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Abstract. Histology images are the golden standard for medical diag-
nostic analysis. However, 2D images can lose some critical information,
such as the spatial structure of blood vessels. Therefore, it is necessary
to perform 3D reconstruction for the histology images. At the same time,
due to the differences between institutions and hospitals, a general 3D
reconstruction method is needed. In this work, we propose a 3D recon-
struction pipeline that is compatible with Whole Slide Imaging (WSI)
and can also be applied to other imaging modalities such as CT images,
MRI images, and immunohistochemistry images. Through semantic seg-
mentation, point cloud construction and registration, and 3D rendering,
we can reconstruct serialized images into 3D models. By optimizing the
pipeline workflow, we can significantly reduce the computation workload
required for the 3D reconstruction of high-resolution images and thus
save time. In clinical practice, our method helps pathologists triage and
evaluate tumor tissues with real-time 3D visualization.
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1 Introduction

Histology images are golden standards for medical diagnosis and analysis, as they
contain key information such as the cause and severity of the diseases. With the
advancement of deep learning technology, computers are now capable of being
applied in the analysis of medical images and in extracting key information.
However, traditional 2D images can lose a lot of important information, such
as the vascular structure in 3D space. Moreover, due to different task require-
ments and variations such as machine specifications among hospitals and institu-
tions, there is a need to develop a general 3D reconstruction system. Current 3D
reconstruction tasks, especially those involving high-resolution images, require
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extensive computational resources and are extremely time-consuming, with the
registration and semantic segmentation tasks as the bottleneck of the real-time
visualization for gigabyte WSIs [1]. In this work, we propose a computational-
efficient method to reconstruct the pathology images for WSI 3D reconstruction
using point clouds, a discrete set of data points in the 3D space. The process
comprises semantic segmentation, point cloud sampling, point cloud registration,
and 3D rendering. This process outperforms the existing reconstruction process
as it combines the sampling and modeling processes by constructing point clouds.
Subsequently, registration is performed, greatly reducing the computational and
time costs required for the process.

2 Related Works

Many approaches have recently been proposed recently for 3D reconstruction.
For example, [2] developed techniques to inspect the surface of organs by recon-
struction from endoscope videos. A pipeline named CODA [1] perceives the spa-
tial distribution of tumors such as the pancreas and liver. ITA3D reconstructs
tissues through non-destructive 3D pathology images [3]. Comparative studies
have published to reconstruct 3D organs in the disciplines of ultrasound [4,5],
radiology [6–8] and orthodontic [9,10]. Notably, due to factors such as the qual-
ity of the loaded glass slides and manual operation during the preparation of
pathological sections, the three-dimensional reconstruction must perform image
registration, which makes the three-dimensional reconstruction method based
on CT images, as in [11], unsuitable for direct application to WSI. Despite
many AI-powered applications, accuracy and performance are still the dominant
challenges for real-time diagnoses. In the setting of gigabyte pathology images,
cellular-level segmentation and image registration are required to be produced
in a short time to keep up with the high-throughput scanners and minimize the
waiting time for the final confirmation by pathologists.

3 Method

WSI-Level Tissue Segmentation. The medical transformer, namely gated
axial-attention transformer [12,13] employs a position-sensitive axial-attention
mechanism, with a shallow global branch and a deep local branch incorporated.

Inspired by this design, we trained a network with two branches of gated-
axial transformer and a CNN-transformer hybrid architecture as the backbone to
extract global and local information. The segmentation ground truths are derived
from 2D WSI segmentation maps labeled manually by QuPath [14]. Then the
2D WSIs are cropped to image patches and curated to feed the segmentation
network, as patch-based deep learning networks are currently the mainstream
structures in the discipline of histology image analysis. The raw images and
paired segmentation masks are cropped to 128 × 128 pixel image patches for
input. The network consists of two branches. The gated-axial transformer aims
to learn global information by capturing feature correlations. The other branch
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Fig. 1. The 3D visualization pipeline of tumor tissue. For the visualization of tumor
volume, the raw WSIs are firstly decoupled to image patches and processed by the
binary segmentation network, with the gated axial transformer as the encoder and CNN
as the decoder. Then the patches are rejoined to form segmentation maps representing
tumor (positive) area. The color convention is applied to WSI binary image to visualize
the entire tissue volume. (a) and (b) stand for one layer of point clouds generated from
the binary images to represent the density of the tumor (red) and tissue (blue). (c)
and (d) are the 3D visualization tissue volume generated from the representative point
clouds. (Color figure online)

of CNN-transformer hybrid architecture employs the transformer structure as
the encoder and the CNN as the decoder, where the latter is deepened with
multiple layers to allow a clear separation of tumor tissue (positive) and dense
tissue (negative), as shown in Fig. 1. After the binary segmentation, the output
patches are rejoined to form WSI for the later tumor visualization.

Point Clouds. Point clouds are applied for 3D modeling objects such as build-
ings [15] and human bodies [11,16,17]. This research generates the layered point
clouds with down-sampled semantic segmentation results. The pixels of tumor
(positive) masks are appended to the layered point cloud. The x and y coordi-
nates of the points are generated from the segmented images, and the z coor-
dinate is the interpolation of the stacked WSI. The computed point clouds are
then reconstructed at the three dimensions for WSI registration. Compared with
another commonly used 3D reconstruction tool, voxel-based 3D pixel represen-
tation using a 3D 0/1 matrix, the point cloud is more suitable for modeling
high-resolution images with enormous data volumes thanks to its sparser data.
In the current task, point cloud reconstruction also serves the function of extract-
ing feature points. If registering the WSI, even when selecting only a few feature
points and calculating simple translation and rotational coordinates, the entire
WSI needs to be transformed accordingly, and the model needs to be re-sampled.
By building the model first and then applying the transformation to it, only the
coordinates of the points in the three-dimensional space need to be transformed,
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and a model that can be used for subsequent processing can be obtained directly
(Fig. 2).

Fig. 2. An example of rendering a point cloud into a model, where darker colors indicate
higher point density, which corresponds to potentially tumor tissue in the WSI for this
task. Figure a and b correspond to model images generated from two serialized WSI
sequences respectively.

Axial Registration. Current registration methods employ Radon transform
and cross-correlation, where WSIs are cropped and applied with rigid and elastic
registration [1]. This computation workload is often massive and also redundant
for unimportant regions. Moreover, elastic segmentation may cause image dis-
tortion and inaccuracy in segmentation. By contrast, we optimize the overall
framework by bringing forward the segmentation and the point cloud generation
before the registration.

Specifically, we incorporate the ICP (Iterative Closest Point) strategy to
register for the layered point clouds generated from the segmentation output.
As each point cloud for registration uses exclusively one layer, we apply point-
to-point strategy [18] without employing the normal vectors. A brief review of
the point-to-point strategy is formulated as follows:

Pfix = RPmov + T (1)

Pfix and Pmov are the fixed and moving point clouds. R and T are the rotation
matrix and translation vector.

Vi,fix = Pi,fix − Cfix (2)

Vi,mov = Pi,mov − Cmov (3)

Pi,fix and Pi,mov (1 ≤ i ≤ N) are the paired-points in the point cloud; Cfix

and Cmov are the center of the two point clouds; and Vi,fix and Vi,mov are the
vectors from point to the center.

L (R, T ) =
1
N

N∑

i=1

||Pi,fix − RPi,mov − T ||2 (4)
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N is the number of points in Pmov, and L is the loss of the registration.
Expand the equation and eliminate terms with zero means, Vi,fix and Vi,mov

particularly and we obtain the following formula to calculate the final values of
R and T in order to minimize the loss value.

R∗ = arg min(
1

N − 1

N−1∑

i=1

||Vi,fix − RVi,mov||2) (5)

T ∗ = Cfix − R∗Cmov (6)

where R∗ and T ∗ are the computed rotation matrix and translation vector with
minimized loss. The minimum value is achieved through SVD or nonlinear opti-
mization.

Fig. 3. An example of registration processing. The fixed WSI (pink point clouds) and
the corresponding moving WSI (green) are computed in the current iteration, and the
registration is iteratively performed from bottom (grey) to top (silver). Our selective
algorithm pinpoints the essential points (blue) for matrix computation for the ICP
translation speedup. (Color figure online)

Innovatively, to speed up the processing, we select the representative layered
point cloud, determined by the spatial density and 2D coordinate, to apply the
transformation to the entire layer. In each iteration from bottom to top, we select
horizontal and vertical band-shaped areas in the moving point cloud, as shown
in Fig. 3. For a consistent spatial presentation of the tumor tissue, interpolation
is required upon the different resolutions of x, y, z. In this case study, the z value
of the points are multiplied by a factor of 4 to map with the x, y resolution. The
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point cloud is interpolated based on the nearest layered point cloud. The layered
point clouds are then re-registered iteratively in the same manner.

Algorithm 1: The axial registration

Data: WSI image stack I = {x(i)}ni=1, band boundary
(umin, umax, vmin, vmax), max correspondence point pair distance
for point to point ICP dmax

Result: PCD(the point cloud generated from the axial-registered layered
images)

1 Set band area:
2 Ψ = {(u, v, z)‖ umin < u < umax & vmin < v < vmax}
3 Initialization:
4 PCD, F, M ← ∅;
5 for each image x(i) ∈ I do
6 if i == 1 then
7 generate layered point cloud l(i) with x(i);
8 store l(i);
9 continue;

10 end
11 F ← l(i−1);
12 generate l(i) with x(i);
13 l

′ ← l(i);
14 M ← l

′ ∩ Ψ ;
15 Matrix calculation:
16 R, T ← ICP(M,F, dmax);
17 l

′ ← R l
′
+ T ;

18 Reset the z value for the moving layer:
19 l

′
.z ← i ;

20 l(i) ← l
′
;

21 end
22 Generate the whole point cloud:
23 PCD ← ∑n

i=1 l(i);

4 Implementation

We employ Open3D library [19] to generate point clouds to visualize spatial
tissue distribution. The model presents point arrays with x, y, z coordinates,
and the functions models produce color point clouds and 3D meshes. The 3D
visualization allows the demonstration of comprehensive information interpreted
by deep learning structures, including the spatial distribution of tumors and
tissues.
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5 Quantitative Results

Segmentation. The loss and training time of the segmentation network are
demonstrated in Fig. 4. WSIs are cropped to 128 × 128 image patches to feed
the network, then rejoined to generate the layered point clouds, as shown in the
segmentation image in Fig. 3.

Fig. 4. The loss and time are reported every fifty epochs to train the segmentation
network. Observably, our model converges steadily in the loss function. A couple of
seconds are required to obtain a reliable segmentation network.

Registration Speedup. Two metrics of speedup and accuracy evaluate the
registration performance, and the latter is measured by Root Mean Square Error
(RMSE) of the point pairs. For the axial registration example demonstrated in
Fig. 5, the representative points are sampled in x value from 2,250 to 2,750, or
y value from 6,750 to 7,250 at the bottom layer, about 1/3 of the total points
employed for registration. Overall, the axial registration is with smaller RMSE
on average, as shown in Fig. 5.

This pipeline attempts a significant decrease in registration computation,
with 1.54 s per layer required, which is about 10.94% the time required for the
regular ICP registration [18], and is a tremendous advantage compared with
WSI-level registration [1] taking about 40 min per image. Overall, processing the
WSI stack registration workflow takes only several minutes on average, whereas
the state-of-the-art approach requires a couple of hours [1], as shown in Fig. 5.
Consequently, the registration processing will not be the bottleneck of the 3D
tissue reconstruction.
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Fig. 5. The experimental results of the two datasets. The left column shows the RMSE-
frequency histogram and the right column shows the time-frequency histogram. It is
obvious that our method outperforms in both speed and accuracy, with lower average
value for each standard.

6 Conclusion and Future Work

In this task, we have optimized and integrated existing 3D reconstruction
pipelines for WSI (Whole Slide Imaging) and CT (Computed Tomography),
resulting in a more efficient pipeline for 3D reconstruction of high-resolution
images. By utilizing point cloud merging and assisted registration processes,
this pipeline significantly reduces redundant computations, decreases data vol-
ume in comparison to voxel methods, and minimizes time consumption during
the registration process. While this pipeline is specifically designed for the unique
requirements of Whole Slide Imaging (WSI), it also has the potential to adapt to
CT and MRI images through semantic segmentation and point cloud sampling,
3D rendering, and omitting the registration. The 3D reconstruction section in
[11,20,21] also utilized a similar method of acquiring layered images, stacking
and aligning them to generate a 3D model. Although there were some differences
in the specific implementation, it also demonstrated that our method theoret-
ically could be applied to the 3D reconstruction of other medical images, such
as immunohistochemistry images. Therefore, as long as there are appropriate
training models and data available, this pipeline can be adaptable to 3D recon-
struction tasks for different types of images and tissues.
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