images (BUSI) [1]; (ii) the peripheral nerve ultrasound images col-
lected in our institution. Ultrasound images in the public BUSI dataset are mea-
sured from an identical site. The dataset is categorized into three sub-groups:
benign, malignant, and normal. The shape of a breast lesion varies according
to its type. The benign lesion possesses a relatively round and convex shape.
On the other hand, the malignant lesion possesses a rough and uneven spherical
shape. The BUSI dataset consists of 780 images. The average image size of the
dataset is 500 × 500 pixels.

The peripheral nerve dataset was created at the Department of Physical
Medicine and Rehabilitation, Korea University Guro Hospital. The dataset con-
sists of ultrasound images of two different anatomical structures, the peroneal
nerve and the ulnar nerve. The peroneal nerve, on the outer side of the calf of
the leg, contains 410 images with an average size of 494 × 441 pixels. The per-
oneal nerve images are collected from six different anatomical structures where
the nerve stem comes from the adjacent fibular head. FH represents the fibular
head, and FN represents fibular neuropathy. FN+α represents that the measured
site is α cm away from the fibular head. The ulnar nerve is located along the
inner side of the arm and passing close to the surface of the skin near the elbow.
The ulnar nerve dataset contains 1234 images with an average size of 477 × 435
pixels. Table 2 describes the sample distribution of datasets. This study was
approved by the Institutional Review Board at Korea University (IRB number:
2020AN0410).

3.2 Experimental Setup

Each dataset was randomly split at a ratio of 80:20 for training and testing. Each
training set was also randomly split into 80:20 for training and validation. SAM
comes with three segmentation modes: segmenting everything in a fully auto-
matic way, bounding box mode, and point mode. However, in the case of apply-
ing SAM for medical image segmentation, it seems that the segment everything
mode is prone to erroneous region partitions. The point-based mode empirically
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requires multiple iterations of prediction correction. The bounding box-based
mode can clearly specify the ROI and obtain good segmentation results without
multiple trials and errors [16]. Therefore, we choose the bounding box prompts as
input to the prompt encoder for SAM, MedSAM, and CEmb-SAM. In the train-
ing phase, the bounding box coordinates were generated from the ground-truth
targets with a random perturbation of 0–10 pixels.

Fig. 2. Segmentation results on BUSI (1st and 2nd rows) and peripheral nerve dataset
(3rd and 4th rows).

The input image’s intensity values were normalized using Min-Max normal-
ization [21] and resized to 3 × 256 × 256. We used the pre-trained SAM (ViT-B)
model as an image encoder. An unweighted sum between Dice loss and cross-
entropy loss is used as the loss function [11,15]. Adam optimizer [13] was chosen
to train our proposed method and baseline models using NVIDIA RTX 3090
GPUs. The initial learning rate of our model is 3e-4.

3.3 Results

To evaluate the effectiveness of our method, we compare CEmb-SAM with the
U-net [23], SAM [14], and MedSAM [16]. The U-net is trained from scratch on
BUSI and peripheral nerve datasets, respectively. The SAM is used with the
bounding box mode. The pre-trained SAM (ViT-B) weights are used as image
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encoder and prompt encoder. During inference, the bounding box coordinates are
used as the input to the prompt encoder. Likewise, the pre-trained SAM (ViT-B)
weights are used as image encoder and prompt encoder in the MedSAM. The
mask decoder of MedSAM is fine-tuned on BUSI and peripheral nerve datasets.
CEmb-SAM also uses the pre-trained SAM (ViT-B) model as an image encoder
and prompt encoder, and fine-tunes the mask decoder on BUSI and peripheral
nerve datasets. During inference, the bounding box coordinates are used as the
input to the prompt encoder.

For the performance metrics, we used the Dice Similarity Coefficient (DSC)
and Pixel Accuracy (PA) [18]. Table 3 shows the quantitative results compar-
ing with CEmb-SAM, MedSAM, SAM (ViT-B), and U-net on both BUSI and
peripheral nerve datasets. From Table 3, we observe that our method achieves
the best results on both DSC and PA scores. CEmb-SAM outperformed the
baseline methods in terms of the average DSC by 18.61% in breast, 14.85% in
peroneal, and 14.68% in ulnar, and in terms of the average PA by 3.26% in
breast, 2.24% in peroneal and 1.71% in ulnar.

Figure 2 shows the visualization of segmentation results on peripheral nerve
dataset and BUSI. The qualitative results show that CEmb-SAM achieves the
best segmentation results with fewer missed and false detections in the segmen-
tation of both the breast lesions and peripheral nerves. The results demonstrate
that CEmb-SAM is more effective and robust in the segmentation through learn-
ing from domain shifts caused by heterogeneous datasets.

4 Conclusion

In this study, we propose CEmb-SAM which adapts the Segment Anything
Model to each dataset sub-group for joint learning from the entire heteroge-
neous datasets of ultrasound medical images. The proposed module for condi-
tional instance normalization was able to guide the model to effectively combine
image embeddings with subgroup conditions for both the BUSI and peripheral
nerve datasets. The proposed module helped the model deal with distribution
shifts among sub-groups. Experiments showed that CEmb-SAM achieved the
highest score in DSC and PA on both the public BUSI dataset and peripheral
nerve datasets. As future work, we plan to extend our work for improved domain
adaptation in which the model is robust and effective under higher degrees of
anatomical heterogeneity among datasets.
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