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Abstract. Promptable foundation models, particularly Segment Any-
thing Model (SAM) [3], have emerged as a promising alternative to
the traditional task-specific supervised learning for image segmentation.
However, many evaluation studies have found that their performance on
medical imaging modalities to be underwhelming compared to conven-
tional deep learning methods. In the world of large pre-trained language
and vision-language models, learning prompt from downstream tasks has
achieved considerable success in improving performance. In this work, we
propose a plug-and-play Prompt Optimization Technique for foundation
models like SAM (SAMPOT) that utilizes the downstream segmenta-
tion task to optimize the human-provided prompt to obtain improved
performance. We demonstrate the utility of SAMPOT on lung segmen-
tation in chest X-ray images and obtain an improvement on a significant
number of cases (∼ 75%) over human-provided initial prompts. We hope
this work will lead to further investigations in the nascent field of auto-
matic visual prompt-tuning.
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1 Introduction

The recent release of a foundation model for image segmentation called Segment
Anything (SAM) [3] has generated unprecedented excitement about the possibil-
ity of realizing artificial general intelligence (AGI) in the field of medical image
analysis. SAM is a task-agnostic promptable segmentation model trained on 1
billion masks. This has triggered the possibility of improved zero-shot segmen-
tation performance and obviate the necessity for specialized techniques across
medical imaging tasks [4].

Consequently, a number of studies [1,2,6] have evaluated the performance of
SAM on a plethora of medical imaging segmentation tasks, and have concluded
that while SAM is a promising first step, there exists a significant gap compared
to supervised learning algorithms on many datasets. The hypothesized reasons
include lack of medical imaging samples in the training database and peculiari-
ties associated with medical images (e.g., scan-cone in Ultrasound, 3D nature of
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CT/MR, large intensity variations in X-Ray and higher image resolution com-
pared to natural images).

This sub-optimal performance has prompted researchers to fine-tune the
models to medical imaging modalities using parameter-efficient techniques like
Low-rank adaptation (LoRA) [6,9] and Adapters [8]. However, given the size
of networks, fine-tuning these models also requires access to large scale medi-
cal image and label pairs. Obtaining such large scale datasets and availability of
heavy compute is beyond the scope of most small research organizations, thereby
limiting the adoption of SAM.

An alternate direction to improve the performance on downstream tasks is to
learn efficient prompts tailoring for the tasks. A number of works like CoOp [11],
CoCoOp [10] have demonstrated the benefit of learning prompts to adapt CLIP-
like vision-language models for downstream tasks. Prompt learning not only
improves performance over hand-crafted prompts but also reduces manual effort
and expertise required in designing the prompts. While these techniques have
been explored extensively in natural language processing and vision-language
community, their utilization for optimizing prompts for foundation segmentation
models has been conspicuously absent.

In this paper, we present a prompt learning method for segmentation foun-
dation models, and demonstrate it on the task of left-lung segmentation on chest
X-ray images. To demonstrate the challenges involved and motivate the need for
prompt learning, we compute the sensitivity of SAM’s output to the choice of
prompt’s spatial location.

Fig. 1. Heat-map of Dice values obtained by
placing the prompt at various locations in
the lung.

Figure 1 shows the overlay of a
chest X-ray image and the heat-map
of Dice values when the prompt is
placed at different locations of the
lung region. The large diversity of
Dice values (0.2 to 0.9) highlights
that given a click prompt inside the
lung region of an X-ray image, it is
plausible that another location pro-
vides a more accurate segmentation.

Since X-ray is a summative
modality, the intensity values under
the lung mask are a result of super-
imposition of soft tissue, ribs, car-
diac region, and occasional extrane-

ous objects such as PICC lines. Though visually the lung region may appear
equally dark in X-ray images to the user, it is not homogeneous, and its hetero-
geneity is further amplified by the presence of pathology.

1.1 Our Approach

To improve the segmentation performance in such confounding settings, we pro-
pose a prompt optimization technique (SAMPOT) that utilizes the knowledge of
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the downstream task to optimally locate the human-provided prompt to obtain
a better segmentation output. We design an unsupervised segmentation per-
formance scorer that generates a proxy for the supervised performance metric
like the Dice value. At inference, given a test image and prompt, we iteratively
maximize this task-based score to evolve the location of the prompt to pro-
duce superior results compared to utilizing initial prompt location provided by
user. Although we develop this method on SAM, SAMPOT can be used in a
plug-and-play fashion with any foundation segmentation model.

1.2 Contributions

1. We propose a plug-and-play prompt optimization technique, SAMPOT, for
any promptable segmentation algorithm which fine-tunes an input prompt.
To the best of our knowledge, this is the first instance of an automatic prompt
tuning strategy for foundation segmentation models.

2. We demonstrate the efficacy of SAMPOT on the task of segmenting lungs
in chest X-ray images and achieve segmentation gains on ∼ 75% of the test
images.

2 Methodology

We shall introduce a few relevant notations before presenting the method.

SAM Model: Let us denote the SAM under consideration by fSAM, a very large
deep neural network model that takes an image X ∈ R

N×N and a prompt p as
input to predict the segmentation mask ̂Y := fSAM(X,p) ∈ R

N×N .

Prompt: For segmentation foundation models such as SAM, a prompt can be
a point coordinate, bounding box, dense segmentation, or a text input. It is
typically accompanied by a label which indicates whether the prompt is in the
foreground (1) or otherwise (0). While SAM can simultaneously take a set of
heterogeneous prompts, in this work, we consider one single coordinate prompt
p = (x, y, c)ᵀ, x, y ∈ [N ] := {0, 1, · · · , N − 1}, c ∈ {0, 1}. We assume that
the prompt is provided by a human user at the start, and it always lies in the
foreground object of interest (c = 1). Therefore, without loss of generality, we
can consider p to be a two-component vector representing the 2D coordinates.

2.1 Prompt Optimization by Oracle Scoring

Our method is aimed at evolving the location of the prompt and arriving at
an optimal prompt p∗. Suppose we had access to the ground truth mask Ytest

for a given input image, we could simply compute the loss Ltask(̂Ytest, Ytest) and
choose a p that minimises the loss. However, as that is fallaciously self-fulfilling,
we propose to use an oracle O that acts as a surrogate to the true loss Ltask. The
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scorer takes the input image Xtest and the predicted mask ̂Ytest and produces a
score s. The scorer can be a pre-learnt (and fixed) neural network model that can
be used in conjunction with the segmentation model, enabling us to compute
the gradients of the score with respect to p. If the scorer is designed to be
positively correlated to the performance metric, we can then solve the following
maximization problem to achieve our objective:

p∗ := arg max
p

O(Xtest, ̂Ytest), where ̂Ytest := fSAM(Xtest,p). (1)

Note that the gradient of s is computed with respect to p and therefore only p
gets updated, while the weights of SAM fSAM and the scorer O are held fixed.

2.2 Learning to Score

The oracle O is expected to score the quality of segmentation blindly in the
absence of ground truth. To this end, we train a segmentation regressor which
learns to predict the Dice directly from the input image and the corresponding
predicted mask. This segmentation regressor is trained using a small dataset of
input images and ground truth masks. For every input image, several candidate
masks are synthetically generated by modifying the true segmentation mask,
and their corresponding Dice coefficients are computed. This extended set of
images, masks and Dice scores are then used to train the regressor. The details of
candidate mask generation and segmentation regressor are described in Sect. 3.2.
In general, segmentation quality score can be vector valued and along with the
described regressor, one can use adversarial loss [5], shape autoencoder [7], etc.

Fig. 2. Schematic of the SAMPOT. The spatial location of the user-provided prompt
is updated based on the gradients received from the segmentation score.

Figure 2 shows the schematic of the proposed SAMPOT approach for prompt
learning. Starting from an initial location and an input image, the prompt is
iteratively evolved by updating its spatial location using the gradient computed
from the segmentation score.
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3 Experiments and Results

3.1 Dataset Description

In this study, we tapped into a database of X-ray images available within our
institution, sourced through data partnerships from US, Africa, and European
populations. The datasets were acquired after receiving approval from the rel-
evant Institutional Review Boards. The lung boundaries on the X-ray images
were delineated by a team of experienced radiologists. X-ray images from 122
subjects were split into train and test subjects in our experimental setup. This
split was used for training and evaluation of the segmentation regressor only.
Note that the SAM model is pretrained and is fixed throughout the study. We
have evaluated the effectiveness of the prompt optimization technique on the
test split of the dataset, thereby ensuring that the results are not biased by the
regressor which has been optimized on the train split. The train cohort is further
divided into training and validation sets with images from 41 and 28 subjects
each. The test set has images from 53 subjects.

3.2 Segmentation Regressor

Data Preparation: We created several synthetic masks for every lung anno-
tation in the dataset and computed the Dice coefficient for these masks as the
ground truth segmentation score. We used the level-sets of ground truth anno-
tation to generate under- and over-segmented instances of the lung field as pre-
sented in Fig. 3.

Fig. 3. Figure shows (a) sample mask from the dataset, (b) computed distance map,
synthetically generated (c) over-segmented mask and (d) sample under-segmented. The
dice coefficient for the over-segmented mask is 0.57 and that for under-segmented mask
is 0.61.

Additionally, we also included the lung mask predicted by the SAM when
given a single positive prompt and the corresponding Dice coefficient. In every
image, the lung field was divided into three horizontal bands and the centroid
of these regions were chosen as a prompt. We also chose random points outside
the three bands, with an offset of 5 pixels as prompts for SAM. Therefore, we
obtained predictions corresponding to 6 separate prompts for each image. Thus
we had a total of 901 images in the train set, 600 in the val set and 1205 in the
test set for learning the regressor.
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Training Parameters and Network Architecture: The regressor network
consisted of five 2D convolution layers interleaved with Batch normalization and
leaky ReLU activation, and sigmoid activation for the final layer. The network
was trained for 200 epochs with a batch size of 32 using Adam optimizer and
mean squared error (MSE) loss. A constant learning rate of 0.001 was used. We
set the stopping criterion as minimal loss on the validation set.

3.3 Prompt Optimization

Under the mild assumption that a human end-user would choose a prompt
located centrally within the region of interest, we chose the centroid of the
lung mask as the initial prompt to mimic the human user. Subsequently, the
optimization of the prompt location was carried out using Adam optimizer. The
step size for the prompt update was heuristically chosen as 10 and the weight
decay was set to zero. To ensure that the input to the regressor (SAM predic-
tion) is closer to a binary mask, we employed sigmoid activation a with steeper
slope. Furthermore, we chose the optimal prompt as the one that maximized the
output of the regressor. We have used ViT-B SAM in our experiments.

3.4 Results

Evaluation of Segmentation Regressor: Figure 4(a) is the scatterplot of
regressor outputs against true Dice coefficients for all the samples in the test
set, including the synthetically generated masks as well as SAM predictions.
The high correlation coefficient (0.88) shows that the regressor output can serve
as a proxy for Dice coefficient of segmented mask. We also present a similar plot
for SAM confidence scores for segmentations when prompted at the centroid
of the lung mask. We observe that the confidence scores of SAM have a lower
correlation coefficient of 0.67 with Dice compared to our Segmentation Regressor.

Evaluation of Prompt Optimization: An illustration of the prompt opti-
mization process for a sample image, starting from the initial location to the
optimal location on the image is presented in Fig. 5. We see how the quality of
the predicted lung field mask, measured using Dice coefficient, improves as the
prompt traverses through the optimization trajectory.

Figure 6 summarizes the overall performance of the proposed SAMPOT on
the test dataset. The scatterplot on the left (initial Dice vs Dice after evolution)
shows that 38 of 53 images have improved Dice (points above unit slope line)
after prompt evolution. Of them, four images have significant improvements. The
scatter plot on the right is a blown-up version of a portion of the scatter plot
on the left. The images on the top row contain specific examples where the Dice
improved after evolution. On the bottom row, the images contain examples of
underperforming cases. For the first two under-performing cases displayed, the
segmentation masks after evolution are outside the lung region, even though the
initial masks were in the right places. Such catastrophic cases can be handled
by employing additional safeguard logic.
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Fig. 4. Comparison of (a) Dice against regressor output for unseen synthetically gen-
erated masks (1205 samples); on the test set (53 samples) (b) Dice against SAM con-
fidence score and (c) Dice against regressor output when prompts are placed at the
centroid of the lung mask. The correlation coefficient for the regressor on unseen syn-
thetically generated masks is 0.88. On test samples, the correlation coefficient for the
regressor is 0.90 in comparison with 0.67 for SAM.

Fig. 5. [Best viewed in color] Figure illustrates the trajectory of the prompt during the
optimization process. The initial prompt is set at the centroid of the ground truth lung
field annotation. Snapshots of the predicted masks at select locations on the prompt
trajectory along with the computed dice score are also shown.
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Fig. 6. [Best viewed in color] Scatter plot of Dice coefficients resulting from initial
prompts and the final evolved prompts on the test set. 38 of 53 cases have shown
improvement in Dice after evolving. Four of them have significant Dice gains. The
scatter plot on the right is the blown-up area on the top-right of the scatter plot on the
left. The top row shows images that have significantly gained from prompt evolution.
On the bottom are some cases which under-performs upon prompt evolution.

4 Discussion

The direct application of foundation models like SAM has shown sub-par per-
formance on a number of different medical image segmentation tasks. Given
the relatively modest sizes of datasets available for downstream medical imag-
ing tasks, it may be prohibitive to fine-tune a very large model like SAM. The
performance of SAM on the previously unseen problem of lung segmentation
on X-ray images is elevated by SAMPOT indicating the possibility of deploy-
ing SAM on medical image segmentation problems even with few images. While
this work focused only on prompt evolution, the idea of adapting the input to
improve the performance of a foundation model is very generic. One can adapt
the input image itself, along with the prompt, to meet the desired objective. A
future extension to this work can be adaptation to cases where multiple het-
erogeneous prompts such as bounding boxes, text inputs etc. are optimized. An
extensive evaluation of SAMPOT on a multitude of datasets/use-cases will be
beneficial as well.

5 Conclusions

On medical images, we observed that the spatial location of the prompt for
a general purpose foundation model (SAM) affects the accuracy. Taking a cue
from the NLP community, we have presented SAMPOT, a method to optimize
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the prompt for a foundation model by altering the spatial location to obtain
superior results on downstream tasks. We have demonstrated this method on
lung segmentation of chest X-rays and obtained improvement on a significant
number of cases (∼ 75%). We hope that our work offers possibilities of prompt-
learning for extracting maximal value from general purpose foundation models
trained on natural images on domain-specific downstream tasks in medical image
analysis.
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