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Abstract. Domain generalization for Diabetic Retinopathy (DR) clas-
sification allows a model to adeptly classify retinal images from previ-
ously unseen domains with various imaging conditions and patient demo-
graphics, thereby enhancing its applicability in a wide range of clinical
environments. In this study, we explore the inherent capacity of vari-
ational autoencoders to disentangle the latent space of fundus images,
with an aim to obtain a more robust and adaptable domain-invariant
representation that effectively tackles the domain shift encountered in
DR datasets. Despite the simplicity of our approach, we explore the
efficacy of this classical method and demonstrate its ability to outper-
form contemporary state-of-the-art approaches for this task using pub-
licly available datasets. Our findings challenge the prevailing assumption
that highly sophisticated methods for DR classification are inherently
superior for domain generalization. This highlights the importance of
considering simple methods and adapting them to the challenging task
of generalizing medical images, rather than solely relying on advanced
techniques.
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1 Introduction

Diabetic Retinopathy (DR) is a complication of Diabetes Mellitus (DM) which is
characterized by impaired blood vessels in the eye due to elevated glucose levels,
leading to swelling, leakage of blood and fluids, and potential ocular damage [6].
With the global population infected with DM projected to reach approximately
700 million by 2045, DR is expected to persist as a prevalent complication of DM,
particularly in the Middle East and North Africa as well as the Western Pacific
regions [25]. In general, the diagnosis of DR is based on the presence of four
types of lesions, namely microaneurysms, hemorrhages, soft and hard exudates,
and thus the categorization of DR typically comprises five classes, namely no
DR, mild DR, moderate DR, severe DR, and proliferative DR.

The conventional method of diagnosing DR relies on manual examination of
retinal images by skilled ophthalmologists. However, this approach is known to
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involve time-intensive procedures, limited availability of trained professionals,
and is susceptible to human error [21,26]. Deep learning methods have emerged
as an effective solution for diagnosing DR, addressing the limitations associ-
ated with traditional approaches [4,27]. Despite the benefits offered by deep
learning models, a major challenge they face is the issue of domain shift [27],
which emanates from the oversimplified assumption of independence and iden-
tical distribution (i.i.d) between the training and testing data, leading to poor
performance when these models are applied to new data from related but unseen
distributions [7,12]. The variations in fundus image acquisition procedures and
the diverse populations affected by DR result in a substantial domain shift as
shown in Fig. 1, which greatly hinders the deployment of large-scale models since
a slight variation of the data-generating process often foresees a drastic reduction
in model performance [30].

Domain generalization (DG) is a line of research with the goal of handling
the domain shift problem [10] under minimal assumptions. It only relies on
multiple or seldom single source domain(s) to train a model that can general-
ize to data from unseen domains, whose distribution can be radically different
from source domains. To our knowledge, there exists a rather limited body of
literature specifically addressing the problem of domain generalization for DR
classification. Therefore, the investigation of DG for deep learning methods holds
significant relevance in enhancing the accuracy of DR diagnosis across the vari-
ous healthcare centers situated in different geographical locations.

In this paper, we propose our Variational Autoencoder for Domain Gener-
alization (VAE-DG), which effectively manipulates the power of classical varia-
tional autoencoders (VAEs) [17], whose optimally disentangled latent space [13]
enables the model to generalize well to unseen domains in DR classification by
effectively capturing essential shared information while selectively disregarding
domain-specific variations. Through the acquisition of disentangled represen-
tations that separate domain-specific and domain-invariant features, VAE-DG
significantly enhances the model’s ability to generalize across different domains,
leading to improved performance and robustness. Our main contributions in this
work are as follows:

1. We aim to inspire researchers to explore and leverage a wider spectrum of
techniques, particularly simpler methods, in their pursuit of effective solutions
for the challenging task of robustifying the DR classification problem.

2. To our knowledge, we are the first to explore the potential of harnessing VAEs
for learning cross-domain generalizable models for the Diabetic Retinopathy
classification task. Our extensive analysis reveals compelling evidence of its
superiority over the state-of-the-art techniques for the DG approaches in the
DR classification task.

3. We report our results using the training-domain validation criterion for model
selection, which is an appropriate and widely-adopted model selection method
for DG [10], thereby rectifying the existing work’s [5] important limitations.
To this end, we encourage future studies to conduct fair comparisons with
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our methodology, establishing a standard for evaluating advancements in DG
for DR classification task.

Fig. 1. A sample of fundus images from MESSIDOR-2 (top row) and EyePACS (bot-
tom row) datasets. For an untrained expert, it is challenging to sometimes visually
see the differences between the different grades, making the DR classification task
challenging. Each dataset exhibits a diverse range of variations in the presentation of
fundus images and furthermore, the provided sample from the two domains clearly
demonstrates a significant domain shift.

2 Related Works

DG for DR Classification: DRGen [5] could be considered as the first work
that tackles the DG challenge in DR classification, by combining the Stochastic
Weight Averaging Densely (SWAD) [9] and Fishr [24] techniques. SWAD is a
DG technique that promotes flatter minima and reduces gradient variance, while
Fishr is a regularization method that aligns gradient variances across different
source domains based on the relationship between gradient covariance, Hessian
of the loss, and Fisher information. While the work by [5] played a pivotal role
in bringing attention to this problem task, it should be noted that the results
presented by the authors were based on target-domain-validation, which does not
align with the established protocols of evaluating DG methods, as outlined by
the widely recognized DomainBed framework [10]. We rectify this limitation by
adopting the appropriate model selection strategy of source-domain validation,
in accordance with accepted practices in the field of DG research.

DG Using Feature Disentanglement: DG approaches based on feature dis-
entanglement aim to disentangle the feature representation into distinct com-
ponents, including a domain-shared or invariant feature and a domain-specific
feature [29]. Methods like [14,19] focus on disentangling multiple factors of vari-
ation, such as domain information, category information, or style; while this can
be beneficial for certain applications, this may lead to limited interpretability
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and difficulties in finding an optimal balance between the different disentangled
factors causing complex training procedures. In contrast, our method provides a
more holistic approach to feature disentanglement, and with appropriate regular-
ization techniques, it can achieve stable training and straightforward optimiza-
tion. [22,23,31] used fine-grained domain disentanglement, Unified Feature Dis-
entanglement Network, and semantic-variational disentanglement, respectively,
which introduces additional complexity to the model architecture, and often
leads to increased computational costs during training and inference. On the
contrary, our methodology which is both effective and simpler offers a more
direct and efficient approach.

Fig. 2. Overview of our proposed method VAE-DG for domain generalization with a
variational autoencoder by manipulating the disentangled fundus image representations
to achieve a domain generalization objective.

3 Method

Overview: In this section, we describe in detail on how we exploit conven-
tional variational autoencoders to tackle the challenge of domain generalization
by revisiting their operational principles and integrating them into our VAE-
DG approach. This showcases their effectiveness in disentangling intricate DR
datasets, within which we hypothesize that the optimally disentangled latent
space contains domain-shared features, thereby yielding a substantial perfor-
mance boost compared to existing domain generalization state-of-the-art meth-
ods. Our overall pipeline is shown in Fig. 2

Problem Settings: Domain generalization for DR classification is defined
within a framework that involves a collection of source domains denoted as
{Sd}N

d=1, where N is the number of source domains. Each source domain
Sd = {(xi

d, yi
d)}n

i=1 comprises i.i.d data points, sampled from a probability
distribution p(Xd, Yd). Yd is the target random variable corresponding to the
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progression of DR, while Xd is the input fundus image random variable, with
each data point (xi

d, yi
d) representing an observation from its respective domain.

The primary objective in domain generalization thus becomes acquiring a pre-
dictor that exhibits robust performance on an unseen target domain Td [10].

Proposed Method (VAE-DG): To achieve domain generalization using
our VAE-DG, we manipulate two variables (from the pooled source domains
{Sd}N

d=1) which are the input fundus image Xd and the latent variable Zd.
When we consider only singular data points, zi is drawn from the distribution
zi ∼ p(z) and xi is drawn from xi ∼ p(x|z), and their joint distribution is given
by p(x, z) = p(x|z)p(z). The main goal of this probabilistic model becomes an
inference problem of learning a distribution p(z|x) of some latent variables from
which we can then sample to generate new fundus images which we will denote
as x′. We know that this posterior distribution p(z|x) can be obtained using
Bayes Theorem [15].

However, we utilize a 256-dimensional fundus latent vector whose marginal
p(x) requires exponential computational time and hence becomes intractable,
therefore, instead of directly calculating pθ(z|x), we resort to Variational Infer-
ence [8] such that we approximate this posterior with a tractable distribution
qφ(z|x) which has a functional form. We use the Gaussian distribution as the
approximation such that the problem decomposes to learning the parameters
φ = (μ, σ2) instead of θ. By incorporating this Gaussian prior as a constraint
on the learned latent variables, our VAE-DG is coerced into disentangling the
underlying factors of variation in the data. We can then use Kullback-Leibler
(KL) divergence, to measure how well the approximation is close to the true
distribution. By minimizing the KL divergence, we simultaneously approximate
pθ(z|x) and the manipulation of the KL divergence expression (the complete
derivation of which is beyond the scope of this discussion but can be found in
[20]), we obtain Eq. 1:

log pθ(x) − DKL (qφ(z|x)||pθ(x)) = Ez [log pθ(x|z)] − DKL (qφ(z|x)||p(z)) (1)

where; Ez [log pθ(x|z)] − DKL (qφ(z|x)||pθ(z)) is known as the Evidence Lower
Bound (ELBO), the former term thus becomes the lower bound on the log evi-
dence. Subsequently, if we maximize the ELBO we thus indirectly minimize
DKL (qφ(z|x)||pθ(x)). Therefore, the objective function of a classical variational
autoencoder can be expressed as:

L(θ, φ;x) = −Eqφ(z|x) [log pθ(x|z)] + DKL (qφ(z|x)||p(z)) (2)

where the objective function is with respect to θ and φ which are the learnable
parameters of the generative and inference models, respectively [16,17].

For our VAE-DG we couple the classical variational autoencoder objective
L(θ, φ;x) with empirical risk minimization

∑n
i=1 �(f(xi), yi) [28] to ensure the

optimization of the original target task as illustrated in Eq. 3, while simultane-
ously manipulating the domain-invariant latent variables acquired from the prob-
abilistic encoder. Our final objective function consists of three distinct terms;
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the first term, denoted by −Eqφ(z|x) [log pθ(x|z)], serves as the reconstruction
term, which quantifies the difference between the original fundus image xi and
the reconstructed xi

′. The second term, βDKL (qφ(z|x)||p(z)), is the regularizer
term that minimizes the KL divergence between the encoder distribution qφ(z|x)
and the prior distribution p(z), thereby promoting the learned latent represen-
tation zi to follow the prior distribution. The strength of this regularization is
controlled by the hyperparameter β. The third term,

∑n
i=1 �(f(xi), yi), assesses

the difference between the true class labels yi and the predicted class labels
f(xi), subsequently, the parameter α serves as a weight for this term.

L = −Eqφ(z|x) [log pθ(x|z)] + βDKL (qφ(z|x)||p(z)) − α

n∑

i=1

�(f(xi), yi) (3)

To optimize L we use stochastic gradient descent with an incorporation of
the alternate optimization trick [17] since we need to learn the parameters for
both θ and φ.

3.1 Experiments

Datasets: We utilized four openly accessible datasets, namely EyePACS [3],
APTOS [1], Messidor [2], and Messidor-2 [2] which according to their sources
were obtained from different locations and populations, resulting in a notable
domain shift due to variations in instruments, conditions, settings, and environ-
mental contexts across datasets. Each dataset comprises of five distinct classes
with the exception of Messidor, which lacks class 5 images. The dataset distribu-
tion for these sources is 88702, 3657, 1200, and 1744, respectively. The original
images vary in size but are standardized to 224× 224 pixels. Due to the inherent
characteristics of real-world datasets, there exists an imbalance in class repre-
sentation across all datasets with class 0 being the most dominant and class 4
the rarest.

Implementation and Evaluation Criteria: Our choice for the encoder archi-
tecture involves the Imagenet pretrained ResNet-50 [11] as the backbone. This
is substantiated by existing literature [18], wherein the employment of transfer
learning, despite the domain gap, has been demonstrated to accelerate the pro-
cess of developing effective models even in medical imaging. We jointly trained
on three source domains, with 0.2 of the source domains as the validation set,
and finally evaluate on the unseen target domain using the best training-domain-
validation model, this way we truly evaluate the domain generalizability of our
model. The model is trained for 15,000 steps, with Adam optimizer, a learning
rate of 0.0001, 256 dimensional z latent vector, and a batch size of 66 from the
three source domains. To combat class imbalance we utilize resampling. β and
α are set as 50,000 to achieve a similar weighting with the magnitude of the
reconstruction term. Accuracy is used as the evaluation metric in line with the
established DG benchmarks [10]. All our experiments were run on 24 GB Quadro
RTX 6000 GPU. Our code is available at https://github.com/sharonchokuwa/
VAE-DG.

https://github.com/sharonchokuwa/VAE-DG
https://github.com/sharonchokuwa/VAE-DG
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Baselines: We compare our method with the naive Empirical Risk Minimiza-
tion (ERM) [10,28] and with state-of-the-art domain generalization methods for
this problem task mainly DRGen [5] and Fishr [24]. To ensure a fair compar-
ison, we adopt the same backbone and learning rate for all methods, except
for DRGen; where we reproduce it using the original proposed learning rate
of 0.0005, as the performance decreased when using 0.0001. The other method-
specific hyperparameters were kept constant as proposed in the respective works.

Table 1. Comparison between our proposed method with domain generalization meth-
ods for DR classification. Each experiment was repeated thrice, employing distinct
random seeds (0, 1, 2), and the average accuracy (Avg.) and corresponding standard
deviation are reported for each target domain.

Method Aptos EyePACS Messidor Messidor-2 Avg.

ERM 63.75 ± 5.5 70.22 ± 1.6 66.11 ± 0.8 67.38 ± 1.0 66.86 ± 2.2

DRGen 57.06 ± 0.9 72.52 ± 1.3 61.25 ± 4.2 49.16 ± 16.3 60.00 ± 5.7

Fishr 62.89 ± 5.0 71.92 ± 1.3 65.69 ± 1.1 63.54 ± 3.8 66.01 ± 2.8

VAE-DG 66.14 ± 1.1 72.74 ± 1.0 65.90 ± 0.7 67.67 ± 2.0 68.11 ± 1.2

Oracle Results

VAE-DG 68.54 ± 2.5 74.30 ± 0.2 66.39 ± 1.3 70.27 ± 1.2 69.87 ± 1.3

Results and Discussion: Table 1 indicates that VAE-DG exhibits the high-
est average accuracy of 68.11 ± 1.2%, which represents an 8.11% improvement
over DRGen, 2.1% over Fishr, and 1.3% over ERM. Furthermore, VAE-DG
demonstrates superior performance across most domains (APTOS, EyePACS,
and Messidor-2) and exhibits the lowest standard error of 1.2%, indicating its
relative robustness compared to the other methods. VAE-DG’s enhanced perfor-
mance solidifies the advantageous characteristics of this simpler approach whose
latent space facilitates the explicit disentangling of domain-specific and domain-
invariant features, ultimately improving target domain generalization. The oracle
results [10] of VAE-DG are presented as a reference for the upper bound of the
method, rather than for direct comparison, indicating that our proposed method
achieves a 1.8% reduction compared to the upper bound.

ERM outperforms more sophisticated methods (DRGen and Fishr) because
it is a simple approach and does not make strong assumptions about source-
target domain relationships; it focuses on optimizing performance on available
source domains and leveraging multiple domains to capture a wider range of
variations, showcasing its ability to generalize to unseen target domains (if the
domain shift is small [10]).

Overall, the relatively poor performances of DRGen and Fishr methods which
attain 60.00% and 66.01% average accuracies respectively can be attributed to
the fact that these methods often impose specific constraints or assumptions
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about the domain shift, which could limit their performance in scenarios that
deviate from those assumptions. The lack of robustness of such methods with
variations in the data is also vindicated by the large standard error (16.3%) for
DRGen’s Messidor-2 domain performance.

In contrast to the findings of [5], our extended analysis presented in Table 2
reveals a significant decline in model performance by 23.14% when incorpo-
rating SWAD, aligning with [9]’s observation that SWAD is not a perfect or
theoretically guaranteed solver for flat minima. We explored the influence of a
larger network architecture (ResNet-152) and the obtained results indicate that
a larger network architecture can improve image reconstruction quality but has
a negative impact on the primary DG objective, as evidenced by the 1.5% drop.

Table 2. Analysis and ablation studies. Average accuracy (Avg.) values represent the
mean accuracy obtained from three independent trials. The “Diff.” column indicates
the performance variation compared to our main experiments shown in Table 1. A
decrease in performance is denoted by (↓), while an increase is denoted by (↑).

APTOS EyePACS Messidor Messidor-2 Avg. Diff.

Extended Analysis

VAE-DG ResNet-152 61.45 ± 8.2 71.44 ± 3.1 65.94 ± 1.0 67.81 ± 2.6 66.66 ± 3.7 1.45(↓)

VAE-DG + SWAD 55.66 ± 8.8 73.52 ± 0.0 34.24 ± 12.2 16.48 ± 12.0 44.97 ± 8.3 23.14(↓)

ERM + SWAD 54.93 ± 0.6 71.35 ± 0.5 64.76 ± 0.7 58.48 ± 3.1 62.38 ± 1.2 4.5(↓)

Ablations Studies

Latent-dim 64 62.15 ± 3.1 73.80 ± 0.4 66.42 ± 2.1 68.98 ± 3.0 67.84 ± 2.2 0.27(↓)

Latent-dim 128 62.61 ± 3.5 73.64 ± 0.6 66.60 ± 1.9 66.09 ± 2.2 67.23 ± 2.0 0.88(↓)

Fixed latent space 63.87 ± 0.6 73.44 ± 0.8 66.46 ± 0.6 69.39 ± 0.8 68.29 ± 0.7 0.18(↑)

β, α = 10,000 64.38 ± 1.8 73.17 ± 0.5 65.42 ± 0.4 69.27 ± 4.0 68.06 ± 1.7 0.05(↓)

β, α = 100,000 62.50 ± 3.5 72.30 ± 1.6 66.56 ± 1.3 67.88 ± 1.0 67.31 ± 1.8 0.80(↓)

No Recon Loss 63.44 ± 3.9 70.62 ± 0.8 66.25 ± 0.8 65.21 ± 1.4 66.38 ± 1.7 1.73(↓)

No KL Divergence 68.29 ± 2.3 69.98 ± 4.3 66.60 ± 1.1 66.93 ± 1.6 67.95 ± 2.3 0.17(↓)

Ablation Studies: In order to comprehensively assess the individual contri-
butions of each component towards our DG objective, we conducted ablation
studies, as summarized in Table 2. Our investigation encompassed the following
aspects: (i) Latent-Dim: varying the size of the latent dimension [64, 128, 256],
(ii) Fixed latent space: evaluating the impact of a fixed latent dimension, (ii)
determining the impact of the weighting for the KL divergence and classification
terms (β and α), (iii) assessing the effect of the reconstruction term, and (iv)
examining the influence of the KL divergence term.

We noticed that a larger latent dimension of 256 leads to higher results,
potentially due to its ability to effectively bottleneck information while pre-
serving essential features. The performance difference between a fixed latent
vector and a randomly sampled one is not very large, although using a fixed
latent space reduces the standard error by nearly half, suggesting that randomly
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sampled vectors introduce additional variability that hinders the disentangle-
ment of domain-invariant features. Notably, removing the reconstruction and KL
divergence terms in the model’s objective leads to a decrease in performance,
emphasizing the importance of incorporating these regularizations. Furthermore,
experimentation with β and α values within the range of [10,000, 50,000, 100,000]
reveals that excessively high or low values are suboptimal.

4 Conclusion

In this paper, we explored the potential of classical variational autoencoders for
domain generalization in Diabetic Retinopathy classification. We demonstrate
that this simple approach provides effective results and outperforms contempo-
rary state-of-the-art methods. By strictly following the established evaluation
protocols of DG, we also addressed the important limitations in the evaluations
of the existing method. Our study encourages the medical imaging community
to consider simpler methods in order to realize robust models.
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