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Abstract. Semantic segmentations of pathological entities have crucial
clinical value in computational pathology workflows. Foundation mod-
els, such as the Segment Anything Model (SAM), have been recently
proposed for universal use in segmentation tasks. SAM shows remark-
able promise in instance segmentation on natural images. However, the
applicability of SAM to computational pathology tasks is limited due
to the following factors: (1) lack of comprehensive pathology datasets
used in SAM training and (2) the design of SAM is not inherently opti-
mized for semantic segmentation tasks. In this work, we adapt SAM
for semantic segmentation by first introducing trainable class prompts,
followed by further enhancements through the incorporation of a pathol-
ogy encoder, specifically a pathology foundation model. Our framework,
SAM-Path enhances SAM’s ability to conduct semantic segmentation
in digital pathology without human input prompts. Through exten-
sive experiments on two public pathology datasets, the BCSS and the
CRAG datasets, we demonstrate that the fine-tuning with trainable class
prompts outperforms vanilla SAM with manual prompts by 27.52% in
Dice score and 71.63% in IOU. On these two datasets, the proposed addi-
tional pathology foundation model further achieves a relative improve-
ment of 5.07% to 5.12% in Dice score and 4.50% to 8.48% in IOU.
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1 Introduction

Digital pathology has revolutionized histopathological analysis by leveraging
sophisticated computational techniques to augment disease diagnosis and prog-
nosis [6,16]. A critical aspect of digital pathology is semantic segmentation,
which entails dividing images into discrete regions corresponding to various tis-
sue structures, cell types, or subcellular components [12,17]. Accurate and effi-
cient semantic segmentation is essential for numerous applications, such as tumor
detection, grading, and prognostication, in addition to the examination of tissue
architecture and cellular interactions [4,13–15]. As a result, the development and
optimization of robust segmentation algorithms hold significant importance for
the ongoing advancement of digital pathology [8,10,20].

The AI research community is currently experiencing a significant revolution
in the development of large foundation models. Among the latest advancements
in computer vision is the Segment Anything Model (SAM), which serves as a
universal segmentation model [9]. SAM is pretrained on a dataset containing
over 1 billion masks across 11 million images. The model is designed to seg-
ment objects using various human input prompts, such as dots, bounding boxes,
or text. SAM’s evaluation highlights its remarkable zero-shot performance, fre-
quently competing with or even surpassing previous fully supervised models
across diverse tasks. Considering these capabilities, SAM has the potential to
become a valuable tool for enhancing segmentation in digital pathology.

Although SAM has demonstrated considerable potential in computer vision,
its direct applicability to digital pathology has two major limitations: 1) The
basic design of SAM involves manually inputting prompts, or densely sampled
points, to segment instances while it does not have any component for seman-
tic classification. Consequently, it does not intrinsically facilitate semantic seg-
mentation, a crucial component in digital pathology that enables the identifica-
tion and differentiation of various tissue structures, cell types, and sub-cellular
components. 2) The training set of SAM lacks diverse pathology images. This
hinders SAM’s capacity to effectively address digital pathology tasks without
additional enhancements. Deng et al. confirm that the zero-shot SAM does not
achieve satisfactory performance in digital pathology tasks, even with 20 prompts
(clicks/boxes) per image [3].

In this work, we adpat vanilla SAM for semantic segmentation tasks in com-
putational pathology. Our proposed adaptation involves the incorporation of
trainable class prompts, which act as cues for the targeted class of interest. The
performance is further enhanced by introducing a pathology foundation model as
an additional feature encoder, thereby incorporating domain-specific knowledge.
The proposed method enables SAM to perform semantic segmentation without
the need for human input prompts. Our primary contributions are summarized
as follows:
1. The introduction of a novel trainable prompt approach, enabling SAM to

conduct multi-class semantic segmentation.
2. The introduction of a pathology foundation model as an additional pathology

encoder to provide domain-specific information.
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Fig. 1. Overview of SAM-Path. A pathology encoder Fp(·) is added in parallel with the
vanilla SAM image encoder Fs(·) to provide more domain knowledge. The concatenated
features from both the SAM image encoder and the pathology encoder are then passed
to a dimensionality reduction module R(·). For mask prediction, we use class prompts P
consisting of k learnable prompt tokens, in which each token prompts the mask decoder
to predict the mask ŷi of class i.

Through experimentation on two public pathology datasets, BCSS and CRAG,
we demonstrate the superiority of our method over vanilla SAM. Here vanilla
SAM refers to the classic SAM method with manual dot prompts or densely sam-
pled dot prompts and some post-processing. On the CRAG dataset, the proposed
trainable prompts achieve a relative improvement of 27.52% in Dice score and
71.63% in IOU compared to the vanilla SAM with manual prompts. We also
demonstrate the benefit of the extra pathology foundation model, which leads
to a further relative improvement of 5.07% to 5.12% in Dice score and 4.50% to
8.48% in IOU. Note that our goal is not to achieve SOTA performance on these
datasets but to adapt SAM to semantic segmentation in digital pathology and
boost its performance. To the best of our knowledge, we are the first to adapt
SAM for semantic segmentation tasks in digital pathology without the need of
manual prompts. By leveraging the power of SAM, pathology foundation models,
and our innovative fine-tuning scheme, we aim to advance digital pathology seg-
mentation and contribute to the ongoing development of AI-assisted diagnostic
tools. Our code is available at https://github.com/cvlab-stonybrook/SAMPath.

2 Method

As shown in Fig. 1, our method consist of four modules: a SAM image encoder
Fs(·) and a SAM mask decoder G(·) inspired from the vanilla SAM, a pathology
encoder to extract domain-specific features Fp(·), and a dimensionality reduction
module R(·). We discard the prompt encoder in the vanilla SAM because of the
manually labeled prompts are not available in our segmentation tasks. Formally,
given an input image x, our task is to predict its corresponding segmentation
map y with the same resolution as x. Each pixel in y belongs to one of k prede-
fined classes. We convert y into k segmentation masks {y1, y2, . . . , yk}, where yi
represents the segmentation mask of class i.

https://github.com/cvlab-stonybrook/SAMPath
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2.1 Pathology Encoder

The vanilla SAM uses a Vision Transformer (ViT) network pretrained on mostly
natural images as the image encoder and thus its generated features lack pathol-
ogy specific information. In our study, we use an extra pathology encoder to
provide domain specific information. In this study, we use a pathology founda-
tion model, the first stage ViT-Small of the HIPT model [2] which is pretrained
on the TCGA Pan-cancer dataset [18]. As shown in Fig. 1, input image x is fed
into both the vanilla SAM image encoder Fs(·) and the pathology encoder Fp(·).
The output features are then concatenated as

h = [Fs(x), Fp(x)]. (1)

The vanilla SAM contains the dimensionality reduction module within its image
encoder, but as the dimensionality of output features h is now increased and not
capable with decoder, we move this module R(·) after concatenation and adjust
its input dimensionality accordingly.

2.2 Class Prompts

To enable the mask decoder G(·) to conduct semantic segmentation without
manually inputting prompts, we use the trainable prompt token [7,19]. As shown
in Fig. 1, for a segmentation task with k classes, we provide a set of class prompts.
It consists of k trainable tokens P = {pi|i = 1, 2, . . . , k}, where pi is the class
prompt of class i. Each of these class prompts pi serve as the prompt to the mask
decoder that it should segment class i. Different from the manually annotated
dot prompts in the vanilla SAM, our class prompts are trainable and thus do
not require human labelling.

For a class prompt pi, the mask decoder, like that in the vanilla SAM, pro-
duces a predicted segmentation map ŷi of class i and a IOU (Intersection over
Union) prediction ˆioui that predicts the IOU of the predicted segmentation map
and the ground truth yi. The prediction is formulated as follows:

G(h256,P) = {< ˆioui, ŷi>|i = 1, 2, . . . , k} (2)

Note that we conduct an extra softmax on all yi for better performance.

2.3 Optimization

The vanilla SAM uses a combination of Dice loss, focal loss and the IOU loss
(MSE loss on IOU predictions). We adapt their loss as follows:

L =
k∑

i=1

[(1 − α)Ldice(ŷi, yi) + αLfocal(ŷi, yi) + βLmse( ˆioui, IOU(ŷi, yi))] (3)

where α ∈ [0, 1] and β are weight hyper-parameters. Ldice represents the Dice
loss function, Lfocal represents the focal loss function and Lmse represents the
Mean Squared Error (MSE) loss function. We update parameters in the mask
decoder G(·), class prompts P and the dimensionality reduction module R(·) and
keep the SAM image encoder Fs(·) and the pathology encoder Fp(·) frozen.
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Table 1. Quantitative results of segmentation on the BCSS and CRAG datasests.

Dataset BCSS CRAG
Metric Dice IOU Dice IOU

Vanilla SAM /a / 0.5245b 0.3555b

Vanilla SAM with post-processing /a / 0.6598 0.4924
Fine-tuned SAM (w.o. Fp) 0.7562 0.6080 0.8414 0.8451
SAM-Path w.o Fs 0.7813 0.6411 0.8191 0.8252
SAM-Path 0.7949 0.6596 0.8841 0.8831

a The vanilla SAM does not work on the BCSS dataset, as it cannot assign
semantic labels to the multi-class segmented objects in this dataset.
b We assume all the objects that the vanilla SAM segmented are glands.

3 Experiments

3.1 Dataset

In our experiments, we use the BCSS [1] and CRAG [5] datasets for model
evaluation. For both datsets, we use their official training and test splits and
further split 20% of the training data into an explicit validation set.
BCSS: The Breast Cancer Semantic Segmentation (BCSS) dataset [1] has over
20,000 semantic segmentation annotations of tissue regions sampled from 151
H&E stained breast cancer images at 40× magnification from TCGA-BRCA [11].
The annotations include 21 classes, we use the major 4 classes: Tumor, Stroma,
Inflammatory and Necrosis. The rest are grouped into the ‘others’ class.
CRAG: The Colorectal adenocarcinoma gland (CRAG) dataset [5] has 213
images of the size ≈1536 × 1536 sampled from 38 H&E whole slide images
(WSIs) at 20× magnification. The annotations include the instance-level seg-
mentation masks of the adenocarcinoma and benign glands in colon cancer. In
our experiments, we convert the instance-level masks to semantics masks.

3.2 Results

For both datasets, we use the Dice score and Inter-section Over Union (IOU)
as the main evaluation metrics. Implementation details and hyper-parameters
are provided in the supplementary material. We also show the comparison of
average prediction time in supplementary Table 1.

Evaluation of the Overall Performance. We mainly compare the proposed
method with four baselines: 1) the vanilla SAM, i.e., SAM provided with manual
dot prompts of each instance, 2) the vanilla SAM with post-processing, i.e., fil-
tering out from the vanilla SAM output any instance occupying more than half
of the image; this is because SAM occasionally erroneously segments the entire
image as a single instance, 3) Fine-tuned SAM utilizing our class prompts, equiv-
alent to SAM-Path without the pathology encoder Fp, and 4) SAM-Path without
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Fig. 2. Qualitative analysis on the CRAG dataset. PP represents post-processing that
filters out instances occupying more than half of the image. For vanilla SAM, we provide
a dot prompt (black asterisks) for each gland instance and assume all the segmented
instances are glands. Our method performs better than the baselines.

the SAM image encoder Fs. Note that the original SAM lacks the capacity to
predict semantics; we treat all segmented instances as glands within the context
of the CRAG dataset.

As indicated in Table 1, the post-processing step enhances the performance
of the original SAM, though the performance remains suboptimal. Compared
with the vanilla SAM with post-processing, the fine-tuned SAM on the CRAG
dataset achieves a relative improvement of 27.52% in Dice score and 71.63% in
IOU, demonstrating the significant enhancement resulting from our fine-tuning
scheme. The addition of the pathology encoder Fp (resulting in our proposed
SAM-Path) leads to further improvements. Compared with the fine-tuned SAM
without Fp, our method achieves a relative improvement of 5.12% in Dice score
and 8.48% in IOU on the BCSS dataset, and 5.07% in Dice score and 4.50% in
IOU on the CRAG dataset. These results underscore the value of incorporating
domain-specific information from the pathology encoder to boost the perfor-
mance of SAM in digital pathology tasks.
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Fig. 3. Qualitative analysis on the BCSS dataset. The other class “others” and unla-
beled regions are not colored. For the vanilla SAM, different colors represent different
instances without any semantic meaning. Our method performs better than the base-
lines.

Also, when the SAM image encoder Fs is excluded, the BCSS dataset shows
a relative decrease in performance by 1.71% in Dice score and 2.80% in IOU. For
the CRAG dataset, the performance decline is more substantial, with a relative
drop by 7.35% in Dice score and 6.56% in IOU. This suggests that the pathol-
ogy segmentation can benefit from pre-taining of millions of natural images.
Intriguingly, Table 1 reveals that SAM-Path without the pathology encoder (line
3) outperforms SAM-Path without the SAM encoder (line 4) on the CRAG
dataset. However, the inverse is true for the BCSS dataset. This discrepancy
is likely attributed to the fact that BCSS dataset segmentation involves multi-
class semantic segmentation and hence benefits more from a domain-specific
encoder, in contrast to the single semantic class of the CRAG dataset.

Qualitative Analysis. To qualitatively compare the performance of our
method against others, we visualize the segmentation masks. In Fig. 2, we com-
pare our method with vanilla SAM in which the dot prompts for each gland
are provided (shown in black asterisks). Without fine-tuning, SAM lacks sig-
nificant knowledge about the semantics in the pathology images. It frequently
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segments the entire image as a single object (these instances are filtered out in
the figure), or segments the white region within the gland as an object. However,
our class prompts allow us to fine-tune SAM, thereby enabling the learning of
semantic information from the training data. This leads to substantial improve-
ment in performance. Also, the visualizations of vanilla SAM and vanilla SAM
with post-processing are illustrated in Supplementary Fig. 1. Figure 3 further
illustrates that in the BCSS dataset, our method with the pathology encoder
outperforms its counterpart that lacks the pathology encoder. This is particu-
larly evident in distinguishing between semantic classes like stroma and necrosis.
For the vanilla SAM shown in Fig. 3, since the BCSS dataset is a semantic seg-
mentation dataset without instance labels, we deploy the “segment everything”
function of SAM. This function densely samples dots within the image to create
segment instances.

Ablation Study. We conduct an ablation study to evaluate the influence of
two loss weight values, α and β, on our model’s performance, where α is the loss
weight controlling the dice loss and focal loss and β is the loss weight controlling
the IOU loss. Figure 4 presents the results, indicating the optimal values of α and
β for the two datasets. Specifically, Fig. 4 (left) reveals that an α value of 0.25
yields the best performance for the BCSS dataset and an α value of 0.125 yields
the best performance for the CRAG dataset. Similarly, Fig. 4 (right) shows that
a β value of 0.0625 leads to optimal results for the BCSS dataset and the best
β value for the CRAG dataset is 0.

Fig. 4. Ablation study on the choice of two loss weights: α and β

4 Conclusion

In this paper, we introduced a novel fine-tuning approach using trainable class
prompts to identify classes in segmentation tasks using SAM. Furthermore, we
proposed the integration of a pathology encoder to incorporate more domain-
specific knowledge. We evaluated our approach on two pathology segmentation
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datasets, demonstrating that our method facilitates semantic segmentation with-
out the need for manually inputted prompts and the pathology encoder consis-
tently yielded improvements in Dice and IOU scores. Our approach indicates the
promising potential of SAM for pathology semantic segmentation tasks. In future
research, we plan to explore its potential in pathology panoptic segmentations.
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