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ISIC Preface

The Eighth International Skin Imaging Collaboration (ISIC) Workshop on Skin Image
Analysis was held at the Vancouver Convention Centre, Vancouver, British Columbia,
Canada on October 12, 2023, in conjunction with the 26th International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI).

The skin is the largest organ of the human body, and is the first area of a patient
assessed by clinical staff. The skin delivers numerous insights into a patient’s underly-
ing health: for example, pale or blue skin suggests respiratory issues, unusually yellowish
skin can signal hepatic issues, or certain rashes can be indicative of autoimmune issues.
In addition, dermatological complaints are also among the most prevalent in primary
care. Images of the skin are the most easily captured form of medical image in health-
care, and the domain shares qualities to standard computer vision datasets, serving as a
natural bridge between standard computer vision tasks and medical applications. How-
ever, significant and unique challenges still exist in this domain. For example, there is
remarkable visual similarity across disease conditions, and compared to other medical
imaging domains, varying genetics, disease states, imaging equipment, and imaging
conditions can significantly change the appearance of the skin, making localization and
classification in this domain unsolved tasks.

This workshop served as a venue to facilitate advancements and knowledge dissemi-
nation in the field of skin image analysis, raising awareness and interest for these socially
valuable tasks. Invited speakers included major influencers in computer vision and skin
imaging, and authors of accepted papers.

Authors were asked to submit full-length manuscripts for double-blind peer review.
A total of 31 submissions were received, and with a Program Committee composed
of 22 experts in the field, reviewed by at least three reviewers. Based on the feedback
and critiques, six of the best papers (19%) were selected for oral presentation at the
workshop, and were included in the LNCS volume published by Springer.

We thank the authors for submitting their excellent work, our reviewers for their
timely and detailed reviews, our invited speakers, and all our attendees. We sincerely
hope that the efforts coming together to make this workshop possible will help advance
the field and have a positive impact on health care worldwide.

October 2023 M. Emre Celebi
Catarina Barata
Allan Halpern

Philipp Tschandl
Marc Combalia

Yuan Liu
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Care-AI 2023 Preface

Over the past decade, Artificial Intelligence (AI) and Machine Learning (ML) have
advancedmany fields including finance, education, and healthcare. In healthcare, AI/ML
has shown promising performance and efficiency in medical image analysis, computer-
aideddiagnosis, and computer-assisted intervention systems.However, there is a growing
concern regarding the potential risks occurring as a result of poor design and develop-
ment of AI applications. To address this pressing concern, responsible AI (RAI) has
recently attracted increasing attention. RAI can be defined as the process of designing,
implementing, and deployingAI algorithms that are fair, reliable, generalizable, explain-
able, robust, and secure. These principles and values are of paramount importance in
high-stakes fields such as healthcare.

Given that biased AI models can cause adverse and life-altering consequences, the
process of designing and developing AI solutions for healthcare should consider fac-
tors such as minority groups representation, biased benefits of stakeholders, technology
misuse, among others. Another major factor that leads to bias in ML algorithms is their
“black-box” nature, which makes it very difficult to detect discrimination as well as
explain the “how” and “why” of clinical decisions. In addition to fairness and explain-
ability, ML models that are applied in healthcare should be verified mathematically,
evaluated comprehensively, and validated empirically to ensure consistent, generaliz-
able, reliable, and robust performance under known and unknown (unexpected) condi-
tions. Further, given that patient’s data might contain sensitive information, AI-based
healthcare applications should be designed to protect patient information, resist attacks,
and comply with privacy laws that govern data collection, processing, and storage.

This was the first workshop proceeding on Clinically-Oriented and Responsible AI
forMedical Data Analysis (Care-AI) at MICCAI, held on October 8, 2023 in Vancouver,
Canada. In this workshop, we examined the technical and research progress towards
accountable and responsible AI in medical image analysis, computer-aided diagnosis,
and computer-assisted intervention systems. We received 9 full papers and 5 excellent
paperswere accepted. Each submissionwas reviewed by 3 reviewers and further assessed
by the workshop’s chairs. The workshop’s reviewing process was double-blind.

We want to thank our Program Committee members, reviewers, keynote speakers,
and authors who made this workshop successful. We are very grateful to the MICCAI
committee for providing us with such a wonderful opportunity.

October 2023 Md Sirajus Salekin
Ghada Zamzmi

Joshua Levy
Huzefa Rangwala

Annika Reinke
Diya Wynn

Bennett Landman
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MedAGI 2023 Preface

The first International Workshop on Foundation Models for Medical Artificial Gen-
eral Intelligence (MedAGI) was held at the Vancouver Convention Centre, Vancouver,
Canada on October 12, 2023, in conjunction with the 26th International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2023).

In the context of medical image analysis, existing artificial intelligence (AI) solu-
tions are carefully designed and evaluated upon one specific dataset, which is difficult
to transfer to another task or handle datasets curated from different medical centers.
However, data modalities and task formulation vary in real clinical practices across hos-
pitals and institutions. This results in increasing attention towards a general model to
tackle different medical scenarios. More precisely, a general AI model with excellent
generalization ability for processing other medical image modalities to handle a variety
of medical AI tasks is termed “general medical AI”.

In computer vision and in the natural language processing domain, large-scale vision
or language foundation models have shown amazing capabilities in visual recognition
tasks, text-image generation, text-image retrieval, and high-level multi-modal multi-step
reasoning. The outstanding generalization power of foundation models in new domains
and tasks opens the door for zero-shot (or few-shot) visual recognition tasks: image
classification, object detection, and segmentation. Despite the encouraging success in
the computer vision domain, adopting foundation models in the medical domain is still
in the early stage.

This workshop is dedicated to addressing the current medical AI systems and dis-
cussing opportunities for generalizing learning systems across multiple unseen tasks and
domains.

This workshop accepted 23 full-length manuscripts and 13 extended abstracts, in
total 32 submissions. Among them, the full-length manuscripts were peer-reviewed by
at least two reviewers following a double-blind approach. The reviewers, as part of the
Program Committee, were composed of 38 experts in medical image analysis. Based on
their valuable reviews, 11 papers were accepted as oral presentation and 6 papers were
accepted as poster presentation, to be published in the LNCS volume by Springer, and
the authors were also invited to deliver oral presentations at the workshop. The extended
abstracts were reviewed by twoworkshop chairs in a single-blind format but not included
in the volume for publication.

We thank all the participants, including the authors, the reviewers, the invited speak-
ers, and the attendees, for their valuablework and significant efforts, which contributed to
the success of the workshop. We hope that this workshop will advance the development
of general medical AI for multiple unseen tasks and domains.

October 2023 Won-Ki Jeong
Hyunwoo J. Kim

Yiqing Shen
Zhongying Deng
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DeCaF 2023 Preface

Machine learning methodologies have exhibited the potential to bring about transfor-
mative effects across various applications and industries, leveraging extensive datasets
to identify and comprehend patterns. A pivotal subject within contemporary scientific
discourse pertains to the acquisition and utilization of data while upholding user privacy.
The industrial utilization of machine learning and deep learning (DL) techniques has
underscored the dual imperatives of sourcing user data from the relevant application
domain to facilitate ongoing model enhancement and expose certain inadequacies in
prevailing approaches concerning privacy preservation.

The need for innovative strategies in data acquisition, utilization, and management,
coupled with the assurance of data privacy and security, has assumed paramount sig-
nificance within the research community. Prevalent strategies predominantly rely on
centralized data repositories housing sensitive information, often beyond direct user
control. Within contexts demanding heightened privacy considerations, such as health-
care, wherein confidentiality takes precedence over functionality, strategies necessitat-
ing centralized data repositories prove suboptimal, potentially engendering substantial
limitations on model development and application scope.

Additional privacy apprehensions stem from inherent mathematical underpinnings
of machine learning paradigms, notably within DL methods. It has been evidenced
that DL models may internalize segments of training data, potentially encompassing
sensitive data within their parameters. Ongoing research endeavors are actively pursuing
avenues to mitigate concerns arising from this phenomenon. Notably, these themes
extend beyond the purview of distributed and collaborative learning techniques, yet they
remain intrinsically linked to such approaches.

The 4th MICCAI Workshop on Distributed, Collaborative, and Federated (DeCaF
2023) aspired to stimulate scholarly discourse centered around comparative analysis,
evaluation, and deliberation on methodological advancements and pragmatic concepts
in machine learning, applied to scenarios wherein centralized databases are untenable
for data storage. This includes instances where information privacy is of paramount con-
cern, necessitating robust assurances pertaining to the extent and nature of private data
exposure resulting frommodel training. Moreover, the workshop sought to address envi-
ronmentswherein the coordination, oversight, anddirectionof node clusters participating
in a shared learning endeavor are indispensable.

During the fourth iteration of DeCaF, 10 submissions were subjected to rigorous
consideration, ultimately culminating in the acceptance of 7 comprehensive papers for
presentation following a double-blind peer review process. Each manuscript underwent
meticulous assessment by no fewer than three independent reviewers, chosen to mitigate
potential conflicts of interest and recent collaborative involvements. These reviewers
were selected from a global cohort of preeminent experts within the field.

The final determinations concerning acceptance, conditional acceptance, or rejec-
tion were entrusted to area chairs, predicated upon the evaluative insights gleaned from
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the reviews, and these verdicts were final and irrevocable. In instances of conditional
acceptance, authors were tasked with effecting substantive refinements and enhance-
ments, aligning with reviewer feedback to bolster the scientific rigor and clarity of their
manuscripts.

The double-blind review process, involving three dispassionate reviewers for each
submission, coupled with the framework of conditional acceptance, alongside the over-
sight of meta-reviewers in the decision-making process, collectively safeguarded the
scientific integrity and elevated the caliber of the contributions showcased during the
third version of DeCaF. By extension, this commendable input has significantly enriched
the MICCAI community, particularly the cohort of researchers engaged in distributed
and collaborative learning pursuits.

Thus, it is incumbent upon us to express our gratitude to the authors for their valu-
able contributions and to extend our appreciation to the reviewers for their unwavering
commitment and equitable evaluation of their peers’ endeavors.

October 2023 Shadi Albarqouni
Spyridon Bakas

Xiaoxiao Li
Chen Qin

Nicola Rieke
Holger Roth
Daguang Xu
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Abstract. Designing deep learning (DL) models that adapt to new data
without forgetting previously acquired knowledge is important in the
medical field where data is generated daily, posing a challenge for model
adaptation and knowledge retention. Continual learning (CL) enables
models to learn continuously without forgetting, typically on a sequence
of domains with known domain identities (e.g. source of data). In this
work, we address a more challenging and practical CL scenario where
information about the domain identity during training and inference is
unavailable. We propose Continual-GEN, a novel forget-free, replay-free,
and domain-agnostic subnetwork-based CL method for medical imaging
with a focus on skin lesion classification. Continual-GEN proposes an
ensemble of groups approach that decomposes the training data for each
domain into groups of semantically similar clusters. Given two domains,
Continual-GEN assesses the similarity between them based on the dis-
tance between their ensembles and assigns a separate subnetwork if the
similarity score is low, otherwise updating the same subnetwork to learn
both domains. At inference, Continual-GEN selects the best subnetwork
using a distance-based metric for each test data, which is directly used for
classification. Our quantitative experiments on four skin lesion datasets
demonstrate the superiority of Continual-GEN over state-of-the-art CL
methods, highlighting its potential for practical applications in medical
imaging. Our code: https://github.com/nourhanb/Continual-GEN.

Keywords: Continual Learning · Domain-agnostic ·
Out-of-Distribution Detection · Skin Lesion Classification ·
Dermatology

1 Introduction

Deep learning (DL) models have emerged as powerful tools, surpassing human
experts in certain cases, particularly in skin lesion classification [7]. However,
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the conventional clinical practice of training DL models only once falls short of
addressing the steady stream of medical data, where data is generated daily and
often exhibits a domain shift arising from various factors such as diverse clinical
practices, variations in clinical devices or diagnostic workflows, or differences
in data populations [8,23]. Thus, there is a pressing need to design DL models
that can effectively learn a stream of heterogeneous data and adeptly adapt to
the substantial domain shift encountered across the different straining domains.
The straightforward approach of fine-tuning DL models with either new lesions
or heterogeneous data, without access to the initial training data, easily leads to
overwriting of previously learned knowledge, resulting in catastrophic forgetting.

Continual learning (CL) [22] aims to enable DL models to adapt to chang-
ing environments and learn from new data while retaining previous knowledge.
Replay-based methods [17,18] store a subset of data samples and replay them
periodically to retain past domain information. However, these methods face
challenges in medical domains due to data privacy policies that restrict unregu-
lated data storage and transfer [24]. Regularization-based methods [2,16] impose
restrictions on parameter updates to preserve prior knowledge while learning
new domains. However, with the complex and heterogeneous medical data,
the performance of these methods is significantly limited. Architecture-based
methods [9] assign specialized architectural components for each domain, but
encounter increased memory usage as new domains emerge. A promising recent
approach has been developed that utilizes different subnetworks within a fixed-
size dense network to learn the different domains [3,6,15]. Taking advantage
of the over-parameterization of DL models, this subnetwork-based approach
effectively addresses memory usage limitations in architecture-based methods by
pruning unimportant weights, leading to optimized memory footprint and com-
parable or superior performance. However, existing CL methods face a crucial
limitation in their practical deployment in dynamic real-world environments,
particularly healthcare, due to the assumption of known data domain identi-
ties, such as the source of data or the specific device used for data generation.
In practice, the anonymization process may erase domain identity information,
making it infeasible to rely on such information during training or inference.
As a consequence, current CL methods often underperform when evaluated in a
domain-agnostic setup [19].

In this work, we introduce Continual-GEN, the first subnetwork-based CL
approach for skin lesion classification that is not only forget-free and replay-
free, but also domain-agnostic during training and inference. Specifically, we
introduce a continual OOD detection method that is triggered when a domain
shift occurs, allowing us to initialize a new subnetwork for learning the new
domain during training. Our approach involves decomposing the semantic space
for each training domain into distinct clusters with similar semantics, enabling
the detection of new domains based on their distance to the clusters of previous
domains. However, selecting an optimal number of clusters is challenging due
to the complex heterogeneity of skin data. To this end, we introduce the novel
ensemble of groups technique, which partitions the features into different groups,
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Fig. 1. Continual-GEN decomposes data into ensemble of M groups in the fea-
ture space, where the m-th group contains km clusters. To identify the similar-
ity between two domains Dt+1 and Dt, an ensemble similarity score ESS is cal-
culated from the ensemble of all the minimum distances of each pair of groups,

{(Gm′,km′
t+1 ,Gm,km

t )}M
m′,m=1. A large ESS score indicates higher similarity between

the two domains, i.e., Dt+1 is IND with respect to Dt and ft is updated with Dt+1.
Else, Dt+1 is OOD and a new subnetwork ft+1 is initialized to learn Dt+1.

each with a different number of clusters. This approach enhances OOD detec-
tion reliability without the need for determining an optimal number of clusters.
During inference, Continual-GEN utilizes a distance-based metric to select the
most appropriate subnetwork for each test data, which is directly used for classi-
fication. Experimental results on four diverse skin image datasets provide strong
evidence supporting the superiority of our method compared to others.

2 Continual-GEN

Preliminaries. We propose a CL framework where a network f , of a fixed
size, learns T domains D = {D1, . . . , Dt, . . . , DT } sequentially over time while
retaining previously acquired knowledge. The t-th domain Dt =

{(
xi
t, y

i
t

)}Nt

i=1
contains Nt tuples of input samples xt

i ∈ X and their corresponding labels yt
i ∈

C. When encountering the t-th domain with unknown identity, the data from
previous domains {Di}t−1

i=1 is either unavailable or restricted. Our objective is to
identify an optimal domain-specific subnetwork ft for Dt, which is only updated
when encountering a new, in-distribution (IND) domain. Else, ft remains frozen
and a new subnetwork is created to learn the OOD domain. The network f
should be deployable at any time and capable of extracting predictions using
the best subnetwork without knowledge of the test image’s specific identity.
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Domain-specific Subnetwork Formation. After training f on a specific
domain Dt, we utilize a culpability-based pruning technique [3] to identify the
optimal subnetwork ft. This technique involves pruning units with high cul-
pability scores, effectively removing them as they are considered unimportant.
Through this process, we ensure that the subnetwork ft maintains performance
comparable to the full network, while simultaneously creating room, i.e., preserv-
ing capacity, within the network f to effectively learn knowledge encountered in
future domains. The pruning is performed based on a predefined pruning per-
centage p, which is set by the user.

Create a New or Update an Existing Subnetwork. When presented
with a new batch of data, Dt+1, Continual-GEN assesses the similarity between
Dt+1 and each previously encountered domain {Di}ti=1. This assessment, which
includes three steps (I-III, below), determines whether the new data is IND with
respect to any previous domain or OOD. In the case of IND, Continual-GEN
reuses and updates the corresponding subnetwork, while for OOD, it creates a
new subnetwork specifically for Dt+1. For notational simplicity, we illustrate the
process using only the most recent domain, Dt.

I. Ensemble of Groups. Upon selecting the optimal subnetwork ft for Dt,
we extract the embedding features of Dt in the embedding space, denoted as
Zt = {z1, z2, ..., zN}. After that, as illustrated in Fig. 1, we partition Zt into an
ensemble of M groups, each with a different number of clusters, i.e.,

GEnsemble
t = [G1,k1

t , . . . ,Gm,km

t , . . . ,GM,kM

t ]

where Gm,km

t is the m-th group with km clusters. The mean and covariance
of each cluster within each group in the ensemble are computed and stored,
occupying only a few KBytes of memory.

II. ESS Score. To quantify the similarity between Dt and a new domain Dt+1,
we form GEnsemble

t+1 , which mirrors the configurations in GEnsemble
t , by perform-

ing a forward pass of Dt+1 through the trained subnetwork ft. Then, we measure
the Mahalanobis distance between each cluster in a group in GEnsemble

t+1 to all the
clusters in the mirroring group in GEnsemble

t . Then, for each pair of group config-
urations, e.g., (Gm′,km′

t+1 , Gm,km

t ), we return the smallest Mahalanobis distance,
Sm′,m, representing the similarity score between the m′-th group in GEnsemble

t+1

and the m-th group in GEnsemble
t . As demonstrated in Fig. 1 (right), the total

2 × M individual scores are then aggregated using an ensemble module, such
as averaging in our implementation, yielding the final ensemble similarity score
ESS as follows;

ESS = ensemble{Sm′,m} for m′,m ∈ {1, 2, ...M}.

III. IND vs OOD Decision Making. If ESS exceeds a threshold value γDt
,

indicating a higher degree of similarity between the two domains, ft is updated
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with Dt+1 and the mean and covariance values are recalculated and updated in
memory. On the other hand, if ESS falls below γDt

, suggesting that Dt+1 is
OOD, a new subnetwork is initialized to learn Dt+1 using the same culpability-
based pruning technique. The mean and variance of all clusters and groups in
GEnsemble

t+1 are calculated from the trained ft+1 and stored for future use. If ESS
returns IND to multiple domains, we only fine-tune the subnetwork with the cor-
responding smallest ESS value. We refer the reader to Algorithm-1 in supple-
mentary material for a summary of the training framework of Continual-GEN.

Domain-agnostic Inference. For a test image, a forward pass through all
subnetworks is performed to calculate ESS with each domain. The subnetwork
with the smallest score is selected and directly used to extract a prediction.

3 Experiments and Results

Datasets and Implementation Details. In our experimental setup, we con-
sider a total of six sequentially presented domains that are constructed using
four distinct skin lesion datasets: HAM10000 (HAM) [21] (partitioned into three
domains as in [8]), Dermofit (DMF) [1], Derm7pt (D7P) [11], and MSK [10]. We
use ResNet-152 as the backbone of network f . For each domain, we train it using
the cross-entropy (CE) loss for 150 epochs with a constant learning rate of 1e-5
and a batch size of 16. We partition each domain into three sets: training (60%),
validation (20%), and test (20%) sets. We balance all the training domains in
PyTorch, and we resize the images to 224×224. To address domain order bias,
we averaged the results across all 720 possible domain order combinations. We
use p=80% pruning ratio when creating all the subnetworks. Each ensemble con-
sists of M= 8 groups, including one group formed using the Ground Truth (GT)
clustering, which cluster features based on the known class labels, i.e., k = GT ,
and seven additional groups created by the Gaussian mixture model (GMM)
clustering method, which models the features as a mixture of k Gaussian distri-
butions in the embedding space (k =1, 3, 5, 7, 10, 15, and 20). We use averaging
for the ensemble, and set γDt

at twice the mean of all clusters in GEnsemble
t .

Metrics. We evaluate the performance of our Continual-GEN using two met-
rics: 1) the widely-used accuracy of each domain after training all the domains:
ACC = 1

T

∑T
t=1 aT,t, where aT,t is the test balanced accuracy of t-th domain

after a model has learned all the T domains, and 2) the average accuracy com-
puted over all domains, AV G = 1

T

∑T
t=1 ACC(t).

Comparison Against SOTA CL Methods. We compare Continual-GEN
against several CL methods, including three subnetwork-based methods:
CPN [3], PackNet [15] and CP&S [6], and two regularization-based methods:
EWC [13] and LwF [14]. All the competitors require the availability of domain
identity information, as they were not specifically designed for domain-agnostic
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Table 1. Performance of Continual-GEN against baselines and SOTA CL methods on
six skin lesion domains. ‘# of sub’ indicates the total number of subnetworks in f .

Method Test Sets Performance (ACC) % Total # of

HAM-1 HAM-2 HAM-3 DMF D7P MSK AVG % sub

Baselines

JOINT 90.72±0.81 91.43±0.43 89.65±0.15 84.07±0.72 88.65±0.06 84.21±0.99 88.12±0.52 -

SeqT 40.38±0.28 42.06±0.27 41.84±0.51 44.97±0.08 44.52±0.65 40.78±0.94 42.43±0.45 -

Competing CL Methods

CPN 84.36±0.50 83.37±0.12 82.63±0.78 76.54±0.40 80.46±0.57 70.11±0.63 79.58±0.50 4

PackNet 81.04±0.35 80.61±0.29 79.39±0.81 70.05±1.02 77.59±0.46 64.83±0.59 75.59±0.42 4

CP&S 80.47±0.68 79.51±0.53 78.84±0.16 71.18±0.31 78.55±0.42 69.91±0.70 76.41±0.47 4

EWC 44.15±0.91 44.98±0.50 43.25±0.83 56.34±0.65 46.08±0.13 43.12±1.12 46.32±0.69 -

LwF 53.28±0.84 54.22±0.30 53.01±0.90 59.62±0.33 47.50±0.46 45.14±1.19 52.13±0.67 -

Proposed Method

Ours 85.78±0.20 84.11±0.84 85.41±0.71 77.52±0.98 81.73±0.30 71.84±0.13 81.07±0.50 5

scenarios. Additionally, we provide an upper bound performance (JOINT), which
is obtained by the usual supervised fine-tuning on the data of all tasks jointly
(assuming all available at one time), and a lower bound performance (SeqT),
which simply performs sequential training without any countermeasure to for-
getting. Our comprehensive evaluation, as summarized in Table 1, demonstrates
the performance of Continual-GEN, surpassing other CL approaches across all
domains. This superiority can be attributed to two key factors. Firstly, we
address the potential issue of negative knowledge interference by identifying
one HAM domain as OOD and assigning a separate subnetwork for it (the total
number of subnetworks in f is 5 in Continual-GEN as opposed to 4 in alterna-
tive methods). Secondly, we use a culpability-based pruning technique to retain
only the most relevant units for each domain, resulting in improved classifica-
tion performance, even with the subnetworks in Continual-GEN having fewer
parameters than those of other methods.

Comparison Against other Domain-agnostic Methods. To assess the
effectiveness of the proposed OOD detection method in Continual-GEN, i.e.,
ensemble of groups, we compare it against alternative domain-agnostic learning
techniques. In Method−A, a new subnetwork is initialized when the accuracy
on new domain drops below 10%. In Method−B, the Gram distance [17] is
used instead of the Mahalanobis distance for both training and inference. In
Method−C, domain shifts are detected by computing the Mahalanobis distance
between features extracted after the first layer of Batch Normalization (BN) [9].
As demonstrated in Table 2, our proposed method outperforms the alternative
approaches. The Gram distance (Method−B) fails to accurately detect distribu-
tion shifts in skin datasets, and Methods−A, C are sensitive to hyperparameter
choices, such as the 10% accuracy drop threshold in Method−A and the selection
of the BN layer in Method−C.
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Table 2. Continual-GEN average performance with different OOD detection methods.
‘# of sub’ indicates the total number of subnetworks in f .

Method Continual-GEN

Ours Method−A Method−B Method−C
Total AVG % 81.07±0.50 76.51±0.38 72.34±0.18 73.54±0.62

# of sub 5 3 2 6�

� indicates that the pruning ratio was increased to 85% to accommodate
more subnetworks.

Unraveling Cluster Quality for Skin Datasets. The quality of clusters
in the embedding space is a fundamental aspect to the success of our method.
Therefore, we conduct an extensive analysis to compare the quality of clusters
generated by different clustering techniques and training methods, as follows:

Clustering Techniques: In addition to the GT and GMM clustering methods, we
explore the use of k-means, which partitions the features into k clusters based
on their similarity measured using the Euclidean distance in the embedding
space. Although we considered other clustering methods, such as agglomerative
clustering and DBSCAN, we found them to be less compatible and requiring
careful hyperparameter tuning, such as selecting appropriate linking strategies
for agglomerative clustering or determining the epsilon value for DBSCAN.

Training Methods: Besides the CE loss, we investigate the influence of contrastive
learning approaches due to their demonstrated capability in OOD detection [20].
Specifically, we compare two approaches: supervised contrastive learning (Sup-
Con) [12] and the unsupervised approach (SimCLR) [5].

Metrics for Cluster Quality: To evaluate the effectiveness of the different clus-
tering and training approaches, we employ two metrics: Global separation (GS)
and cluster purity (CP) [4]. GS quantifies the separability between clusters by
evaluating the intra-cluster distances to the enter-cluster distances of the near-
est neighboring cluster, whereas CP determines how many samples in a cluster
belongs to the same class. Higher values of both metrics indicate higher quality
of clusters. We refer the reader to [4] for equations of GS and CP.

Discussion of Results: By analyzing the results of applying the different clus-
tering and training methods on the HAM-1 and DMF domains, as illustrated
in Fig. 2, we can derive important observations about the quality of the gener-
ated clusters. The following key findings emerge from this analysis: 1) The three
learning methods (CE, SupCon, SimCLR) exhibit comparable performance, with
CE and SupCon showcasing slightly better results due to their supervised learn-
ing nature. 2) The quality of clusters generated by GMM outperforms k-means,
particularly in terms of CP values. The higher purity values achieved by GMM
reflect its capability to generate more internally homogeneous clusters, predom-
inantly containing samples from the same class, suggesting its ability to capture
the underlying data distribution of the skin more effectively. 3) The optimal



10 N. Bayasi et al.

Fig. 2. Comparison of cluster quality for CE, SupCon, and SimCLR based on GS and
CP on the HAM-1 and DMF domains. The evaluation process begins with the default
GT clusters, followed by k-means or GMM with an increasing number of clusters.

number of clusters k cannot be easily determined, as the choice of it may not
straightforwardly correspond to higher purity and separation. For instance, CE
with k =5 of GMM on the DMF dataset exhibits lower purity compared to that
of k =10, despite higher values of GS. These results demonstrate the challenge
in selecting the ideal clustering technique and k value for skin-related analysis,
further emphasizing the unique and effective nature of the proposed ensemble of
groups method.

Ablation Study on the Impact of the Ensemble Size. We investigate the
impact of the enemsble size (M) on the performance of Continual-GEN. Our
findings demonstrate that utilizing a substantial number of diverse groups leads
to improved average performance. Specifically, Continual-GEN achieves a per-
formance of 75.34% and 79.34% for M ∈ {1, 2} and M ∈ {3, 4, 5, 6}, respectively.
With M ∈ {8, 9, 10, 11}, the performance further increases to 81.07%.

Ablation Study on the Impact of the ensemble Strategy. We investi-
gate different ensembling strategies to compute the final ESS score: 1) Average
(default) averages all distance scores, 2) Top averages the top q sorted scores, 3)
Bottom averages the bottom q sorted scores, and 4) Trimmed Average averages
remaining scores after removing top and bottom q sorted scores. Notably, the
Top method identifies more domains as IND, which potentially led to decreased
performance due to negative knowledge interference between domains, result-
ing in a reduction of 3.64% and 1.77% in performance with q= 20 and 40,
respectively, compared to the default method (Average). On the other hand, the
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Table 3. Continual-GEN average performance with different ensemble strategies. ‘#
of sub’ indicates the total number of subnetworks in f .

Strategy Average Top Bottom Trimmed Average

q=20 q=40 q=20 q=40 q=20 q=40

Total AVG % 81.07±0.50 77.43±0.62 79.3±0.48 74.94±0.66 81.07±0.50 81.07±0.50 81.07±0.50

# of sub 5 3 4 6� 5 5 5

� indicates that the pruning ratio was increased to 85% to accommodate more subnet-
works.

Trimmed Average method performs similarly to the default method, indicating
that it detects the same IND and OOD domains.

4 Conclusion

We introduced Continual-GEN, a subnetwork-based CL approach for skin lesion
classification. Our method supports sequential learning without forgetting and
does not require domain identity information during training and inference.
Continual-GEN decomposes the semantic space into groups, detecting domain
shifts and assigning domain-specific subnetworks accordingly. Extensive exper-
iments on diverse skin lesion datasets demonstrate its superior performance
over SOTA CL methods and domain-agnostic learning techniques. Addition-
ally, Continual-GEN ensures memory efficiency by avoiding network expansion
and individual sample storage, crucial for maintaining patient privacy.
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Abstract. Federated learning (FL) has recently been applied to skin
lesion analysis, but the challenges of huge communication requirements
and non-independent and identical distributions have not been fully
addressed. The former problem arises from model parameter transfer
between the server and clients, and the latter problem is due to differ-
ences in imaging protocols and operational customs. To reduce commu-
nication costs, dataset distillation methods have been adopted to distill
thousands of real images into a few synthetic images (1 image per class)
in each local client, which are then used to train a global model in the
server. However, these methods often overlook the possible inter-client
distribution drifts, limiting the performance of the global model. In this
paper, we propose a generalizable dataset distillation-based federated
learning (GDD-FL) framework to achieve communication-efficient feder-
ated skin lesion classification. Our framework includes the generalization
dataset distillation (GDD) method, which explicitly models image fea-
tures of the dataset into an uncertain Gaussian distribution and learns
to produce synthetic images with features close to this distribution. The
uncertainty in the mean and variance of the distribution enables the syn-
thetic images to obtain diverse semantics and mitigate distribution drifts.
Based on the GDD method, we further develop a communication-efficient
FL framework that only needs to transmit a few synthesized images once
for training a global model. We evaluate our approach on a large skin
lesion classification dataset and compare it with existing dataset distilla-
tion methods and several powerful baselines. Our results show that our
model consistently outperforms them, particularly in comparison to the
classical FL method. All resources can be found at https://github.com/
jcwang123/GDD-FL.
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1 Introduction

Federated learning is an innovative approach to training deep learning models
that allows for collaboration and sharing of knowledge without the need to cen-
tralize data. It involves transferring model parameters between different clients to
improve model performance. Federated learning is particularly useful in clinical
settings where privacy is of utmost importance, as it allows multiple healthcare
providers to train models using their own data while keeping patient informa-
tion secure. Recent studies have shown the potential of federated learning in
predicting clinical outcomes [1,2,8,10,19].

However, federated learning methods require transmitting model parame-
ters between the server and clients at each learning round [15], and the entire
learning process typically involves hundreds of epochs. The resultant increase in
communication costs has become one of the most significant challenges in fed-
erated learning. Moreover, some hospitals with strict privacy regulations do not
permit internet access, rendering the communication-reliant federated learning
methods infeasible. To address these challenges, previous studies have attempted
to limit the number of communications to accelerate convergence and improve
communication efficiency [4,6,14,17,21,29]. However, such methods still require
tens of communications, and parameter transmission remains time-consuming
and laborious in the era of large models. Synthesis-based methods are proposed
to transfer the local images into synthetic images using GANs [18] and centralize
them into the server for task learning, but GANs are hard to train and the gener-
ated synthetic images cost a lot of transmission loads. Recently, data distillation
has been introduced in the federated learning domain [24]. This technique distills
local datasets into a few synthetic images, typically fewer than ten, and sends
these synthetic data to a global server for global training. As the transmission
requires only one round of communication, and the synthetic data contains no
original information, this method inherits the advantages of low communication
costs and excellent privacy protection.

Nevertheless, the previous studies mainly discuss the usefulness of small
datasets, i.e., handwritten digits. Whether the distilled image retains the abun-
dant semantics for lesion classification is unknown and needed to be investigated.
More importantly, this method adopts the oldest distillation algorithm and has
not taken into account the distribution drifts among different clients. The drifts
will lead to differing distributions of each synthetic dataset, and consequently, the
global model trained on such distributed data may exhibit limited performance,
which can impact the accuracy and robustness of the model in real-world set-
tings. Solving distribution drifts is a significant challenge in the federated learn-
ing community and has been widely studied [3,12,13,16,25,26]. However, these
strategies are primarily designed for parameter-communication methods, where
the clients send their local model updates to the central server for aggregation.
In contrast, data distillation aims to minimize the amount of communication by
sending synthetic data instead of parameter updates. Therefore, these strategies
may not be directly applicable to the data distillation approach.
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In this paper, we propose a novel and generalizable data distillation-based
federated learning (GDD-FL) framework to address the challenges of communi-
cation costs and distribution drifts in skin lesion classification. We first propose
a generalizable data distillation (GDD) method that distills each client’s local
dataset into a small number of synthetic images and makes synthetic data from
different sites located in similar distributions. It is achieved by approximating
the possible Gaussian distribution of mean and variance values in one client’s
synthetic data and randomly sampling a new distribution to produce synthetic
images. Unlike current data distillation methods that align synthetic images to
a fixed distribution, our GDD method produces synthetic images with uncer-
tain distribution so they obtain better diversity. Based on the GDD method, we
further build a communication-efficient federated learning framework for skin
lesion classification. In this process, each client applies the GDD method to
distill its local dataset into a small synthetic dataset and sends it to the global
server. The global server then trains a brand-new model using the gathered data.
By minimizing the communication between clients and the server, our method
reduces communication costs and improves privacy protection. We evaluate the
performance of our method on the ISIC-2020 dataset in IID and Non-IID fed-
erated settings and compare it with the classical federated learning method and
other data distillation methods. The experimental results demonstrate that our
GDD-FL framework consistently outperforms other methods in terms of clas-
sification accuracy while reducing communication costs and protecting privacy.
Our proposed framework has great potential for applications in real-world sce-
narios where large datasets are distributed across different clients with limited
communication resources.

2 Method

In summary, we introduce the approximation of the uncertain distribution of a
real dataset in Sect. 2.1, how to optimize learnable synthetic images in Sect. 2.2.
and the communication-efficient federated learning framework in Sect. 2.3.

2.1 Generalizable Dataset Distillation

The goal of dataset distillation is to condense the large-scale training set
T = {(x1, y1), ..., (x|T |, y|T |)} with |T | image and label pairs into a small syn-
thetic set S = {(s1, y1), ..., (s|S|, y|S|) with |S| synthetic image and label pairs
so that models trained on each T and S obtain comparable performance on
unseen testing data: Ex∼PDL(ΦθT (x), y) � Ex∼PDL(ΦθS (x), y), where PD is the
real data distribution, L is the loss function (i.e. cross-entropy loss). Φ is a task-
specific deep neural network, i.e. ResNet-18, parameterized by θ, and ΦθT and
ΦθS are the networks that are trained on T and S respectively. Similar to tech-
niques [23,28], our goal is to synthesize data that approximates the distribution
of the real training data, instead of selecting a representative subset of training
samples as in [27,32]. The process has been visualized in Fig. 1.
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Fig. 1. Overall framework of the generalizable data distillation-based federated learn-
ing (GDD-FL). Unlike existing data distillation methods, GDD considers the possible
distribution drifts inter-clients and proposes to change the target distribution with
random deviations (

∑
) so that the synthetic images’ distribution can align the distri-

butions of other clients.

To obtain a small dataset with similar semantics to the real dataset, we
approximate the possible Gaussian distribution of real data and align the learn-
able synthetic data to the distribution. Typical data distillation methods adopt
certain mean and variance values to determine the distribution. Instead, to sim-
ulate the possible client drift, we estimate the uncertainty of data distribution,
and randomly sample new distributions. Specifically, the uncertainty of mean
and variance values is estimated as:

Σ2
μ(x) =

1
|x|

∑|x|
i=1(μ(xi) − E[μ(x)])2,Σ2

σ(x) = 1
|x|

∑|x|
i=1(σ(xi) − E[σ(x)])2, (1)

where Σμ(x) and Σσ(x) represent the uncertainty estimation of the feature mean
μ and feature standard deviation σ, respectively.

After the estimation of possible client shifts, we randomly sample new feature
statistics from the estimated distribution as μ̂(x) ∼ N (μ,Σ2

μ) and standard
deviation σ̂(x) ∼ N (σ,Σ2

σ) for the corresponding distribution:

μ̂(x) = μ(x) + εμΣμ(x) and σ̂(x) = σ(x) + εσΣσ, (2)

where εμ, εσ ∼ N (0, I). In the end, the feature after the simulated client shift is
formed as: x̂ = μ̂(x)× x−μ(x)

σ(x) + σ̂(x). After the distribution change, we optimize
the learnable synthetic images to obtain the same distribution with x̂, where the
details are introduced next.
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2.2 Distillation Process

The training details are presented in Algorithm 1. During each learning epoch,
we randomly sample initial parameters ϑ for a typical ConvNet [5], denoted
as Ψϑ, feeding the synthetic images and distribution-changed real data into the
network to align the distribution. Before alignment, the read data is modified
through the uncertain distribution change and Siamese augmentations. Specifi-
cally, the equations in Sect. 2.1 are used to approximate the uncertain distribu-
tions. We use Up to denote the distribution change, where p = 0.5 is a controlling
variable that represents the probability of performing the change to avoid intro-
ducing excessive noise. The differentiable Siamese augmentation [9] is denoted as
A(·), processing the real data and synthetic data respectively for better semantic
alignment [30]. Finally, the optimization problem with uncertainty estimation is
solved as: minS Eϑ∼Pϑ

ω∼Ω
‖ 1

|T |
∑|T |

i=1 ψϑ(A(Up(xi))) − 1
|S|

∑|S|
j=1 ψϑA(sj)‖2.

2.3 Communication-Efficient Federated Learning

Consider a federated learning task with m clients, the client k-th owns local
dataset Tk. We can obtain a set of synthetic datasets through our proposed
GDD: S̃ = {S̃k|k = 1, 2, ...,m}. The server then collects all synthetic datasets
from the local sites and uses the merged data S̃ to train a brand-new model from
scratch. We consider a non-convex neural network objective in the server and
train a machine learning model on S̃. For each iteration, we sample a mini-batch
from the synthetic dataset, denoted as (x, y) ∈ S̃, and calculate the objective
function L(x, y;w), where L represents the typical entropy loss. Note that the
sampled mini-batch may contain synthetic images from multiple clients, which
enhances feature diversity in each mini-batch. After optimizing for a total of E
epochs, the parameter w̃ is well-trained.

3 Experiment

3.1 Datasets and Evaluation Metrics

Datasets: For our experiments, we used the public skin lesion classification
ISIC2020 [20] dataset provided by the International Skin Imaging Collaboration
archive. The dataset contains a total of 33,126 samples in the public training
set. Since the public test set is not available, we divided the training set into the
train, validation, and test sets with 26,500, 3,312, and 3,314 samples.

Client Split: To simulate the federation, we used two types of splits, IID and
Non-IID, as the prior work [11]. For IID federation, we randomly divided the
train and validation sets into ten parts (m = 10) with equal numbers of positive
and negative samples. For Non-IID federation, we used Dirichlet with α = 1 to
distribute local data. We evaluated the global model using the test set.
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Algorithm 1. Process of Generalizable Data Distillation
Input: Training set T
Output: Synthetic samples S for C classes

function ClientDatasetDistillation(T )
2: Initialize S by sampling from random noise

for each iteration do
4: Sample ϑ ∼ Pϑ

Sample mini-batch BT
c ∼ T , BS

c ∼ S and augmentation Ac for every class c
6: Compute OT

c = 1
|BT

c |
∑

(x,y)∈BT
c

Ψϑ(Ac(x)) for every class c

Compute OS
c = 1

|BS
c |

∑
(s,y)∈BS

c
Ψϑ(Ac(s)) for every class c

8: Compute OU
c = 1

|BT
c |

∑
(x,y)∈BT

c
Ψϑ(Ac(Up(x)))) for every class c

Compute LS,T =
∑C−1

c=0 ‖OT
c − OS

c ‖2

10: Compute LU =
∑C−1

c=0 ‖OU
c − OS

c ‖2

Update S ← S − η∇S(LU + LS,T )
12: end for

return S for C classes
14: end function

Evaluation Metrics: We used four widely adopted metrics, namely, Precision
(P), Recall (R), F1 score, and AUC, to comprehensively evaluate the classifica-
tion performance. Higher values indicate better classification performance.

3.2 Implementation Details

We use ResNet-18 [7] as the base classification model and a classical ConvNet [5]
as the image feature extractor for data distillation training. To improve memory
usage and computational efficiency, all images are resized to (224×224). During
the distillation training, we use the SGD optimizer [22] with an initial learning
rate of 1 for 300 epochs and set the batch size to 64. For training the classification
model, we use the SGD optimizer with an initial learning rate of 0.01. The model
is trained for 50 epochs using a batch size of 64.

3.3 Comparison of State-of-the-Arts

We mainly compare our method with the latest data distillation methods, namely
DC [32], DSA [30], and DM [31]. Since these techniques have not been used in fed-
erated learning, we re-implement them in our settings. In addition, we compare
the performance of the classical federated learning framework, FedAVG [15].
Furthermore, we demonstrate several centralized training results, where the
“Upper Bound” refers to centralizing all data to train a classification model,
and “R.S.@10” and “R.S.@100” denote randomly selecting 10/100 images per
lesion class. Since the distillation method used in the prior work [24] is too old
without novel designs, we focus on the latest distillation methods.

The quantitative results are shown in Table 1. It is seen that GDD outper-
forms other distillation techniques consistently across all settings. Notably, the
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improvement is more significant when distilling the dataset into 10 images per
class, as the diversity of synthetic images is progressively enhanced. Compared
with FedAVG, the results in the IID setting show that data distillation-based
methods still have room for improvement. However, data distillation-based meth-
ods have a significant advantage over FedAVG in terms of low communication
costs. Moreover, GDD-FL shows a substantial improvement in the Non-IID set-
ting for AUC scores, i.e., 5.88% and 6.37% for distilling 1/10 images per class.

Table 1. Comparison with latest data distillation methods on the ISIC-2020 dataset.
“*” denotes the implementation on our federated setting.

Method AUC P R F1

Upper Bound 80.97 ± 2.12 97.23 ± 0.03 91.11 ± 2.36 94.07 ± 1.54
R.S.@10 56.86 ± 1.16 87.29 ± 0.19 59.63 ± 5.08 70.86 ± 3.99
R.S.@100 60.22 ± 2.70 87.67 ± 0.08 65.56 ± 3.53 75.02 ± 2.54
Transmit parameters: 12640 MB
FedAVG (IID) [15] 75.33 ± 3.21 96.55 ± 0.34 80.12 ± 4.97 87.57 ± 3.13
FedAVG (Non-IID) 65.97 ± 4.17 83.22 ± 1.34 70.68 ± 6.26 76.44 ± 4.23
Transmit 1 image per class: 2.88 MB

II
D

DC∗ [32] 66.72 ± 2.98 96.71 ± 0.09 75.26 ± 5.23 84.56 ± 3.25
DSA∗ [30] 64.43 ± 2.67 96.76 ± 0.09 74.35 ± 5.78 83.99 ± 3.56
DM∗ [31] 68.82 ± 0.22 96.76 ± 0.09 74.35 ± 5.77 83.99 ± 3.56
GDD-FL (Ours) 71.76 ± 0.04 96.93 ± 0.11 78.55 ± 2.74 86.78 ± 0.04

N
on

-I
ID

DC∗ [32] 65.18 ± 8.09 96.73 ± 0.04 72.50 ± 12.22 82.42 ± 8.58
DSA∗ [30] 68.79 ± 0.88 96.70 ± 0.04 78.66 ± 2.93 86.73 ± 1.77
DM∗ [31] 68.41 ± 0.17 96.60 ± 0.12 72.88 ± 0.56 83.08 ± 0.32
GDD-FL (Ours) 71.85 ± 1.75 97.17 ± 0.55 81.14 ± 3.28 88.41 ± 2.01

Transmit 10 images per class: 28.81 MB

II
D

DC∗ [32] 66.79 ± 1.41 96.47 ± 0.03 78.21 ± 4.37 86.39 ± 2.35
DSA∗ [30] 65.15 ± 3.03 96.69 ± 0.06 76.38 ± 4.67 85.34 ± 2.13
DM∗ [31] 69.29 ± 2.35 96.58 ± 0.79 78.21 ± 5.73 86.43 ± 2.24
GDD-FL (Ours) 73.38 ± 1.50 96.79 ± 0.28 79.80 ± 10.68 87.48 ± 7.09

N
on

-I
ID

DC∗ [32] 65.70 ± 2.47 96.83 ± 0.03 76.42 ± 4.13 85.42 ± 2.48
DSA∗ [30] 69.99 ± 0.32 96.80 ± 0.02 79.40 ± 1.89 87.24 ± 3.75
DM∗ [31] 69.07 ± 7.25 96.85 ± 0.73 76.75 ± 4.51 85.64 ± 3.28
GDD-FL (Ours) 73.34 ± 1.28 96.86 ± 0.34 81.37 ± 7.34 87.72 ± 10.73

We also present the visualizations of our synthetic data in Fig. 2, where the
first row shows negative samples and the second row shows positive samples.
Each column represents the synthetic images distilled by a different client. We
observed that the synthetic images underwent style changes based on the original
dermoscopy images and contain more texture and style information useful for
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Fig. 2. Visualization of our synthetic images, including the positive and negative sam-
ples from ten distributed clients.

training a classification model. However, these semantics make the appearance
abnormal from the human view, and therefore, it is hard to tell what these
images exactly represent.

3.4 Detailed Analysis

Ablation Analysis: We also conduct an ablation study to evaluate the impact
of our proposed distribution change. Results are shown in Table 1, where we com-
pare the performance of GDD-FL to that of the baseline data distillation method,
DM, and to the results of training a model with a randomly sampled subset of 10
or 100 images per class (“R.S.@10” and “R.S.@100”). The DM method is trained
without distribution change. As seen from the table, when trained with the same
number of samples, GDD-FL achieves significantly better AUC scores, with an
improvement of nearly 6% over random sampling. Moreover, the comparison
between DM and GDD-FL further confirms the effectiveness of our proposed
distribution change. While the performance of DM drops slightly in the Non-IID
setting, GDD-FL demonstrates stable performance across both IID and Non-IID
settings. Notably, the significant improvement brought by GDD-FL suggests that
the distribution change not only enhances generalization but also leads to more
diverse semantics, thereby improving classification learning.

Computation Analysis: We further count the computational costs to make a
comparison between GDD-FL and the traditional FedAVG. FedAVG trains the
model in parallel for 1 h, requiring 16848 MB GPU. Our method involves dis-
tillation training at local sites (1.2 h, 9561 MB GPU) and classification training
at the server (0.1 h, 16848 MB GPU). It indicates that our method minimizes
communication resources while using similar computational resources.

Privacy Protection: GDD-FL condenses numerous real images into a smaller
set of synthetic images. By treating the synthetic images as learnable variables
and inputting them along with real images into a fixed network, we minimize
the discrepancy between their feature outputs. This training aligns the synthetic
images with the overall distribution of the real dataset, rather than specific
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individual images. We also apply random perturbations to the real distribution,
reducing privacy risks. Consequently, the synthetic data doesn’t contain precise
personal information and is not part of the original dataset.

4 Conclusion

In this paper, we introduce a communication-efficient federated skin lesions
classification framework using generalizable data distillation, named GDD-FL.
Unlike current data distillation methods that align synthetic images to a fixed
distribution, our GDD simulates the possible inter-client distribution drifts and
produces synthetic images with better diversity and distribution alignment. The
experimental results on the ISIC-2020 dataset demonstrate that our GDD-FL
framework consistently outperforms other methods in terms of classification
accuracy while reducing communication costs and protecting privacy.
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Abstract. Skin lesion segmentation (SLS) plays an important role in
skin lesion analysis. Vision transformers (ViTs) are considered an auspi-
cious solution for SLS, but they require more training data compared to
convolutional neural networks (CNNs) due to their inherent parameter-
heavy structure and lack of some inductive biases. To alleviate this issue,
current approaches fine-tune pre-trained ViT backbones on SLS datasets,
aiming to leverage the knowledge learned from a larger set of natural
images to lower the amount of skin training data needed. However, fully
fine-tuning all parameters of large backbones is computationally expen-
sive and memory intensive. In this paper, we propose AViT, a novel
efficient strategy to mitigate ViTs’ data-hunger by transferring any pre-
trained ViTs to the SLS task. Specifically, we integrate lightweight mod-
ules (adapters) within the transformer layers, which modulate the fea-
ture representation of a ViT without updating its pre-trained weights.
In addition, we employ a shallow CNN as a prompt generator to create
a prompt embedding from the input image, which grasps fine-grained
information and CNN’s inductive biases to guide the segmentation task
on small datasets. Our quantitative experiments on 4 skin lesion datasets
demonstrate that AViT achieves competitive, and at times superior, per-
formance to SOTA but with significantly fewer trainable parameters. Our
code is available at https://github.com/siyi-wind/AViT.

Keywords: Vision Transformer · Data-efficiency · Efficiency · Medical
Image Segmentation · Dermatology

1 Introduction

Melanoma is the most common and dangerous skin malignancy estimated to
cause 97,610 new cases and 7,990 deaths in 2023 the United States alone [32],
yet early diagnosis and treatment are highly likely to cure it. Automated skin
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lesion segmentation (SLS), which provides thorough qualitative and quantitative
information such as location and border, is a challenging and fundamental oper-
ation in computer-aided diagnosis [30]. As a pre-processing step of diagnosis,
it boosts the accuracy and robustness of classification by regularizing attention
maps [40], offering the region of interest for wide-field images [4], or removing
lesion-adjacent confounding artifacts [1,27]. On the other hand, SLS can serve as
a simultaneously optimizing task for classification, enabling the models to obtain
improved performance on both two tasks [39]. SLS is also essential for skin color
fairness research [12], where the segmented non-lesion area is used to approxi-
mate skin tone [22]. Vision transformers (ViTs), with their inherent capability
to model global image context through the self-attention mechanism, are a set
of promising tools to tackle SLS [17]. Though ViTs have shown improved perfor-
mance compared to traditional convolutional neural networks (CNNs) [24], they
are more data-hungry than CNNs, i.e., need more training data, given the lack
of some useful inductive biases like weight sharing and locality [35]. This poses
a significant challenge in SLS due to the limited availability of training images,
where datasets often contain only a few hundred [29] or thousand [8] samples.

To alleviate ViTs’ data-hunger, previous SLS works incorporated some induc-
tive biases through hierarchical architecture [5], local self-attention [34], or con-
volution layers [14]. Nevertheless, they trained the models from scratch and
overlooked the potential benefits of pre-trained models and valuable information
from other domains with abundant data. As transfer learning from ImageNet [9]
has been demonstrated advantageous for skin lesion tasks [28], an increasingly
popular and promising way is to deploy a large pre-trained ViT as the encoder,
and then fine-tune the entire model [37,42]. Despite achieving better perfor-
mance, these techniques that rely on transfer learning have two notable draw-
backs. First, a robust ViT typically has plenty of parameters, e.g., ViT-Base (86
million (M)) [10] and Swin-Base (88M) [25], thus making the full fine-tuning
strategy quite expensive in terms of computation and memory requirements,
especially when dealing with multiple datasets, i.e., we need to store an entire
model for each dataset. Second, updating all parameters of a large-scale pre-
trained model (full fine-tuning) on smaller datasets is found to be unstable [31]
and may instead undermine the model’s generalizable representations [41].

The newer parameter-efficient fine-tuning (PEFT) has been proposed as an
effective and efficient solution, which only tunes a small subset of the model’s
parameters. PEFT in computer vision can be divided into two main directions: 1)
prompt tuning [2,21] and 2) adapter tuning [7,38,41]. The first direction uses soft
(i.e., tunable) prompts: task-specific parameters introduced into the frozen pre-
trained ViT backbone’s input space and tuned throughout the task-learning pro-
cess. For example, Jia et al. [21] utilized randomly initialized trainable parameters
as soft prompts and prepended them to pre-trained ViT’s input for downstream
recognition tasks. The second direction uses adapters: trainable lightweight mod-
ules inserted into the transformer layers, to modify the hidden representation of the
frozen ViT rendering it suitable for a specific task. These PEFT approaches have
shown substantially increased efficiency with comparable, or even improved, per-
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formance compared to those of full fine-tuning on low-data regimes. Nonetheless,
very few works have adapted PEFT to medical imaging. Wu et al. [38] employed
adapters to steer the Segment Anything Model (SAM) [23], a promptable ViT-
based foundation model trained using 1 billion masks, to medical image segmenta-
tion tasks without updating SAM’s parameters. However, they require additional
pre-training on medical imaging data prior to adaptation as well as hard prompts
in the form of un-tunable information input, such as free-form text or a set of fore-
ground/background points, which increases the computational cost and necessi-
tates prior information collection.

To address ViTs’ data-hunger while maintaining the model’s efficiency, in
this work, we propose AViT, a novel transfer learning strategy that adapts a
pre-trained ViT backbone to small SLS datasets by using PEFT. We incor-
porate lightweight adapter modules into the transformer layers to modify the
image representation and keep the pre-trained weights untouched. Furthermore,
to enhance the information extraction, we introduce a shallow CNN network
in parallel with ViT as a prompt generator to generate a prompt embedding
from the input image. The prompt captures CNN’s valuable inductive biases
and fine-grained information, which guides AViT to achieve improved segmenta-
tion performance, particularly in scenarios with limited training data. By using
ViT-Base as the ViT backbone, the number of tunable parameters of our AViT
is 13.6M, which is only 13.7% of the total AViT’s parameters.

Our contributions can be summarized as follows. (1) To the best of our knowl-
edge, we are the first to introduce PEFT to directly mitigate ViTs’ data-hunger in
medical image segmentation. (2) We propose AViT, featuring adapters for trans-
ferring a pre-trained ViT to the SLS task and a prompt generator for enhanc-
ing information extraction. (3) The experimental results on 4 different public
datasets indicate that AViT surpasses previous SOTA PEFT algorithms and
ViT-based SLS models without pre-trained backbones (gains 2.91% and 2.32%
on average IOU, respectively). Further, AViT achieves competitive, or even supe-
rior performance, to SOTA ViT-based SLS models with pre-trained backbones
while having significantly fewer trainable parameters (13.6M vs. 143.5M).

2 Methodology

In skin lesion segmentation (SLS), the model is required to predict a segmen-
tation map Y ∈ {0, 1}H×W that partitions lesion areas based on an RGB skin
image X ∈ R

H×W×3. In Fig. 1-a, AViT applies a ViT backbone pre-trained on
large natural image datasets to the downstream SLS task through adapters and
a prompt generator and only optimizes a few parameters. We briefly describe
the plain ViT backbone in Sect. 2.1 and discuss the details of AViT in Sect. 2.2.

2.1 Basic ViT

A plain ViT [10] backbone contains a patch embedding module and L trans-
former layers (Fig. 1-b). Given an image X, the patch embedding module first
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Fig. 1. Architecture of AViT: (a) Model overview with its prompt generator (a shal-
low CNN network), a large pre-trained ViT backbone with adapters, and a compact
decoder. (b) Model details. (c) Details of a transformer layer with adapters. (d) Details
of our adapters. During training, all modules in (b,c,d) contoured with blue borders
are frozen, which encompasses 86.3% of AViT’s parameters.

splits the image into N non-overlapping patches, then flattens and maps them
to D-dimensional patch embeddings x ∈ R

N×D through a linear projection,
where N = HW

P 2 is the number of patches, and (P ,P ) is the patch size. The
embedding sequence is then prepended with a learnable [class] token xclass to
get x0 = [xclass;x] ∈ R

(N+1)×D. To utilize the spatial prior, learnable posi-
tion embeddings Epos ∈ R

(N+1)×D, defined in [10], are added to x0 to get
z0 = x0 + Epos, which is the input of the first transformer layer. Each trans-
former layer (Fig. 1-c without the adapters) comprises a multi-head self-attention
module (MSA) and a multi-layer perceptron module (MLP), along with layer
norm (LN). The output of the lth transformer layer zl ∈ R

(N+1)×D is:

z′
l = MSA(LN(zl−1)) + zl−1 (1)

zl = MLP (LN(z′
l)) + z′

l. (2)

After getting the output of the final transformer layer zL, we remove its [class]
token and reshape it to a 2D feature representation V ∈ R

H
P ×W

P ×D.

2.2 AViT

Given a pre-trained ViT backbone, we integrate adapters in each transformer
layer to adjust the generated feature representation V adapted to skin images
while leaving the weights of the backbone fixed. In addition, to enhance the
information extraction, we employ a prompt generator in parallel, which is a
shallow CNN network that produces a prompt embedding T based on the input
image. Finally, a lightweight decoder combines V and T to predict a segmenta-
tion map. During training, we solely optimize the adapters, prompt generator,
layer norm in the ViT backbone, and decoder, which collectively account for
13.7% of AViT’s parameters. The details of these extensions are as follows.
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Adapter Tuning: Similar to [20], we insert the adapter after MSA and MLP
of each transformer layer (Fig. 1-c). The adapter (Fig. 1-d) contains two linear
layers and a GELU function, which first projects the D-dimensional input into
a smaller dimension D

r , where r is the reduction ratio, and projects it back to D

dimension, i.e., Adapter(input) = GELU(input·W down)W up. W down ∈ R
D×D

r

and W down ∈ R
D
r ×D. The output of lth transformer layer with adapters is:

z′
l = Adapter(MSA(LN(zl−1))) + zl−1 (3)

zl = Adapter(MLP (LN(z′
l))) + z′

l. (4)

Information Enhancement by Prompt Tuning: Inspired by the prompt
tuning [13,21], we deploy soft prompts to extract more information from images
and enrich the SLS task learning. Specifically, we utilize the first stage of a
ResNet-34 (including 7 convolutional layers) as the prompt generator to auto-
matically create a prompt embedding T from the input image. The prompt is
hypothesized to grasp CNN’s helpful inductive biases and fine-grained informa-
tion, e.g., spatial details, boundaries, and texture, to facilitate AViT’s segmen-
tation ability despite the small training datasets. Our soft prompt produced by
the network is more flexible, customized to each input image, and includes rich
information, in contrast to previous soft prompts that are simple free tunable
parameters and remain constant for all inputs. Moreover, it is worth noting that
our prompt generator has only a small number of parameters (0.23M), which
is different from previous hybrid models combining a ViT with a large CNN
backbone, e.g., ResNet-34 (21.3M) [19,37] or ResNet-50 (23.5M) [36].

Lightweight Decoder: We incorporate a compact decoder for efficient predic-
tion, as opposed to prior works that use complex decoding architectures involving
multi-stage up-sampling, convolutional operations, and skip connections [18,37].
This choice is driven by the powerful and over-parameterized nature of large
pre-trained ViT backbones, which have demonstrated strong transferability to
downstream tasks [28]. As visualized in Fig. 1-b, after getting the feature rep-
resentation V from the ViT backbone and the prompt embedding T from the
prompt generator, we first pass V through the atrous spatial pyramid pooling
module (ASPP) proposed in [6], which uses multiple parallel dilated convolu-
tional layers with different dilation rates, to obtain a feature that extracts local
information while capturing lesion context at different scales. After that, we up-
sample the output feature of ASPP to get V̂ , which has the same resolution as
T . Finally, V̂ is concatenated with T and sent to a projection head, which is
formed by 3 convolutional layers connected by ReLU activation functions.

3 Experiments

Datasets and Evaluation Metrics: We evaluate our AViT on 4 public SLS
databases collected from different sources: ISIC 2018 (ISIC) [8], Dermofit Image
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Table 1. Skin lesion segmentation (SLS) results comparing BASE (AViT w/o both
adapters and the prompt generator and is fully fine-tuned), AViT, and SOTA algo-
rithms. We report the models’ parameter count in millions (M). The 2nd column shows
which pre-trained backbone the model used. R-34/50 represents ResNet-34/50.

Model Pretrained
backbone

#Total
Param.
(M) ↓

#Tuned
Param.
(M) ↓

GFL-OPs↓ Segmentation Results in Test Sets (%)

Dice ↑ IOU ↑
ISIC DMF SCD PH2 Avg±std ISIC DMF SCD PH2 Avg±std

(a) Full Fine-tuned BASE & Proposed PEFT Method
BASE ViT-B 91.8× 91.8× 18.0 90.77 91.69 91.95 95.64 92.510.22 83.71 84.89 85.42 91.72 86.430.34

AViT ViT-B 99.4 (13.6×) 13.6× 20.9 91.74 92.04 93.16 95.66 93.150.42 85.22 85.47 87.39 91.72 87.450.70

(b) PEFT Methods
VPT ViT-B 92.8 (7.0×) 7.0× 26.5 90.89 91.26 89.09 93.14 91.100.46 83.83 84.14 80.76 87.27 84.000.74

AdaptFormer ViT-B 93.0 (7.2×) 7.2× 18.2 91.12 91.27 89.65 93.76 91.450.42 84.15 84.18 81.49 88.33 84.540.67

(c) SLS Methods w/o Pre-trained Backbones & Trained From Scratch
SwinUnet None 41.4× 41.4× 8.7 89.64 90.67 89.77 94.24 91.080.57 81.94 83.19 82.07 89.24 84.110.79

UNETR None 87.7× 87.7× 20.2 89.60 90.53 88.13 93.92 90.550.87 81.86 83.02 79.96 88.68 83.381.24

UTNet None 10.0× 10.0× 13.2 89.68 89.87 88.11 93.29 90.230.61 81.99 81.91 79.71 87.62 82.810.77

MedFormer None 19.2× 19.2× 13.0 90.47 90.85 90.60 94.82 91.680.74 83.22 83.52 83.53 90.23 85.131.12

Swin UNETR None 25.1× 25.1× 14.3 90.19 91.00 90.71 94.54 91.610.49 82.78 83.77 83.54 89.74 84.960.74

(d) SLS Methods w/ Pre-trained Backbones & Fully Fine-tuned
H2Former R-34 33.7× 33.7× 24.7 91.17 91.29 92.76 95.65 92.720.63 84.35 84.22 87.04 91.77 86.850.91

FAT-Net R-34,
DeiT-T

28.8× 28.8× 42.8 91.26 91.32 93.03 96.07 92.920.48 84.42 84.25 87.23 92.48 87.100.80

BAT R-50 46.2× 46.2× 10.3 91.33 91.20 92.95 95.84 92.830.46 84.40 84.03 87.08 92.04 86.890.78

TransFuse R-50,
DeiT-B

143.5× 143.5× 63.4 91.73 91.96 94.11 96.18 93.500.27 85.22 85.33 89.03 92.69 88.070.47

Library (DMF) [3], Skin Cancer Detection (SCD) [16], and PH2 [29], which
contain 2594, 1212, 206, and 200 skin images along with their segmentation
maps, respectively. We perform 5-fold cross-validation and measure our model’s
segmentation performance using Dice and IOU metrics, computational cost at
inference via gigaFLOPs (GFLOPs), and memory footprint via the number of
needed parameters. Due to the table width restriction and the high number of
columns, we only report the standard deviation (std) of average Dice and IOU
in tables and provide the std for each dataset in the supplementary material.

Implementation Details: We resize the images to 224×224 and augment them
by random scaling, shifting, rotation, flipping, Gaussian noise, and brightness
and contrast changes. The ViT backbone of AViT is a ViT-B/16 [10], with a
patch size of 16×16, pre-trained on ImageNet-21k. Similar to [41], the reduction
ratio r of the adapters is 4. The output dimension of ASPP is 256. All models
are deployed on a single TITAN V and trained using a combination of Dice and
binary cross entropy loss [11,33] for 200 epochs with the AdamW optimizer [26],
a batch size of 16, and an initial learning rate of 1×10−4, which changes through
a linear decay scheduler whose step size is 50 and decay factor γ = 0.5.

Comparing Against The Baseline (BASE): BASE is established by remov-
ing the adapters and the prompt generator of AViT and optimizing all the param-
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Fig. 2. Visual comparison with different SOTA methods. The green contours are the
ground truth, and the red contours are the segmentation results. (Color figure online)

eters during training. In Table 1-a, AViT achieves superior performance com-
pared to BASE, with average IOU and Dice improvements of 1.02% and 0.64%,
respectively, while utilizing significantly fewer trainable parameters (13.6M vs.
91.8M). This suggests that BASE exhibits overfitting, and full fine-tuning is
unsuitable for transferring knowledge to smaller skin datasets, whereas AViT
effectively leverages the learnt knowledge and demonstrates strong generaliza-
tion capability on the SLS task. When considering the memory requirements
for the 4 datasets, BASE would require storing 4 entirely new models, resulting
in a total of 91.8 × 4 = 367.2M parameters. On the contrary, AViT only needs
to store the pre-trained ViT backbone once, resulting in reduced storage needs,
i.e., 85.8+13.6× 4 = 140.2M. As the number of domains increases, the memory
savings offered by AViT compared to BASE will become even more pronounced.

Comparing Against State-of-the-Art (SOTA) Methods: We conduct
experiments on SOTA PEFT and SLS approaches. We first reproduced VPT [21]
that added learnable visual prompts in the input space and AdaptFormer [7] that
introduced adapters in the transformer layers. We set the number of prompts in
VPT to 100. In Table 1-b, AViT surpasses them across all datasets (gains 2.91%
on average IOU over AdaptFormer), with comparable trainable parameters.

Additionally, we compare various ViT-based SLS algorithms and divide them
into two groups. Group 1 is models without pre-trained backbones and trained
from scratch: SwinUnet [5], UNETR [18], UTNet [14], MedFormer [15], and Swin
UNETR [34]. Group 2 is models with pre-trained backbones and fully fine-tuned:
H2Former [19], FAT-Net [37], BAT [36], and TransFuse [42]. H2Former and BAT
used pre-trained ResNet but randomly initialized transformer modules. Table 1-
c shows that AViT outperforms Group 1 across all datasets by a large margin
(increases average IOU of MedFormer by 2.32%), with comparable and even
fewer trainable parameters (13.6M vs. 19.2M). Table 1-d illustrates that AViT
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Table 2. Experiments using different pre-trained ViT backbones and ablation study
of AViT. ∗ means the pre-trained backbone is frozen throughout training. −P or −A

represent not using the prompt generator or adapters in AViT.

Model Pretrained
backbone

#Total
Param.
(M)

#Tuned
Param.
(M)

GFL-OPs Segmentation Results in Test Sets (%)

Dice ↑ IOU ↑
ISIC DMF SCD PH2 Avg±std ISIC DMF SCD PH2 Avg±std

(a) Applicability to Various Pre-trained ViT Backbones
BASE Swin-B 63.8× 63.8× 15.6 91.63 91.70 92.71 95.88 92.980.37 85.05 84.89 86.60 92.13 87.170.61

AViT Swin-B 68.9
(9.5×)

9.5× 18.3 91.54 91.73 93.60 95.68 93.140.39 84.90 84.94 88.12 91.77 87.430.64

BASE Swin-L 139.8× 139.8× 32.3 91.64 91.69 92.93 95.83 93.020.25 85.08 84.86 86.97 92.04 87.240.43

AViT Swin-L 151.1
(17.6×)

17.6× 36.3 91.56 91.91 93.74 96.07 93.320.31 84.93 85.24 88.38 92.47 87.760.50

BASE ViT-L 311.2× 311.2× 61.2 91.37 91.76 93.23 95.86 93.060.29 84.60 84.99 87.52 92.09 87.300.47

AViT ViT-L 336.9
(33.7×)

33.7× 67.7 91.54 91.77 93.48 95.73 93.130.48 84.88 85.01 87.94 91.85 87.420.79

BASE DeiT-B 91.8× 91.8× 18.0 91.48 91.82 93.63 95.83 92.940.32 84.77 85.10 86.53 92.04 87.110.52

AViT DeiT-B 99.4
(13.6×)

13.6× 20.9 91.70 91.85 93.67 95.97 93.300.31 85.14 85.17 88.22 92.30 87.710.51

(b) Ablation Study
BASE∗ ViT-B 91.8

(6.0×)
6.0× 18.0 87.18 89.23 86.24 90.17 88.200.46 77.92 80.81 76.27 82.30 79.330.65

AViT−P ViT-B 98.9
(13.2×)

13.2× 19.4 91.47 91.80 91.18 94.75 92.300.31 84.74 85.04 83.98 90.09 85.960.48

AViT−A ViT-B 92.3
(6.5×)

6.5× 19.5 90.87 91.00 89.09 93.87 91.210.83 83.78 83.72 81.18 88.53 84.301.19

AViT ViT-B 99.4
(13.6×)

13.6× 20.9 91.74 92.04 93.16 95.66 93.150.42 85.22 85.47 87.39 91.72 87.450.70

achieves competitive or higher segmentation performance compared to Group 2,
with fewer trainable parameters. For instance, AViT achieves a marginally lower
average Dice compared to TransFuse (0.35% difference), yet its parameter count
and computational complexity (GFLOPs) are 1/10 and 1/3 less than that of
TransFuse, respectively. Figure 2 visualizes AViT’s segmentation performance.

AViT on Different Pre-trained ViT Backbones: We conduct experiments
using ViTs in varied sizes, structures, or training strategies, including ViT-L/16,
Swin-B, Swin-L [25], and DeiT-B, as the pre-trained backbone. For Swin-B/L,
we use the output of its 3rd stage as the encoded image feature, whose resolution
is the same as ViT-B’s output feature. DeiT-B and ViT-B have the same archi-
tecture but different training strategies. In Table 2-a, for each ViT backbone,
AViT achieves competitive and even higher performance compared to fully fine-
tuned BASE, but with substantially fewer parameters (trainable and total) for
the 4 datasets, indicating the applicability of our method on different ViTs.

Ablation Study: To show the efficacy of our proposed components in Sect. 2.2,
we freeze the parameters of BASE’s pre-trained ViT to get BASE∗ and remove
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the adapters and prompt generator in AViT to get AViT−A and AViT−P , respec-
tively. In Table 2-b, BASE∗ attains average Dice and IOU of 88.20% and 79.33%,
respectively. However, it still falls far behind fully fine-tuned BASE with 92.51%
and 86.43% on average Dice and IOU, respectively. After adding adapters to
BASE (AViT−P ), the average Dice and IOU increase by 4.10% and 6.63%,
respectively; after adding a prompt generator to BASE (AViT−A), the average
Dice and IOU increase by 3.01% and 4.97%, respectively. Finally, AViT achieves
the highest segmentation results and significantly outperforms BASE∗ (increases
average Dice and IOU by 4.95% and 8.12%, respectively) with only 7.6M more
trainable parameters. The above results reveal that our proposed mechanisms
boost the segmentation performance, and a combination of both performs best.

4 Conclusion

We propose AViT, a new method to alleviate ViTs’ data-hunger and apply it
on small skin lesion segmentation (SLS) datasets by employing a pre-trained
ViT backbone whilst keeping computation and storage memory costs very low
via parameter-efficient fine-tuning (PEFT). Specifically, we integrate adapters
into the transformer layers to modulate the backbone’s image representation
without updating its pre-trained weights and utilize a prompt generator to pro-
duce a prompt embedding, which captures CNNs’ inductive biases and fine-
grained information to guide AViT for segmenting skin images on limited data.
Our experiments on 4 datasets illustrate that AViT outperforms other PEFT
methods and achieves comparable or even superior performance to SOTA SLS
approaches but with considerably fewer trainable and total parameters. More-
over, the experiments using different ViT backbones and an ablation study
showcase the applicability of AViT and the effectiveness of AViT’s components.
Future work will focus on improving AViT’s architecture so that it can achieve
SOTA segmentation performance while retaining computation and memory effi-
ciency.
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Abstract. Skin lesion analysis models are biased by artifacts placed
during image acquisition, which influence model predictions despite car-
rying no clinical information. Solutions that address this problem by reg-
ularizing models to prevent learning those spurious features achieve only
partial success, and existing test-time debiasing techniques are inappro-
priate for skin lesion analysis due to either making unrealistic assump-
tions on the distribution of test data or requiring laborious annotation
from medical practitioners. We propose TTS (Test-Time Selection), a
human-in-the-loop method that leverages positive (e.g., lesion area) and
negative (e.g., artifacts) keypoints in test samples. TTS effectively steers
models away from exploiting spurious artifact-related correlations with-
out retraining, and with less annotation requirements. Our solution is
robust to a varying availability of annotations, and different levels of
bias. We showcase on the ISIC2019 dataset (for which we release a subset
of annotated images) how our model could be deployed in the real-world
for mitigating bias.

Keywords: Test-time Debiasing · Robust Skin Lesion Analysis · Deep
Learning

1 Introduction

Spurious correlations between conspicuous image features and annotation labels
are easy to learn, but since they have no actual predictive power they compromise
the robustness of models. In medical image analysis, with datasets much smaller
than the typical computer vision state-of-the-art, their effect is increased. In skin
lesion analysis, one of the most studied confounders are artifacts produced during
image acquisition (such as rulers, color patches, and ink markings). Even if the
correlation of the presence of each artifact with the lesion diagnostic is small, the
combined effect suffices to distract models from clinically-robust features [1,2,8].
Mitigating bias during training is an active research area, but methods still
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Fig. 1. Test-Time Selection (TTS). An annotator provides negative (background, arti-
facts) and positive (lesion area) keypoints, used to rank and select activation units
from the last layer of the pretrained feature extractor. Features related to negative
keypoints are masked to zero.

struggle to surpass strong baselines [10]. A complementary solution is to change
the inference procedure to mitigate biases during test [4]. For that, solutions
have exploited test batch statistics for feature alignment [12,18]. However, test
batch statistics heavily rely on the batch size (the bigger, the better) and on the
homogeneity of the test distribution. For medical data, one attractive option is to
exploit (few or quickly obtainable) extra annotations to infuse domain knowledge
into the models’ predictions, increasing model robustness and trust of medical
practitioners [9].

In comparison to other medical fields, skin lesion analysis researchers have
access to rich annotations to support this path. Besides high-quality images,
there are available annotations regarding segmentation masks, dermoscopic
attributes, the presence of artifacts, and other clinical information such as age,
sex, and lesions’ anatomical site. In particular, segmentation masks experience
the most success, granting more robustness to classification. We build upon this
success to create a solution that dependd on human-defined keypoints, which
are far cheaper to annotate than lesion segmentation masks.

In this work, we propose TTS (Test-Time Selection), a method to incorporate
human-defined points of interest into trained models to select robust features
during test-time. In Fig. 1, we show a summary of our method. In more detail, we
first gather human-selected keypoints of interest (positive and negative). Then,
we rank the last layer activation units based on their affinity to the keypoints.
Finally, we mute (set to zero) the 90% worst features, using only the remaining
10% for classification. There are no changes to the models’ weights, making this
procedure lightweight and easy to integrate in different pipelines.

Our method is compatible with the daily clinical routine to avoid overwhelm-
ing medical practitioners with the technology that is intended to assist them.
The human intervention must be as quick and straightforward as possible while
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granting enough information to steer models away from spurious correlations.
We show that we can improve robustness even from a single pair of positive and
negative interest points that merely identify lesion and background, and achieve
stronger results by using the location of artifacts.

We summarize our contributions as follows:

– We propose a method for test-time selection based on human-defined criteria
that boosts the robustness of skin lesion analysis models1.

– We show that our method is effective throughout different bias levels.
– We show that a single positive and negative interest point is sufficient to

improve significantly models’ robustness.
– We manually annotate the position of artifacts in skin lesion images and use

these selected keypoints in our solution, further improving performance.

2 Related Work

Test-time debiasing can adapt deep learning to specific population characteristics
and hospital procedures that differ from the original dataset. Most methods for
test-time debiasing exploit statistics of the batch of test examples. Tent [18]
(Test entropy minimization) proposes to update batch normalization weights
and biases to minimize the entropy of the test batch. Similarly, T3A [12] (Test-
Time Template Adjuster) maintains new class prototypes for the classification
problem, which are updated with test samples, and finally used for grounding
new predictions. Both approaches rely on two strong assumptions: that a large
test batch is available during prediction, and that all test samples originate from
the same distribution.

Those assumptions fail for medical scenarios, where diagnostics may be
performed one by one, and populations attending a given center may be
highly multimodal. To attempt to work in this more challenging scenario,
SAR [13] (Sharpness-Aware and Reliable optimization scheme) proposes to per-
form entropy minimization updates considering samples that provide more sta-
ble gradients while finding a flat minimum that brings robustness regarding the
noisy samples. Despite showing good performances in corrupted scenarios (e.g.,
ImageNet-C [11]), SAR is heavily dependent on the model’s architecture, being
inappropriate for models with batch normalization layers. In contrast with these
methods, our solution does not use any test batch statistic, does not require
training nor updates to the models’ weights, and does not rely upon any partic-
ular architecture structure to improve performance.

Another approach is to change the network’s inputs to remove biasing factors.
NoiseCrop [3] showed considerable robustness improvements for skin lesion anal-
ysis by using skin segmentation masks to replace the inputs’ backgrounds with
a common Gaussian noise. Despite its benefits, NoiseCrop is hard to integrate
into clinical practice as it depends on laborious segmentation masks annotated

1 Code is available at https://github.com/alceubissoto/skin-tts.

https://github.com/alceubissoto/skin-tts
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Table 1. Comparison of TTS with state-of-the-art test-time debiasing.

Tent [18] T3A [12] SAR [13] NoiseCrop [3] TTS (Ours)

Test-time only ✓ ✓ ✓ ✓ ✓

Human-in-the loop ✗ ✗ ✗ ✓ ✓

No parameter updates ✗ ✗ ✗ ✓ ✓

Robust to changing test statistics ✗ ✗ ✓ ✓ ✓

Architecture agnostic ✗ ✓ ✗ ✓ ✓

Few extra information required – – – ✗ ✓

by dermatologists. Also, NoiseCrop discards relevant information in the patient’s
healthy skin and introduces visual patterns that create a distribution shift of its
own. Our solution does not suffer from these problems since our intervention
takes place in feature space, and we show it is effective using very few keypoints.
We summarize the differences between our method and the literature in Table 1.

3 Methodology

Previous works showed the potential of test-time debiasing, but depended on
weight updates using test batches statistics [12,18] and architecture compo-
nents [13]. We decided instead to use human feedback over positive and neg-
ative image keypoints to steer the models. We aimed at making the annotation
procedure as effortless as possible, allowing to integrate the method into the
clinical practice of skin lesion analysis. The resulting Test-Time Selection (TTS)
is summarized in Fig. 1.

TTS: Test-Time Feature Selection. We assume access to a single test sam-
ple x, associated with a set of positive Kp = {kp1, kp2, ..., kpp} and negative
Kn = {kn1, kn2, ..., knn} human-selected keypoints on the image. The positive
keypoints represents areas of the image that should receive more attention (e.g.,
the lesion area), while the negative points represent area of the image that should
be ignored (e.g., the background, or spurious artifacts). We denote the feature
extractor from a pretrained neural network by f(·), and the associated classifier
by g(·).

For each image x, the feature extractor generates a representation f(x), which
is upsampled to match the original image x size for test-time selection. For
each channel c in f(x), we extract the values corresponding to the coordinates
specified by the keypoints and compute their sums Spc

=
∑

k∈Kp
f(x)c[k], and

Snc
=

∑
k∈Kn

f(x)c[k], where f(x)c[k] denotes the value at the keypoint k for
channel c of f(x). We calculate a score Sc for each channel c as the difference
between the sums of the representations at the positive and negative keypoints:

Sc = αSpc
− (1 − α)Snc

, (1)
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where α controls the strength of the positive and negative factors. We use α = 0.4
to give slightly more weight to the negative keypoints related to the sources of
bias (i.e., artifacts) investigated in this work. If the keypoint annotation confi-
dently locates positive or negative points of interest, α can be adjusted to give
it more weight.

We use the scores to rank the channels with higher affinity to the input
keypoints. We define a set T which consists of the indices corresponding to the
top λ% scores in Sc, i.e., T = {c : Sc is among the top λ% of scores}. In other
words, λ controls how much information is muted. In general, we want to mute
as much as possible to avoid using spurious correlations. In our setup, we keep
only 10% of the original activation units. Next, we form a binary mask M with
values mc defined as: mc = 1, if c ∈ T , or mc = 0, if c /∈ T .

Finally, the masked version of f(x), denoted as f ′(x), is computed by f(x):
f ′(x) = f(x) � M , where � represents the element-wise multiplication. The
masked feature map f ′(x) is the input for our neural network’s classifier compo-
nent g(·), which yields the final prediction. As such procedure happens individu-
ally for each dataset sample, different samples can use the activation units that
best suit it, which we verified to be crucial for the effectiveness of this method.

Keypoints. We always assume having access to the same number of positive
and negative keypoints (i.e., for 2 keypoints, we have one positive and one nega-
tive). We explore two options when selecting keypoints. The first option is more
general and adaptable for most computer vision problems: Positive keypoints
represent the foreground target object (e.g., lesion), while negative keypoints
are placed in the background. To extract these keypoints we make use of skin
lesion segmentation masks2. Using keypoints instead of the whole mask lessens
the impact of mask disagreement (from annotators or segmentation models) in
the final solution.

The second option uses domain knowledge to steer the model’s prediction
further: instead of sampling negative keypoints from the background, we restrict
the points to the artifacts. The main benefit is allowing models to consider the
skin areas around the lesion, which can provide clinically meaningful features.
For that option, we manually annotate the samples on our test sets, adding
negative keypoints on 4 types of artifacts: dark corners, rulers, ink markings,
and patches. Other types artifacts (hair, gel bubbles, and gel borders) are hard
to describe with few keypoints, and were not keypoint-annotated, but were used
for trap set separation. This fine-grained annotation, allows us to boost the
importance of negative keypoints by setting α to 0.2, for example.

Data and Experimental Setup. We employ the ISIC 2019 [6,7,16] dataset.
The class labels are selected and grouped such that the task is always a binary
classification of melanoma vs. benign (other, except for carcinomas). We removed
from all analysis samples labeled basal cell carcinoma or squamous cell carci-
noma. Train and test sets follow the “trap set” separation introduced by Bissoto

2 We employ the ground-truth segmentation masks when available, and infer the seg-
mentation with a deep learning model [5] when they are not.
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Fig. 2. Attention maps before and after our feature selection. Using a few keypoint
annotations, TTS successfully reduces the importance of spurious features in the back-
ground, shifting the model’s focus to the lesion.

et al. [2,3], that craft training and test sets where the correlations are amplified
between artifacts and the malignancy of the skin lesion, at the same time that
correlations in train and test are opposite. Trap sets follow a factor that controls
the level of bias, from 0 (randomly selected sets) to 1 (highly biased). In detail,
for each sample, the factor controls the probability of following the train-test
separation suggested by the solver or assigning it randomly to an environment.

All our models consider Empirical Risk Minimization [17] as the training
objective. Our baseline is doing test-time augmentation with 50 replicas, a stan-
dard in skin lesion analysis [14]. For a more realistic clinical setup, we always
assume to have access to a single test image at each time. The results for TTS
also perform test-time augmentation with 50 replicas, showing that our model
can easily be combined with other test-time inference techniques. The pretrained
models used for all the experiments were fine-tuned for 100 epochs with SGD
with momentum, selecting the checkpoint based on validation performance3.
Conventional data augmentation (e.g., vertical and horizontal shifts, color jit-
ter) are used as training and testing. All results refer to the average of 5 runs
(each with a different training/validation/test partition4 and random seed).

4 Results

We show our main results in Table 2, comparing our solution with the state-
of-the-art of test-time adaptation. All models are evaluated in trap sets, which
create increasingly hard train and test partitions. On training, biases are ampli-
fied. On test, the correlations between artifacts and labels are shifted, punishing
the models for using the biases amplified on training. The “training bias” controls
the difficulty, being 1.0 as the hardest case. In this scenario, traditional trained
models, even with test-time augmentation, abdicate from learning robust fea-
tures and rely entirely on biases. Despite NoiseCrop [3] can highly improve the
3 For choosing these models hyperparameters, we performed a grid-search over learning

rate (values 0.00001, 0.0001, 0.001), and weight-decay (0.001, 0.01, 0.1, 1.0), for 2
runs on a validation set randomly split from the training set.

4 Training/validation/test contains 60/10/30% of the total data.
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Table 2. Main results and ablations (on number and annotation source of keypoints)
for the hardest trap tests (training bias = 1.0). TTS achieves state-of-the-art perfor-
mances while using very few annotated keypoints.

Method #Keypoints Annotation Alpha AUC

baseline Test-Time Aug – – – 58.4 ±1.6

literature T3A [12] – – – 56.7 ±3.2

literature Tent [18] – – – 54.1 ±14.5

literature NoiseCrop [3] 50,176 segm. mask – 72.7 ±3.1

TTS (ours) 40 artifacts 0.2 75.0 ±1.1

ablation TTS (ours) 2 segm. mask 0.4 68.2 ±1.5

ablation 10 segm. mask 0.4 71.6 ±2.2

ablation 20 segm. mask 0.4 72.9 ±2.4

ablation 40 segm. mask 0.4 73.3 ±2.6

ablation 100 segm. mask 0.4 73.9 ±2.5

ablation 2 artifacts 0.4 69.6 ±1.1

ablation 40 artifacts 0.4 73.3 ±0.9

ablation 2 artifacts 0.2 72.2 ±0.9

performance, it requires the whole segmentation mask, which is expensive to
annotate and suffer from low inter-annotator agreement issues [15]. We show
that TTS consistently surpasses baselines using very few annotated keypoints.
By analyzing the attention maps before and after our procedure (Fig. 2), TTS
successfully mitigates bias, diminishing the importance of artifacts. Also, its flex-
ibility allows for better results once the annotated keypoints locate the artifacts
biasing the solution (e.g., dark corners, rulers, ink markings, and patches).

Amount of Available Keypoints. We evaluate the effect of limiting the avail-
ability of keypoints. This is an essential experiment for assessing the method’s
clinical applicability. If it requires too many points to be effective, it may over-
whelm clinical practitioners with annotating duties, which beats the purpose of
using computer-assisted diagnosis systems. In Table 2, we show that our method
can positively impact the robustness of pretrained models even in extreme con-
ditions where a single negative and positive keypoint is annotated. Aside from
the minimum impact in the clinical pipeline, it also shows to be robust to differ-
ent annotators since the improvements are consistent by sampling positive and
negative keypoints at random from segmentation masks.

Keypoint Annotation Granularity. The flexibility of using keypoints
(instead of full segmentation masks) not only allows for easy inclusion in the
daily clinical routine, but also allows for fine-grained concepts to be annotated
without being time-consuming. In this experiment, we manually annotated the
trap test sets with keypoints that locate 4 artifacts: dark corner, ruler, ink mark-
ings, and patches. With fine-grained annotations of artifacts to provide negative
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Fig. 3. Ablation of our TTS over different intensities of bias. TTS consistently out-
performs NoiseCrop [3] across bias intensities while using a fraction of the extra-
information available: NoiseCrop uses the whole segmentation mask, while in this
example, we use 20 positive and 20 negative keypoints.

keypoints, we can increase negative keypoints importance by shrinking α, achiev-
ing our best result. We show our results in Table 2.

Using artifact-specific keypoints instead of background ones does not punish
models for using the lesions’ surrounding skin in the decision process, being
beneficial for diagnosis classes such as actinic keratosis, where the skin itself
provide clinically-meaningful information. This change further boosts previous
gains both when 1 or 20 positive and negative points were available. Our method
can be used in other scenarios, where not only negative but relevant positive
information can be encouraged to be used by models, such as the presence of
dermoscopic attributes.

Different Levels of Bias. We evaluate our solution over different levels of bias
from trap sets. Trap sets allow a better assessment of models ability to generalize.
As the training bias increases, the task becomes increasingly hard for the model,
as correlations between artifacts and labels get harder to pass unnoticed. At the
same time, the higher the bias factor, the better trap test does at punishing
the model for exploiting spurious correlations. When the training bias is low,
robust models are expected to achieve a worse result than unbounded ones,
as exploiting spurious correlations is rewarded by evaluation metrics. However,
even if we can not perfectly measure the bias reliance in intermediate bias,
performing well in these situations is crucial since real-world scenarios might
not present exaggerated biases. In Fig. 3, we show that our solution outperforms
NoiseCrop across all bias factors. We hypothesize that NoiseCrop introduces a
distribution shift when it replaces the inputs’ background with noise. We avoid
this shortcoming by intervening in the feature space instead of the pixel space,
which proved robust to the sparsity induced by our procedure.
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5 Conclusion

We propose a method for test-time debiasing of skin lesion analysis models, deal-
ing with biases created by the presence of artifacts on the ISIC 2019 dataset. Our
method select features during inference taking user-defined keypoints as a guide
to mute activation units. We show that our method encourages the attention
map focus more on lesions, translating to higher performance on biased scenar-
ios. We show that our model is effective throughout different levels of bias even
with single pair of annotated keypoints, thus allowing frugal human-in-the-loop
learning. It benefits from fine-grained annotations, such as artifact locations,
and is lightweight as it does not require training. In future works, we want to
explore the possibility of keeping a memory bank of important previously anno-
tated concepts to consider before each prediction. Muting features is a general
principle, extensible to other data modalities, including text (e.g., from medical
summaries), an idea that we would also like to explore in the future.
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Abstract. Providing visual cues to justify the decisions of deep neural
networks contributes significantly to increase their explainability. Typi-
cal strategies to provide explanations rely on saliency or attention maps
that may not be easy to interpret. Moreover, the actual decision-making
process is still a black-box. This paper proposes to overcome these limi-
tations using class prototypes, both at the global (image-wide) and local
(patch-based) levels. These associate images with the corresponding pre-
dictions by measuring similarity with learned image/patch descriptors.
Our approach offers both global and local explanations for the decisions
of the model, providing a clearer justification that resembles the human
reasoning process. The proposed approach was applied to the diagno-
sis of skin lesions in dermoscopy images, outperforming not only black-
box models, which offer no explanations, but also other state-of-the-art
explainable approaches.

Keywords: Skin Cancer · Prototype Networks · CBIR · Explainable
AI

1 Introduction

In the last years, the landscape of medical image analysis has been transformed,
mainly due to the adoption of deep learning (DL). The field of skin image,
in particular dermoscopy, is a clear example, where recent studies have shown
that DL achieves similar or even superior performance to that of clinicians [6].
While most experiments were conducted in artificial settings, it is undeniable
the collaborative value of AI [18]. Another lesson to be taken from these studies
is that any AI model should incorporate mechanisms to explain its decisions,
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increasing its safety and pedagogical value. As matter of fact, the incorporation
of such mechanisms was recently recommended in a set of guidelines [5].

Explainable models can be divided into two main categories [20]: i) those that
are intrinsically interpretable, being possible to understand the decision making
process; and ii) those that resort to additional models to explain their output
(post-hoc methods). Most works in dermoscopy fit in the latter. Methods like
[7,10,18] use saliency maps (e.g., Grad-CAM [15]) to visualize the regions of
the image that contributed to the predictions of DL models. Other methods like
LIME [11] have also been used [16]. While these approaches are quite visual, the
actual decision process still lacks clarity.

Example-based approaches are based on the assessment of past cases to infer
a diagnosis. One of the most popular approaches is content-based image retrieval
(CBIR) [12,17]. This family of methods use the features of a DL model, usually
trained for classification, to compute image distances, identifying dermoscopy
images that are close in the latent space. However, there is no guarantee that
the latent space is actually capturing lesion similarities. Moreover, the original
classifier still comes short of being explainable. Finally, clinicians also screen the
lesions for local structures that are hallmarks of each class. Adding a region-
based reasoning to a diagnostic system may increase its complexity and often
requires additional domain knowledge, such as annotations to identify clinically
relevant structures [8]. Recent works in computer vision have overcome this issue
using a prototypical part-based architecture called ProtoPNet [2], which is able
to identify relevant region prototypes with minimum supervision. However, this
method has been shown to underperform when compared with non-interpretable
networks. Additionally, the learning process requires setting a trade-off between
different loss terms. This is not trivial and leads to prototypes that lack diversity.

We propose a new model that easily integrates the best characteristics of
CBIR and ProtoPNet, while simultaneously overcoming their limitations. The
proposed approach learns: i) a set of global prototypes for each lesion class, thus

Fig. 1. The proposed method is able to justify its decisions using both image-level
(global) explanations, obtained by retrieving the most similar training images for the
predicted diagnosis, and patch-level (local) explanations that identify discriminative
regions using heatmaps of similarity to local prototypes from training images.
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Fig. 2. Proposed approach - the method comprises two branches: i) a global branch
that compares an input image with a set of class prototypes; and ii) a local branch,
where regions of the input image are compared with local prototypes.

achieving a more interpretable classifier that predicts a diagnosis from similari-
ties; and ii) local prototypes to perform an interpretable part-based classification.
Both the global and local feature spaces can be used to perform CBIR, in order to
identify class specific images or image patches that justify the decision, as shown
in Fig. 1. We conduct extensive experiments to validate our approach using the
ISIC 2019 dataset and various CNN backbones. Our results demonstrate that
the proposed approach achieves competitive performances when compared to
the black-box models and ProtoPNet-based approaches, while providing a more
transparent classification.

2 Proposed Approach

Figure 2 shows the scheme of our proposal. A CNN backbone is used to extract
a set of feature maps, F . Any CNN backbone can be used, as shown in our
experimental results, where we compare several architectures. The feature maps
are forwarded to the global and local branches. Each branch is responsible for
estimating a probability vector ŷ ∈ R

C , where C is the number of lesion classes.
These estimates are obtained by computing a weighted average of the similarity
between the latent vectors of the input image and learned class prototypes. The
final classification is then the class with the highest probability obtained from
averaging the two estimates.

The local branch identifies image patches that are specific of each class, while
the global branch learns image-level representations of those classes. In both
cases, the proposed approach is learning feature representations and simultane-
ously clustering them, ensuring that both local and global CBIR explanations
can be provided.

To train the model, we combine the cross entropy losses for the global and
local branches, Lglobal and Llocal, with a clustering loss, Lcluster, that ensures the
learned prototypes represent centroids of class-specific clusters. The final loss is

L = Lglobal + Llocal + λLcluster , (1)
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where λ is a hyperparameter. Each individual loss term is detailed below.

2.1 Clustering

ProtoPNet [2] combines two loss terms to force prototypes to be near patches
from the corresponding class. However, these losses behave poorly when the
training set is severely imbalanced, as it will repeatedly push prototypes from
minority classes away from the patch-level representations of the dominant
classes, while seldomly pulling them towards the correct patches representations.

As such, we modified the learning process of all prototypes to ensure that
they effectively capture clusters from their respective classes. Specifically, let
pck ∈ R

D define the prototype vector, of size D, corresponding to the k-th (global
or local) prototype of class c. We adopt a mini-batch K-Means algorithm [14] to
iteratively update the desired position, f̄ck ∈ R

D, of prototypes pck according to

f̄ck ←− (1 − 1

nck

)f̄ck +
1

nck

fi , (2)

where fi is the feature vector of sample i assigned to prototype pck , and nck
is the current total number of samples that were assigned to pck . Then, the
clustering loss used to regularize the prototypes is given by

Lcluster =
1

CK

C∑

c=1

K∑

k=1

∥∥f̄ck − pck

∥∥
2

, (3)

where K is the number of prototypes per class. This loss term is applied to
each branch, since each performs a similar tasks but either at a global (image)
or local (patch) level. In the following sections, we will refer to global and local
prototypes as pGck and pLck , respectively.

2.2 Global Prototypes

The global branch aims to learn a set of K prototypes for each class, {pGck}, with
c = 1, . . . , C and k = 1, . . . , K. These prototypes are used to classify images
based on the similarity of their image-level representations to the prototypes.
To achieve this goal, the feature maps F computed by the CNN backbone are
first combined using a global average pooling (GAP) layer, and then embedded
into a smaller dimension latent space fG ∈ R

DG

using two fully connected layers
(see Fig. 2). The latent representation is compared to each prototype using the
cosine similarity, s(pGck , fG). Then, we compute the probability of class c, ŷG

c ,
using a linear classifier with softmax

ŷG
c =

e
∑K

k=1 wck
s(pGck

,fG)

∑C
c′=1 e

∑K
k=1 wc′

k
s(pG

c′
k

,fG)
, (4)

where wck is the weight given to the k-th prototype of class c. These weights are
frozen and set to wck = 1

K when training the prototypes and encoding layers,
which means that each class score is given by an average of the similarities to
the corresponding prototypes.
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The prototypes are latent variables learned in an end-to-end fashion, together
with the backbone layers. Given a batch of N samples, the global branch loss is

Lglobal = −
N∑

i=1

C∑

c=1

yi,c log(ŷ
G
i,c) , (5)

where yi,c is the one-hot encoding of the ground-truth and ŷG
i,c is given by (4).

2.3 Local Prototypes

The local branch performs a similar analysis to the global branch, but in a patch-wise
way. First, instead of finding a latent representation for the entire image, the feature
maps, F , extracted by the CNN backbone are transformed into a lower dimensional
latent space through two 1 × 1 convolutional layers, as shown in Fig. 2. This results
in a new feature maps, FL ∈ R

H×W×DL

, where the j-th pixel contains the latent
representation of the corresponding patch in the input image, denoted by fL

j . Then,
we compute the cosine similarity between the local prototypes, {pL

ck}, with c = 1, . . . , C
and k = 1, . . . , K, and the latent representation of each patch, fL

j , j = 1, . . . , H × W .
A global max pooling (GMP) is used to obtain a single vector with the similarity

of each local prototype to the image. This vector is then fed to a linear classifier to
obtain the final probabilities of each class c, ŷL

c , following a similar approach to (4).
Finally, the classification loss for this branch is given by

Llocal = −
N∑

i=1

C∑

c=1

yi,c log(ŷ
L
i,c) , (6)

where yi,c is the one-hot encoding of the ground-truth and ŷL
i,c is the predicted prob-

ability of class c for sample i.

2.4 Pruning and Final Classifier

Once the global and local prototypes have been learned, the final step of the training
procedure is to tune the linear classifier, similarly to the training procedure described
in [2]. For this last part, we freeze all the other parameters in the model, including
the prototypes, and focus on improving the performance of the classifier by tuning the
weight of each prototype. Specifically, the similarity vectors, given by the global and
local branches, are concatenated into a single vector, s ∈ R

T , where T = 2CK is the
total number of prototypes. Then, we build a weight matrix, W ∈ R

C×T , such that it
initially computes exactly the same average used during the training of the prototypes
– i.e., wc,t = 1

K
if the t-th prototype belongs to class c and wc,t = 0 otherwise. The

resulting matrix is used as initialization of a fully connected layer with no bias, which
is then trained with the cross-entropy loss.

Since some of the learned prototypes may eventually be redundant, we also prune
our model, discarding the less relevant prototypes. To achieve this, we rely on a binary
mask, M , with the same dimensions of matrix W , that discards a prototype t by
putting 0 on the t-th column of matrix M . As such, the class probabilities are obtained
by first computing an element-wise multiplication of M and W , followed by the matrix
product with the joint similarity vector, s. This prevents the discarded prototypes from
contributing to the final prediction, similarly to a dropout strategy. As for the criteria
for discarding prototypes, we chose a simple approach – if the same training sample
was the nearest neighbour to multiple prototypes, we kept only the closest one.
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2.5 Visual Explanations

The model’s decisions are explained to clinical experts at two levels. On the global level,
the representation fG is used to perform CBIR, by comparing it with the representa-
tions of the training images associated with the closest class prototype. This process
resembles the identification of past similar cases. On the local level, we show simi-
larity heatmaps highlighting discriminative regions, along with the patch and image
representing the corresponding prototype. Examples are shown in Fig. 1 and in supple-
mentary material.

3 Experimental Setup

The proposed approach is trained and evaluated using the ISIC 2019 dermoscopy
dataset [3,4,19]1, which contains 25,331 images for training and C = 8 classes, includ-
ing 3 malignant ones. The dataset was normalized as proposed in [1] and split into
training (80%) and validation (20%).

The proposed approach is assessed in five CNN architectures commonly used in
dermoscopy image analysis: ResNet18, ResNet50, VGG16, DenseNet169, and Efficient-
NetB3. For each of these architectures the following models are trained: i) baseline
CNN with an 8-neuron fully connected layer for diagnosis; ii) global prototypes only;
iii) local prototypes only; iv) joint prototypes; v) ProtoPNet [2]; and vi) ProtoTree
[9], an improved version of ProtoPNet that assumes an hierarchical organization of
the prototypes. For each method, we compute the following evaluation metrics: a) the
balanced accuracy (BAcc), which corresponds to the average recall; b) the average F-1
score; and c) the overall accuracy (Acc).

We optimized the training all models to convey the best results. Regarding
the hyperparameters of our approach, we tested different configurations of: i) the
dimension of the global prototypes DG ∈ {128, 256}; ii) the local prototypes depth
DL ∈ {128, 256}; iii) λ ∈ {10−3, 10−2, 10−1} (from (1)); and iv) whether to prune the
prototypes in the end. We set the initial number of global and local prototypes per
class KG and KL to 10, as used in ProtoPNet. Nevertheless, it is important to recall
that after the pruning stage, the number of prototypes will be smaller and vary across
classes.

All models were trained for a maximum of 100 epochs with early stopping. We set
the batch size to N = 50 and use online data augmentation. Additionally, we use a
curriculum-learning approach to modify the importance of each training sample [13],
in order to deal with the severe class imbalance. The weights of the CNN backbones
are initialized using models pre-trained on ImageNet and fine-tuned with learning rate
of 10−5, while for the fully connected and convolutional layers in the global and local
branches we used 10−3, and 10−2 for the prototypes. The final classifier were trained
for 20 epochs with the same batch size and a learning rate of 10−2. For ProtoPNet [2]
and ProtoTree [9], we adopted the optimal training procedures described in their cor-
responding papers. The models were trained on a NVIDIA Titan Xp using Pytorch2.

1 Under CC BY-NC 4.0.
2 https://github.com/cajosantiago/LocalGlobalPrototypes.

https://github.com/cajosantiago/LocalGlobalPrototypes
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Table 1. Comparison of CNN backbones,
without using pruning. Best results for each
backbone in bold.

Model Approach Acc BAcc F1

VGG16 Baseline 76.2 60.3 63.2

ProtoPNet [2] 73.4 58.9 57.7

ProtoTree [9] 75.9 54.6 58.4

Global 76.7 60.9 63.6

Local 75.6 61.3 62.4

Joint 77.3 62.9 65.1

ResNet18 Baseline 75.6 63.7 62.8

ProtoPNet [2] 71.7 56.0 53.9

ProtoTree [9] 78.7 58.9 61.9

Global 76.0 63.2 64.2

Local 73.5 61.5 61.0

Joint 75.1 64.8 63.9

ResNet50 Baseline 76.7 64.4 65.0

ProtoPNet [2] 71.9 49.3 50.5

ProtoTree [9] 81.5 68.3 71.0

Global 78.3 67.6 67.7

Local 77.3 65.9 66.2

Joint 77.7 66.2 67.5

EfficientNet Baseline 82.3 73.1 74.0

ProtoPNet [2] 64.2 46.0 44.1

ProtoTree [9] 84.2 74.1 76.5

Global 79.8 71.2 70.7

Local 78.7 68.7 68.9

Joint 82.8 73.1 74.7

DenseNet Baseline 83.1 74.7 75.5

ProtoPNet [2] 75.8 55.2 57.5

ProtoTree [9] 78.6 66.0 66.0

Global 82.7 74.3 74.1

Local 80.9 72.1 71.9

Joint 82.4 75.0 73.4

Fig. 3. Examples of predictions and
corresponding CBIR explanations:
global (top) and local (bottom).

4 Results

Table 1 shows the best experimental results for each CNN backbone, across all the eval-
uated methods (see the Supplementary Material for details on the best set of hyper-
parameters). Here we compare the results of our approach using a classifier without
pruning, to make it more similar to the frameworks adopted in ProtoPNet and Pro-
toTree. In Table 2 we compare the results of our model with and without pruning.
Figure 3 shows examples of the proposed approach at inference time (additional exam-
ples can be found in supplementary material).
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Table 2. BAcc results without and with pruning prototypes in the final classifier.
Model No Prunning Prunning

Global Local Joint Global Local Joint
VGG16 60.9 61.3 62.9 60.3 61.0 62.6
ResNet18 63.2 61.5 64.8 61.7 59.9 63.8
ResNet50 67.6 65.9 66.2 66.1 64.6 65.6
EfficientNetB3 71.2 68.7 73.1 69.7 66.8 72.4
DenseNet169 74.3 72.1 75.0 73.5 71.2 74.6

Global Prototypes vs Baseline: The approach based on global prototypes alone
achieves competitive results across all backbones, outperforming the baseline into three
out of the five architectures. This demonstrates that enforcing feature similarities
between lesions of the same class does not affect the quality of the final classifica-
tion. Additionally, it leads to more interpretable decisions that can be grounded in
similar examples, as shown in Figs. 1 and 3.

Local Prototypes vs ProtoPNet/ProtoTree: ProtoPNet consistently exhibited
lower performances when compared with all the other methods, as already reported
in previous works. ProtoTree achieves better results than ProtoPNet, being the best
approach for ResNet50 and EfficientNetB3. However, this method is very sensitive to
the architecture, showing highly variable performances. The proposed local prototypes
significantly outperform ProtoPNet, demonstrating the benefits of our training process.
In particular, we achieve a better BAcc, since our approach handles class imbalance
better than ProtoPNet. When compared with ProtoTree, our local prototypes seem to
achieve more stable performances across backbones, being better in three of the five
backbones. Moreover, it is interesting to observe that ProtoTree often shows a bigger
gap between Acc and BAcc than our approach, suggesting that our model is also more
robust to severe class imbalances than ProtoTree. Figs. 1 and 3 show some examples
of the local prototypes and their matching regions.

Joint vs Single Models: The proposed framework allows the training of a single
branch (global or local) as well as their integration into a joint model. When comparing
the individual branches, it is clear that the global prototypes always outperforms the
local ones. This is somewhat expect, as by resorting to a local analysis alone, we
might be missing relevant context cues about the lesions. When the two branches are
combined, we observe that this usually improves the performance, suggesting that both
of them contain relevant and complementary information. The results in Figs1 and 3
were obtained using the joint model. These visualizations give us a better understanding
of the model’s behavior, including its incorrect decision (last example in Fig. 3).

Prototype pruning: Table 2 shows the results before and after pruning. Interestingly,
while there is a small decrease in the performance of both branches and the combined
model, the scores obtained are still competitive with other methods. Overall, these
results suggest that there is some redundancy on the learned prototypes, with an
average of 35% of prototypes being pruned.

5 Conclusions

This paper proposed a new approach for skin cancer diagnosis that simultaneously
provides global and local explanations to support the decision. Our model integrates
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two interpretable classifiers based on global and local prototypes. An experimental
evaluation using various CNN backbones demonstrates the potential of our approach
and opens a new direction in the development of XAI in medical image analysis. In
the future we plan to integrate a few annotations to regularize the training of the
local prototypes, as well as incorporate this model into a user-experiment to assess the
clinical value of the prototypes and incorporate medical knowledge in the system.
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Abstract. We present a modular and multi-level framework for the dif-
ferential diagnosis of malignant melanoma. Our framework integrates
contextual information and evidence at the lesion, patient, and popu-
lation levels, enabling decision-making at each level. We introduce an
anatomic-site aware masked transformer, which effectively models the
patient context by considering all lesions in a patient, which can be
variable in count, and their site of incidence. Additionally, we incorpo-
rate patient metadata via learnable demographics embeddings to cap-
ture population statistics. Through extensive experiments, we explore
the influence of specific information on the decision-making process and
examine the tradeoff in metrics when considering different types of infor-
mation. Validation results using the SIIM-ISIC 2020 dataset indicate
including the lesion context with location and metadata improves speci-
ficity by 17.15% and 7.14%, respectively, while enhancing balanced accu-
racy. The code is available at https://github.com/narenakash/meldd.

Keywords: Melanoma Diagnosis · Differential Recognition · Ugly
Duckling Context · Patient Demographics · Evidence-Based Medicine

1 Introduction

Melanoma is the most invasive form of skin cancer with the highest mortality
rate; its incidence is rising faster among other types of cancer and is projected to
increase by 57% globally by 2040, leading to an estimated 68% rise in mortality
[1]. When caught early, it has an increased survival rate and tends to have a
better prognosis. However, melanoma is a complex and heterogeneous disease
which makes accurate early recognition non-trivial and challenging. Melanoma
can masquerade/appear as benign lesions and benign pigmented lesions can
resemble melanoma, making diagnosis difficult even for skilled dermatologists
[2].

A dermatologist’s expertise to discriminate between benign moles/nevi and
melanoma relies on the recognition of morphological features through the ABCD
criteria [3], applying the 7-point checklist [4], overall pattern recognition and dif-
ferential recognition of the ugly duckling nevi [5]. Most nevi in a patient tend
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to be similar and can be grouped into a few clusters based on morphological
similarity [6]. Any nevus that deviates from a consistent pattern within an indi-
vidual is an outlier or an ugly duckling which is taken to be a suspicious lesion
[7]. Dermatologists utilize an intra-patient lesion-focused as well as comparative
analysis, recognising overall patterns to identify ugly ducklings before forming
a provisional diagnosis [8]. This approach considers the characteristics of indi-
vidual lesions while also taking into account the context of the patient’s overall
nevi distribution, leading to improved accuracy in identifying melanoma [9]. Fur-
thermore, patient demographics, including age, sex, and anatomical site, are risk
factors to consider in the differential diagnosis of melanoma [10]. Age-related sus-
ceptibility, anatomical site variations, and sex-specific characteristics contribute
to the complexity of melanoma diagnosis.

Recent advances in deep learning techniques have led to an interest in
the development of AI models for dermatology. The integration of AI systems
into clinical workflows has the potential to improve the speed and accuracy of
melanoma diagnosis, saving lives. Existing deep learning methods have reported
good diagnostic accuracy in the classification of skin lesions. These use largely
lesion-focused approaches and include the seven-point checklist [11], hierarchi-
cal structures [12], lesion segmentation [13], and ABCD-based medical repre-
sentations [14]. Despite integrating clinical knowledge, most existing methods
have not fully harnessed the potential of the clinician’s comprehensive diagnos-
tic process and strategy. While some approaches, such as CI-Net [15], incorporate
zoom-observe-compare processes, they focus only on individual lesion character-
istics. The UDTR framework [16] incorporates contextual information of lesions
to model ugly ducklings but assumes a fixed number of contextual lesions. No
attempt has been made by any approach so far to take into account a richer set
of information that clinicians rely on for melanoma diagnosis [17]. These include
lesion counts in a patient, which can be variable, lesion location in the body
and patient demographic information. Further, existing models are essentially a
black box, with no or limited explainability that too post facto on the basis of
visualisation of activations and so on.

We wish to design a melanoma recognition solution that incorporates a rich
set of information similar to the clinical practice. Our aim is to understand how
the addition of specific information influences the decision-making process. An
understanding of the sensitivity-specificity tradeoff when considering different
types of information can make a method more transparent. This transparency
can enable clinicians to critically evaluate the AI system’s recommendations
and ensure that decisions align with their clinical expertise and patient-specific
circumstances. In this paper, we present a method for melanoma recognition
with the following contributions:

– A modular, multi-level framework for evidence-based differential diagnosis of
melanoma. This offers a solution to holistically integrate evidence at multiple
levels (lesion, patient and population).
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– A solution based on a masked transformer to utilize variable-count context
lesions from a patient along with their anatomic location and metadata such
as age and sex.

– Insights on the role of various information in melanoma recognition, based on
validation results of the proposed approach on the 2020 SIIM-ISIC dataset.

Fig. 1. The dermatologists’ melanoma diagnostic reasoning process (left) and the
pipeline of the proposed MelDD framework (right) inspired by the clinical process.
Lesion features are extracted and grouped by patients first, and lesion anatomical site
information and patient metadata are incorporated later for enhanced context.

2 Method

In our design, features are first extracted for each given lesion image (using a
CNN) and are grouped patient-wise. The context of lesions within each patient
is captured using a transformer encoder with masked self-attention. Age, sex,
and anatomical site embeddings are included as supporting evidence, which along
with lesion context, are fed into the classification layers to predict melanoma.

Modelling the Context of Patient’s Skin Ecosystem: As per the ugly
duckling criteria, in a patient, nevi which stand out from the rest are suspicious
regardless of morphology. Conversely, lesions which are considered atypical in
the absence of patient context may turn out to be normal within the context of
a patient. Hence, contextual information is critical. Transformers have demon-
strated a remarkable ability to analyze the global context in text, images and
videos [19]. Stacked self-attention layers to model dense relations among input
tokens allow transformers to capture context information at a patient level. This
modelling is used in our design to capture ugly ducklings, if any. We denote the
set of extracted (from a CNN) lesion features for a given patient p by the set
Lp = {lpi }Np

i=1, where each lpi ∈ Lp is obtained by passing the set Xp of lesions from
the same patient through a ResNet101 finetuned on SIIM-ISIC 2020 dataset.
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The dimensionality of each lesion feature is projected onto the dimension D of
the transformer. Since the number of lesions per patient is variable, we employ
masked self-attention with key padding [19] that applies padding to patients
with fewer lesions to align them with Np

max, the maximum number of lesions for
any patient in the dataset and ignores padding tokens during processing.

Anatomical Site and Masked Self Attention: Different regions of the body
exhibit varying levels of melanoma risk. Hence, the anatomical locations of a
lesion can help in ruling out benign lesions. Self-attention [19] generates an atten-
tion map of the context utilizing all of the patient’s lesions. We use this attention
map to implicitly infer the presence of an ugly duckling. To further enhance
contextual analysis, we introduce a learnable anatomic site matrix, denoted
as EL ∈ R

D×7, which represents the general anatomic sites in our dataset:
head/neck, palm/soles, oral/genital, lower extremity, upper extremity, torso, and
an additional category for unknown locations. Let Ap = {api }Np

i=1 ∈ R
D×Np be the

anatomic site representation for patient p, obtained by retrieving the correspond-
ing anatomic site embedding for each lesion from EL. The lesion embedding Lp

is added to the anatomic site embedding Ap, element-wise, to derive an enhanced
contextual embedding Qp ∈ R

D×Np : Qp = Lp +Ap. Embedding Qp is utilized in
masked self-attention, generating an attention map that captures spatial, inter-
lesion interactions within the context of a patient. This integration enables the
model to effectively learn the relationship between the anatomical context and
individual lesion characteristics at the patient level.

Combining Patient Demographics for Differentials: Age and sex are risk
factors for melanoma, as women have a higher incidence of diagnosis before
the age of 50, while men have a higher rate after the age of 50. The incidence of
melanoma increases progressively with advancing age, indicating a greater preva-
lence of melanoma development among individuals as they age [20]. Patients’ sex
and age information is generally part of the metadata. A learnable embedding
ES ∈ R

D×2 is used to represent the male and female sexes. The transformer’s
trainable embeddings effectively capture and encode the dataset statistics. Posi-
tional encodings, incorporating sine and cosine functions, are employed to denote
the patient’s age through integer binning. The age, sex, and lesions are repre-
sented by learning three type embedding vectors, forming the trainable embed-
ding matrix EM ∈ R

D×3, to distinguish one piece of information from another.
These distinct type embedding vectors are then added element-wise to the cor-
responding age, sex, and contextual lesion embeddings, denoted as Sp, Yp, and
Qp. The modified embeddings are then concatenated, capturing the combined
information of age, sex, and lesions as input to subsequent stages.

Transformer Encoder for Melanoma Recognition: A multi-layer trans-
former encoder [19] is composed of a stack of encoder layers, each comprising
multi-head self-attention, layer normalization (LN) and feed-forward neural net-
works (FFN). In the proposed framework, the combined patient representation
Ep = [Sp;Yp;Qp] undergoes encoding using a multi-layer transformer encoder.
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Given input patient representation Ep
l−1 at the lth layer,

Encoder(Ep
l−1) = Ep

l = FFN(LN(Attention(Ep
l−1))) + Ep

l−1,

Attention = Softmax

(
EpQ

l−1.E
pK
l−1√

D

)
EpV

l−1.

The contextualized representation of the lesions Ep
L is sent to shared linear layers

to perform melanoma recognition.

3 Experiments

3.1 Data

The 2020 SIIM-ISIC melanoma recognition dataset [21] was used for all our
experiments. It includes 2,056 patients, among whom 428 individuals exhibit
at least one melanoma, with an average of 1.36 melanomas per patient. The
dataset comprises 33,126 dermoscopic images, including 584 histopathologically
confirmed melanomas, as well as benign lesions that are considered melanoma
mimickers such as nevi, atypical melanocytic proliferation, café-au-lait macule,
lentigo NOS, lentigo simplex, solar lentigo, lichenoid keratosis, and seborrheic
keratosis. Hence, the dataset is severely imbalanced, with melanomas accounting
for only 1.8% of the samples. In addition to the image data, the dataset provides
metadata pertaining to the approximate age of patients at the time of capture,
their biological sex, and the general anatomical site of the lesion.

3.2 Experimental Settings

The dermoscopic skin lesion images were cropped to the maximum square from
the centre and resized to 256 × 256. Our experimental setup involved a patient
group stratified five-fold cross-validation without age and sex stratification. Each
fold included a designated testing set, while the remaining data was split into
80% for training and 20% for validation. The evaluation on the challenge leader-
board is not conducted due to the unavailability of ground truth for the chal-
lenge test set, preventing analysis on our evaluation metrics. The ResNet101
[22] backbone pre-trained on SIIM-ISIC 2020 dataset to predict lesion-focused
recognition was employed for transformer feature extraction. The transformer
consisted of 4 layers with 4 MHSA heads, and the model dimension was set to
D = 64. The training process utilized the Adam optimizer [23] with a learning
rate of 8e−5, implemented in PyTorch [24]. It employed the weighted binary
cross-entropy loss, based on the inverse of proportions, and was conducted on a
single NVIDIA GeForce RTX-2080 Ti GPU. The training, incorporating early
stopping, was limited to a maximum of 200 epochs with a batch size of 32.

Metrics: Many state-of-the-art models for SIIM-ISIC 2020 classification focus
on optimizing the area under the ROC curve (AUC). However, this may be inap-
propriate since AUC is not clinically interpretable [25]. For instance, a recent
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work [15] reports a high AUC score but exhibits poor sensitivity, making it
unsuitable for clinical use in melanoma recognition. Additionally, different meth-
ods can possess identical AUC values yet perform differently at clinically signif-
icant thresholds. To address these limitations, we opt to optimize the balanced
accuracy (BACC) at the Youden’s J index [26]. This may be more clinically
meaningful for a small and imbalanced dataset with low melanoma prevalence
(1.8%) such as SIIM-ISIC 2020 dataset. The operating point determines the cut-
off value that minimizes the difference between sensitivity and specificity, better
evaluating the clinical utility of diagnostic tests in melanoma recognition.

Table 1. Comparision of classification performance in melanoma recognition averaged
across five-folds on SIIM-ISIC 2020 dataset: BACC: balanced accuracy, SN: sensitivity,
SP: specificity at Youden’s J statistic cut-off, and ROC AUC. (PC = patient context,
VC = varying lesion count, L = anatomical location, M = metadata).

MelDD variants PC VC L M BACC SN SP AUC

V0 (Baseline) ✗ – ✗ ✗ 0.7649 0.8867 0.6431 0.8371

V1 ✓ ✓ ✗ ✗ 0.7841 0.8679 0.7003 0.8558

V2 ✓ ✓ ✓ ✗ 0.7904 0.8274 0.7534 0.8612

V3 ✓ ✓ ✗ ✓ 0.7867 0.8843 0.6890 0.8544

V4 ✓ ✓ ✓ ✓ 0.7793 0.8761 0.6825 0.8504

CI-Net [15] ✗ – ✗ ✗ 0.6200 0.3220 0.9180 0.9230

UDTR-L [16] ✓ ✗ ✗ ✗ 0.7564 0.7522 0.7605 0.8493

UDTR-Adapted ✓ ✗ ✗ ✗ 0.7094 0.7922 0.6266 0.7634

UDTR-Full [16] ✓ ✗ ✗ ✗ 0.8183 0.8164 0.8202 0.8964

Table 2. Performance improvement of the variants over the baseline (in percentage).

MelDD variants PC VC L M BACC SN SP AUC

V0 ✗ – ✗ ✗ 0.7649 0.8867 0.6431 0.8371

V1 ✓ ✓ ✗ ✗ +2.51% −2.12% +8.89% +2.23%

V2 ✓ ✓ ✓ ✗ +3.33% −6.69% +17.15% +2.88%

V3 ✓ ✓ ✗ ✓ +2.85% −0.27% +7.14% +2.07%

V4 ✓ ✓ ✓ ✓ +1.88% −1.20% +6.13% +1.59%

4 Results and Discussion

We assess the contributions of the additional information in melanoma recog-
nition using variants of our proposed MelDD framework. These results are pre-
sented in Table 1. Variant V0 (baseline) which solely considers the lesion has a
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BACC of 76.49% and AUC of 83.71. This, however, is at a low specificity (SP)
of 64.31%. Overall, from the figures in Table 1 and 2, it can be seen that the
addition of information is beneficial as there is a consistent boost in all per-
formance metrics except SN, relative to the baseline. This boost ranges from
a modest 1.9% (in BACC for V4) to a significant 17.15% (in SP for V2). The
degradation in SN ranges from 0.27% (for V3) to 6.7% (for V2). Including all
(lesion, its context, location and metadata) information serves to boost the per-
formance (of V4) by a minimum of 1.6% (AUC) and a maximum of 6% (SP)
with a decrease in SN by less than 2%. Figure 2 illustrates patient case studies,
demonstrating the impact of incorporating additional context and metadata on
melanoma recognition.

The obtained results provide sufficient insights that can help in deciding
which information is preferable for a specific use case. For instance, the combined
knowledge of lesion source (which patient), its characteristics vis a vis other
lesions of the patient (to help identify the ugly duckling) and where in the body
it is located appears to be best for melanoma diagnosis with an optimal detection
threshold, as seen in the figures for MelDD-V2. While balancing both SN and
SP is crucial to ensure effective and reliable melanoma diagnosis, their relative
importance varies based on priorities. A high SP value will be required to avoid
overdiagnosis and needless biopsies. MelDD-V2 is a good choice to meet this
requirement. If on the other hand, the application scenario is screening, a higher
SN is preferable, and hence, simply using metadata instead of lesion location
may be preferable as MelDD-V3 has a high SN and a marginally lower BACC
and AUC. This suggests that patient sex and age do play a key role in improving
SN. Intuitively, combining all information should be beneficial to performance
which is not seen in the result in Table 1. When we examined the reason for this,
we found that there was a sex-wise skew in the melanoma cases in the dataset.
A sex-wise stratification in the data split for training/testing could be explored
in the future to mitigate the effect of skew.

Finally, we compare the proposed method with the state-of-the-art (SOTA)
frameworks, CI-Net [15], and UDTR [16]. There are some differences in the
settings which may impact the comparison. For a start, the SOTA models uti-
lize higher-resolution images compared to our work. UDTR is designed for a
fixed number of lesions; it handles deviation in input through repeated sampling
and uses contrastive learning and test-time augmentation techniques. However,
repeated sampling in a transformer-based model can lead to overfitting, limited
generalization, potential information loss, and difficulties in capturing complete
patient context due to random selection and discarding of lesion instances. To
ensure fairness, we introduce UDTR-Adapted as a baseline that aligns with our
MedDD-V1 while considering a fixed number of lesions. Notably, MelDD-V1 out-
performs (in terms of BACC) UTDR-L by 3.66% and UDTR-Adapted by 10.53%
(see the lower part of Table 1). This highlights the significance of considering the
complete patient context.
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Fig. 2. Examples of malignant melanoma prediction changes with additional con-
text and evidence information. Green/red boxes indicate correct/incorrect predictions,
respectively. In Patient A, multiple atypical lesions reduce suspicion of malignancy in
an additional atypical lesion, while a morphologically typical lesion distinct in the nevus
landscape is considered suspicious. Patient B demonstrates how including anatomical
location accurately detects an ugly duckling suspicious lesion by comparing it to other
lesions in the same location to predict malignancy effectively. The examples of Patients
C and D underscore how incorporating location information prevents the misclassifi-
cation of benign lesions as malignant by considering the specific anatomical charac-
teristics that differentiate suspicious lesions in different locations. Lastly, Patients E
and F emphasize the importance of patient demographics to help the model correlate
lesion characteristics with susceptibility to risk factors, avoiding misdiagnosis of benign
lesions as malignant based on a better understanding of patient-specific factors. (Color
figure online)
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5 Conclusion

Inspired by the clinical diagnostic reasoning process where multiple sources of
information are used for diagnosis, we present a modular, multi-level framework
for differential diagnosis of malignant melanoma that integrates information at
lesion, patient, and population levels. Since the number of lesions a patient may
have is unknown, the proposed solution employs a masked transformer to seam-
lessly incorporate variable lesion counts, enabling flexible integration of patient
context information in the decision-making process. Results show the differen-
tial roles played by additional information: the context and location information
leads to a significant improvement in SP values with a marginal dip in SN,
whereas metadata serves to restore SN value to that of the baseline model with
a modest increase in SP value. Our results demonstrate that optimising BACC
at Youden’s J index aids in gaining good control over SP and SN variations. This
is in contrast to the conventional approach of optimising AUC, which typically
leads to a big tradeoff between SP and SN. Our solution offers a transpar-
ent decision support system for melanoma recognition, supporting clinicians in
evidence-based decision-making.
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Abstract. Machine learning methods have shown large potential for
the automatic early diagnosis of Alzheimer’s Disease (AD). However,
some machine learning methods based on imaging data have poor inter-
pretability because it is usually unclear how they make their decisions.
Explainable Boosting Machines (EBMs) are interpretable machine learn-
ing models based on the statistical framework of generalized additive
modeling, but have so far only been used for tabular data. Therefore,
we propose a framework that combines the strength of EBM with high-
dimensional imaging data using deep learning-based feature extraction.
The proposed framework is interpretable because it provides the impor-
tance of each feature. We validated the proposed framework on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, achieving
accuracy of 0.883 and area-under-the-curve (AUC) of 0.970 on AD and
control classification. Furthermore, we validated the proposed framework
on an external testing set, achieving accuracy of 0.778 and AUC of 0.887
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on AD and subjective cognitive decline (SCD) classification. The pro-
posed framework significantly outperformed an EBM model using vol-
ume biomarkers instead of deep learning-based features, as well as an
end-to-end convolutional neural network (CNN) with optimized archi-
tecture.

Keywords: Alzheimer’s disease · MRI · Convolutional neural
network · Explainable boosting machine · Interpretable AI

Code availability: https://gitlab.com/radiology/neuro/wenjie-project

1 Introduction

Dementia is a major global health problem [20]. However, early and accurate
diagnosis of AD (Alzheimer’s Disease) is challenging [23]. Machine learning meth-
ods have shown large potential for early detection and prediction of AD because
they can learn subtle patterns and capture slight tissue alterations in high-
dimensional imaging data [6,24]. Nevertheless, those machine learning methods
with high diagnostic performance, such as deep learning, are considered black
boxes because of the poor interpretability of the predicted results [3]. On the
other hand, intrinsically interpretable methods can provide explainable results
but often have worse predictive performance as they cannot fully exploit the
high-dimensional data [2]. To this end, to facilitate the translation of machine
learning to clinical practice it is crucial to find an optimal tradeoff between the
accuracy and interpretability.

To solve this problem, we built an interpretable machine learning frame-
work that meanwhile makes use of high-dimensional imaging features. Recently,
Explainable Boosting Machines (EBMs) [16] is a tree-based Generalized Addi-
tive Model (GAM) [13] which have shown comparable accuracy to the state-of-
the-art conventional machine learning methods [19], and meanwhile provide the
contribution to the final decision by each feature for interpretability. Currently,
EBM takes as input only tabular data and have not been used with imaging
data. By exploit high-dimensional biomarkers from imaging data, we expect the
combination of EBM and deep learning techniques will contribute to a more
interpretable and accurate prediction for AD diagnosis.

In this work, we propose a framework to extract high-dimensional features
from brain MRIs, i.e., deep learning-based imaging biomarkers (DL-biomarkers),
which is used by EBM for AD diagnosis. We designed a data-driven strategy to
select the region of interest (ROI). Convolutional Neural Networks (CNNs) [15]
were used to extract DL-biomarkers from whole brain MRI and ROIs. EBM
trained with DL-biomarkers can give the importance of each DL-biomarker. For
model validation, we compared the performance of the proposed model with
an EBM that uses the volumes of brain regions (V-biomarkers) as input. We
also compared the proposed model with a CNN with optimized architecture to
investigate whether the proposed model maintains comparable diagnostic per-
formance to black-box models.

https://gitlab.com/radiology/neuro/wenjie-project
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2 Methods

2.1 Study Population

We used data from two studies. The first group of 855 participants was included
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We included par-
ticipants with T1-weighted (T1w) MRI scans available at the baseline timepoint
from the ADNI1/GO/2 cohorts, consisting of 335 AD patients, and 520 con-
trol participants (CN). The second group of 336 participants was included from
the Health-RI Parelsnoer Neurodegenerative Diseases Biobank (PND) [1], a col-
laborative biobanking initiative of the eight university medical centers in the
Netherlands. We included participants at baseline timepoints, including 198 AD
patients, and 138 participants with SCD.

2.2 Data Preprocessing

The T1w scans were preprocessed following the same pipeline as in [5]. After
the construction of a dataset-specific template, we computed probabilistic gray
matter (GM) maps with the unified tissue segmentation method from SPM8 [4].
Thereafter, the pre-processed GM maps were cropped to 150 × 180 × 150 voxels
to remove the background region.

2.3 Explainable Boosting Machine (EBM)

EBM is a subclass of GAMs which based on trees [8]. Given a dataset D = {(xi,
yi)}N1 , where for any subject i ∈ [1, N ], xi = (xi1, ..., xin) is a feature vector
with n features, and yi is the label, EBM is of the form:

g(Y ) = β +
∑

fj (Xj) +
∑

fij (Xi,Xj) ,

where g(.) is the link function that adapts the classification setting, Xj is the jth
feature vector in the feature space, Y is the target class, and shape functions fj
and fij (i �= j) are gradient-boosted ensembles of bagged trees in EBM. As a sub-
class of GAM, EBMs prevent interaction effects from being learned. The ability
to analyze features independently makes EBMs easy to reason about the contri-
bution of each feature to the prediction [7]. EBMs include pairwise interaction
terms fij(Xi, Xj) [17], it finds all the possible pairs of interactions in the residu-
als and orders them by importance. A previous work using EBM have applied it
to volumetrics in the task of predicting whether mild cognitive impaired (MCI)
patients will convert to AD [22]. However, such features of regional volume are a
crude summary of the high-resolution brain images, only part of the information
presented in the images is included in the regional volume.
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2.4 Proposed Extension

Here, we propose to use deep learning models to extract features (DL-
biomarkers) from high-dimensional brain MRIs. The predicted results of CNNs
for binary classification which are the probability of positive are used as the DL-
biomarkers. For the full brain DL-biomarker, a CNN is trained in classification
task that takes whole-brain images as input (Global CNN, Glo-CNN). For the
regional DL-biomakers, lightweight CNNs are trained that take selected image
patches as input (Local CNN, Loc-CNN). The architecture of our proposed EBM
is shown in Fig 1. Each input image is handled by a shape function which is a
trained CNN.

Fig. 1. Architecture of the proposed EBM using DL-biomarkers. Shape function f1−n

outputs a DL-biomarker for the whole brain or a brain region and fij outputs a pairwise
DL-biomarker. Σ is the weighted sum of shape functions and g−1(.) is the activation
function.

2.5 Extraction of the DL-Biomarkers

The architectures of the Glo-CNN and Loc-CNN are adapted from the state-of-
the-art research [9,10]. We provide the details of the CNNs optimized for AD
diagnosis in the supplement. The DL-biomarkers of the subjects in the testing
set were predicted by trained CNNs. Loc-CNNs shared the same architecture
but trained on different image patches. To select patches for brain regional fea-
tures, we used an occlusion map strategy [21,25]. This method computes the
impact on the output of the network by occluding a patch in the input image.
The gap between the two outputs, therefore, shows quantitatively how much an
image patch affects the decision-making of the deep learning model. Subject-
level occlusion maps in testing set were summed into a group-level map, which
was used for patch selection. Within the group-level occlusion map, total weight
per patch was computed, and patches were ranked and selected according to the
total weight. With the selected patches, Loc-CNNs were trained to predict the
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regional DL-biomarkers. The value of the DL-biomarkers indicates the proba-
bility of the subject being positive. We provide a flowchart of the extraction of
DL-biomarkers in Fig. 2, and implementation details in Sect. 3.2.

Fig. 2. The flowchart of the extraction of DL-biomarkers.

3 Experiments

3.1 Validation Study

We compared the proposed EBM using DL-biomarkers with two baseline meth-
ods: a CNN and an EBM using V-biomarkers, for AD-CN classification. For
the validation on ADNI, AD and CN groups were split in a stratified way into
an optimization set and a clean testing set (testsplit) in a ratio of 9 : 1. Glo-
CNNs and Loc-CNNs were trained in 5-fold cross-validation in the optimization
set. Occlusion maps and imaging biomarkers for on the testing set of each fold
(testcv) were gathered. The models trained on ADNI were also validated on
external testing set PND.

We used accuracy (ACC), sensitivity (SEN), specificity (SPE), and area-
under-the-curve (AUC) as the performance metrics for binary classification. We
validated the performance of the proposed CNN model separately. To test the
performance of Glo-CNN on ADNI, AD and CN groups were randomly split for
10 iterations preserving relative class sizes. Confidence intervals (95%CIs) for the
mean performance measures were calculated using the corrected resampled t-test
[18]. For the validation of Glo-CNN on PND, we used ADNI as the training set
and PND as the external testing set. 95%CIs were obtained based on bootstrap
on testing set. For the validation of the proposed EBM and the two baseline
methods, we trained models on the split optimization set on ADNI, and test the
methods on the testsplit and PND. 95%CIs were obtained based on bootstrap
on the testing set.
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3.2 EBM Using DL-Biomarkers

The Glo-CNN and Loc-CNN were compiled with a class balanced binary cross-
entropy loss function. All CNN models used Adam optimizer [14]. The ini-
tial leaning rate was 5×10−4.The group-level occlusion maps were obtained by
the summation of the subject-levavel occlusion maps obtained from subjects in
(testcv) using trained Glo-CNNs. The occlusion patch has a size of 203. We chose
the top 10 ROIs with a patch size of 303 based on the group-level occlusion map,
and trained ten Loc-CNNs based on each of the ten ROIs to predict regional
DL-biomarkers.

3.3 Baseline Methods

We used Glo-CNN as the baseline CNN model, because it was optimized for
the best performance in the optimization set among all CNN models. For the
baseline EBM, the GM volume (corrected by intra-cranial volume) of each brain
region is considered as a volume biomarker (V-biomarkers) [11,12]. V-biomarkers
were named after brain regions, with ‘Total brain’ indicating the GM volume of
the whole brain. We chose the top 11 among 75 V-biomarkers with the smallest
p-values between AD and CN groups in the optimization set. The EBMs based
on DL-biomarkers and V-biomarkers included 11 biomarkers, and top-2 pairwise
biomarkers. In addition, we took the average output of the Glo-CNN and Loc-
CNNs as the output of a CNN ensemble model (Glo/Loc-CNN) which has the
similar computational complexity as the EBM based on DL-biomarkers. We
provide the performance of the Glo/Loc-CNN in the supplement.

4 Results

4.1 Glo-CNN and ROIs

We provide the details of the cross-validation results of Glo-CNN in the supple-
ment. The model yielded an ACC of 0.880 (95%CI: 0.852-0.908) and an AUC
of 0.944 (0.870-1.00) on the AD-CN task on ADNI. On the external PND test
set, the model yielded an ACC of 0.789 (0.744-0.834) and an AUC of 0.872
(0.830-0.914) on the AD-SCD task.

The selected 10 ROIs based on the Glo-CNN are shown in Fig. 3 (a), the
overlap of ROIs is demonstrated by colors. We name the selected ROIs after the
overlapped brain regions. The location and name of ROIs in the coronal plane
are shown in Fig. 3 (b).

4.2 Comparison Study

The performance of the methods on the ADNI dataset is shown in Fig. 4 (a).
The accuracy and AUC of the proposed EBM using DL-biomarkers were signif-
icantly higher (p-value <0.01) than those of the EBM using V-biomarkers. The
AUC of EBM using DL-biomarkers was significantly higher than Glo-CNN. The
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Fig. 3. (a) The location, and (b) the ID and name of the selected image patches.

performance of the methods on the external testing set PND is shown in Fig. 4
(b). The accuracy and AUC of EBM trained with DL-biomarkers were signifi-
cantly higher than those of the EBM trained with V-biomarkers. The group-level
feature importance of EBMs trained with DL-biomarkers and V-biomarkers in
training set are reported in Fig. 5. The two pairwise biomarkers in the EBM
trained with DL-biomarkers are the combination of Total brain with ROI1, and
the combination of Total brain with ROI6. The feature importance shown in
Fig. 5 can show which brain regions highly affect the decision-making of EBMs.

5 Discussion and Conclusions

In this paper, we proposed a new EBM using high-dimensional imaging biomark-
ers predicted by CNNs for AD diagnosis, which used occlusion maps for region
selection. The proposed framework is more interpretable than black-box mod-
els because it provides the feature importance of all biomarkers. We compared
the performances among the proposed EBM using DL-biomarkers, the standard
EBM using V-biomarkers, and a CNN baseline. The results show that our pro-
posed framework yielded higher classification performance than the other two
methods in the AD-CN task on the ADNI dataset. We suspect that the improved
performance is because DL-biomarkers are the predictions of Glo-CNN and Loc-
CNNs, which enables the encoding of high-dimensional features [4]. Furthermore,
the results of the EBM trained with DL-biomarkers yielded higher AUC than
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Fig. 4. The performance of the EBM trained with V-biomarkers (V-biomarkers;
blue), Glo-CNN as the CNN baseline (Glo-CNN; orange), the EBM trained with DL-
biomarkers (DL-biomarkers; red) (a) on ADNI (b) on external testing set PND. The
error bars represent for the confidence intervals. (Color figure online)

the CNN model. We assume this is because EBM is an ensemble of models that
extract complementary features from brain regions.

Fig. 5. The feature importance of (a) the proposed EBM using DL-biomarkers, and
(b) EBM trained with V-biomarkers.

In conclusion, our proposed method achieved higher classification perfor-
mance than the baseline models and allows for the interpretation of the brain fea-
tures relevant to AD diagnosis based on imaging data. In future work, we intend
to further explore the interpretability of the proposed method. We also intend
to validate the generalization of our method. Further validation will include
dementia prediction in MCI and diagnosis of other subtypes of dementia.
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Abstract. Deep learning methods have revolutionized medical image
analysis, enabling tasks such as lesion classification, segmentation, and
detection. However, these methods rely on annotations, posing a burden
on healthcare professionals. In contrast, medical reports contain valu-
able information, leading to the emergence of Medical Reports Gener-
ation from Medical Images (MRGMI). Despite advancements, MRGMI
predominantly focuses on English reports, lacking solutions for other
languages. To address this and to generate responsible Chinese MRGMI
model, we present a Chinese MRGMI dataset of over 40,000 Xray-image-
report pairs, covering diverse diseases. We further provide 500 graph-
node annotations of the reports and propose the CN-RadGraph model,
extracting graph nodes from reports to, in a clinical-responsible way,
evaluate our MRGMI model: Chinese X-ray-to-Reports Generation (CN-
X2RG) model. Considering linguistic disparities, we enhance the SOTA
method with prompt training, graph-based augmentation, and sentence
shuffling. Our CN-X2RG model shows significant improvements over
baselines. The dataset and code are publicly available, fostering clinical-
responsible research and development.

Keywords: Radiology Reports Generation · Dataset · Xray

1 Introduction

Deep learning in medical image analysis has shown great success in tasks like
lesion classification, organ segmentation, and lesion detection. However, its
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reliance on annotated medical images poses a burden on healthcare workers.
Alternatively, leveraging comprehensive medical reports can aid in Medical
Reports Generation from Medical Images [9] (MRGMI), reducing reliance on
annotations and maximizing clinical data for automated analysis.

While significant advancements have been made in MRGMI, the prevail-
ing focus of most methods and datasets [4,10] lies on English-language reports.
However, the critical need arises for MRGMI models and datasets in languages
other than English due to the linguistic diversity and variations in report styles
within the medical field. The translation of medical terminologies and the pre-
cise capture of nuanced language present substantial challenges, especially given
the impact of report data on MRGMI models and the model’s responsibility in
medical practice. Therefore, for contexts like medical diagnosis, where errors are
unacceptable, access to native medical report data and corresponding models
becomes indispensable. Additionally, the development of comprehensive evalua-
tion criteria is equally vital, encompassing not only the assessment of report gen-
eration similarity but also a heightened focus on key diseases within anatomies.
High-quality evaluation metrics can contribute to designing and obtaining more
reliable and secure MRGMI models.

To address the challenges above, this paper presents the Chinese Chest X-
ray (CN-CXR) dataset, comprising 46,301 X-ray image-report pairs, covering a
wide range of medical scenarios and diseases detectable through X-rays. Addi-
tionally, we provide 500 graph-node annotations for the corresponding Chinese
reports. Leveraging this dataset, we propose the CN-RadGraph model, which
extracts meaningful graph nodes from medical reports, serving as a crucial com-
ponent in evaluating the performance of our MRGMI model, Chinese X-ray-to-
Reports Generation (CN-X2RG). Both datasets provide the possibility to create
responsible-Chinese-MRGMI. Thus, we also introduce enhancements to bridge
the gap between English-based methods and the unique linguistic character-
istics of the Chinese language. Extensive experiments demonstrate significant
improvements over existing baselines, highlighting the effectiveness, relevance
and clinical responsibility of our proposed enhancements.

2 Related Work

The task of MRGMI [9], has gained significant attention due to advancements in
deep learning, natural language processing (NLP), and multimodal learning. In
this review, we highlight key works that have contributed to the MRGMI field,
and analyze the potential for enhancing their clinical responsibilities.

Datasets. The availability of suitable datasets plays a crucial role in advancing
MRGMI research. Two widely used public datasets in MRGMI are the MIMIC-
CXR [10] dataset and the IU X-Ray [4] dataset. However, these datasets only
provide valuable resources for English-based MRGMI research, the availabil-
ity of language-specific datasets is essential to cater to different linguistic con-
texts. For instance, the CX-CHR [11] dataset, a proprietary internal dataset,
addresses the need for Chinese MRGMI research. In parallel efforts, Wang et al.
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[16] have attempted to address the need for Chinese MRGMI research by trans-
lating English datasets into Chinese using ChatGPT. However, it should be
noted that even ChatGPT struggles to precisely translate medical terminology,
leading to a considerable gap between the translated reports and the authen-
tic ones. The language of authentic reports is more written and standardized,
which facilitates quick reading and comprehension. Therefore, it is irresponsible
for clinical application to obtain data only by using language translation.

Considering the limitation of current Chinese datasets and to ensure respon-
sibility of MRGMI model, we have collected a new dataset called CN-CXR. This
dataset includes 46,301 X-ray images and their corresponding authentic reports,
specifically focusing on the medical findings observed in the X-ray images. By
providing a large-scale Chinese MRGMI dataset, we aim to facilitate research in
this domain and encourage the development of language-specific MRGMI mod-
els.

Auxiliary Models. Auxiliary models play a vital role in enhancing the per-
formance of MRGMI models. One notable auxiliary model is RadGraph [7],
which extracts entities and relations from medical reports, thereby providing
valuable structured information. By incorporating RadGraph into the MRGMI
pipeline, researchers can benefit from its ability to provide semantic informa-
tion during model training [18], as well as evaluate the performance of MRGMI
models [8]. Both provide semantic specifications for model-generated reports to
enforce accountability. There are also other model such as Clinical-BERT [1]
and RadCLIP [5]. However, it is worth noting that most of the existing auxiliary
models are primarily designed for English-based datasets, highlighting the need
for language-specific auxiliary models for different linguistic contexts.

To address the language-specific nature of MRGMI, we extend the RadGraph
approach to the Chinese domain and propose the CN-RadGraph model. Follow-
ing a similar annotation process, we annotate entities and relations from 500
samples of our CN-CXR dataset. The CN-RadGraph model serves as a valuable
resource for Chinese MRGMI research, offering structured information and eval-
uation capabilities specific to the Chinese language. This reinforces the clinical
responsibility of our model.

MRGMI Models. Recent advancements in transformer models and multi-
modal learning have paved the way for the development of various MRGMI
models. For instance, [3] and [13] leverage memory-driven Transformers to gener-
ate radiology reports. [2] utilizes a memory bank to enforce consistency between
input image features, while [14] employs uncertainty and Kullback-Leibler simi-
larity to maintain consistency between image and report features. Similarly, [20]
incorporates a weakly supervised contrastive loss, and [8] utilizes contrastive
learning and matching techniques to improve MRGMI performance. Further-
more, auxiliary models can help enhance report generation. Both [18] and [21]
use RadGraph model to provide knowledge to their models.

In this paper, we present improvements to existing MRGMI model for our
CN-CXR dataset. We utilize the MedCLIP [19] pretrained model as a prompt
training feature and employ a memory-driven Transformer architecture for
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radiology report generation. The CN-RadGraph model assists by providing a
classification auxiliary loss, guaranteeing semantic consistency to ensure clini-
cal responsibility. To address limited training data, we propose a novel report
data augmentation method and a data oversampling method, increasing dataset
diversity. These enhancements enable our CN-X2RG model as a responsible AI
to generate more accurate and comprehensive medical reports for the Chinese
domain.

Fig. 1. Illustration of the Chinese(Right)(The proposed dataset) and English(Left)
reports. The blue box [16] indicates that the original report is in English, and the red
indicates that the original report is in Chinese. Using ChatGPT [6] as a translation
tool.

3 Datasets

3.1 CN-CXR Dataset

The proposed method is evaluated on our Chinese X-ray reports dataset, CN-
CXR, which comprises a total of 46,301 X-ray images along with their cor-
responding Chinese reports. The dataset was collected from one hospital in
China and spans the years 2012 to 2021. In terms of patient demographics,
the dataset includes 27,949 male patients, 23,109 female patients, and 923
patients with unknown sex. The age distribution of the patients is reported as
44.18±22.34 years. Table 1 presents the anatomy with lesion extracted using our
CN-RadGraph. The table provides an overview of the approximate distribution
of some diseases in the dataset. It offers valuable insights into the prevalence
and occurrence of various diseases within the extracted anatomical structures.
Figure 1 illustrates examples of Chinese reports and their corresponding English
translations, as well as English reports and their corresponding Chinese transla-
tions. It is evident that the language descriptions and styles differ significantly
between the two. Such differences can result in substantial domain shifts, poten-
tially causing a model trained on English reports to fail when generating Chinese
reports with translations, and vice versa. Therefore, such a clinically relevant
CN-CXR dataset is essential to obtain responsible Chinese MRGMI models.
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Table 1. The 48 keywords for anatomy and lesion selected from the Chinese reports.
A lesion present on an anatomy counts both the anatomy and the lesion once.

Anatomy Keywords Lesion Keywords

train valid test train valid test

Chest 3765 1000 1897 Postoperative 3125 599 1246

Hilum 2803 1309 2271 Gas 783 132 283

Heart 3431 890 1686 Shadow 13911 4210 7798

Diaphragmatic 3096 981 1718 Texture 19774 2578 6082

Costophrenic Angle 5670 1645 3038 Calcification 1431 299 608

Lung 35245 7534 15167 Insert 2375 272 662

Aorta 1888 485 925 No Lung Texture 762 388 676

Rib 2488 299 715 Effusion 743 338 512

Mediastinum 870 311 574 Transparency 1557 606 1067

Pleura 867 327 559 Fracture 131 22 56

Vertebrae 703 239 407 Prominence 1441 361 657

Aortic Knot 2387 534 1038 Side Bend 429 188 299

Aortic Arch 73 13 38 Intubation 132 4 18

Fissures 141 55 89 Deformed 47 25 41

Bone 179 35 73 Drainage 100 29 63

Trachea 313 41 123 Emphysema 62 26 48

Neck 165 29 54 Atelectasis 9 4 6

Horizontal Split 40 24 26 Flame 6 3 4

Bronchi 57 22 36 Torque 953 265 500

Bowel 204 11 36 Blur 265 92 201

Diaphragm 274 90 180 Disappeared 23 12 12

Pulmonary artery 183 79 142 Weaken 123 80 126

Belly 72 10 26 Enhanced 4734 1343 2539

Yessels 6 1 5 Shift 431 153 294

3.2 CN-RadGraph Dataset

To create the CN-RadGraph dataset for our model, we employed a sampling
strategy from the CN-CXR dataset. A total of 500 samples were selected based
on the length of the reports. The sampling process involved randomly choosing
100 samples, as well as 100 samples from both the top 10% longest reports and
the top 10% shortest reports. Additionally, 200 samples were randomly selected
from the remaining reports. The resulting 500 samples were then annotated
according to the following:

Entities: We define entities as continuous spans of text that can consist of one
or more adjacent words. In our schema, entities revolve around two main con-
cepts: Anatomy and Observation. We categorize observations into three types,
resulting in four entities in our schema: Anatomy, Disease-Positive-Observation
(DPO), Disease-Negative-Observation (DNO), and Neutral-Observation (NO).
Anatomy represents anatomical body parts mentioned in the radiology report,
such as “lung”. Observations encompass words associated with visual features,
identifiable pathophysiologic processes, or diagnostic disease classifications. For
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example, a DPO could be “effusion” or more general phrases like “increased”. A
DNO could be “normal” or “no abnormality”. A NO could be “shadow”, which
is always connected to DPO and DNO.

Relations: Relations are directed edges connecting two entities in our schema.
We utilize two types of relations: Located At and Modify. Located At (Obser-
vation, Anatomy) represents a relationship between an Observation entity and
an Anatomy entity, indicating that the Observation is related to the Anatomy.
Although Located At often refers to location, it can also describe other relations
between an Observation and an Anatomy. Modify (Observation, Observation) or
(Anatomy, Anatomy) represents a relation between two Observation entities or
two Anatomy entities, signifying that the first entity modifies the scope or quan-
tifies the degree of the second entity. Furthermore, to ensure accurate labeling
of diseased or non-diseased conditions, the Observation determining the disease
appearance is always placed as the outermost node. Supplementary illustrates an
example of a report annotated according to our schema, along with the resulting
graph representation.

In CN-RadGraph dataset, we annotate 4 types entities and 2 types rela-
tions as shown in Table 2. This carefully curated CN-RadGraph dataset serves
as the training and evaluation data for our CN-RadGraph model, enabling accu-
rate and context-aware analysis of radiology reports, which ensures the clinical
responsibility of our model.

4 Method

We first formulate the problem of MRGMI mathematically. Formally, we
have access to labeled dataset contained radiogy images and chinese reports,
denoted by (X,Y ) = {(xj , yj)}Nj=1, where N is the number of data points. We
encode the radiogy images xj to patch features squence, denoted by xPj =
{xpj

1 , xpj
2 , . . . , xpj

K }, where K is the length of the patch features from vision
extractors and embed the corresponding report yj to the squence, denoted by
yRj = {yrj1 , yrj2 , . . . , yrjM}, yrjm ∈ T, where yrjM are the generated tokens, M is
the length of the generated tokens and T is the token library which contains
all possible tokens. To learn a reports generation model to predict the reports
squence of target image sequence xpj , i.e., ŷrj , we propose prompt-based vision
feature extraction which combine the prompt module with vision encoder and
then employ memory-driven Transformer. Note that for simplicity we denote the
proposed framework as CN-X2RG, the Chinese X-ray-to-Reports Generation.

The framework of the proposed method is illustrated in Fig. 2. We first
extract the radiology images feature by the proposed Prompt-based Vision Fea-
ture Extraction which can fuse the features from prompt module and vision
encoder and then transfer the extracted feature to patch features for generation.
To achieve more accurate and responsible reports, we employ memory-driven
Transformer architecture inspired by the work of [3]. To enhance the representa-
tion of the feature, we introduce an extra classification task. The details of the
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Fig. 2. Overview of the proposed framework, which contains four modules, includ-
ing prompt module (Efea

p ), vision encoder(Efea
v ), classification module (Cls) and

transformer-based language model (Gtrans). More specifically, Efea
p and Efea

v are
respectively aimed to encoder the learned knowledges and vision features from Xray
images. Cls is a auxiliary classification task. Gtrans performs on a fusion feature space
to generate radiology reports.

above, the total loss function and the architecture of proposed network can be
found in the supplementary material.

Table 2. Annotation statistics of the CN-RadGraph and statistics of the results
obtained by CN-RadGraph on the CN-CXR dataset

Data Anatomy DNO DPO NO Locate at Modify

Annotations (425 training) 5,905 1,433 2,932 674 3,400 4,474

Annotations (75 validation) 1,029 243 515 116 591 772

Results (32,410 training) 366,699 142,411 125,583 57,853 209,731 279,770

Results (4,160 validation) 55,566 14,292 25,980 6,867 30,824 43,180

Results (9,731 testing) 123,142 36,844 52,038 16,584 68,714 94,922

5 Results and Analysis

In this section, we first introduce the dataset, pre-processing and evaluation
indicators used for experiments in Sect. 5.1. Then, in Sect. 5.2, we compare the
proposed CN-X2RG to other state-of-the-art methods. Finally, we analyze the
effectiveness of the modules in the proposed method using two ablation studies
which can be found in supplementary material.
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5.1 Pre-processing and Evaluation

Pre-processing. For CN-CXR dataset, we resized all training images into reso-
lution of 256×256 pixel, and cropped them into an ROI with 224×224 pixel. All
images were normalized with the z-score method, which is conducive to the con-
vergence of the network at the training stage. We folllow the method of R2Gen
[3] to split the dataset into train/validation/test set by 7:1:2. Specifically, 32410
images for training, 4160 images for validating and 9731 images for testing. And
we used pkuseg [12] and jieba [17] for Chinese word segmentation.

During the training stage, to address the class imbalance issue among key-
words, we employed an oversampling technique for positive samples with a key-
word count smaller than 5,000. A maximum sampling rate of 10 times was set,
and a maximum sampling number of 5,000 was imposed to ensure balanced
representation across the classes.

Evaluation Indicators. To evaluate the generation accuracies, we used six
metrics, i.e., the BLEU1, BLEU2, BLEU3, BLEU4 [15], METEOR and
ROUGEL.

Due to the potential proximity of sentences with opposite semantics when
evaluated using BLEU scores, we employ the CN-RadGraph model, which is
clinical responsibility due to semantic sensitivity, to extract crucial semantic
graph for evaluating model performance. For accurate assessment, we consider
true positives when both lesion and anatomy in graphs match between the label
and prediction. Conversely, false positives are counted when there are incor-
rect lesion or anatomy predictions, and false negatives are counted when lesions
are missing. Based on this definition, evaluation metrics such as recall, preci-
sion, and F1-score can be utilized for assessing lesion and anatomy keywords, as
demonstrated in the supplementary material.

5.2 Performance and Comparisons

CN-X2RG Model. We did the comparison study on the CN-CXR dataset for
Chinese reports generation. The results are presented in Supplementary. CN-
X2RG achieved the best performances in BLEU4, METEOR and ROUGEL

values among all the methods. Specifically, CN-X2RG obtained higher BLEU4,
METEOR and ROUGEL scores than R2GenCMN, with a margin about
1.0%, 0.66% and 0.55% than R2GenCMN, respectively. Compared to R2Gen,
R2GenCMN obtained better results. The reason could be that R2GenCMN use
cross-modal mapping to facilitate radiology report generation, which was more
delicate than R2Gen. However, R2GenCMN consumes a significant amount of
graphics memory, which is why we chose R2Gen as the base model.

CN-RadGraph Model. To assess the performance of our CN-RadGraph
model, we conducted validation using a subset of the CN-CXR dataset called
the CN-RadGraph validation dataset. This dataset comprises 75 Chinese X-ray
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reports specifically selected for evaluation purposes. We evaluated the model’s
performance based on mean precision, mean recall, and mean F1-score for affinity
and relation. The impressive results obtained from the CN-RadGraph model are
presented in Supplementary, highlighting its strong performance in accurately
capturing and analyzing the relationships within the radiology reports.
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Abstract. Differential Privacy (DP) has become a gold-standard to pre-
serve privacy in deep learning. Intuitively speaking, DP ensures that the
output of a model is approximately invariant to the inclusion or exclusion
of a single individual’s data from the training set. There is, however, a
trade-off between privacy and utility. DP models tend to perform worse
than non-DP models trained on the same data. This is caused by the
clipping of per-sample gradients and the addition of noise required for
DP guarantees causing an obfuscation of the individual data point’s con-
tribution. In this work, we propose a method to reduce this discrepancy
by improving the alignment between the per-sample gradients of each
individual training sample with its non-DP gradient by increasing their
cosine similarity. Optimizing the alignment in only a relevant subset of
gradient dimensions, further improves the performance. We evaluate our
method on CIFAR-10 and a pediatric pneumonia chest x-ray dataset.

Keywords: Differential Privacy · Private learning · Gradient
alignment

1 Introduction

A common mantra in deep learning is that any model can only be as good as
the data it is trained on. There are, however, many obstacles to the collection
of good datasets. Privacy concerns are one major impediment. Especially in
the medical domain, there is enormous potential for deep learning solutions to
significantly impact patient health and well-being. At the same time, this is also
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an area where data is especially sensitive. Simply training models on private
medical data opens up a multitude of possibilities for adversarial actors to attack
the model, e.g. through membership inference attacks [14], an attack aimed at
disclosing whether a data record owned by the adversary was part of the training
database, to gain information about individuals in the dataset [13].

To this end, Differential Privacy (DP) can be used as a mathematically prov-
able promise to anyone willing to contribute their data to a dataset that they will
not experience any substantial additional consequences (adverse or beneficial)
relative to the consequences they could expect to experience if their data were
not included. This can also be ensured irrespective of any additional information
an attacker may have on the individual. Their situation will not worsen due to
the inclusion of their data in the dataset. DP methods bound the influence of
any individual data point while allowing the extraction of information about
general trends in the whole population [3].

DP is achieved in deep learning by changing the magnitude and direction of
learning gradients. This intervention is the reason why DP solutions generally
perform worse than their non-DP counterparts. The processed gradients lead
to impeded convergence and worse weight updates [1]. Towards alleviating the
aforementioned problem, we here propose an algorithm for improving the train-
ing utility by privately increasing the alignment of the data points’ gradients
with their non-DP gradient counterparts. The non-DP gradients do not suffer
from deviations due to privatization. A thus improved gradient leads to a sit-
uation closer to training without DP constraints while still satisfying privacy
guarantees. We show that overall alignment is, however, not the most relevant
metric to be maximized. In fact, increasing alignment in specific relevant gra-
dient dimensions leads to better performance despite overall alignment being
worse.

2 Background and Related Work

(ε, δ)-DP [4] is a framework that ensures the privacy of individuals in data anal-
ysis. It employs a randomized algorithm M with the privacy parameters ε and δ
to produce an output from a dataset D. The algorithm introduces calibrated ran-
dom noise, guaranteeing that any individual’s data does not significantly affect
the outcome of the mechanism. Mathematically, for datasets D and D′ differing
in a single individual’s data, and for any set of possible outputs S, M satisfies
Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ. The parameters ε and δ determine the
level of privacy protection, with smaller values of δ providing stronger privacy
but potentially increasing the amount of added noise.

For training a deep learning model using DP an adaptation of stochastic
gradient descent (SGD) called DP-SGD was developed [1]. The algorithm builds
on standard SGD by first clipping the per-sample gradients and then adding
Gaussian noise to them before averaging the gradients for the weight update. In
contrast to standard DP-SGD which uses all data points of the random sample,
our method drops data points from the current update during training based on
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Fig. 1. Schematic showing the steps of our method in a two-dimensional example.
The blue arrows represent the per-sample gradients. The green arrow is the non-DP
average gradient. The orange arrow shows the current average gradient of the per-
sample gradients. (a) The state at the beginning of the algorithm. (b) Per-sample
gradients are clipped and noise is added. (c) The cosine similarity with the non-DP
gradient is calculated privately and a threshold applied. (d) Gradients outside of this
threshold get removed from the weight update step. (Color figure online)

the cosine similarity of that point’s gradient with the average non-DP gradient
of the randomly sampled group to improve the gradient update direction.

Another DP method that drops specific data points during training is the
work by Feldman et al. [5], where the method assigns an individual gradient norm
budget to each data point which is then dropped for the remaining training if that
budget is spent. While they drop data points completely from the database based
on the spent budget to prolong training on other samples, we temporarily drop
data points from the current update based on their cosine similarity (CS) with
the non-DP gradient to improve training performance under a specific privacy
budget. To the best of our knowledge, our work is the first that tries to gain
performance improvements by improving the direction of gradients.

3 Methodology

3.1 DP-SGD with a Cosine Similarity Filter

The increase in privacy of DP learning is usually paid for with a decrease in
performance. This is caused by the clipping and the noise added to the gradients
and therefore a change in the magnitude and direction of the weight update. We
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hypothesize that reducing the effects of these gradient deviations should lead
to better performance under similar privacy guarantees. We achieve a denoising
effect by removing per-sample gradients from being included in the averaged
gradient of the batch depending on their similarity with the non-DP gradient
that would have been used by non-DP training, i.e., if their CS is below some
threshold ψ ∈ [−1, 1].

Our algorithm, is shown schematically in Fig. 1 and explicitly in Algorithm 1.
It starts identical to the DP-SGD algorithm [1] with an additional step of com-
puting the average gradient of the batch ĝt before privatization. After adding
the noise to the per-sample gradients, we use this batch gradient to calculate a
CS with all per-sample gradients.

In order to still ensure DP of our method, we can not simply use the non-
DP gradient in our calculations and still have the same privacy guarantees, in
fact, that would completely eliminate the certification. Instead, we have to also
privatize the calculated CS.

Algorithm 1. CS filter for DP learning
Input: Samples {x1, . . . , xN}, loss function L(θ, xi). Parameters: iterations T , learning

rate ηt, noise scale σ, group size L, gradient norm bound C, CS threshold ψ, CS
clipping range λ, CS noise scale τ .
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with sampling probability L/N
Compute per-sample gradients
For each i ∈ Lt, compute gt(xi) ← ∇θtL(θt, xi)
Compute average gradient
ĝt ← 1

L

∑
i gt(xi)

Clip gradient
ḡt(xi) ← gt(xi)/ max

(
1, ‖gt(xi)‖2

C

)

Add noise
g̃t(xi) ← ḡt(xi) + N (0,σ2C2I)

L

Calculate CSs
For each i ∈ Lt, compute ct(xi) ← (ĝt · g̃t(xi))/(||ĝt||||g̃t(xi)||)
Privatize CSs
For each i ∈ Lt, compute c̄t(xi) ← min(ψ + λ, max(ct(xi), ψ − λ))
For each i ∈ Lt, compute c̃t(xi) ← c̄t(xi) + N (0, τ2(2λ)2)
Select samples based on CS
Xt ← {xi|i ∈ Lt, c̃t(xi) > ψ}
Average remaining per-sample gradients
g̃t ← 1

|Xt|
∑

x∈Xt
g̃t(x)

Descend
θt+1 ← θt − ηtg̃t

end for
Output: θT
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Note, that with the hard threshold ψ on the CS, based on which we select the
gradients in the next step, we are really only interested in values close to that
boundary. We reduce the sensitivity by clipping the CS inside a range close to
ψ. Explicitly, we introduce a parameter λ ∈ [0, 2] and clip the CSs into a range
of [max(−1, ψ − λ),min(ψ + λ, 1)], thus obtaining the mechanism’s sensitivity
of 2λ. Together with the CS noise multiplier τ ∈ R, we then sample noise from
the Gaussian distribution N (0, τ2(2λ)2) and add it to the clipped CSs, thus,
privatizing the values. Then we select all samples whose CS with the non-DP
gradient is larger than the threshold ψ, i.e., the set {xi|i ∈ Lt, c̃t(xi) > ψ}, where
c̃t(xi) is the privatized CS. Using this set, we calculate the average gradient. This
improves the alignment of the gradient with the average non-DP gradient of the
current sample.

In order to include the CS privatization into the calculation of the spent
(ε, δ)-budget, we track the budget with Rényi Differential Privacy (RDP) [10].
Therefore, we are able to add up the Rényi guarantees to the total RDP budget,
since composition is additive. Transforming the (α, ρ)-RDP guarantee into an
(ε, δ)-DP then can be done using the approach defined by Mironov et al. [2,10].
For more information on RDP, please refer to [10].

3.2 DP-SGD with Dimension-Filtered Cosine Similarity Filter

Rather than calculating the CS between per-sample gradients and the non-DP
gradient for all dimensions of the gradient, we found that it can be beneficial
to first identify dimensions that have a high value in specific measures, e.g.,
standard deviation (std) or coefficient of variation (CoV), and then project the
gradient vectors into a space spanned by those standard basis vectors that cor-
respond to these identified dimensions. We, thus, limit the dimensions under
consideration for the CS calculation.

As can be seen in Algorithm 2, this is done by calculating the vector st ∈ R
F

that holds the values of the per-sample gradient dimension measure. We then
find the γ-th percentile score of the values in st, with γ ∈ [0, 1], to identify
the threshold φ ∈ R for the values. With this threshold, we can create a set
St = {i|(st)i > φ} that holds all dimension indices whose values are above
this threshold and therefore above the γ-th percentile. As a next step, we trun-
cate both the per-sample gradient vectors and the non-DP gradient to those
dimensions present in the set St as g̃′

t(xi) ← (g̃t(xi))i∈St and ĝ′
t ← (ĝt)i∈St ,

respectively, essentially projecting the vectors into the identified relevant vector
space.

Now, calculating the CSs of the truncated per-sample gradients with the
truncated non-DP gradient is ignoring the alignment in dimensions with low
standard deviation. Importantly, this process does not improve the overall CS of
the batch gradient with the non-DP gradient; on the contrary, it generally makes
it worse, as the algorithm only optimizes alignment in a subset of dimensions.
Still, we identify an experimental benefit in Sect. 4.
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4 Experiments and Discussion

4.1 Experimental Setup

We evaluate our method on the CIFAR-10 [9] and the publicly available Pediatric
Pneumonia [7] dataset. CIFAR-10 contains 32× 32 color images of ten different
classes, e.g. airplanes, cars, or cats. The dataset has 50,000 training images and
10,000 for testing [9]. The Pediatric Pneumonia dataset, published in [7], contains
x-ray images of children suffering from bacterial pneumonia or viral pneumonia
in addition to a control group. There are 5,163 images for training and 624 for
testing.

Algorithm 2. CS filter with dimension filter for DP learning
Input: Samples {x1, . . . , xN}, loss function L(θ, xi). Parameters: iterations T , learn-

ing rate ηt, noise scale σ, group size L, gradient norm bound C, CS threshold ψ,
CS clipping range λ, CS noise scale τ , dimension measure s, dimension measure
percentile γ, dimension measure threshold φ.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with sampling probability L/N
Compute per-sample gradients
For each i ∈ Lt, compute gt(xi) ← ∇θtL(θt, xi)
Compute average gradient
ĝt ← 1

L

∑
i gt(xi)

Clip gradient
ḡt(xi) ← gt(xi)/ max

(
1, ‖gt(xi)‖2

C

)

Add noise
g̃t(xi) ← ḡt(xi) + N (0,σ2C2I)

L

Calculate measure of gradient dimensions
st ← s(g̃t)
Select gradient dimensions based on measure
φ ← percentile(st, γ)
St ← {i|(st)

i > φ}
ĝ′

t ← (ĝt)
i∈St

For each i ∈ Lt, g̃
′
t(xi) ← (g̃t(xi))

i∈St

Calculate CSs
For each i ∈ Lt, compute ct(xi) ← (ĝ′

t · g̃′
t(xi))/(||ĝ′

t||||g̃′
t(xi)||)

Privatize CSs
For each i ∈ Lt, compute c̄t(xi) ← min(ψ + λ, max(ct(xi), ψ − λ))
For each i ∈ Lt, compute c̃t(xi) ← c̄t(xi) + N (0, τ2(2λ)2)
Select samples based on CS
Xt ← {xi|i ∈ Lt, c̃t(xi) > ψ}
Average remaining per-sample gradients
g̃t ← 1

|Xt|
∑

x∈Xt
g̃t(x)

Descend
θt+1 ← θt − ηtg̃t

end for
Output: θT
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In the following experiments, we use a ResNet9 [6] following Klause et al. [8]
starting with two convolutional blocks with 64 and 128 filters, respectively, fol-
lowed by one residual block with 128 filters, two convolutional blocks with 256
filters and one residual block also with 256 filters. The last two layers are one
max pooling layer and one fully connected layer with 1024 nodes. The convolu-
tional blocks all consist of one convolutional layer and after a Mish activation [11]
layer, a group normalization layer. Additionally, there is a scale normalization
after each residual layer. This network is a strong baseline for DP learning tasks
on CIFAR-10.

The experiments minimize the cross-entropy loss. We train for 50 epochs
on CIFAR-10 and 20 epochs on Pediatric Pneumonia. The learning rate was
set to 0.005 for CIFAR-10 and 0.001 for Pediatric Pneumonia, momentum to
0.1, and group size L to 64, as these parameters show the best results on the
baseline method. Accordingly, we set the maximum gradient norm to 1. All
images are normalized before they are passed to the model. The source code was
implemented in Python using PyTorch [12]. The opacus library [15] was used for
their implementation of DP-SGD and privacy accounting.

4.2 Results and Discussion

For our method to be DP, the calculation of the CS of the privatized gradient
with the original non-DP gradient has to be privatized as well, as we would
leak private information from the non-DP gradient without doing so. However,
to clearly see the potential benefit of the method, we first evaluate it without
that additional step. From that, we can infer an upper bound of the benefit
of the method without the extra difficulty of a noisy CS. In Table 1, we show a
comparison of our method’s validation scores with a standard DP-SGD baseline.
We instantiate our method with three different kinds of dimension measures:
magnitude, std, and CoV. The magnitude-filtered CS filter only keeps those
dimensions that have a high average magnitude, and the std-filtered and CoV-
filtered CS filter keeps only those dimensions that have a high std or CoV,
respectively.

Table 1 shows that the improved gradient alignment indeed translates into
an improvement in performance. For CIFAR-10, The average cosine similarity of
the baseline gradients with the non-DP gradient is 0.02. The CS filter raises this
to 0.15 and outperforms the baseline. The performance gain between the baseline
and the standard unfiltered CS filter is not necessarily surprising, since the latter
uses non-private information in the form of cosine similarities. However, the even
more substantial improvement in the performance of the CoV-filtered CS filter
is very interesting when considering that the average alignment of 0.1 of the
gradient is now actually worse than the alignment when using the unfiltered CS
filter. This is the case because we are only optimizing alignment in a subset of
dimensions. It follows that the CS is apparently not the only relevant metric by
which to measure the value of gradients. One property of the CS is that, while
it can be decomposed into the calculation of the alignment of each dimension
individually, all dimensions are weighted equally. However, it may be the case
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Table 1. Validation scores for different dimension filter choices on CIFAR-10 and
Pediatric Pneumonia with a ResNet9. The dimension filter quantile is γ = 0.7 for
CIFAR-10 and γ = 0.5 for Pediatric Pneumonia. The CS filter threshold is ψ = 0.1
for CIFAR-10 and ψ = 0 for Pediatric Pneumonia. These results do not use privatized
CSs. Methods that are not fully DP are marked with an asterisk.

Method CIFAR-10 Pediatric Pneumonia

Accuracy AUROC Accuracy AUROC

baseline 0.6933 0.9491 0.7019 0.8961

unfiltered CS filter* 0.7096 0.9567 0.7228 0.8962

magnitude-filtered CS filter* 0.7041 0.9558 0.6939 0.8929

std-filtered CS filter* 0.7292 0.9601 0.7051 0.8950

CoV-filtered CS filter* 0.7353 0.9613 0.7340 0.8924

that not every dimension is equally important. Treating all dimensions the same
may dilute the CS metric with alignment in irrelevant dimensions. Filtering out
these dimensions prior to calculating the CS, could improve the alignment in
relevant dimensions even if it reduces general alignment. The experiments on
the medical pediatric pneumonia dataset largely confirm these findings.

The benefit of our method becomes less clear when deploying it in a fully DP
context, i.e., including the privatization of the CSs. On CIFAR-10, the validation
accuracy of the CoV-filtered CS filter over three seeds gets reduced to 0.698 ±
0.009 at ε = 7.46 and δ = 1 × 10−6 while the fully unfiltered baseline reaches
0.696 ± 0.002 at ε = 6.97 and δ = 1 × 10−6 over the same three seeds. These
results are, however, preliminary and could be related to a lack of tuning, as our
experiments show that there is value in gradient alignment.

5 Conclusion

In this work, we proposed a method to improve the quality of learning gradients
in DP-SGD by reducing the amount of deviation of the private gradient from its
non-DP counterpart. This improves the utility of the training at minimal privacy
cost. We further experimentally show, that pure cosine similarity alignment is
not the only relevant metric to measure the quality of the DP gradients. To that
end, we develop a second version of our method, that first identifies a subset
of gradient dimensions that qualify as being relevant, determined by the CoV
in that dimension, and only computes the cosine similarity over this subset of
dimensions. This again improves the performance of our method. Optimizing
the method to improve results in a fully DP context is part of ongoing efforts.

This work opens up many different venues for further exploration and evalua-
tion. We find that simply optimizing the cosine similarity of the private gradient
with the non-private one, does not always leads to the best performance. While
we shed some light on the problem, by showing that alignment in certain dimen-
sions may be more important than alignment in all dimensions, the immediate
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cause for this effect is not perfectly clear yet. Further research is required to
understand the relationship between the cosine similarity of gradients and the
utility of the training. We believe that this work can provide valuable insights to
further understand the intricacies of deep learning with DP and provide a basis
for following research on the effect of gradient alignment and how to best utilize
this effect to improve the utility of models trained with DP.
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL), accounting for about 25% to 30% of all the
non-Hodgkin lymphomas [1], is an aggressive and the most common type of lymphoma.
Although about two-thirds of DLBCL patients can be cured with standard treatment,
research has focused on determining which patients have less favorable prognosis so
that they can be considered for novel targeted-treatment strategies [2]. Germinal center
B-cell-like (GCB) and activated B-cell-like (ABC) are two major biologically distinct
molecular subtypes of DLBCL. Patients with the ABC DLBCL generally have worse
prognosis than the GCB DLBCL patients [1] when treated with combined therapy R-
CHOP. Therefore, cell-of-origin (COO) classification or its surrogates have been incor-
porated into the clinical practice and clinical trials to help better understand DLBCL
biological heterogeneity and enable researchers to develop more accurate therapeutic
targeting strategies.

Well-established COO classification algorithm uses gene expression profiling (GEP)
[3]. However, as GEP is not widely accessible, researchers and pathologists in clinical
practice approximate molecular subtypes using immunohistochemical (IHC) patterns
such as themost widely usedHans algorithm,where expert visual assessment ofmultiple
IHC assays are required. Due to the imperfection of IHC in assessing molecular subtype,
more precise strategies are under development [4].

In this paper, we aim for standardized and automatedCOOprediction based on hema-
toxylin and eosin (H&E) stainedwhole-slide-images (WSIs), which are readily available
from primary diagnosis and thus tissue-saving and potentially more efficient by short-
ening the turnaround time. Previous study in COO predictions of DLBCL patients using
H&EWSIs and deep learning approaches is reported [5], but no insights are shared about
the relation between histopathology features and different molecular subtypes. Another
recent study conducted by Vrabc et al. [6] indicates that the cellular morphological fea-
tures are of prognostic importance. However, the cellular features extracted were only
limited to the basic geometric features of nuclei.

Inspired by the previous works, in this study, we developed a new approach, named
Cellular Features Based Interpretable Network (CellFiNet). Specifically, in this app-
roach, nuclei segmentation and classification are first performed to identify each nucleus
and classify them into different phenotypes. Then, interpretable cellular features are
derived from nuclei in each image tile and used as the tile-level histopathological rep-
resentation. Lastly, attention based multi-instance learning (AMIL) framework is used
to aggregate all tile-level histopathological representations from a WSI to form the
slide-level representation and train a WSI classifier. Our work has the following major
contributions: 1) A comprehensive, quantifiable and generic cellular feature set that char-
acterizes nuclei morphologies, spatial patterns as well as phenotype compositions. The
feature set canbeused to train diversemachine learningmodels for clinical predictions. 2)
A weakly-supervised AMIL model to classify the GCB and ABCmolecular subtypes of
DLBCLwith superior or comparable performance as the existingmachine/deep learning
approaches. 3) A systematic approach to analyze and interpret the trained model through
a combination of attention mechanism and SHAP (SHapley Additive exPlanations) [7]
analysis at both slide- and tile-level.
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2 Methodology

The proposed CellFiNet approach has three major steps as illustrated in Fig. 1. As a
prerequisite, image tiles are extracted from manually annotated tumor regions of the
WSI.

Fig. 1. CellFiNet pipeline diagram.

2.1 Nuclei Segmentation and Classification

We first employ an internally trained multi-task semantic segmentation model based on
[12] to segment the nuclei in each image tile and classify each nucleus into three phe-
notypes, namely “tumor”, normal “lymphocyte” and “other” cells. Note that CellFiNet
can employ other cell segmentation and classification models as long as they facilitate
cellular feature extraction as described below.

2.2 Cellular Feature Extraction

Nuclear Level Features. Using the semantic mask generated in the previous step,
210 nuclear morphology features are computed for each nucleus. This includes six
categories which are 1) basic geometric features (such as shape, size and circularity)
extracted using scikit-image [16], 2) first-order statistics of gray-level intensity inside the
nuclei, 3) texture features derived from gray-level co-occurrence matrix, both 2) and 3)
extracted using PyRadiomics [17], 4) advanced morphology features for characterizing
irregularity, computed internally, 5) chromatin distribution features [13] and 6) nuclear
boundary signature and curvature features [14] both computed internally.

Tile Level Features. Nuclear features from cells in each tile are aggregated into tile
level features using median and standard deviation statistics (indicated by “_med” and
“_std” in feature name, respectively in Fig. 3 and 4). Additionally, we implemented
spatial distribution features, such as density of each cell phenotype and average distances
between cells. Finally, spatial patterns are captured through graph-based methods such
as k-nearest neighbor (KNN) graphs using the Igraph library [15].

Feature Pre-processing. Due to general similarity between each nucleus, some cellular
features have low variance across cells or high correlations with other cellular features.
Such features are excluded by applying predefined variance and correlation thresholds,
which results in a 336-dimensional feature representation for each tile. Finally, we apply
normalization on the tile-level features before passing them to the network.
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2.3 AMIL Model Training

AMIL, first introduced by Ilse et al. [8] consists of two components, an attention mech-
anism and a multi-instance learning (MIL) classifier. The attention mechanism uses the
softmax attention to highlight the individual instance contributions to the entire bag,
while the attention weights are learned by the network. This attention mechanism will
further supervise the MIL classifier by generating the slide-level feature representation
where different instances’ (i.e., tile-level features) contributions are no longer considered
equally. The AMIL model weighs more on the more relevant instances, thus inherently
reduces the impact of noisy samples and improves the prediction performance.CellFiNet
inherits the state-of-art AMILmodel architecture, but uses tile-level cellular feature rep-
resentations as the input instead of the image embeddings extracted by a pre-trained
convolutional neural network model. Based on the cellular feature dimension, the atten-
tion module we built is composed of multiple linear layers, each followed by a dropout,
1-dimension batchnorm and Relu activation. The classifier module is a simplemultilayer
perceptron (MLP) with dropout and Relu activation.

2.4 CellFiNet Interpretability

CellFiNet provides two types of interpretability leveraging the attention mechanism and
SHAP analysis [7], a game theoretic approach to interpret AI model predictions. Since
the slide-level cellular features is the aggregation of tile-level features, each of the two
types of model interpretations can be conducted at the slide-level as well as the tile-level.

The first type of model interpretation is built upon the attention scores, which is
the output from the attention module in the CellFiNet architecture. The attention scores
are used to generate a slide-level attention heatmap to provide a global view of the
relevant regions for model prediction, which allows easier localization of regions for
inspection in a WSI. In addition, attention score can be used to create a tile-level gallery
consisting of the top highest-attended tiles from a given WSI, which enables detailed
visual assessment of the relevant tissue morphologies used by the model.

The second type of model interpretation is leveraging SHAP to identify the most
contributing cellular features to the model predictions at both the slide- and tile-level
through slide- and tile-level feature representations, respectively. In addition to feature
importance, SHAP also enables determining if a higher value of a particular feature con-
tributes positively or negatively to the prediction. Thanks to the fact that each individual
feature is analytically formulated and biologically relevant, domain experts are enabled
to assess the model behavior by accessing individual features against their prior knowl-
edge. The model validity can be further supported beyond good performance metric if
identified important features are associated with the expected tissue morphology for the
disease. On the other hand, if the important features are found to be correlated with
data batch effects, such as datasets variation caused by different data sources, possible
model bias can be identified and potentially addressed by simple approaches such as
eliminating the feature.
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2.5 Benchmark Methods

As a benchmark method, image embeddings generated by a pre-trained model through
self-supervised learning [9] on various histopathological images were extracted as the
tile-level representations. The pre-trained model uses Resnet50 architecture and outputs
embedding with 1024 feature dimensions. Since the pre-trained embeddings were in
1024-dimension, which is significantly greater than the cellular feature dimension, we
included more attention layers in the attention module of the CellFiNet framework to
capture more complex patterns and potentially allow smoother dimension reduction
during learning. As a second benchmark method, a Random Forest (RF) classifier was
also trained using the tile-level cellular feature representations to generate prediction
for each tile, the average prediction score of all tiles from a WSI is then used to get
slide-level prediction.

3 Experiments and Results

3.1 Data

In this study, we used H&E stained WSIs scanned at a magnification of 40X (0.25
um/pixel), from a total of 410 DLBCL patients who participated in the phase 3 GOYA
(NCT01287741) or phase 2 CAVALLI (NCT02055820) clinical trials. Among these
patients, 142 and 268 slides were labeled as ABC and GCB subtypes, respectively. Out
of the 410 WSIs, 356 were designated for cross validation purposes, while the remain-
ing 54 WSIs were dedicated for independent testing. From each WSIs, we extracted
non-overlapping tiles of size 1024x1024 pixels. This size was selected such that each
tile contains a sufficient number of cells to derive robust cellular feature statistics. To
reduce the sample imbalancing due to tumor region size variation, a maximum of K tiles
were randomly extracted if there are more than K tiles present in the annotated tumor
region. K was empirically chosen taking consideration of the memory and computation
requirement, K = 30 in our experiments.

To identify the optimal hyperparameter combinations, we generated a 5-fold cross-
validation dataset using the afore-mentioned 356 WSIs. Within each fold, we randomly
allocated 80% of theWSIs for training, while the remaining 20% served as the validation
set. After determining the best hyperparameters, we applied the same split ratio to the
356 WSIs, resulting in 285 WSIs for training and 71 WSIs for validation. This allowed
us to retrain the model using the identified optimal hyperparameters. We evaluated the
performance of the final model on the independent test dataset consisting of the 54WSIs
as mentioned above.

3.2 Results

We evaluated the proposed CellFiNet approach and the two benchmark methods using
ROCAUC (see Table 1). Themean and standard deviation were reported for training and
validation across the 5-fold cross-validation (CV) datasets. In addition, the performance
of the final model on the independent test dataset was also reported. The results showed
thatCellFiNet outperformedRFon both theCVdatasets and the independent test dataset.
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This demonstrated the benefit of utilizing AMIL architecture to weight each tile based
on its relevance to the target prediction, instead of allowing equal contribution from
all the tiles by RF. Meanwhile, CellFiNet achieved comparable performance as the
conventional AMIL approach, with slightly higher mean ROC AUC on the CV datasets
and test dataset. This demonstrated the equivalent representation power of the cellular
features as compared with the pre-learned image embeddings.

Table 1. Performance Comparison in ROC AUC

Method Train Validation Test

RF 0.713 ± 0.033 0.675 ± 0.045 0.715

Conventation AMIL 0.740 ± 0.005 0.686 ± 0.025 0.737

CellFiNet 0.716 ± .012 0.706 ± 0.060 0.751

4 Interpretability

Fig. 2. Visualization of CellFiNet attention score based interpretability. (a) Example of slide-
level attention heatmap, where high attention regions are highlighted by red colored shade; and
examples of top 5 tiles of the (b) highest and (c) lowest attention scores.

CellFiNet offers a dual interpretability approach utilizing attention scores and SHAP.
Figure 2 shows the attention heatmap of a sample H&E stained WSI of ABC subtype,
which indicates that the model is focusing on the upper part of the annotated tumor
region. In addition, the top 5 tiles with the highest and lowest attention scores from the
same WSI illustrate how CellFiNet model prioritizes dense tumor tiles while assigning
lesser importance to tiles depicting open spaces or non-tumor tissue. This emphasizes
the model’s ability to discern areas of significance within the WSIs.

Figure 3 demonstrates the slide-level cellular feature importance and effect on the
training and testing dataset, respectively. As shown, for both the datasets, features
related to cell phenotype (tumor_density, other_density), tumor cell spatial pattern
(KNN_max_betweeness, KNN_std_betweeness), nuclear shape (moment_hu1_med,
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Fig. 3. SHAP summary plots for the (a) training dataset and (b) testing dataset. Each dot corre-
sponds to a slide. The top 10 feature importance is ranked along the y-axis. The impact on model
output is shown along the x-axis, where positive and negative values indicate moving prediction
value towards “1” (i.e., ABC) and “0” (i.e., GCB). Respectively.

Fig. 4. SHAP waterfall plot for an example individual tile which is predicted as a) GCB subtype
(f(x) = -0.532) and b) ABC subtype (f(x) = 0.311). Each row shows how the positive (red) or
negative (blue) contribution of each feature moves the value from the expected model output
(E(f(x)) = -0.058) to the model output for this particular prediction. The gray text before the
feature names shows the standardized value of each feature for the corresponding tile.

moment_hu2_med, Ncce_index_med), bournary (number_of_peaks, gini_coefficient_
med, std_dev_by_mode_med), and texture (original_gldm_LargedependenceEmphasis_
std, original_glcm_DifferenceVariance_std, original_glcm_InverseVariance_std) are
all contributing to the prediction. Six out of the top 10 features (highlighted in bold)
are shared by the training and testing datasets, demonstrating the generalizability of
these features across different datasets. It is worth noting that tumor_density is the most
important feature, and higher tumor_density value points towards a prediction of “ABC”
subtype. Meanwhile, higher variation of the nuclear texture is also associated with the
“ABC” subtype. Knowing that ABC DLBCL patients generally have worse prognosis
than the GCB DLBCL patients [2], this observation can be linked to the report that
within the morphologic spectrum of DLBCL, certain cases of aggressive mature B-cell
non-hodgkin lymphoma have some of the morphologic features of burkitt lymphoma
but have greater nuclear and cytoplasmic variability [10].
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To gain insights about model behavior on a local region, CellFiNet classifier can be
applied to a tile-level representation and use SHAP waterfall plot to display individual
tile prediction explanations. Figure 4 visualizes the contribution of the top 9 features
(the remaining 327 features are aggregated in the last row). The top feature differences
between Fig. 4 (a) and (b) indicate that the model is adapted to local feature variation
and employs different feature importance to derive the prediction. Figure 4 (a) shows
that the shape and boundary features are the main determinants for predicting the tile
as GCB; while (b) shows that morphological variations are the dominating factors for a
ABC prediction; tumor_density stays important for both tiles.

5 Conclusion and Discussion

CellFiNet elegantly combines quantified and interpretable cellular features and AMIL
network architecture in a simple yet effective way. The notable performance in COO pre-
diction for DLBCL patients demonstrates the descriptive power of the designed cellular
features, as well as the effectiveness of attention mechanisms in weighing the relevance
of tissue image tiles to the target prediction. The combination also greatly enhances
model interpretability through both attention scoring and SHAP analysis, each of which
is only applicable to either pure deep neural network based approaches or conventional
machine learning approaches alone. As a result, CellFiNet allows a holistic interpreta-
tion and analysis of model behavior at various levels, covering the entire dataset, whole
slide images and individual image tiles. Moreover, the linkage to each individual cellular
feature can be established at all levels, enabling more model transparency and trustwor-
thiness and making CellFiNet a great biomarker discovery tool for clinical predictions.
Future works include using more diverse real-world data for model optimization and
verification. Also, using a subset of image tiles from the annotated tumor region due to
memory and computation limitation can be suboptimal for model training, which will
be addressed in the next phase of development.
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Abstract. Convolutional Neural Networks (CNNs) applied to medical
imaging for disease diagnosis have not yet been widely adopted by radi-
ologists due to the black-box nature of these models, undermining their
explainability. A few of the approaches for “opening” the black box
include the use of heatmaps to assist with visual interpretation, but
these heatmaps remain crude. While it has been shown that utilizing
radiologists’ attention-related data improves the quality of models’ atten-
tion maps, its quantitative effect on explainability remains unexplored.
Moreover, the impact of combining radiology reports as a separate data
modality with medical images on model explainability and performance
has not been fully explored. In this work, we use an Eye-Gaze dataset
along with radiology reports to exhaustively study the impact of adding
radiology reports and Eye-Gaze data to X-ray images on the perfor-
mance and explainability of CNN-based classification models. Addition-
ally, we introduce an explainability metric to quantitatively evaluate the
alignment of model attention with radiologist-specified regions of interest
(ROIs). We demonstrate that combining the radiology reports with chest
X-ray images improves the CNN’s performance significantly (12.85%) in
detecting Pneumonia and Congestive Heart Failure. In addition, using
Eye-Gaze data as a secondary ground truth alongside the class labels
enables the generation of attention maps, as means for model explain-
ability, that have a better attention overlap with the corresponding ROIs
compared to the popular model-agnostic GradCAM method. Addition-
ally, the explainability of attention heatmaps generated by Eye-Gaze
data as a secondary ground truth improves by approximately 11% when
more context via other data modalities, such as radiology reports, is
added to the X-ray images. In contrast, the addition of radiology reports
has negligible effect on the heatmaps created by GradCAM.
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1 Introduction

The rapid success of deep learning (DL) has resulted in its applications in vari-
ous domains, including medical imaging and radiology. Multiple examples of DL
methods have shown great promise in medical imaging, even matching the perfor-
mance of human practitioners in tasks such as classifying skin lesions, identifying
diabetic retinopathy, and detecting hip fractures from medical images [1,12,13].
However, the adoption of DL methods has been slow because of the inability
of healthcare professionals to understand the features used in the predictions of
these “black-box” models, i.e., lack of explainability [5,11,14]. Moreover, there is
a gap in the literature on quantifying performance and explainability gains from
adding other data modalities, such as radiologists’ Eye-Gaze maps and radiology
reports in DL-based disease diagnosis.

The recently created Eye-Gaze dataset [3] provides comprehensive informa-
tion on a radiologist’s Eye-Gaze while performing the diagnosis task, referred
to as static Eye-Gaze heatmaps, alongside chest X-ray images and radiology
reports. Additionally, this dataset contrasts existing ones in that it provides
ground truth for three classification labels, namely Normal, Congestive Heart
Failure (CHF), and Pneumonia, which is independent of radiology reports and
comes from a group of interdisciplinary clinicians [3]. The Eye-Gaze dataset cre-
ators present a baseline framework for multi-class chest X-ray classification using
a U-Net architecture [8] trained solely on chest X-ray images [3]. In addition to
the baseline model, they propose a method that treats the static heatmaps as
a secondary ground truth along with the class labels within a multi-loss archi-
tecture [3]. Across the baseline and static heatmap models discussed above, the
authors reported an area under the receiver operating characteristic curve (AUC)
of 0.87 for both experiments [3]. However, the lack of quantitative evaluation of
the generated attention maps is a significant gap in their work. Moreover, while
the paper provides a framework for utilizing the Eye-Gaze information, it does
not investigate the impact of adding other data modalities, such as the radiology
report text, as an input on the performance or explainability of the Convolutional
Neural Network (CNN). Finally, as the reported classification performance in [3]
was not obtained through cross-validation, a more rigorous set of experiments is
required by training the models on different folds of the dataset.

There are other studies that have used similar data modalities to improve
model performance and interpretation. Zhu et al. proposed a method called gaze-
guided class activation mapping (GG-CAM) [15] that combines human attention
with the DL model attention for image classification using the Eye-Gaze dataset.
GG-CAM [15] utilizes Eye-Gaze attention maps in the supervised training of
class activation mapping (CAM) [4] attention within CNN architectures. How-
ever, a significant gap in this work is the lack of investigation into the impact of
utilizing all available data modalities as inputs on the model’s functionality.
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In this paper, we incorporate all available data sources (X-ray images, radi-
ology reports, and Eye-Gaze static heatmap) into a multimodal DL architecture
for multi-class classification of Normal, CHF, and Pneumonia. We first uncover
how adding free-text radiology reports, even only the indication section, to X-ray
images significantly improves multi-class classification performance. Second, we
demonstrate how Eye-Gaze information used in a DL architecture as a second
ground truth can produce attention heatmaps that outperform the commonly
used Explainable Artificial Intelligence Method (XAI) method, namely Gradient-
weighted Class Activation Mapping (GradCAM) [7]. We also propose a metric
for the quantitative assessment of the explainability of a given heatmap. Finally,
we highlight that the quality and accuracy of attention maps generated by uti-
lizing Eye-Gaze data improves by incorporating radiology reports. In contrast,
the attention maps derived by GradCAM method are, at best, indifferent to any
added context to the initial X-ray images.

2 Method

The MIMIC-CXR database provides a large repository of radiology images and
reports [2]. As a subset of this database, the Eye-Gaze dataset [3] offers the
following: 1,083 chest X-ray images, the accompanying radiology reports in a
free-text format, and the recorded Eye-Gaze information. The dataset also pro-
vides ground truth classification labels spanning three classes: Normal (337 data
points), CHF (343 data points), and Pneumonia (337 data points). During the
initial data processing phase, we excluded 66 chest X-ray images due to incom-
plete Eye-Gaze information, leading to 1,017 data points being used in this study
(Dataset 1). All images were scaled by their maximum values, resized to 224
× 224 pixels using Bilinear interpolation, and normalized by ImageNet mean
and standard deviation. The radiology reports consist of several sections: the
Exam Indication section, the Findings section, and the Impressions section. The
Findings and Impressions sections of a radiology report entail the radiologist’s
diagnosis. In contrast, the Exam Indication section is a short medical history of
patient’s symptoms and the reason for the radiology exam.

This study has two primary objectives. First, it aims to measure the impact
of different data modalities, specifically radiology reports, on classification per-
formance, which was not investigated by the Eye-Gaze dataset creators in devel-
oping their classification model [3] or similar works such as [15]. The second goal
is to improve the explainability of the DL classification models by generating
attention maps using the static Eye-Gaze data as a second ground truth along
with the multi-class classification loss, and the radiology reports as an additional
input to the model. We also propose a metric for the quantitative assessment
of the model explainability. The attention maps are then compared, both qual-
itatively and quantitatively, to those created using GradCAM [7], a frequently
used XAI method, when applied to the models with only the classification loss.
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2.1 Classification Performance Experiments

To improve the classification performance of the baseline framework [3], we first
train our model on the images and the indication section of the reports. Then,
to evaluate whether the radiologist’s findings can help the framework, we use the
entire report together with the images in a separate experiment. The dataset was
divided into training, validation, and test sets using 5-fold cross-validation, with
all three sets rotating through the cross-validation iterations. To maintain the
integrity of unique patient IDs across training, validation, and test sets, the cross-
validation was based on patient IDs. The primary evaluation metric for this study
is the mean AUC and per-class AUC, which have been calculated based on the
One-vs-Rest approach. The following paragraphs will outline the methodologies
employed for each of the baseline and report-integrated frameworks.

Chest X-Ray (Baseline): The architecture used for performing classification
with only the chest X-ray image as input is similar to the one visualized in Fig. 1,
with the sole difference that the branch combining the sentence embedding is inac-
tive. This model aligns with the baseline model proposed by the authors of the
Eye-Gaze dataset [3]. In this framework, EfficientNet-b0 [16], a CNN architecture
pretrained on ImageNet, was used as the image encoder. Our baseline classifica-
tion framework refers to the model trained on only the X-ray images using this
encoder. This model contains a sequence of convolutional layers along with batch
normalization and average adaptive pooling. Adam optimizer and Cross-entropy
loss were used for our experiments. Also, the values of learning rate and batch size
were set to 0.006 and 32, respectively. The network was trained for 20 epochs, and
Triangular scheduler [17] was used to adjust the learning rate during the training.

Radiology Report Text and Chest X-Ray: The DL model architecture,
shown in Fig. 1, combines radiology report text embedding with the chest X-
ray image. Sentence embeddings are created using word embeddings of size 150,
which were trained with a Word2Vec Skip-gram scheme [10] on the extracted
MIMIC CXR reports, which are not included in the Eye-Gaze dataset. Each
input text word is converted to its corresponding word vector, and an average
embedding is calculated by taking the mean of the word vectors for all vocab-
ulary words in the model. Out-of-vocabulary words are given the value of the
average embedding. The image and sentence embeddings are combined before
the final classification layer. This classification model is fed with three input
data combinations: Chest X-ray (baseline); Chest X-ray and Exam Indication
text; and Chest X-ray and Full Report text.

2.2 Explainability Experiments

To investigate the explainability of our models, we use the attention maps gener-
ated by the models to highlight areas in the input chest X-ray image relevant to the



Explainability of Chest X-ray Classification 111

Fig. 1. Classification model architecture: chest X-ray and sentence embedding inputs

final diagnosis. These attention maps are generated in two ways: first, by incorpo-
rating the static Eye-Gaze data as a secondary ground truth that enables the U-
net decoder to generate attention maps, and second, by applying the GradCAM
method to the models in which only the classification loss is used [7].

To generate attention maps using the U-net decoder, we applied a model with
the cross-entropy loss of the generated static heatmap compared to the actual Eye-
Gaze heatmaps, visualized inFig. 2 (considered as the baseline for our experiments,
similar to [3]) and Fig. 3, depending on whether radiology reports are part of the
model’s input. In this framework, a multi-task learning approach is conducted to
perform Eye-Gaze heatmap generation along with X-ray classification. For inte-
grating radiology reports, we employed Long Short-Term Memory (LSTM) [9],
with radiology report word-embedding vectors as the input and image representa-
tions as the hidden state. To generate attention maps with GradCAM, this method
is applied to the second last layer of the image encoder in Fig. 2 and Fig. 3, with the
sole difference that the static heatmap loss branch is inactive and only the classi-
fication loss is included. The attention maps generated by these two approaches
were compared, quantitatively and qualitatively, for three input data combina-
tions: Chest X-ray (baseline); Chest X-ray and Exam Indication text; and Chest
X-ray and Full Report text.

To assess the quality of the generated attention maps by these two methods,
the MIMIC-CXR Annotations dataset was used [6]. It consists of 350 chest X-rays
diagnosed with Pneumonia and the radiologist-generated bounding boxes (used
as the explainability ground truth) highlighting areas of interest (Dataset 2). A
radiology report also accompanies each image. The quality of the generated atten-
tion map is calculated by measuring the intensity of the attention map within the
bounding box(es) if being greater than 100, normalized by the intensity of atten-
tion over the rest of the image. The cut-off value of 100 for pixel intensities (ranging
0–255), was set based on the qualitative visual assessment of the attention maps to
make our metric more rigorous. This ensures a bare-minimum level of intensity for
pixels within bounding boxes of the attention maps that contribute to the metric.
As a result, our explainability metric can achieve more robust results compared to
others, such as the one proposed in [15].
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Fig. 2. DL Architecture with static heatmap ground truth and chest X-ray input (base-
line)

Fig. 3. DL (CNN-RNN) Architecture with static heatmap ground truth as well as chest
X-ray plus radiology text (indication section and full report) input

3 Results

In this section, we present the results of the experiments discussed in Sect. 2. First,
classification performance based on the average overall AUC and per-class AUC
is presented. The results are stated based on 5-fold cross-validation. To prevent
the potential bias of spreading a patient ID into different folds, we held the same
patient IDs across the folds for all different experiments. Then, we examine the
explainability of our DL models via the methods discussed above by showing the
mean values of the attention overlap between the generated attention maps and
ground-truth bounding boxes.

3.1 Classification Performance Results

The 5-fold cross-validation results for all experiments over Dataset 1 can be found
in Table 1. When the indication part of the radiology reports is added to the X-ray
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images as input, a 6.6% AUC increase (not statistically significant) is observed in
model classification performance (0.913 vs. 0.856). The added context from the
indication part of the report strengthens the classifications of all three classes,
specifically that of the Pneumonia class (0.861 vs. 0.789). Moreover, the added
text component only depends on exam indication, which is agnostic to possible
radiologist errors and biases reflected in the full report. Nevertheless, adding the
full reports to X-rays further improves the average AUC significantly (0.966, p-
value = 0.011). The median AUC values further demonstrate the effectiveness of
our multimodal approach; as by integrating only the indication section of the
report, we achieve superior median AUC compared to that reported in [15] (0.924
vs 0.801).

Table 1. Classification AUC for all experiments

Experiment Normal
AUC

CHF AUC Pneumonia
AUC

Average
AUC

Median
AUC

X-ray 0.875
(±0.035)

0.904
(±0.053)

0.789
(±0.043)

0.856
(±0.039)

0.860

X-ray and
Report
Indication

0.918
(±0.031)

0.962
(±0.015)

0.861
(±0.054)

0.913
(±0.03)

0.924

X-ray and
Full Report

0.987
(±0.007)

0.956
(±0.022)

0.954
(±0.019)

0.966
(±0.013)

0.959

3.2 Explainability Results

Table 2 shows quantitative explainability analysis based on the mean attention
overlap on Dataset 2, and Fig. 4 presents a qualitative analysis of the attention
maps generated for a Pneumonia case using the two aforementioned approaches
(i.e., Eye-Gaze-based U-net decoder and GradCAM). Also, the bounding box on
the image canbean indicator of the radiologist’s attention.Thequantitative results
indicate that incorporatingEye-Gaze information as a secondary ground truthpro-
vides higher explainability (31.44% on average) for all three input combinations
compared to the GradCAM method applied to the models with only the classifi-
cation loss. This finding demonstrates that incorporating Eye-Gaze data into the
baseline framework improves the model’s attention. It is worth mentioning that
the enhanced heatmaps produced by the architectures depicted in Fig. 2 and Fig. 3
are accompanied by a slight reduction in the model’s classification performance,
resulting in an Average AUC decrease of ∼1%. This decrease can be attributed to
the trade-off between performance and explainability of the classification models.
Finding the optimal point where the model can achieve an acceptable level of both
performance and explainability should be examined.

The explainability providedvia incorporatingEye-Gaze informationwithin the
model architecture improves by approximately 10.93% when more context, in this
case, radiology reports, is added to the initial input, the X-ray images. In contrast,
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Table 2. Attention overlap between the generated attention maps and ground-truth
bounding boxes

Input Mean Attention
Overlap: Static
Eye-Gaze as Second
Ground Truth

Mean Attention
Overlap: GradCam

Chest X-ray
(Fig. 2)

10.06% 8.30%

Chest X-ray and
Exam Indication
(Fig. 3)

11.16% 8.29%

Chest X-ray and
Full Report
(Fig. 3)

11.3% 8.16%

Fig. 4. Attention overlap visualization of our experiments for a Pneumonia case using
GradCAM and U-Net decoder (Red areas indicate higher attention.) (Color figure online)

the explainability provided by GradCAM does not improve with the extra context
provided by the radiology reports. The indifference of the GradCAM method to
varying levels of context is peculiar and should be investigated further to see if it
extends to other XAI methods.

4 Conclusion

In this paper, we investigated the impact of different data modalities, specifically
radiology reports and radiologists’ Eye-Gaze information, on chestX-ray classifica-
tion.We showed that the information in the radiology reports is highly predictive of
the prediction task. This was evident even from the indication part of the radiology
report, which does not contain the radiologist’s diagnosis.

We also showed Eye-Gaze information could be used as a second ground truth
within the DL architecture to explain the model’s prediction by generating an
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attention map, which outperforms attention maps generated by GradCAM. We
introduced a quantitative metric to highlight that the attention maps produced via
incorporating the Eye-Gaze information improve by an additional level of context,
such as a radiology report, andGradCAM is, at best, indifferent to othermodalities
of additional information. Also, the impact of adding the full report on the mean
attention overlap values, both for GradCAM and the decoder outputs, is marginal,
meaning that the extra interpretations of radiologists are not notably helpful for
improving the model’s attention compared to the information available in the indi-
cation part of the report. Future work includes comparing the attention overlap of
the decoder outputs with other XAI methods, e.g., Layer-wise Relevance Propa-
gation [18], to further validate their quality.
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Abstract. Multi-task learning (MTL) is a powerful approach in deep
learning that leverages the information from multiple tasks during train-
ing to improve model performance. In medical imaging, MTL has shown
great potential to solve various tasks. However, existing MTL archi-
tectures in medical imaging are limited in sharing information across
tasks, reducing the potential performance improvements of MTL. In
this study, we introduce a novel attention-based MTL framework to
better leverage inter-task interactions for various tasks from pixel-level
to image-level predictions. Specifically, we propose a Cross-Task Atten-
tion Network (CTAN) which utilizes cross-task attention mechanisms
to incorporate information by interacting across tasks. We validated
CTAN on four medical imaging datasets that span different domains
and tasks including: radiation treatment planning prediction using plan-
ning CT images of two different target cancers (Prostate, OpenKBP);
pigmented skin lesion segmentation and diagnosis using dermatoscopic
images (HAM10000); and COVID-19 diagnosis and severity prediction
using chest CT scans (STOIC). Our study demonstrates the effectiveness
of CTAN in improving the accuracy of medical imaging tasks. Compared
to standard single-task learning (STL), CTAN demonstrated a 4.67%
improvement in performance and outperformed both widely used MTL
baselines: hard parameter sharing (HPS) with an average performance
improvement of 3.22%; and multi-task attention network (MTAN) with
a relative decrease of 5.38%. These findings highlight the significance of
our proposed MTL framework in solving medical imaging tasks and its
potential to improve their accuracy across domains.
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1 Introduction

Fig. 1. (Top) Cross-task attention network (CTAN) and other MTL model architec-
tures: hard parameter sharing (HPS) [1] and multi-task learning network (MTAN) [16].
Similar to the concept of one-to-many mappings from HPS and MTAN, CTAN has one
shared encoder linked with decoders for each task. MTAN uses encoder features using
attention for respective tasks. However, CTAN uses cross-attention in encoder and bot-
tleneck layers to transfer task-specific features to task-specific decoders for better task
interaction. (Bottom) Summary of four medical imaging datasets with three different
task sets used in this study. The number of samples of each train, validation,
test splits are shown below each dataset. Test datasets without complete seg-
mentation labels and clinical information were excluded from the original datasets in
OpenKBP and HAM10000, respectively.
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Multi-task learning (MTL) [5] algorithms train deep learning models for two or
more tasks simultaneously using shared parameters between models to encourage
beneficial cooperation. MTL provides additional information not by explicitly
adding more datasets for model training but by implicitly extracting training
signals from multiple related tasks from the existing dataset. The various tasks
are thought to regularize shared components of the network, leading to improved
model performance and generalization. For example, following [2], it is natural
to assume that learning features required to delineate a skin lesion from the
background may be relevant in comparing the lesion to its surrounding areas to
inform the diagnosis.

Previous studies have demonstrated that learning two relevant tasks can
improve model performance using MTL in medical imaging [4,6–8,26,27]. Sainz
et al., show the application and improvement of the model performance using
MTL in breast cancer screening by training classification and detection of abnor-
mal mammography findings [6]. Chen et al., utilize MTL to improve atrial seg-
mentation and classification using MRI [7]. Weninger et al., propose an MTL
framework to improve brain tumour segmentation by jointly training detection
of enhancing tumour and image reconstruction using brain MRI [26].

These studies demonstrate the applicability of MTL to improve performance
for tasks in medical imaging. However, even though these studies have shown
enhanced performance using MTL, most MTL architectures are based on hard-
parameter sharing (HPS) [1], which includes a single shared encoder with task-
specific decoders in a one-to-many fashion, maximizing encoder regularization
between tasks but limiting all tasks to an identical feature set as opposed to
some common features.

Introduced by Liu et al., multi-task attention network (MTAN) [16] also
employs a one-to-many mapping but adds task-specific independent attention
mechanisms that, while they can change the features of the embedding per task,
they are not themselves able to share any information. With the introduction of
MTAN, there have been studies using attention in MTL for automating bind-
ing between task features within the network architectures [17,28]. However,
most existing MTL studies using non-medical images focus on scenarios where
all tasks are at the pixel-level. This is often impractical in the medical imaging
domain, since acquiring pixel-level labels in medical images is impractical and
labour-intensive. Thus, we focus on solving multi-task learning in hybrid scenar-
ios including both pixel and image-level tasks by utilizing cross-task attention
in MTL using medical imaging datasets.

We hypothesize that by leveraging the shared feature abilities of HPS with
the flexibility of MTAN through a novel cross-task attention framework that
shares task information across the attention mechanisms, we can better utilize
inter-task interaction to improve overall performance using MTL. Additionally,
cross-attention of bottleneck features for each task was also employed to provide
cross-task dependent information to decoders for each task. We validated our
approach using three distinct pairs of tasks from four medical imaging datasets.
CTAN shows broad applicability with mixes of tasks at the both the pixel and
image-level.
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Contributions. We propose a novel Cross-Task Attention Network (CTAN),
an MTL framework that leverages cross-task attention modules in the encoder
and bottleneck layer to capture inter-task interaction across tasks (see Fig. 2).
Our results demonstrate that CTAN is effective in learning three types of vision
tasks, including two pixel-level prediction tasks and one image-level task from
various domains. As shown in Fig. 1, we experimented with three different task
pairs from four datasets. In addition, we showed the performance improvement
of CTAN compared to single-task learning (STL), and two widely used MTL
baseline architectures, HPS and MTAN.

2 Methods and Materials

Fig. 2. Overview of architecture of cross-task attention network (CTAN), including the
encoder and two decoders for image-level and pixel-level tasks. Convolution blocks are
shown on the right, along with the two cross-task attention modules: (a) Cross-task
attention encoder (CTAE), and (b) Cross-task attention bottleneck (CTAB).

2.1 Cross-Task Attention Network (CTAN)

CTAN consists of two cross-task attention modules, the cross-task attention
encoder (CTAE), and the cross-task attention bottleneck (CTAB) (see Fig. 2).
CTAE is employed within the encoder layers by calculating the attentive mask,
and uses two pieces of information targeted for each task. CTAE enables the
encoder to extract task-specific information in the encoder. It encodes and
decodes the input features to highlight and extract significant features. The
attention module in CTAE resembles the attention module in [16], wherein
for each task Liu et al. calculate attention maps using one attention block per
task and multiply with the feature maps during a forward pass with data from
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that task. However, in CTAE, attention maps are instead multiplied in a cross-
direction way, as shown in Fig. 2-a. This helps the model to integrate the shared
features by multiplying the cross-task attentive maps with features from the
shared block, which enables an inter-task interaction while training. We denote
U j and P j as features from jth layer of the shared encoder, and t as task index.
Note that P j refers to the output of two convolution blocks using U j as the
input. Sj−1 denotes the input of jth layer in the shared encoder, which is the
output of the shared block in j − 1th layer for j > 1. Whereas, when j = 1,
the input image embedding from the 3 × 3 Conv block is used (see Fig. 2). The
task-specific embedded features, F j

t , result from the concatenation of U j and
Âj−1

t for j > 1, while U j for j = 0, followed by the task embedding block in
Fig. 2. F j

t is then fed into the task-specific attention block to create attention
mask Aj

t . The output of CTAE Âj
t is defined as:

Âj
t = Pool(Aj

t′ � P j), t ∈ {1 , 2}, (1)

where Pool refers to the pooling block (see Fig. 2), � refers to the element-wise
multiplication, and t′ refers to the task index of the other task trained together.
Âj

t then serves as the input attention mask for the attention block in the next
layer, propagating attention across the decoder (Âj−1

t is set to all zero for the
first layer).

We propose CTAB as shown in Fig. 2-b, in which we calculate and multiply
cross-task attention of two task-embedded features to task-specific bottleneck
representation. We calculate the cross-task attention mask using a query and
a key and apply the attention mask to a value. Herein, value and key are the
same task-embedded features, and query is the embedding of the other task.
Thus, the output of CTAB Āt is defined as:

Āt = Êt · (Ê�
t′ · Êt), t ∈ {1 , 2}, (2)

where � refers to transpose of a matrix, · refers to matrix multiplication, and
Êt denotes the task-specific embedded features for task t. The output of CTAB,
Āt, is forwarded to task-specific decoders.

Encoder and Decoder. We utilize a ResNet-50 [12] pre-trained with ImageNet
[9] as the encoder backbone, with identical architecture across all experiments.
However, we implement different decoders for image-level and pixel-level tasks.
For pixel-level tasks such as segmentation and dose prediction, we incorporate
skip connections [23] between the encoders and decoders, with three up-sampling
blocks using bilinear interpolation (as depicted in Fig. 2), followed by a 1× 1
convolution layer with output channels equal to the number of segmentation
labels, and a single channel for dose prediction. For image-level tasks, we use
decoders with skip connections and four down-sampling layers, with a global
average pooling layer [11] and a fully-connected layer at the end. Notably, we
introduce skip connections in the classifier to balance model training and address
asymmetric decoder issues that arise when training MTL to solve both image-
level and pixel-level tasks together. Finally, we use a fully-connected layer with
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a sigmoid activation function for binary classification (STOIC) and a softmax
function for multi-class classification (HAM10000) as the final output layer.

2.2 Training Details

We use Adam [14] optimizer with the learning rate of 10−4 and the weight decay
of 10−5. We use task-specific losses (see Table 1). Dynamic Weight Averaging [16]
was utilized to stabilize the combined training losses of all tasks. Batch size of 32
was used for the Prostate dataset, and 8 for the rest. We conducted experiments
using PyTorch (ver 1.9.0) [20], with an NVIDIA A100 GPU with 40GB memory.

Table 1. Summary of loss functions for each task. We use combo loss [18], with the
0.3 and 0.7 for the loss weight of dice loss and cross-entropy loss, respectively.

Task Loss function Dataset

Segmentation Combo Loss [18]
(Weighted combination of Dice Loss and
Cross-entropy Loss)

Prostate, OpenKBP, HAM10000

Dose prediction Mean absolute error (MAE) Loss [3] Prostate, OpenKBP

Classification Cross-entropy Loss HAM10000, STOIC

2.3 Evaluation

We used task-specific metrics to evaluate the model performance for each
task: dice similarity coefficient for segmentation (%); mean absolute error (Gy)
between ground truth and predicted dose distribution maps for dose prediction;
accuracy (%) for classification of HAM10000; and the area under the receiver
operating characteristic curve (%) for classification of STOIC. Following [15], we
define the relative performance of MTL models compared to STL:

Δtask(%) = 100 ∗ (−1)li(Mb,i − Mm,i)
Mb,i

, l ∈ {0 , 1}, (3)

where i denotes the index of the task, m and b refer to the target MTL model
and the baseline STL, respectively. M refers to the task performance metric. l
denotes the metric-specific flag, where 1 if the metric is higher the better, and
vice versa. We can then calculate the average of the relative difference of all
task-specific metrics for each experiment. Positive value of relative performance
represents the performance of MTL is better than that of STL.

2.4 Datasets

We validated our approach using four medical imaging datasets with three dif-
ferent task sets (see Fig. 1-B). The first task set consists of two pixel-level tasks:
dose prediction and segmentation of organs at risk (OAR) and clinical target
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volume (CTV) for prostate (Prostate) and head and neck cancer treatment
(OpenKBP) (https://www.aapm.org/GrandChallenge/OpenKBP, [3]). Segmen-
tation labels for the Prostate dataset are rectum, bladder, left and right femur,
while brain stem, spinal cord, left and right parotid are used in OpenKBP.
Patients For the second task set, which contains one image-level and one pixel-
level tasks, dermatoscopic images of pigmented skin lesion datasets (HAM10000)
(https://doi.org/10.7910/DVN/DBW86T, [24]) are used to segment and diag-
nose skin lesions. The last set has two image-level tasks: classification of COVID-
19 and disease severity using chest CT scans (STOIC) (https://stoic2021.grand-
challenge.org, [22]).

3 Experiments and Results

In Table 2, the results showed that CTAN outperformed STL with an average
relative difference of 4.67%. For the Prostate and OpenKBP datasets, which
have two different pixel-level tasks, CTAN showed an improvement of 2.18%
and 1.99%, respectively, over STL. In both datasets, the performance increase
for dose prediction task was larger than that of segmentation task. Notably,
CTAN improved the performance of dose prediction when the task is trained
with segmentation of organs at risk and target volumes, rather than improv-
ing the performance of segmentation. For HAM10000, CTAN showed an overall
performance improvement with a significant increase in diagnosing skin lesions.
However, the performance of segmenting pigmented lesions marginally improved
compared to the classification task. For STOIC, CTAN resulted in an average
relative difference of 4.67% for both image-level tasks, with a significant increase
in diagnosing severe cases but a decrease in diagnosing COVID-19.

As shown in Table 2, CTAN outperformed both HPS and MTAN with an
average relative improvement of 3.22% and relative decrease of 5.38%, compared
to STL, respectively. Unlike other MTL baselines, CTAN showed performance
improvement regardless of task groups combined with different task-levels. How-
ever, there were cases where CTAN did not outperform other baselines at the
single task level. For instance, for the Prostate datasets’ segmentation task, HPS
outperformed CTAN with a relative difference of 1.74% while CTAN showed only
a 0.54% increase. Nevertheless, overall performance gain using CTAN was higher
across datasets and tasks, indicating that the cross-task attention mechanisms
in CTAN were effective in learning multiple tasks.

4 Discussion

Our findings suggest that CTAN can improve the MTL performance across three
distinct tasks from four distinct medical imaging datasets by 4.67% on average.
However, the specific performance improvements on each dataset and task can
vary. Compared to other tasks, CTAN only marginally improve performance in
segmentation task. This might be due to the faster convergence of segmentation
tasks in comparison to others, which may cause them to act more as regularizers

https://www.aapm.org/GrandChallenge/OpenKBP
https://doi.org/10.7910/DVN/DBW86T
https://stoic2021.grand-challenge.org
https://stoic2021.grand-challenge.org
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Table 2. Results of task-specific metrics (Mtask) and their relative difference to STL
(Δtask) of STL, HPS, MTAN, and CTAN on four datasets. Higher values are the better
for all metrics, except for Mtask2 in the Prostate and OpenKBP datasets. Best and
second-best results are bolded and underlined, respectively. Average values are only
calculated for relative performance difference of MTL methods.

Dataset Method Mtask1 Δtask1 ↑ Mtask2 Δtask2 ↑ Δmean ↑ Rank

Prostate STL 81.96 0.93 3
HPS 83.28 1.74% 0.91 1.29% 1.51% 2
MTAN 75.47 −7.92% 0.99 −7.29% −7.60% 4
CTAN 82.40 0.54% 0.89 3.82% 2.18% 1

OpenKBP [3] STL 71.29 0.53 2
HPS 70.87 −0.52% 0.53 0.31% −0.10% 3
MTAN 66.09 −7.30% 0.56 −5.29% −6.29% 4
CTAN 71.59 0.42% 0.51 3.56% 1.99% 1

HAM10000 [24] STL 92.83 49.24 3
HPS 92.21 −0.68% 55.49 12.69% 6.01% 2
MTAN 92.15 −0.73% 47.08 −4.37% −2.55% 4
CTAN 92.91 0.09% 57.85 17.49% 8.79% 1

STOIC [22] STL 71.88 55.83 3
HPS 63.84 −11.18% 68.17 22.09% 5.45% 2
MTAN 57.55 −19.93% 61.30 9.79% −5.07% 4
CTAN 68.73 −4.38% 64.66 15.81% 5.72% 1

Average STL - 3
HPS - −2.66% - 9.09% 3.22% 2
MTAN - −8.97% - −1.79% −5.38% 4
CTAN - −0.83% - 10.17% 4.67% 1

with pixel-level prior knowledge providing local contextual information for other
tasks [21]. In this regard, results show that CTAN is more effective in utilizing
segmentation tasks for learning high-level semantic cues compared to other MTL
baselines. In particular, CTAN can implicitly learn to avoid dose exposure to
OARs and maximize dose to the CTV by training two clinically relevant tasks.
This implies a potential to automate dose planning without the dependence
on the contouring information, prior to predicting the dose distribution. This
approach can ensure robustness against the variability of human annotators and
improve automated planning quality for clinical care [19].

We observed a performance drop in COVID-19 classification in STOIC due to
the intricate nature of the task, as diagnosing severity depends on the COVID-19
diagnosis and causes per-task gradient collision during training. However, CTAN
proved to be effective in minimizing the performance drop in COVID-19 clas-
sification compared to other MTL methods. This implies CTAN can selectively
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learn cross-task attentive features to improve overall performance. Future work
could expand the applications of CTAN to other domains such as videos of natu-
ral teeth [13], fundus photography for diagnosing glaucoma [10], or laparoscopic
hysterectomy [25], and further investigate what drives the per dataset variations.

In conclusion, we introduce a novel MTL framework, CTAN, that utilizes
cross-task attention to improve MTL performance in medical imaging from mul-
tiple levels of tasks by 4.67% compared to STL. Results demonstrate that incor-
porating inter-task interaction in CTAN enhances overall performance of three
medical imaging task sets from four distinct datasets, surpassing STL and two
widely-used baseline MTL methods. This highlights CTAN’s effectiveness and
potential to improve MTL performance in the field of medical imaging.
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Abstract. The Segment Anything Model (SAM) is a recently developed
large model for general-purpose segmentation for computer vision tasks.
SAM was trained using 11 million images with over 1 billion masks and
can produce segmentation results for a wide range of objects in natu-
ral scene images. SAM can be viewed as a general perception model for
segmentation (partitioning images into semantically meaningful regions).
Thus, how to utilize such a large foundation model for medical image seg-
mentation is an emerging research target. This paper shows that although
SAM does not immediately give high-quality segmentation for medical
image data, its generated masks, features, and stability scores are useful
for building and training better medical image segmentation models. In
particular, we demonstrate how to use SAM to augment image input
for commonly-used medical image segmentation models (e.g., U-Net).
Experiments on three segmentation tasks show the effectiveness of our
proposed SAMAug method.

1 Introduction

The Segment Anything Model (SAM) [10] is a remarkable recent advance in
foundation models for computer vision tasks. SAM was trained using 11 mil-
lion images and over 1 billion masks. Despite its strong capability in producing
segmentation for a wide variety of objects, several studies [4,8,28] showed that
SAM is not powerful enough for segmentation tasks that require domain expert
knowledge (e.g., medical image segmentation).

For a given medical image segmentation task with image and annotation
pairs, we aim to build and train a medical image segmentation model, denoted
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 129–139, 2023.
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Fig. 1. Input augmentation with SAM for boosting medical image segmentation.

by M, on top of the segmentation foundation model SAM. We propose a new
method called SAMAug that directly utilizes the segmentation masks (with sta-
bility scores) generated by SAM to augment the raw inputs of the medical image
segmentation model M. The input augmentation is performed by a fusion func-
tion. The inference process (with SAMAug) for a given image is illustrated in
Fig. 1. The task-specific medical image segmentation model M is trainable using
a specific dataset1 (e.g., MoNuSeg [11]). The parameters of SAM remain fixed,
the fusion (augmentation) function is a parameter-free module, and the learning
process aims to update the parameters of M with respect to the given foundation
model SAM, the fusion function, and the training data.

Our main contributions can be summarized as follows. (1) We identify
that the emerging segmentation foundation model SAM can provide attention
(prior) maps for downstream segmentation tasks. (2) With a simple and novel
method (SAMAug), we combine segmentation outputs of SAM with raw image
inputs, generating SAM-augmented input images for building downstream med-
ical image segmentation models. (3) We conduct comprehensive experiments to
demonstrate that our proposed method is effective for both CNN and Trans-
former segmentation models in three medical image segmentation tasks.

2 Related Work

Data Augmentation. Data augmentation (DA) has been widely used in train-
ing medical image segmentation models [3,27]. A main aim of DA is to synthesize
new views of existing samples in training data. Our SAMAug can be viewed as
a type of DA technique. Unlike previous DA methods which often use hand-
designed transformations (e.g., rotation, cropping), SAMAug utilizes a segmen-
tation foundation model to augment raw images, aiming to impose semantically
useful structures to the input of a medical image segmentation model.
Image Enhancement. From the image enhancement (IE) view point, SAMAug
enhances images by adding semantic structures from a segmentation founda-
tion model. A critical difference between SAMAug and the previous enhance-
ment methods [5,16] is that traditional IE often works at a low level, e.g., de-
blurring and noise reduction, and the purpose of enhancement is to reconstruct
1 SAMAug performs on all images, including training images and testing images.
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and recover. In contrast, SAMAug aims to add high-level structures to raw
images, providing better semantics for the subsequent medical image segmenta-
tion model.

Fig. 2. Visual examples of a raw input image, its segmentation prior map by SAM,
boundary prior map by SAM, and SAM-augmented image input (illustrated in Fig. 1).
The image sample is from the MonuSeg dataset [11].

Recent SAM-Related Methods. Since the introduction of SAM, many
attempts have been made to understand and utilize SAM for medical image
analysis (e.g., [6,12,14,24,25,28]). Recent work has shown that SAM alone, with-
out further fine-tuning and/or adaptation, often delivers unsatisfied results for
medical image segmentation tasks [6,28]. In order to utilize SAM more effec-
tively, Ma et al. [12] proposed to fine-tune SAM using labeled images. Wu et
al. [24] proposed to add additional layers to adapt SAM for a medical image
segmentation task. Compared with these fine-tuning and adaptation methods,
our method is more efficient in computation and memory costs during model
training. In test time, these fine-tuning, adapting, and augmentation methods
all require performing forward propagation of test images through SAM.

3 Methodology

In Sect. 3.1, we describe the two key image representations obtained by applying
SAM to a medical image, a segmentation prior map and a boundary prior map.
In Sect. 3.2, we show how to augment a medical image using the two obtained
prior maps. In Sect. 3.3, we present the details of using augmented images in
training a medical image segmentation model. Finally, in Sect. 3.4, we show how
to use the trained model in model deployment (model testing).
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3.1 Segmentation and Boundary Prior Maps

In the grid prompt setting, SAM uses a grid prompt to generate segmentation
masks for a given image. That is, segmentation masks are generated at all plau-
sible locations in the image. The generated segmentation masks are then stored
in a list. For each segmentation mask in the list, we draw the mask on a newly
created segmentation prior map using the value suggested by the mask’s corre-
sponding stability score (generated by SAM). In addition to the segmentation
prior map, we further generate a boundary prior map according to the masks
provided by SAM. We draw the exterior boundary of each segmentation mask in
the mask list and put all the boundaries together to form a boundary prior map.
For a given image x, we generate two prior maps, priorseg and priorboundary,
using the process discussed above. In Fig. 2 (the second and third columns), we
give visual examples of these two prior maps thus generated.

3.2 Augmenting Input Images

With the prior maps generated, our next step is to augment the input image
x with the generated prior maps. We choose a simple method for this aug-
mentation: adding the prior maps to the raw image. Note that many medical
image segmentation tasks can be reduced to a three-class segmentation task in
which the 1st class corresponds to the background, the 2nd class corresponds to
the regions of interest (ROIs), and the 3rd class corresponds to the boundaries
between the ROIs and background. We add the segmentation prior map to the
second channel of the raw image and the boundary prior map to the third channel
of the raw image. If the raw image is in gray-scale, we create a 3-channel image
with the first channel consisting of the gray-scale raw image, the second channel
consisting of its segmentation prior map (only), and the third channel consisting
of its boundary prior map (only). For each image x in the training set, we gen-
erate its augmented version xaug = Aug(priorseg,priorboundary, x). Figure 2 (the
fourth column) gives a visual example of the SAM-augmented image input.

3.3 Model Training with SAM-Augmented Images

With the input augmentation on each image sample in the training set,
we obtain a new augmented training set {(xaug

1 , y1), (x
aug
2 , y2), . . . , (xaug

n , yn)},
where xaug

i ∈ R
w×h×3, yi ∈ {0, 1}w×h×C is the annotation of the input image

xi, and C is the number of classes for the segmentation task. A common medical
image segmentation model M (e.g., a U-Net) can be directly utilized for learning
from the augmented training set. A simple way to learn from SAM-augmented
images is to use the following learning objective with respect to the parameters
of M:

n∑

i=1

loss(M(xaug
i ), yi). (1)
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The above objective only uses SAM-augmented images for model training.
Consequently, in model testing, the trained model accepts only images aug-
mented by SAM. In situations where SAM fails to give plausible prior maps, we
consider training a segmentation model using both raw images and images with
SAM augmentation. The new learning objective is to minimize the following
objective with respect to the parameters of M:

n∑

i=1

βloss(M(xi), yi) + λloss(M(xaug
i ), yi), (2)

where β and λ control the importance of the training loss for samples with raw
images and samples with augmented images. When setting β = 0 and λ = 1,
the objective function in Eq. (2) is reduced to Eq. (1). By default, we set both
β and λ equal to 1. The spatial cross-entropy loss or Dice loss can be used for
constructing the loss function in Eq. (1) and Eq. (2). An SGD-based optimizer
(e.g., Adam [9]) can be applied to reduce the values of the loss function.

3.4 Model Deployment with SAM-Augmented Images

When the segmentation model is trained using only SAM-augmented images,
the model deployment (testing) requires the input also to be SAM-augmented
images. The model deployment can be written as:

ŷ = τ(M(xaug)), (3)

where τ is an output activation function (e.g., a sigmoid function, a softmax func-
tion), and xaug is a SAM-augmented image (as described in Sect. 3.2). When the
segmentation model M is trained using both raw images and SAM-augmented
images, we identify new opportunities in inference time to fully realize the poten-
tial of the trained model. A simple way of using M would be to apply sample
inference twice for each test sample: The first time inference uses the raw image
x as input and the second time inference uses its SAM augmented image as
input. The final segmentation output can be generated by the average ensemble
of the two outputs. Formally, this inference process can be written as:

ŷ = τ(M(x) + M(xaug)). (4)

Another way of utilizing the two output candidates M(x) and M(xaug) is
to select a plausible segmentation output from these two candidates:

ŷ = τ(M(x∗)), (5)

where x∗ is obtained via solving the following optimization:

x∗ = argminx′∈{x,xaug}Entropy(τ(M(x′))). (6)

Namely, we choose an input version out of the two input candidates (x and
xaug) according to the entropy (prediction certainty) of the segmentation output.
Segmentation output with a lower entropy means that the model is more certain
in its prediction, and a higher certainty in prediction often positively correlates
to higher segmentation accuracy [21].
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Fig. 3. Polyp segmentation results of the vanilla HSNet and SAMAug-enhanced HSNet.

4 Experiments and Results

4.1 Datasets and Setups

We perform experiments on the Polyp [28], MoNuSeg [11], and GlaS [18] bench-
marks to demonstrate the effectiveness of our proposed SAMAug method. For
the polyp segmentation experiments, we follow the training setup used in training
the state-of-the-art (SOTA) model HSNet [26]2. For the MoNuSeg and GlaS seg-
mentation, the training of a medical image segmentation model uses the Adam
optimizer [9], with batch size = 8, image cropping window size = 256 × 256,
and learning rate = 5e − 4. The total number of training iterations is 50K. The
spatial cross entropy loss is used for the model training.

4.2 Polyp Segmentation on Five Datasets

Automatic polyp segmentation in endoscopic images can help improve the effi-
ciency and accuracy in clinical screenings and tests for gastrointestinal diseases.
Many deep learning (DL) based models have been proposed for robust and auto-
matic segmentation of polyps. Here, we utilize the SOTA model HSNet [26]
for evaluating our proposed SAMAug method. We use the objective function
described in Eq. (2) in model training. In test time, we use the model deploy-
ment strategy given in Eq. (6). In Fig. 3, we show the segmentation performance
(in Dice score) of the vanilla HSNet and SAMAug-enhanced HSNet on the test

2 https://github.com/baiboat/HSNet.

https://github.com/baiboat/HSNet
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sets of CVC-300 [20], CVC-ClinicDB [1], Kvasir [7], CVC-ColonDB [19], and
ETIS [17]. All the model training sessions were run ten times with different
random seeds for reporting the means and standard deviations of the segmen-
tation performance. In Fig. 3, we observe that SAMAug improves HSNet on the
CVC-ClinicDB and CVC-ColonDB datasets significantly, and remains at the
same level of performance on the other three datasets (all validated by t-test).
Furthermore, we give visual result comparisons in Fig. 4.

Fig. 4. Visual results of the HSNet and SAMAug-enhanced HSNet in polyp segmen-
tation.

4.3 Cell Segmentation on the MoNuSeg Dataset

The MoNuSeg dataset [11] was constructed using H&E stained tissue images
(at 40× magnification) from the TCGA archive [23]. The training set consists
of 30 images with about 22000 cell nuclear annotations. The test set contains 14
images with about 7000 cell nuclear annotations. We use the objective function
described in Eq. (1) in model training. In test time, we use the model deployment
strategy given in Eq. (3). In Table 1, we show clear advantages of our proposed
method in improving segmentation results for the U-Net, P-Net, and Atten-
tion U-Net models. AJI (Aggregated Jaccard Index) is a standard segmentation
evaluation metric3 used on MoNuSeg which evaluates segmentation performance
on the object level. F-score evaluates the cell segmentation performance on the
pixel level. In addition, we give visual result comparisons in Fig. 5. Note that,
although the segmentation generated by SAM (e.g., see the 3rd column of Fig. 5)

3 https://monuseg.grand-challenge.org/Evaluation/.

https://monuseg.grand-challenge.org/Evaluation/
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does not immediately give accurate cell segmentation, SAM provides a general
segmentation perceptual prior for the subsequent DL models to generate much
more accurate task-specific segmentation results.

Table 1. Cell segmentation results on the MoNuSeg dataset.

Model SAMAug AJI F-score

Swin-UNet [2] ✗ 61.66 80.57

U-Net [15] ✗ 58.36 75.70

✓ 64.30 82.36

P-Net [22] ✗ 59.46 77.09

✓ 63.98 82.56

Attention UNet [13] ✗ 58.76 75.43

✓ 63.15 81.49

Fig. 5. Visual comparisons of segmentation results on the MoNuSeg dataset.

4.4 Gland Segmentation on the GlaS Dataset

The GlaS dataset [18] has 85 training images (37 benign (BN), 48 malignant
(MT)), and 60 test images (33 BN, 27 MT) in part A and 20 test images (4 BN, 16
MT) in part B. We use the official evaluation code4 for evaluating segmentation
performance. For simplicity, we merge test set part A and test set part B, and

4 https://warwick.ac.uk/fac/cross fac/tia/data/glascontest/evaluation/.

https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/evaluation/
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perform segmentation evaluation at once for all the samples in the test set. We
use the objective function described in Eq. (1) in model training. In test time,
we use the model deployment strategy given in Eq. (3). From Table 2, one can
see that U-Net with SAMAug augmentation performs considerably better than
that without SAMAug augmentation.

Table 2. Gland segmentation results on the GlaS dataset.

Model SAMAug F-score Object Dice

U-Net [15] ✗ 79.33 86.35

✓ 82.50 87.44

5 Conclusions

In this paper, we proposed a new method, SAMAug, for boosting medical
image segmentation that uses the Segment Anything Model (SAM) to augment
image input for commonly-used medical image segmentation models. Experi-
ments on three segmentation tasks showed the effectiveness of our proposed
method. Future work may consider conducting further research on: (1) designing
a more robust and advanced augmentation function; (2) improving the efficiency
of applying SAM in the SAMAug scheme; (3) utilizing SAMAug for uncertainty
estimations and in other clinically-oriented applications.
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Abstract. Most state-of-the-art techniques for medical image segmen-
tation rely on deep-learning models. These models, however, are often
trained on narrowly-defined tasks in a supervised fashion, which requires
expensive labeled datasets. Recent advances in several machine learning
domains, such as natural language generation have demonstrated the fea-
sibility and utility of building foundation models that can be customized
for various downstream tasks with little to no labeled data. This likely
represents a paradigm shift for medical imaging, where we expect that
foundation models may shape the future of the field. In this paper, we
consider a recently developed foundation model for medical image seg-
mentation, UniverSeg [6]. We conduct an empirical evaluation study in
the context of prostate imaging and compare it against the conventional
approach of training a task-specific segmentation model. Our results and
discussion highlight several important factors that will likely be impor-
tant in the development and adoption of foundation models for medical
image segmentation.

Keywords: Foundation model · Medical Image Segmentation ·
Prostate MRI · In-context Learning

1 Introduction

Foundation models (FMs) are general-purpose models trained on extensive
amounts of data, typically in a self-supervised fashion [4]. These pre-trained
models can serve as the ‘foundation’ from which to adapt to various downstream
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tasks with minimal or no supervision. From BERT [11] to GPT-4 [25], FMs have
fueled ground-breaking advances in natural language tasks. The success of large
language models inspired applications to different domains such as speech [1,26],
robotics [5,31], and vision [20,37].

Classical methods for medical image segmentation (MIS) implement carefully-
customized pipelines (e.g., FreeSurfer [14]). Pipelines might include pre-selecting
images that include the region of interest (ROI), preprocessing the images to reduce
artifacts and/or noise, and applying image-processing algorithms like thresholding
and deformable-templates, with empirically chosen parameters. The introduction
of deep learning models simplified and improved the performance of automatic seg-
mentation tools [19,27]. In deep learning, the commonapproach involves curating a
set of labeled images and training a task-specificmodel on these data.Thesemodels
can be brittle and not generalize well to new datasets. Moreover, they demand the
creation of a relatively large labeled training set for each task. Importantly, train-
ing for each task often requires significant computational resources and expertise.
Recent studies have proposeddata augmentation and synthesismethods to address
these problems but they are still early stage [3,34].

Recently, several FMs for image segmentation tasks have been proposed. These
include the Segment Anything Model (SAM) and Segment everything everywhere
all at once model (SEEM), which demonstrate great performance in a variety of
interactive segmentation tasks in natural images [20,37]. Unlike task-specific mod-
els, these FMs are trained with prompt inputs like points and boxes that guide
the segmentation tasks. Once trained, these methods solve new tasks without
updating their weights (Fig. 1). Another recent FM, UniverSeg [6], is specifically
designed to generally solve medical image segmentation tasks. The “prompt” for
UniverSeg is a set of image-label pairs, also called a support set. The support set
precisely defines the segmentation task. As one of the first FMs developed for med-
ical image segmentation, UniverSeg demonstrated promising performance using
limited number of image-label pairs compared to few-shot baseline methods.

A FM for MIS offers several benefits. This approach can minimize the need
for labeled data, which can represent a significant reduction in cost for developing
automatic segmentation tools. Since these models leverage commonalities across
different annotation tasks, adapting a FM to a new task can be made to be
computationally efficient and reduce the computational burden for creating task-
specific solutions. Finally, adapting FMs to specific tasks can be made easy and
user-friendly, which will help lower barriers for clinical practitioners to build on
these technologies.

Although promising, studies have shown the limitations of the SAM FM for
MIS tasks [8,10,16–18,23,24,29,35]. The inferior performance of SAM on MIS
tasks is often attributed to the fact that SAM was trained with natural images.
Some works propose possible remedies, such as prompt-engineering [30,32] and
fine-tuning [15,22,33] to improve the performance. In this paper, we report the
potential and limitations of an MIS-specific FM, UniverSeg, by evaluating it for
prostate MRI segmentation.
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Fig. 1. Traditional Approach vs. Foundational Model Approach. Traditional
segmentation models like nnUNet are trained first to predict the new images. FMs
like UniverSeg and SAM use a trained model for inference of a new task. Instead of
retraining, prompts like support sets are used for UniverSeg and points and masks for
SAM (Image modified from [6])

2 Related Works

2.1 UniverSeg

UniverSeg [6] is a FM for MIS tasks that uses support sets of image-label pairs
as a prompt to define new tasks. The architecture employs a Cross-Block mech-
anism leveraging information from the query image and support sets by averag-
ing the feature maps. UniverSeg was built using MegaMedical, which contains
53 open-access medical segmentation datasets comprising over 22,000 scans to
achieve strong performance when generalizing to held out datasets used to eval-
uate UniverSeg on unseen anatomies and tasks.

2.2 Prostate MR Segmentation

Prostate MR scans have been increasingly acquired as an initial diagnostic tool.
The ROI labels are manually segmented for the clinical workflow, for example,
biopsy guidance, and surgical/treatment planning. High-quality segmentation
labels can be beneficial but the label generation is time-consuming and demands
expertise. Thus, automatic segmentation tools can have a large clinical impact.

3 Experiments

3.1 Datasets

We consider three anatomical ROIs in the prostate that are defined in two
datasets. For each dataset, we created five sets of support/test splits. Since
obtaining high-quality ground-truth labels is a significant bottleneck for real-
world MIS problems, we focus on the limited sample size scenario. We created
support sets with randomly selected N = 1, 2, 5, and 10 cases, while the other
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cases were used as test set. Since each training case is a 3D volume, we extracted
2D slices from these volumes to create the support or training sets. Unless spec-
ified otherwise, we used 2D slices that contained the ROI. All slices are resized
to 128× 128 and intensities are normalized to [0, 1].

Prostate Gland Segmentation. We used our in-house prostate MRI dataset
(Prostate-Gland) for prostate gland segmentation, amounting to 859 anonymized
MRI scans. T2-weighted prostate MRI scans are acquired as part of prostate
cancer diagnosis.

Transitional and Peripheral Zone Segmentation. We used the publicly
available zonal anatomy segmentation labels of 204 patients [9]. The transitional
zone (TZ) and peripheral zone (PZ) labels are from the training dataset of the
PROSTATEx challenge [21] and annotated by expert radiologists, with rigor-
ous quality assessment [9]. We present two sets of results corresponding to two
different labels: PROSTATEx-TZ and PROSTATEx-PZ.

3.2 UniverSeg Inference

One of the crucial limitations of existing FMs for segmentation, including Uni-
verSeg [6], is that they are all trained in 2D. However, most medical image
segmentation tasks are in 3D, and the ROIs can be present in a small portion
of the entire volume. Thus, many 2D slices will not contain the segmentation
label. Regular prompt-based FM’s like SAM [20] struggle with this, as they are
expected to return a non-zero result for a given query and prompt. Although
UniverSeg is trained using 2D slices containing the label, UniverSeg can use
images with missing ROIs in the support set, which can be critical for 3D seg-
mentation tasks. Following the original paper, in all our experiments, we set the
maximum support set size S to 64 2D image-label pairs. Furthermore, as pre-
viously demonstrated, the quality of the result obtained with UniverSeg heavily
depends on the quality of the provided support set [6]. In our experiments, we
implement different support set selection strategies, described below.
Slice-Index-Aware Support Set Selection. The anatomical field-of-view
along the z-axis of prostate MR images is roughly similar across subjects. We
leveraged this to implement a support set selection strategy that relies on the
slice index Z of the query image. For a given query image Iq, we computed
weights for each of the available labeled slices It as follows: 1/(|ZIt − ZIq |+ 1),
where ZI denote the slice index in image I. Then we randomly selected S anno-
tated slices with a probability proportional to the pre-computed weights. This is
our default support set selection strategy, which was used for the main results.
Random Support Set Selection. As an ablation, we ignore the z-index and
randomly draw S support images from available labeled slices, where each of
these images has the same (uniform) probability.

These support set selection techniques can be restricted to slices where the
ROI is present (“ROI-inclusive”), or can consider all possible slices in the training
volumes (i.e., be agnostic to whether the ROI is present or absent in the slice,
which we refer to as “ROI-agnostic”). Because UniverSeg was trained with only
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“ROI-inclusive” slices, comparing the result with “ROI-agnostic” can serve as a
good stress test of the released tool.

3.3 nnUNet

As the baseline, we used the (2D) nnUNet, which trains the model from a ran-
dom initialization on the given labeled data using heavy data augmentation,
automatic network configuration, and ensembling (nnUNet-original) [19]. The
nnUNet model is widely considered state-of-the-art for a wide range of task-
specific segmentation tasks. For further comparison, we trained and tested the
nnUNet model with a smaller network capacity that is similar to the size of
the UniverSeg model, which we refer to as nnUNet-small (See Appendix for the
details).

3.4 Empirical Evaluation

Because high-performance machines are often unavailable in clinical and medical-
research settings, understanding the required computational resources is impor-
tant to utilize deep learning models for clinical use. As many FMs for segmen-
tation are based on Vision Transformer [13] trained with large datasets, they
involve a large number of parameters. Also, compared to classification problems,
MIS models often involve higher memory requirements. We performed compu-
tational resource analysis on nnUNet and UniverSeg by comparing the number
of parameters, training, and inference time.

As the main performance metric, we used the Dice score [12] that quantifies
the overlap between an automatic and ground-truth segmentation, and is widely
used in the field. We compare UniverSeg with nnUNet models, when different
number (N) of training cases are available. We performed ablation studies to
understand where the performance improvement occurs for the UniverSeg and
nnUNet models. We compute Dice both in 2D and in 3D. The 2D Dice results
are presented only for slices that contain the ROI, and aggregated over all slices
in the test subjects. For these results, we implemented the ROI-inclusive support
set strategy. We also present 3D Dice values, which are computed based on the
volumetric overlap in each test subject, which is in turn averaged across subjects.

4 Results

4.1 Computational Resource

Table 1 shows computational resources needed for nnUNet and UniverSeg. Uni-
verSeg has a much smaller number of parameters and faster inference runtime.
Importantly, UniverSeg does not require task-specific training – saving substan-
tial computational requirement, and obviating the need for a GPU. This substan-
tial savings makes is more applicable to clinical and clinical-research settings.
nnUNet implements five-fold cross-validation, which it in turn uses to ensemble
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five models. This means that for each nnUNet, we store five models and run
five inferences. For nnUNet-orig, the automatic configuration in our experiment
yielded models with 20.6M parameters, which is 100 times larger than UniverSeg
(1.2M). Our nnUNet-small implementation had 1.3M learnable parameters, yet
we emphasize that ensembling over cross-validation runs meant that the memory
footprint of nnUNet-small is about five times of UniverSeg. While the inference
time for the nnUNet models will not depend on the training set size (N), Uni-
verSeg’s will, since we need to ensemble over various support sets when N > 2
for better performance. However, the support set size does not affect the number
of parameters as the Cross-Block of UniverSeg averages the representations of
interaction between query and support sets at each step in the network.

Table 1. Computational resource comparison. The values are averaged across ROIs
and calculated for N = 1 case for all methods. All models are tested on Nvidia TITAN
Xp GPU (12 GB vRAM).

nnUNet–orig nnUNet–small UniverSeg

#Params 20.6 M × 5 folds 1.3 M × 5 folds 1.2 M
Training time (ms) 1.6× 108 1.2× 108 –
Inference time (ms) 9.7× 103 7.5× 103 6.9× 102

Table 2. 2D Dice scores for UniverSeg and nnUNet models. The scores are averaged
across 5 support/test splits.

ROI Method N = 1 N = 2 N = 5 N = 10

Prostate-Gland nnUNet-Orig 0.592± 0.088 0.714± 0.045 0.810± 0.007 0.817± 0.016

nnUNet-Small 0.520± 0.076 0.698± 0.057 0.802± 0.008 0.808± 0.019

UniverSeg 0.711± 0.008 0.769± 0.009 0.780± 0.003 0.802± 0.005

PROSTATEx-TZ nnUNet-Orig 0.614± 0.049 0.764± 0.034 0.803± 0.006 0.821± 0.010

nnUNet-Small 0.599± 0.066 0.759± 0.033 0.800± 0.006 0.814± 0.011

UniverSeg 0.632± 0.046 0.717± 0.010 0.743± 0.012 0.754± 0.015

PROSTATEx-PZ nnUNet-Orig 0.368± 0.111 0.589± 0.041 0.644± 0.042 0.706± 0.018

nnUNet-Small 0.333± 0.122 0.572± 0.048 0.633± 0.049 0.699± 0.016

UniverSeg 0.478± 0.056 0.570± 0.014 0.647± 0.018 0.673± 0.015

4.2 Segmentation Performance

We first analyzed segmentation performance for 2D slices that contain the ROI.
Table 2 and Fig. 2 show quantitative and qualitative results. Models perform bet-
ter when more training images are available. For Prostate-Gland segmentation,
UniverSeg showed overall comparable results to the nnUNet models, particularly
when compared with the size-matched version (nnUNet-small). Interestingly,
UniverSeg achieved good performance given extremely limited annotated data,
e.g., N = 1, outperforming the nnUNet models for all three tasks. The lower
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scores in TZ and PZ segmentation have been previously analyzed, and are due to
the small size and difficult shape of these ROIs. For example, prior zonal segmen-
tation studies report varying scores ranging between 0.59 to 0.94 showing the
difficulty and variability [2,7,28,36]. The nnUNet models outperform UniverSeg
in TZ segmentation when N = 5 and N = 10 annotated examples are available.
This difference is smaller for PZ and only becomes significant at N = 10. It is
important to note that the nnUNet models use test time augmentation, which
may improve the UniverSeg performance.

Table 3 shows 3D Dice score values and compares two support set selection
methods. We observe that the ROI-agnostic support selection method which
includes slices that are missing the ROI, achieves significantly better results.
This is because, in 3D, there will be many slices that don’t include the ROI and
if all support examples include the ROI, then the model will likely produce false
positive labels for these slices. This highlights the importance of considering the
possibility that the query image might be lacking the ROI.

Fig. 2. Representative results. UniverSeg results are comparable to the nnUNet base-
line. When existing segmentation labels are limited, e.g., N = 1 and N = 2, UniverSeg
shows superior performance than nnUNet models (highlighted in yellow). (Color figure
online)

Ablation. We conducted ablation studies for both UniverSeg and nnUNet mod-
els to assess the impact of model configuration choices. The nnUNet with the
default configurations includes ensembling and test time augmentation. The pre-
diction results from five cross-validation models are ensembled by averaging soft-
max probabilities and at test time augmentation is applied by mirroring all axis.
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Table 3. 3D Dice scores for UniverSeg models with two different support set selection
strategies.

Support Set Selection N Prostate PROSTATEx-TZ PROSTATEx-PZ

ROI-agnostic 1 0.596± 0.047 0.610± 0.060 0.428± 0.070

2 0.690± 0.035 0.706± 0.011 0.510± 0.031

5 0.716± 0.006 0.740± 0.019 0.593± 0.014

10 0.778± 0.006 0.751± 0.024 0.621± 0.009

ROI-inclusive 1 0.481± 0.035 0.579± 0.066 0.349± 0.042

2 0.488± 0.034 0.665± 0.009 0.393± 0.009

5 0.513± 0.027 0.685± 0.016 0.487± 0.013

10 0.543± 0.013 0.707± 0.019 0.493± 0.027

As the post-processing step did not improve the accuracy on validation sets,
we did not post-process the predicted labels. We report the 2D Dice scores of
nnUNet models before the ensembling and without the test time augmentation.
For UniverSeg, we compared the different slice selection methods.

Table 4 demonstrates the ablation results on prostate gland segmentation.
Ensembling gave all models a boost. For nnUNet models, test time augmenta-
tion also slightly enhanced the scores. The results of the support set selection
methods demonstrate the effect of support set quality. The result of ensembling
5 times with slice-index-aware (z-weighted) selection method showed superior
performance than using all images for support sets for both N = 5 and N = 10.
This, again, highlights the importance of the quality of support sets. The abla-
tion for TZ and PZ achieved the similar results (See Appendix Table 1).

Table 4. 2D Dice scores from the ablation study conducted for the prostate segmen-
tation task.

ROI Method N = 1 N = 2 N = 5 N = 10

nnUNet-Orig w/o augmentation 0.590± 0.085 0.712± 0.046 0.809± 0.007 0.815± 0.016

fold-1 0.581± 0.086 0.681± 0.060 0.798± 0.011 0.808± 0.017

fold-2 0.564± 0.095 0.710± 0.039 0.797± 0.010 0.798± 0.023

fold-3 0.590± 0.092 0.691± 0.044 0.795± 0.014 0.807± 0.025

fold-4 0.599± 0.088 0.708± 0.043 0.785± 0.006 0.804± 0.006

fold-5 0.553± 0.046 0.692± 0.046 0.790± 0.006 0.810± 0.008

default 0.592± 0.088 0.714± 0.045 0.810± 0.007 0.817± 0.016

nnUNet-Small w/o augmentation 0.519± 0.072 0.696± 0.056 0.801± 0.007 0.807± 0.018

fold-1 0.537± 0.047 0.668± 0.074 0.784± 0.014 0.801± 0.021

fold-2 0.518± 0.068 0.686± 0.051 0.793± 0.012 0.792± 0.023

fold-3 0.512± 0.091 0.689± 0.057 0.784± 0.011 0.803± 0.011

fold-4 0.508± 0.076 0.705± 0.046 0.787± 0.015 0.792± 0.022

fold-5 0.530± 0.089 0.680± 0.045 0.782± 0.014 0.798± 0.020

default 0.520± 0.076 0.698± 0.057 0.802± 0.008 0.808± 0.019

UniverSeg all 0.711± 0.008 0.769± 0.009 0.778± 0.006 0.799± 0.005

random – – 0.777± 0.002 0.798± 0.005

random+5 ensemble – – 0.779± 0.004 0.800± 0.006

z-weighted – – 0.777± 0.002 0.798± 0.005

z-weighted +5 ensemble – – 0.780± 0.003 0.802± 0.005

Average # of images available for support set 14.0± 2.1 31.4± 6.5 83.4± 2.9 148.0± 3.7
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4.3 Conclusion

Based on the successful employment of FMs in multiple domains, we believe
FMs will instigate a paradigm shift for medical imaging. In this paper, we eval-
uated the FM for MIS, called UniverSeg, and discussed its performance and
adaptability to prostate segmentation tasks.

As future directions, we see several limitations and opportunities in a FM
for MIS. First, FMs for 3D MIS are needed, and promise to be impactful. Many
medical image data is acquired in 3D and the existing FMs are based on 2D
slices extracted from the 3D volumes. Previous studies have shown superior
performance when designed for 3D compared to 2D data. FMs like UniverSeg,
where the model can account for images without ROI labels, should be further
studied for 3D tasks. Second, adaptation of FMs should be further studied.
Prostate gland and TZ were comparably easier segmentation tasks then the PZ.
Different approaches would include but not be limited to ensembling different
models, e.g., ensembling nnUNet and UniverSeg results, prompt engineering, and
finetuning. Third, clinical practitioners can easily adapt FMs in their workflows,
as it obviates the need to fine-tune. For prostate MRI, some practitioners use
an automated prostate gland segmentation tool from the software DynaCAD1.
Even though the segmentation needs to be reviewed and edited, the software
saves a lot of time over manual segmentation. An FM like UniverSeg, can be
used for various segmentation tasks even when limited labels are available.
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Abstract. In this paper, we propose a novel approach (called GPT-
4MIA) that utilizes Generative Pre-trained Transformer (GPT) as a
plug-and-play transductive inference tool for medical image analysis
(MIA). We provide theoretical analysis on why a large pre-trained lan-
guage model such as GPT-3 can be used as a plug-and-play transductive
inference model for MIA. At the methodological level, we develop sev-
eral technical treatments to improve the efficiency and effectiveness of
GPT4MIA, including better prompt structure design, sample selection,
and prompt ordering of representative samples/features. We present two
concrete use cases (with workflow) of GPT4MIA: (1) detecting predic-
tion errors and (2) improving prediction accuracy, working in conjecture
with well-established vision-based models for image classification (e.g.,
ResNet). Experiments validate that our proposed method is effective
for these two tasks. We further discuss the opportunities and challenges
in utilizing Transformer-based large language models for broader MIA
applications.

Keywords: Medical Image Classification · Generative Pre-trained
Transformer · GPT-3 · Large Language Models · Transductive
Inference

1 Introduction

Modern large language models (LLMs) are built based on the Transformer archi-
tecture and are trained to produce a sequence of text output given a sequence of
text input such that the output is expected to be semantically coherent to the
input. For example, for a text completion task, the input text is a sequence of
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Fig. 1. Illustrating our high-level idea: Using GPT-3 for transductive inference on a
binary classification task. Feature texts in Prompt Part 1 are from a set of samples
with known labels. Prompt Part 2 contains feature text of a test sample.

text from a text resource, and the model is trained to produce the next character,
word, or sentence of the input text. Open AI’s GPT-3 has 175 billion parame-
ters, and was trained on hundreds of billions of words. Brown et al. [4] showed
that GPT-3 is capable of few-shot learning: Given a few examples/demonstra-
tions to GPT-3, it can generalize considerably well to new samples with similar
characteristics. The input and output coherency and the strong generalization
capability indicates that pre-trained LLMs such as GPT-3 are potentially capa-
ble as general tools for transductive inference tasks with limited data.

The notion of transductive inference was first introduced by Vapnik [9]. Given
training samples (with labels) and test samples, transductive inference predicts
the labels of the test samples using either a parametric model (e.g., a trans-
ductive support vector machine (SVM) [7]) or a non-parametric model (e.g., a
nearest neighbor based classifier [5]). Different from inductive inference, trans-
ductive inference does not aim to induce a prediction function from known sam-
ples; instead, its goal is to obtain the labels of test samples via propagating the
information from known samples (e.g., training samples).

In this paper, we propose a novel approach, called GPT4MIA, which utilizes
GPT-3 as a plug-and-play transductive model to improve medical image analysis
(MIA). For an MIA task (e.g., medical image classification), we give informa-
tion of known samples as part of GPT-3’s input and ask GPT-3 to infer a
new sample’s label (see Fig. 1). We expect GPT-3 to infer a test sample’s label
by using transductive information from the known samples on the test sample.
We give theoretical analysis on why this approach is feasible by drawing con-
nections between attention mechanism and nearest neighbor inference. To make
this approach more efficient and effective, we optimize the prompt construction,
aiming to choose the most representative samples/features and order them in
the prompt based on their importance. We present two practical use cases of
utilizing our proposed method in medical image classification. We then validate
the effectiveness of our method on medical image classification benchmarks.

Our method utilizes a generative pre-trained Transformer for performing
transduction from known medical image samples (e.g., training samples) to new
test samples. The GPT-3 used in this work has billions of parameters. However,
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these parameters were pre-trained with language (text) data, and are not being
updated during the transduction process for medical image classification. To our
best knowledge, this is the first study to utilize a large pre-trained Transformer-
based language model for performing transductive inference for image classifi-
cation tasks (computer vision tasks), which are out of the data domain of the
pre-training (language) domain. Our contributions are summarized as follows.

(1) We propose to utilize a large pre-trained language model (e.g., GPT-3) as a
plug-and-play transductive inference method for improving MIA. We show
that GPT-3 can serve as a general tool for performing transduction with
an appropriate setup. Our approach is novel and flexible, suggesting a new
direction of research for improving medical AI’s accuracy and reliability.

(2) We develop techniques to improve the efficiency, effectiveness, and usability
of our proposed GPT4MIA. Two use cases are proposed for GPT4MIA, and
strong empirical results validate that GPT4MIA outperforms conventional
and state-of-the-art methods in both inductive and transductive method
categories.

(3) Our work offers a new way of utilizing a small set of additional labeled data
in medical AI: Given a trained deep learning (DL) model and a small set of
labeled data (e.g., a validation set), utilizing GPT-3 as a transductive infer-
ence method in conjunction with a DL model can achieve better prediction
reliability (use case #1) and higher prediction accuracy (use case #2).

2 Approach

In this section, we first provide theoretical analysis on the connection between
the attention mechanism and transductive inference mechanism. Then we show
details on how to design prompts for using GPT-3 as a transductive inference
method. Finally, we present two use cases with workflow to demonstrate how to
use GPT-3 as a plug-and-play transductive inference method for MIA.

2.1 Theoretical Analyses

A fundamental component of GPT-3 is the scaled dot-product attention. Typi-
cally, three pieces of input are fed to an attention layer: queries Q, keys K, and
values V . The scaled dot-product attention can be described as:

Attention(Q,K, V ) = softmax(
QKT

s
)V, (1)

where s is a scaling factor. Below, we show a special case of Eq. (1) can be viewed
as a nearest neighbor (NN) classifier under a cosine distance metric system1.
Setup 1: Suppose the key component K contains features of a set of m known
samples, and each feature is of a unit length. The value component V contains
1 Nearest neighbor classifiers are a typical type of transductive methods for prediction

problems.
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these m samples’ corresponding labels, and each label is a one-hot vector. The
query component Q contains a feature vector (of a unit length), which represents
a new test sample whose label is yet to be determined.

Proposition 1: When the scaling factor s is approaching 0 (e.g., s is a very
small positive number), the attention function in Eq. (1) is approaching an NN
classifier in the cosine distance metric system.

The above is not difficult to show. QKT computes the pair-wise similarities
between the test sample’s feature and the features in the keys K. A small s
would enlarge the numerical gap between similar pairs and dissimilar pairs. This
then leads to a one-hot-like result after applying the softmax operation. The
one-hot-like result is then multiplied with the values V , which chooses the label
of a known sample that is most similar to the test sample.

Generative Pre-trained Transformer uses a special type of attention called
“self-attention”, where the K, V , and Q components are all the same. We will
show that in a slightly different setup from Setup 1, the self-attention mechanism
can also serve a role as an NN classifier for inferring a new sample’s label given
known samples’ information.
Setup 2: For each known sample, we concatenate its feature vector with the
corresponding label vector to form a feature-label vector. We repeat this process
for every known sample, and put all the thus-obtained feature-label vectors into
K (row by row). In addition, we construct the test sample’s feature-label vector
by concatenating its feature vector with a label vector containing all zeros. We
put this feature-label vector into K as well. Since we are considering the self-
attention mechanism, V and Q are constructed in the same way as for K.

Proposition 2: Under Setup 2, self-attention (i.e., Eq. (1) with K = V = Q)
generates the same label vector as the one that is generated from the attention
in Setup 1 for the test sample. With s approaching a small value, self-attention
can serve as an NN classifier for inferring the test sample’s label.

Since the label vector for the test sample has all zeros at the input, the simi-
larity measures between the test sample and known samples are influenced only
by their features. This leads the inference process for the label of the test sample
to be essentially the same as shown in Proposition 1. Transformer architecture
used in modern large language models, including GPT-3, consists of multiple
layers of self-attentions. Below we give more results on stacking self-attentions.

Proposition 3: Under Setup 2, a single layer of self-attention (Eq. (1) with K =
V = Q) performs one iteration of clustering on feature-label vectors (including
those for the known samples and test sample). L layers of self-attention perform
L iterations of clustering. There exists a number L∗ for the number of layers of
self-attention for which the clustering process converges.

Guided by the above theoretical analysis, below we proceed to design the
prompt (input) of GPT-3 for transductive inference. We use Setup 2 to guide
the prompt construction since GPT-3 uses self-attention: The features and labels
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of the known samples and the feature of the test sample are put together to feed
to GPT-3. According to Proposition 3, stacking self-attentions is functionally
more advanced than a nearest neighbor-based classifier. GPT-3 uses not only
stacking self-attentions but also numerous pre-trained parameters to augment
these attentions. Hence, we expect GPT-3 to be more robust than the conven-
tional methods (e.g., KNN) for transductive inference.

2.2 Prompt Construction

A set of m known samples is provided with their features F = {f1, f2, . . . , fm}
and corresponding labels Y = {y1, y2, . . . , ym}. A feature vector ftest of a test
sample is given. The task in this section is to construct a prompt text represen-
tation that contains information from F , Y , and ftest, which is fed to GPT-3 for
inferring the label of the test sample.
Selecting and Ordering Known Samples. As a language model, the orig-
inal goal of training GPT-3 was to train the model to generate output that is
semantically coherent with its input. The data used for training GPT-3 implic-
itly imposed a prior: The later a text appears in the input prompt (the closer the
text to the output text), the larger impact it would impose on the output gener-
ation process. Hence, it is essential to put the more representative feature-label
texts near the end of the prompt for inferring the test sample’s label.

We compute pair-wise similarities between the features in the set F of the
known samples and obtain an affinity matrix S, in which each entry Si,j describes
the similarity between samples i and j and is computed as sim(fi, fj). A cosine
similarity function is the default choice for sim(., .).

For a feature vector fi ∈ F , we define a simple measure of how well fi
represents the other known samples: repi =

∑m
j=1 Si,j . To select the top k repre-

sentative samples, one can compute repi for each i = 1, 2, . . . ,m, and choose the
largest k representative samples: index = argsort(rep1, . . . , repm, “descend”),
and index is represented as index[1, 2, . . . , k]. The order of the samples in the
prompt for GPT-3 should be in the reverse order of that in the index list,
where the most representative sample (findex[1]) should be put at the end of the
prompt in order to give more influence on the output generation. When dealing
with imbalanced classification problems, we perform the above process for the
samples in each class, and join them in an interleaved fashion.
Converting Features and Labels to Feature-Label Texts. For all the
feature vectors fi where i is in the index list computed above, we convert these
features to texts in an array-like format. For each feature text thus obtained, we
put its corresponding label together with the feature text to form a feature-label
text. We then put these feature-label texts together into a long text. More details
can be found in the Python-like pseudo-code in Listing 1.1 below.
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Fig. 2. The workflow of GPT4MIA. A validation set provides references for transduc-
tive inference.

1 def Prompt_Construct_Part1(F,Y,selection_ratio =0.25): #only run once
2 ot1=""; m=len(F); k = selection_ratio * m; rep=np.zeros(m,1)
3 for i in range(m):
4 for j in range(m):
5 rep[i]=rep[i]+ cosine_sim(f[i],f[j]))
6 ind=argsort(rep ,"descend"); ind=ind[0:k];
7 for i in reversed(range(k)):
8 ot1 = ot1+str(f[ind[i]]) + " is in class "
9 + str(argmax(y[ind[i]]) + "\n")

10 return ot1
11

12 def Prompt_Construct_Part2(f_test): #for each test sample
13 ot2= str(f_test) + "is in class \n"
14 return ot2

Listing 1.1. Generating prompts for GPT4MIA.

2.3 Workflow and Use Cases

In this section, we propose two use cases for improving an already-trained vision-
based classification model with our proposed GPT4MIA method. The main
workflow is illustrated in Fig. 2.
Use Case #1: Detecting Prediction Errors. The first use case of utilizing
GPT-3 as a transductive inference method is for detecting prediction errors by a
trained vision-based classifier. Conventionally, a validation set is commonly used
for comparing and selecting models. Here, we utilize a validation set to provide
known samples for transductive inference. Feature vectors in F are obtained
from the output probabilities of the vision-based classification model, and labels
in Y are obtained by checking whether the classification model gives the correct
prediction on each validation sample.
Use Case #2: Improving Classification Accuracy. The second use case
aims to improve an already-trained classifier by directly adjusting its predictions.
This is a more challenging scenario in which the method not only seeks to detect
wrong predictions but also acts to convert them into correct ones. Feature vectors
in F are obtained from the output probabilities of the vision-based classification
model, and labels in Y are obtained from the validation set for each validation
sample.
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3 Experiments

In this section, we empirically validate the effectiveness of our proposed
GPT4MIA. Inductive methods (e.g., Linear Regression (LR) [10], Multi-Layer
Perception (MLP) [6], and Support Vector Machine (SVM) [2]) and transduc-
tive methods (e.g., K-Nearest Neighbor (KNN) [8] and Underbagging KNN
(UbKNN) [5]) are applicable to the two use cases presented above. We com-
pare these methods with GPT4MIA in the experiments below.2

Configurations: We use the OpenAI API [1] for querying the GPT-3 service
for all the experiments related to GPT4MIA. More specifically, the text-Davinci-
003 model is used, which can process up to 4000 tokens per request. The hyper-
parameter k (for top k) is chosen to be a quarter of the number of the total
available known samples (m). Inference for one test sample costs about $0.05
USD (charged by OpenAI). For the compared methods, we test their default
settings as well as other hyper-parameter settings to report their best results.

3.1 On Detecting Prediction Errors

We utilize the RetinaMNIST and FractureMNIST3D datasets from the MedM-
NIST dataset [11] for these experiments. We apply a ResNet-50 model trained
with the training set as the vision-based classifier, for which the weights can be
obtained from the official release.3 We then collect the model’s output proba-
bilities for each validation sample and label it based on whether the prediction
is correct. An error detection method is then built based on the information
from the validations for classifying the predictions into two classes (being cor-
rect or incorrect). The error detection model is then evaluated using the test
set working with the same prediction model which was used on the validation
(ResNet-50 in this case). We compare our proposed GPT4MIA method on this
task with a set of well established inductive methods and transductive methods.
From Table 1, one can see that GPT4MIA significantly outperforms the known
competing methods for detecting prediction errors from a CNN-based classifier.

3.2 On Improving Classification Accuracy

We utilize the RetinaMNIST and FractureMNIST3D datasets from MedM-
NIST [11] for these experiments. ResNet-50 is used as the trained vision-based
classification model. The model weights are obtained from the MedMNIST offi-
cial release. In Table 2, we observe that GPT4MIA performs similarly when
comparing with the state-of-the-art transductive inference method Underbag-
ging KNN in balanced accuracy. In Tabel 3, we observe that GPT4MIA performs
considerably better in balanced accuracy.

2 LR, MLP, SVM, and KNN are conducted using the scikit-learn library at https://
scikit-learn.org/, and UbKNN is with our implementation.

3 The model weights are obtained from https://github.com/MedMNIST/experiments.

https://scikit-learn.org/
https://scikit-learn.org/
https://github.com/MedMNIST/experiments
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3.3 Ablation Studies

We validate the effect of performing sample selection and ordering described
in Sect. 2.2. In Table 4 and Table 5, we show the performances for the setting
without the step of sample selection and ordering. From these results, it is clear
that sample selection and ordering is important for better performance when
utilizing GPT-3 as a transductive inference tool.

Table 1. Experiments for Use Case #1: Detecting Prediction Errors.

Method RetinaMNIST FractureMNIST3D

Precision Recall F-score Bal-Accu Precision Recall F-score Bal-Accu

LR 0.617 0.631 0.624 0.486 0.492 0.776 0.604 0.517

MLP 0.616 0.637 0.626 0.488 0.571 0.482 0.523 0.572

SVM 0.607 0.648 0.627 0.489 0.527 0.414 0.464 0.533

KNN 0.608 0.407 0.488 0.458 0.488 0.716 0.580 0.507

UbKNN 0.574 0.859 0.689 0.551 0.673 0.673 0.673 0.564

GPT4MIA 0.581 0.860 0.693 0.679 0.706 0.673 0.689 0.603

Table 2. Experiments for Use Case #2. Dataset: RetinaMNIST.

Method Class #1 Class #2 Class #3 Class #4 Class #5 Bal-Accu

N/A 0.813 0.063 0.400 0.563 0.0 0.368

LR 0.753 0.0 0.663 0.29 0.0 0.342

MLP 0.736 0.0 0.456 0.50 0.0 0.338

SVM 0.729 0.0 0.369 0.75 0.0 0.370

UbKNN 0.747 0.130 0.478 0.603 0.0 0.392

GPT4MIA 0.672 0.437 0.207 0.529 0.150 0.399

Table 3. Experiments for Use Case #2. Dataset: FractureMNIST3D.

Method Class #1 Class #2 Class #3 Bal-Accu

N/A 0.778 0.375 0.326 0.493

LR 0.600 0.596 0.304 0.500

MLP 0.556 0.673 0.283 0.504

SVM 0.533 0.596 0.391 0.507

UbKNN 0.644 0.394 0.478 0.505

GPT4MIA 0.522 0.510 0.543 0.525
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Table 4. Ablation study for Use Case #2. Dataset: RetinaMNIST.

Method Class #1 Class #2 Class #3 Class #4 Class #5 Bal-Accu

w/o Selection & Ordering 0.724 0.086 0.435 0.456 0.1 0.360

GPT4MIA (Full) 0.672 0.437 0.207 0.529 0.150 0.399

Table 5. Ablation study for Use Case #2. Dataset: FractureMNIST3D.

Method Class #1 Class #2 Class #3 Bal-Accu

w/o Selection & Ordering 0.311 0.769 0.283 0.454

GPT4MIA (Full) 0.522 0.510 0.543 0.525

4 Discussion and Conclusions

In this paper, we developed a novel method called GPT4MIA that utilizes a pre-
trained large language model (e.g., GPT-3) for transductive inference for medi-
cal image classification. Our theoretical analysis and technical developments are
well-founded, and empirical results demonstrated that our proposed GPT4MIA
is practical and effective. Large language models (LLMs) such as GPT-3 and,
recently, ChatGPT [3] have shown great capability and potential in many dif-
ferent AI applications. In this work, we showed that GPT-3 can perform trans-
ductive inference for medical image classification with better accuracy than con-
ventional and state-of-the-art machine learning methods. LLMs are great new
technologies that can push the boundaries of AI research; on the other hand,
new concerns are raised in using these generative models. Reliability and pri-
vacy are among the top priorities for medical image analysis, and more efforts
should be put into this frontier when working with LLMs. In addition, further
improving LLMs for medical image analysis, including better robustness and
accuracy, lower costs, and more use cases, are all exciting and important future
research targets.
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Abstract. Semantic segmentations of pathological entities have crucial
clinical value in computational pathology workflows. Foundation mod-
els, such as the Segment Anything Model (SAM), have been recently
proposed for universal use in segmentation tasks. SAM shows remark-
able promise in instance segmentation on natural images. However, the
applicability of SAM to computational pathology tasks is limited due
to the following factors: (1) lack of comprehensive pathology datasets
used in SAM training and (2) the design of SAM is not inherently opti-
mized for semantic segmentation tasks. In this work, we adapt SAM
for semantic segmentation by first introducing trainable class prompts,
followed by further enhancements through the incorporation of a pathol-
ogy encoder, specifically a pathology foundation model. Our framework,
SAM-Path enhances SAM’s ability to conduct semantic segmentation
in digital pathology without human input prompts. Through exten-
sive experiments on two public pathology datasets, the BCSS and the
CRAG datasets, we demonstrate that the fine-tuning with trainable class
prompts outperforms vanilla SAM with manual prompts by 27.52% in
Dice score and 71.63% in IOU. On these two datasets, the proposed addi-
tional pathology foundation model further achieves a relative improve-
ment of 5.07% to 5.12% in Dice score and 4.50% to 8.48% in IOU.
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1 Introduction

Digital pathology has revolutionized histopathological analysis by leveraging
sophisticated computational techniques to augment disease diagnosis and prog-
nosis [6,16]. A critical aspect of digital pathology is semantic segmentation,
which entails dividing images into discrete regions corresponding to various tis-
sue structures, cell types, or subcellular components [12,17]. Accurate and effi-
cient semantic segmentation is essential for numerous applications, such as tumor
detection, grading, and prognostication, in addition to the examination of tissue
architecture and cellular interactions [4,13–15]. As a result, the development and
optimization of robust segmentation algorithms hold significant importance for
the ongoing advancement of digital pathology [8,10,20].

The AI research community is currently experiencing a significant revolution
in the development of large foundation models. Among the latest advancements
in computer vision is the Segment Anything Model (SAM), which serves as a
universal segmentation model [9]. SAM is pretrained on a dataset containing
over 1 billion masks across 11 million images. The model is designed to seg-
ment objects using various human input prompts, such as dots, bounding boxes,
or text. SAM’s evaluation highlights its remarkable zero-shot performance, fre-
quently competing with or even surpassing previous fully supervised models
across diverse tasks. Considering these capabilities, SAM has the potential to
become a valuable tool for enhancing segmentation in digital pathology.

Although SAM has demonstrated considerable potential in computer vision,
its direct applicability to digital pathology has two major limitations: 1) The
basic design of SAM involves manually inputting prompts, or densely sampled
points, to segment instances while it does not have any component for seman-
tic classification. Consequently, it does not intrinsically facilitate semantic seg-
mentation, a crucial component in digital pathology that enables the identifica-
tion and differentiation of various tissue structures, cell types, and sub-cellular
components. 2) The training set of SAM lacks diverse pathology images. This
hinders SAM’s capacity to effectively address digital pathology tasks without
additional enhancements. Deng et al. confirm that the zero-shot SAM does not
achieve satisfactory performance in digital pathology tasks, even with 20 prompts
(clicks/boxes) per image [3].

In this work, we adpat vanilla SAM for semantic segmentation tasks in com-
putational pathology. Our proposed adaptation involves the incorporation of
trainable class prompts, which act as cues for the targeted class of interest. The
performance is further enhanced by introducing a pathology foundation model as
an additional feature encoder, thereby incorporating domain-specific knowledge.
The proposed method enables SAM to perform semantic segmentation without
the need for human input prompts. Our primary contributions are summarized
as follows:
1. The introduction of a novel trainable prompt approach, enabling SAM to

conduct multi-class semantic segmentation.
2. The introduction of a pathology foundation model as an additional pathology

encoder to provide domain-specific information.
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Fig. 1. Overview of SAM-Path. A pathology encoder Fp(·) is added in parallel with the
vanilla SAM image encoder Fs(·) to provide more domain knowledge. The concatenated
features from both the SAM image encoder and the pathology encoder are then passed
to a dimensionality reduction module R(·). For mask prediction, we use class prompts P
consisting of k learnable prompt tokens, in which each token prompts the mask decoder
to predict the mask ŷi of class i.

Through experimentation on two public pathology datasets, BCSS and CRAG,
we demonstrate the superiority of our method over vanilla SAM. Here vanilla
SAM refers to the classic SAM method with manual dot prompts or densely sam-
pled dot prompts and some post-processing. On the CRAG dataset, the proposed
trainable prompts achieve a relative improvement of 27.52% in Dice score and
71.63% in IOU compared to the vanilla SAM with manual prompts. We also
demonstrate the benefit of the extra pathology foundation model, which leads
to a further relative improvement of 5.07% to 5.12% in Dice score and 4.50% to
8.48% in IOU. Note that our goal is not to achieve SOTA performance on these
datasets but to adapt SAM to semantic segmentation in digital pathology and
boost its performance. To the best of our knowledge, we are the first to adapt
SAM for semantic segmentation tasks in digital pathology without the need of
manual prompts. By leveraging the power of SAM, pathology foundation models,
and our innovative fine-tuning scheme, we aim to advance digital pathology seg-
mentation and contribute to the ongoing development of AI-assisted diagnostic
tools. Our code is available at https://github.com/cvlab-stonybrook/SAMPath.

2 Method

As shown in Fig. 1, our method consist of four modules: a SAM image encoder
Fs(·) and a SAM mask decoder G(·) inspired from the vanilla SAM, a pathology
encoder to extract domain-specific features Fp(·), and a dimensionality reduction
module R(·). We discard the prompt encoder in the vanilla SAM because of the
manually labeled prompts are not available in our segmentation tasks. Formally,
given an input image x, our task is to predict its corresponding segmentation
map y with the same resolution as x. Each pixel in y belongs to one of k prede-
fined classes. We convert y into k segmentation masks {y1, y2, . . . , yk}, where yi
represents the segmentation mask of class i.

https://github.com/cvlab-stonybrook/SAMPath
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2.1 Pathology Encoder

The vanilla SAM uses a Vision Transformer (ViT) network pretrained on mostly
natural images as the image encoder and thus its generated features lack pathol-
ogy specific information. In our study, we use an extra pathology encoder to
provide domain specific information. In this study, we use a pathology founda-
tion model, the first stage ViT-Small of the HIPT model [2] which is pretrained
on the TCGA Pan-cancer dataset [18]. As shown in Fig. 1, input image x is fed
into both the vanilla SAM image encoder Fs(·) and the pathology encoder Fp(·).
The output features are then concatenated as

h = [Fs(x), Fp(x)]. (1)

The vanilla SAM contains the dimensionality reduction module within its image
encoder, but as the dimensionality of output features h is now increased and not
capable with decoder, we move this module R(·) after concatenation and adjust
its input dimensionality accordingly.

2.2 Class Prompts

To enable the mask decoder G(·) to conduct semantic segmentation without
manually inputting prompts, we use the trainable prompt token [7,19]. As shown
in Fig. 1, for a segmentation task with k classes, we provide a set of class prompts.
It consists of k trainable tokens P = {pi|i = 1, 2, . . . , k}, where pi is the class
prompt of class i. Each of these class prompts pi serve as the prompt to the mask
decoder that it should segment class i. Different from the manually annotated
dot prompts in the vanilla SAM, our class prompts are trainable and thus do
not require human labelling.

For a class prompt pi, the mask decoder, like that in the vanilla SAM, pro-
duces a predicted segmentation map ŷi of class i and a IOU (Intersection over
Union) prediction ˆioui that predicts the IOU of the predicted segmentation map
and the ground truth yi. The prediction is formulated as follows:

G(h256,P) = {< ˆioui, ŷi>|i = 1, 2, . . . , k} (2)

Note that we conduct an extra softmax on all yi for better performance.

2.3 Optimization

The vanilla SAM uses a combination of Dice loss, focal loss and the IOU loss
(MSE loss on IOU predictions). We adapt their loss as follows:

L =
k∑

i=1

[(1 − α)Ldice(ŷi, yi) + αLfocal(ŷi, yi) + βLmse( ˆioui, IOU(ŷi, yi))] (3)

where α ∈ [0, 1] and β are weight hyper-parameters. Ldice represents the Dice
loss function, Lfocal represents the focal loss function and Lmse represents the
Mean Squared Error (MSE) loss function. We update parameters in the mask
decoder G(·), class prompts P and the dimensionality reduction module R(·) and
keep the SAM image encoder Fs(·) and the pathology encoder Fp(·) frozen.



Fine-Tuning Segment Anything for Semantic Segmentation 165

Table 1. Quantitative results of segmentation on the BCSS and CRAG datasests.

Dataset BCSS CRAG
Metric Dice IOU Dice IOU

Vanilla SAM /a / 0.5245b 0.3555b

Vanilla SAM with post-processing /a / 0.6598 0.4924
Fine-tuned SAM (w.o. Fp) 0.7562 0.6080 0.8414 0.8451
SAM-Path w.o Fs 0.7813 0.6411 0.8191 0.8252
SAM-Path 0.7949 0.6596 0.8841 0.8831

a The vanilla SAM does not work on the BCSS dataset, as it cannot assign
semantic labels to the multi-class segmented objects in this dataset.
b We assume all the objects that the vanilla SAM segmented are glands.

3 Experiments

3.1 Dataset

In our experiments, we use the BCSS [1] and CRAG [5] datasets for model
evaluation. For both datsets, we use their official training and test splits and
further split 20% of the training data into an explicit validation set.
BCSS: The Breast Cancer Semantic Segmentation (BCSS) dataset [1] has over
20,000 semantic segmentation annotations of tissue regions sampled from 151
H&E stained breast cancer images at 40× magnification from TCGA-BRCA [11].
The annotations include 21 classes, we use the major 4 classes: Tumor, Stroma,
Inflammatory and Necrosis. The rest are grouped into the ‘others’ class.
CRAG: The Colorectal adenocarcinoma gland (CRAG) dataset [5] has 213
images of the size ≈1536 × 1536 sampled from 38 H&E whole slide images
(WSIs) at 20× magnification. The annotations include the instance-level seg-
mentation masks of the adenocarcinoma and benign glands in colon cancer. In
our experiments, we convert the instance-level masks to semantics masks.

3.2 Results

For both datasets, we use the Dice score and Inter-section Over Union (IOU)
as the main evaluation metrics. Implementation details and hyper-parameters
are provided in the supplementary material. We also show the comparison of
average prediction time in supplementary Table 1.

Evaluation of the Overall Performance. We mainly compare the proposed
method with four baselines: 1) the vanilla SAM, i.e., SAM provided with manual
dot prompts of each instance, 2) the vanilla SAM with post-processing, i.e., fil-
tering out from the vanilla SAM output any instance occupying more than half
of the image; this is because SAM occasionally erroneously segments the entire
image as a single instance, 3) Fine-tuned SAM utilizing our class prompts, equiv-
alent to SAM-Path without the pathology encoder Fp, and 4) SAM-Path without
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Fig. 2. Qualitative analysis on the CRAG dataset. PP represents post-processing that
filters out instances occupying more than half of the image. For vanilla SAM, we provide
a dot prompt (black asterisks) for each gland instance and assume all the segmented
instances are glands. Our method performs better than the baselines.

the SAM image encoder Fs. Note that the original SAM lacks the capacity to
predict semantics; we treat all segmented instances as glands within the context
of the CRAG dataset.

As indicated in Table 1, the post-processing step enhances the performance
of the original SAM, though the performance remains suboptimal. Compared
with the vanilla SAM with post-processing, the fine-tuned SAM on the CRAG
dataset achieves a relative improvement of 27.52% in Dice score and 71.63% in
IOU, demonstrating the significant enhancement resulting from our fine-tuning
scheme. The addition of the pathology encoder Fp (resulting in our proposed
SAM-Path) leads to further improvements. Compared with the fine-tuned SAM
without Fp, our method achieves a relative improvement of 5.12% in Dice score
and 8.48% in IOU on the BCSS dataset, and 5.07% in Dice score and 4.50% in
IOU on the CRAG dataset. These results underscore the value of incorporating
domain-specific information from the pathology encoder to boost the perfor-
mance of SAM in digital pathology tasks.
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Fig. 3. Qualitative analysis on the BCSS dataset. The other class “others” and unla-
beled regions are not colored. For the vanilla SAM, different colors represent different
instances without any semantic meaning. Our method performs better than the base-
lines.

Also, when the SAM image encoder Fs is excluded, the BCSS dataset shows
a relative decrease in performance by 1.71% in Dice score and 2.80% in IOU. For
the CRAG dataset, the performance decline is more substantial, with a relative
drop by 7.35% in Dice score and 6.56% in IOU. This suggests that the pathol-
ogy segmentation can benefit from pre-taining of millions of natural images.
Intriguingly, Table 1 reveals that SAM-Path without the pathology encoder (line
3) outperforms SAM-Path without the SAM encoder (line 4) on the CRAG
dataset. However, the inverse is true for the BCSS dataset. This discrepancy
is likely attributed to the fact that BCSS dataset segmentation involves multi-
class semantic segmentation and hence benefits more from a domain-specific
encoder, in contrast to the single semantic class of the CRAG dataset.

Qualitative Analysis. To qualitatively compare the performance of our
method against others, we visualize the segmentation masks. In Fig. 2, we com-
pare our method with vanilla SAM in which the dot prompts for each gland
are provided (shown in black asterisks). Without fine-tuning, SAM lacks sig-
nificant knowledge about the semantics in the pathology images. It frequently
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segments the entire image as a single object (these instances are filtered out in
the figure), or segments the white region within the gland as an object. However,
our class prompts allow us to fine-tune SAM, thereby enabling the learning of
semantic information from the training data. This leads to substantial improve-
ment in performance. Also, the visualizations of vanilla SAM and vanilla SAM
with post-processing are illustrated in Supplementary Fig. 1. Figure 3 further
illustrates that in the BCSS dataset, our method with the pathology encoder
outperforms its counterpart that lacks the pathology encoder. This is particu-
larly evident in distinguishing between semantic classes like stroma and necrosis.
For the vanilla SAM shown in Fig. 3, since the BCSS dataset is a semantic seg-
mentation dataset without instance labels, we deploy the “segment everything”
function of SAM. This function densely samples dots within the image to create
segment instances.

Ablation Study. We conduct an ablation study to evaluate the influence of
two loss weight values, α and β, on our model’s performance, where α is the loss
weight controlling the dice loss and focal loss and β is the loss weight controlling
the IOU loss. Figure 4 presents the results, indicating the optimal values of α and
β for the two datasets. Specifically, Fig. 4 (left) reveals that an α value of 0.25
yields the best performance for the BCSS dataset and an α value of 0.125 yields
the best performance for the CRAG dataset. Similarly, Fig. 4 (right) shows that
a β value of 0.0625 leads to optimal results for the BCSS dataset and the best
β value for the CRAG dataset is 0.

Fig. 4. Ablation study on the choice of two loss weights: α and β

4 Conclusion

In this paper, we introduced a novel fine-tuning approach using trainable class
prompts to identify classes in segmentation tasks using SAM. Furthermore, we
proposed the integration of a pathology encoder to incorporate more domain-
specific knowledge. We evaluated our approach on two pathology segmentation
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datasets, demonstrating that our method facilitates semantic segmentation with-
out the need for manually inputted prompts and the pathology encoder consis-
tently yielded improvements in Dice and IOU scores. Our approach indicates the
promising potential of SAM for pathology semantic segmentation tasks. In future
research, we plan to explore its potential in pathology panoptic segmentations.
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Abstract. Multi-task learning (MTL) has shown great potential in
medical image analysis, improving the generalizability of the learned
features and the performance in individual tasks. However, most of the
work on MTL focuses on either architecture design or gradient manip-
ulation, while in both scenarios, features are learned in a competitive
manner. In this work, we propose to formulate MTL as a multi/bi-level
optimization problem, and therefore force features to learn from each
task in a cooperative approach. Specifically, we update the sub-model
for each task alternatively taking advantage of the learned sub-models
of the other tasks. To alleviate the negative transfer problem during the
optimization, we search for flat minima for the current objective function
with regard to features from other tasks. To demonstrate the effective-
ness of the proposed approach, we validate our method on three publicly
available datasets. The proposed method shows the advantage of coop-
erative learning, and yields promising results when compared with the
state-of-the-art MTL approaches. The code will be available online.

Keywords: Multi-Task · Cooperative Learning · Optimization

1 Introduction

With the development of deep learning, multi-task learning (MTL) has shown
great potential to improve performance for individual tasks and to learn more
transferable features (better generalizability), whilst reducing the number of the
network parameters [16]. MTL has been widely studied in many domains includ-
ing image classification [14] or image segmentation [9]. The core assumption
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behind MTL is that tasks could be correlated and thus provide complementary
features for each other [4]. MTL is also applied in medical image analysis tasks
[5,6,11,20], where strong associations between multiple tasks commonly exist.
For example, the diagnosis of cancer may indicate the extent of disease severity,
which can be correlated with the patient’s survival, thus diagnosis and prognosis
of cancer could be learned simultaneously [18]. In clinical diagnosis, annotations
of organs or tissues could support radiologists to grade disease, to mimic this
process, Zhou et al. [24] studied to simultaneously segment and classify (grade)
tumors into benign or malignant class using 3D breast ultrasound images. Sim-
ilarly, to improve the prediction of lymph node (LN) metastasis [21], Zhang
et al. proposed a 3D multi-attention guided multi-task learning network for joint
gastric tumor segmentation and LN classification [23].

Typically, MTL methods can be broadly categorized into hard and soft
parameter-sharing paradigms [16]. The former adopts one backbone as the
encoder to extract common features for all tasks, and the latter designs encoders
for each task while constraining their associated parameters. To exploit the cor-
relation between tasks, a large amount of work focuses on the architecture design
of the network to enable the cross-task interaction [23]. For example, Misra et
al. designed a cross-stitch model to combine features from multiple networks
[12]. Besides network design, many researchers pay more attention to the neu-
ral network optimization process to counter the negative transfer issue [16]. As
tasks could compete with each other for shared resources, the overall perfor-
mance might be even poorer than those of solving individual tasks. To address
this issue, previous works either change the weights of each task objective adap-
tively using heuristics [2], or manipulate the gradient to be descending direction
for each task [10]. However, as those methods formulate MTL in a competitive
manner, it is difficult to guarantee that the complementary information is fully
utilized by each task. Moreover, most of them are designed for or evaluated on
a simple scenario, where only one domain is involved and the tasks are homoge-
neous, namely all tasks are either dense prediction or image-level classification.

In this work, we propose a novel cooperative MTL framework (MT-COOL),
which manages to update the features of one task while taking into account
the current state of other features. Specifically, we adopt the soft parameter-
sharing strategy and update each sub-model conditioning on the information
learned by other tasks in an alternative manner. To avoid the negative transfer
problem during the training, we further propose to search for flat minima of
the current task with regard to others at each iteration. As a proof of concept,
we first validate this method on the simple MNIST dataset for classification
tasks. To show the advantage of the proposed approach in the medical domain,
we use REFUGE2018 dataset for optic cup/disc segmentation and glaucoma
classification, and HRF-AV dataset for artery and vein segmentation tasks. The
results show a promising perspective of the proposed multi-task cooperative
approach, compared to the state-of-the-art methods.

The main contributions of this work are as follows:
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– We propose a novel MTL framework, which learns features for each task in a
cooperative manner.

– We propose an effective optimization strategy to alleviate convergence issues.
– We validate the proposed method on three MTL scenarios with different

task settings. The proposed method delivers promising results in all settings,
compared with the state-of-the-art MTL approaches.

2 Method

For a better explanation, here we take two-task learning as an example, which
can be generalized to n-task problems easily.

2.1 Bi-Level Optimization for Cooperative Two-Task Learning

Formally, let xi ∈ R
W×H×C denotes an image with the width W , height H

and channel C, yi ∈ R
C0 is a label for classification, (or yi ∈ R

W×H×C0 for
segmentation) and C0 is the number of classes, Fi(·; θi) is a feature extractor,
Gi(·;φi) is a prediction function for task i = 1, . . . , T where T is a number of
tasks, and here T = 2. θi and φi are corresponding parameters to be learned.
Our task is to predict label ŷi = Gi(Fi(xi)).

For MTL, instead of using shared backbone, i.e., F1 = F2, and updating them
simultaneously with a single loss �, we propose to optimize them in a cooperative
manner, that is learning (F1, G1) conditioned on a fixed and informative F2, and
versa vice. Generally, it can be formulated as a bi-level optimization problem:

(U) min
θ1,φ1

L1(θ1, φ1, θ2) = �1(G1(M(F1(x1; θ1), F2(x1; θ2));φ1), ŷ1), (1)

(L) min
θ2,φ2

L2(θ2, φ2, θ1) = �2(G2(M(F1(x2; θ1), F2(x2; θ2));φ2), ŷ2), (2)

where �i is the loss function, e.g. cross-entropy loss for classification. M denotes
a feature fusion to facilitate the current task learning by incorporating useful
information from other tasks. A common choice for M is to use a linear combi-
nation of features, also known as cross-stitch [12] or concatenation operation in
multi-layers (which is used in this work due to its simplicity).

To solve the problem Eq. (1)–(2), we propose to update (θ1, φ1) and (θ2, φ2)
alternatively, as other traditional methods for bi-level optimization problem
could be inefficient [1] due to the complexity of deep neural networks. How-
ever, without any constraint, this alternative optimization strategy could fail to
achieve convergence to an optimal solution. For example, at the t-th iteration,
we first optimize L1(θ1, φ1, θ

(t−1)
2 ) to obtain an optimum (θ(t)1 , φ

(t)
1 ). It is possi-

ble that for the second task, L2(θ
(t−1)
2 , φ

(t−1)
2 , θ

(t−1)
1 ) < L2(θ

(t−1)
2 , φ

(t−1)
2 , θ

(t)
1 ),

which means that the update for the first task could increase the prediction risk
of the second one, and cancel the gain from optimization of L2. Here, we also
term this issue as negative transfer. To alleviate this effect, we propose to search
for flat minima for one task with regard to the features from the other task in
each iteration.
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2.2 Finding Flat Minima via Injecting Noise

As mentioned above, the network optimized for one task could be sensitive to the
change of parameters for other tasks, which may cause non-convergent solutions.
Hence, at each iteration, for each task, we search for an optimum that is non-
sensitive to the update of other parameters within a fixed neighborhood. We
term this kind of optima as flat minima.

To formally state this idea, assume that noise εi ∼ {U(−b, b)}dεi with b > 0,
dε = dθi

and dθi
the dimension of θi. Then for task 1, at t-th iteration our target

is to minimize the expected loss function with regard to the parameters (θ1, φ1)
and noise ε2, i.e.,

(U) R[t]
1 (θ1, φ1) =

∫

R
dε2

L1(θ1, φ1, θ
[t−1]
2 + ε2)dP (ε2) = E[L1(θ1, φ1, θ

[t−1]
2 + ε2)],

(3)

s.t. |θ1 − θ
[t−1]
1 | < b,

where P (ε2) is the noise distribution, and the solution is denoted as (θ[t]1 , φ
[t]
1 ).

Similarly, for task 2, the loss function is as follows,

(L) R[t]
2 (θ2, φ2) =

∫

R
dε1

L2(θ2, φ2, θ
[t]
1 + ε1)dP (ε1) = E[L2(θ2, φ2, θ

[t]
1 + ε1)], (4)

s.t. |θ2 − θ
[t−1]
2 | < b.

Note that it is hard to find an ideal flat minimum (θ[t]1 , φ
[t]
1 ) for Eq. (3), such

that L1(θ
[t]
1 , φ

[t]
1 , θ

[t−1]
2 + ε

(j1)
2 ) = L1(θ

[t]
1 , φ

[t]
1 , θ

[t−1]
2 + ε

(j2)
2 ), ∀ε

(j1)
2 , ε

(j2)
2 ∼ P (ε2),

and L1(θ
[t]
1 , φ

[t]
1 , θ

[t−1]
2 ) < L1(θ

[t−1]
1 , φ

[t−1]
1 , θ

[t−1]
2 ), which satisfies the requirement

to avoid the optimization issue (see Sect. 2.1). Hence, our goal is to find an
approximately flat minimum to alleviate this issue. A similar idea has been
proposed for continual learning [19]. However, our method differs as follows: (1)
the flat minimum in [19] is searched for the current task, while in our work, it is
searched with regard to other tasks; (2) Once the flat minimum is found for the
first task in a continual learning problem, search region for the remaining tasks
is fixed, while in our work, the parameters for each task are only constrained in
a single iteration, and search region could change during the optimization.

In practice, it is difficult to minimize the expected loss, we instead minimize
its empirical loss for Eq. (3) and Eq. (4) as follows,

(U) L
[t]
1 (θ1, φ1) =

1
M

M
∑

j=1

L1(θ1, φ1, θ
[t−1]
2 + ε

(j)
2 )+λ ·KL(ŷ(j)

1 ,
1
M

M
∑

n=1

ŷ
(n)
1 ), (5)

(L) L
[t]
2 (θ2, φ2) =

1
M

M
∑

j=1

L2(θ2, φ2, θ
[t]
1 + ε

(j)
1 ) + λ · KL(ŷ(j)

2 ,
1
M

M
∑

n=1

ŷ
(n)
2 ), (6)



Multi-task Cooperative Learning via Searching for Flat Minima 175

Algorithm 1: Cooperative Learning via Searching Flat Minima
Input: Images and labels (xi, yi) for task i ∈ T = {1, 2}. Network for both tasks with

randomly initialized parameters ψi = (θi, φi), ψ = (ψ1, ψ2). Sampling times M ,
inner iteration number L, the flat region bound b. The step sizes α, β.

/* Warm up the network to obtain initialized parameters ψ[0] */
1 for iteration t = 1, 2, · · · , Tw do
2 Sampling εi ∼ {U(−b, b)}dεi with M times for i = 1, 2, respectively;
3 Compute Ltotal in Eq. (7);
4 Update ψ[t] = ψ[t−1] − α�Ltotal(ψ);
5 end
6 Start cooperative learning with ψ[0] = ψ[Tw ];

/* Alternative Update ψi for task i = 1, 2. */
7 for Outer iteration t = 1, 2, · · · do
8 for task i = 1, 2 do
9 for inner iteration l = 1, 2, · · · , L do

10 Sampling εi ∼ {U(−b, b)}dεi with M times for task i ;
11 Compute L

[t]
i (θi, φi) in Eq. (5) (or Eq. (6)) with fixed θ

[t−1]
T \{i};

12 if l=1 then
13 Update ψ

[t]
i = ψ

[t−1]
i − β�L

[t]
i (ψi) ;

14 else
15 Update ψ

[t]
i = ψ

[t]
i − β�L

[t]
i (ψi) ;

16 end
17 Clamp θ

[t]
i into [θ

[t−1]
i − b, θ

[t−1]
i + b];

18 end
19 end
20 end

Output: Model parameters (θ1, φ1, θ2, φ2).

where ε
(j)
i is a noise vector sampled from P (εi), M is the sampling times, and

KL is the Kullback-Leibler Divergence. The first term in Eq. (5) or Eq. (6) is
designed to find a satisfying minimum for the current task, and the second term
enforces this minimum to be flat as desired.

Warm up the Network. To initialize the parameters for Eq. (3) and Eq. (4)
with non-sensitive (θ[0]1 , θ

[0]
2 ), we minimize the following loss function,

Ltotal =
1
M

M
∑

j=1

(L1(θ1 + ε
(j)
1 , φ1, θ2 + ε

(j)
2 ) + L2(θ2 + ε

(j)
2 , φ2, θ1 + ε

(j)
1 )). (7)

Algorithm. We term the proposed multi-task cooperative learning method as
MT-COOL. The algorithm is described in Algorithm1. Note that to alleviate
the optimization issue discussed in Sect. 2.1, after the update for each task, we
clamp the parameters to ensure that they fall within the flat region, as described
in Line 17 in Algorithm1.

Network Configuration. Figure 1 illustrates the framework for two-task
cooperative learning. Our framework consists of an encoder and task-specific
decoders. The parameters at each layer of the encoder are evenly allocated to
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each task, and the learned features are then concatenated as the input of the
next layer.

Fig. 1. A general framework for our MTL method. (a) is the conventional convolution
block, (b) illustrates the structure of a convolution block for cooperative two-task
learning, and (c) shows the general framework for MTL, which contains an encoder
and task-specific decoders.

3 Experiments

We validate our MTL framework in three scenarios as follows: (1) classification
tasks on different classes with the MNIST dataset [8], (2) one domain for simul-
taneous segmentation and classification tasks using the REFUGE2018 dataset
[13], and (3) one domain for two segmentation tasks with HRF-AV dataset [7].
For our method, we adopt the stochastic gradient descent (SGD) optimizer, and
empirically set the bound value b = 0.05, the learning rate α = β = 0.1. To
reduce the training time and the memory, we simply set the sampling number
M = 1. All experiments are implemented using one GTX 1080Ti GPU.

3.1 Dataset

(1) MNIST. This dataset contains 50,000 training and 10,000 testing images.
To simulate a multi-task learning setting, we divide both the training and test
images into two subsets with either even numbers {0, 2, 4, 6, 8} (denoted as
Task 1 ) or odd numbers {1, 3, 5, 7, 9} (denoted as Task 2 ). For the network,
we adopt the widely used LeNet architecture for MNIST dataset [8], of which
the last layer contains 50 hidden units, followed by a final prediction output. (2)
REFUGE2018. The REFUGE2018 challenge [13] provides 1200 retinal color
fundus photography. The target of this challenge is glaucoma detection and optic
disc/cup segmentation. We divide this dataset into 800 samples for training and
400 test subset, where the ratio of the number of glaucomas to non-glaucoma
images are both 1 : 9. As discussed in [13], glaucoma is mostly characterized by
the optic nerve head area. Hence, we cropped all images around the optic disc
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into 512 × 512. We used the UNet [15] for the segmentation task, with the four
down-sampling modules as the shared encoders. The output of segmentation and
the features from the bottom layers are taken as the input of the decoder for
classification. (3) HRF-AV. This dataset [7] contains 45 fundus images with a
high resolution of 3504 × 2336. The tasks for this dataset are the binary vessel
segmentation and the artery/vein (A/V) segmentation. We randomly split the
dataset into 15 and 30 samples for training and testing. We adopt the U-Net as
the backbone with the bottom feature channel being 256. During training, we
crop patches with size of 2048 × 2048 randomly as input.

3.2 Results on MNIST Dataset

Ablation Study. To validate the effectiveness of the two terms in Eq. (5) and
Eq. (6), we conduct two experiments: (1) Vanilla. We simply optimize the objec-
tive of each task alternatively without any constraints or sampling operations.
(2) Ours (w/oReg). We sample noises during training, and optimize the losses
with solely the first term in Eq. (5) and Eq. (6), i.e., without the similarity regu-
larization. We run 5 times for each method, and report their mean and standard
deviation values.

As shown in the top four rows of Table 1, compared to the Independent
approach, the proposed Vanilla bi-level optimization method can utilize the
features from other tasks and boost the performance of the current one. By
introducing noises to find flat minima during training, Ours (w/o Reg) further
achieves higher prediction, particularly for Task 2. Finally, by adding similarity
regularization, our method obtains the best results.

Table 1. Performance of SOTA MTL methods on MNIST dataset. We set the number
of parameters of Joint method as the base 1, and the values in the column ‘Params’
are the ratio of the parameter number of each method to the Joint.

Methods Params Task 1 Task 2

Independent ≈2 99.41 ± 0.03492 98.77 ± 0.06029
Ours (Vanilla) 1 99.61 ± 0.06210 99.37 ± 0.04494
Ours (w/o Reg) 1 99.66 ± 0.03765 99.56 ± 0.07203
MT-COOL (Ours) 1 99.72±0.03978 99.62±0.01576
Joint 1 99.60 ± 0.03765 99.51 ± 0.06281
CAGrad [10] 1 99.67 ± 0.05293 99.51 ± 0.05229
GradDrop [3] 1 99.65 ± 0.03492 99.53 ± 0.04245
MGDA [17] 1 99.63 ± 0.05883 99.47 ± 0.05078
PCGrad [22] 1 99.66 ± 0.04180 99.51 ± 0.09108
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Fig. 2. Visualization results from MTL methods on REFUGE2018 dataset. The
selected samples rank the 1st quartile, median and 3rd quartile in terms of the seg-
mentation performance of Independent.

Comparison Study. We compare the proposed method with four state-of-the-
art (SOTA) MTL approaches, including MGDA [17], PCGrad [22], GradDrop
[3] and CAGrad [10]. We also implement the Joint method as a baseline, which
simply sums the loss of each task as the total loss for training.

As shown in Table 1, all MTL methods improve the performance on each task,
compared to Independent. Among all the compared methods, our technique
performs the best on both tasks.

3.3 Comparison on REFUGE2018 Dataset

For REFUGE2018 dataset, we compare our method with CAGrad, GradDrop,
MGDA, PCGrad, and Joint. We run each method three times, and report the
mean ± std values of Dice score on optic cup and disc for the segmentation
task, and accuracy (Acc), Area Under the Receiver Operating Characteristics
(AUROC), sensitivity (Sen) and specificity (Spe) for the classification task.

As shown in Table 2, our method achieves comparable results on the seg-
mentation task with the Independent, while other MTL methods degrade sig-
nificantly, particularly on Disc. For the classification task, our method achieves
the best performance in terms of all the metrics. Figure 2 provides the visualiza-
tion results for qualitative comparison. One can see that the proposed method
obtains the best prediction shape among all MTL methods.

3.4 Comparison on HRF-AV Dataset

We also conduct a comparison study on HRF-AV dataset. Each method is
repeated three times, and the mean results are presented in Table 3. One can see
that compared to the Independent, all the other MTL methods perform poorly,
especially on A/V segmentation task. For example, the best F1 scores on A/V
segmentation among the five MTL methods are 0.5127 and 0.5736, respectively,
obtained by GradDrop, which are much lower than those from Independent.
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Table 2. Performance of SOTA MTL methods on REFUGE2018 dataset.

Methods Params Segmentation Classification
Cup (Dice%) Disc (Dice%) Acc AUROC Sen Spe

Independent ≈2 95.14 ± 0.05110 86.87 ± 005644 0.900 ± 0.00235 0.902 ± 0.0106 0.658 ± 0.0117 0.927 ± 0.00392
Joint 1 91.19 ± 0.7600 77.36 ± 0.5236 0.907 ± 0.0183 0.895 ± 0.0221 0.658 ± 0.0656 0.935 ± 0.0264
CAGrad [10] 1 92.67 ± 0.7702 81.71 ± 0.2874 0.914 ± 0.00513 0.904 ± 0.00562 0.658 ± 0.0235 0.942 ± 0.00796
GradDrop [3] 1 91.70 ± 0.6376 78.91 ± 1.439 0.909 ± 0.00424 0.922 ± 0.0115 0.716 ± 0.0471 0.930 ± 0.00988
MGDA [17] 1 93.87 ± 0.5017 83.87 ± 0.9732 0.895 ± 0.0154 0.914 ± 0.00610 0.633 ± 0.0824 0.924 ± 0.0260
PCGrad [22] 1 91.74 ± 0.5569 79.80 ± 0.8748 0.911 ± 0.00849 0.898 ± 0.0136 0.675 ± 0.0204 0.937 ± 0.00796
MT-COOL (Ours) 1 94.37±0.1706 86.18±0.3046 0.937±0.0113 0.942±0.0149 0.750±0.000 0.958±0.0126

Table 3. Performance of SOTA MTL methods on HRF-AV dataset.

Methods Params A/V Segmentation Binary Segmentation
Acc (A) F1 (A) Acc (V) F1 (V) Acc (AV) F1 (A/V) Acc F1

Independent ≈2 0.9814 0.6999 0.9821 0.7492 0.9692 0.7698 0.9691 0.7831
Joint 1 0.9622 0.3537 0.9661 0.5171 0.9664 0.7360 0.9691 0.7835
CAGrad [10] 1 0.9687 0.4754 0.9696 0.5520 0.9668 0.7364 0.9690 0.7790
GradDrop [3] 1 0.9708 0.5127 0.9716 0.5736 0.9666 0.7343 0.9686 0.7742
MGDA [17] 1 0.9636 0.2343 0.9632 0.5315 0.9660 0.7263 0.9691 0.7793
PCGrad [22] 1 0.9671 0.4262 0.9681 0.5387 0.9667 0.7357 0.9687 0.7763
MT-COOL (Ours) 1 0.9801 0.6671 0.9811 0.7135 0.9674 0.7424 0.9701 0.7912

On the contrary, our method performs comparably with the Independent on
A/V segmentation, and even slightly better on binary segmentation. For quali-
tative comparison, please refer to Fig. 1 in the Supplementary material.

4 Conclusion

In this work, we propose a novel MTL framework via bi-level optimization. Our
method learns features for each task in a cooperative manner, instead of com-
peting for resources with each other. We validate our model on three datasets,
and the results prove its great potential in MTL. However, there are still some
issues that need to be studied in the future. For example, we need to validate our
method on large-scale tasks and find a more efficient learning strategy such as
using distributed learning. Moreover, how to allocate the parameters to each task
automatically and effectively is important for model generalization. For better
interpretability, learning features specific to each task should also be studied.
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Abstract. Deep models suffer from limited generalization capability to
unseen domains, which has severely hindered their clinical applicability.
Specifically for the retinal vessel segmentation task, although the model is
supposed to learn the anatomy of the target, it can be distracted by con-
founding factors like intensity and contrast. We propose Meta learning on
Anatomy-consistent Pseudo-modalities (MAP), a method that improves
model generalizability by learning structural features. We first leverage a
feature extraction network to generate three distinct pseudo-modalities
that share the vessel structure of the original image. Next, we use the
episodic learning paradigm by selecting one of the pseudo-modalities as
the meta-train dataset, and perform meta-testing on a continuous aug-
mented image space generated through Dirichlet mixup of the remaining
pseudo-modalities. Further, we introduce two loss functions that facili-
tate the model’s focus on shape information by clustering the latent vec-
tors obtained from images featuring identical vasculature. We evaluate
our model on seven public datasets of various retinal imaging modalities
and we conclude that MAP has substantially better generalizability.

Keywords: domain generalization · vessel segmentation ·
meta-learning · Dirichlet mixup

1 Introduction

In the absence of a single standardized imaging paradigm, medical images
obtained from different devices may exhibit considerable domain variation.
Figure 1 demonstrates three types of domain shift among images delineating
the retinal vessels. The presence of such distribution mismatch can significantly
degrade the performance of deep learning models on unseen datasets, thus imped-
ing their widespread clinical deployment. To address the domain generalization
(DG) problem [26], a straightforward idea is to focus on the domain-invariant
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 182–192, 2023.
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Fig. 1. Domain shift examples. Type I: pathological phenotypes (a vs. b). Type II:
cross-site shifts (c vs. d). Type III: cross-modality shifts (a-b vs. c-d vs. e).

patterns for the specific downstream task. For retinal vessel segmentation, the
morphology of vessels can be deemed such a domain-invariant pattern. Hence,
our hypothesis is that emphasizing the structural characteristics of the vascula-
ture can enhance the model’s DG performance. Following a similar idea, Hu et
al. [9] proposed to explicitly delineate the vessel shape by a Hessian-based vec-
tor field. However, the dependency on the image gradient makes this approach
vulnerable to low-quality data with poor contrast and/or high noise. In contrast,
we instead propose an implicit way of exploiting the morphological features by
adopting the meta-learning paradigm on anatomy-consistent pseudo-modalities
(MAP).

First, we leverage a structural feature extraction network (Fig. 2(a)) gen-
erate three pseudo-modalities, similar to [9]. The network is defined by setting
the bottleneck of the U-Net [18] backbone to have the same width and height
with the input image. Given its capability to extract interpretable visualization,
this architecture is often implemented in representation disentanglement [16] and
unsupervised segmentation [8]. Supervised by the binary vessel map, the latent
image preserves the vasculature structure while the style exhibits some random-
ness, as illustrated in Fig. 2(b). Therefore, we refer to these latent images as
anatomy-consistent pseudo-modalities.

Meta-learning has recently emerged as a popular technique for addressing
the DG problem [4,10]. Following the idea of episodic training presented in
MAML [6], researchers split their training data into two subsets, meta-train and
meta-test, to mimic the scenario of encountering out-of-distribution (OOD) data
during training. Liu et al. [13] proposed to conduct meta-learning in a continuous
frequency space created by mixing up [11,23] the amplitude spectrum. They keep
the phase spectrum unchanged to preserve the anatomy in the generated images.
In contrast, given our pseudo-modalities with identical underlying vasculature,
we are able to create a continuous image space via Dirichlet mixup [19] without
affecting the vasculature. We regard images in each pseudo-modality as a corner
of a tetrahedron, as depicted in Fig. 2(c). The red facet of the tetrahedron is a
continuous space created by the convex combination of images from the three
pseudo-modalities. We use images in one pseudo-modality (blue node) for meta-
train and the mixup space (red facet) for meta-test. An important property of
the mixup space is that all the samples share the same vessel structure while
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Fig. 2. The key components of MAP, clockwise. (a) f(·) is the synthesis network.
xi is the ith color fundus input and yi is its ground truth vessel map. k indexes three
different models that generate diverse pseudo-modalities. (b) An example image in four
pseudo-modalities: D0 is the histogram equalization of intensity-reversed green channel
of input x and Dk, k = 1, 2, 3 are generated by fk

e . (c) The four pseudo-modalities of
an input xi form the corners of a tetrahedron. The colored facet is a continuous image
space created by Dirichlet mixup. s(m)

i denotes the mth sample from the image space.
Anatomy i represents the underlying shape of vasculature in xi, which is consistent for
all samples s

(m)
i . (d) The meta-learning scheme. g(·) is the segmentation network, M

is the number of samples drawn, z is the latent feature vector. (Color figure online)

the image style may differ drastically. Hence, employing proper constraints on
the relationship between features can implicitly encourage the model to learn
the shape of vessels. Inspired by [4], we leverage a similarity loss to express the
feature consistency between the meta-train and meta-test stages. Additionally,
we propose a normalized cross-correlation (NCC) loss to differentiate latent fea-
tures extracted from images with different anatomy. In the context of contrastive
learning, these loss functions cluster positive pairs and separate negative pairs.

In our study, we use seven public datasets including color fundus, OCT
angiography (OCT-A) and fluorescein angiography (FA) images. We train MAP
on fundus data and test on all modalities. We show that MAP exhibits outstand-
ing generalization ability in most conditions. Our main contributions are:

❖ We generate a continuous space of anatomy-consistent pseudo-modalities with
Dirichlet mixup.

❖ We present an episodic learning scheme employed on synthesized images.
❖ We propose a normalized cross-correlation loss function to cluster the feature

vectors with regard to the vessel structure.
❖ We conduct extensive experiments on seven public datasets in various modal-

ities which show the superior DG performance of MAP.



MAP 185

2 Methods

2.1 Problem Definition

Given a source domain S = {(xi,yi)|i ∈ {1, · · · , N}} that includes N pairs of
raw images xi and ground truth labels yi, our goal is to train a segmentation net-
work g(·) that can robustly work on the target domain T = {T p|p ∈ {1, · · · , P}}
with P unseen datasets. In practice, we include only fundus images in S since
there are many public annotated fundus datasets. For T , data from three dif-
ferent modalities (fundus, OCT-A and FA) are included. We test the model
generalization on datasets with three distinct types of domain shift: (I) data
with pathological phenotypes, (II) cross-site shifts, (III) cross-modality shifts.

2.2 Pseudo-modality Synthesis

The features in the latent space of a U-Net [18] backbone is usually a low-
dimensional representation of the input images. In some applications (e.g., rep-
resentation disentanglement), it is desirable for the latent features to show visu-
ally intuitive structural characteristics. In such scenarios, the bottleneck of the
feature extraction network is set to have the same width and height as the input
image. We adopt the approach presented in [9] to synthesize pseudo-modalities
by exploiting this idea (Fig. 2(a)). Both the encoder fe and the decoder fd are
residual U-Nets. The input xi ∈ R

3×H×W is a color image while yi is the binary
vessel map. The model is trained by optimizing a segmentation loss which is the
sum of cross-entropy and the Dice loss [14], i.e., Lseg = LCE + LDice. Without
direct supervision, the latent image xk

i can have a different appearance when
the model is re-trained. Such randomness is purely introduced by the stochastic
gradient descent (SGD) in the optimization process. k = 1, 2, 3 indexes three dif-
ferent models and their corresponding synthesized image. For a fair comparison,
we use the pre-trained models provided in [9] to generate the three pseudo-
modalities (D1, D2, and D3) illustrated in Fig. 2(b).

An essential property of the generated images is that despite significant
intensity variations, they consistently maintain the shared anatomical structure
of the vasculature. Therefore, the Dk are termed anatomy-consistent pseudo-
modalities. To convert the input color fundus image xi to grayscale, we conduct
histogram equalization (CLAHE) [17] on the intensity-reversed green channel
and denote it as x0

i . The pseudo-modality of these pre-processed images is D0.

2.3 Meta-learning on Anatomy Consistent Image Space

Developed from the few-shot learning paradigm, meta-learning seeks to enhance
a model’s generalizability to unseen data when presented with limited training
sets. This is achieved by an episodic training paradigm that consists of two
stages: meta-train and meta-test. The source domain S is split into two subsets
Strain and Stest to mimic encountering OOD data during training.
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Fig. 3. Examples of Dirichlet distribution and corresponding sample images.

Mixup is a common strategy for data augmentation as it generates new sam-
ples via linear interpolation in either image [11] or feature space [21]. Zhang et al.
[25] showed Mixup improves model generalization and robustness. In [13], Liu et
al. conduct meta-learning on generated images that are synthesized by mixing the
amplitude spectrum in frequency domain. They preserve larger structures such
as the optic disc by keeping the phase spectrum un-mixed. Given our anatomy-
consistent pseudo-modalities, we are able to directly work on the images rather
than the frequency domain. We select D1 as the meta-train data, and we mixup
the remaining three pseudo-modalities (D0, D2, and D3) to form a continuous
space (red facet in Fig. 2(c)) from which we draw meta-test samples.

In order to mixup three examples, we set a coefficient vector λ follow the
Dirichlet distribution, i.e., λ ∼ Dirichlet(α) where λ,α ∈ R

3. The probability
density function (PDF) is defined as follows:

P (λ) =
Γ (α0)

Γ (α1)Γ (α2)

3∏

i=1

λαi−1
i 1(λ ∈ H), (1)

with H = {λ ∈ R
3 : λi ≥ 0,

∑3
i=1 λi = 1} and Γ (αi) = (αi − 1)!. Examples of

PDFs with different hyperparameters α are shown in the top row of Fig. 3.
The mixup image si is created by sampling the coefficient vector λ from

P (λ), i.e., si = λ1x0
i + λ2x2

i + λ2x3
i . It is evident from the bottom row of Fig.

1 that the samples drawn from different distributions drastically vary in terms
of contrast and vessel intensity. Thus, the Dirichlet mixup can augment the
training data with varying styles of images without altering the vessel structure.
To thoroughly exploit the continuous image space, we set α = [1, 1, 1] such that
P (λ) is a uniform distribution and all samples are considered equally.
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Fig. 4. Left: Feature clusters. Each dot represents a feature vector. Samples repre-
senting different anatomies are shown in different colors. The highlighted dots are the
latent anchor features extracted from x1

i , x1
j and x1

k during meta-training. Right: NCC
matrix. Each entry of the matrix is the cross-correlation between two feature vectors.

2.4 Structural Correlation Constraints

Next, we design constraints to facilitate the model’s concentration on the vessel
morphology. We tackle this by delineating the correlation between latent fea-
tures, as illustrated in Fig. 2(d). For two input images xi and xj (i �= j), the fea-
tures zi and zj are desired to be far apart, as their anatomies differ. In contrast,
the M mixup samples s(m)

i for m ∈ {1, · · · ,M} are all anatomy-consistent, thus
the corresponding features z(m)

i should form subject-specific clusters, as shown
in Fig. 4(left). Based on this intuition, we propose two loss functions.
Similarity Loss Lsim. As mentioned in Sect. 2.3, we set Strain = D1. The
feature vector extracted during meta-training can be regarded as an anchor in
the latent space; we denote it as za

i . Then the latent features z(m)
i from samples

s(m)
i , m ∈ {1, · · · ,M}, should be close to the anchor za

i . Here, we simply use
the L1 norm as the similarity loss Lsim =

∑N
i=1

∑M
m=1 ‖z(m)

i − za
i ‖1, where N is

the number of input images. Lsim is used to reduce the distance between sample
features and the anchor within the clusters, as shown in Fig. 4(left).
Normalized Cross-correlation Loss Lncc. In the context of contrastive
learning, the Barlow Twins objective function [22] was proposed to minimize
the redundant information contained in the embedding vectors. This is realized
by computing an empirical cross-correlation matrix of two vectors and bringing
it closer to identity such that unmatched entries are not correlated. We extend
this idea to a stack of vectors, as illustrated in Fig. 4(right). Feature vectors
are color coded in the same way as the left panel of the figure. The normalized
cross-correlations (NCC) between each pair of features form a symmetric matrix
C. As an example, the NCC of z(3)i and z(2)j :

C3,5 = C5,3 =
z(3)i · z(2)j√

z(3)i · z(3)i

√
z(2)j · z(2)j

(2)

In the ideal ground truth C∗, the entries in the black region are 1, indicating simi-
lar features. Conversely, the white region entries are 0, representing dissimilarity.
Then the NCC loss can be defined by Lncc = ‖C∗ − C‖2F .
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Table 1. Datasets. Rows indicating the source domains have a white background while
the target domains are shaded according to domain shift type. From top to bottom,
(I) pathology: light gray, (II) cross-site: medium gray, (III) cross-modality: dark gray.

dataset modality resolution number domain

DRIVE [20] fundus 565 × 584 20 S

STARE [7] fundus 700 × 605 20 S

ARIA[5] healthy fundus 768 × 576 61 S

AMD fundus 768 × 576 59 T

diabetic fundus 768 × 576 23 T

PRIME-FP20 [3] fundus 4000 × 4000 15 T

ROSE [15] OCT-A 304 × 304 30 T

OCTA-500(6M) [12] OCT-A 400 × 400 300 T

RECOVERY-FA19 [2] FA 3900 × 3072 8 T

The total loss for the meta-test stage is Ltest = ω1Lseg + ω2Lsim + ω3Lncc.
Empirically, we set ω1 = ω2 = 100, ω3 = 1.

2.5 Experimental Settings

Datasets. We use 7 public datasets listed in Table 1. The source domain S
includes three color fundus datasets: DRIVE, STARE and healthy samples in
ARIA. By testing on the target domain T , we evaluate the model’s ability to
generalize across pathological, cross-site, and cross-modality shift conditions.
Implementation Details. The segmentation network g(·) is a 6-layer resid-
ual U-Net. If the number of channels n for a layer is denoted as Cn, then the
architecture is: C8 − C32 − C32 − C64 − C64 − C16. The synthesis model f(·)
only functions on color fundus images in S during training. At test-time, fun-
dus images are converted to grayscale by applying CLAHE on intensity-reversed
green channel, while OCT-A and FA images are passed to the segmentation net-
work g(·) directly. g(·) is trained and tested on an NVIDIA RTX 2080TI 11GB
GPU. We set the batch size to 10 and train for 30 epochs. We utilize the Adam
optimizer with the initial learning rate ηtrain = 1 × 10−3 for meta-training and
ηtest = 5 × 10−3 meta-testing, both decayed by 0.5 for every 3 epochs.

3 Results

Ablation Study. In Table 2, we investigate the contribution of the three major
components of the proposed method: the episodic training paradigm, the simi-
larity loss Lsim and the normalized cross-correlation loss Lncc. Note that Lsim

requires the access to the latent anchor and thus is only applicable when using
meta-training strategy. Without Lsim and Lncc, the model is trained with only
the segmentation loss Lseg. Our results show that the introduction of the episodic
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Table 2. The ablation study on the main components of MAP on data with three
types of distribution shift. Boldface: best result, underline: second-best result.

Episodic Lsim Lncc Type I Type II Type III Average

– – – 62.93 60.04 63.94 62.95

– – ✓ 64.73 62.48 68.06 66.02

✓ – – 67.50 63.40 64.25 65.19

✓ ✓ – 64.75 66.24 68.30 66.77

✓ – ✓ 66.10 66.99 69.71 68.05

✓ ✓ ✓ 67.39 66.99 71.60 69.43

training provides noticeable improvement in all types of distribution shift. Both
loss functions also contribute positively in general, and the proposed method
ranks the best in types II and III, and second best in type I.
Comparison to Competing Methods. There are three major classes of
approaches to solve the DG problem: data augmentation, domain alignment,
and meta-learning. We compare against a representative algorithm from each:
BigAug [24], domain regularization network [1], and MASF [4], respectively. We
also compare to VFT [9] as it also focuses on leveraging shape information and
pseudo-modalities. Moreover, we train a residual U-Net on S as a baseline model,
and a residual U-Net on each target domain T p ∈ T as an oracle model, to pro-
vide an indication of the lower and upper bounds of generalization performance.

Table 3 compares the Dice coefficients (%) of the competing methods. MAP
ranks the best in almost all target domains (except RECOVERY, where it ranks
second), which proves that the proposed MAP algorithm effectively enhances the
robustness of the model under all three domain shift conditions. For some of the
datasets such as ROSE and the diabetic subset of ARIA, the MAP’s performance
approaches the oracle. Compared to the VFT which explicitly models the tubular

Table 3. The Dice values (%) for testing on target domains. Boldface: best result,
underline: second best result. ∼ : p-value ≥ 0.05, † : p-value � 0.05 in paired t-test
compared to the baseline. The background is encoded the same way as Table 1.

Method
ARIA

amd diabetic
PRIME-FP20 OCTA 500 ROSE RECOVERY

baseline 63.82 65.19 47.31 73.16 67.41 51.25

Regular [1] 64.89 66.97 55.76 73.54 68.36 55.20

BigAug
[24]

65.55 67.27 59.97 76.88 69.32 63.20

MASF [4] 65.33 67.75 65.96 77.65 67.25 50.74

VFT [9] 61.81 64.05 54.64 77.91 72.81 48.28

MAP 66.69∼ 68.08∼ 68.21† 78.71† 74.25† 61.85†

oracle 73.34 70.65 77.80 86.57 76.03 74.54
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vessel shape, the implicit constraints provide a better guidance for the deep
model to learn the structural features.

4 Conclusion

We present MAP, a method that approaches the DG problem by implicitly
encouraging the model to learn about the vessel structure, which is considered
to be a domain-agnostic feature. This is achieved by providing the model with
synthesized images that have consistent vasculature but with significant varia-
tions in style. Then by setting constraints with regard to the correlation between
latent features, the model is able to focus more on the target vessel structure. Our
model’s generalization capability is assessed on test data with different sources of
domain shift, including data with pathological phenotypes, cross-site shifts, and
cross-modality shifts. The results indicate that the proposed method can greatly
improve the robustness of the deep learning models across all three domain shift
configurations.
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Abstract. Histology images are the golden standard for medical diag-
nostic analysis. However, 2D images can lose some critical information,
such as the spatial structure of blood vessels. Therefore, it is necessary
to perform 3D reconstruction for the histology images. At the same time,
due to the differences between institutions and hospitals, a general 3D
reconstruction method is needed. In this work, we propose a 3D recon-
struction pipeline that is compatible with Whole Slide Imaging (WSI)
and can also be applied to other imaging modalities such as CT images,
MRI images, and immunohistochemistry images. Through semantic seg-
mentation, point cloud construction and registration, and 3D rendering,
we can reconstruct serialized images into 3D models. By optimizing the
pipeline workflow, we can significantly reduce the computation workload
required for the 3D reconstruction of high-resolution images and thus
save time. In clinical practice, our method helps pathologists triage and
evaluate tumor tissues with real-time 3D visualization.

Keywords: Histology Image · Point Clouds · 3D Reconstruction

1 Introduction

Histology images are golden standards for medical diagnosis and analysis, as they
contain key information such as the cause and severity of the diseases. With the
advancement of deep learning technology, computers are now capable of being
applied in the analysis of medical images and in extracting key information.
However, traditional 2D images can lose a lot of important information, such
as the vascular structure in 3D space. Moreover, due to different task require-
ments and variations such as machine specifications among hospitals and institu-
tions, there is a need to develop a general 3D reconstruction system. Current 3D
reconstruction tasks, especially those involving high-resolution images, require
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extensive computational resources and are extremely time-consuming, with the
registration and semantic segmentation tasks as the bottleneck of the real-time
visualization for gigabyte WSIs [1]. In this work, we propose a computational-
efficient method to reconstruct the pathology images for WSI 3D reconstruction
using point clouds, a discrete set of data points in the 3D space. The process
comprises semantic segmentation, point cloud sampling, point cloud registration,
and 3D rendering. This process outperforms the existing reconstruction process
as it combines the sampling and modeling processes by constructing point clouds.
Subsequently, registration is performed, greatly reducing the computational and
time costs required for the process.

2 Related Works

Many approaches have recently been proposed recently for 3D reconstruction.
For example, [2] developed techniques to inspect the surface of organs by recon-
struction from endoscope videos. A pipeline named CODA [1] perceives the spa-
tial distribution of tumors such as the pancreas and liver. ITA3D reconstructs
tissues through non-destructive 3D pathology images [3]. Comparative studies
have published to reconstruct 3D organs in the disciplines of ultrasound [4,5],
radiology [6–8] and orthodontic [9,10]. Notably, due to factors such as the qual-
ity of the loaded glass slides and manual operation during the preparation of
pathological sections, the three-dimensional reconstruction must perform image
registration, which makes the three-dimensional reconstruction method based
on CT images, as in [11], unsuitable for direct application to WSI. Despite
many AI-powered applications, accuracy and performance are still the dominant
challenges for real-time diagnoses. In the setting of gigabyte pathology images,
cellular-level segmentation and image registration are required to be produced
in a short time to keep up with the high-throughput scanners and minimize the
waiting time for the final confirmation by pathologists.

3 Method

WSI-Level Tissue Segmentation. The medical transformer, namely gated
axial-attention transformer [12,13] employs a position-sensitive axial-attention
mechanism, with a shallow global branch and a deep local branch incorporated.

Inspired by this design, we trained a network with two branches of gated-
axial transformer and a CNN-transformer hybrid architecture as the backbone to
extract global and local information. The segmentation ground truths are derived
from 2D WSI segmentation maps labeled manually by QuPath [14]. Then the
2D WSIs are cropped to image patches and curated to feed the segmentation
network, as patch-based deep learning networks are currently the mainstream
structures in the discipline of histology image analysis. The raw images and
paired segmentation masks are cropped to 128 × 128 pixel image patches for
input. The network consists of two branches. The gated-axial transformer aims
to learn global information by capturing feature correlations. The other branch
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Fig. 1. The 3D visualization pipeline of tumor tissue. For the visualization of tumor
volume, the raw WSIs are firstly decoupled to image patches and processed by the
binary segmentation network, with the gated axial transformer as the encoder and CNN
as the decoder. Then the patches are rejoined to form segmentation maps representing
tumor (positive) area. The color convention is applied to WSI binary image to visualize
the entire tissue volume. (a) and (b) stand for one layer of point clouds generated from
the binary images to represent the density of the tumor (red) and tissue (blue). (c)
and (d) are the 3D visualization tissue volume generated from the representative point
clouds. (Color figure online)

of CNN-transformer hybrid architecture employs the transformer structure as
the encoder and the CNN as the decoder, where the latter is deepened with
multiple layers to allow a clear separation of tumor tissue (positive) and dense
tissue (negative), as shown in Fig. 1. After the binary segmentation, the output
patches are rejoined to form WSI for the later tumor visualization.

Point Clouds. Point clouds are applied for 3D modeling objects such as build-
ings [15] and human bodies [11,16,17]. This research generates the layered point
clouds with down-sampled semantic segmentation results. The pixels of tumor
(positive) masks are appended to the layered point cloud. The x and y coordi-
nates of the points are generated from the segmented images, and the z coor-
dinate is the interpolation of the stacked WSI. The computed point clouds are
then reconstructed at the three dimensions for WSI registration. Compared with
another commonly used 3D reconstruction tool, voxel-based 3D pixel represen-
tation using a 3D 0/1 matrix, the point cloud is more suitable for modeling
high-resolution images with enormous data volumes thanks to its sparser data.
In the current task, point cloud reconstruction also serves the function of extract-
ing feature points. If registering the WSI, even when selecting only a few feature
points and calculating simple translation and rotational coordinates, the entire
WSI needs to be transformed accordingly, and the model needs to be re-sampled.
By building the model first and then applying the transformation to it, only the
coordinates of the points in the three-dimensional space need to be transformed,
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and a model that can be used for subsequent processing can be obtained directly
(Fig. 2).

Fig. 2. An example of rendering a point cloud into a model, where darker colors indicate
higher point density, which corresponds to potentially tumor tissue in the WSI for this
task. Figure a and b correspond to model images generated from two serialized WSI
sequences respectively.

Axial Registration. Current registration methods employ Radon transform
and cross-correlation, where WSIs are cropped and applied with rigid and elastic
registration [1]. This computation workload is often massive and also redundant
for unimportant regions. Moreover, elastic segmentation may cause image dis-
tortion and inaccuracy in segmentation. By contrast, we optimize the overall
framework by bringing forward the segmentation and the point cloud generation
before the registration.

Specifically, we incorporate the ICP (Iterative Closest Point) strategy to
register for the layered point clouds generated from the segmentation output.
As each point cloud for registration uses exclusively one layer, we apply point-
to-point strategy [18] without employing the normal vectors. A brief review of
the point-to-point strategy is formulated as follows:

Pfix = RPmov + T (1)

Pfix and Pmov are the fixed and moving point clouds. R and T are the rotation
matrix and translation vector.

Vi,fix = Pi,fix − Cfix (2)

Vi,mov = Pi,mov − Cmov (3)

Pi,fix and Pi,mov (1 ≤ i ≤ N) are the paired-points in the point cloud; Cfix

and Cmov are the center of the two point clouds; and Vi,fix and Vi,mov are the
vectors from point to the center.

L (R, T ) =
1
N

N∑

i=1

||Pi,fix − RPi,mov − T ||2 (4)
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N is the number of points in Pmov, and L is the loss of the registration.
Expand the equation and eliminate terms with zero means, Vi,fix and Vi,mov

particularly and we obtain the following formula to calculate the final values of
R and T in order to minimize the loss value.

R∗ = arg min(
1

N − 1

N−1∑

i=1

||Vi,fix − RVi,mov||2) (5)

T ∗ = Cfix − R∗Cmov (6)

where R∗ and T ∗ are the computed rotation matrix and translation vector with
minimized loss. The minimum value is achieved through SVD or nonlinear opti-
mization.

Fig. 3. An example of registration processing. The fixed WSI (pink point clouds) and
the corresponding moving WSI (green) are computed in the current iteration, and the
registration is iteratively performed from bottom (grey) to top (silver). Our selective
algorithm pinpoints the essential points (blue) for matrix computation for the ICP
translation speedup. (Color figure online)

Innovatively, to speed up the processing, we select the representative layered
point cloud, determined by the spatial density and 2D coordinate, to apply the
transformation to the entire layer. In each iteration from bottom to top, we select
horizontal and vertical band-shaped areas in the moving point cloud, as shown
in Fig. 3. For a consistent spatial presentation of the tumor tissue, interpolation
is required upon the different resolutions of x, y, z. In this case study, the z value
of the points are multiplied by a factor of 4 to map with the x, y resolution. The
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point cloud is interpolated based on the nearest layered point cloud. The layered
point clouds are then re-registered iteratively in the same manner.

Algorithm 1: The axial registration

Data: WSI image stack I = {x(i)}ni=1, band boundary
(umin, umax, vmin, vmax), max correspondence point pair distance
for point to point ICP dmax

Result: PCD(the point cloud generated from the axial-registered layered
images)

1 Set band area:
2 Ψ = {(u, v, z)‖ umin < u < umax & vmin < v < vmax}
3 Initialization:
4 PCD, F, M ← ∅;
5 for each image x(i) ∈ I do
6 if i == 1 then
7 generate layered point cloud l(i) with x(i);
8 store l(i);
9 continue;

10 end
11 F ← l(i−1);
12 generate l(i) with x(i);
13 l

′ ← l(i);
14 M ← l

′ ∩ Ψ ;
15 Matrix calculation:
16 R, T ← ICP(M,F, dmax);
17 l

′ ← R l
′
+ T ;

18 Reset the z value for the moving layer:
19 l

′
.z ← i ;

20 l(i) ← l
′
;

21 end
22 Generate the whole point cloud:
23 PCD ← ∑n

i=1 l(i);

4 Implementation

We employ Open3D library [19] to generate point clouds to visualize spatial
tissue distribution. The model presents point arrays with x, y, z coordinates,
and the functions models produce color point clouds and 3D meshes. The 3D
visualization allows the demonstration of comprehensive information interpreted
by deep learning structures, including the spatial distribution of tumors and
tissues.
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5 Quantitative Results

Segmentation. The loss and training time of the segmentation network are
demonstrated in Fig. 4. WSIs are cropped to 128 × 128 image patches to feed
the network, then rejoined to generate the layered point clouds, as shown in the
segmentation image in Fig. 3.

Fig. 4. The loss and time are reported every fifty epochs to train the segmentation
network. Observably, our model converges steadily in the loss function. A couple of
seconds are required to obtain a reliable segmentation network.

Registration Speedup. Two metrics of speedup and accuracy evaluate the
registration performance, and the latter is measured by Root Mean Square Error
(RMSE) of the point pairs. For the axial registration example demonstrated in
Fig. 5, the representative points are sampled in x value from 2,250 to 2,750, or
y value from 6,750 to 7,250 at the bottom layer, about 1/3 of the total points
employed for registration. Overall, the axial registration is with smaller RMSE
on average, as shown in Fig. 5.

This pipeline attempts a significant decrease in registration computation,
with 1.54 s per layer required, which is about 10.94% the time required for the
regular ICP registration [18], and is a tremendous advantage compared with
WSI-level registration [1] taking about 40 min per image. Overall, processing the
WSI stack registration workflow takes only several minutes on average, whereas
the state-of-the-art approach requires a couple of hours [1], as shown in Fig. 5.
Consequently, the registration processing will not be the bottleneck of the 3D
tissue reconstruction.
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Fig. 5. The experimental results of the two datasets. The left column shows the RMSE-
frequency histogram and the right column shows the time-frequency histogram. It is
obvious that our method outperforms in both speed and accuracy, with lower average
value for each standard.

6 Conclusion and Future Work

In this task, we have optimized and integrated existing 3D reconstruction
pipelines for WSI (Whole Slide Imaging) and CT (Computed Tomography),
resulting in a more efficient pipeline for 3D reconstruction of high-resolution
images. By utilizing point cloud merging and assisted registration processes,
this pipeline significantly reduces redundant computations, decreases data vol-
ume in comparison to voxel methods, and minimizes time consumption during
the registration process. While this pipeline is specifically designed for the unique
requirements of Whole Slide Imaging (WSI), it also has the potential to adapt to
CT and MRI images through semantic segmentation and point cloud sampling,
3D rendering, and omitting the registration. The 3D reconstruction section in
[11,20,21] also utilized a similar method of acquiring layered images, stacking
and aligning them to generate a 3D model. Although there were some differences
in the specific implementation, it also demonstrated that our method theoret-
ically could be applied to the 3D reconstruction of other medical images, such
as immunohistochemistry images. Therefore, as long as there are appropriate
training models and data available, this pipeline can be adaptable to 3D recon-
struction tasks for different types of images and tissues.
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Abstract. Deep learning has been increasingly incorporated into vari-
ous computational pathology applications to improve its efficiency, accu-
racy, and robustness. Although successful, most previous approaches for
image classification have crucial drawbacks. There exist numerous tasks
in pathology, but one needs to build a model per task, i.e., a task-specific
model, thereby increasing the number of models, training resources, and
cost. Moreover, transferring arbitrary task-specific model to another task
is still a challenging problem. Herein, we propose a task-agnostic genera-
tive and general pathology image classifier, so called GPC, that aims at
learning from diverse kinds of pathology images and conducting numer-
ous classification tasks in a unified model. GPC, equipped with a convo-
lutional neural network and a Transformer-based language model, maps
pathology images into a high-dimensional feature space and generates
pertinent class labels as texts via the image-to-text classification mech-
anism. We evaluate GPC on six datasets for four different pathology
image classification tasks. Experimental results show that GPC holds
considerable potential for developing an effective and efficient universal
model for pathology image analysis.

Keywords: Computational pathology · Image classification ·
Generative model · Image-to-Text

1 Introduction

In computational pathology, pathological image classification has been exten-
sively studied [1]. There exist various kinds of image classification tasks such as
cancer detection, cancer grading, and tissue typing [2–5]. These tasks are essen-
tial in pathology since they are closely related to decision-making in patient care
and treatment. In clinics, these routine works suffer from inefficiency, inaccuracy,
and variations, particularly with the increase in the workload per pathologist [6].
In recent years, machine learning and artificial intelligence techniques have been
increasingly applied to pathology image analysis and shown to be effective in
such tasks. Many of such methods adopt convolutional neural networks (CNNs)
[2–4] and, more recently, Transformer-based models have been often employed for
differing tasks [7,8]. Although both CNN and Transformer-based models have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 203–212, 2023.
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shown to be promising in analyzing pathology images, there is one drawback
with these approaches. There exist numerous tasks in pathology that are closely
related to each other; for instance, cancer grading in different types of organs
such as the prostate, colon, gastric, and breast. With the current approaches,
one needs to develop a separate model per task, which is challenging to transfer
a pre-existing model to other related tasks. To tackle such a problem, a unified
or general model that can simultaneously process different types of images and
conduct multiple tasks on them is needed.

Therefore, we introduce a task-agnostic G enerative and general Pathology
image Classifier (GPC) that can process and learn from arbitrary datasets of
pathology images and perform multiple image classification tasks in a genera-
tive image-to-text fashion. To the best of our knowledge, this is the first attempt
to build a generative and general image-to-text classifier for pathology images.
GPC exploits the recent developments of CNNs and Transformer-based language
models. Given a pathology image x, it produces a high-level feature represen-
tation by CNN and generates the pertinent class label as a text by a language
model, which is built based upon Transformers. Since GPC utilizes the language
model, it can handle different types of images and tasks at the same time. To
evaluate the proposed GPC, we integrate four separate pathology classification
tasks: colorectal cancer grading, prostate cancer grading, gastric cancer grad-
ing, and colorectal tissue typing. By employing pathology images from different
types of organs and tasks, we aim to improve the utility of the existing pathology
images and task-specific ground truth labels, to learn organ- and task-agnostic
representations of pathology images, and to strengthen the predictive power of
the pathology image classifier. The experimental results demonstrate that GPC
can facilitate a unified and general image classification for pathology images.

2 Methodology

2.1 Problem Formulation

Suppose that we are given M datasets {D1,D2, ...,DM}, Di = {(xi,k, ci,k)}N
k=1,

where xi,k and ci,k denote the k-th pathology image and its ground truth in the
i-th dataset, respectively. Since ci,k is a text label such as benign and poorly-
differentiated cancer, we split and pad it into a sequence of tokens ti,k using
a tokenizer of a language model L. As a result, each dataset is modeled as
Di = {(xi,k, (ti,k1 , ti,k2 , ..., ti,kT )}N

k=1, where T is the maximum length of the token
sequence of all text labels.

Each pathology image xi,k undergoes a feature extractor F and a projector
P to produce a feature embedding f i,k as follows:

f i,k = P(F(xi,k)) (1)

Afterward, the projected embedding f i,k is used as a condition for the language
model L to generate a text label autoregressively, i.e., predicting the next token
given the previously generated tokens. Specifically, at each step, the next token
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is drawn from the probability distribution over the vocabulary that is based on
the concatenation of f i,k and the embeddings of the previous tokens. We employ
the greedy approach in which the token with the highest probability is selected
as the output:

t̃i,km = arg max
t̂i,km

p(t̂i,km |f i,k, t̃i,k1 , t̃i,k2 , ..., t̃i,km−1) (2)

where t̃i,km refers to the m-th predicted token for the k-th pathology image in
the i-th dataset. As a result, the objective of our study can be formulated as
following:

θ = arg max
θ̂

M∑

i=1

N∑

k=1

T∑

m=1

log pθ̂(t̃
i,k
m |f i,k, t̃i,k1 , t̃i,k2 ..., t̃i,km−1) (3)

where θ represents the learnable parameters of GPC.

2.2 Network Architecture

The overview of GPC architecture is illustrated in Fig. 1. GPC consists of three
primary components: 1) a feature extractor F , 2) a projector P, and 3) a lan-
guage model L.

Fig. 1. Overview of GPC.

Feature Extractor. Feature extractor F is built based upon a CNN to extract
high-level representations from input images. We utilize ConvNeXt due to its
excellent performance in image classification, comparable to recent Transformer-
based approaches while retaining the effectiveness of a simple architecture of
CNNs. It employs ResNet-50 [9] as a backbone and transforms the architec-
ture following the design strategies of Transformers by investigating and adopt-
ing several design techniques step-by-step, including macro and micro design,
ResNeXt [10], inverted bottleneck, and large kernel size.
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Projector. Projector P maps the output features from the space of F to that
of a language model L. It simply utilizes a multilayer perceptron with three
fully-connected layers. P bridges the gap between the image feature domain and
the text feature domain in a way that the image feature embeddings of F guided
and adjusted to align with the feature space of L.

Language Model. Language model L generates the correct pathological text
labels for the projected embeddings obtained from P. We select Open Pre-trained
Transformer language models (OPT) [11] as L. Since OPT is a decoder-only pre-
trained Transformer-based language model, it easily applies to image-to-text
generation tasks. We chose the base version of OPT among several variants,
including a stack of 12 Transformer layers with 12-head attention layers due to
computational complexity and cost.

3 Experiments

3.1 Datasets

We investigate six datasets of four pathology image classification tasks: 1) col-
orectal cancer grading, 2) prostate cancer grading, 3) gastric cancer grading, and
4) colorectal tissue typing. The details of the datasets are shown in Table 1.

Colorectal Cancer Grading: Two public datasets (Colon-1 and Colon-2)
are collected from [3]. Colon-1 and Colon-2 include 9,857 patch images and
110,170 patch images, respectively. Each image is assigned a class label, including
benign, well differentiated cancer, moderately differentiated cancer, and poorly
differentiated cancer. Colon-1 is split into a training, validation, and test set.
Colon-2 is utilized as an independent test set.

Prostate Cancer Grading: We utilize two public prostate datasets (Prostate-
1 and Prostate-2). Prostate-1 was obtained from the Harvard dataverse (https://
dataverse.harvard.edu). Prostate-2 was acquired from Gleason2019 challenge
(https://gleason2019.grand-challenge.org). Both are annotated with four class
labels: benign, grade 3 cancer, grade 4 cancer, and grade 5 cancer. Prostate-1
contains 22,022 patch images that are split into a training, validation, and test
set. Prostate-2 has 17,066 patches that are used as an independent test set.

Gastric Cancer Grading: A single gastric cancer dataset (Gastric) was
obtained from a local hospital. It includes 265,066 patch images with four class
labels, including benign, tubular well differentiated cancer, tubular moderately dif-
ferentiated cancer, and tubular poorly differentiated cancer. The entire dataset is
split into a training, validation, and testing set.

https://dataverse.harvard.edu
https://dataverse.harvard.edu
https://gleason2019.grand-challenge.org
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Table 1. Details of datasets. TR, VAL, and TS denote training, validation, and test
sets, respectively.

Task Dataset Mag. Patch Size # Patches

Colorectal cancer grading Colon-1 20× 512× 512 TR (7,027), VAL (1,242), TS-1 (1,588)

Colon-2 20× 512× 512 TS-2 (110,170)

Prostate cancer grading Prostate-1 40× 750× 750 TR (15,303), VAL (2,482), TS-1 (4,237)

Prostate-2 40× 690× 690 TS-2 (17,066)

Gastric cancer grading Gastric 40× 512× 512 TR (233,898), VAL (15,381), TS (15,787)

Colorectal tissue typing K19 20× 224× 224 TR (70,000), VAL (15,000), TS (15,000)

Fig. 2. Three types of classification approaches. (a) Task-specific model, (b) Task-
agnostic model, and (c) Task-agnostic generative model.

Colorectal Tissue Typing: A publicly available dataset (K19) was attained
from [12]. K19 includes 100,000 images that are categorized into adipose, back-
ground, debris, lymphocyte, normal, stroma, epithelium, muscle, and mucus. K19
is divided into a training, validation, and testing set.

3.2 Comparative Models

We compare three other types of models with GPC. The models include 1)
three CNN models: ConvNeXt-L [13], EfficientNetV2-S [14], and ResNet50 [9],
2) three Transformer models: MaxViT [15], SwinV2-B [16], and ViT-B [17], and
3) two generative models: CLIP [18] and GIT-B [19]. GIT-B is an end-to-end
Transformer-based model for image captioning that are similar to our approach.
Regarding CLIP, we only obtain the pre-trained vision branch of CLIP-ViT-L-14
as an image extractor and integrate OPT-125M as a text decoder.

3.3 Experimental Design

We conduct three settings to assess GPC and competitors (Fig. 2): 1) Task-
specific classification (ETS): A model, equipped with a feature extractor and
a classifier head, is trained on a training set and tested on the test set(s) per
classification task, 2) Task-agnostic classification (ETA): A model contains a
feature extractor and four classifier heads, i.e., one classifier head per task. It is
trained on all training sets from four classification tasks and assessed on each test
set per task using the corresponding classifier, and 3) Task-agnostic generative
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classification (ETAG): A model includes a feature extractor and a generative
classifier. It is trained on all training sets from four classification tasks and
evaluated on the entire test sets. Three CNNs and three Transformer models
are utilized in ETS and ETA. In ETA, the training loss is only aggregated by
the output of the corresponding classification layer. Two generative models and
GPC are used in ETAG.

3.4 Training Details

During training, five data augmentation techniques are implemented: random
horizontal flip, affine transformation, image blurring, random additive Gaus-
sian, and random color change. The first three techniques are applied to every
patch, while the others have a 50% chance of being applied. After applying data
augmentation techniques, all image patches are resized to dimensions of 512 Œ
512 pixels. AdamW [20] is adopted to optimize the learnable parameters with
a learning rate of 10−5 controlled by a cosine annealing warm restarts sched-
uler [21] during 60 epochs.

3.5 Metrics

To evaluate the performance of GPC and other competitors, we measure several
evaluation metrics. For cancer grading, we use accuracy (Acc), cancer grad-
ing accuracy (Accg), macro-averaged F1 (F1), and quadratic weighted kappa
(kw) [22]. Regarding tissue typing, we calculate Acc, F1, macro-averaged preci-
sion (Pre), and macro-averaged recall (Re).

Table 2. Results of colorectal cancer grading and tissue typing.

Method Type Colon-1 Colon-2 K19

Acc(%) Accg(%) F1 Kw Acc(%) Accg(%) F1 Kw Acc (%) Pre Re F1

ConvNeXt-L ETS 87.7 82.8 0.832 0.940 78.1 71.9 0.731 0.908 99.6 0.996 0.996 0.994

EfficientNetV2-S 85.9 80.9 0.819 0.914 76.9 68.4 0.708 0.701 98.0 0.973 0.968 0.985

ResNet50 86.8 82.9 0.838 0.806 79.5 68.2 0.733 0.688 98.7 0.988 0.988 0.987

MaxViT 87.9 84.0 0.838 0.805 76.3 72.8 0.723 0.895 98.3 0.988 0.991 0.988

SwinV2-B 88.0 82.7 0.829 0.839 77.9 73.7 0.729 0.885 99.4 0.996 0.993 0.991

ViT-B 87.5 82.0 0.838 0.838 79.8 72.8 0.728 0.899 98.2 0.989 0.996 0.988

ConvNeXt-L ETA 85.9 80.4 0.823 0.933 74.4 66.5 0.698 0.868 98.8 0.986 0.991 0.988

EfficientNetV2-S 83.2 79.2 0.793 0.882 72.5 63.4 0.670 0.722 98.5 0.982 0.982 0.974

ResNet50 84.1 81.0 0.807 0.824 70.1 61.9 0.622 0.671 97.7 0.984 0.983 0.986

MaxViT 86.8 82.6 0.809 0.813 71.3 68.8 0.720 0.888 98.3 0.985 0.991 0.974

SwinV2-B 86.5 81.2 0.822 0.933 70.4 69.0 0.671 0.842 98.4 0.985 0.980 0.996

ViT-B 86.0 79.7 0.812 0.831 72.1 67.1 0.701 0.833 98.1 0.985 0.989 0.988

GIT-B ETAG 85.3 79.7 0.811 0.924 67.9 58.6 0.596 0.839 98.9 0.989 0.988 0.990

CLIP+OPT 82.5 75.6 0.795 0.914 72.7 67.4 0.653 0.791 99.0 0.989 0.992 0.985

GPC (ours) 88.4 83.8 0.848 0.944 79.0 74.0 0.722 0.898 99.4 0.995 0.995 0.996
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Table 3. Results of prostate and gastric cancer grading.

Method Type Prostate-1 Prostate-2 Gastric

Acc(%) Accg(%) F1 Kw Acc(%) Accg(%) F1 Kw Acc(%) Accg(%) F1 Kw

ConvNeXt-L ETS 70.6 70.1 0.630 0.597 77.8 78.2 0.639 0.696 83.8 68.1 0.760 0.925

EfficientNetV2-S 69.7 66.4 0.582 0.504 74.3 77.3 0.599 0.633 81.3 68.1 0.712 0.890

ResNet50 70.9 67.5 0.643 0.512 77.3 78.7 0.608 0.619 82.2 66.9 0.707 0.901

MaxViT 71.6 70.2 0.652 0.649 75.9 76.7 0.605 0.678 83.2 68.5 0.758 0.926

Swin-V2-B 71.9 72.0 0.637 0.639 73.9 75.1 0.623 0.669 83.9 68.5 0.771 0.935

ViT-B 71.9 72.2 0.641 0.643 75.4 75.9 0.608 0.690 84.4 69.2 0.774 0.930

ConvNeXt-L ETA 68.5 69.7 0.576 0.578 73.3 76.3 0.562 0.616 83.0 67.2 0.757 0.930

EfficientNetV2-S 65.2 62.1 0.522 0.511 71.9 73.1 0.512 0.589 80.5 63.5 0.701 0.832

ResNet50 69.2 68.1 0.582 0.539 73.6 77.3 0.599 0.601 82.9 64.0 0.713 0.890

MaxViT 67.2 69.2 0.606 0.562 69.2 70.9 0.525 0.631 83.6 65.9 0.749 0.931

Swin-V2-B 65.5 66.9 0.531 0.542 65.8 69.2 0.487 0.553 81.7 65.0 0.739 0.923

ViT-B 67.2 66.4 0.544 0.579 68.8 72.8 0.598 0.629 81.7 64.2 0.710 0.909

GIT-B ETAG 65.9 67.2 0.538 0.476 68.3 71.7 0.467 0.616 80.7 63.7 0.727 0.867

CLIP+OPT 62.0 63.3 0.598 0.587 63.4 62.2 0.521 0.575 81.6 63.4 0.726 0.912

GPC (ours) 70.4 71.9 0.628 0.612 76.9 79.0 0.641 0.700 83.7 69.3 0.768 0.925

4 Results and Discussion

We conduct four classification tasks with six pathology image datasets using
GPC and other competitors. The competitors include three CNN models and
three Transformer models with two different experimental settings (ETS and
ETA) and two generative models, i.e., GPC is compared with 14 different models.
Table 2 and 3 demonstrate the experimental results of four classification tasks.
For colorectal cancer grading, GPC outperforms all competitors on Colon-1. In
terms of Colon-2, it obtains the best Accg and ranks top-3 for Acc and Kw. For
other metrics, there is no consensus. ViT-B, ResNet50, and ConvNeXt-L in ETS

achieved the best Acc, F1, and Kw, respectively. In prostate cancer grading,
though GPC is sub-optimal for Prostate-1 (top-4 in Accg and Kw and top-6 in
Acc and F1), it outperforms other competitors on three out of four evaluation
metrics on Prostate-2. As for gastric cancer grading, GPC is ranked first in Accg,
third in F1, and fourth in Acc. ViT in ETS obtains the best Acc and F1. In
colorectal tissue typing, GPC achieves the best F1 and second best Acc, and is
only short by 0.001 for Pre and Re.

In a head-to-head comparison between ETS and ETA, models in ETS gener-
ally outperform those in ETA. Two generative models (GIT and CLIP+OPT) are
inferior to most of the CNN and Transformer models in both ETS and ETA. It
demonstrates the difficulty of fine-tuning a universal model for different classifi-
cation tasks in pathology images. In the conventional deep learning approaches,
a task-specific model is better suited for developing a model per task, which
substantially increases the number of models and resources, limiting the scala-
bility of the methods. GPC is not the best model for all classification tasks and
datasets. Nonetheless, it achieved the best performance on two datasets (Colon-
1 and Prostate-2) and was comparable to the best-performing models on four
other datasets. It is also worth noting that there was no consensus on the best
performing model for those four datasets. Hence, overall, GPC is the best model
across the four classification tasks and six datasets.
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Fig. 3. Examples of correct predictions by GPC. Pred denotes prediction.

Fig. 4. Examples of incorrect predictions by GPC. Pred and GT denote a prediction
and a ground truth, respectively.

Figure 3 depicts the exemplary samples correctly classified by GPC. Without
the information of which organ each image was obtained from, GPC is able
to predict and generate the correct class labels for differing cancer and tissue
types. Figure 4 shows the incorrect classification examples by GPC. For most
such samples, GPC predicts in-domain labels, and cancer samples are classified
as cancer, not benign, but of differing grades.

Table 4 demonstrates the model complexity of GPC and other competing
models in terms of floating point operations per second (FLOPS), number of
parameters (millions), training time (milliseconds per image), and inference time
(milliseconds per image) for the four classification tasks. CNN and Transformer
models, in general, contain a smaller number of parameters and FLOPS and a
shorter amount of time for training and inference. Since GPC and other genera-
tive models adopt a visual encoder and a text decoder, they require a substantial
amount of resource for training in particular; however, the inference time of GPC
and other generative models is still <1 s per image.
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Table 4. Model complexity of GPC and other models.

Model 1Type FLOPS (B) Parameters (M) Training (ms/image) Inference (ms/image)

ConvNeXt-L ETA 179.6 196.3 924.5 786.7

EfficientNetV2-S 15.0 20.5 204.5 89.9

ResNet50 21.5 24.2 263.1 164.8

MaxViT 27.9 31.9 370.2 129.1

Swin-V2-B 53.4 87.6 477.0 391.0

ViT-B 17.6 86.6 639.3 220.2

GIT ETAG 211.9 129.2 856.3 592.3

CLIP+OPT 263.8 427.7 1117.2 923.4

GPC (ours) 234.2 332.3 1088.6 870.5

5 Conclusions

In this study, we propose a generative and general pathology image classifier
called GPC, which simultaneously learns and conducts multiple classification
tasks with a single classification model. The experimental results demonstrate
that the generative models, i.e., (pre-trained) language models, hold great poten-
tial for pathology image analysis, paving the way for developing a universal model
for computational pathology. The future study will entail further development
of generative models and extended validation on differing organs and tasks.
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Abstract. With the recent raise of foundation models in computer
vision and NLP, the pretrain-and-adapt strategy, where a large-scale
model is fine-tuned on downstream tasks, is gaining popularity. However,
traditional fine-tuning approaches may still require significant resources
and yield sub-optimal results when the labeled data of the target task is
scarce. This is especially the case in clinical settings. To address this chal-
lenge, we formalize few-shot efficient fine-tuning (FSEFT), a novel and
realistic setting for medical image segmentation. Furthermore, we intro-
duce a novel parameter-efficient fine-tuning strategy tailored to medical
image segmentation, with (a) spatial adapter modules that are more
appropriate for dense prediction tasks; and (b) a constrained transduc-
tive inference, which leverages task-specific prior knowledge. Our compre-
hensive experiments on a collection of public CT datasets for organ seg-
mentation reveal the limitations of standard fine-tuning methods in few-
shot scenarios, point to the potential of vision adapters and transductive
inference, and confirm the suitability of foundation models. The project
code is available in https://github.com/jusiro/fewshot-finetuning.

Keywords: Efficient fine-tuning · Few-shot adapters · Transduction

1 Introduction

The recent advancements in deep learning have yielded remarkable outcomes
in visual recognition tasks. Specifically, under the standard supervised learning
paradigm, training on sufficiently large amounts of labeled data could yield excel-
lent performances in medical image segmentation. The success of several recent
public challenges, including [1,15,16], attests to this. However, these models are
often trained on a specific task and limited numbers of samples, which may lack
real-world inter-center variability. As a result, the current literature suggests that
general medical image segmentation is hampered by the lack of large, curated
datasets for training [8]. This limitation is further exacerbated in volumetric
medical image segmentation, where expert knowledge is required for voxel-wise
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 213–224, 2023.
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annotations. For example, an experienced clinician would require an average of
10 min to segment a unique structure in a CT scan [34]. Recent literature has
examined the potential of large-scale foundation models in organ segmentation
by integrating multiple publicly available datasets corresponding to various tasks
[20]. Models that are trained using a wider variety of centers, acquisition sys-
tems, study types, and annotated structures tend to offer better transferability
when updated (e.g. fine-tuned) on new tasks and domains. However, since such
models are primarily based on public and uncoordinated databases, they may
have certain known biases such as long-tail imbalances in the annotated struc-
tures or inconsistencies in the annotations [20]. Therefore, identifying efficient
and effective learning strategies to adapt these models for new tasks is of high
interest in practice.

A popular and widely-adopted approach to adapt a trained model to newly
collected data is to fine-tune the whole model on the training images of the
novel target task [29]. However, this strategy presents several limitations. First,
modern deep-learning models typically have a large number of parameters and
require strong hardware requirements for training, which may be unbearable in
clinical institutions. Secondly, this approach results in storing a different model
for each new domain/task, which might be expensive, especially considering the
size of state-of-the-art Transformers-based 3D segmentation networks such as
UNETR (#P 555M) [13] or SwinUNETR (#P 371M) [32]. Finally, fine-tuning
the entire backbone may lead to suboptimal results, especially when trained
on small datasets [21]. An appealing alternative to traditional fine-tuning is
parameter-efficient fine-tuning, where only a small subset of parameters are
updated during adaptation to new tasks. This family of approaches include,
among others, linear probing [23], where only a linear layer staked on top of pre-
training features is updated, or adapters [2,17,27], which are trainable, compact
feed-forward networks that are inserted between the layers of a fixed pre-trained
model.

Nevertheless, even though the pretrain-and-adapt paradigm is promising, lit-
erature on this subject for medical image segmentation is scarce. Furthermore,
these works assume that a large set of labeled samples is accessible for the adap-
tation to the new task. In the medical context, however, since each institute has
limited time, budget, and particular clinical purposes, the number of annotated
samples available in clinical practice is usually limited. Therefore, it can be very
reasonable to assume that adaptation should only be carried out with a few
available samples. This motivates the development of new paradigms that allow
for resource-efficient adaptation of foundation models in this field.

Our contributions can be summarized as follows:

– We formalize few-shot efficient fine-tuning (FSEFT), a novel and realistic
setting for medical image segmentation. We empirically show that, in this
setting, standard fine-tuning methods exhibit significant performance drops.

– We introduce a novel parameter-efficient fine-tuning strategy tailored to med-
ical image segmentation, given a handful of labeled samples in the target task.
Specifically, we design (a) spatial adapter modules that are more appropri-
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ate for dense predictions; and (b) a constrained transductive inference, which
leverages task-specific prior knowledge.

– We report comprehensive experiments on a variety of public datasets. The
proposed framework approaches full supervision while requiring significantly
fewer annotated samples. These results highlight the potential of our frame-
work in practical clinical settings.

2 Related Work

Fine-tuning (FT) has been the most popular approach in the recent years for
transferring knowledge across vision tasks [29]. FT involves updating the weights
of a pre-trained model by re-training this model with a supervised dataset corre-
sponding to the target task. Particularly in the medical domain, this technique
has become integral in a breadth of applications, from radiology [33] to retinal
imaging [9,26]. Despite its popularity in medical imaging, FT presents two main
limitations. First, these methods are prone to overfitting when the labeled data
of the target task is insufficient. Secondly, FT may require substantial computing
resources, as it updates all the network parameters, incurring in long adaptation
times, more so when using large pre-training models.

Parameter-efficient fine-tuning (PEFT) tackles these limitations, and has
recently emerged as an appealing alternative, mostly studied in computer vision
and NLP [14]. The problem amounts to adapt a large pre-trained model on new
domains/tasks by updating only a small subset of the existing model parameters
and/or adding a new, limited set of parameters (a.k.a adapters). A simple solu-
tion, commonly referred to as Linear Probing (LP) [23,25], consists of stacking
an additional trainable multi-layer perceptron (MLP) layer at the end of the
network, whose parameters remain frozen during adaptation. Other strategies
include training small auxiliary modules to modify the features extracted by
the backbone, such as residual adapters that modify the feature maps [27] or
bias parameters [5], batch normalization tuning [24], or side-tuning [36]. More
recently, following the popularity of large-scale vision language models, such
as CLIP [25], diverse approaches focused on improving their adaption capabil-
ities [11,37]. For instance, [11] proposes CLIP-Adapter, which stacks a small
amount of additional learnable bottleneck linear layers to both language and
vision branches, while keeping the whole CLIP backbone frozen during adapta-
tion.

Few-shot segmentation (FSS) aims at segmenting novel target classes with
just a few labeled samples, where the predominant approach to tackle this prob-
lem falls within the meta-learning paradigm. In this scenario, models are trained
to learn under few-shot, episodic conditions. In medical image segmentation,
the spirit of prototypical networks [30] has been widely adopted, and many
mechanisms have been proposed to refine class-wise prototypes. These strate-
gies include, among others, cycle-resemblance attention modules [10], hierarchi-
cal attention for time-series consistency [12], iterative refinement through con-
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trastive learning [35] or via local context relationship [31]. However, the meta-
learning nature of these approaches hinders the flexible adaptation of foundation
models. In particular, their episodic-training procedure implicitly assumes that
testing tasks will have a similar structure to the tasks observed during training
to reach the best performance [6,7], i.e., the same number of shots during train-
ing and testing. Recent empirical evidence on meta-learning-based foundation
models for medical imaging attest to this (see [4, Fig. 13]). Furthermore, the
complexity of the architectural designs associated with many approaches, cou-
pled with the limitation inherited from episodic learning, presents a significant
challenge when attempting to utilize existing FSS methods in a PEFT context.

3 Methodology

An overview of our pretraining-adaptation framework is presented in Fig. 1.

Fig. 1. Pretrain-and-adapt framework. We propose to use a foundation model,
trained on extensive domains/tasks (see Eq. 1). Then, spatial adapters are trained for
institution tuning on a transductive fashion (see Eq. 3).

Foundation Model. For training a large-scale foundation model, we consider
an assembly of M different datasets, which integrate N different volumes in
total. Let Xn ∈ R

Ωn denotes a medical imaging volume, with Ωn representing
its spatial domain. Each volume is partially annotated at the voxel level, Yn =
{0, 1}Ωn×C , with C the number of unique categories in the combined dataset.
This means that some classes that are considered as foreground in one dataset
might be considered as background in another set. Each dataset m presents
only partial categories annotated, which are known in the form of a multi-label
hot-encoding annotation vector. Thus, each image Xn is associated with the
annotation vector corresponding to its dataset. To simplify the notation, we
will denote this vector as wn, which is directly associated with the dataset to
which Xn belongs. Thus, the training set is composed of the input volumes, their
corresponding partial labels, and annotation vectors: DT = {(Xn,Yn,wn)}N

n=1.
Also, let us define a segmentation model, θ = {θf (·), θc(·)}, which is composed of
a feature extraction neural network, θf (·), and a classification head, θc(·). Thus,
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the backbone maps each voxel of the input into a spatial feature representation
space, Zn = θf(Xn), with Zn ∈ R

Ωn×D and D the number of channels of the
output features. Then, the classification head provides a probability distribution
Ŷn = σ(θc(Zn)), with σ a sigmoid activation. Thus, building the pre-training
foundation model θ amounts to using the curated assembled dataset by masked
backpropagation of partial labels, and optimizing any segmentation loss function,
LSEG, using gradient descent:

min
θf ,θc

1
∑

k wn,k

∑

k

wn,kLSEG(Yn,k, Ŷn,k), n = 1, ...,N (1)

Few-Shot Adapters. Inspired by the recent success of adapters in vision-
language models and few-shot image classification [11,37], we introduce a PEFT
strategy to adapt a foundation model to new domains in the task of anatomical
structure segmentation. Nevertheless, an important difference with respect to
existing adapters is that the use of MLP layers is not optimized for dense pre-
diction tasks such as segmentation. Thus, we adopt spatial convolutions in the
proposed adapter, which are more suitable for the segmentation problem. For-
mally, we define a target dataset, D∗, with volumes of an arbitrary study type,
X, and a target organ to be segmented, Y . The goal is to adapt the pre-trained
foundation model, θ, to the new domain in an efficient way, such as the same
backbone, θf (·), is used for different downstream tasks and domains. In addition,
we assume that the adaptation should occur using only a few labeled examples
(a.k.a the support set in the few-shot learning literature [30]), to alleviate the
limitation in resources of the target institutions. Thus, a few-shot task includes:
(a) A support set of fully-labeled samples, DS = {(Xk, Yk)}K

k=1, with K the total
number of support samples (so-called shots), which usually takes small values,
i.e. K = {1, 5}; and (b) a single query (test) volume X for inference. We aim to
use this support supervision to train an adapter module, φ = {φf (·), φc(·)}, com-
posed of a vision feature extraction based on a few stacked convolutional layers
φf (·), and a new classification head, φc(·). The latter yields sigmoid classification
scores for both the query and support voxels: ∀x ∈ X, Ŷ (x) = σ(φc(φf (θf (x))))
and ∀x ∈ Xk, Ŷk(x) = σ(φc(φf (θf (x)))), k ∈ 1, . . . K.

Transductive Inference Leveraging Anatomical Priors from the Sup-
port. In image classification, inference is often performed in an inductive manner
(i.e. one sample at a time). This inductive inference paradigm is common in med-
ical image segmentation, where the task is often seen as a voxel classification.
However, segmentation is a transductive problem by nature, i.e., one could make
joint predictions for all the voxels of the test subject, leveraging available priors
on the global structure of the predictions, such the shape of the target organ.
Thus, transduction is appealing in our few-shot medical image segmentation set-
ting as the support set could provide such approximate priors. Specifically, we
propose to perform inference in a transductive manner, optimizing the cross-
entropy loss on the support set while imposing inequality constraints on the
size of the target organ in the test subject. Since the volumes are preprocessed
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to the same resolution, one could estimate an average target-region proportion
from the support samples as follows: S = 1

K

∑
k

∑
x∈Ω Yk(x), with Ω denot-

ing the 3D spatial domain. Now, let Ŝ denotes the predicted size of the target
region in the test image, as summation of sigmoid output over the spatial image
domain: Ŝ =

∑
x∈Ω Ŷ (x). Thus, we incorporate the following loss during infer-

ence, penalizing region proportions that differ from the target by a margin γ:

LTI =

⎧
⎪⎨

⎪⎩

|Ŝ − (1 − γ)S|, if Ŝ < (1 − γ)S
|Ŝ − (1 + γ)S|, if Ŝ > (1 + γ)S
0, otherwise

(2)

Finally, we train the adapter by gradient steps, integrating the segmentation loss
on the support samples and the transductive anatomical constraints in Eq. 2:

min
φf ,φc

LSEG(Yk, Ŷk) + λLTI(S, Ŝquery), k = 1, ...,K (3)

4 Experiments

Datasets. We use publicly available datasets of partially-labeled CT volumes
to build the foundation model and to perform the adaptation experiments.
Foundation model: a total of 9 datasets with 29 different anatomical struc-
tures are assembled. Concretely, BTCV [19], CHAOS [18], LiTS [3], KiTS [15],
AbdomenCT-1K [22], AMOS [16], MSD subtasks [1], AbdomenCT-12organ [22]
and CT-ORG [28] are gathered to retrieve up to 2022 CT volumes for training.
Adaptation experiments: We used the TotalSegmentator dataset [34] to eval-
uate the adaptation of the foundation model, which is composed of 1024 CT vol-
umes with up to 104 anatomical structures, and a wide heterogeneity of scanners
and study types. To simulate a real-world use case for adaptation, we retrieved
only cases from one of the study types (i.e. CT thorax-abdomen-pelvis) from one
institution and selected 9 representative organs present in the foundation model
training (i.e. spleen, left kidney, gallbladder, esophagus, liver, pancreas, stomach,
duodenum, and aorta). Pre-processing: Following previous literature [20], all
volumes were standardized and pre-processed to reduce the inter-domain gap.
In particular, the orientation of CT volumes was fixed, and isotropic spacing
was used to resample the volumes to a voxel size of 1.5 × 1.5 × 1.5mm3. Finally,
the intensity range was clipped to the range [−175, 250], and linearly scaled to
[0, 1].

Foundation Model Pre-training. The partial version of SwinUNETR [32]
presented in [20] is used as segmentation architecture. The model is trained on
the assembly dataset, by optimizing the Dice loss in Eq. 1 using 3 input patches
of size 96 × 96 × 96 per volume in each iteration, with a batch size of 2 volumes,
during 120 epochs, and using 4 distributed GPUs. We use AdamW with a base
learning rate of 1e−4, and a warm-up cosine scheduler of 10 epochs. Input patches
are augmented through intensity shifts and random rotations of 90◦.
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Spatial Adapter Training. In order to adapt the foundation model to new
target domains, we freeze the weights of the pre-trained model and remove the
classifier head. Over the last feature map, we include as the spatial adapter
a decoder block of SwinUNETR. Concretely, the module is composed of three
stacked convolutions and one skip connection, with a kernel size of 3, Leaky-
ReLU activation, and batch normalization. Under the few-shot learning scenario,
the module is trained with k = {1, 5, 10} support samples for 100 epochs. We use
AdamW and an initial learning rate of 0.5 with cosine decay. The model takes
as input 6 patches of size 96 × 96 × 96 per volume in each iteration with a batch
size of 1 volume. In the transductive inference (TI) setting, the size constraint
over the query sample in Eq. 2 is applied for the last 50 epochs, with λ = 1.

Evaluation. We benchmark the proposed approach against popular approaches
for transfer learning. First, we take as baseline the direct application of the
foundation model on the target domain, which we refer to as Generalization
(i.e. no adaptation). Furthermore, we train from scratch the segmentation model
(Scratch) using all the available samples for training. As standard fine-tuning
approaches, we fine-tune the whole network (FT ), as well as only the last block
(FT-Last), where the base learning rate is decreased to 1e−4. Finally, we include
a simple Linear Probe classifier [25] over the features of the pre-trained foun-
dation model. The different approaches are evaluated on five randomly selected
query samples retrieved from the subset of each target organ. During testing, the
predicted probabilities per voxel are thresholded by a fixed value of 0.5, and the
binary mask is post-processed to maintain only the largest connected structure,
as in [20]. Last, we use the Dice similarity coefficient (DSC) as evaluation metric.

Ablation Experiments. We first assess the effectiveness of the proposed con-
tributions, and motivate our design choices empirically. In particular, Fig. 2a
depicts the effect of using the proposed spatial adapters compared to an MLP
head, which is the dominant approach in previous literature. To better isolate the
impact of the adapters module, we evaluate their performance under the stan-
dard inductive inference. Results show that by incorporating spatial informa-
tion the results consistently improve in [0.7%, 2.3%] across the different labeled
regimes. Second, Fig. 2b studies the optimum margin for the size regularizer in
the transductive setting Results on three representative structures show that a
wide range of γ values offer promising results, above the baseline. However, a
lower margin value (γ = 0.05) might degrade the performance, as the target size
is estimated just from a few support samples.

Few-Shot Efficient Fine-Tuning. Results obtained with the proposed method
and relevant baselines are presented in Table 1. 1© Standard fully-supervised
regime. First, results show that the proposed approach brings substantial
improvements compared to training the model from scratch, or to the popular
LP strategy. Furthermore, it obtains comparable results to fine-tuning the whole
model, while updating 300× less parameters. 2© Low-data regime. As shown in
Table 1, fine-tuning the whole model with only a few labeled samples highly
deteriorates the generalization performance. While this effect can be mitigated
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Fig. 2. (a) The role of spatial adapters. (b) Effect of margin γ on the Transductive
Inference, with k = 10. Dashed lines: no TI. Results using three folds.

by only fine-tuning the last layer, this strategy still underperforms recent PEFT
alternatives, such as Linear Probe. We can observe that tuning only the pro-
posed spatial adapter head consistently outperforms relevant approaches, with
performance gains ranging from 0.7–1.6% in the low-labeled settings compared
to the popular LP method [25]. More interestingly, results suggest that, using
only one shot and a spatial adapter module, the model generalizes at the same
level as training from scratch on the whole dataset. In addition, if we tune only
the last convolutional block, which would present the same computational cost as
training the spatial adapter, results are consistently worse across each k-shot sce-
nario. This may be explained by the consequent substitution of the rich features
learned on a large-scale foundation model. 3© Constrained transductive inference.
In addition, results show that by incorporating the proposed constrained trans-
ductive inference, which leverages task-specific prior knowledge, we approach
standard fine-tuning adaptation with the whole dataset in the 10-shot scenario.

Adapting Publicly Available Pre-trained Models. The core idea of the
pretrain-and-adapt strategy is to allow the data-efficient adaptation of large-
scale publicly available models to new scenarios. However, these models for
medical volumetric data are scarce. In the following, we present adaptation
experiments using the SwinUNETR with the available weights pre-trained on
the BTCV dataset from [32] in Table 2. Results suggest the necessity of intro-
ducing large foundation models, since direct generalization using dataset-specific
models largely drops the performance. When adapting this model using 5 shots,
similar trends to the conclusions drawn in the main experiments are observed.

Qualitative Evaluation. In the following, we introduce in Fig. 3 a qualitative
assessment of the performance of the proposed adapter, using the few-shot set-
ting with k = 5. The visualizations show the benefits of incorporating anatom-
ical constraints regarding organ proportion during adaptation (first and sec-
ond rows). Also, we observe the segmentation improvement of training a small
adapter module on top of the backbone for efficient fine-tuning (second and third
rows).
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Table 1. Few-Shot Efficient Fine-Tuning. Foundation model adaptation results
using different baselines and the proposed adapters on five testing folds.

Setting Methods Spl lKid Gall Eso Liv Pan Sto Duo Aor Avg.

Generalization 0.920 0.891 0.768 0.300 0.950 0.782 0.707 0.363 0.628 0.701

Scratch 0.514 0.896 0.695 0.614 0.902 0.612 0.460 0.552 0.954 0.688

FT 0.591 0.940 0.654 0.674 0.939 0.853 0.698 0.830 0.926 0.789

FT-Last 0.954 0.895 0.812 0.423 0.942 0.797 0.784 0.679 0.715 0.777

Linear Probe [25] 0.948 0.900 0.795 0.422 0.948 0.790 0.773 0.680 0.683 0.771

Adapter (Ours) 0.943 0.904 0.821 0.451 0.948 0.795 0.783 0.669 0.721 0.781

10-shot FT 0.369 0.889 0.249 0.281 0.957 0.454 0.511 0.117 0.917 0.527

FT-Last 0.960 0.915 0.807 0.425 0.947 0.789 0.723 0.552 0.749 0.763

Linear Probe [25] 0.942 0.902 0.806 0.452 0.945 0.785 0.786 0.557 0.711 0.765

Adapter (Ours) 0.946 0.900 0.823 0.438 0.945 0.781 0.724 0.704 0.734 0.777

Adapter + TI (Ours) 0.946 0.906 0.821 0.487 0.946 0.785 0.723 0.704 0.735 0.783

5-shot FT 0.553 0.611 0.294 0.586 0.648 0.442 0.164 0.485 0.657 0.493

FT-Last 0.947 0.712 0.774 0.438 0.952 0.756 0.701 0.619 0.720 0.735

Linear Probe [25] 0.935 0.887 0.742 0.313 0.960 0.751 0.751 0.525 0.623 0.720

Adapter (Ours) 0.921 0.896 0.822 0.391 0.949 0.752 0.693 0.632 0.680 0.748

Adapter + TI (Ours) 0.928 0.901 0.799 0.442 0.950 0.755 0.712 0.666 0.684 0.759

1-shot FT 0.265 0.255 0.130 0.394 0.519 0.228 0.216 0.162 0.324 0.276

FT-Last 0.285 0.558 0.366 0.251 0.894 0.585 0.390 0.669 0.394 0.488

Linear Probe [25] 0.552 0.888 0.671 0.316 0.944 0.488 0.684 0.696 0.679 0.657

Adapter (Ours) 0.549 0.885 0.683 0.351 0.948 0.464 0.703 0.643 0.660 0.654

Adapter + TI (Ours) 0.550 0.888 0.681 0.448 0.947 0.470 0.689 0.631 0.664 0.663

#TrainParams: Linear Probe (49) - Adapter/FT-Last (209.6K)

Table 2. Performance using dataset-specific (BTCV), available models.

Fig. 3. Qualitative evaluation. The axial view of preprocessed CT scans. The anno-
tation/prediction masks of the target organ are in red. (Color figure online)
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5 Conclusions

The results show the promising performance of our fine-tuning strategy tai-
lored to medical image segmentation, under the pretrain-and-adapt paradigm.
In particular, we have presented a novel and realistic learning scenario, which
accommodates practical clinical settings, i.e., adapting efficiently a large pre-
trained model to a new task/domain with a limited number of labeled samples.
Our validation demonstrated that standard fine-tuning approaches substantially
degrade the performances under this low-data regime. Thus, our results point
to the potential of prior-aware transductive inference and spatial adapters in
volumetric medical image segmentation.
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Abstract. Interpretability is a crucial factor in building reliable
models for various medical applications. Concept Bottleneck Models
(CBMs) enable interpretable image classification by utilizing human-
understandable concepts as intermediate targets. Unlike conventional
methods that require extensive human labor to construct the concept
set, recent works leveraging Large Language Models (LLMs) for gener-
ating concepts made automatic concept generation possible. However,
those methods do not consider whether a concept is visually relevant
or not, which is an important factor in computing meaningful concept
scores. Therefore, we propose a visual activation score that measures
whether the concept contains visual cues or not, which can be easily
computed with unlabeled image data. Computed visual activation scores
are then used to filter out the less visible concepts, thus resulting in a
final concept set with visually meaningful concepts. Our experimental
results show that adopting the proposed visual activation score for con-
cept filtering consistently boosts performance compared to the baseline.
Moreover, qualitative analyses also validate that visually relevant con-
cepts are successfully selected with the visual activation score.

Keywords: Medical Image Classification · Explainable AI · Concept
Bottleneck Models · Large Language Models

1 Introduction

Deep Neural Networks (DNNs) have addressed many problems in various fields,
including the medical domain [1–4]. For instance, [3] diagnoses breast lesions
on dynamic contrast-enhanced MRI with deep learning, and [4] diagnoses hip
osteoarthritis using convolutional neural networks (CNNs). Despite the huge suc-
cess of deep learning based models in the field of medical analysis and diagnosis,
such models innately lack a crucial capability required in the medical domain
- interpretability. Therefore, to tackle the difficulty in interpreting the model

I. Kim and J. Kim—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 225–233, 2023.
https://doi.org/10.1007/978-3-031-47401-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47401-9_22&domain=pdf
https://doi.org/10.1007/978-3-031-47401-9_22


226 I. Kim et al.

decision, a series of research have been presented to enhance the interpretability
and the explainability of deep learning models.

Concept Bottleneck Models (CBMs) [5] is one of the works that make
image classification more interpretable. Instead of directly predicting the target
from non-interpretable latent representations, CBMs first predict concept scores,
which measure the degree of an image matching to the human-understandable
concepts. Then, the final prediction is done based on the predicted concept
scores, which makes the prediction process interpretable.

Applying CBMs requires the construction of a set of concepts that well-
describe images and are discriminable. Conventional approaches [5,6] try man-
ually defining concepts, which requires extensive labor of skilled expert that is
familiar with the target domain. However, such an approach largely hinders the
scalability and generalizability of CBMs, since building large-scale concept set
manually is costly, especially in the medical domain.

To address the issue, recent works [7,8] propose generating concepts auto-
matically by prompting Large Language Model (LLM) that contains rich infor-
mation across various subjects to generate the concepts describing target classes.
Although such methods remove the need for manual concept generation, LLM
turns out to generate non-visual concepts that do not align with images, there-
fore providing a noisy signal that hinders proper training.

To this end, we propose a visual activation score, which measures whether
a concept contains visual information or not. By taking account of the visual
activation score in the concept filtering phase via a submodular optimization [9],
concepts that do not contain any visual cue useful for classifying the image are
successfully removed from the initial concept set.

Experimental results demonstrate the effectiveness of the proposed visual
activation score with consistent gains in terms of accuracy under multiple exper-
imental settings. Also, further analyses again validate that the visual activation
score successfully discriminates the visual and non-visual concepts, therefore
helping the model better classify the image with refined concepts.

2 Related Works

2.1 Concept Bottleneck Models

Concept Bottleneck Models (CBMs) [5] aim to make the process of an image
classification more interpretable, by implementing a concept bottleneck layer
before the final classification layer. A concept bottleneck layer outputs a score of
an image corresponding to multiple interpretable concepts. Calculated concept
scores are fed into a final linear layer to classify an image. Recent works [7,8]
propose leveraging information learned by Large Language Models (LLMs) to
automatically extract concepts instead of manually constructing the concept set.

2.2 Large Language Models

Recently, Large Language Models (LLMs) based on Transformer [10] architec-
ture trained with the large-scale text corpus have shown to be effective in vari-
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ous downstream tasks including zero-shot and few-shot learning [11,12], multi-
task [13], visual question answering (VQA) [12]. Moreover, leveraging knowledge
of LLMs for computer vision tasks, such as generating candidate concepts to
classify an image [7,8], is being studied recently (Fig. 1).

Fig. 1. Method Overview. Step 1: Generate candidate concepts set S by prompting
the large language model (LLM); Step 2: Select visually relevant concepts via submod-
ular optimization with the score function F ′; Step 3: Train a concept weight matrix
W which projects concept scores into prediction logits; Step 4: Interpret inference
results with the concept influence Py′ .

3 Method

3.1 Preliminary

Image classification is the task of predicting the class y ∈ Y an input image x ∈ X
belongs to, where Y and X are sets of target classes and images, respectively. In
order to make the classification process more interpretable, Concept Bottleneck
Models [5,7,8] firstly compute similarities between the image and a concept c in
the concept set C, which indicates how well the image and pre-defined concepts
are aligned. Computed similarities are then fed into the final classification layer
to determine the class an image belongs to.
Generating Candidate Concept Set. We adopt LaBo [8] as the baseline,
which constructs the candidate concept set S using GPT-3 [11]. For each class y,
LaBo prompts GPT-3 to retrieve sentences that describe the class. 500 sentences
per class are retrieved from GPT-3 and split into shorter concepts to form a
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candidate concept set Sy for each class. Then, the whole concept set S is defined
as a union of Sy as below:

S = ∪
y∈Y

Sy (1)

Concept Selection via Submodular Optimization. For a concept set Sy,
submodular optimization [9] is applied to select concepts with desired property
using the score function F , therefore resulting in a concept subset Cy ⊆ Sy,
where |Cy| = k. Due to the limitation in space, we refer to details about the
submodular optimization to [8]. The score function F that evaluates the utility
of the subset Cy is defined as:

F(Cy) = α ·
∑

c∈Cy

D(c) + β ·
∑

c1∈Sy

max
c2∈Cy

φ(c1, c2), (2)

where D(c) is a discriminability score of the concept c, φ(c1, c2) is a concept simi-
larity between two concepts c1 and c2, and α, β are controllable hyperparameters.
Maximizing the discriminability score D(c) encourages selecting concepts that
are aligned only with images with specific labels but not with the other images.
To do so, the conditional likelihood sim(y|c) of a similarity score sim(y, c) given
a concept c is defined as:

sim(y|c) =
sim(y, c)∑

y′∈Y sim(y′, c)
, sim(y, c) =

1
|Xy|

∑

x∈Xy

I(x) · T (c)�, (3)

where Xy is training image set labeled with y, and I(·) and T (·) are the CLIP [14]
image encoder and text encoder, respectively. Finally, D(c) is defined as its
negative entropy to maximize:

D(c) =
∑

y′∈Y
sim(y′|c) · log

(
sim(y′|c)

)
. (4)

The second term of Eq. 2 is a coverage score that aims to maximize the
minimum similarity between each concept in the subset Cy and the overall set
Sy. With the coverage score, the selection of concepts covering a wide range of
meanings of a target class is enabled. Then, the whole concept set C is defined
as the union of Cy, analogous to the definition of S in Eq. 1.
Optimizing Concept Weight Matrix. After obtaining the concept set C,
CLIP text features of concepts are stacked to form a concept embedding matrix
EC ∈ R

|C|×d, where each row of EC corresponds to a CLIP text embedding of
a concept, |C| is the size of the whole concept set C, and d is a CLIP feature
dimension. With EC , a concept score g(I(x),EC) ∈ R

|C| between EC and an
image x ∈ X is calculated as:

g(I(x),EC) = I(x) · E�
C . (5)

Finally, a concept weight matrix W ∈ R
|Y|×|C| which maps concept scores

into the final prediction logit is optimized, where the final prediction ŷ is com-
puted as argmax

(
g(I(x),EC) · σ(W )�)

. σ(W ) denotes the softmax operation



Concept Bottleneck with Visual Concept Filtering 229

applied along the concept axis, where W y,c = eW y,c/
∑

y′∈Y eW y′,c . As of the
initialization, W y,c is set as 1 if c ∈ Cy and 0 otherwise, in order to learn the
weight W effectively in few-shot settings. Given an image x, the concept influ-
ence Py ∈ R

|C|, which represents how much a concept influences the prediction
of the class y can be calculated as below:

Py = g(I(x),Ec) � σ(W y,∗), (6)

where � is an element-wise multiplication operation.

3.2 Concept Selection with Visual Activation Score

In order to obtain a reliable concept score in Eq. 5, the concept c ∈ C must
include a visual cue, e.g., ‘darker in color’. However, the candidate concept set S
automatically extracted from LLM includes a lot of non-visual concepts, which do
not contain any visual cue, e.g., ‘most common type of precancerous lesion in the
united states’. Those non-visual concepts hinder proper learning of the concept
weight matrix W since scores of those concepts provide noisy signals. Therefore,
an appropriate criterion to filter out the non-visual concepts is required when
constructing the concept subset C via a submodular optimization.

To measure the amount of visual information a concept contains, we define a
scalar visual activation score V(c) of a concept c defined as a standard deviation
of CLIP scores between a concept c and images x ∈ X as below:

V(c) = stdev({T (c) · I(x)�}x∈X), (7)

where X denotes an unlabeled target image set to calculate visual activation
scores on, and T (c), I(x) ∈ R

d are the CLIP text embedding and the image
embeddings of a concept c and an image x, respectively. As defined in the equa-
tion, the visual activation score of a concept c is calculated as a standard devi-
ation of concept scores among every image in the target image set X. In other
words, a concept that is activated differently depending on the image is regarded
as a concept containing visual cues, since those concepts sensitively respond to
visually distinct samples. Note that an arbitrary dataset can be set as X since
it does not require labels. Further analyses regarding the utilization of various
datasets as X are provided in Sect. 5.2. Calculated V(c) is then added to the
original score function F to form a new score function F ′ as follows:

F ′(Cy) = α ·
∑

c∈Cy

D(c) + β ·
∑

c1∈Sy

max
c2∈Cy

φ(c1, c2) + γ ·
∑

c∈Cy

V(c), (8)

With the new score function F ′, the subset Cy′ is obtained via a submodular
optimization, and the following procedures are done analogously as described in
Sect. 3.1.
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4 Experiments

We validate the effectiveness of the proposed method by applying the method to
HAM-10000 [15], a skin disease dataset. The dataset consists of 10,015 dermato-
scopic images collected from various patients. The target classes Y consist of 7
types of skin problems, Melanocytic Nevi, Benign Keratosis-like Lesions, Der-
matofibroma, Vascular Lesions, Actinic Keratoses, Basal Cell Carcinoma, and
Melanoma. For all experiments, we follow the experimental settings of LaBo [8]
except for the hyperparameters α, β, and γ. All experiments are done with a
single NVIDIA RTX A6000 GPU.

Table 1. Performance on HAM-10000 dataset. “Number of shots” denotes the
number of labeled samples per target class, where ‘Full’ denotes that the model is
trained with the whole dataset. * denotes reproduced results.

Method Number of Shots

1 2 4 8 16 Full

Linear Probe∗ 44.4 58.5 44.9 49.0 61.5 82.5

LaBo [8]∗ 36.5 44.9 44.5 43.0 58.5 80.8

LaBo [8]∗ + Ours 53.2 (+16.7) 45.4 (+0.5) 47.4 (+2.9) 46.1 (+3.1) 61.4 (+2.9) 81.0(+0.2)

Fig. 2. Examples of concepts that have the highest and the lowest visual activation
score V(c) are listed.

4.1 Experimental Results

In Table 1, a consistent gain in accuracy under every single setting compared to
LaBo is reported by applying the visual activation score. In terms of filtering
out non-visual concepts, LaBo’s discriminability score D(c) also indirectly refines
non-visual concepts by maximizing the negative entropy of sim(y|c). However,
the fewer label data, the more inaccurate value of sim(y|c) is, and at 1-shot, the
LaBo achieved a low accuracy of 36.7%. By using an unlabeled image set X, the
visual activation score V(c) encourages to filter non-visual concepts effectively,
therefore outperforming LaBo by 16.5% at 1-shot. Also, while maintaining the
interpretability, in some cases, the proposed method is shown to even outperform
performances of linear probing where the classification process is completely non-
interpretable.
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5 Analysis

5.1 Analysis on a Visual Activation Score V(c)

In Fig. 2, five concepts with the highest and the lowest visual activation score
V(c) are listed, respectively. As shown in the figure, concepts with high V(c)
turn out to be visual concepts, such as “dark brown or black mole with irregular
borders”. On the other hand, concepts with low V(c) are mostly non-visual or
meaningless concepts, including “others may require medical or surgical treat-
ment”. Such qualitative examples demonstrate that the visual activation score
V(c) acts as an effective measure to detect non-visual or meaningless concepts.

Table 2. Analysis on the image set X for visual activation score. “Number
of shots” denotes the number of labeled samples per target class, where ‘Full’ denotes
that the model is trained with the whole dataset.

Image set X Number of Shots

1 2 4 8 16 Full

w/o V(c) 36.5 44.9 44.5 43.0 58.5 80.8

HAM10000 53.2 45.4 47.4 46.1 61.4 81.0

ImageNet 48.5 46.2 50.3 56.8 62.1 80.9

COCO 47.7 45.4 48.5 45.7 62.3 80.8

5.2 Analysis on Target Image Set X

In Table 2, experimental results with multiple target dataset X to calculate the
visual activation score V(c) in Eq. 7 are provided. We conduct experiments under
adopting train splits of HAM-10000 [15], ImageNet [16], and COCO [17] as X.
For the ImageNet and COCO datasets, 10,000 images are randomly sampled
to match the size of X to that of the HAM-10000 dataset. The result shows
that overall performance gains are reported regardless of the target set X. Such
results show the effectiveness of the proposed method in that it does not require
a domain-specific dataset, but instead can be implemented using an arbitrary
dataset. We anticipate that such property could facilitate the application of
the proposed method to diverse medical domains, where acquiring large-scale
domain-specific target images is expensive.

5.3 Qualitative Examples

In Fig. 3, the final prediction of a model and three concepts with the highest
influence Py in predicting the ground-truth class y are illustrated. As depicted
in the figure, the baseline fails correctly classifying the image since the con-
cepts with the highest influences in predicting the ground-truth class are mostly
non-visual concepts e.g., “early detection and treatment of skin lesions can help
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Fig. 3. Qualitative results on HAM-10000 dataset. Several comparisons with the
baseline, LaBo, are shown with the top-3 concepts which are ranked by their weights
in the linear function. Parts that provide visual cues are colored blue.

prevent skin cancer”, “lesions may be associated with other health problems”
which does not help classify an image. In contrast, the prediction result on the
same image is corrected when applying the proposed method since visually irrel-
evant concepts are removed from Sy, thus concepts with the highest influences
are replaced with concepts with visual cues. The result validates that adding the
visual activation score V(c) to the score function F helps filter visually irrele-
vant concepts, therefore contributing to better classification results by providing
concepts that are rich in information.

6 Conclusion

In this paper, we propose a method to refine the non-visual concepts generated
from large language models (LLMs) which hinder the training of Concept Bot-
tleneck Models (CBMs). In order to filter out non-visual concepts, we propose
the visual activation score which measures whether a concept contains visual
information or not. With computed visual activation scores of concepts, non-
visual concepts are filtered out via a submodular optimization. Quantitative
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and qualitative analyses demonstrate that the proposed visual activation score
contributes to detecting and filtering out non-visual concepts, therefore resulting
in consistent improvement in accuracy.
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Abstract. The Segment Anything Model (SAM) serves as a fundamen-
tal model for semantic segmentation and demonstrates remarkable gen-
eralization capabilities across a wide range of downstream scenarios. In
this empirical study, we examine SAM’s robustness and zero-shot gener-
alizability in the field of robotic surgery. We comprehensively explore dif-
ferent scenarios, including prompted and unprompted situations, bound-
ing box and points-based prompt approaches, as well as the ability to
generalize under corruptions and perturbations at five severity levels.
Additionally, we compare the performance of SAM with state-of-the-
art supervised models. We conduct all the experiments with two well-
known robotic instrument segmentation datasets from MICCAI EndoVis
2017 and 2018 challenges. Our extensive evaluation results reveal that
although SAM shows remarkable zero-shot generalization ability with
bounding box prompts, it struggles to segment the whole instrument
with point-based prompts and unprompted settings. Furthermore, our
qualitative figures demonstrate that the model either failed to predict
certain parts of the instrument mask (e.g., jaws, wrist) or predicted
parts of the instrument as wrong classes in the scenario of overlap-
ping instruments within the same bounding box or with the point-based
prompt. In fact, SAM struggles to identify instruments in complex sur-
gical scenarios characterized by the presence of blood, reflection, blur,
and shade. Additionally, SAM is insufficiently robust to maintain high
performance when subjected to various forms of data corruption. We
also attempt to fine-tune SAM using Low-rank Adaptation (LoRA) and
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propose SurgicalSAM, which shows the capability in class-wise mask pre-
diction without prompt. Therefore, we can argue that, without further
domain-specific fine-tuning, SAM is not ready for downstream surgical
tasks.

1 Introduction

Segmenting surgical instruments and tissue poses a significant challenge in
robotic surgery, as it plays a vital role in instrument tracking and position
estimation within surgical scenes. Nonetheless, current deep learning models
often have limited generalization capacity as they are tailored to specific surgi-
cal sites. Consequently, it is crucial to develop generalist models that can effec-
tively adapt to various surgical scenes and segmentation objectives to advance
the field of robotic surgery [18]. Recently, segmentation foundation models have
made great progress in the field of natural image segmentation. The segment
anything model (SAM) [14], which has been trained on more than one billion
masks, exhibits remarkable proficiency in generating precise object masks using
various prompts such as bounding boxes and points. SAM stands as the pioneer-
ing and most renowned foundation model for segmentation. Whereas, several
works have revealed that SAM can fail on common medical image segmenta-
tion tasks [4,6,8,16]. This is not surprising or unexpected since SAM’s training
dataset primarily comprises natural image datasets. Consequently, it raises the
question of enhancing SAM’s strong feature extraction capability for medical
image tasks. Med SAM Adapter [22] utilizes medical-specific domain knowledge
to improve the segmentation model through a simple yet effective adaptation
technique. SAMed [23] has applied a low-rank-based finetuning strategy to the
SAM image encoder, as well as prompt encoder and mask decoder on the medical
image segmentation dataset.

However, evaluating the performance of SAM in the context of surgical
scenes remains an insufficiently explored area that has the potential for further
investigation. This study uses two publicly available robotic surgery datasets
to assess SAM’s generalizability under different settings, such as bounding box
and point-prompted. Moreover, we have examined the possibility of fine-tuning
SAM through Low-rank Adaptation (LoRA) to examine its capability to pre-
dict masks for different classes without prompts. Additionally, we have analyzed
SAM’s robustness by assessing its performance on synthetic surgery datasets,
which contain various levels of corruption and perturbations.

2 Experimental Settings

Datasets. We have employed two classical datasets in endoscopic surgical instru-
ment segmentation, i.e., EndoVis17 [2] and EndoVis18 [1]. For the EndoVis17
dataset, unlike previous works [5,13,20] which conduct 4-fold cross-validation
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Table 1. Quantitative comparison of binary and instrument segmentation on
EndoVis17 and EndoVis18 datasets. The best and runner-up results are shown in
bold and underlined.

Type Method Pub/Year(20-) Arch. EndoVis17 EndoVis18

Binary IoU Instrument IoU Binary IoU Instrument IoU

Single-Task Vanilla UNet MICCAI15 UNet 75.44 15.80 68.89 –

TernausNet ICMLA18 UNet 83.60 35.27 – 46.22

MF-TAPNet MICCAI19 UNet 87.56 37.35 – 67.87

Islam et al. RA-L19 – 84.50 – – –

ISINet MICCAI21 Res50 – 55.62 – 73.03

Wang et al. MICCAI22 UNet – – 58.12 –

Multi-Task ST-MTL MedIA21 – 83.49 – – –

AP-MTL ICRA20 – 88.75 – – –

S-MTL RA-L22 – – – – 43.54

TraSeTR ICRA22 Res50 + Trfm – 60.40 – 76.20

S3Net WACV23 Res50 – 72.54 – 75.81

Prompt-based SAM 1 Point arxiv23 ViT h 53.88 55.96∗ 57.12 54.30∗

SAM Box arxiv23 ViT h 89.19 88.20∗ 89.35 81.09∗

*Categorical information directly inherits from associated prompts.

for training and testing on the 8× 225-frame released training data, we report
SAM’s performance directly on all eight sequences (1–8). For the EndoVis18
dataset, we follow the dataset split in ISINet [5], where sequences 2, 5, 9, and
15 are utilized for evaluation.

Prompts. The original EndoVis datasets [1,2] do not have bounding boxes
or point annotations. We have labeled the datasets with bounding boxes for
each instrument, associated with corresponding class information. Additionally,
regarding the single-point prompt, we obtain the center of each instrument mask
by simply computing the moments of the mask contour. Since SAM [14] only pre-
dicts binary segmentation masks, for instrument-wise segmentation, the output
instrument labels are assigned inherited from the input prompts.

Metrics. The IoU and Dice metrics from the EndoVis17 [2] challenge1 is used.
Specifically, only the classes presented in a frame are considered in the calculation
for instrument segmentation.

Comparison Methods. We have involved several classical and recent meth-
ods, including the vanilla UNet [17], TernausNet [20], MF-TAPNet [13], Islam
et al. [10], Wang et al. [21], ST-MTL [11], S-MTL [19], AP-MTL [12], ISINet [5],
TraSeTR [24], and S3Net [3] for surgical binary and instrument-wise segmen-
tation. The ViT-H-based SAM [14] is employed in all our investigations except
for the finetuning experiments. Note that we cannot provide an absolutely fair
comparison because existing methods do not need prompts during inference.

3 Surgical Instruments Segmentation with Prompts

Implementation. With bounding boxes and single points as prompts, we input
the images to SAM [14] to get the predicted binary masks for the target objects.

1 https://github.com/ternaus/robot-surgery-segmentation.

https://github.com/ternaus/robot-surgery-segmentation
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Because SAM [14] can not provide consistent categorical information. We com-
promise to use the class information from the bounding boxes directly. In this
way, we derive instrument-wise segmentation while bypassing the possible errors
from misclassifications, an essential factor affecting instrument-wise segmenta-
tion accuracy.

Results and Analysis. As shown in Table 1, with bounding boxes as prompts,
SAM [14] outperforms previous unprompted supervised methods in binary and
instrument-wise segmentation on both datasets. However, with single points as
prompts, SAM [14] degrades a lot in performance, indicating its limited ability to
segment surgical instruments from weak prompts. This reveals the performance
of the SAM closely relies on prompt quality. For complicated surgical scenes,
SAM [14] still struggles to produce accurate segmentation results, as shown in
columns (a) to (l) of Fig. 1. Typical challenges, including shadows (a), motion
blur (d), occlusion (b, g, h), light reflection (c), insufficient light (j, l), over
brightness (e), ambiguous suturing thread (f), instrument wrist (i), and irregular
instrument pose (k), all lead to unsatisfied segmentation performance.

Fig. 1. Qualitative results of SAM on various challenging frames. Red rectangles high-
light the typical challenging regions which cause unsatisfactory predictions. (Color
figure online)
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Table 2. Quantitative results on various corrupted EndoVis18 validation data.

Task Severity
Noise Blur Weather Digital

Gaussian Shot Impulse Speckle Defocus Glass Motion Zoom Gaussian Snow Frost Fog Bright Spatter Contrast Pixel JPEG Saturate

B
in
a
ry

0 89.35

1 77.69 80.18 80.43 83.28 82.01 80.53 82.99 80.30 85.40 84.08 83.12 85.38 87.43 86.69 85.76 81.12 58.77 86.64
2 73.92 76.07 76.15 81.65 80.21 79.20 80.22 77.55 81.69 80.69 80.34 84.65 87.27 84.21 84.90 79.32 56.04 84.85
3 69.21 71.74 73.02 77.74 76.96 72.64 75.50 75.27 78.31 79.58 78.90 83.62 87.23 82.50 83.36 73.81 56.25 86.84
4 63.80 65.41 67.29 75.28 73.79 72.38 69.60 73.22 75.23 76.33 78.38 82.28 87.06 83.12 77.12 70.82 57.59 83.21
5 57.07 60.61 61.61 71.83 69.85 69.59 66.25 71.58 66.96 77.66 76.82 78.84 86.43 79.62 66.58 68.55 56.77 81.26

In
st
ru
m
en
t

0 81.09

1 69.51 71.83 72.25 74.82 73.64 72.13 74.33 71.41 76.79 75.40 74.42 76.82 79.16 78.24 77.17 72.94 54.86 78.27
2 66.06 68.09 68.53 73.19 71.74 71.02 71.46 68.85 73.15 72.13 71.65 76.14 79.00 75.54 76.22 71.55 52.23 76.61
3 62.01 64.44 65.89 69.75 68.74 64.97 67.13 67.12 70.08 70.97 70.21 75.01 78.90 73.70 74.67 66.83 51.63 78.39
4 57.28 59.12 61.03 67.82 65.87 64.87 62.15 65.18 67.23 68.43 69.79 73.73 78.73 74.24 69.48 63.99 51.88 74.91
5 51.56 55.16 55.86 64.76 62.43 62.23 59.26 63.96 60.60 69.33 68.32 70.45 78.19 70.72 61.14 61.79 51.01 73.35

4 Robustness Under Data Corruption

Implementation. Referring to the robustness evaluation benchmark [7], we
have evaluated SAM [14] under 18 types of data corruptions at 5 severity levels
following the official implementations2 with box prompts. Note that the Elastic
Transformation has been omitted to avoid inconsistency between the input image
and associated masks. The adopted data corruption can be allocated into four
distinct categories of Noise, Blue, Weather, and Digital.

Results and Analysis. The severity of data corruption is directly propor-
tional to the degree of performance degradation in SAM [14], as depicted in
Table 2. The robustness of SAM [14] may be influenced differently depending on
the nature of the corruption present. However, in most scenarios, SAM’s per-
formance diminishes significantly. Notably, JPEG Compression and Gaussian
Noise have the greatest impact on segmentation performance, whereas Bright-
ness has a negligible effect. Figure 2 presents one exemplar frame in its original
state alongside various corrupted versions at a severity level of 5. We can observe
that SAM [14] suffers significant performance degradation in most cases.

2 https://github.com/hendrycks/robustness.

https://github.com/hendrycks/robustness
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Fig. 2. Qualitative results of SAM under 18 data corruptions of level-5 severity.

5 Automatic Surgical Scene Segmentation

Implementation. Without prompts, SAM [14] can also facilitate automatic
mask generation (AMG) for the entire image. For naive investigation of the
automatic surgical scene segmentation results, we use the default parameters
from the official implementation3 without further tuning. The colors of each
segmented mask are randomly assigned because SAM [14] only generates binary
masks for each object.

Results and Analysis. As shown in Fig. 3, in surgical scene segmentation of
EndoVis18 [1] data, SAM [14] can produce promising results on simple scenes
like columns (a) and (f). But it encounters difficulties when applied to more com-
plicated scenes, as it struggles to differentiate between the entirety of instrument
articulating parts accurately and to identify discrete tissue structures as inter-
connected units. As a foundation model, SAM [14] still lacks comprehensive
awareness of objects’ semantics, especially in downstream domains like surgical
scenes.

3 https://github.com/facebookresearch/segment-anything.

https://github.com/facebookresearch/segment-anything
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Fig. 3. Unprompted automatic mask generation for surgical scene segmentation.

Fig. 4. Overall architecture of our SurgicalSAM.

6 Parameter-Efficient Finetuning with Low-Rank
Adaptation

With the rapid emergence of foundational and large AI models, utilizing the
pretrained models effectively and efficiently for downstream tasks has attracted
increasing research interest. Although SAM [14] has shown decent segmentation
performance with prompts and can cluster objects in surgical scenes, we seek to
finetune and adapt it to make it capable of traditional unprompted multi-class
segmentation pipeline - take one image as input only, and predict its segmenta-
tion mask with categorical labels.

Implementation. To efficiently finetune SAM [14] and enable it to support
multi-class segmentation without relying on prompts, we consider utilizing the
strategy of Low-rank Adaptation (LoRA) [9] and also adapting the original mask
decoder to output categorical labels. Taking inspiration from SAMed [23], we
implement a modified architecture as shown in Fig. 4, whereby the pretrained
SAM image encoder maintains its frozen weights Wenc during finetuning while
additional light-weight LoRA layers are incorporated for updating purposes. In
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Table 3. Quantitative evaluation of SurgicalSAM under data corruption.

Severity Noise Blur Weather Digital

Gaussian Shot Impulse Speckle Defocus Glass Motion Zoom Gaussian Snow Frost Fog Bright Spatter Contrast Pixel JPEG Saturate

0 71.38

1 24.31 30.68 28.88 45.53 59.50 60.21 61.29 56.32 64.67 57.84 54.80 54.95 66.67 65.74 57.56 64.81 54.30 60.01

2 12.19 15.43 12.77 36.92 53.85 56.48 55.72 52.81 55.54 29.68 36.33 51.32 63.73 62.59 50.89 64.00 49.56 28.92

3 5.84 6.30 7.34 17.26 45.56 43.71 50.97 49.55 47.24 42.20 26.31 44.17 62.22 60.65 36.90 54.99 46.24 64.85

4 4.26 4.15 4.63 10.19 39.23 39.64 43.27 46.38 39.65 30.21 25.80 38.28 60.90 51.22 16.42 40.64 36.69 60.36

5 3.79 3.79 3.92 6.37 32.49 38.05 38.16 43.99 26.67 13.97 20.60 20.92 59.64 40.51 4.95 34.00 24.03 50.50

Fig. 5. Qualitative comparison of our SurgicalSAM with the original SAM.

this way, we can not only leverage the exceptional feature extraction ability of
the original SAM encoder, but also gradually capture the surgical data represen-
tations and store the domain-specific knowledge in the LoRA layers parameter-
efficiently. We denote this modified architecture as “SurgicalSAM”. With an
input image x, we can derive the image embedding himage following

himage = Wencx + ΔWx, (1)

where ΔW is the weight update matrix of LoRA layers. Then we can decompose
ΔW into two smaller matrices: ΔW = WAWB , where WA and WB are A×r and
r × B dimensional matrices, respectively. r is a hyper-parameter that specifies
the rank of the low-rank adaptation matrices. To maintain a balance between
model complexity, adaptability, and the potential for underfitting or overfitting,
we empirically set the rank r of WA and WB in the LoRA layers to 4.

During the unprompted automatic mask generation (AMG), the original
SAM uses fixed default embeddings hdefault for the prompt encoder with weights
Wprompt. We adopted this strategy and updated the lightweight prompt encoder
during finetuning, as shown in Fig. 4. In addition, we modified the segmentation
head of the mask decoder Wdec to allow for the production of predictions for
each semantic class. In contrast to the binary ambiguity prediction of the origi-
nal mask decoder of SAM, the modified decoder predicts each semantic class of ŷ
in a deterministic manner. In other words, it is capable of semantic segmentation
beyond binary segmentation (Fig. 5).

We adopt the training split of the Endo18 dataset for finetuning and test with
the validation split, as other works reported in Table 1. Following SAMed [23],
we adopt the combination of the Cross Entropy loss LCE and Dice loss LDice

which can be expressed as

L = λLDice + (1 − λ)LCE , (2)
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where λ is a weighting coefficient balancing the effects of the two losses. We
empirically set λ as 0.8 in our experiments. Due to resource constraints, we
utilize the ViT b version of SAM and finetuning on two RTX3090 GPUs. The
maximum epochs are 160, with a batch size 12 and an initial learning rate of
0.001. To stabilize the finetuning process, we apply warmup for the first 250
iterations, followed by exponential learning rate decay. Random flip, rotation,
and crop are applied to augment the training images and avoid overfitting. The
images are resized to 512 × 512 as model inputs. Besides, we use AdamW [15]
optimizer with a weight decay of 0.1 to update model parameters.

Results and Analysis. After naively finetuning, the SurgicalSAM model can
manage the instrument-wise segmentation without reliance on prompts. With
further tuning of hyper-parameters like the learning rate, the batch size, and
the optimizer, SurgicalSAM can achieve 71.38% mIoU score on the validation
split of the Endo18 dataset, which is on par with the state-of-the-art models
in Table 1. Since other methods in Table 1 are utilizing temporal and optical
flow information as supplement [5], or conducting multi-task optimization [3,
24], the results of our image-only and single-task architecture SurgicalSAM are
promising. Besides, the encoder backbone we finetuned is the smallest ViT b
due to limited computational resources. We believe the largest ViT h backbone
can yield much better performance. Compared with the original SAM, our new
architecture is of great practical significance as it can achieve semantic-level
automatic segmentation. Moreover, the additionally trained parameters are only
18.28 MB, suggesting the efficiency of our finetuning strategy.

Furthermore, we have evaluated the robustness of SurgicalSAM in the face
of data corruption using the EndoVis18 validation dataset. As shown in Table 3,
the model’s performance exhibits a significant degradation when subjected to
various forms of data corruption, particularly in the case of Blur corruption.

7 Conclusion

In this study, we explore the robustness and zero-shot generalizability of the
SAM [14] in the field of robotic surgery on two robotic instrument segmen-
tation datasets of MICCAI EndoVis 2017 and 2018 challenges, respectively.
Extensive empirical results suggest that SAM [14] is deficient in segmenting
the entire instrument with point-based prompts and unprompted settings, as
clearly shown in Fig. 1 and Fig. 3. This implies that SAM [14] can not capture
the surgical scenes precisely despite yielding surprising zero-shot generalization
ability. Besides, it exhibits challenges in accurately predicting certain parts of the
instrument mask when there are overlapping instruments or only with a point-
based prompt. It also fails to identify instruments in complex surgical scenarios,
such as blood, reflection, blur, and shade. Moreover, we extensively evaluate the
robustness of SAM [14] with a wide range of data corruptions. As indicated by
Table 2 and Fig. 2, SAM [14] encounters significant performance degradation in
many scenarios. To shed light on adapting SAM for surgical tasks, we fine-tuned
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the SAM using LoRA. Our fine-tuned SAM, i.e., SurgicalSAM, demonstrates
the capability of class-wise mask prediction without any prompt.

As a foundational segmentation model, SAM [14] shows remarkable general-
ization capability in robotic surgical segmentation, yet it still suffers performance
degradation due to downstream domain shift, data corruptions, perturbations,
and complex scenes. To further improve its generalization capability and robust-
ness, a broad spectrum of evaluations and extensions remains to be explored and
developed.
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5. González, C., Bravo-Sánchez, L., Arbelaez, P.: ISINet: an instance-based approach
for surgical instrument segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020,
Part III. LNCS, vol. 12263, pp. 595–605. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59716-0 57

6. He, S., Bao, R., Li, J., Grant, P.E., Ou, Y.: Accuracy of segment-anything model
(SAM) in medical image segmentation tasks. arXiv preprint arXiv:2304.09324
(2023)

7. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: International Conference on Learning Represen-
tations (2019)

8. Hu, C., Li, X.: When SAM meets medical images: an investigation of segment
anything model (SAM) on multi-phase liver tumor segmentation. arXiv preprint
arXiv:2304.08506 (2023)

9. Hu, E.J., et al.: LoRA: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685 (2021)

10. Islam, M., Atputharuban, D.A., Ramesh, R., Ren, H.: Real-time instrument seg-
mentation in robotic surgery using auxiliary supervised deep adversarial learning.
IEEE Robot. Autom. Lett. 4(2), 2188–2195 (2019)

11. Islam, M., Vibashan, V., Lim, C.M., Ren, H.: ST-MTL: spatio-temporal multitask
learning model to predict scanpath while tracking instruments in robotic surgery.
Med. Image Anal. 67, 101837 (2021)

http://arxiv.org/abs/2001.11190
http://arxiv.org/abs/1902.06426
http://arxiv.org/abs/2304.04155
https://doi.org/10.1007/978-3-030-59716-0_57
https://doi.org/10.1007/978-3-030-59716-0_57
http://arxiv.org/abs/2304.09324
http://arxiv.org/abs/2304.08506
http://arxiv.org/abs/2106.09685


244 A. Wang et al.

12. Islam, M., Vibashan, V., Ren, H.: AP-MTL: attention pruned multi-task learn-
ing model for real-time instrument detection and segmentation in robot-assisted
surgery. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 8433–8439. IEEE (2020)

13. Jin, Y., Cheng, K., Dou, Q., Heng, P.-A.: Incorporating temporal prior from motion
flow for instrument segmentation in minimally invasive surgery video. In: Shen, D.,
et al. (eds.) MICCAI 2019, Part V. LNCS, vol. 11768, pp. 440–448. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32254-0 49

14. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)
15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101 (2017)
16. Ma, J., Wang, B.: Segment anything in medical images (2023)
17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-

ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24574-4 28

18. Seenivasan, L., Islam, M., Kannan, G., Ren, H.: SurgicalGPT: end-to-end
language-vision GPT for visual question answering in surgery. arXiv preprint
arXiv:2304.09974 (2023)

19. Seenivasan, L., Mitheran, S., Islam, M., Ren, H.: Global-reasoned multi-task learn-
ing model for surgical scene understanding. IEEE Robot. Autom. Lett. 7(2), 3858–
3865 (2022)

20. Shvets, A.A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.I.: Automatic instrument
segmentation in robot-assisted surgery using deep learning. In: 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA), pp.
624–628 (2018)

21. Wang, A., Islam, M., Xu, M., Ren, H.: Rethinking surgical instrument segmenta-
tion: a background image can be all you need. In: Wang, L., Dou, Q., Fletcher, P.T.,
Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 1343, pp. 355–364. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-16449-1 34

22. Wu, J., et al.: Medical SAM adapter: adapting segment anything model for medical
image segmentation. arXiv preprint arXiv:2304.12620 (2023)

23. Zhang, K., Liu, D.: Customized segment anything model for medical image seg-
mentation. arXiv preprint arXiv:2304.13785 (2023)

24. Zhao, Z., Jin, Y., Heng, P.A.: TraSeTR: track-to-segment transformer with con-
trastive query for instance-level instrument segmentation in robotic surgery. In:
2022 International Conference on Robotics and Automation (ICRA), pp. 11186–
11193. IEEE (2022)

https://doi.org/10.1007/978-3-030-32254-0_49
http://arxiv.org/abs/2304.02643
http://arxiv.org/abs/1711.05101
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/2304.09974
https://doi.org/10.1007/978-3-031-16449-1_34
http://arxiv.org/abs/2304.12620
http://arxiv.org/abs/2304.13785


Evaluation and Improvement of Segment
Anything Model for Interactive

Histopathology Image Segmentation

SeungKyu Kim, Hyun-Jic Oh, Seonghui Min, and Won-Ki Jeong(B)

Korea University, College of Informatics, Department of Computer Science
and Engineering, Seoul, South Korea

wkjeong@korea.ac.kr

Abstract. With the emergence of the Segment Anything Model (SAM)
as a foundational model for image segmentation, its application has been
extensively studied across various domains, including the medical field.
However, its potential in the context of histopathology data, specifically
in region segmentation, has received relatively limited attention. In this
paper, we evaluate SAM’s performance in zero-shot and fine-tuned sce-
narios on histopathology data, with a focus on interactive segmentation.
Additionally, we compare SAM with other state-of-the-art interactive
models to assess its practical potential and evaluate its generalization
capability with domain adaptability. In the experimental results, SAM
exhibits a weakness in segmentation performance compared to other
models while demonstrating relative strengths in terms of inference time
and generalization capability. To improve SAM’s limited local refine-
ment ability and to enhance prompt stability while preserving its core
strengths, we propose a modification of SAM’s decoder. The experimen-
tal results suggest that the proposed modification is effective to make
SAM useful for interactive histology image segmentation. The code is
available at https://github.com/hvcl/SAM_Interactive_Histopathology

Keywords: Segment Anything Model · Histopathology Image
Analysis · Interactive Segmentation · Foundation Models

1 Introduction

Tumor region segmentation in whole slide images (WSIs) is a critical task in
digital pathology diagnosis. Numerous segmentation methods have been devel-
oped in the computer vision community that perform well on objects with clear
edges [1,2,9]. However, as shown in Fig. 1, tumor boundaries in histopathology
images are often indistinct and ambiguous. As a result, directly applying conven-
tional image segmentation methods to WSIs tends to yield unsatisfactory results.
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Fig. 1. Comparison between SAMMD and ours. The green and red points represent
positive and negative clicks, respectively. Each click is automatically generated on the
error region in the previous prediction.

In recent years, deep learning advancements have shown promising outcomes in
medical image segmentation [21] when sufficient training labels are available.
Nevertheless, even fully-supervised models have room for improvement due to
potential disparities between training and inference imaging conditions, making
generalization challenging.

Recently, the Segment Anything Model (SAM) [13], a large promptable foun-
dation model that allows user interaction, has gained considerable attention
as a general image segmentation model, eliminating the need for task-specific
annotation, training, and modeling. Inspired by this, the primary motivation
behind our work stems from the notion that a foundation model like SAM holds
promise as a general-purpose segmentation model, which can also be applied
to histopathology image segmentation without domain-specific training. Several
early attempts have been made to employ SAM in medical image segmenta-
tion [8,18,22]. However, the exploration of SAM’s potential for interactive seg-
mentation has been limited, with only subjective criteria-based prompts being
utilized. Another motivation of our work is that supervised training may not
generalize well to various target images during inference. Hence, utilizing inter-
active segmentation to modify the segmentation model’s results could prove to be
a practical and effective strategy for improving segmentation performance. While
numerous interactive segmentation methods exist in computer vision [4,16,24],
only a few works have been proposed specifically for interactive histopathology
image segmentation [5,20] so far.

In this study, we investigate the potential of SAM for tumor region seg-
mentation in histopathology images using a click-based interactive approach.
Our primary objectives are to answer the following questions: 1) Can SAM be
directly (zero-shot) applied to interactive histopathology image segmentation
tasks? and 2) If not, what is the optimal approach for modifying (or fine-tuning)
SAM for interactive histopathology image segmentation? To address these ques-
tions, we conducted extensive experiments on two publicly available datasets:
PAIP2019 [12] and CAMELYON16 [7]. We investigated SAM mainly with point
prompts, using a well-established evaluation protocol by Xu et al. [25] which
mimics human click interaction. We conducted a comparison between SAM and
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other state-of-the-art (SOTA) interactive segmentation methods [4,16,24], both
with and without dataset-specific fine-tuning. We also investigated an efficient
strategy to harness the potential of SAM through various fine-tuning scenarios.
The main contributions of our work are several-fold as follows:

– We assessed SAM’s current capability for zero-shot histopathology image seg-
mentation in the context of interactive segmentation by comparing it against
SOTA interactive segmentation algorithms.

– We provide insights into the utilization of pretrained weights of SAM by
exploring various fine-tuning scenarios. We discovered that SAM requires a
prediction refinement strategy for interactive histopathology image segmen-
tation.

– We introduce a modified mask decoder for SAM which enhances performance
and reduces the fine-tuning cost while retaining the original SAM’s high gen-
eralization capability and inference speed. As a result, we achieved an average
reduction of 5.19% in the number of clicks required to reach the target IoU.

2 Method

2.1 Overview of Segment Anything Model (SAM)

Introduced by Meta AI, SAM [13] is a promptable foundation model for image
segmentation trained with the largest segmentation dataset (SA-1B) over one
billion masks and 11 million images. This model demonstrates significant zero-
shot performance in natural image domains. SAM consists of three main com-
ponents: An Image Encoder (IE) is a Vision Transformer (ViT) [6,10]-based
encoder to extract image features, a Prompt Encoder (PE) encodes various types
of prompts such as points, bounding boxes, masks, and texts, and a lightweight
Mask Decoder (MD) maps image embedding and prompt embeddings to seg-
mentation results.

2.2 SAM Fine-Tuning Scenarios

We set up three scenarios for fine-tuning SAM to understand the impact of
each component in SAM on the performance and explore an efficient method
for utilizing SAM in the interactive segmentation(see Fig. 2 (a) and (b)). First,
we train only the lightweight mask decoder (SAMMD) by freezing the pretrained
image encoder and prompt encoder. Second, we train IE and MD (SAMIE_MD)
to investigate the influence of PE on the model’s generalization ability. Third,
we train the whole model (SAMWhole) for comparison to other scenarios.

To fully utilize the pretrained weights of SAM’s ViT-based image encoder,
we resized input patches to a size of 1024 × 1024 and restored the output predic-
tions to match the original input patch size. In the training process, we employed
the click guidance scheme by Sofiiuk et al. [24] for automatic point prompts gen-
eration. The click guidance scheme uses random sampling for the first iteration
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Fig. 2. (a) An illustration of interactive segmentation process using SAM. Image
Encoder (IE) extracts features from input patch and Prompt Encoder (PE) encodes
prompts which are previous prediction as mask prompt and point coordinates as point
prompts. (b) We set up three SAM fine-tuning scenarios. SAMMD freezes IE and PE,
training only MD. SAMIE_MD freezes PE and trains IE and MD. SAMWhole trains
the entire SAM. (c) Modified mask decoder architecture to improve local refinement
capability. Compared to original MD, we exclude dot-product between the final out-
put token and image embedding. Also, we use global self-attention block, and deeper
decoder layers.

and samples subsequent clicks from the error regions of the previous predic-
tions, thereby better resembling real-world user interaction. Moreover, we use
the previous prediction as a mask prompt to improve the model performance as
shown in [19]. We employed the Normalized Focal Loss [24], known for faster
convergence and better accuracy compared to Binary Cross-Entropy (BCE) as
explained in [4,16,17].

2.3 Decoder Architecture Modification

The graph in Fig. 3 (a), and (b) show the zero-shot and fine-tuned performance
with mean Intersection over Union (mIoU) per interaction of SAM and SOTA
interactive models on PAIP2019 [12] dataset. SAM demonstrates comparable
performance to other models in early iterations, but it struggles in later itera-
tions. As shown in Fig. 4 , SAM without fine-tuning shows weakness in refining
predictions locally (i.e., a local modification affects a large area). Considering
the architecture of the ViT-based SAM image encoder, training the entire SAM
requires a longer time and a higher computational cost. Also, as shown in Table 1
and described in Sect. 4.2, we empirically found that including IE in fine-tuning
is not always beneficial.

To address this issue, we modified the lightweight decoder in the original
SAM as depicted in Fig. 2 (c) to improve local refinement capability and assign
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Fig. 3. (a) Zero-shot mIoU scores per click of each model on the PAIP2019 dataset.
(b) mIoUs per click after fine-tuning on the PAIP dataset. (c) mIoUs per click on the
CAMELYON16 ×10 dataset for models trained on the PAIP dataset.

prompt stability. We add a global self-attention layer to the image embedding
after the cross-attention transformer block to enhance the ability to capture the
global context across the entire patch. Moreover, we deepen the decoder layers
during the upsampling process to increase the representational capacity of the
decoder.

The upsampling process is described as follows: We constructed a UpCon-
vBlock and ConvBlock module. UpConvBlock consists of two 3 × 3 convolution
layers and a 2 × 2 up-convolution layer and ConvBlock consists of two 3 × 3 con-
volution layers. In the second 3 × 3 convolution layer of both UpConvBlock and
ConvBlock, a channel reduction is performed, reducing the input channel size
by half. After global self-attention, the image embedding proceeds through two
UpConvBlocks and ConvBlock sequentially. We integrated instance normaliza-
tion layers and GELU activation functions between each layer. Furthermore, to
mitigate information loss, we employed shortcut connections within each Block.
After passing through 3 Blocks, features are transformed into a segmentation
map through the 1 × 1 convolution layer.

3 Experiments

3.1 Data Description

We utilized two publicly available WSI datasets, namely PAIP2019 [12] and
CAMELYON16 [7]. The PAIP2019 WSIs were scaled at a 5× magnification,
while for CAMELYON16, we used WSIs scaled at both 10× and 5× magnifica-
tion. Subsequently, the WSIs were cropped into patches of size 400 × 400 pixels.
These patches were then filtered based on the proportion of tumor area, ranging
from 20% to 80%, as outlined in [20]. Consequently, for the PAIP2019 dataset,
we employed 5190, 576, and 654 patches for training, validation, and testing,
respectively. As for CAMELYON16, we utilized 397 patches at 10× magnifica-
tion and 318 patches at 5× magnification scales for testing.
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Fig. 4. Qualitative comparison between SAMWhole and SOTA methods. The results
show the performance of each method on the PAIP2019 dataset, both in terms of
zero-shot and after fine-tuning.

3.2 Implementation Details

We compared SAM to three SOTA interactive segmentation methods:
RITM [24], FocalClick [4], and SimpleClick [16]. We fine-tuned the pretrained
models in PAIP2019 and validated their generalization capabilities in CAME-
LYON16. For a fair comparison, we used the largest pretrained model and the
best-performing pretrained weights for each model. For fine-tuning the parame-
ters, we adhered to the default setting of [24], wherein we set the initial learning
rate to 5e-4. Additionally, we decreased the learning rate by a factor of 10 at the
20th and 25th epochs out of the total 30 epochs.

To assess the zero-shot transfer ability of each model, we conducted inference
without training using WSIs. Additionally, to evaluate the generalization ability
and domain adaptability, we performed inference after fine-tuning using WSIs.
For a fair comparison, we employed an automatic evaluation method used in
the previous work [3,11,14,15,23,25]. Inference per patch continues until it
reaches the target IoU (Intersection over Union). We set the maximum number
of clicks per patch to 20. As for the evaluation metrics, we used Number of Clicks
(NoC), Seconds per Click (SPC), and Number of Fails (NoF). NoC represents the
average number of clicks required to reach the target IoU, while SPC measures
the average time it takes for the model to perform an inference per click. NoF
represents the number of images that failed to reach the target IoU despite the
maximum number of clicks. For a more intuitive representation, we divide NoF
by the number of testset n. All of evaluations were performed on a single NVDIA
RTX A6000 GPU.
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Table 1. Quantitative Result of Zero-Shot Performance

Dataset Method NoC@ SPC(s) NoF/n @

80 85 90 85 90

PAIP2019
(×5)

RITM 7.43 10.24 13.00 0.075 0.30 0.47
FocalClick 7.37 9.89 12.42 0.073 0.28 0.43
SimpleClick 7.21 10.16 13.44 0.189 0.33 0.53
SAM 9.13 12.10 14.73 0.052 0.50 0.66

CAMELYON16
(×5)

RITM 6.25 7.88 9.98 0.078 0.14 0.24
FocalClick 3.64 4.83 7.20 0.085 0.04 0.14
SimpleClick 5.26 6.94 9.23 0.187 0.15 0.25
SAM 5.31 7.45 10.38 0.053 0.19 0.36

CAMELYON16
(×10)

RITM 6.91 8.19 10.07 0.077 0.15 0.22
FocalClick 4.73 5.89 7.87 0.076 0.06 0.14
SimpleClick 5.20 6.42 8.55 0.187 0.11 0.23
SAM 6.64 8.49 11.03 0.053 0.24 0.37

4 Results

4.1 Zero-Shot Performance

Table 1 presents the zero-shot performance of SAM and state-of-the-art (SOTA)
interactive segmentation models. SAM demonstrates lower performance com-
pared to SOTA models across all three different domains. The low NoC and
high NoF in the zero-shot setting indicate that SAM lacks the ability to effec-
tively modify the mask to accurately reflect user intent, particularly when faced
with challenging images. As depicted in Fig. 4, SAM in the zero-shot setting fails
to refine local information. However, SAM exhibits minimal SPC compared to
other models due to its feature extraction being performed only once on the
input image, resulting in a significantly faster processing time, over three times
faster than SimpleClick.

4.2 Fine-Tuned SAM Performance

As introduced in Sect. 2.2, we compare the three scenarios to verify the impact of
each SAM component on fine-tuned performance. We fine-tuned the entire SAM
(SAMWhole), the IE and MD (SAMIE_MD), and only the MD (SAMMD) using
the PAIP2019 dataset, respectively. Then, we verify the generalization ability
of models at two scales of the CAMELYON16 dataset. As shown in Table 2,
SAMMD yield lower performance on NoC and NoF compared to IE-trained sce-
narios on the PAIP2019 dataset. On CAMELYON16, SAMMD exhibited compa-
rable results as IE-trained cases at scale ×5 and better performance at scale ×10.
This result demonstrates that the pretrained IE of SAM shows the robustness
of feature extraction ability on different data distributions.
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Table 2. Quantitative Result of After Fine-tuning on PAIP2019

Dataset Method NoC@ SPC(s) NoF/n @

80 85 90 85 90

PAIP2019
(×5)

RITM 2.78 4.93 9.40 0.075 0.12 0.33

FocalClick 2.58 4.54 8.98 0.071 0.06 0.25

SimpleClick 5.11 8.33 12.20 0.189 0.32 0.52

SAMMD 5.80 8.93 12.09 0.050 0.31 0.48

SAMIE_MD 4.53 7.58 10.86 0.050 0.29 0.45

SAMWhole 4.53 7.50 10.95 0.052 0.28 0.46

Ours 4.75 7.78 10.85 0.067 0.26 0.42

CAMELYON16
(×5)

RITM 3.74(-2.51) 5.04(-2.84) 7.50(-2.48) 0.081 0.08 0.17

FocalClick 4.15(+0.51) 5.57(+0.74) 8.19(+0.99) 0.071 0.10 0.22

SimpleClick 3.82(-1.44) 5.41(-1.53) 7.94(-1.29) 0.187 0.15 0.25

SAMMD 4.09(-1.22) 5.84(-1.61) 8.31(-2.07) 0.050 0.13 0.24

SAMIE_MD 4.30(-1.01) 5.64(-1.81) 7.85(-2.53) 0.052 0.15 0.24

SAMWhole
3.28(-2.03) 4.80(-2.65) 7.06(-3.32) 0.053 0.10 0.20

Ours 4.27(-1.04) 5.59(-1.86) 8.04(-2.34) 0.066 0.11 0.20

CAMELYON16
(×10)

RITM 6.28(-0.63) 7.65(-0.54) 9.67(-0.31) 0.076 0.13 0.23

FocalClick 11.82(+7.09) 13.01(+7.12) 14.53(+7.33) 0.076 0.43 0.54

SimpleClick 6.07(+0.87) 7.44(+1.02) 9.94(+1.39) 0.187 0.18 0.28

SAMMD 4.88(-1.76) 6.68(-1.81) 9.07(-1.96) 0.053 0.13 0.25

SAMIE_MD 7.63(+0.99) 9.19(+0.7) 11.81(+0.78) 0.049 0.23 0.38

SAMWhole 6.60(-0.04) 8.10(-0.39) 10.66(-0.37) 0.053 0.20 0.31

Ours 4.59(-2.05) 5.92(-2.57) 8.40(-2.63) 0.064 0.11 0.20

4.3 Comparison Between SAM and SOTA Interactive Methods

As shown in Table 2, SAM still exhibits a notable performance gap compared to
RITM and FocalClick on the PAIP2019 dataset. SAM requires at least two more
NoC compared to RITM and FocalClick. SimpleClick exhibited poorer perfor-
mance compared to SAMWhole and SAMIE_MD, but similar or slightly better per-
formance compared to SAMMD. On the CAMELYON16 ×5 dataset, SAMWhole

exhibited the best performance. The numbers in parentheses in Table 2 repre-
sent the changes in the NoC metric compared to the zero-shot performance in
Table 1. All models showed a decrease in NoC but an increase in FocalClick, indi-
cating that CAMELYON16 ×5 has similar data distribution with the PAIP2019
dataset. As for the CAMELYON16 ×10 dataset, SAMMD performed second best
after SAM with a modified decoder (ours). Furthermore, despite significant dif-
ferences in data distributions between source and target domain, SAMMD and
SAMWhole demonstrated improved performance along with RITM, indicating
a higher generalized capability compared to FocalClick and SimpleClick. Note
that FocalClick and SimpleClick performed poorly compared to the zero-shot
approach with FocalClick’s significant performance drop as shown in Fig. 3 (c).
These methods utilize local segmentation which refines the prediction locally. As
the data distribution changes, more iterations of local segmentation are required,
resulting in performance degradation in both NoC and NoF metrics.
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4.4 Modified SAM Decoder Performance

As shown in Table 2, our approach exhibits improved performance compared
to SAMMD in every dataset. Moreover, it shows comparable performance
in PAIP2019 compared to SAMWhole. Especially on the CAMELYON16× 10
dataset, our approach demonstrates the best performance among all interac-
tive SOTA models. It shows the highest performance in all of NoC and NoF,
highlighting its remarkable generalization capability. However, in PAIP2019, it
still shows lower performance compared to SOTA interactive models. Intuitively,
Table 2 may not be enough to say that our approach has a clear advantage over
other methods. However, when taking into account a comprehensive range of fac-
tors including performance, inferencing speed, training cost, and generalization
ability, we argue that our approach is sufficiently compelling.

5 Conclusion

In this study, we demonstrate the potential of SAM for interactive pathology
segmentation. SAM showed higher generalization capability and notably excelled
in terms of inference speed per interaction compared to SOTA interactive models.
Additionally, a modified decoder with pretrained encoders of SAM can achieve
performance comparable to that of the entire SAM fine-tuning. In this approach,
SAM could efficiently capture user intent and precisely refine predictions, which
is crucial in interactive segmentation. However, SAM exhibits lower performance
compared to state-of-the-art interactive models, especially in achieving high IoU
scores. We plan to develop SAM as a foundational interactive model that works
well for all histopathology data (different organs, tissues, etc.).
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Abstract. Promptable foundation models, particularly Segment Any-
thing Model (SAM) [3], have emerged as a promising alternative to
the traditional task-specific supervised learning for image segmentation.
However, many evaluation studies have found that their performance on
medical imaging modalities to be underwhelming compared to conven-
tional deep learning methods. In the world of large pre-trained language
and vision-language models, learning prompt from downstream tasks has
achieved considerable success in improving performance. In this work, we
propose a plug-and-play Prompt Optimization Technique for foundation
models like SAM (SAMPOT) that utilizes the downstream segmenta-
tion task to optimize the human-provided prompt to obtain improved
performance. We demonstrate the utility of SAMPOT on lung segmen-
tation in chest X-ray images and obtain an improvement on a significant
number of cases (∼ 75%) over human-provided initial prompts. We hope
this work will lead to further investigations in the nascent field of auto-
matic visual prompt-tuning.

Keywords: foundation models · prompt tuning · segmentation

1 Introduction

The recent release of a foundation model for image segmentation called Segment
Anything (SAM) [3] has generated unprecedented excitement about the possibil-
ity of realizing artificial general intelligence (AGI) in the field of medical image
analysis. SAM is a task-agnostic promptable segmentation model trained on 1
billion masks. This has triggered the possibility of improved zero-shot segmen-
tation performance and obviate the necessity for specialized techniques across
medical imaging tasks [4].

Consequently, a number of studies [1,2,6] have evaluated the performance of
SAM on a plethora of medical imaging segmentation tasks, and have concluded
that while SAM is a promising first step, there exists a significant gap compared
to supervised learning algorithms on many datasets. The hypothesized reasons
include lack of medical imaging samples in the training database and peculiari-
ties associated with medical images (e.g., scan-cone in Ultrasound, 3D nature of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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CT/MR, large intensity variations in X-Ray and higher image resolution com-
pared to natural images).

This sub-optimal performance has prompted researchers to fine-tune the
models to medical imaging modalities using parameter-efficient techniques like
Low-rank adaptation (LoRA) [6,9] and Adapters [8]. However, given the size
of networks, fine-tuning these models also requires access to large scale medi-
cal image and label pairs. Obtaining such large scale datasets and availability of
heavy compute is beyond the scope of most small research organizations, thereby
limiting the adoption of SAM.

An alternate direction to improve the performance on downstream tasks is to
learn efficient prompts tailoring for the tasks. A number of works like CoOp [11],
CoCoOp [10] have demonstrated the benefit of learning prompts to adapt CLIP-
like vision-language models for downstream tasks. Prompt learning not only
improves performance over hand-crafted prompts but also reduces manual effort
and expertise required in designing the prompts. While these techniques have
been explored extensively in natural language processing and vision-language
community, their utilization for optimizing prompts for foundation segmentation
models has been conspicuously absent.

In this paper, we present a prompt learning method for segmentation foun-
dation models, and demonstrate it on the task of left-lung segmentation on chest
X-ray images. To demonstrate the challenges involved and motivate the need for
prompt learning, we compute the sensitivity of SAM’s output to the choice of
prompt’s spatial location.

Fig. 1. Heat-map of Dice values obtained by
placing the prompt at various locations in
the lung.

Figure 1 shows the overlay of a
chest X-ray image and the heat-map
of Dice values when the prompt is
placed at different locations of the
lung region. The large diversity of
Dice values (0.2 to 0.9) highlights
that given a click prompt inside the
lung region of an X-ray image, it is
plausible that another location pro-
vides a more accurate segmentation.

Since X-ray is a summative
modality, the intensity values under
the lung mask are a result of super-
imposition of soft tissue, ribs, car-
diac region, and occasional extrane-

ous objects such as PICC lines. Though visually the lung region may appear
equally dark in X-ray images to the user, it is not homogeneous, and its hetero-
geneity is further amplified by the presence of pathology.

1.1 Our Approach

To improve the segmentation performance in such confounding settings, we pro-
pose a prompt optimization technique (SAMPOT) that utilizes the knowledge of
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the downstream task to optimally locate the human-provided prompt to obtain
a better segmentation output. We design an unsupervised segmentation per-
formance scorer that generates a proxy for the supervised performance metric
like the Dice value. At inference, given a test image and prompt, we iteratively
maximize this task-based score to evolve the location of the prompt to pro-
duce superior results compared to utilizing initial prompt location provided by
user. Although we develop this method on SAM, SAMPOT can be used in a
plug-and-play fashion with any foundation segmentation model.

1.2 Contributions

1. We propose a plug-and-play prompt optimization technique, SAMPOT, for
any promptable segmentation algorithm which fine-tunes an input prompt.
To the best of our knowledge, this is the first instance of an automatic prompt
tuning strategy for foundation segmentation models.

2. We demonstrate the efficacy of SAMPOT on the task of segmenting lungs
in chest X-ray images and achieve segmentation gains on ∼ 75% of the test
images.

2 Methodology

We shall introduce a few relevant notations before presenting the method.

SAM Model: Let us denote the SAM under consideration by fSAM, a very large
deep neural network model that takes an image X ∈ R

N×N and a prompt p as
input to predict the segmentation mask ̂Y := fSAM(X,p) ∈ R

N×N .

Prompt: For segmentation foundation models such as SAM, a prompt can be
a point coordinate, bounding box, dense segmentation, or a text input. It is
typically accompanied by a label which indicates whether the prompt is in the
foreground (1) or otherwise (0). While SAM can simultaneously take a set of
heterogeneous prompts, in this work, we consider one single coordinate prompt
p = (x, y, c)ᵀ, x, y ∈ [N ] := {0, 1, · · · , N − 1}, c ∈ {0, 1}. We assume that
the prompt is provided by a human user at the start, and it always lies in the
foreground object of interest (c = 1). Therefore, without loss of generality, we
can consider p to be a two-component vector representing the 2D coordinates.

2.1 Prompt Optimization by Oracle Scoring

Our method is aimed at evolving the location of the prompt and arriving at
an optimal prompt p∗. Suppose we had access to the ground truth mask Ytest

for a given input image, we could simply compute the loss Ltask(̂Ytest, Ytest) and
choose a p that minimises the loss. However, as that is fallaciously self-fulfilling,
we propose to use an oracle O that acts as a surrogate to the true loss Ltask. The



Task-Driven Prompt Evolution for Foundation Models 259

scorer takes the input image Xtest and the predicted mask ̂Ytest and produces a
score s. The scorer can be a pre-learnt (and fixed) neural network model that can
be used in conjunction with the segmentation model, enabling us to compute
the gradients of the score with respect to p. If the scorer is designed to be
positively correlated to the performance metric, we can then solve the following
maximization problem to achieve our objective:

p∗ := arg max
p

O(Xtest, ̂Ytest), where ̂Ytest := fSAM(Xtest,p). (1)

Note that the gradient of s is computed with respect to p and therefore only p
gets updated, while the weights of SAM fSAM and the scorer O are held fixed.

2.2 Learning to Score

The oracle O is expected to score the quality of segmentation blindly in the
absence of ground truth. To this end, we train a segmentation regressor which
learns to predict the Dice directly from the input image and the corresponding
predicted mask. This segmentation regressor is trained using a small dataset of
input images and ground truth masks. For every input image, several candidate
masks are synthetically generated by modifying the true segmentation mask,
and their corresponding Dice coefficients are computed. This extended set of
images, masks and Dice scores are then used to train the regressor. The details of
candidate mask generation and segmentation regressor are described in Sect. 3.2.
In general, segmentation quality score can be vector valued and along with the
described regressor, one can use adversarial loss [5], shape autoencoder [7], etc.

Fig. 2. Schematic of the SAMPOT. The spatial location of the user-provided prompt
is updated based on the gradients received from the segmentation score.

Figure 2 shows the schematic of the proposed SAMPOT approach for prompt
learning. Starting from an initial location and an input image, the prompt is
iteratively evolved by updating its spatial location using the gradient computed
from the segmentation score.
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3 Experiments and Results

3.1 Dataset Description

In this study, we tapped into a database of X-ray images available within our
institution, sourced through data partnerships from US, Africa, and European
populations. The datasets were acquired after receiving approval from the rel-
evant Institutional Review Boards. The lung boundaries on the X-ray images
were delineated by a team of experienced radiologists. X-ray images from 122
subjects were split into train and test subjects in our experimental setup. This
split was used for training and evaluation of the segmentation regressor only.
Note that the SAM model is pretrained and is fixed throughout the study. We
have evaluated the effectiveness of the prompt optimization technique on the
test split of the dataset, thereby ensuring that the results are not biased by the
regressor which has been optimized on the train split. The train cohort is further
divided into training and validation sets with images from 41 and 28 subjects
each. The test set has images from 53 subjects.

3.2 Segmentation Regressor

Data Preparation: We created several synthetic masks for every lung anno-
tation in the dataset and computed the Dice coefficient for these masks as the
ground truth segmentation score. We used the level-sets of ground truth anno-
tation to generate under- and over-segmented instances of the lung field as pre-
sented in Fig. 3.

Fig. 3. Figure shows (a) sample mask from the dataset, (b) computed distance map,
synthetically generated (c) over-segmented mask and (d) sample under-segmented. The
dice coefficient for the over-segmented mask is 0.57 and that for under-segmented mask
is 0.61.

Additionally, we also included the lung mask predicted by the SAM when
given a single positive prompt and the corresponding Dice coefficient. In every
image, the lung field was divided into three horizontal bands and the centroid
of these regions were chosen as a prompt. We also chose random points outside
the three bands, with an offset of 5 pixels as prompts for SAM. Therefore, we
obtained predictions corresponding to 6 separate prompts for each image. Thus
we had a total of 901 images in the train set, 600 in the val set and 1205 in the
test set for learning the regressor.
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Training Parameters and Network Architecture: The regressor network
consisted of five 2D convolution layers interleaved with Batch normalization and
leaky ReLU activation, and sigmoid activation for the final layer. The network
was trained for 200 epochs with a batch size of 32 using Adam optimizer and
mean squared error (MSE) loss. A constant learning rate of 0.001 was used. We
set the stopping criterion as minimal loss on the validation set.

3.3 Prompt Optimization

Under the mild assumption that a human end-user would choose a prompt
located centrally within the region of interest, we chose the centroid of the
lung mask as the initial prompt to mimic the human user. Subsequently, the
optimization of the prompt location was carried out using Adam optimizer. The
step size for the prompt update was heuristically chosen as 10 and the weight
decay was set to zero. To ensure that the input to the regressor (SAM predic-
tion) is closer to a binary mask, we employed sigmoid activation a with steeper
slope. Furthermore, we chose the optimal prompt as the one that maximized the
output of the regressor. We have used ViT-B SAM in our experiments.

3.4 Results

Evaluation of Segmentation Regressor: Figure 4(a) is the scatterplot of
regressor outputs against true Dice coefficients for all the samples in the test
set, including the synthetically generated masks as well as SAM predictions.
The high correlation coefficient (0.88) shows that the regressor output can serve
as a proxy for Dice coefficient of segmented mask. We also present a similar plot
for SAM confidence scores for segmentations when prompted at the centroid
of the lung mask. We observe that the confidence scores of SAM have a lower
correlation coefficient of 0.67 with Dice compared to our Segmentation Regressor.

Evaluation of Prompt Optimization: An illustration of the prompt opti-
mization process for a sample image, starting from the initial location to the
optimal location on the image is presented in Fig. 5. We see how the quality of
the predicted lung field mask, measured using Dice coefficient, improves as the
prompt traverses through the optimization trajectory.

Figure 6 summarizes the overall performance of the proposed SAMPOT on
the test dataset. The scatterplot on the left (initial Dice vs Dice after evolution)
shows that 38 of 53 images have improved Dice (points above unit slope line)
after prompt evolution. Of them, four images have significant improvements. The
scatter plot on the right is a blown-up version of a portion of the scatter plot
on the left. The images on the top row contain specific examples where the Dice
improved after evolution. On the bottom row, the images contain examples of
underperforming cases. For the first two under-performing cases displayed, the
segmentation masks after evolution are outside the lung region, even though the
initial masks were in the right places. Such catastrophic cases can be handled
by employing additional safeguard logic.
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Fig. 4. Comparison of (a) Dice against regressor output for unseen synthetically gen-
erated masks (1205 samples); on the test set (53 samples) (b) Dice against SAM con-
fidence score and (c) Dice against regressor output when prompts are placed at the
centroid of the lung mask. The correlation coefficient for the regressor on unseen syn-
thetically generated masks is 0.88. On test samples, the correlation coefficient for the
regressor is 0.90 in comparison with 0.67 for SAM.

Fig. 5. [Best viewed in color] Figure illustrates the trajectory of the prompt during the
optimization process. The initial prompt is set at the centroid of the ground truth lung
field annotation. Snapshots of the predicted masks at select locations on the prompt
trajectory along with the computed dice score are also shown.
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Fig. 6. [Best viewed in color] Scatter plot of Dice coefficients resulting from initial
prompts and the final evolved prompts on the test set. 38 of 53 cases have shown
improvement in Dice after evolving. Four of them have significant Dice gains. The
scatter plot on the right is the blown-up area on the top-right of the scatter plot on the
left. The top row shows images that have significantly gained from prompt evolution.
On the bottom are some cases which under-performs upon prompt evolution.

4 Discussion

The direct application of foundation models like SAM has shown sub-par per-
formance on a number of different medical image segmentation tasks. Given
the relatively modest sizes of datasets available for downstream medical imag-
ing tasks, it may be prohibitive to fine-tune a very large model like SAM. The
performance of SAM on the previously unseen problem of lung segmentation
on X-ray images is elevated by SAMPOT indicating the possibility of deploy-
ing SAM on medical image segmentation problems even with few images. While
this work focused only on prompt evolution, the idea of adapting the input to
improve the performance of a foundation model is very generic. One can adapt
the input image itself, along with the prompt, to meet the desired objective. A
future extension to this work can be adaptation to cases where multiple het-
erogeneous prompts such as bounding boxes, text inputs etc. are optimized. An
extensive evaluation of SAMPOT on a multitude of datasets/use-cases will be
beneficial as well.

5 Conclusions

On medical images, we observed that the spatial location of the prompt for
a general purpose foundation model (SAM) affects the accuracy. Taking a cue
from the NLP community, we have presented SAMPOT, a method to optimize
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the prompt for a foundation model by altering the spatial location to obtain
superior results on downstream tasks. We have demonstrated this method on
lung segmentation of chest X-rays and obtained improvement on a significant
number of cases (∼ 75%). We hope that our work offers possibilities of prompt-
learning for extracting maximal value from general purpose foundation models
trained on natural images on domain-specific downstream tasks in medical image
analysis.
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Abstract. Domain generalization for Diabetic Retinopathy (DR) clas-
sification allows a model to adeptly classify retinal images from previ-
ously unseen domains with various imaging conditions and patient demo-
graphics, thereby enhancing its applicability in a wide range of clinical
environments. In this study, we explore the inherent capacity of vari-
ational autoencoders to disentangle the latent space of fundus images,
with an aim to obtain a more robust and adaptable domain-invariant
representation that effectively tackles the domain shift encountered in
DR datasets. Despite the simplicity of our approach, we explore the
efficacy of this classical method and demonstrate its ability to outper-
form contemporary state-of-the-art approaches for this task using pub-
licly available datasets. Our findings challenge the prevailing assumption
that highly sophisticated methods for DR classification are inherently
superior for domain generalization. This highlights the importance of
considering simple methods and adapting them to the challenging task
of generalizing medical images, rather than solely relying on advanced
techniques.

Keywords: Domain Generalization · Diabetic Retinopathy ·
Variational Autoencoder

1 Introduction

Diabetic Retinopathy (DR) is a complication of Diabetes Mellitus (DM) which is
characterized by impaired blood vessels in the eye due to elevated glucose levels,
leading to swelling, leakage of blood and fluids, and potential ocular damage [6].
With the global population infected with DM projected to reach approximately
700 million by 2045, DR is expected to persist as a prevalent complication of DM,
particularly in the Middle East and North Africa as well as the Western Pacific
regions [25]. In general, the diagnosis of DR is based on the presence of four
types of lesions, namely microaneurysms, hemorrhages, soft and hard exudates,
and thus the categorization of DR typically comprises five classes, namely no
DR, mild DR, moderate DR, severe DR, and proliferative DR.

The conventional method of diagnosing DR relies on manual examination of
retinal images by skilled ophthalmologists. However, this approach is known to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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involve time-intensive procedures, limited availability of trained professionals,
and is susceptible to human error [21,26]. Deep learning methods have emerged
as an effective solution for diagnosing DR, addressing the limitations associ-
ated with traditional approaches [4,27]. Despite the benefits offered by deep
learning models, a major challenge they face is the issue of domain shift [27],
which emanates from the oversimplified assumption of independence and iden-
tical distribution (i.i.d) between the training and testing data, leading to poor
performance when these models are applied to new data from related but unseen
distributions [7,12]. The variations in fundus image acquisition procedures and
the diverse populations affected by DR result in a substantial domain shift as
shown in Fig. 1, which greatly hinders the deployment of large-scale models since
a slight variation of the data-generating process often foresees a drastic reduction
in model performance [30].

Domain generalization (DG) is a line of research with the goal of handling
the domain shift problem [10] under minimal assumptions. It only relies on
multiple or seldom single source domain(s) to train a model that can general-
ize to data from unseen domains, whose distribution can be radically different
from source domains. To our knowledge, there exists a rather limited body of
literature specifically addressing the problem of domain generalization for DR
classification. Therefore, the investigation of DG for deep learning methods holds
significant relevance in enhancing the accuracy of DR diagnosis across the vari-
ous healthcare centers situated in different geographical locations.

In this paper, we propose our Variational Autoencoder for Domain Gener-
alization (VAE-DG), which effectively manipulates the power of classical varia-
tional autoencoders (VAEs) [17], whose optimally disentangled latent space [13]
enables the model to generalize well to unseen domains in DR classification by
effectively capturing essential shared information while selectively disregarding
domain-specific variations. Through the acquisition of disentangled represen-
tations that separate domain-specific and domain-invariant features, VAE-DG
significantly enhances the model’s ability to generalize across different domains,
leading to improved performance and robustness. Our main contributions in this
work are as follows:

1. We aim to inspire researchers to explore and leverage a wider spectrum of
techniques, particularly simpler methods, in their pursuit of effective solutions
for the challenging task of robustifying the DR classification problem.

2. To our knowledge, we are the first to explore the potential of harnessing VAEs
for learning cross-domain generalizable models for the Diabetic Retinopathy
classification task. Our extensive analysis reveals compelling evidence of its
superiority over the state-of-the-art techniques for the DG approaches in the
DR classification task.

3. We report our results using the training-domain validation criterion for model
selection, which is an appropriate and widely-adopted model selection method
for DG [10], thereby rectifying the existing work’s [5] important limitations.
To this end, we encourage future studies to conduct fair comparisons with
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our methodology, establishing a standard for evaluating advancements in DG
for DR classification task.

Fig. 1. A sample of fundus images from MESSIDOR-2 (top row) and EyePACS (bot-
tom row) datasets. For an untrained expert, it is challenging to sometimes visually
see the differences between the different grades, making the DR classification task
challenging. Each dataset exhibits a diverse range of variations in the presentation of
fundus images and furthermore, the provided sample from the two domains clearly
demonstrates a significant domain shift.

2 Related Works

DG for DR Classification: DRGen [5] could be considered as the first work
that tackles the DG challenge in DR classification, by combining the Stochastic
Weight Averaging Densely (SWAD) [9] and Fishr [24] techniques. SWAD is a
DG technique that promotes flatter minima and reduces gradient variance, while
Fishr is a regularization method that aligns gradient variances across different
source domains based on the relationship between gradient covariance, Hessian
of the loss, and Fisher information. While the work by [5] played a pivotal role
in bringing attention to this problem task, it should be noted that the results
presented by the authors were based on target-domain-validation, which does not
align with the established protocols of evaluating DG methods, as outlined by
the widely recognized DomainBed framework [10]. We rectify this limitation by
adopting the appropriate model selection strategy of source-domain validation,
in accordance with accepted practices in the field of DG research.

DG Using Feature Disentanglement: DG approaches based on feature dis-
entanglement aim to disentangle the feature representation into distinct com-
ponents, including a domain-shared or invariant feature and a domain-specific
feature [29]. Methods like [14,19] focus on disentangling multiple factors of vari-
ation, such as domain information, category information, or style; while this can
be beneficial for certain applications, this may lead to limited interpretability
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and difficulties in finding an optimal balance between the different disentangled
factors causing complex training procedures. In contrast, our method provides a
more holistic approach to feature disentanglement, and with appropriate regular-
ization techniques, it can achieve stable training and straightforward optimiza-
tion. [22,23,31] used fine-grained domain disentanglement, Unified Feature Dis-
entanglement Network, and semantic-variational disentanglement, respectively,
which introduces additional complexity to the model architecture, and often
leads to increased computational costs during training and inference. On the
contrary, our methodology which is both effective and simpler offers a more
direct and efficient approach.

Fig. 2. Overview of our proposed method VAE-DG for domain generalization with a
variational autoencoder by manipulating the disentangled fundus image representations
to achieve a domain generalization objective.

3 Method

Overview: In this section, we describe in detail on how we exploit conven-
tional variational autoencoders to tackle the challenge of domain generalization
by revisiting their operational principles and integrating them into our VAE-
DG approach. This showcases their effectiveness in disentangling intricate DR
datasets, within which we hypothesize that the optimally disentangled latent
space contains domain-shared features, thereby yielding a substantial perfor-
mance boost compared to existing domain generalization state-of-the-art meth-
ods. Our overall pipeline is shown in Fig. 2

Problem Settings: Domain generalization for DR classification is defined
within a framework that involves a collection of source domains denoted as
{Sd}N

d=1, where N is the number of source domains. Each source domain
Sd = {(xi

d, yi
d)}n

i=1 comprises i.i.d data points, sampled from a probability
distribution p(Xd, Yd). Yd is the target random variable corresponding to the
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progression of DR, while Xd is the input fundus image random variable, with
each data point (xi

d, yi
d) representing an observation from its respective domain.

The primary objective in domain generalization thus becomes acquiring a pre-
dictor that exhibits robust performance on an unseen target domain Td [10].

Proposed Method (VAE-DG): To achieve domain generalization using
our VAE-DG, we manipulate two variables (from the pooled source domains
{Sd}N

d=1) which are the input fundus image Xd and the latent variable Zd.
When we consider only singular data points, zi is drawn from the distribution
zi ∼ p(z) and xi is drawn from xi ∼ p(x|z), and their joint distribution is given
by p(x, z) = p(x|z)p(z). The main goal of this probabilistic model becomes an
inference problem of learning a distribution p(z|x) of some latent variables from
which we can then sample to generate new fundus images which we will denote
as x′. We know that this posterior distribution p(z|x) can be obtained using
Bayes Theorem [15].

However, we utilize a 256-dimensional fundus latent vector whose marginal
p(x) requires exponential computational time and hence becomes intractable,
therefore, instead of directly calculating pθ(z|x), we resort to Variational Infer-
ence [8] such that we approximate this posterior with a tractable distribution
qφ(z|x) which has a functional form. We use the Gaussian distribution as the
approximation such that the problem decomposes to learning the parameters
φ = (μ, σ2) instead of θ. By incorporating this Gaussian prior as a constraint
on the learned latent variables, our VAE-DG is coerced into disentangling the
underlying factors of variation in the data. We can then use Kullback-Leibler
(KL) divergence, to measure how well the approximation is close to the true
distribution. By minimizing the KL divergence, we simultaneously approximate
pθ(z|x) and the manipulation of the KL divergence expression (the complete
derivation of which is beyond the scope of this discussion but can be found in
[20]), we obtain Eq. 1:

log pθ(x) − DKL (qφ(z|x)||pθ(x)) = Ez [log pθ(x|z)] − DKL (qφ(z|x)||p(z)) (1)

where; Ez [log pθ(x|z)] − DKL (qφ(z|x)||pθ(z)) is known as the Evidence Lower
Bound (ELBO), the former term thus becomes the lower bound on the log evi-
dence. Subsequently, if we maximize the ELBO we thus indirectly minimize
DKL (qφ(z|x)||pθ(x)). Therefore, the objective function of a classical variational
autoencoder can be expressed as:

L(θ, φ;x) = −Eqφ(z|x) [log pθ(x|z)] + DKL (qφ(z|x)||p(z)) (2)

where the objective function is with respect to θ and φ which are the learnable
parameters of the generative and inference models, respectively [16,17].

For our VAE-DG we couple the classical variational autoencoder objective
L(θ, φ;x) with empirical risk minimization

∑n
i=1 �(f(xi), yi) [28] to ensure the

optimization of the original target task as illustrated in Eq. 3, while simultane-
ously manipulating the domain-invariant latent variables acquired from the prob-
abilistic encoder. Our final objective function consists of three distinct terms;
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the first term, denoted by −Eqφ(z|x) [log pθ(x|z)], serves as the reconstruction
term, which quantifies the difference between the original fundus image xi and
the reconstructed xi

′. The second term, βDKL (qφ(z|x)||p(z)), is the regularizer
term that minimizes the KL divergence between the encoder distribution qφ(z|x)
and the prior distribution p(z), thereby promoting the learned latent represen-
tation zi to follow the prior distribution. The strength of this regularization is
controlled by the hyperparameter β. The third term,

∑n
i=1 �(f(xi), yi), assesses

the difference between the true class labels yi and the predicted class labels
f(xi), subsequently, the parameter α serves as a weight for this term.

L = −Eqφ(z|x) [log pθ(x|z)] + βDKL (qφ(z|x)||p(z)) − α

n∑

i=1

�(f(xi), yi) (3)

To optimize L we use stochastic gradient descent with an incorporation of
the alternate optimization trick [17] since we need to learn the parameters for
both θ and φ.

3.1 Experiments

Datasets: We utilized four openly accessible datasets, namely EyePACS [3],
APTOS [1], Messidor [2], and Messidor-2 [2] which according to their sources
were obtained from different locations and populations, resulting in a notable
domain shift due to variations in instruments, conditions, settings, and environ-
mental contexts across datasets. Each dataset comprises of five distinct classes
with the exception of Messidor, which lacks class 5 images. The dataset distribu-
tion for these sources is 88702, 3657, 1200, and 1744, respectively. The original
images vary in size but are standardized to 224× 224 pixels. Due to the inherent
characteristics of real-world datasets, there exists an imbalance in class repre-
sentation across all datasets with class 0 being the most dominant and class 4
the rarest.

Implementation and Evaluation Criteria: Our choice for the encoder archi-
tecture involves the Imagenet pretrained ResNet-50 [11] as the backbone. This
is substantiated by existing literature [18], wherein the employment of transfer
learning, despite the domain gap, has been demonstrated to accelerate the pro-
cess of developing effective models even in medical imaging. We jointly trained
on three source domains, with 0.2 of the source domains as the validation set,
and finally evaluate on the unseen target domain using the best training-domain-
validation model, this way we truly evaluate the domain generalizability of our
model. The model is trained for 15,000 steps, with Adam optimizer, a learning
rate of 0.0001, 256 dimensional z latent vector, and a batch size of 66 from the
three source domains. To combat class imbalance we utilize resampling. β and
α are set as 50,000 to achieve a similar weighting with the magnitude of the
reconstruction term. Accuracy is used as the evaluation metric in line with the
established DG benchmarks [10]. All our experiments were run on 24 GB Quadro
RTX 6000 GPU. Our code is available at https://github.com/sharonchokuwa/
VAE-DG.

https://github.com/sharonchokuwa/VAE-DG
https://github.com/sharonchokuwa/VAE-DG
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Baselines: We compare our method with the naive Empirical Risk Minimiza-
tion (ERM) [10,28] and with state-of-the-art domain generalization methods for
this problem task mainly DRGen [5] and Fishr [24]. To ensure a fair compar-
ison, we adopt the same backbone and learning rate for all methods, except
for DRGen; where we reproduce it using the original proposed learning rate
of 0.0005, as the performance decreased when using 0.0001. The other method-
specific hyperparameters were kept constant as proposed in the respective works.

Table 1. Comparison between our proposed method with domain generalization meth-
ods for DR classification. Each experiment was repeated thrice, employing distinct
random seeds (0, 1, 2), and the average accuracy (Avg.) and corresponding standard
deviation are reported for each target domain.

Method Aptos EyePACS Messidor Messidor-2 Avg.

ERM 63.75 ± 5.5 70.22 ± 1.6 66.11 ± 0.8 67.38 ± 1.0 66.86 ± 2.2

DRGen 57.06 ± 0.9 72.52 ± 1.3 61.25 ± 4.2 49.16 ± 16.3 60.00 ± 5.7

Fishr 62.89 ± 5.0 71.92 ± 1.3 65.69 ± 1.1 63.54 ± 3.8 66.01 ± 2.8

VAE-DG 66.14 ± 1.1 72.74 ± 1.0 65.90 ± 0.7 67.67 ± 2.0 68.11 ± 1.2

Oracle Results

VAE-DG 68.54 ± 2.5 74.30 ± 0.2 66.39 ± 1.3 70.27 ± 1.2 69.87 ± 1.3

Results and Discussion: Table 1 indicates that VAE-DG exhibits the high-
est average accuracy of 68.11 ± 1.2%, which represents an 8.11% improvement
over DRGen, 2.1% over Fishr, and 1.3% over ERM. Furthermore, VAE-DG
demonstrates superior performance across most domains (APTOS, EyePACS,
and Messidor-2) and exhibits the lowest standard error of 1.2%, indicating its
relative robustness compared to the other methods. VAE-DG’s enhanced perfor-
mance solidifies the advantageous characteristics of this simpler approach whose
latent space facilitates the explicit disentangling of domain-specific and domain-
invariant features, ultimately improving target domain generalization. The oracle
results [10] of VAE-DG are presented as a reference for the upper bound of the
method, rather than for direct comparison, indicating that our proposed method
achieves a 1.8% reduction compared to the upper bound.

ERM outperforms more sophisticated methods (DRGen and Fishr) because
it is a simple approach and does not make strong assumptions about source-
target domain relationships; it focuses on optimizing performance on available
source domains and leveraging multiple domains to capture a wider range of
variations, showcasing its ability to generalize to unseen target domains (if the
domain shift is small [10]).

Overall, the relatively poor performances of DRGen and Fishr methods which
attain 60.00% and 66.01% average accuracies respectively can be attributed to
the fact that these methods often impose specific constraints or assumptions
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about the domain shift, which could limit their performance in scenarios that
deviate from those assumptions. The lack of robustness of such methods with
variations in the data is also vindicated by the large standard error (16.3%) for
DRGen’s Messidor-2 domain performance.

In contrast to the findings of [5], our extended analysis presented in Table 2
reveals a significant decline in model performance by 23.14% when incorpo-
rating SWAD, aligning with [9]’s observation that SWAD is not a perfect or
theoretically guaranteed solver for flat minima. We explored the influence of a
larger network architecture (ResNet-152) and the obtained results indicate that
a larger network architecture can improve image reconstruction quality but has
a negative impact on the primary DG objective, as evidenced by the 1.5% drop.

Table 2. Analysis and ablation studies. Average accuracy (Avg.) values represent the
mean accuracy obtained from three independent trials. The “Diff.” column indicates
the performance variation compared to our main experiments shown in Table 1. A
decrease in performance is denoted by (↓), while an increase is denoted by (↑).

APTOS EyePACS Messidor Messidor-2 Avg. Diff.

Extended Analysis

VAE-DG ResNet-152 61.45 ± 8.2 71.44 ± 3.1 65.94 ± 1.0 67.81 ± 2.6 66.66 ± 3.7 1.45(↓)

VAE-DG + SWAD 55.66 ± 8.8 73.52 ± 0.0 34.24 ± 12.2 16.48 ± 12.0 44.97 ± 8.3 23.14(↓)

ERM + SWAD 54.93 ± 0.6 71.35 ± 0.5 64.76 ± 0.7 58.48 ± 3.1 62.38 ± 1.2 4.5(↓)

Ablations Studies

Latent-dim 64 62.15 ± 3.1 73.80 ± 0.4 66.42 ± 2.1 68.98 ± 3.0 67.84 ± 2.2 0.27(↓)

Latent-dim 128 62.61 ± 3.5 73.64 ± 0.6 66.60 ± 1.9 66.09 ± 2.2 67.23 ± 2.0 0.88(↓)

Fixed latent space 63.87 ± 0.6 73.44 ± 0.8 66.46 ± 0.6 69.39 ± 0.8 68.29 ± 0.7 0.18(↑)

β, α = 10,000 64.38 ± 1.8 73.17 ± 0.5 65.42 ± 0.4 69.27 ± 4.0 68.06 ± 1.7 0.05(↓)

β, α = 100,000 62.50 ± 3.5 72.30 ± 1.6 66.56 ± 1.3 67.88 ± 1.0 67.31 ± 1.8 0.80(↓)

No Recon Loss 63.44 ± 3.9 70.62 ± 0.8 66.25 ± 0.8 65.21 ± 1.4 66.38 ± 1.7 1.73(↓)

No KL Divergence 68.29 ± 2.3 69.98 ± 4.3 66.60 ± 1.1 66.93 ± 1.6 67.95 ± 2.3 0.17(↓)

Ablation Studies: In order to comprehensively assess the individual contri-
butions of each component towards our DG objective, we conducted ablation
studies, as summarized in Table 2. Our investigation encompassed the following
aspects: (i) Latent-Dim: varying the size of the latent dimension [64, 128, 256],
(ii) Fixed latent space: evaluating the impact of a fixed latent dimension, (ii)
determining the impact of the weighting for the KL divergence and classification
terms (β and α), (iii) assessing the effect of the reconstruction term, and (iv)
examining the influence of the KL divergence term.

We noticed that a larger latent dimension of 256 leads to higher results,
potentially due to its ability to effectively bottleneck information while pre-
serving essential features. The performance difference between a fixed latent
vector and a randomly sampled one is not very large, although using a fixed
latent space reduces the standard error by nearly half, suggesting that randomly
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sampled vectors introduce additional variability that hinders the disentangle-
ment of domain-invariant features. Notably, removing the reconstruction and KL
divergence terms in the model’s objective leads to a decrease in performance,
emphasizing the importance of incorporating these regularizations. Furthermore,
experimentation with β and α values within the range of [10,000, 50,000, 100,000]
reveals that excessively high or low values are suboptimal.

4 Conclusion

In this paper, we explored the potential of classical variational autoencoders for
domain generalization in Diabetic Retinopathy classification. We demonstrate
that this simple approach provides effective results and outperforms contempo-
rary state-of-the-art methods. By strictly following the established evaluation
protocols of DG, we also addressed the important limitations in the evaluations
of the existing method. Our study encourages the medical imaging community
to consider simpler methods in order to realize robust models.
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Abstract. Automated segmentation of ultrasound images can assist
medical experts with diagnostic and therapeutic procedures. Although
using the common modality of ultrasound, one typically needs separate
datasets in order to segment, for example, different anatomical structures
or lesions with different levels of malignancy. In this paper, we consider
the problem of jointly learning from heterogeneous datasets so that the
model can improve generalization abilities by leveraging the inherent
variability among datasets. We merge the heterogeneous datasets into
one dataset and refer to each component dataset as a subgroup. We pro-
pose to train a single segmentation model so that the model can adapt to
each sub-group. For robust segmentation, we leverage recently proposed
Segment Anything model (SAM) in order to incorporate sub-group infor-
mation into the model. We propose SAM with Condition Embedding
block (CEmb-SAM) which encodes sub-group conditions and combines
them with image embeddings from SAM. The conditional embedding
block effectively adapts SAM to each image sub-group by incorporat-
ing dataset properties through learnable parameters for normalization.
Experiments show that CEmb-SAM outperforms the baseline methods
on ultrasound image segmentation for peripheral nerves and breast can-
cer. The experiments highlight the effectiveness of CEmb-SAM in learn-
ing from heterogeneous datasets in medical image segmentation tasks.
The code is publicly available at https://github.com/DongDong500/
CEmb-SAM

Keywords: Breast Ultrasound · Nerve Ultrasound · Segmentation. ·
Segment Anything Model

1 Introduction

Image segmentation is an important task in medical ultrasound imaging. For
example, peripheral nerves are often detected and screened by ultrasound, which
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has become a convention modality for computer-aided diagnosis (CAD) [20]. As
entrapment neuropathies are considered to be accurately screened and diagnosed
by ultrasound [2,3,25], the segmentation of peripheral nerves helps experts iden-
tify anatomic structures, measure nerve parameters and provide real-time guid-
ance for therapeutic purposes. In addition, Breast ultrasound images (BUSI) can
guide experts to localize and characterize breast tumors, which is also one of the
key procedures in CAD [27].

The advancements in deep learning enable an automatic segmentation of
ultrasound images, though they still require large, high-quality datasets. The
scarcity of the labeled data motivated several studies to propose learning from
limited supervision, such as transfer learning [24], supervised domain adapta-
tion [19,22] and unsupervised domain adaptation [6,12,17]. In practice, separate
datasets are needed to train a model to segment different anatomical structures
or lesions with different levels of malignancy. For example, peripheral nerves can
be detected and identified across different human anatomic structures, such as
peroneal (located below the knee) and ulnar (located inside the elbow) nerves.
Typically, the annotated datasets for peroneal and ulnar nerves are separately
constructed, and models are separately trained. However, since the models per-
form a similar task, i.e., segmenting nerve structures from ultrasound images,
one may use a single model to be jointly trained with peroneal and ulnar nerves
in order to leverage the variability in heterogeneous datasets and improve gen-
eralization abilities. A similar argument can be applied to breast ultrasound. A
breast tumor is categorized into two types, benign and malignant, and we exam-
ine the effectiveness of a single model handling the segmentation of both types
of lesions. While a simple approach would be incorporating multiple datasets for
training, the characteristics of imaging vary among datasets, and it is challeng-
ing to train models which deal with distribution shift and generalize well for the
entire heterogeneous datasets [4,26,28].

In this paper, we consider methods to train a single model with heterogeneous
datasets jointly. We combine the heterogeneous datasets into one dataset and call
each component dataset as a subgroup. We consider a model which can adapt to
domain shifts among sub-groups and improve segmentation performances. We
leverage recently proposed Segment Anything model (SAM) which has shown
great success in natural image segmentation [14]. However, several studies have
shown that SAM could fail on medical image segmentation tasks [5,9,10,16,29].
We adapt SAM to distribution shifts across sub-groups using a novel method
for condition embedding, which is called SAM with Condition Embedding block
(CEmb-SAM). In CEmb-SAM, we encode sub-group conditions and combine
them with image embeddings. Through experiments, we show that the sub-group
conditioning guides SAM to adapt to each sub-group effectively. Experiments
demonstrate that, compared with SAM [14] and MedSAM [16], CEmb-SAM
shows consistent improvements in the segmentation tasks for both peripheral
nerves and breast lesions. Our main contributions are as follows:
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– We propose CEmb-SAM, which jointly trains a model over heterogeneous
datasets leveraging Segment Anything model for robust segmentation perfor-
mances.

– We propose a conditional embedding module to combine sub-group represen-
tations with image embeddings, which effectively adapts the Segment Any-
thing Model to sub-group conditions.

– Experiments on the peripheral nerve and the breast cancer datasets demon-
strate that CEmb-SAM significantly outperforms the baseline models.

Fig. 1. (A) CEmb-SAM: Segment Anything model with Condition Embedding block.
Input images come from heterogeneous datasets, i.e., the datasets of peroneal and ulnar
nerves, and the model is jointly trained to segment both types of nerves. The sub-group
condition is fed into Condition Embedding block and encoded into sub-group repre-
sentations. Next, the image embeddings are combined with sub-group representations.
The image and prompt encoders are frozen during the fine-tuning of Condition Embed-
ding block and mask decoder. (B) Detailed description of Condition Embedding Block.
The sub-group condition is encoded into learnable parameters γ and β, and the input
feature F in is scaled and shifted using those parameters.
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2 Method

The training dataset is a mixture of m heterogeneous datasets or sub-groups.
The training dataset with m mutually exclusive sub-groups D = g1∪g2∪· · ·∪gm

consists of N samples D = {(xi, yi, y
a
i )N

i=1} where xi is an input image, yi is a
corresponding ground-truth mask. The sub-group condition ya

i ∈ {0, . . . , m − 1}
represents the index of the sub-group the data belongs to. The peripheral nerve
dataset consists of seven sub-groups, six different regions at the peroneal nerve
(located below the knee) and a region at the ulnar nerve (located inside the
elbow). The BUSI dataset consists of three sub-groups: benign, malignant, and
normal. The detailed description and sub-group indices and variables are shown
in Table 1.

2.1 Fine-Tuning SAM with Sub-group Condition

SAM architecture consists of three components: image encoder, prompt encoder,
and mask decoder. Image encoder uses a vision transformer-based architecture [7]
to extract image embeddings. Prompt encoder utilizes user interactions, and
mask decoder generates segmentation results based on the image embeddings,
prompt embeddings, and its output token [14]. We propose to combine sub-
group representations with image embeddings from the image encoder using
the proposed Condition Embedding block (CEmb). The proposed method, SAM
with condition embedding block (CEmb-SAM), uses a pre-trained SAM (ViT-
B) model as the image encoder and the prompt encoder. For the peripheral
nerve dataset, we fine-tune the mask decoder and CEmb with seven sub-groups.
Likewise, we fine-tune the mask decoder on the breast cancer dataset with three
sub-groups. The overall framework of the proposed model is illustrated in Fig. 1.

2.2 Condition Embedding Block

We modified the conditional instance normalization (CIN) [8] to combine sub-
group representations and image embeddings. Learnable parameters Wγ ,Wβ ∈
R

C×m where m is the number of sub-groups of the datasets, and C is the num-
ber of the output feature maps. A sub-group condition ya is converted to one-
hot vectors, xa

γ and xa
β which are fed into Condition Embedding encoder and

transformed into sub-group representation parameters γ and β using two fully
connected layers (FCNs). Specifically,

γ = W2 · σ(W1 · Wγ · xa
γ), β = W2 · σ(W1 · Wβ · xa

β) (1)

where W1, W2 ∈ R
C×C are FCN weights, and σ(·) represents ReLU activation

function.
The image embedding x is transformed into the final representation z using

the condition embedding as follows. The image embedding is normalized with
mini-batch B = {xi, y

a
i }Nn

i=1 of Nn examples as follows:
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Table 1. Summary of the predefined sub-group conditions of peripheral nerve and
BUSI datasets. FH: fibular head, FN: fibular neuropathy. FN + α represents the mea-
sured site is α cm away from the fibular head. m represents the total number of sub-
groups.

Study Region Sub-group m = 7 Study Region Sub-group m = 3

Nerve Peroneal FH 0

FN 1 Benign 0

FN+1 2 BUSI Breast

FN+2 3 Malignant 1

FN+3 4 Normal 2

FN+4 5

Ulnar Ulnar 6

CIN(xi|γ, β) = γ
xi − E[xi]√
Var[xi] + ε

+ β (2)

where E[xi] and Var[xi] are the instance mean and variance, and γ and β are
given by Condition Embedding encoder. The proposed CEmb consists of two
independent consecutive CIN layers with convolutional layers given by:

Fmid = σ(CIN(W3×3 · xi|γ1, β1)) (3)

z = σ(CIN(W3×3 · Fmid|γ2, β2)) (4)

where F ∈ R
c×h×w represents an intermediate feature map, W3×3 denotes con-

volution kernel size with 3×3. Figure 1 (B) illustrates the Condition Embedding
block.

Table 2. Sample distribution of peripheral nerve and BUSI datasets. FH: fibular head,
FN: fibular neuropathy. FN + α represents that the measured site is α cm away from
the fibular head.

Dataset Region Sub-group #of samples Dataset Region Sub-group #of samples

Nerve Peroneal FH 91

FN 106 Benign 437

FN+1 77

FN+2 58 BUSI Breast Malignant 210

FN+3 49 Normal 133

FN+4 29

Ulnar Ulnar 1234

Total 1644 Total 780



280 D. Shin et al.

Table 3. Performance comparison between U-net, SAM, MedSAM and CEmb-SAM
on BUSI and Peripheral nerve datasets.

Study Region DSC (%) PA (%)

U-net SAM MedSAM Ours U-net SAM MedSAM Ours

BUSI Breast 64.87 61.42 85.95 89.35 90.72 87.19 90.89 92.86

Nerve Peroneal 69.91 61.72 78.87 85.02 92.59 90.58 91.81 93.90

Ulnar 77.04 59.56 83.98 88.21 96.49 94.89 96.66 97.72

3 Experiments

3.1 Dataset Description

We evaluate our method on two datasets: (i) a public benchmark dataset, Breast
Ultrasound images (BUSI) [1]; (ii) the peripheral nerve ultrasound images col-
lected in our institution. Ultrasound images in the public BUSI dataset are mea-
sured from an identical site. The dataset is categorized into three sub-groups:
benign, malignant, and normal. The shape of a breast lesion varies according
to its type. The benign lesion possesses a relatively round and convex shape.
On the other hand, the malignant lesion possesses a rough and uneven spherical
shape. The BUSI dataset consists of 780 images. The average image size of the
dataset is 500 × 500 pixels.

The peripheral nerve dataset was created at the Department of Physical
Medicine and Rehabilitation, Korea University Guro Hospital. The dataset con-
sists of ultrasound images of two different anatomical structures, the peroneal
nerve and the ulnar nerve. The peroneal nerve, on the outer side of the calf of
the leg, contains 410 images with an average size of 494 × 441 pixels. The per-
oneal nerve images are collected from six different anatomical structures where
the nerve stem comes from the adjacent fibular head. FH represents the fibular
head, and FN represents fibular neuropathy. FN+α represents that the measured
site is α cm away from the fibular head. The ulnar nerve is located along the
inner side of the arm and passing close to the surface of the skin near the elbow.
The ulnar nerve dataset contains 1234 images with an average size of 477 × 435
pixels. Table 2 describes the sample distribution of datasets. This study was
approved by the Institutional Review Board at Korea University (IRB number:
2020AN0410).

3.2 Experimental Setup

Each dataset was randomly split at a ratio of 80:20 for training and testing. Each
training set was also randomly split into 80:20 for training and validation. SAM
comes with three segmentation modes: segmenting everything in a fully auto-
matic way, bounding box mode, and point mode. However, in the case of apply-
ing SAM for medical image segmentation, it seems that the segment everything
mode is prone to erroneous region partitions. The point-based mode empirically
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requires multiple iterations of prediction correction. The bounding box-based
mode can clearly specify the ROI and obtain good segmentation results without
multiple trials and errors [16]. Therefore, we choose the bounding box prompts as
input to the prompt encoder for SAM, MedSAM, and CEmb-SAM. In the train-
ing phase, the bounding box coordinates were generated from the ground-truth
targets with a random perturbation of 0–10 pixels.

Fig. 2. Segmentation results on BUSI (1st and 2nd rows) and peripheral nerve dataset
(3rd and 4th rows).

The input image’s intensity values were normalized using Min-Max normal-
ization [21] and resized to 3 × 256 × 256. We used the pre-trained SAM (ViT-B)
model as an image encoder. An unweighted sum between Dice loss and cross-
entropy loss is used as the loss function [11,15]. Adam optimizer [13] was chosen
to train our proposed method and baseline models using NVIDIA RTX 3090
GPUs. The initial learning rate of our model is 3e-4.

3.3 Results

To evaluate the effectiveness of our method, we compare CEmb-SAM with the
U-net [23], SAM [14], and MedSAM [16]. The U-net is trained from scratch on
BUSI and peripheral nerve datasets, respectively. The SAM is used with the
bounding box mode. The pre-trained SAM (ViT-B) weights are used as image
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encoder and prompt encoder. During inference, the bounding box coordinates are
used as the input to the prompt encoder. Likewise, the pre-trained SAM (ViT-B)
weights are used as image encoder and prompt encoder in the MedSAM. The
mask decoder of MedSAM is fine-tuned on BUSI and peripheral nerve datasets.
CEmb-SAM also uses the pre-trained SAM (ViT-B) model as an image encoder
and prompt encoder, and fine-tunes the mask decoder on BUSI and peripheral
nerve datasets. During inference, the bounding box coordinates are used as the
input to the prompt encoder.

For the performance metrics, we used the Dice Similarity Coefficient (DSC)
and Pixel Accuracy (PA) [18]. Table 3 shows the quantitative results compar-
ing with CEmb-SAM, MedSAM, SAM (ViT-B), and U-net on both BUSI and
peripheral nerve datasets. From Table 3, we observe that our method achieves
the best results on both DSC and PA scores. CEmb-SAM outperformed the
baseline methods in terms of the average DSC by 18.61% in breast, 14.85% in
peroneal, and 14.68% in ulnar, and in terms of the average PA by 3.26% in
breast, 2.24% in peroneal and 1.71% in ulnar.

Figure 2 shows the visualization of segmentation results on peripheral nerve
dataset and BUSI. The qualitative results show that CEmb-SAM achieves the
best segmentation results with fewer missed and false detections in the segmen-
tation of both the breast lesions and peripheral nerves. The results demonstrate
that CEmb-SAM is more effective and robust in the segmentation through learn-
ing from domain shifts caused by heterogeneous datasets.

4 Conclusion

In this study, we propose CEmb-SAM which adapts the Segment Anything
Model to each dataset sub-group for joint learning from the entire heteroge-
neous datasets of ultrasound medical images. The proposed module for condi-
tional instance normalization was able to guide the model to effectively combine
image embeddings with subgroup conditions for both the BUSI and peripheral
nerve datasets. The proposed module helped the model deal with distribution
shifts among sub-groups. Experiments showed that CEmb-SAM achieved the
highest score in DSC and PA on both the public BUSI dataset and peripheral
nerve datasets. As future work, we plan to extend our work for improved domain
adaptation in which the model is robust and effective under higher degrees of
anatomical heterogeneity among datasets.
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Abstract. Histopathological images are essential for medical diagnosis
and treatment planning, but interpreting them accurately using machine
learning can be challenging due to variations in tissue preparation, staining
and imaging protocols. Domain generalization aims to address such limita-
tions by enabling the learning models to generalize to new datasets or pop-
ulations. Style transfer-based data augmentation is an emerging technique
that can be used to improve the generalizability ofmachine learningmodels
for histopathological images. However, existing style transfer-based meth-
odscanbecomputationallyexpensive,andtheyrelyonartistic styles,which
may negatively impact model accuracy. In this study, we propose a feature
domain stylemixing technique thatusesadaptive instancenormalization to
estimate style-mixed versions of image features. We compare our proposed
method with existing style transfer-based data augmentation methods and
found that it performs similarly or better, despite requiring lower compu-
tation. Our results demonstrate the potential of feature domain statistics
mixing in the generalization of learning models for histopathological image
analysis.

Keywords: Domain Shift · Domain Generalization · Mitotic Figure ·
Style Mixing · Feature Domain Augmentation · Histopathological
Image

1 Introduction

Histopathological images play a critical role in medical diagnosis and treatment
planning, allowing healthcare providers to visualize the microscopic structures
of tissues and organs. However, accurately interpreting these images can be chal-
lenging due to variations in tissue preparation, staining and imaging protocols.
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These variations can result in significant differences in image quality, tissue mor-
phology and staining intensity, making it difficult to develop machine learning
models for analysis that generalize well to new datasets or populations. Domain
generalization is a field of machine learning that seeks to address this limitation
by enabling models to generalize to new domains or datasets. In the context
of histopathological images, domain generalization methods aim to improve the
generalizability of machine learning models by reducing the effects of dataset
bias and increasing the robustness of the model to variations in tissue prepara-
tion, staining, and imaging protocols. Recently, there has been a growing interest
in using style transfer-based data augmentation for learning visual representa-
tions that are independent of specific domains for histopathological images viz.,
[7,13,18]. This technique involves transferring the style or texture of one image to
another while maintaining the original content. By generating new images with
different styles or textures, this technique can be used to augment the train-
ing data and improve the model’s generalization performance [18]. Although the
style transfer based method achieves good results in domain generalization for
histopathological images, it takes a considerable amount of time to generate
the augmented data. Further, the collinearity between the various artistic styles
used for the style transfer may have a negative impact on the model’s accuracy.
Unlike the existing methods, in this work, we propose to apply feature domain
style mixing for the style transfer. Specifically, we use adaptive instance nor-
malization [6] to mix the feature statistics of the different images to generate a
style-augmented version of an image. Feature statistics mixing helps to save a
lot of time and computation power as data augmentation is not required, and
the dependency on the artistic style is also alleviated. We compare the proposed
method with the current state-of-the-art style transfer-based data augmentation
methods, on two image classification tasks and one object detection task. We find
that the proposed method performs similarly or better than the image domain
mixing-based methods, despite having low computation requirements.

2 Related Work

In the field of digital pathology, researchers have developed several deep learn-
ing approaches to address challenges related to domain generalization such as
normalization and style transfer. One example is StainNet [7], which is designed
for stain normalization in digital pathology images. StainNet removes variations
in tissue staining across different samples, making it easier to compare and ana-
lyze images in a consistent manner. Another approach, STRAP [18], uses a deep
neural network to extract features from histopathology images and proposes a
style transfer augmentation technique to reduce the domain-specific information
in these features. This technique generates a new set of images that have the
same content as the original images but in different styles. Domain Adversarial
RetinaNet [16], a modified version of the RetinaNet object detection model, has
been developed that includes domain adversarial training. The idea is to train in
both source and target domain data to address domain generalization challenges.
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Fig. 1. A graphical illustration of FuseStyle. The shaded areas in (b) are the simulated
points for augmentation. The domain label of each sample is colour-coded. There can be
cases where the dot product (correlation) is the least within the domain as highlighted
in the dotted rectangle in (c).

3 Proposed Method

3.1 Background

Huang et al. [6] introduced Adaptive Instance Normalization (AdaIN) for style
transfer based on Instance normalization [15]. AdaIN aims to align the means
and variances of instances of the content features (c) with those of the style fea-
tures (s). It computes the mean (μ(s)) and variance (σ(s)) parameters from
instances of the style input and achieves the style transfer as AdaIN(c) =
σ(s)x−μ(c)

σ(c) + μ(s) , where μ(c) and σ(c) are respectively the corresponding
instance mean and standard deviation of a given content feature tensor. The
above parameter adaption allows for arbitrary style transfer, enabling the mix-
ing of the content and style features in a way that produces a new output with
the parameters of the style.

3.2 FuseStyle: Proposed Feature Domain Style Mixing

Our feature domain style mixing approach, FuseStyle, is inspired by AdaIN. Fus-
eStyle avoids the use of an image generating network that is usually associated
with style transfer based domain generalization. Instead, it regularizes the train-
ing of the neural network at hand (for performing a required task) by perturbing
the style information of the training instances. It can be easily implemented as
a plug-and-play module inserted between the layers of the neural network. So,
the need to explicitly create a new style image does not arise.

FuseStyle, depicted in Fig. 1, combines the feature statistics of two instances
from the same /different domains as a convex sum using random weights to
simulate new styles. As shown in Fig. 1, for an input training batch, x, a reference
batch y is generated by shuffling x across the batch dimension. We then compute
the means (μ) and variances (σ) of the corresponding instances in x and y, and
use them to compute the combined feature statistics as:

γi = λiσ(xi) + (1 − λi)σ(yi), βi = λiμ(xi) + (1 − λi)μ(yi) (1)
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where i denotes the ith instance and λi ∼ Beta(α, α) is computed from a Beta
distribution having both its shape parameters as α. A style-modified training
instance x̃i is then computed as:

x̃i = γi
xi − μ(xi)

σ(xi)
+ βi (2)

where the batch size of x̃ is the same as that of x and y. x is then randomly
(binomial-B(0, .5)) replaced by x̃ as the training batch for domain generalization.

Generating the reference batch y is crucial for achieving better generalization
to unseen domains. While previous studies [20] have used a random sample selec-
tion method for creating the reference batch, a recent study [18] in histopatho-
logical image domain generalization has shown that mixing medically irrele-
vant images, such as artistic paintings, with whole slide images (WSI) results in
improved performance. This suggests that using the least correlated image in the
reference batch could result in a better generalization than using a meaningful
stylized image. With this motivation, we propose a new method of generating the
reference batch that allows the mixing of the features of a sample with the fea-
tures of another sample in the batch that is least correlated to the former. This
method has inherent advantages over existing methods. For example, when we
combine the parameters of two furthest samples linearly, the interpolated param-
eter values are more likely to represent a simulated sample that is far from the
both the original samples than when we combine two close samples (which may
happen during random reference batch generation). This allows us to explore
more regions in the feature space and simulate a wider variety of augmented
domains, as illustrated in Fig. 1b. Consider that FuseStyle is applied between a
layer, fl, and fl+1, and the output feature of the layer fl is zl ∈ R

B×C×W×H (B
- batch dimension). Then, the correlation (ρ ∈ R

B×B) between different samples
of the current batch can be computed by:

ρ = ẑl � ẑT
l (3)

where � represents the matrix multiplication, ẑl ∈ R
B×CWH is the vectorized

version of the zl and T represents the transpose operation. Next, we set ith

sample of the reference batch, that is, yi to be xj , where j = arg minj ρi, and
ρi ∈ R

B is the ith row of the matrix ρ. Then, the ith sample of the batch x is
mixed with ith sample of the batch y as mentioned in Eq.(2) to get x̃i. We set α
of the Beta distribution to 0.3 to generate all the results reported in this paper.
During the learning phase of the neural network model, the probability of using
the FuseStyle method is set at 0.5, but it is not applied during the test phase.

Table 1. Comparison of FuseStyle with SoTA methods on Camelyon17-WILDS.

Methods STRAP FuseStyle LISA Fish ERM V-REx DomainMix IB-IRM GroupDRO

Test Accuracy 93.7% 90.49% 77.1% 74.7% 70.3% 71.5% 69.7% 68.9% 68.4%
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Table 2. Classification using FuseStyle and STRAP on MIDOG′21 Dataset.

STRAP
Test Accuracy(%)

FuseStyle
Test Accuracy(%)

Networks{Train,Test} XR S360 CS XR S360 CS

{S360+CS,XR} 67.33 87.99 84.67 77.56 91.07 90.46

{XR+CS, S360} 88.35 76.78 91.14 90.06 75.16 92.16

{XR+S360,CS} 88.92 92.70 74.28 86.65 88.96 74.10

4 Experimental Details

4.1 Datasets and Task

In our study, we compared our proposed method with the recent state-of-the-art
histopathological domain generalization using two datasets. 1. The MIDOG’21
Challenge dataset [3] consisted of 200 samples of human breast cancer tis-
sue stained with Haematoxylin and Eosin (H&E). Four scanning systems were
used to digitize the samples: Leica GT450, Aperio CS2 (CS), Hamamatsu XR
(XR), and Hamamatsu S360 (S360), resulting in 50 WSIs from each system.
2. The Camelyon17-WILDS [9] dataset comprised 1,000 histopathology images
distributed across six domains, representing different combinations of medical
centres and scanners. In our study, we focused on three tasks: classification
between mitotic figures and non-mitotic figures using the MIDOG’21 dataset,
tumour classification using the Camelyon17 dataset, and detection of mitotic
and non-mitotic figures using the MIDOG’21 dataset. TFor the mitotic figure
detection task, the details regarding dataset preparation can be found in the
supplementary material of our study. For the Camelyon17 WILDS dataset, we
used the default settings and train test split as given on the challenge website.
For the classification task on MIDOG’21, we cropped patches of size 64 × 64
around the mitotic and non-mitotic figure, and we then performed an 80–20
train-test split on the cropped patches keeping the patches from each domain
separate.

4.2 Model Architecture, Training and Methods

Classification: Here, we employ ResNet50 [5] CNN architecture and integrate
FuseStyle after layers 1 and 4 of the network for 15 epochs. We use Binary Cross
Entropy (BCE) Loss for training, while Adam Optimizer [8] with a learning rate
of 1e-4 is utilized. To facilitate smooth training, a scheduler is used, that is,
when no improvement is seen during model training after 2 epochs, the learn-
ing rate is reduced by a factor of 0.01. The batch size is set to 256 for both
Camelyon17-WILDS [9] and MIDOG’21 Challenge datasets [3]. Recent studies
on style transfer indicate that style information can be modified by altering the
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instance-level feature statistics in the lower layers of a Convolutional Neural Net-
work (CNN) while preserving the image’s semantic content representation [4,6],
and hence, we consider layers 1 and 4 of the ResNet to use FuseStyle.

Mitotic Figure Detection: For mitotic figure detection, we utilize RetinaNet
[11] with ResNet50 as the backbone architecture and incorporate FuseStyle on
layers 1 and 4 of the backbone. We use Focal Loss and train the network for
100 epochs on the MIDOG’21 Challenge dataset with a batch size of 6. Adam
Optimizer [8] is used with a learning rate of 1e-4. We use the adaptive learning
rate decay scheduler, that is, when no improvement is seen in model training
after two epochs, the learning rate is reduced by factor of 0.1 for stable training.

Methods: To assess the effectiveness of our proposed approach, we compare
it to eight state-of-the-art domain generalization methods, namely STRAP [18],
LISA [19], Fish [14], ERM [9], V-REx [10], DomainMix [17], IB-IRM [1], and
GroupDRO [12] for classification task on the Camelyon17-WILDS dataset, where
we evaluate the classification accuracy. The best existing approach STRAP [18]
based on the performance data on Camelyon17-WILDS dataset is used further
for comparison with the proposed approach on the MIDOG’21 Challenge dataset,
where both classification and mitotic figure detection are considered. We imple-
mented the networks using the PyTorch library in Python and utilized a GeForce
GTX 2080Ti GPU for efficient processing.

(a) GT (b) RetinaNet (c) STRAP (d) FuseStyle

Fig. 2. Mitotic figure detection by different methods in S360 image with model trained
on XR & CS, where Red box→Mitotic and Blue box→Non-Mitotic. (Color figure
online)

5 Results and Discussion

Classification Task Results: We evaluate the state-of-the-art (SOTA)
methods along with ours based on their classification performance in out-of-
distribution domains, and we use accuracy as the performance metric. Our app-
roach is first compared to the other methods in Table 1, where the Camelyon17
dataset is used for both training and testing (out-of-distribution). The results
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presented in Table 1 demonstrate that our approach outperforms all the methods
except STRAP [18].

One should note regarding STRAP that its performance heavily relies on the
generated stylized dataset used for training. The time required to generate the
stylized data for the Camelyon17- WILDS is around 300 h in our set up and for
the MIDOG’21 Challenge dataset, it is around 75 h. On the other hand, there is
no data generation involved with our FuseStyle. Further, the main operation in
FuseStyle is a dot product, which is computationally cheap, and the complexity
of our feature mixing strategy is negligible compared to existing augmentation
techniques.

Due to the substantial dependence of STRAP on the generated stylized aug-
mentation, careful selection of style images for every dataset becomes funda-
mental to reproduce its similar performance on different datasets. Therefore,
to further investigate the performance of FuseStyle and STRAP, we conduct a
classification experiment on the MIDOG’21 Challenge Dataset, the results of
which are presented in Table 2. As seen, if the network is trained on S360 and
CS, and tested on XR, there is a 10.23% advantage in test accuracy for Fus-
eStyle over STRAP. Furthermore, the accuracy improves by 5.79% and 3.08%
for S360 and CS, which are the seen domains, respectively. In the other cases
of Table 2, the approaches outperform each other almost equal number of times,
but most importantly, the differences in their accuracies are relatively low. This
shows that FuseStyle is at par with STRAP in these cases in spite of it being
significantly less complex. We also infer from the table that FuseStyle produces
consistent performance irrespective of the training and testing domains.

Mitotic Figure Detection Task Results: We conduct an experiment on this
task using three different models: Our FuseStyle, STRAP and RetinaNet [11].
All these models use ResNet50 as their backbone architecture, but Retinanet
does not involve any domain generalization. We provide Precision, Recall and
F1 score as the performance metrics of detection in Table 3. Here the models are
trained using training data from XR and CS scanners. As a result, the images
from S360 represent an out-of-distribution scenario. As can be seen, FuseStyle
outperforms both STRAP [18] and RetinaNet in most cases in terms of F1
score that incorporates both precision and recall. FuseStyle’s superiority over
RetinaNet demonstrates the usefulness of our way of domain generalization.

Table 3. Mitotic Figure Detection Analysis on MIDOG′21 Challenge Dataset.

Network Precision Recall F1 Score

XR S360 CS XR S360 CS XR S360 CS

RetinaNet 0.91 0.93 0.93 0.76 0.3 0.76 0.83 0.45 0.84

STRAP 0.85 0.91 0.88 0.88 0.70 0.95 0.87 0.79 0.92

FuseStyle 0.82 0.92 0.90 0.92 0.76 0.90 0.87 0.83 0.90
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Table 4. Objective evaluation on
MIDOG′21 Challenge Dataset.

Network Methods XR S360 CS Time/epoch
(sec)

Train:
S360 & CS
Test:
XR

M1 76.42 89.45 88.76 08

RA 77.56 91.07 90.46 08

M2 67.05 88.64 90.29 08

M3 74.43 87.18 88.76 111

Train:
XR & CS
Test:
S360

M1 84.09 71.59 85.18 08

RA 90.06 75.16 92.16 08

M2 90.34 75.65 91.65 08

M3 83.07 78.90 89.95 111

Train:
XR & S360
Test:
CS

M1 88.64 89.45 72.40 08

RA 86.65 88.96 74.10 08

M2 87.78 90.91 76.32 08

M3 86.34 87.34 78.02 111

Table 5. Objective evaluation on
MIDOG′22 Challenge Dataset.

Network Methods XR S360 CS Time/epoch
(sec)

Train:
S360 & CS
Test:
XR

M1 75.10 81.16 80.58 28

RA 74.27 83.59 79.74 28

M2 76.78 75.68 68.80 28

M3 78.74 83.28 81.24 331

Train:
XR & CS
Test:
S360

M1 77.06 80.24 78.89 28

RA 80.84 80.24 81.62 28

M2 75.94 81.76 81.53 28

M3 81.26 81.76 79.26 331

Train:
XR & S360
Test:
CS

M1 81.12 81.46 82.28 28

RA 81.34 84.19 82.75 28

M2 73.71 76.60 73.42 28

M3 80.14 83.89 74.08 331

A visual result of mitotic figure detection using FuseStyle, STRAP and Reti-
naNet is shown in Fig. 2a along with the ground truth. As we can see from the
figure, the use of FuseStyle, unlike the use of the other two, results in accurate
detection and classification of all mitotic and non-mitotic figures present. While
the use of RetinaNet results in an unsuccessful classification of a mitotic figure,
the use of STRAP results in detection failure.

Design Analysis of Our Approach: Our investigation has revealed that com-
bining distant features can lead to the extraction of domain-invariant features.
To achieve this, we had proposed using the dot product method, but other tech-
niques for generating a reference batch exist. To explore this further, we conduct
an empirical investigation using four different methods: M1: Mixing with Ran-
dom Shuffle, Reference Approach (RA): Mixing with Least Dot Product (Fus-
eStyle), M2: Mixing with Maximum Euclidean Distance, and M3: Mixing with
Maximum KL Divergence. We study the Euclidean distance based approach and
also experiment with an advanced approach based on KL divergence. To evalu-
ate the robustness of the proposed approach, we train the ResNet50 model on
two scanner datasets and tested it on the third scanner. The comparison of the
results obtained from the study are presented in Tables 4 & 5. The compari-
son is based on the test accuracy (in percentage) of different scanners and the
time required for training. The obtained results reveal the effectiveness of the
proposed approach of sample selection for mixing. The detailed analysis of the
findings is provided in the table, demonstrating the superiority of the proposed
method over the other methods.

Based on the results presented in Table 4, it can be observed that the Dot
Product method is the most consistent in terms of network performance across
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different domains. In contrast, the Random Shuffle method (M1) fails to perform
well in the second case, and the Euclidean Distance method (M2) fails in the first
case for the out-of-distribution domain. The KL Divergence method (M3) does
not perform well in the in-distribution domain, as observed in the second case for
the XR scanner, and it also requires a significantly longer computational time
compared to the other methods. Therefore, the experimental studies suggest that
FuseStyle (RA) provides the most consistent results as well as takes less time
compared to KL divergence method (M3) on the MIDOG’21 Challenge dataset.
For further analysis of our method, we conduct additional experiments on the
MIDOG’22 Challenge dataset [2] as shown in Table 5, using the same reference
batch generation methods. The results demonstrate that the FuseStyle (RA)
performs well for both in-distribution and out-of-distribution domains.

6 Conclusion

We present, FuseStyle, a novel method that computes generalized features by
mixing them in the feature space to address domain shift issues related to
histopathological images. It uses a new approach of feature mixing based on
correlation computation. FuseStyle has lower computational requirements, with
dot product being the main operation in it. We have shown that the performance
of our method in classification and detection tasks is at par or better than the
state-of-the-art on various datasets. We also find from experimental results that
the proposed feature-mixing method has strong domain generalization capabili-
ties. In summary, our method is simple, effective and consistent, and it has the
potential to enhance the out-of-distribution performance of any existing machine
learning method.
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Abstract. Federated learning is a promising direction to tackle the pri-
vacy issues related to sharing patients’ sensitive data. Often, federated
systems in the medical image analysis domain assume that the participat-
ing local clients are honest. Several studies report mechanisms through
which a set of malicious clients can be introduced that can poison the
federated setup, hampering the performance of the global model. To over-
come this, robust aggregation methods have been proposed that defend
against those attacks. We observe that most of the state-of-the-art robust
aggregation methods are heavily dependent on the distance between the
parameters or gradients of malicious clients and benign clients, which
makes them prone to local model poisoning attacks when the param-
eters or gradients of malicious and benign clients are close. Leveraging
this, we introduce DISBELIEVE, a local model poisoning attack that cre-
ates malicious parameters or gradients such that their distance to benign
clients’ parameters or gradients is low respectively but at the same time
their adverse effect on the global model’s performance is high. Exper-
iments on three publicly available medical image datasets demonstrate
the efficacy of the proposed DISBELIEVE attack as it significantly low-
ers the performance of the state-of-the-art robust aggregation methods
for medical image analysis. Furthermore, compared to state-of-the-art
local model poisoning attacks, DISBELIEVE attack is also effective on
natural images where we observe a severe drop in classification perfor-
mance of the global model for multi-class classification on benchmark
dataset CIFAR-10.
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1 Introduction

The success of deep models for medical image analysis [13] greatly depends on
sufficient training data availability. Strict privacy protocols and limited avail-
ability of time and resources pose challenges in collecting sizeable medical image
datasets [12]. Although different medical institutions may be willing to collabo-
rate, strict privacy protocols governing patients’ information restrict data shar-
ing. Federated learning (FL) offers a promising solution that allows different
institutions to share information about these models without revealing personal
information about the patients [6,18,20]. Federated Learning is a machine learn-
ing paradigm that learns a single shared global model by collaboratively learning
from different local models on distributed systems without sharing the data.

A federated learning setup involves multiple clients and a global server [18].
The global server initializes the global model and sends the parameters back to
the clients. The clients then train their local models on the data present locally.
Once the local models are trained, the parameters are sent to the global model for
aggregation. The global model then uses an aggregation algorithm to aggregate
all the parameter updates and transmits the updated parameters back to the
clients, and the cycle repeats until convergence. The federated learning setup
allows the clients to preserve the privacy of their data. The success of a federated
learning system is majorly dependent on the use of an aggregation algorithm. For
example, Federated Averaging [18] is an aggregation algorithm in which all the
parameters accumulated at the global server from different clients are averaged.
However, not all clients would act truthfully in real-world scenarios, and there
may be some byzantine clients. A client is said to be a byzantine client if it acts
malicious intentionally due to the presence of an adversary or unintentionally
due to faulty equipment or hardware issues [26]. Studies report that even a single
byzantine worker can seriously threaten the FL systems [4].

A malicious byzantine worker with an adversary who knows the client’s data
and model parameters can induce local poisoning attacks to degrade the perfor-
mance of the global model in an FL system. A local poisoning attack in an FL
system is a process through which the training of the global model is adversely
affected due to either data perturbation or perturbation in model parameters
(or gradients) at the local client’s side. These attacks are termed as local data
poisoning attacks or local model poisoning attacks, respectively. Several studies
indicate that state-of-the-art aggregation methods, for instance, using federated
averaging in the presence of a byzantine client, will reduce the performance of
the global server. Therefore, to defend against attacks by byzantine clients, the
global server uses robust aggregation algorithms [25,26]. This research studies the
efficacy of state-of-the-art robust aggregation methods for FL systems for med-
ical image analysis and highlights their vulnerability to local model poisoning
attacks. We observe that the state-of-the-art robust aggregation methods heav-
ily rely on the distance between malicious and benign client model parameters
(or gradients). We argue that some model poisoning attacks can exist when the
parameters or gradients of malicious clients are close in Euclidean space to those
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of benign clients that circumvent the existing state-of-the-art robust aggregation
methods.

Research Contribution: We introduce the DISBELIEVE attack that
demonstrates the limitation of state-of-the-art robust aggregation methods for
FL on medical images in defending against local model poisoning attacks. The
novelty of the proposed attack lies in the fact that it maximizes the objective
loss function while ensuring that the Euclidean distance between the malicious
parameters and benign parameters is kept marginal. As a result, the attacker
can optimally reduce the global model’s performance without being detected by
the aggregation algorithms. Experiments on three publicly available datasets of
different medical image modalities confirm the efficacy of DISBELIEVE attack
in significantly reducing the classification performance of the global model (by
up to 28%). We also benchmark two current state-of-the-art local model poison-
ing attack methods and demonstrate that the proposed DISBELIEVE attack
is stronger, leading to higher performance degradation. Lastly, we demonstrate
that DISBELIEVE attack also effectively works on natural images, as similar
trends are reported on the CIFAR-10 dataset.

2 Related Work

2.1 Robust Aggregation Algorithms

Robust aggregation algorithms are defense methods that prevent malicious
clients from significantly affecting parameter updates and global model perfor-
mance. KRUM [3] is among the earliest methods for robust aggregation and
proposes that for each communication round, only one of the clients is selected
as an honest participant, and updates from the other clients are discarded. The
client that is chosen as honest is the one whose parameters are closer in Euclidean
space to a chosen number of its neighbors. On the other hand, Trimmed Mean
[26] assumes malicious clients to have extreme values of parameters and proposes
to avoid malicious clients by selecting parameters around the median. Recently,
the Distance-based Outlier Suppression (DOS) [1] algorithm was proposed to
defend against byzantine attacks in FL systems for medical image analysis. DOS
proposes to detect malicious clients using COPOD, a state-of-the-art outlier
detection algorithm [15]. Subsequently, it assigns less weight to the parameters
from those malicious clients. Specifically, it uses Euclidean and cosine distances
between parameters from different clients and computes an outlier score for each
client. Later, these scores are converted to weights by normalizing them using
a softmax function. We note that all these state-of-the-art robust aggregation
algorithms assume that malicious clients’ parameters (or gradients) are signif-
icantly different from benign clients’ parameters (or gradients). However, we
hypothesize that an attack can be introduced such that parameters (or gradi-
ents) of malicious and benign clients are only marginally different, while it can
still severely degrade the global model’s performance.
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2.2 Attacks in Federated Learning

There are various kinds of attacks in a federated learning paradigm, such as
inference attacks, reconstruction attacks, poisoning attacks [5,11,16]. In infer-
ence attacks, the attacker can extract sensitive information about the training
data from the learned features or parameters of the model, thus causing privacy
issues. Reconstruction attacks, on the other hand, try to generate the train-
ing samples using the leaked model parameters [5]. GAN’s [7] have successfully
extracted private information about the client’s data even when model param-
eters are unclear due to the use of differential privacy [9]. Poisoning attacks in
a federated learning paradigm can be categorized as data poisoning attacks or
model poisoning attacks. Both these attacks are designed to alter the behavior
of the malicious client’s model [17]. In data poisoning attacks, the attacker tries
manipulating the training data by changing the ground truth labels or carefully
poisoning the existing data [23]. In model poisoning attacks, the attacker aims
to alter the model parameters or gradients before sending them to the global
server [17].

In this research, we design a model poisoning attack that can bypass state-
of-the-art robust aggregation algorithms such as DOS, Trimmed Mean, and
KRUM. We evaluate the performance of existing state-of-the-art model poi-

(a) Model Poisoning Attack on Parameters (b) Model Poisoning Attack on Gradient

Fig. 1. Intuition behind our proposed local model poisoning attack: (a) Green
nodes represent the parameters of benign clients, Pink node represent the parameters of
malicious clients, Yellow node represents the mean of malicious clients parameters (i.e.
average of parameters of Pink nodes), Red node represents the malicious parameters (of
model M). We ensure that the shift in parameters of model M from mean is less than
the threshold Pdist where Pdist is the maximum distance between any two attacked
clients parameters. (b) Green nodes represent gradients of benign clients, Pink nodes
represent the malicious clients gradients, Yellow node represents the mean of malicious
clients gradients (i.e. average gradients of Pink nodes), Blue node represents gradient of
trained malicious model M , Red node represents gradient of malicious model M after
scaling. We ensure that after scaling gradients the distance from mean of gradients
is less than threshold Gdist where Gdist is the minimum distance between any two
attacked clients gradients.
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Algorithm 1. DISBELIEVE Attack on Parameters
1: Calculate mean of parameters:

µparam =
1

f

f∑

i=1

Wmal
i

2: Set the threshold value:

Pdist = Maxi,k∈f i�=k||Wmal
i − Wmal

k ||22
3: Combine all the training data from malicious clients
4: Initialize the malicious model M with parameters µparam

5: Train M with Loss = −Lossclass until:

||Wmal
model − µparam||22 ≤ Pdist

6: Return Wmal
model

Algorithm 2. DISBELIEVE Attack on Gradients
1: Calculate the mean of parameters and gradients:

µparam =
1

f

f∑

i=1

Wmal
i µgrad =

1

f

f∑

i=1

Gradmal
i

2: Set the threshold value:

Gdist = Mini,k∈f i�=k||Gradsmal
i − Gradsmal

k ||22
3: Combine all the training data from malicious clients
4: Initialize the malicious model M with parameters µparam

5: Train M with Loss = −Lossclass
6: Gradsmal

model ← Gradients of M
7: start ← 0.001, end ← 1000
8: while |start − end| > 0.01 do
9: sf ← (start + end)/2

10: Gradsmal
new = sf ∗ Gradsmal

model

||Gradsmal
model||

11: diff = ||Gradsmal
new − µgrad||22

12: if diff > Gdist then start = sf else end = sf
13: end while
14: Return the Gradsmal

new

soning attacks such as LIE attack [2] and Min-Max attack [19]. We note that
the LIE attack forces the malicious parameters (or gradients) to be bounded in a
range (μ−zσ, μ+zσ) where μ and σ are the mean and standard deviation along
parameters of the malicious clients, and z is a parameter that sets the lower
and upper bounds for deviation around the mean [2]. On the other hand, Min-
Max adds deviation to parameters or gradients and then scales them such that
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their distance from any other non-malicious parameter is less than the maximum
distance between two benign updates. However, instead of relying on standard
deviation to approximate the range across which malicious clients’ parameters
(or gradients) can be manipulated, the proposed attack computes the malicious
parameters (or gradients) by maximizing the classification loss (as opposed to
minimizing it) to degrade the global model’s performance. Additionally, we pro-
pose to approximate the range across which the parameters (or gradients) can be
perturbed by evaluating the distance between the malicious clients’ parameters
(or gradients) in Euclidean space.

3 Proposed Method

Formally, we assume a total of n federated learning clients out of which f clients
(1 < f < n/2) have been compromised such that rather than improving global
models’ accuracy, the compromised clients work towards decreasing the per-
formance of the global model. We further assume that all the attackers cor-
responding to different malicious clients are working together or that a single
attacker controls all the malicious clients. The attacker thus has access to all
the malicious client’s model parameters and training data. Our goal is to cre-
ate malicious parameters or gradients that can bypass the robust aggregation
algorithms and reduce the performance of the global model. In this direction,
this research introduces a model poisoning attack (DISBELIEVE attack) that
creates a single malicious model (M) with access to parameters, gradients, and
training data of all the f clients. M serves as a proxy for f clients and aims
towards pushing the output of the global model away from the distribution of
the ground truth labels.

To be specific, the malicious model (M) is trained to generate malicious
parameters or gradients by minimizing the loss Lmodel = −Lclass as opposed to
benign clients where the loss given by Lmodel = Lclass is minimized. Here Lclass

refers to cross-entropy loss. Once the malicious parameters (or gradients) are
computed, M forwards these malicious values to all the f clients, which then
transmit these values to the global model. Note that all the f clients receive the
same malicious parameters (or gradients) from M . Our work leverages the short-
comings of robust federated learning aggregation algorithms such as KRUM [3]
and DOS [1], which are based on the assumption that malicious parameters or
gradients are significantly different from the parameters or gradients of benign
clients in euclidean space respectively. Therefore, to reduce the defense capabili-
ties of these aggregation algorithms, it is essential to perturb the parameters (or
gradients) so that their Euclidean distance from benign clients’ parameters (or
gradients) does not become significant. This can be ensured if the Euclidean dis-
tance between the malicious parameters (or gradients) and the mean of benign
clients’ parameters (or gradients) remains bounded. Due to the normal distribu-
tion of data, it is safe to assume that the mean of parameters (or gradients) of
clients controlled by the attacker is closer to the mean of benign clients param-
eters (or gradients) respectively in the Euclidean space [2].
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The local model poisoning attack can be introduced on model parameters or
gradients [1,2]. However, the critical difference between parameters and gradi-
ents is that gradients have direction and magnitude, whereas parameters only
have magnitude. Hence, we propose different attacks on parameters and gra-
dients. Details on the strategy for attacking parameters or the gradients are
provided in Sect. 3.1 and Sect. 3.2, respectively. The attacker initially chooses
the clients it wants to attack and accumulates the chosen clients’ model parame-
ters, gradients, and training data. Subsequently, the attacker computes the mean
of chosen (attacked) clients’ model parameters (μparam) and gradients (μgrad)
and initializes a new malicious model M with these mean values.

μparam =
1
f

f∑

i=1

Wmal
i μgrad =

1
f

f∑

i=1

Gradmal
i

Here, Wmal
i and Gradmal

i refer to the model parameters or gradients of the ith

malicious client respectively.

3.1 DISBELIEVE Attack on Parameters

The initialized malicious model, M , is trained on the accumulated training data
for minimizing the loss function Lmodel = −Lclass until the Euclidean distance
between the malicious model’s (M) parameters and the mean values is less than
the maximum distance between any two attacked client’s parameters.

||Wmal
model − μparam||22 ≤ Pdist where, Pdist = Maxi,k∈f i�=k||Wmal

i − Wmal
k ||22

Here, Wmal
model refers to the malicious parameters after training of the malicious

model M , and Pdist refers to a threshold. The threshold Pdist is critical to ensure
a successful attack as it controls how far the malicious parameters can be from
the mean of parameters in Euclidean space. Through the proposed attack, we
suggest setting this value to the maximum Euclidean distance between any two
malicious client parameters. Intuitively this is a reliable value within an upper
bound on the malicious parameters by which they can deviate within a fixed
bounded Euclidean space around the mean (see Fig. 1a). The pseudo-code for
the attack is given in Algorithm 1.

3.2 DISBELIEVE Attack on Gradients

For attacking gradients, as described in Algorithm 2, we train the malicious
model M with the similar loss function, Loss = −Lossclass, however, without
any thresholding. Once the model M is trained, we accumulate the malicious
gradients (Gradsmal

model) and scale them by a scaling factor sf to make sure that
their distance from the mean of gradients of malicious clients (μgrad) is smaller
than the minimum distance between any two malicious client’s gradients (Gdist)
(see Fig. 1b).

Gdist = Mini,k∈f i�=k||Gradsmal
i − Gradsmal

k ||22
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To find the optimum scaling factor (sf), we use a popular search algorithm
known as binary search [19]. We initialize a start value of 0.001 and an end
value of 1000. An optimal sf is computed using the divide and conquer binary
search algorithm in between these values, which makes sure that after scaling
the unit gradient vector, its distance to the mean of gradients (μgrad) is less than
Gdist

||sf ∗ Gradsmal
model

||Gradsmal
model||

− μgrad||22 ≤ Gdist

For calculating gradients, the minimum distance (Gdist) is preferred over the
maximum distance (Pdist) when attacking parameters. This preference arises
because maximizing the objective loss function results in gradients pointing in
the opposite direction compared to the direction of benign gradients. By using
the minimum distance, we can prevent malicious gradients from becoming out-
liers.

4 Experiments

4.1 Datasets

CheXpert-Small: CheXpert [10] is a large publicly available dataset contain-
ing over 200,000 chest X-ray images for 65,240 patients. However, consistent with
the experimental protocol used by state-of-the-art DOS [1], we use the smaller
version of CheXpert, also known as CheXpert-small, that contains 191,456 X-
Ray images of the chest. The dataset contains 13 pathological categories. A
single observation from the dataset can have multiple pathological labels. Each
sample’s pathological label is classified as either negative or positive. Consis-
tent with the state-of-the-art aggregation method DOS [1], we preprocess all the
images by rescaling them to 224×224 pixels using the torchxrayvision library.

Ham10000: Ham10000 [24] or HAM10k is a publicly available benchmark
dataset containing dermatoscopic images of common pigmented skin lesions. It is
a multi-class dataset with seven diagnostic categories and 10000 image samples.
As suggested in [1], we use this dataset to evaluate the model performance in
non-iid settings where each image is resized to 128×128.

Breakhis: The breakhis dataset [22] is a public breast cancer histopathological
database that contains microscopic images of breast cancer tissues. The dataset
contains 9109 images from 82 different patients. The images are available in
magnifying scales such as 40X, 100X, 200X, and 400X. Each image is a 700 ×
460 pixels sized image, and we rescale each image to 32 × 32 for our classification
task. We use this dataset for binary classification of 400X magnified microscopic
images where we classify cancer present in images as either benign or malignant.
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CIFAR-10: The Cifar-10 [14] is a popular computer vision dataset that contains
60000 natural images of size 32 × 32. The dataset contains ten classes, and each
class has 6000 images. 50000 images are reserved for training, and 10000 images
are used for testing.

4.2 Experimental Setup and Implementation Details

The experimental setup used in this research is consistent with the experimental
protocols suggested in [1]. Subsequently, we use Chexpert-Small [10] and Ham10k
datasets [24] for parameter-based attacks. Likewise, the CheXpert-small dataset
is used to train the Resnet-18 [8] model with a batch size of 16 for 40 communi-
cation rounds, and the number of local epochs is set to 1, whereas the Ham10k
dataset is trained on a custom model with two convolutional layers and three
fully connected layers with a batch size of 890 for 120 communication rounds
and the number of local epochs were set to 3. For both datasets, the number of
clients is fixed at 10, the number of attackers is fixed at 4, and the learning rate
is set to 0.01.

For preserving the privacy of clients and their data, federated learning setups
usually share gradients instead of model parameters. Hence, we also evaluate our
attack for gradient aggregation on the Breakhis [22]. Furthermore, to assess the
generalization ability of the proposed DISBELIEVE attack on natural images,
we evaluate the proposed DISBELIEVE attack on the CIFAR-10 dataset with a
gradient aggregation strategy at the global server. For experiments on Breakhis
dataset, VGG-11 [21] model is trained for binary classification. Training occurs
for 200 communication rounds with a batch size of 128 and a learning rate 0.0001.
For the CIFAR-10 dataset, we use the VGG-11 [21] model with ten output classes

Fig. 2. Performance of different attacks on Ham10k (top-row) and CheXpert (bottom-
row) datasets under different parameter aggregation methods. Left to right (in order):
AUC scores when attacks are made on DOS, Trimmed Mean and Krum.
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Fig. 3. Performance of different attacks on Breakhis (top-row) and CIFAR-10 (bottom-
row) datasets under different gradient aggregation methods. Left to right (in order):
AUC scores when attacks are made on DOS, Trimmed Mean and Krum.

for 500 communication rounds with a batch size of 1000 and a learning rate of
0.001. Adam optimizer was used for both datasets. The total number of clients
and attackers for both datasets is fixed at 10 and 3, respectively.

Table 1. Area Under the Receiver Operating Characteristic Curve (AUC) scores with
different types of poisoning attack on model parameters

Dataset Attack DOS Trimmed Mean KRUM

Ham10k No Attack 0.72 0.75 0.70

LIE Attack 0.70 0.74 0.70

Min-Max Attack 0.61 0.68 0.58

Ours 0.52 0.70 0.51

CheXpert No Attack 0.71 0.71 0.70

LIE Attack 0.69 0.71 0.65

Min-Max Attack 0.59 0.70 0.59

Ours 0.44 0.52 0.43
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Table 2. Area Under the Receiver Operating Characteristic Curve (AUC) scores with
different types of poisoning attack on model gradients

Dataset Attack DOS Trimmed Mean KRUM

Breakhis No Attack 0.81 0.78 0.83

LIE Attack 0.84 0.77 0.79

Min-Max Attack 0.50 0.74 0.72

Ours 0.50 0.75 0.50

CIFAR-10 No Attack 0.83 0.84 0.81

LIE Attack 0.64 0.71 0.60

Min-Max Attack 0.50 0.60 0.50

Ours 0.50 0.78 0.50

5 Results and Discussions

5.1 Baselines

The DISBELIEVE attack is evaluated against three state-of-the-art defense
methods: DOS [1], Trimmed Mean [26], and KRUM [3]. Comparisons are also
made with prominent attacks, including LIE [2] and Min-Max [19], under differ-
ent defense methods. Under any defense, AUC scores are highest in the absence of
attacks. The LIE attack slightly reduces AUC scores while remaining relatively
weaker due to parameter bounding. Conversely, introducing noise and scaling
parameters makes the Min-Max attack more potent, consistently reducing AUC
scores more significantly across various aggregation methods.

5.2 Vulnerability of State-of-the-Art Defense Methods

The proposed DISBELIEVE attack reveals the vulnerability of the current state-
of-the-art robust aggregation algorithms (Trimmed Mean [26], KRUM [3], and
DOS [1]) over local model poisoning attacks. We empirically validate that our
proposed local model poisoning attack (DISBELIEVE attack) can successfully
circumvent all three state-of-the-art robust aggregation algorithms (refer Figs. 2,
3). For both parameters and gradient aggregation, DISBELIEVE attack consis-
tently reduces the global model’s area under the curve (AUC) scores on all three
benchmark medical image datasets. Furthermore, to assess the effectiveness of
the proposed DISBELIEVE attack on natural images apart from the specialized
medical images, we additionally conduct DISBELIEVE attack on a popular com-
puter vision dataset, CIFAR-10. For natural images, we also find (refer Fig. 3)
that the DISBELIEVE attack reduces the global model’s AUC score for differ-
ent state-of-the-art aggregation algorithms DOS, Trimmed Mean, and KRUM.
Tables 1 and 2 show that when subjected to DISBELIEVE attack, the AUC
scores fall drastically for all datasets compared to the AUC scores in case of no
attack. Therefore, these results demonstrate the vulnerability of state-of-the-art
robust aggregation methods to the proposed local model poisoning attack.



308 I. Joshi et al.

5.3 Superiority of DISBELIEVE Attack over State-of-the-art Local
Model Poisoning Attacks

The state-of-the-art robust aggregation algorithm for medical images DOS is
only evaluated against additive Gaussian noise, scaled parameter attacks, and
label flipping attacks. We additionally benchmark the performance of two state-
of-the-art model poisoning attacks, namely Min-Max [19] and LIE [2] on all the
three medical image datasets (refer Figs. 2 and 3). Results establish the superi-
ority of the proposed DISBELIEVE attack over state-of-the-art model poisoning
attacks on different medical image datasets. While using DOS and KRUM aggre-
gation, the DISBELIEVE attack reduces the global model’s AUC score by a more
significant margin than both Min-Max and LIE for all the datasets. In the case of
trimmed mean, the results of DISBELIEVE attack are comparable on Ham10k
(parameter aggregation) and Breakhis (gradient aggregation) datasets with the
Min-Max attack and better on CheXpert (parameter aggregation) dataset when
compared to the Min-Max and LIE attacks. To compare the effectiveness of DIS-
BELIEVE attack with state-of-the-art model poisoning attacks on the natural
image dataset (CIFAR-10), we observe that DISBELIEVE attack performs bet-
ter than LIE and Min-Max on DOS and KRUM defenses. Tables 1 and 2 compare
state-of-the-art model poisoning attacks and the proposed DISBELIEVE attack
under different state-of-the-art robust aggregation algorithms for parameter and
gradient aggregation, respectively.

6 Conclusion and Future Work

This research highlights the vulnerability of state-of-the-art robust aggregation
methods for federated learning on medical images. Results obtained on three
public medical datasets reveal that distance-based defenses fail once the attack
is designed to ensure that the distance between malicious clients and honest
clients’ parameters or gradients is bounded by the maximum or minimum dis-
tance between parameters or gradients of any two attacked clients, respectively.
Moreover, we also demonstrate that the proposed DISBELIEVE attack proves
its efficacy on natural images besides domain-specific medical images. In the
future, we plan to design a robust aggregation algorithm for federated learning
in medical images that can withstand the proposed local model poisoning attack.

Acknowledgment. This work was done as a part of the IMI BigPicture project
(IMI945358).
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Abstract. Developing a generalized segmentation model capable of
simultaneously delineating multiple organs and diseases is highly desir-
able. Federated learning (FL) is a key technology enabling the collabo-
rative development of a model without exchanging training data. How-
ever, the limited access to fully annotated training data poses a major
challenge to training generalizable models. We propose “ConDistFL”, a
framework to solve this problem by combining FL with knowledge dis-
tillation. Local models can extract the knowledge of unlabeled organs
and tumors from partially annotated data from the global model with
an adequately designed conditional probability representation. We vali-
date our framework on four distinct partially annotated abdominal CT
datasets from the MSD and KiTS19 challenges. The experimental results
show that the proposed framework significantly outperforms FedAvg and
FedOpt baselines. Moreover, the performance on an external test dataset
demonstrates superior generalizability compared to models trained on
each dataset separately. Our ablation study suggests that ConDistFL
can perform well without frequent aggregation, reducing the commu-
nication cost of FL. Our implementation will be available at https://
github.com/NVIDIA/NVFlare/tree/main/research/condist-fl.

Keywords: Federated learning · Partially labeled datasets ·
Multi-organ and tumor segmentation · Abdominal CT

1 Introduction

Accurately segmenting abdominal organs and malignancies from computed
tomography (CT) scans is crucial for clinical applications such as computer-
aided diagnosis and therapy planning. While significant research has focused on
segmenting individual organs [1,7] and multiple classes of organs without malig-
nancies [4,6], a generalized model capable of handling multiple organs and dis-
eases simultaneously is desirable in real-world healthcare scenarios. Traditional
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supervised learning methods, on the other hand, rely on the amount and quality
of the training data. Regrettably, the cost of high-quality medical image data
contributed to a paucity of training data. For many anatomies, only trained pro-
fessionals can produce accurate annotations on medical images. On top of this,
even experts often only have specialized knowledge for a specific task, making
it challenging to annotate the organs and corresponding malignancies of various
anatomies and imaging modalities.

The lack of sufficient annotated datasets for multiple organs and tumors poses
a significant challenge in developing generalized segmentation models. To address
this issue, several studies have explored partially annotated datasets, where only
a subset of targeted organs and malignancies are annotated in each image, to
build generalized segmentation models [5,10,11,21,23]. However, sharing pri-
vate medical datasets among institutions raises privacy and regulatory concerns.
To overcome these challenges, federated learning (FL) was introduced [16]. FL
enables collaborative training of a shared (or “global”) model across multiple
institutions without centralizing the data in one location.

FL has emerged as a promising technology to enhance the efficiency of med-
ical image segmentation [19,24,25]. In FL, each client trains a local model using
its data and resources while only sending model updates to the server. The
server then combines these updates into a global model using “FedAvg” [16].
Recent studies have utilized FL to develop unified multi-organ segmentation
models using partially annotated abdominal datasets [15,26] as illustrated in
Fig. 1. However, these approaches often neglect lesion areas. Only a few studies
attempt to generate to segment the various organs and their cancers simulta-
neously [20,29]. The model aggregation in FL is a major hurdle because of the
data heterogeneity problem brought on by data diversity [30]. Merging models
from different sources with non-IID data can lead to performance degradation.
This issue is further exacerbated when clients use data annotated for different
tasks, introducing more domain shifts in the label space. Additionally, unbal-
anced dataset sizes among clients may affect the global model’s performance on
tasks with limited data.

Fig. 1. An illustration of the ConDistFL framework for multi-organ and tumor seg-
mentation from partial labels. Each client has only a subset of the targeted organs and
malignancies annotated in their local datasets.
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In this work, we suggest a framework to tackle data heterogeneity in FL for
multi-class organ and tumor segmentation from partially annotated abdominal
CT images. The main contributions of this work are as follows:

1. Our proposed conditional distillation federated learning (ConDistFL) frame-
work enables joint multi-task segmentation of abdominal organs and malig-
nancies without additional fully annotated datasets.

2. The proposed framework exhibits stability and performance with long local
training steps and a limited number of aggregations, reducing data traffic and
training time in real-world FL scenarios.

3. We further validate our models on an unseen fully annotated public dataset
AMOS22 [13]. The robustness of our approach is supported by both the qual-
itative and quantitative evaluation results.

2 Method

ConDistFL extends the horizontal FL paradigm [27] to handle partially anno-
tated datasets distributed across clients. An illustration of our ConDistFL frame-
work for multi-organ and tumor segmentation from partial labels is shown in
Fig. 1. In the client training of ConDistFL, we combine supervised learning
on ground truth labels and knowledge distillation learning [9] using the global
model’s predictions. During supervised learning, we adopt the design of marginal
loss [21] to avoid knowledge conflicts caused by missing labels. To improve the
knowledge distillation in FL settings, we proposed a conditional distillation loss
to maximize the agreement between the global model and local model predictions
on unlabeled voxels.

Fig. 2. ConDistFL data flow diagram for client k; x is a batch of image patches from
the local dataset; y is the corresponding label; ŷg is the output of global model; and
ŷk is the output of the local model.

2.1 Conditional Distillation for Federated Learning

In ConDistFL, the client keeps the latest global model as the teacher model for
knowledge distillation and uses the local model as the student model. Figure 2
illustrates the training data flow in client k and the relationship between the
global, local, and loss functions.
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2.2 Supervised Loss

We adopt the design of marginal loss [21] for the supervised loss Lsup. Let N be
the total number of classes across all datasets, Fk be a collection of foreground
classes on client k, Bk be the background class, and all unlabeled classes on
client k, and ŷk,i be the output logits of client k’s model for class i. By applying
softmax normalization on the output logits ŷk,i for each i ∈ N , we can derive
the output probability p̂k,i for each class i as

p̂k,i =
eŷk,i

∑N
j=0 eŷk,j

for i = 0, 1, 2, . . . , N − 1. (1)

Similar to the marginal loss, all probabilities in the background Bk are merged
into one for a new non-foreground class. The probabilities remain the same as
p̂k,i for all i ∈ Fk. Then we apply Dice loss [17] with cross-entropy loss [28]
(DiceCELoss) for supervised learning of the segmentation model. The final loss
term Lsup is defined as

Lsup = DiceCELoss(p̂′
k, y′), (2)

where the background merged probability is p̂′
k, and the corresponding one-hot

label is y′.

2.3 ConDist Loss

For the conditional distillation (ConDist) loss LConDist, we normalize the output
logits of both the global and the local model using softmax with temperature τ .
The normalized logits from the global model p̂τ

g and the k-th client’s local model
p̂τ

k is defined as

p̂τ
k = softmax(ŷk/τ) and p̂τ

g = softmax(ŷg/τ), (3)

where τ is set to 0.5 to enhance the confidence of the model output.

Foreground Merging and Background Grouping. Contrary to the super-
vised loss, we merge the probabilities for class i for all i ∈ Fk in p̂τ

k and p̂τ
g . Then

we define

p̂k,Fk
=

∑

i∈Fk

p̂τ
k,i and p̂g,Fk

=
∑

i∈Fk

p̂τ
g,i, (4)

where the p̂τ
k,i and p̂τ

g,i are the probabilities for class i in p̂τ
k and p̂τ

g , respectively.
Moreover, we group the background classes in client k by the organs in the
background Bk. Let Mk be the number of unlabeled organs in client k, and
Ok = {G0, G1, G2, . . . GMk

}. G0 is the set containing the global background
class. The probability for each background group can be calculated as
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p̂k,Gi
=

∑

j∈Gi

p̂τ
k,j and p̂g,Gi

=
∑

j∈Gi

p̂τ
g,j for i = 0, 1, . . . , Mk, (5)

where Gi is a set containing the class of the healthy part of unlabeled organ i
and all the classes of associated lesions to the organ i.

Conditional Probability for Background Organs. We define conditional
probabilities p̂k,Ok|Bk

and p̂g,Ok|Bk
as

p̂k,Ok|Bk
=

(
p̂k,G0

1 − p̂k,Fk

,
p̂k,G1

1 − p̂k,Fk

, . . . ,
p̂k,GMk

1 − p̂k,Fk

)

, (6)

p̂g,Ok|Bk
=

(
p̂g,G0

1 − p̂g,Fk

,
p̂g,G1

1 − p̂g,Fk

, . . . ,
p̂g,GMk

1 − p̂g,Fk

)

, (7)

where 1 − p̂k,Fk
and 1 − p̂g,Fk

are the total probabilities of all classes in Bk with
respect to p̂τ

k and p̂τ
g . The conditional probability p̂k,Ok|Bk

and p̂g,Ok|Bk
are the

probabilities given that the prediction is only in Bk.

Foreground Filtering. To avoid learning from incorrect predictions and reduce
the potential conflict with the supervised loss, we filter off undesired voxels with
a mask operation M, which removes the union of foreground area in ground
truth label y and all the area in ŷg where the predictions are in Fk.

Segmentation ConDist Loss. Combining the conditional probability
p̂k,Ok|Bk

, p̂g,Ok|Bk
, and the foreground filtering mask M, we define the ConDist

loss LConDist for segmentation task by applying soft Dice loss as

LConDist = DiceLoss(M(p̂k,Ok|Bk
),M(p̂g,Ok|Bk

)). (8)

To handle meaningless global model predictions in the initial FL rounds, we
incorporate an adjustable weight w for the ConDist loss, gradually increasing it
as the FL round number increments. The total loss L for ConDistFL is defined
as

L = Lsup + w ∗ LConDist. (9)

In practice, we schedule the weight w from 0.01 to 1.0 linearly.

3 Experiments

We conducted our experiments on the Medical Segmentation Decathlon (MSD)
[22] and the KiTS19 Challenge [8] datasets. In the MSD dataset, we only used
the liver, pancreas, and spleen subsets. Except for the spleen dataset, each above
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dataset includes annotations for the organs and tumors. We split the dataset into
training, validation, and testing subsets by 60%, 20%, and 20%, respectively. For
the non-FL standalone training, each model only uses a single dataset. For FL
training, we distributed the four datasets to four independent clients. In addi-
tion, we evaluated our models on the multi-modality Abdominal Multi-Organ
Segmentation Challenge 2022 (AMOS22) dataset [13], which consists of 300 CT
volumes with 15 abdominal organ annotations. To accommodate the labeling
format of AMOS22, where healthy organs and lesions are not distinguished, we
merged the tumor predictions with associated organs from our model output
before computing the metrics using ground truth labels.

The nnU-Net [12] data preprocessing pipeline was adopted with minor modi-
fications. We first resampled the images to a median spacing of [1.44, 1.44, 2.87]
millimeters and clipped the intensity to the range [−54, 258]. Then we applied
z-score normalization by assuming the mean intensity under ROI to be 100 and
its standard deviation to be 50 since the complete multi-organ ROI is unavail-
able. We set the input patch size to [224, 224, 64] and the training batch size
to 4.

Our neural network backbone was built using the 3D DynU-Net from
MONAI [3], an effective and flexible U-Net implementation. Deep supervision
was also enabled to speed up the training process and enhance model perfor-
mance. The deep supervision loss is identical to the supervised loss with an
extra exponential weight decay. We trained our models using stochastic gradient
descent (SGD) and cosine annealing schedule. The initial learning rate was set
to 10−2 and decreased gradually to 10−7.

The loss function for the non-FL standalone baselines is Dice loss with cross-
entropy. For the FL experiments, we evaluated FedAvg [16], FedOpt [2], Fed-
Prox [14], and ConDistFL. To assess the effectiveness of the marginal loss in
Sect. 2.2, we trained two sets of FedAvg models: one using the standard Dice loss
and the other employing the marginal loss. The FedProx model was trained with
the FedAvg aggregator and μ = 0.01. For FedOpt and ConDistFL, we utilized
the Federated Optimization (FedOpt) aggregation method, with an additional
SGD optimizer with momentum m = 0.6 implemented on the server.

We employed a single NVIDIA V100 GPU for each standalone experi-
ment and FL client. The FL experiments were implemented using NVIDIA
FLARE [18].

4 Results and Discussion

Our experiments encompass standalone baselines using a single dataset, an abla-
tion study of standard Dice loss on FedAvg (FedAvg*), marginal loss on FedAvg,
FedProx, and FedOpt, and the combined marginal loss and ConDist loss on
ConDistFL. To establish a fair comparison between related works, we trained a
ConDistFL (Union) model with the same learning targets as [15,26], i.e., only
to segment the union of the organs and tumors. Additionally, we evaluated the
proposed method on the unseen AMOS22 dataset to demonstrate its generaliz-
ability.
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Table 1 compares the average Dice score of each task between standalone
baseline models and the best performance server models for FedAvg, FedProx,
FedOpt, and ConDistFL. All the models are trained for a total of 120, 000 steps
to allow for a fair comparison. For the best FedAvg*, FedAvg, and ConDistFL
models, we utilized 60 FL aggregation rounds with 2000 local steps per round.
As for the FedProx and FedOpt best model, we conducted 120 FL rounds and
1000 local steps per round.

The results of FedAvg* and FedAvg demonstrate that the marginal loss effec-
tively resolves conflicts between inconsistent labels and yields reasonable perfor-
mance. ConDistFL stands out as the top-performing method among all exper-
iments utilizing the marginal loss. FedAvg, FedProx, and FedOpt show similar
performance overall, with FedAvg and FedOpt delivering acceptable results for
most tasks, except for the pancreas and tumor. In contrast, FedProx performs
well for the pancreas and tumor, but there is a notable drop in performance
on other tasks. This suggests that although the FedProx loss can regularize the
models for heterogeneous clients like the proposed ConDist loss, its task-agnostic
nature harms the performance when training on multiple tasks with different
partial labels.

Table 1. Comparison between non-FL results and each FL result. The average Dice
score of each organ for the standalone model is computed separately from four distinct
models. FedAvg* indicates the model trained with FedAvg and standard Dice loss.

Kidney Tumor Liver Tumor Pancreas Tumor Spleen Average

Standalone 0.9563 0.8117 0.9525 0.7071 0.7974 0.5012 0.9632 0.8102

FedAvg* 0.7707 0.4894 0.4937 0.3202 0.5403 0.1396 0.0000 0.3934

FedAvg 0.9419 0.6690 0.9381 0.6500 0.6933 0.2985 0.9059 0.7281

FedProx 0.9247 0.6799 0.8972 0.6244 0.7419 0.4033 0.7060 0.7111

FedOpt 0.9473 0.7212 0.9386 0.6087 0.6734 0.2390 0.9394 0.7239

ConDistFL 0.9477 0.7333 0.9446 0.6944 0.7478 0.3660 0.9562 0.7700

The ablation study in Fig. 3 investigates the impact of the number of local
training steps on the global model performance. Increasing the number of local
training steps from 100 to 1000 for all tested methods improved performance.
However, when more local training steps were used, both FedAvg and FedOpt
encountered model divergence issues, with FedAvg experiencing a more signifi-
cant performance drop than FedOpt. In contrast, ConDistFL consistently deliv-
ered better performance across different local step experiments. This can be
attributed to ConDistFL providing a common task, preventing model divergence
in FL, and the inherent complexity of tumor segmentation requiring more local
training steps. By maintaining consistent representations of unknown classes,
ConDistFL allows for the use of larger local step sizes to learn the tumor seg-
mentation task effectively.

Table 2 compares the average Dice scores of standalone baselines, ConDistFL,
and ConDistFL (Union) on the unseen AMOS22 dataset. ConDistFL demon-
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Fig. 3. The ablation study results on the test set. The x-axis is the number of local
training steps (s) and rounds numbers (r), while the y-axis is the average Dice score of
all organs and tumors.

strates significant generalizability improvements over the standalone baselines,
while ConDistFL (Union) further enhances performance. This highlights the
challenge of segmenting tumors and organs together compared to considering
them a single class.

Table 2. External test results for AMOS22 dataset in average Dice scores.

Kidney Liver Pancreas Spleen Average

Standalone 0.5916 0.9419 0.5944 0.8388 0.7417

FedAvg 0.5032 0.8718 0.4637 0.5768 0.6039

FedProx 0.4698 0.6994 0.5185 0.7120 0.5999

FedOpt 0.5171 0.6740 0.4113 0.6418 0.5611

ConDistFL 0.7218 0.9191 0.6188 0.8556 0.7788

ConDistFL (Union) 0.8746 0.9471 0.7401 0.9079 0.8674

Table 3 compares ConDistFL (Union) and the reported performance of FL
PSMOS and MENU-Net on the MSD test set. FL PSMOS utilizes a fully anno-
tated dataset for model pre-training, while MENU-Net introduces a fifth client
with a fully annotated dataset. The results demonstrate that ConDistFL achieves
comparable performance without needing fully annotated data. Additionally,
ConDistFL significantly reduces the number of aggregation rounds, leading to
substantial savings in data traffic and synchronization overheads.

Figure 4 showcases 3D visualizations of our proposed ConDistFL, demon-
strating effective and simultaneous segmentation of multiple organs and tumors
without ensembling. Compared to FedAvg and FedOpt, ConDistFL achieves
smoother and more continuous segmentations. The comparison with the ground
truth of AMOS22 validates the generalizability of our FL framework.
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Table 3. Comparing the average Dice scores of ConDistFL to reported performance
of related works. “Rounds” is the number of FL aggregation rounds.

Rounds Kidney Liver Pancreas Spleen Average

FL PSMOS [15] 2,000 0.966 0.938 0.788 0.965 0.9143

MENU-Net [26] 400 0.9594 0.9407 0.8005 0.9465 0.9118

ConDistFL (Union) 120 0.9657 0.9619 0.8210 0.9626 0.9278

Fig. 4. 3D renderings of segmentation on the best performed FL server model using
(a) FedAvg, (b) FedOpt, (c) FedProx, (d) ConDistFL on KITS19 data, and (e) ground
truth and (f) the external segmentation using ConDistFL on AMOS22 data.

5 Conclusion

This work offers a promising FL approach for generalized segmentation mod-
els from partially annotated abdominal organs and tumors, reducing annota-
tion costs and speeding up model development. Moreover, the proposed method
requires less frequent aggregation, making it suitable for real-world FL scenarios
with limited communication bandwidth.
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Abstract. Machine Unlearning (MU) is an emerging discipline study-
ing methods to remove the effect of a data instance on the parameters
of a trained model. Federated Unlearning (FU) extends MU to unlearn
the contribution of a dataset provided by a client wishing to drop from
a federated learning study. Due to the emerging nature of FU, a practi-
cal assessment of the effectiveness of the currently available approaches
in complex medical imaging tasks has not been studied so far. In this
work, we propose the first in-depth study of FU in medical imaging,
with a focus on collaborative prostate segmentation from multi-centric
MRI dataset. We first verify the unlearning capabilities of a panel of
FU methods from the state-of-the-art, including approaches based on
model adaptation, differential privacy, and adaptive retraining. For each
method, we quantify their unlearning effectiveness and computational
cost as compared to the baseline retraining of a model from scratch after
client dropout. Our work highlights a new perspective for the practi-
cal implementation of data regulations in collaborative medical imaging
applications.

Keywords: federated unlearning · segmentation · prostate cancer

1 Introduction

With the emergence of new data regulations [1,2], the storage and processing of
sensitive personal data is often subject of strict constraints and restrictions. In
particular, the “right to be forgotten” states that personal data must be erased
upon request, with subsequent potential implications on machine learning models
trained by using this data. Machine Unlearning (MU) is an emerging discipline
that studies methods to remove the contribution of a given data instance used
to train a machine learning model [3].
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Motivated by data governance and confidentiality concerns, federated learn-
ing (FL) has gained popularity in the last years to allow data owners to col-
laboratively learn a model without sharing their respective data. FL is particu-
larly suited for Machine Learning applications in domains where data security
is critical, such as in healthcare [4,5]. With the current deployments of FL in
the real-world, it is of crucial importance to extend MU approaches to feder-
ated unlearning (FU), to guarantee the unlearning of data instances from clients
wishing to opt-out from a collaborative training routine. This is not straightfor-
ward, since current MU schemes have been proposed essentially for centralized
learning, and cannot be seamlessly applied to the federated one without break-
ing the data governance and privacy setting of FL. Recent FU methods have
been proposed in the machine learning literature [6–9], with their effectiveness
being demonstrated on typical machine learning benchmarks [10–12]. Neverthe-
less, these benchmarks mostly focus on cross-device scenarios, with partitioning
based on heuristics which often do not reflect the complex variability of real-
world data analysis problems, such as the cross-site image biases and hetero-
geneity typical of collaborative medical imaging studies. The translation of FU
in medical imaging applications requires the investigation of unlearning through
the setup of realistic cross-silo benchmarks.

This work provides the first study of the effectiveness of existing FU
approaches in a real-world collaborative medical imaging setup, focusing on fed-
erated prostate segmentation. To this end, we develop a benchmark composed
by large publicly available prostate segmentation dataset, and define a realistic
cross-silo FL scenario with heterogeneity depending on acquisition protocol and
scanner. We introduce novel criteria to quantitatively compare the FU methods,
assessing the 1) utility of the model after unlearning, 2) unlearning capability,
and 3) efficiency of the unlearning procedure. Our results identify critical aspects
of current unlearning methods, and show that paradigms based on adaptive
retraining are the only effective FU approaches from the state-of-the-art.

This manuscript is structured as follows. In Sect. 2, we provide formal def-
initions for FL and the different existing FU schemes. We also introduce the
metrics used to measure the effectiveness of an unlearning scheme. In Sect. 3, we
introduce the federated dataset for prostate segmentation used in this work and
verify the effectiveness of all the FU schemes.

2 Methodology

After providing in Sect. 2.1 the formalism of FL, we introduce FU in Sect. 2.2.
We explain the limitations of MU methods for the federated setting in Sect. 2.3
and detail the existing FU schemes investigated in this paper in Sect. 2.4.
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2.1 Federated Learning

FL consists in optimizing the average of local loss functions Li across a set I of
clients, weighted by their importance pi such that

∑
i∈I pi = 1, i.e.

L(θ, I) =
∑

i∈I

piLi(θ), (1)

where θ represents the parameters to be optimized. The weight pi can be inter-
preted as the importance given by the server to client i in the federated optimiza-
tion problem which, without loss of generality, can be considered identical for
every client, i.e. pi = 1/n where n = |I|. We define θ∗ the parameters minimizing
the federated problem (1), i.e. θ∗ := arg minθ L(θ, I).

To estimate the global optimum θ∗, FedAvg [13] is an iterative training
strategy based on the aggregation of local model parameters. At each iteration
step t, the server sends the current global model parameters θt to the clients.
Each client updates the model by minimizing the local cost function Li through
a fixed amount of SGD initialized with θt. Subsequently each client returns the
updated local parameters θt+1

i to the server. The global model parameters θt+1

at the iteration step t + 1 are then estimated as a weighted average, i.e.

θt+1 =
∑

i∈I

piθ
t+1
i . (2)

We define θ̃ the parameters vector obtained after performing FL over T server
aggregations, i.e. θ̃ = θT+1. When the clients’ local loss functions Li are convex,
[14,15] show that θ̃ converges to θ∗ as T goes to infinity.

2.2 Federated Unlearning

Removing a client c from the set of clients I modifies the federated problem (1),
which becomes L(θ, I\c). We define θ∗

−c = arg minθ L(θ, I\c) as the optimum of
this new optimization problem. An FU scheme can be formalized as a function
h taking as input θ̃, the model trained with every client in I, including c, to
return parameters h(θ̃, c) ideally equivalent to θ∗

−c. In practice, due to the non-
convexity and stochasticity characterizing the optimization problems of typical
medical imaging tasks, it is challenging to assess the proximity between the
model h(θ̃, c) and the ideal target θ∗

−c in terms of pre-defined metrics in the
parameters space. For this reason, in this work we quantify the quality of FU
by introducing a series of criteria motivated by the ideal requirements that an
unlearning scheme should satisfy.

To this end, we first notice that the baseline FU approach, here named
Scratch, achieves unlearning by performing a new FedAvg training from
scratch on the remaining clients I \ c. We define θ̃−c the parameters vectors
obtained with Scratch which, by construction, provide perfect unlearning of
client c. We note however that this procedure wastes the contribution of the
other clients which was already available from the training of θ̃, i.e. the set of
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parameters {θt
i}i∈I\c,t∈{1,...,T} gathered during federated optimization. There-

fore, an effective FU methods should be more efficient than Scratch in opti-
mizing h(θ̃, c). These considerations motivate the following criteria to assess the
unlearning quality of FU scheme:

– Utility. The predictive capability of the model with parameters h(θ̃, c) on
the testing sets of the available clients I \ c should be equal or superior to
the one of Scratch for the FU scheme considered. This criterion shows that
the model resulting from FU maintains high predictive performances on the
available clients data.

– Unlearning. Unlearning of client c implies the loss of predictive capabilities
of the model h(θ̃, c) on the training set of this client. If the performance of
the model after unlearning is superior to the one of Scratch, we deduce that
FU was ineffective in removing the information from client c.

– Time. The amount of server aggregations needed to complete the unlearning
of client c should be inferior to the ones achieved by Scratch.

2.3 Machine Unlearning vs Federated Unlearning

Several MU methods have been proposed in the centralized learning setting [3].
Most MU approaches consists in defining h as a Newton step based on the Hes-
sian H and gradients G estimated on all the remaining data points from the
current model θ̃, i.e. h(θ̃, c) = θ̃ − H(θ̃, I \ c)−1G(θ̃, I \ c) [16–21]. The main
drawback behind the use of this approach in the federated setting is that it
requires clients to compute and share gradients and Hessians of the local loss
function. This operation should be avoided in FL, as these quantities are known
to potentially leak information about the training data [22]. Other approaches to
MU consist in applying zero-mean Gaussian perturbations to the model param-
eters, with magnitude of the standard deviation σ depending on the properties
of the data on which unlearning has to be operated [16,23,24]. This approach is
also not practical in a federated setting, as the estimation of the noise amplitude
requires the access to potentially sensitive clients information.

2.4 Federated Unlearning Schemes

To meet the practical requirements of real-world use of FL, we consider FU
methods compatible with the following criteria: 1) no additional work has to be
performed by the clients withdrawing the study, 2) no additional information
beyond model parameters must be exchanged between clients and server, 3)
no modification of data is allowed at client side. Following this consideration,
we identified 4 state-of-the-art FU approaches for our benchmark [6–9], and
excluded a number of methods not satisfying the criteria [25–28]. We provide a
brief description of the selected approaches, and refer to the related publications
for additional details.
Fine-tuning. Fine-tuning of model parameters after excluding client c is a stan-
dard FU baseline [16,18]. Nevertheless, although fine-tuning can be shown to
satisfy the utility criterion, it does not formally guarantee unlearning [9].
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FedAccum [6]. FedAccum implements an heuristic based on the removal of
the contribution of the parameters {θt

c}T
t=1 provided by client during FL opti-

mization. Similarly to Scratch, the server performs the training procedure of
equation (2), while however integrating in the optimization routine the existing
contributions of the remaining clients {θt

i}i∈I\c,t∈{1,...,T}.
FedEraser [6]. This approach performs a retraining from scratch, by however
scaling the new contributions by the norm of the ones computed to obtain θ̃,
i.e. p̃i = pi ‖θt

i‖ /
∥
∥
∥θ̃t

i

∥
∥
∥, every Δt aggregation rounds. FedEraser is faster than

Scratch by requiring a smaller amount of local work from the remaining clients,
and less aggregations.
Unlearning with Knowledge Distribution (UKD) [7]. UKD consists in
subtracting to θ̃, the model trained with every client in I, all the contributions
of client c, i.e. h(θ̃, c) = θ̃ − pi

∑T
t=1 θt

c. The server subsequently applied fine-
tuning to optimize the similarity of the predictions θ̃ and h(θ̃, c) on a control
dataset owned by the server. With UKD, no client needs to participate to the
unlearning phase, while it is required the use of a dataset owned by the server.
Projected Gradient Ascent (PGA) [8]. This FU scheme unlearns client c by
performing a succession of projected gradient ascents (PGA) on θ̃ to achieve low
performance of h(θ̃, c) on the dataset of client c. While PGA requires the dataset
of client c to unlearn it, we consider this FU scheme to show that minimizing
the performances of client c is not sufficient to unlearn it.
Informed Federated Unlearning (IFU) [9]. IFU consists in tracing back the
history of global models {θt}T

t=1 and restart FL from a specific round t∗, which
is identified by fixing a cutoff on the magnitude of the contributions of client
c, measured as

∑
t<t∗

∥
∥θt+1

c − θt
∥
∥. Prior to retraining, the global model θt∗−1

is perturbed with Gaussian noise according to a given unlearning budget (ε, δ),
with an analogy to randomized mechanisms in differential privacy [29].

3 Experiments

We introduce the federated dataset used for prostate segmentation in Sect. 3.1,
and verify in Sect. 3.2 the efficiency of the FU schemes introduced in Sect. 2.4,
based on the criteria introduced in Sect. 2.2. The code for the experiments is
publicly available1.

3.1 Federated Dataset for Prostate Segmentation

Our benchmark consists of a FL application on prostate segmentation from a
large collection of magnetic resonance images (MRIs) dataset. We consider three
publicly available image segmentation benchmarks (Decathlon [30], Promise12
[31], and ProstateX [32]) to create a cross-silo federated partitioning composed by
four centers (C1 to C4), where data split are based on specific image acquisition
properties, as summarized in Table 1.
1

https://github.com/Accenture/Labs-Federated-Learning/tree/FU prostate segmentation.

https://github.com/Accenture/Labs-Federated-Learning/tree/FU_prostate_segmentation
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Table 1. Description of the four centers used for FL and the respective training and
testing DSC, obtained with the model trained with the four of them.

ID Samples Dataset Description DSC Train DSC Test

C1 32 Decathlon Full Dataset 91.8(0.37) 87.4(1.4)

C2 23 Promise12 With Endorectal Coil 96.3(0.15) 81.8(2.7)

C3 27 Promise12 W o Endorectal Coil 95.8(0.14) 84.1(5.7)

C4 184 ProstateX With Scanner Skyra 96.1(0.22) 84.4(5.8)

Decathlon [30] is a dataset composed of medical images of ten different
organs including prostate. We allocate to C1 the 32 publicly available Decathlon
MRIs of prostate segmentation acquired with different scanners. We merge the
masks of the peripheral and transition zone to define the prostate mask.

Promise12 [31] was created for the Prostate MRI Segmentation challenge
of 2012. We partition the 50 published training data samples based on the acqui-
sition method: images acquired with and without endorectal coil (respectively
allocated to C2 and C3).

ProstateX [32] is a collection of MRIs from different medical studies
acquired with two different scanners (Skyra and Triotim, both from Siemens)
and segmentation masks provided for 189 of them [33]. We ignore the five data
points obtained with Triotim and allocate the remaining 184 images to C4.

We note that the images in C2 are the only ones acquired by using the
endorectal coil, thus introducing a specific bias for this center. Prostate MRIs
were resized to a resolution of 320 × 320 × 16. For each center, we randomly
select 80% of its data samples to create a training set and allocate the remaining
20% to a testing set. FedAvg was used to optimized the federated training
problem by optimizing a UNET [34] to maximise the dice score (DSC). To ensure
generality of the results, we consider 5 random federated splits of the data and
5 different model initialization for the FL process. Hence, mean and standard
error of the results reported in this section are estimated across 25 learning and
unlearning scenarios. We detail in Appendix A the tuning of the hyperparameters
for dropout value, learning rate, and amount of local work. We also detail the
implementation of each FU scheme.

The model obtained when training with FL and the four centers has the
performances summarized in Table 1. As expected, C2 is associated with the
lowest testing DSC, reflecting the specific heterogeneity of the data in C2.

3.2 FU Benchmark

The unlearning benchmark here considered consists in unlearning the contribu-
tions of center C2, the only center with MRIs acquired with endorectal coil. We
provide in Table 2 a quantification of the impact of the FU schemes on utility
and unlearning criteria, when the server performs 500 server aggregations to
unlearn center C2 with each FU scheme. The utility of our FU application is
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the average testing DSC of the remaining centers (C1, C3, and C4), while the
unlearning capability is quantified by the DSC on the training data of center C2.

Table 2. Unlearning center C2: FU utility and unlearning criteria described in Sect. 2.2.
We note that only FedEraser and IFU are able to unlearn center C2, while keeping
high utility on the remaining ones.

FU Scheme Scratch Fine-Tun. FedAccum FedEraser UKD PGA IFU

Utility 84.7(3.4) 85.0(3.6) 84.9(3.6) 84.6(3.6) 34.5(3.6) 85.1(3.7) 84.6(3.3)

Unlearning 62.2(3.5) 84.5(1.2) 84.4(1.4) 60.5(4.4) 24.0(2.9) 83.5(1.4) 58.3(4.2)

As discussed in Sect. 2.2, an optimal FU scheme should lead to a model with
utility and unlearning capabilities as close as possible to the ones obtained with
Scratch. Based on the results of Table 2, we note that not all the FU schemes
provide acceptable unlearning and utility properties. In particular:

1. Fine-Tuning and FedAccum have high utility on the remaining centers but
their unlearning criterion is more than 20% higher than Scratch. Figure 1
illustrates this result, where the predictive mask of the model obtained with
Fine-Tuning is almost identical to the ground truth (similar qualitative
results are obtained for FedAccum, and are illustrated in Appendix A).

2. UKD has utility and unlearning performances respectively 50% and 30 %
different from Scratch, which shows that the predictive accuracy of the
model obtained with UKD is degraded on every center. Figure 1 shows that
this method provides poor segmentation results for images from both C2 (to
be unlearnt) and C3 (to be preserved).

3. FedEraser and IFU have identical utility to Scratch, while having only
up to a 4% difference in unlearning capability. We see in Fig. 1 that while the
segmentation performance in C3 is still of good quality, the correct unlearn-
ing of C2 leads to poor segmentation results, similar to those obtained with
Scratch. The slight difference between unlearning performances for IFU,
FedEraser, and Scratch is likely due to the variability between model
parameters as a result of the associated optimization routine.

The ensemble of results shown in Table 2, Fig. 1, and Appendix A, show that
only FU schemes based on adaptive retraining (FedEraser and IFU) provide
satisfactory unlearning capabilities. On the contrary, the other approaches are
either too conservative, thus leading to overly degraded models, or not effective,
thus leading to poor unlearning properties. Concerning time efficiency, we report
for IFU the amount of server aggregations needed for the resulting model to
perform identically to Scratch after 500 server aggregations. For FedEraser,
we vary the frequency Δt at which the server requires contributions from the
remaining centers. Table 3 shows that both IFU and FedEraser achieve the
desired utility and unlearning in a fraction of iterations needed by Scratch

(resp. 2× and 1.9× faster). In addition of being able to unlearn center C2,
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Fig. 1. Prediction Mask on a slice of a sample MRI from center C2 (in blue) and from
center C3 (red), where FU is applied to the data of C2. Additional results for all the
FU schemes in Fig. 2 and 3 are available in the appendix.

IFU provides statistical guarantees for the unlearning of the center C2. We also
provide in Table 6 of Appendix A the impact of the unlearning budget (ε, δ)
associated to IFU on utility and unlearning. These results show that regardless
of the unlearning budget, IFU reaches almost identical utility to Scratch, while
with the increase in budget ε and/or δ, the model is associated with worse
unlearning capabilities.

Table 3. Optimization rounds when unlearning center C2 with IFU for varying unlearn-
ing budget (3a) or with FedEraser (3b). Scratch requires 500 rounds.

δ = 0.01 δ = 0.025 δ = 0.1

ε = 0.1 276(13) 271(15) 271(14)

ε = 1 298(18) 295(16) 298(15)

ε = 10 259(18) 251(18) 228(17)

(a) FL itera-
tions (mean, std)
required by IFU
to unlearn center
C2 for varying
unlearning bud-
get parameters
(ε, δ).

Δt Utility Unlearning FL iter.

1 84.6(3.6) 60.5(4.4) 500(0)

2 84.7(3.3) 61.8(4.1) 250(0)

(b) Utility,
unlearning, and
FL iterations
(mean, std) for
FedEraser to
unlearn center
C2 for varying
frequency Δt.
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4 Conclusion

We provide in this work an investigation of FU in a practical collaborative seg-
mentation task on prostate imaging data. We first define a benchmark from a
collection of large available public dataset, to create a realistic scenario of data
heterogeneity in cross-silo applications. We show that FU methods based on
adaptive retraining (FedEraser and IFU) lead to optimal results in terms of
trade-off between model utility, unlearning, and efficiency.

This study highlights a new perspective for the practical implementation
of new data regulations in collaborative medical imaging applications. Future
extensions of this work will be devoted to the investigation of FU in general
medical applications, and to the assessment of the unlearning properties of the
proposed methods, especially related to the definition of unlearning budget and
parameters. In particular, since FedEraser does not come with specific guar-
antees on the effectiveness of the unlearning, we believe that further assessment
of the unlearning capabilities of this approaches are needed (Tables 4 and 5)..

A Additional Experiments and Experimental Details

Table 4. Hyperparameters fine-tuned to maximise the testing DSC when training with
the four centers on a 5 folds cross-validation scenario, and then used for all our learning
and unlearning scenario.

Description Range Best Value

Amount of Local Work 1 to 100 5

Amount of Server Aggregations – 500

Batch Size – 8

Local learning rate 0.0001 to 0.1 0.001

Dropout value 0 to 0.5 0.2

Table 5. Hyperparameters values for the different unlearning schemes.

Description FU scheme Range Best Value

Unlearning budget parameter ε IFU {0.1, 1, 10} 1

Unlearning budget parameter δ IFU {0.01, 0.025, 0.1} 0.025

Amount of unlearning SGDs PGA – 100

Upper bound on the training DSC of C2 PGA – 0.12

Amount of local work for remaining clients FedEraser – 5
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Table 6. Impact of the unlearning budget (ε, δ) on the difference in utility and unlearn-
ing obtained with IFU and Scratch, when unlearning center C2.

δ = 0.01 δ = 0.025 δ = 0.1

ε = 0.1 .54(.13) .54(.14) .54(.13)

ε = 1 .29(.19) .31(.18) .28(.17)

ε = 10 .42(.15) .46(.15) .55(.15)

(a) Utility

δ = 0.01 δ = 0.025 δ = 0.1

ε = 0.1 −4.2(4.6) −3.7(4.7) −3.9(4.5)

ε = 1 −4.6(3.8) −3.9(3.7) −2.9(3.5)

ε = 10 2.5(5.2) 3.9(4.7) 6.0(4.3)

(b) Unlearning

Fig. 2. Prediction Mask on a slice of a sample MRI from center C2, where FU is applied
to the data of C2.

Fig. 3. Prediction Mask on a slice of a sample MRI from center C3, where FU is applied
to the data of C2.
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Abstract. In the medical field, federated learning commonly deals with
highly imbalanced datasets, including skin lesions and gastrointestinal
images. Existing federated methods under highly imbalanced datasets
primarily focus on optimizing a global model without incorporating the
intra-class variations that can arise in medical imaging due to different
populations, findings, and scanners. In this paper, we study the inter-
client intra-class variations with publicly available self-supervised aux-
iliary networks. Specifically, we find that employing a shared auxiliary
pre-trained model, like MoCo-V2, locally on every client yields consistent
divergence measurements. Based on these findings, we derive a dynamic
balanced model aggregation via self-supervised priors (MAS) to guide the
global model optimization. Fed-MAS can be utilized with different local
learning methods for effective model aggregation toward a highly robust
and unbiased global model. Our code is available at https://github.com/
xmed-lab/Fed-MAS.

1 Introduction

Federated learning (FL) has emerged as a way to train models with decentralized
data while preserving privacy. Due to the inherent nature of data heterogeneity in
medical imaging, training in a decentralized manner exhibits performance degra-
dation compared to centralized training. With FedAvg [23] as the main base-
line, multiple works proposed to improve the model’s generic performance under
data decentralization [19,20,24]. These methods have been successful in achiev-
ing positive results, assuming a balanced global data distribution. However, they
struggle to address extreme data heterogeneity, especially in highly imbalanced
medical datasets. There have been some methods proposed to address the imbal-
anced setting [21,25]. Nevertheless, these methods shared local features among
clients, which may raise privacy concerns.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 334–346, 2023.
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Fig. 1. (a) Skin lesion attribute imbalance, (b) Gastrointestinal findings imbalance
(Ex: tracheleriazation, varices, leukoplakia). (c) Fed-MAS framework.

Label distribution skewness has been studied in the context of FL [33].
FedLC [33], inspired by LDAM [3], showed promising results by adjusting the
local client class distribution. Additionally, multiple works proposed to tackle the
issue of highly skewed label distribution (i.e. long-tailed) by decoupling the clas-
sifier and the feature extractor [5,29,32]. The rationale behind these methods is
rooted in the understanding that the classifier is the bottleneck for majority class
bias [18]. For instance, CReFF [29] retrained a balanced classifier on the server
by leveraging federated features. A notable limitation of classifier re-training is
its inability to address the intra-class attribute imbalance. Recently, [30] showed
that training with imaging data with high attribute imbalance impedes repre-
sentation learning by exacerbating the intra-class variations. In FL, the issue
of intra-class imbalance is critical when dealing with highly imbalanced medical
imaging datasets. As depicted in Fig. 1 (a), different skin tones can arise across
different clients for the same class [1]. For gastrointestinal recognition depicted
in Fig. 1 (b), different findings can arise in different clients for the same class [2].
Hence, the challenge of an unbiased robust global model that takes into account
both the attribute and class imbalance still remains. More recently, FedCE [16]
showed promising results by calculating a fair client contribution estimation in
gradient and data space for medical image segmentation; Nevertheless, it relies
on local validation samples, which may not adequately represent attribute imbal-
ance and rare diseases in highly imbalanced medical image datasets.

Publicly available pre-trained models, such as MoCo-V2 [12] that were
trained without any labels using a large set of naturals images, have been uti-
lized with their batch statistics in calculating image priors [11] and have been
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utilized with their generalizable representation to improve the performance in
highly imbalanced medical imaging tasks [8]. In this paper, we leverage these
pre-trained models locally to propose Fed-MAS as a novel approach to incorpo-
rate the client’s local variations with consistent self-supervised priors, estimating
client contributing ratios toward an unbiased robust global model.

2 Methodology

Figure 1 shows the overview of our Fed-MAS framework. Each local client is pro-
vided with a publicly self-supervised pre-trained model (e.g., MoCo-RN50 [12])
that is not involved in the training or communication process of the federated
learning framework. Consequently, these pre-trained models do not increase com-
munication costs while ensuring that each client can access the same consistent
pre-trained model. With n local clients and one global server, Fed-MAS performs
the following steps in each round: (1) Each client receives the global model to
measure its global class-aware divergence, wk, and update its local model; (2)
Each client trains its local model while estimating its class-aware divergence, ŵk;
(3) Each client corrects ŵk with wk to generate a rescue scalar, RF ; (4) Client
uploads the parameters of its local model and RF to the server; (5) The server
applies our proposed MAS to aggregate a new model from the parameters of the
received client models, weighted by RF ;

2.1 Class Aware Global Observation via Self-supervised Priors

In highly imbalanced medical image datasets, both extreme class imbalance and
inter-client intra-class variations can lead to client drift. Due to the decentraliza-
tion of data, estimating the global intra-class attribute distribution in medical
imaging within the FL framework is a challenge that is yet to be explored.

At the beginning of each round in the FL process, each client receives the
model from the global server θglobal. We study locally the distance between the
distribution of the self-supervised pre-trained model, fξ, and θglob over each
client’s local data.

Given an input image x, we feed x to the local feature encoder g to generate
a representation z = gθ(x). This representation is then fed to an MLP projector
to generate a projection y = MLPθ(z) in a space comparable with the self-
supervised model. From the same discriminative pre-trained model in all clients,
we can get a target representation y′ = fξ(x), where both y and y′ are L2
normalized. We can measure the distribution difference using mean squared error
as:

Lθ
f = 2 − 2 · 〈y, y′〉· (1)

From Eq. 1, we can generate a class-aware distance for class k with Mk total
samples as:

Lθ
k =

1
Mk

Mk∑

i=1

Lθ
f (xk,i). (2)
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Fig. 2. Analysis of MAS on HyperKvasir: (a) The globally aggregated class counts,
Mglobal, client local count, Mlocal, and wk in one round. (b) HyperKvasir non-IID
setting, (c) Client’s Contribution to θglob throughout rounds, (d) Rescue Factor (RF)
on different clients throughout rounds

We define wk = Lθglob

k . The factor wk can help to capture the distance in distri-
bution between the global server and the self-supervised model on each client’s
local data. This divergence can provide insights into the sensitivity of the global
model, θglob, in effectively capturing the specific class attribute in each client’s
local data. A high wk indicates the failure of θglob in capturing a local class k.
In Fig. 2 (a), we can see that wk is inversely proportional to the global class
distribution, even if the local client distribution is not necessarily the same.

2.2 State Estimation via Knowledge Distillation

While wk provides class-aware global divergence measurement with the same
consistent local frozen self-supervised model, a client receives the global model,
θglob, and takes subsequent optimization steps for E local epochs with uncer-
tainty to generate θ′

c. Hence, the client’s drift from the global model is hideous
after its uncertain optimization.

With a running average, a client can provide a class-aware divergence like-

lihood ŵk, where ŵk =
E∑

e=1
Lθ′

c

k . The factor ŵk can help to capture how far the

client drifted from fξ since the global measurement, wk, was taken. A client can
then correct this estimation, ŵk, with the global observation, wk, to generate a
posterior rescue factor, RF , in every round.

RF =
K∑

k=1

wkŵk. (3)

A higher RF indicates that the client has information that the global model
has not appropriately captured.

To train the projector MLPθ(·), we propose to minimize Eq. 1 along with the
local balanced risk minimization [28] to minimize a total loss Ltotal concerning
θ only as:

Ltotal = Lsup + λf Lf , (4)
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Fig. 3. (a) ISIC-FL Attribute Split, (b) Client’s Contribution to θglob throughout
rounds, (c) Rescue Factor (RF) on different clients throughout rounds

where Lsup refers to the original supervised loss and λf as a weighting factor.
This can be seen as restricting the client optimization direction. However, the
self-supervised model ensures clients align with a common reference distribu-
tion and possess implicit regularization capabilities for minority classes through
generalizable features [9].

2.3 Model Aggregation via Self-supervised Posteriors

Inspired by the fact that client-specific models should contribute more to the
global server to capture local variance, we propose a novel model aggregation
via the corrected self-supervised posteriors (MAS) . We use our proposed RF to
indicate client-specific models that should contribute more to the global model
than client-generic models to capture their attribute-class variations. While our
proposed RF can be used for biased client selection [15], we use it to aggregate
a global model. Instead of aggregating based on the weighted samples as in
FedAvg [23], we propose to weight the global model, θglob, based on the RF
value as follows:

R̄F c =
RFc∑

j

RFj
, and θr+1

glob =
C∑

c=1

R̄F cθ
′
c. (5)

For instance, Client 3,4,5 in Fig. 2 (b) have mostly minority classes and con-
tribute the most to θglob in Fig. 2 (c). Morever, in Fig. 3 (a) Client ISIC-3
have mostly underrepresented attribute and contributes the most in Fig. 3 (b).
Additionally, we show in Figs. 2 (d) and 3 (c) that the rescue factor for all
clients is decreasing throughout rounds. This highlights the ability of MAS to
accommodate different clients. (See Algorithm 1 in Appendix).

3 Experiments

Dataset. HyperKvasir [2] is a long-tailed (LT) dataset of 10,662 gastroin-
testinal tract images with 23 classes from different anatomical and pathological
landmarks and findings. We divide the 23 classes into Head (> 700 images per
class), Medium (70 ∼ 700 images per class), and Tail (< 70 images per class)
with respect to their class counts. Additionally, we partition the data across eight
clients with IID (similar label distributions) and non-IID (heterogeneous parti-
tion with Dirichlet distribution). ISIC [7] is a highly imbalanced dataset of skin
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Table 1. Comparison with other methods on HyperKvasir Dataset. All clients are
initialized with ImageNet pre-trained weights; each result is averaged over five runs.

IID non-IID Dir(α = 0.5)

Methods Head Medium Tail All B-acc Head Medium Tail All B-acc

Federated Learning Methods (FL-Methods)

FedAvg [23] 94.1 ± 1.3 72.9 ± 1.3 3.1 ± 0.9 56.69 ± 0.6 58.1 ± 0.6 86.2 ± 2.7 70.3 ± 0.5 8.0 ± 1.2 54.83 ± 1.0 56.17 ± 0.9

FedProx [20] 94.6 ± 0.4 72.1 ± 0.2 3.0 ± 1.2 56.58 ± 0.4 57.93 ± 0.4 88.1 ± 2.2 73.1 ± 2.7 3.6 ± 2.5 54.93 ± 1.3 56.51 ± 1.3

MOON [19] 94.7 ± 0.7 74.6 ± 0.4 4.0 ± 1.8 57.77 ± 0.6 59.23 ± 0.6 84.4 ± 3.6 73.1 ± 1.6 5.5 ± 2.1 54.3 ± 1.2 55.93 ± 1.1

LT-integerated FL Methods

LDAM-FL [3] 95.4 ± 0.5 72.2 ± 1.1 5.7 ± 3.9 57.77 ± 1.4 59.03 ± 1.3 86.9 ± 2.8 70.9 ± 1.2 4.7 ± 4.6 54.16 ± 1.4 55.61 ± 1.4

BSM-FL [28] 93.2 ± 1.5 74.6 ± 2.6 9.1 ± 3.7 58.92 ± 0.6 60.28 ± 0.7 89.6 ± 3.9 68.7 ± 3.0 16.4 ± 5.4 58.24 ± 1.2 59.15 ± 1.3

Label-Skew FL Methods

CReFF [29] 95.1 ± 0.8 72.0 ± 1.5 2.6 ± 1.8 56.53 ± 1.4 57.88 ± 1.4 89.3 ± 0.7 70.1 ± 1.6 9.0 ± 4.5 56.12 ± 1.3 57.34 ± 1.2

FedLC [33] 96.5 ± 0.4 75.3 ± 2.5 7.4 ± 5.5 59.73 ± 1.8 61.08 ± 1.7 95.8 ± 0.6 73.1 ± 2.4 6.6 ± 4.1 58.51 ± 1.5 59.78 ± 1.5

Fed-Mas (ours) 94.3 ± 1.2 72.9 ± 1.0 15.9 ± 2.7 61.05 ± 0.3 62.08 ± 0.2 93.0 ± 0.9 72.5 ± 2.6 16.2 ± 1.3 60.57 ± 1.1 61.61 ± 1.0

lesion images with 8 classes that exhibits skin-tone attribute imbalance [1]. For
instance, melanoma incidence is lower in quantity and higher in mortality rates
in black patients than in others [6]. We partition the dataset on four clients based
on two attributes, light and dark skin tones, with [1] labeling. Additionally, we
split the data between the four clients for training, validation, and testing with
70%, 15%, and 15%, respectively. We also benchmark Fed-MAS over Flamby-
ISIC split [31] with six different hospitals with stratified 5-fold cross-validation.

Implementation Details. For both datasets, we use resnet-18 [13] as the local
target model. For the long-tailed HyperKvasir dataset, we employ an SGD opti-
mizer and a cosine annealing scheduler [22] with a maximum learning rate of 0.1.
For ISIC, we employ Adam optimizer with the 3e–4 learning rate. Additionally,
we employ balanced risk minimization [28] and train methods for 200 commu-
nication rounds with 10 local epochs. We set λf to 3 and provide an ablation
in Table 4 in Appendix.

Evaluation Metrics. We evaluate the model performance of the global model
in this paper. To assess the unequal treatment of each class in HyperKvasir,
we report the top-1 accuracy on shot-based division (head, medium, tail) and
their average results denoted as “All” as existing works [17]. Following prior
work [10,14,27], we also report the Balanced Accuracy “B-Acc”, which calculates
the average per-class accuracy and is resistant to class imbalance. As the test set
of HyperKvasir contains only 12 classes, we follow previous work [10] to assess
the model performance with a stratified 5-fold cross-validation. To evaluate the
performance of attributes in ISIC-FL, we report the “B-Acc” separately for each
attribute (“Light”, “Dark”) and the average of these scores “Avg”. Additionally,
we report the overall “B-Acc” across all attributes and distributions.

3.1 Performance on the HyperKvasir

We compare our methods with FL-methods [19,20,23], LT-integrated FL meth-
ods [3,28], and label-skew FL methods [29,33]

FL-Methods [19,20,23]. One simple solution for federated learning with highly
imbalanced medical data is to apply existing FL methods to our setting directly.
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To this end, we compare our methods with state-of-the-art FL methods, includ-
ing FedAvg [23], FedProx [20], and MOON [19], under the same setting. As shown
in Table 1, we find that our method outperforms the best existing FL method
MOON by 2.85% and 5.68% on “B-acc” in both IID and non-IID settings,
respectively. Notably, our Fed-MAS achieves similar results with MOON [19]
on the “Head” while reaching large improvements on the “Tail” (11.9% on iid
and 10.71% on non-iid), showing that our Fed-MAS can tackle LT distribution
under FL more effectively. The limited results could be attributed to the use of
local empirical risk minimization in MOON [19]. However, even when we applied
a balanced risk minimization [28] in MOON, our method still outperformed it
(60.69% vs. 62.08% on “B-acc” for IID); see results in Table 6 in Appendix.

LT integrated FL Methods [3,28]. To design FL methods for local clients with
long-tailed distribution, a straightforward idea is to directly use LT methods in
each local client and then use an FL framework such as FedAvg to obtain the
final results. In this regard, we implement LDAM-DRW [3] and BSM [28] into the
FedAvg framework and rename them as LDAM-FL and BSM-FL respectively.
From Table 1, we can notice the LT methods utilizing an FL framework have
produced limited results on “Tail” primarily due to the extreme client drifting
phenomenon. Please note that Fed-MAS does not focus on designing any specific
long-tailed training for each local client. Instead, MAS enables the global server
to effectively aggregate the model parameters from long-tailed distributed local
clients. As a result, our Fed-MAS can successfully capture the “Tail” with a
6.84% accuracy gain on IID with lower variance than the best-performing LT
method BSM-FL [28]. Notably, our method consistently outperforms the best-
performing LT method on the “B-acc” with a lower variance (improvement of
1.8% on IID and 2.46% on non-IID).

Label-Skew FL. We compare our method with the state-of-the-art label-skew
FL method, FedLC [33], and the highly labeled skew (i.e. long-tailed) FL method,
CReFF [29]. CReFF, as proposed by [29], involves a method of re-training the
classifier by utilizing learnable features on the server at each communication
round, holding an equal treatment of all clients’ models. However, this tech-
nique fails to accommodate inter-client intra-class variations which could arise.
From Table 1, we can notice that FedAvg with local LT such as BSM-FL [28] can
outperform CReFF [29] on the HyperKvasir dataset in both IID and non-IDD
by 2.4% and 1.8% on “B-acc”, respectively. Our comparative analysis illustrates
that Fed-MAS consistently outperforms CReFF in both IID and non-IID by 4.2%
and 4.27% on “B-acc”, respectively, by incorporating the client’s local variations
with MAS. FedLC [33] proposes a loss function to address label distribution
skewness by locally calibrating logits and reducing local bias in learning. Their
modification yields compelling performance. Nevertheless, our method surpasses
them in both IID and non-IID, achieving improvements of 1.0% and 1.83% on “B-
Acc”, respectively. Remarkably, our method effectively captures the tail classes
with reduced variance in both IID and non-IID, exhibiting improvements of 8.5%
and 9.6%, respectively, while experiencing only a minor drop in performance for
the head classes (96.5% vs 94.3% for IID and 95.8% vs 93.0% for non-IID).
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Table 2. Ablation of minimizing Eq. 1 (KD) and MAS on HyperKvasir non-IID

KD MAS Metrics

All (%) B-acc (%) p-value

BSM-FL [28] (Baseline) × × 58.24 ± 1.2 59.15 ± 1.3 —

[28] w/ KD � × 59.26 ± 1.2 60.19 ± 1.1 <0.001

Fed-MAS � � 60.57 ± 1.1 61.61 ± 1.0 <0.001

Table 3. Experimental Results on ISIC-FL. Results are averaged over 5 folds.

Method Attribute Setting (ours) Flamby-ISIC [31]

Light Dark Avg B-Acc B-Acc

With ImageNet Weight Initialization

FedLC [33] 71.11 ± 1.8 73.64 ± 6.6 72.38 ± 2.9 71.63 ± 1.6 76.54 ± 2.6

BSM-FL [28] (Baseline) 73.88 ± 1.4 74.78 ± 5.4 74.33 ± 2.5 74.49 ± 1.4 78.19 ± 1.8

[28] w/ KD 73.87 ± 1.6 72.44 ± 5.9 73.16 ± 3.0 74.09 ± 1.5 79.17 ± 2.1

Fed-Mas (ours) 73.43 ± 1.6 77.0 ± 6.6 75.21 ± 2.9 74.61 ± 1.4 80.87 ± 2.2

Effectiveness of KD and MAS. As shown in Table 2, minimizing Eq. 1 (KD)
can enhance the “All” and “B-Acc” via 1.02% and 1.04% due to the implicit
regularization of MoCo-V2 on the tail classes for extreme imbalance datasets.
With both KD and MAS, the performance is further improved to the best via
2.33% and 2.46% on “All” and “B-Acc”, respectively. MAS utilizes unbiased
frozen generalizable representations to incorporate the inter-client intra-class
characteristics in FL and combine them with the drifting belief. This combination
helps in capturing client-specific models in the aggregation step.

3.2 Performance on ISIC-FL

We evaluate the best-performing and competitive methods with the ISIC-FL
dataset to shorten the benchmark. While previous studies neglect weight initial-
ization to provide better convergence analysis as pre-trained weights are archi-
tecture dependent. Recently, [26] and [4] studied the impact of pre-training ini-
tialization on reducing the data and system heterogeneity in FL. We present
in Table 3 the results of the most competitive methods with weight initialization
on the ISIC-FL attribute setting. FedLC [33] demonstrates compelling perfor-
mance to address label skewness in Hyperkvasir-FL. Nevertheless, it falls short
in accommodating attribute heterogeneity in ISIC-FL due to its local learning
focus. Our method consistently outperforms FedLC [33] with a notable improve-
ment of 2.8% and 3.0% in terms of the averaged balanced accuracies “Avg”
and balanced accuracy “B-acc” respectively. Compared to the baseline [28],
Fed-MAS notably captured the underrepresented attribute with 2.2% on the
“B-acc” of the “Dark Attribute” with a minimal drop of 0.5% on the “B-acc”
of the “Light Attribute”, balancing the intra-class attribute characteristics in
FL. On the highly heterogeneous Flamby-ISIC split resembling six hospitals,
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Fed-MAS outperform FedLC and the baseline on the “B-acc” with 4.33% and
2.68%, respectively.

3.3 Privacy Concerns

Similarly to traditional FL methods [19,20,23], Fed-MAS shares the model
weights with an additional scalar, RF , which protects data privacy by not reveal-
ing input data or label distribution. The scalar, RF , is calculated in the output
feature space, safeguarding the input data distribution. Moreover, RF poses
uncertainty in approximating the client’s label distribution as it can be influ-
enced by diverse attributes in the majority class or a common attribute in the
minority class.

4 Conclusion

Highly Imbalanced datasets are present in most medical image classifications.
This work presents Fed-MAS to deal with this problem. We show that pub-
licly available self-supervised models benefit the FL training procedure more
than restricting the optimization direction by incorporating the global attribute
imbalance. Future work can explore delayed re-weighting to unleash non-
vanishing terms and explore MAS with different local learning strategies in FL
settings (Tables 4, 5, 7, 8 and Figs. 4, 5).
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A Appendix for Fed-MAS

Table 4. HyperKvasir λf ablation.

Method IID non-IID

λf = 0 λf = 1 λf = 3 λf = 0 λf = 1 λf = 3

Fed-MAS 60.28 61.43 62.08 59.15 61.08 61.61

Table 5. HyperKvasir fξ

ablation non-IID. Note that
features of fξ can be pre-
computed.

fξ All B-Acc

CLIP-ViTB/32 60.34 61.39±2.1

MoCo-RN50 60.57 61.61±1.0
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Table 6. HyperKvasir FL methods with
local BRM [28].

Method All B-Acc

IID non-IID IID non-IID2

FedAvg 58.92 58.24 60.28±0.6 59.15±1.3

FedProx 59.37 58.86 60.47±1.3 59.64±2.0

Moon 59.45 58.72 60.69±0.9 59.66±0.8

Ours 61.05 60.57 62.08±0.2 61.61±1.4

Table 7. Using a plug-in cRT [18]
on HyperKvasir on non-IID.

Method + cRT All B-Acc

Decoupling [18] 54.21 55.6

BSM-FL [28] 62.67 63.11

Ours 65.05 65.11

Table 8. Flamby-ISIC [31] results on the first fold with the global model (gFL) and the
local models (pFL) with ImageNet Weight Initialization. MOON [19] and FedProx [20]
are reported with local BRM [28].

Method Metric Method Metric

gFL pFL gFL pFL

MOON (μ = 0.01) 72.13 80.03 FedProx (μ = 0.1) 72.47 79.82

MOON (μ = 0.1) 72.45 79.64 FedProx (μ = 0.01) 73.25 79.82

MOON (μ = 1) 73.12 79.46 FedProx (μ = 0.001) 73.52 79.70

FedLC [33] 68.07 78.60 BSM-FL [28] 72.83 79.79

[28] w/ KD (λf=1) 72.26 79.66 [28] w/ KD (λf=3) 72.85 80.06

Fed-MAS (λf=1) 72.94 82.73 Fed-MAS (λf=3) 74.12 83.28

Fig. 4. Feature representation with and without the learnable projector MLPθ. We
sample a subset of head (0,1,2), medium (3,4,5), and tail (6,7,8) classes for feature
visualization across different clients. Each point represents the mean feature output for
each class (color) in each client (point).
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Algorithm 1. Pseudocode for Fed-MAS.
1: Notations total number of clients (C), server (S), total communication rounds (R),

local epochs (E), learning rate (η), and a set of client’s data sliced into batches of
size B (B).

2: ServerExecution:
3: Init θ1

glob

4: for each round r = 1, ..., R do
5: for client c ∈ C in parallel do
6: θc, RF c ←LocalUpdate(θr

glob);

7: θr+1
glob ←DLMA(RFc, θ

′
c,c = 1 to C); // Eq. 5

8: Return θR
glob

9: LocalUpdate (θglob):
10: Init ŵk = 0;

11: Init wk = Lθglob

k ;
12: for each local epoch e = 1, ..., E do
13: for each batch b ∈ B do
14: Ltotal = Lsup + λfLf ; // Eq. 4
15: θ′ ← θ′ − η�Ltotal;
16: ŵk ← ŵk + Lf (bk); // running distillation loss mean for each class k

17: RF =
K∑

k=1

wkŵk; // RF ↑≈ divergence θglob, fξ ↑
18: Return θ′, RF

Fig. 5. Higher Value of λf (λf = 7) causes task deviation. λ = 3 show faster conver-
gence (Acc.), and make Lsup/Lf ratio consistent on a toy dataset (CIFAR-100 non-iid).
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Abstract. Centralized training methods have shown promising results
in MR image reconstruction, but privacy concerns arise when gathering
data from multiple institutions. Federated learning, a distributed collab-
orative training scheme, can utilize multi-center data without the need
to transfer data between institutions. However, existing federated learn-
ing MR image reconstruction methods rely on manually designed models
which have extensive parameters and suffer from performance degrada-
tion when facing heterogeneous data distributions. To this end, this paper
proposes a novel FederAted neUral archiTecture search approach fOr MR
Image reconstruction (FedAutoMRI). The proposed method utilizes dif-
ferentiable architecture search to automatically find the optimal network
architecture. In addition, an exponential moving average method is intro-
duced to improve the robustness of the client model to address the data
heterogeneity issue. To the best of our knowledge, this is the first work
to use federated neural architecture search for MR image reconstruc-
tion. Experimental results demonstrate that our proposed FedAutoMRI
can achieve promising performances while utilizing a lightweight model
with only a small number of model parameters compared to the classical
federated learning methods.

Keywords: Magnetic resonance imaging (MRI) · Federated learning ·
Neural architecture search

1 Introduction

Magnetic resonance imaging (MRI) plays a crucial role in clinical diagnosis and
scientific research as a non-invasive imaging modality that can provide multi-
contrast images. However, acquiring fully-sampled k-space data is usually time-
consuming due to the physical limitations of the scanning device [18]. To address

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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this issue, different methods have been introduced to accelerate MRI data acqui-
sition. K-space data undersampling followed by high-quality MR image recon-
struction is one of the most common techniques in the field [25]. Recently, deep
learning-based methods have shown outstanding performance in accelerating
MR image reconstruction. These methods can capture rich prior information
from large amounts of data [1,9,20,23,24,28]. Deep learning-based MR image
reconstruction methods can be broadly classified into data-driven [20,23,24,28]
and model-driven approaches [1,9]. Data-driven approaches typically rely on
large amounts of data and learn mapping relationships from undersampled data
to fully-sampled data. Instead, model-driven approaches unroll the traditional
optimization algorithm to the network to achieve end-to-end reconstruction.
Although these methods have facilitated the development of MR image recon-
struction to some extent, they need to collect large amounts of data for cen-
tralized training. For some institutions, it is difficult to collect adequate data
due to the expensive acquisition cost. On the other hand, aggregating data from
multiple institutions raises a serious problem—data privacy leakage, which may
become infeasible in a realistic healthcare scenario [13].

Federated learning (FL), a distributed training paradigm, allows for collab-
orative learning across multiple institutions while protecting privacy [15–17,21].
The basic training processes of federated learning are as follows: 1) the server
sends the initialized model to each client; 2) each client uses local computational
resources and private data to train the model and sends the trained model to the
server; 3) the server aggregates the models sent by the clients and broadcasts
the aggregated model to the clients; 4) each client uses the aggregated model
to update the local model and tests the performance of the updated model.
After multiple interactive training between the clients and the server, a better
global model can be obtained eventually. FedAvg [21] is the most classical fed-
erated learning framework that implements aggregation by averaging the model
parameters of each client. Several researchers have attempted to solve the MR
image reconstruction problem using federated learning [3,5–8]. For example, FL-
MRCM [8] is the first attempt of employing federated learning method in MR
image reconstruction. It alleviates the problem of domain shift by continuously
aligning the latent features of source and target domains. In addition, FedMRI [6]
achieves client-specific reconstruction by decomposing the reconstruction model
into a global-shared encoder and local-personalized decoder. Although existing
federated learning MR reconstruction methods have achieved promising perfor-
mance, their reconstruction models are manually designed by experts, which
may suffer from performance degradation when facing heterogeneous data dis-
tributions. In addition, the model parameters may be intentionally increased to
improve the reconstruction performance, which undoubtedly increases the con-
sumption of computational resources and may also result in parameter redun-
dancy.

Neural Architecture Search (NAS) [4] can achieve better performance with
fewer computational resources through automated architecture design. NAS
methods can be roughly divided into three categories: evolutionary algorithm-
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based [27]; reinforcement learning-based [2,22] and gradient-based methods
[11,19]. The first two methods demand heavy computational resources, while
the gradient-based method can effectively save computational resources. There
have been applications of NAS for MR image reconstruction [12,26]. To the best
of our knowledge, neural architecture search methods have not been explored
for federated MR image reconstruction. In order to improve the performance of
the federated learning MR image reconstruction model, we propose a federated
neural architecture search algorithm to improve the learning ability of the model
and improve the performance of MR image reconstruction. We adopt a gradient-
based NAS (differentiable architecture search) algorithm, which is more efficient
and requires fewer computational resources [11]. Among different gradient-based
NAS algorithms, DARTS [19] is the most classical one, but its search efficiency is
not high enough. Following DARTS, MiLeNAS [11] is proposed, which achieves
better search performance with mixed-level optimization. Our method adopts
the MiLeNAS framework, and we improve the search space according to the
demand for the number of model parameters and representation ability to make
it suitable for the federated MR image reconstruction task. Our main contribu-
tions can be summarized as follows: (1) To the best of our knowledge, this is
the first work to study federated neural architecture search techniques for MR
image reconstruction. (2) We design a new search space according to the number
of parameters, feature extraction, and representation capabilities of the model
to make it more suitable for the federated MR image reconstruction task. (3)
We introduce an exponential moving average method into the parameter update
process of the client to increase the robustness of the client model. (4) Qualita-
tive and quantitative experimental results demonstrate the effectiveness of our
method.

2 Proposed Method

2.1 DL-Based MR Image Reconstruction

The aim of MR image reconstruction is to reconstruct a fully-sampled image
x ∈ C

N (M < N) from undersampled k-space data k ∈ C
M , such that:

k = Ax + ε (1)

where A ∈ C
M×N is the undersampling encoding matrix, and ε ∈ C

M is the
measurement noise. The process of solving x can be transformed into the follow-
ing unconstrained optimization problem:

arg min
x

1
2
‖k − Ax‖22 + λR(x) (2)

where R(x) denotes the regularization term in the image domain, and λ denotes
the regularization coefficient. According to [1], Eq. (2) can be transformed into
the following alternating optimization process:
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{
rj = Dω

(
xj

)
xj+1 =

(
AHA + λI

)−1 (
AHk + λrj

) (3)

where Dω(·) represents a neural network for denoising, and AH denotes the
conjugate operator of A. The regularization parameter λ can also be learned by
the neural network. In this work, we mainly search the internal cell structure of
Dω(·), and then stack the cell to form our denoising network. The structure is
shown in Fig. 1.

Fig. 1. The overall structure of search space. (a) The structure of denoiser module
Dω(·) in our reconstruction network. The searched cells are stacked to form our basic
architecture, with each cell connected to the two consecutive cells that follow it. (b)
The search architecture of the cell. Pn denotes the node in the cell.

2.2 FedAutoMRI: FederAted NeUral ArchiTecture Search for MR
Image Reconstruction

Problem Definition. In the federated neural architecture search setting, it is
assumed that there are C clients/hospitals, each of which has a private dataset
Dc = (xi

c, k
i
c), i = 1, ..., Nc. The corresponding objective function is defined as:

arg min
θ,α

C∑
c=1

Nc

N
· {E(xc,kc)∼Dc

[
∥∥fc(AHkc; θc, αc) − xc

∥∥
2
]} (4)

where αc and θc denote the architecture parameters and the corresponding model
parameters of the cth client, respectively.

A typical NAS approach consists of three components: search space, search
strategy, and performance evaluation [4]. We designed our candidate opera-
tion set O based on the number of parameters and representation capabil-
ities of the target model. The set includes (1) Standard convolution, which
extracts multi-scale information through convolution kernels of different sizes:
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std conv 3×3, std conv 5×5 and std conv 7×7; (2) Dilated convolution, enlarg-
ing receptive field and reducing the number of parameters: dil 2 conv 3 × 3
and dil 3 conv 3 × 3; (3) Depthwise separable convolution, reducing parameters
and computation while improving feature extraction and representation abil-
ity: sep conv 3 × 3, sep conv 5 × 5 and sep conv 7 × 7. An edge between two
nodes in Fig. 1(b) represents one of these candidate operations. Inside the cell,
to make the search space continuous by relaxing the categorical candidate oper-
ations between two nodes, mixed operations using softmax over all candidate
operations are performed [19]:

�̄(j,k)(x) =
|O|∑
o=1

exp(α(j,k)
o )∑|O|

o′=1
exp(α(j,k)

o′ )
�o(x) (5)

where �̄(j,k)(x) denotes the mixed operation for a pair of nodes (j, k), |O| denotes
the number of candidate operations, α

(j,k)
o denotes the weight of the oth operation

for a pair of node (j, k), and �o(x) denotes the oth operation for a pair of node
(j, k). The aim of architecture search is to learn the encoding α = {α(j,k)} of the
architecture.

Searching Phase. In DARTS [19], the architecture parameters are optimized
using only the loss of the validation set, which may not be optimal. To this end,
He et al., [11] proposed a mixed optimization framework MiLeNAS that exploits
both training and validation losses. Specifically, Eq. (4) is solved by optimizing
ω and α during the local search process:

⎧⎪⎨
⎪⎩

ωt,z+1
c = ωt,z

c − ηω �ω Ltr(xc;ωt,z
c , αt,z

c )
αt,z+1

c = αt,z
c − ηα{�αLtr(xc;ωt,z

c , αt,z
c )+

β �α Lval(xc;ωt,z
c , αt,z

c )}
(6)

where t and z denote global communication rounds and local training epochs,
respectively. β denotes a non-negative regularization parameter that balances the
importance of training and validation loss for α. ηω and ηα represent the learning
rates for updating ω and α, respectively. After the local search, all clients send the
updated α and ω to the server, and the central server aggregates all parameters.
We use a similar aggregation scheme as in [10], namely the average aggregation
approach. Then, the server broadcasts the aggregated ω and α to all clients, and
each client updates the local parameters for the next communication round.

Training Phase. After the model architecture search, the operations with the
top two weights are selected as the operations in our final model for each pair
of nodes (j, k). Considering the limitation of computational resources, there are
only three nodes in the cell. In the training phase, in order to improve the
robustness of the local client model, we introduce an exponential moving average
method, which can be used to estimate the local mean of the variable. The
corresponding formula is:
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ωt
c =

γ · ωt−1
c + (1 − γ) · ωt

1 − γt
(7)

where ωt
c represents the weight of the cth client at the tth communication, ωt

represents the aggregated weight of the server at the tth communication, and γ
represents the weighting coefficient.

3 Experiments and Results

3.1 Experimental Settings

Dataset. We search and train our proposed framework on three public datasets.
Details of the datasets are provided as follows: 1) fastMRI [14]: A large public
dataset of 1.5T and 3T data, from which we utilized T1 brain data of 1140
subjects; 2) MoDL-Brain1: A total of 524 slices are provided and the matrix
size is cropped to 256 × 256; 3) CC3592: A total of 35 subjects are provided.
The fastMRI dataset is used in the searching phase, which is equally divided into
four clients, each containing 285 objects. All datasets are divided into training,
validation and testing sets with a ratio of 7: 1: 2.

Implementation Details. All the networks were trained using the PyTorch
framework with one NVIDIA RTX A6000 GPU (with 48 GB memory). In the
searching phase, the Adam optimizer with a learning rate of 3e−3 is used to
update architecture parameters and the weight decay is set to 1e−3. Besides,
the Adam optimizer with a learning rate of 1e−3 is used to update local model
parameters. Networks are trained for 50 global communication rounds with 5
local epochs. In the training phase, the AdamW optimizer with the initial learn-
ing rate of 1e−3 is adopted. Networks are trained for 150 global communication
rounds with 5 local epochs. Figure 2 illustrates the evaluation metric correspond-
ing to the searching and training phases.

3.2 Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of our proposed method, we compare it with
various state-of-the-art (SOTA) methods: 1) Centralized: centralized training
using searched model; 2) Non-Fed: each client is individually trained using
their private data without federated learning; 3) FedAvg [21]: a global model
is obtained by using the average aggregation method; 4) FedProx [16]: a global
model is obtained by adding a regularization term to the loss function of the
client; 5) FedMRI [6]: personalized model is learned by adding a weighted
contrastive regularization term to each client.

1 https://github.com/hkaggarwal/modl.
2 https://sites.google.com/view/calgary-campinas-dataset/mr-reconstruction-

challenge.

https://github.com/hkaggarwal/modl
https://sites.google.com/view/calgary-campinas-dataset/mr-reconstruction-challenge
https://sites.google.com/view/calgary-campinas-dataset/mr-reconstruction-challenge
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Fig. 2. evaluation metric corresponding to the searching and training phases. (a)
Searching phase. (b) Training phase.

Table 1 lists the quantitative results of different methods. Overall, our pro-
posed FedAutoMRI achieves a better reconstruction performance when com-
pared to the SOTA methods. Due to the small amount of data provided by the
MoDL-Brain dataset, the results of the comparison methods are worse on this
dataset. By introducing the exponential moving average method, the robust-
ness of our model is improved. Thus, it obtains satisfactory performance on this
dataset. In addition, the number of parameters of our model is 0.016M, much
fewer than the comparison methods. In other words, our proposed FedAutoMRI
achieves better performance compared to the other methods except centralized
method by using a very lightweight network architecture, which proves that our
model is more efficient. In addition to the quantitative results, qualitative results
are plotted in Fig. 3, and similar conclusions can be made that FedAutoMRI can
reconstruct higher-quality MR images with smaller errors.

Table 1. Quantitative results of different methods on the three datasets. Bold numbers
indicate our results.

Method PSNR/dB SSIM Param/M

fastMRI CC359 MoDL-Brain fastMRI CC359 MoDL-Brain

Centralized 39.9151 35.6296 33.0772 0.9792 0.9552 0.9131 0.016

Non-Fed 35.2427 31.5358 29.7220 0.9488 0.8990 0.8084 7.76

FedAvg [21] 35.4097 31.6159 29.5923 0.9519 0.9053 0.8040 7.76

FedProx [16] 35.6159 31.8033 29.8534 0.9529 0.9052 0.8148 7.76

FedMRI [6] 36.4179 32.0351 29.8061 0.9594 0.9105 0.8114 7.76

FedAutoMRI 39.6817 35.2123 31.3378 0.9782 0.9515 0.8639 0.016

3.3 Ablation Study

In this section, we analyze the effectiveness of the exponential moving average
method and the efficiency of the model obtained by searching. Table 2 gives the
corresponding results. According to these quantitative metrics, the performance
of the model is improved after adding the exponential moving average, which ver-
ifies the effectiveness of this module. In addition, in order to compare the model
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Fig. 3. Qualitative reconstruction results of different methods on the three datasets
((a) fastMRI, (b) CC359, (c) MoDL-Brain). From left to right, the seven images corre-
sponding to the reference image, and the reconstructed images of Centralized, Non-Fed,
FedAvg, FedProx, FedMRI and our FedAutoMRI, respectively. The second, fourth and
six rows plot the corresponding error maps.

performance with the manually designed model, we list the number of parame-
ters and computational complexity corresponding to a single model. Compared
with the baseline model, our model only needs about 6.1% of the parameters
and 5.7% of the computation, which proves the efficiency of our searched model.

Table 2. Results from ablation studies. Bold numbers indicate the best results.

Method PSNR/dB SSIM Param/M FLOPs/G

fastMRI CC359 MoDL-Brain fastMRI CC359 MoDL-Brain

baseline 37.0153 33.6756 30.1359 0.9611 0.9297 0.8417 0.26 85.65

ema(w/o) 39.6064 35.1756 31.0704 0.9776 0.9499 0.8546 0.016 4.92

ema(w) 39.6817 35.2123 31.3378 0.9782 0.9515 0.8639 - -

4 Conclusions

In this work, we proposed a federated neural architecture search framework for
MR image reconstruction. We designed the search space to capture the heteroge-
neous data distributions, and we utilized differentiable architecture search meth-
ods to find the optimal architecture. In addition, to improve the robustness of the
client model, we introduced an exponential moving average method. Experimen-
tal results validated that our method can better learn the prior knowledge from
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the data and obtain enhanced reconstruction performance on the three datasets.
Results from ablation studies further verified the efficiency and effectiveness of
our model.
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Abstract. Federated learning (FL) is an emerging technique for obtain-
ing a global model while ensuring the data privacy of each client, which is
particularly significant in protecting the patients’ privacy when conduct-
ing medical image analysis. However, previous FL methods for medical
images typically assume a fully supervised setting where each client’s
data is fully annotated, disregarding the fact that obtaining such exten-
sive annotations may present significant obstacles due to the need for
specialized expertise and the associated overhead costs. In this work, we
focus on lesion segmentation for brain MRI images and propose a fed-
erated semi-supervised framework to address this problem. Formally, we
introduce a Federated Co-Teachers algorithm (Fed-CoT) that extends
the prevalent Mean Teacher algorithm into the federated learning frame-
work, and demonstrate its effectiveness. Particularly, in Fed-CoT, two
teacher models, namely sync-teacher and async-teacher, which capitalize
on different weight updating schemes are leveraged to provide informa-
tive consistency regularization and to avoid overfitting to the noise of
targets generated by a single teacher model. Our experimental results
validate the merits of our proposed method and suggest that the feder-
ated learning model can benefit from extra data even without annota-
tions. This approach relaxes the requirement for client participation in
federated learning, making it easier to deploy in real applications.

Keywords: Federated learning · Medical Image Segmentation ·
Semi-supervised learning

1 Introduction

Medical image segmentation, which aims to identify regions of interest in medical
images by taking advantage of computer assistance, exhibits its great potential
in medical applications, such as early diagnosis, disease course tracking [8,20],

G. Zhan and J. Deng—Contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. E. Celebi et al. (Eds.): MICCAI 2023 Workshops, LNCS 14393, pp. 357–366, 2023.
https://doi.org/10.1007/978-3-031-47401-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47401-9_34&domain=pdf
https://doi.org/10.1007/978-3-031-47401-9_34


358 G. Zhan et al.

and surgical treatment [6,17]. Brain lesion segmentation, as one of the critical
topics aiming to identify lesions in brain medical images, has attracted a surge
of research interest. However, there are two typical obstacles that prevent to-
date brain lesion segmentation approaches to be applicable. For one thing, the
advances in brain lesion segmentation heavily rely on large-scale and centralized
datasets, which are challenging to be collected together due to data privacy con-
cerns [15]. For another, most of the algorithms are developed on well-annotation
data, but the medical expertise for distinguishing lesion regions together with
the time costs make it hard to obtain full annotations.

To this end, federated learning and semi-supervised medical image segmenta-
tion have been employed to tackle the challenges of data privacy and annotation
difficulties, respectively. Regarding the literature, these two steam techniques are
developed independently. In federated learning [10], multiple clients collaborate
to train the model under the scheduling of the server. This approach ensures
that the raw medical data is kept private while enabling the training of a robust
and accurate global model. In recent studies, federated learning was investigated
in various segmentation tasks, where multiple hospitals collaborated to train a
machine learning model [11,14]. The models achieved comparable performance
to those trained on centralized data, demonstrating the potential of federated
learning in medical applications [13]. In parallel with federated learning, semi-
supervised algorithms are developed to make use of the combination of labeled
and unlabeld data. In the literature, various semi-supervised frameworks have
been proposed for medical image analysis [1,2,12]. Particularly, semi-supervised
medical image segmentation learns the segmentation head from a small number
of labeled data, and learns the effective representation from a large quantity of
unlabeled data. Despite their efficacy, these two domains have been developed
in isolation, resulting in a lack of exploration of the federated semi-supervised
setting - a more relevant framework for real-world scenarios.

In this study, we devote our main efforts to developing a federated semi-
supervised framework to address the problem of brain lesion segmentation. For-
mally, we introduce Federated Co-Teachers (Fed-CoT) algorithms, facilitating
learning from abundant unlabeled and privacy-sensitive data sources. Specifi-
cally, we first generalize the idea of Mean Teacher in previous semi-supervised
learning studies [7,16] from the centralized data to the distributed data in feder-
ated learning. Unlike previous methods where there is only a single teacher net-
work, we keep two teacher networks at the training stage, namely sync-teacher
and async-teacher. Despite both being a running weighted average of the stu-
dent network at each iteration, the sync-teacher periodically synchronizes across
clients and aggregates information from other clients, while the async-teacher
does not interact with teacher models of other clients and therefore preserves the
information on the local data. In this way, the student model learns the knowl-
edge of unlabeled target data from intra-client async-teacher by encouraging
prediction consistency, as well as obtaining generalization ability in unlabeled
source data from inter-client sync-teacher. Under the supervision of different
teacher models, the student model can also avoid overfitting the noise in the
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target generated by every single model. Moreover, we also extend the CutMix
augmentation [19] to LeisionCutMix by taking into account the unique charac-
teristics of brain lesions i.e., the lesions volumes only occupy a small fraction of
the brain and are scattered across the brain image. Consequently, the student
model can effectively exploit the information from all data resources of different
clients and achieve improved performance. Note that our proposed Fed-CoT can
be incorporated into the federated learning framework seamlessly by leveraging
common weighting average techniques (EMA [7] and FedAvg [10]).

2 Problem Formulation

2.1 Preliminary

Federated Learning. Given a set of distributed clients with their own local
data, federated learning targets to collaboratively train a shared model without
exchanging the private data of each client. This technique is particularly use-
ful in applications such as medical image analysis, where patient privacy is of
paramount importance to each clinic.
Semi-supervised Lesion Segmentation. Given a dataset of medical images,
some of which are labeled with the locations of lesions and some of which are
unlabeled, the task of semi-supervised lesion segmentation is to develop a seg-
mentation algorithm that can accurately and efficiently identify the locations
and boundaries of lesions in the images. The algorithm should be trained on
both the labeled and unlabeled images, using the labeled images to guide the
segmentation process and the unlabeled images to learn patterns and features
that can improve segmentation performance.

2.2 Federated Semi-supervised Lesion Segmentation

Suppose there are K clients (i.e., clinics) in our federated learning system, where
each client Ck provides a set of labeled samples Lk = {xi

k,m
i
k}Lk

i=1 and a set of
unlabeled samples Uk = {uj

k}Uk
j=1. Here xi

k and uj
k are the input MRI images,

and mi
k is the ground-truth mask of MRI image xi

k. Note that the value of each
pixel in mi

k is either “0” or “1” since we only consider whether the lesion exists or
not at each location. Under the federated learning framework, we have a global
model G and a set of local models Gk. At the beginning of each communication
round r, the local model is initialized with the same weights from G, and then
optimized with local data independently. At the end of each round, the weights
of all local models are aggregated to update the weights of the global model G.

3 Method

3.1 Mean Teacher

Our method is based on Mean Teacher framework [7,16], which is previously
devised for centralized data. In Mean Teacher algorithm, A student model and a
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Algorithm 1. Federated-CoT. The K clients are indexed by k. B is the local
batch size. E is the number of local epochs. I is the number of iterations. T
is the total number of rounds. η is the learning rate. The student model, sync-
teacher model, async-teacher model are denoted as w, ŵ, and w̃, respectively.
Steps that are particular for Fed-co-teacher and not in regular federated learning
are highlighted in blue.
1: procedure Server executes:
2: initialize the student model {wk

0}K
k=1 of each client with the same parameters

3: initialize the sync-teacher of each client as ŵk
0 = wk

0

4: initialize the async-teacher of each client as w̃k
0 = wk

0

5: for each round t = 1, 2, ...T do
6: for each client k do
7: wk

t+1 ← ClientUpdate(k, wt, ŵt, w̃t)

8: wt+1 ← 1
K

∑K
k=1 wk

t+1

9: ŵt+1 ← 1
K

∑K
k=1 ŵk

t+1

10:
11: procedure ClientUpdate(k, w, ŵ, w̃):
12: w̃ ← EMA(w̃, w, α2)
13: for each local epoch e = 1, 2, ..., E do
14: for each iteration i = 1, 2, ..., I do
15: w ← w − η � L // Loss function in Eqn. 3
16: ŵ ← EMA(ŵ, w, α1) // Eqn. 1
17: w̃ ← EMA(w̃, w, α1) // Eqn. 1

return w, ŵ to server

teacher model are kept during the training phase. The parameters of the student
model are optimized through back-propagation, while those of the teacher model
are not trainable. In each iteration, the student model gets supervision from the
ground-truth label on the labeled data. Meanwhile, the teacher model provides
targets in the form of soft logits to the student model on the unlabeled data.
Particularly, the teacher model is a slow-moving ensemble of the student model,
which is initialized with the same parameters as the student model, and then
updated with Exponential Moving Average (EMA) algorithm:

ŵt = αŵt−1 + (1 − α)wt, (1)

where α is the decay factor that controls the weight of the teacher’s parameter
ŵt−1 at the last step, and wt is the current parameter of the student model.

3.2 Fed-CoT

The overview of our Fed-CoT pipeline is presented in Algorithm 1. Particu-
larly, Fed-CoT includes a student model and two teacher models, namely sync-
teacher and async-teacher. The sync-teacher periodically synchronizes across
clients, while the async-teacher does not interact with teacher models from other
clients and only interacts with the local model. These two teacher models work
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together to enable the student model to benefit from inter-client consistency
while also preserving intra-client local information. Note that at the beginning
of training, both sync-teacher and async-teacher models are initialized with the
same parameters as the student model. However, at the end of each round,
only the sync-teacher operates by synchronizing among multiple teachers from
other clients, whereas the async-teacher operates independently of other clients’
teacher models and thus maintains the local information.

Fig. 1. Illustration for our Fed-CoT. In this figure, ‘→’ means forward operation, while
‘���’ indicates providing supervision.

At each iteration i, a client randomly samples a mini batch of labeled
data Li

k = {xi
k,m

i
k}Bi=1 ⊂ Lk and another mini batch of unlabeled data

U i
k = {uj

k}Bj=1 ⊂ Uk, where B is the mini batch size. The inputs to the stu-
dent model consist of Li

k and Augment(U i
k), where the Augment(U i

k) is the
unlabeled data processed by our extended LeisionCutMix. In contrast to the
original CutMix [19] that cuts a large patch and pastes to another image, our
LesionCutMix randomly samples multiple small volumes. These volumes are
from 83 voxels to 163 voxels, which and are similar to the size of lesions. The
predictions of the student model for Li

k and Augment(U i
k) are denoted as pl

and pu respectively. The input to the sync-teacher and async-teacher models is
only U i

k = {uj
k}Bj=1 ⊂ Uk, and their predictions are denoted as ŷsync

u and ŷasync
u .

For the labeled data, the training objective Ll is calculated as the binary cross
entropy (BCE) Loss between the prediction pl and the label yl. For the unlabeled
data, the training objective is a combination of the Euclidean distance between
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the outputs of sync/async-teacher and the student, which is as follows:

Lu =
1
2
(‖pu − ŷsync

u ‖2 + ‖pu − ŷasync
u ‖2). (2)

By taking the training objectives of labeled and unlabeled data together, we get:

L = Ll + λLu, (3)

where λ is a scaling factor. The overview of this forward process on unlabeled
data is illustrated in Fig. 1.

During each iteration, both teacher models are updated by EMA algo-
rithm after the student is updated. Different from the previous centralized set-
ting where the parameters of the student network is only updated by back-
propagation in each iteration, the student network in federated learning is also
updated by weight aggregation at the end of each round during federated train-
ing. To keep the property of being a slow-moving ensemble of the student network
for the teacher network, our async teacher model is additionally updated by the
EMA immediately after the student gets updated by weight aggregation. Our
sync teacher is additionally updated by the same aggregation method of the
student network, where the sync teacher model of each client is averaged as the
new sync teacher model.

4 Experiments

This section commences with an introduction to the datasets used for evaluation,
namely MSSEG-16 and the in-house Clinic MS dataset, in Sect. 4.1. Following
this, Sect. 4.2 provides the implementation details of Fed-CoT. Subsequently,
the experimental results on two datasets are presented and analyzed in Sect. 4.3.

4.1 Dataset

MSSEG-16. This dataset is publicly available and is used for the MICCAI
2016 lesion segmentation challenge [4,5]. It comprises of 53 patients acquired
from 4 distinct scanners, with each scanner being considered as a center in our
experiments. For each center, we adopt a 50-50 data split, with 50% of the
data being utilized for training the model, and the remaining 50% for testing.
In accordance with the default configuration, we randomly select 1/4 of the
training data as groundtruth data, while the remaining 3/4 are utilized as raw
data without groundtruth.
Clinical MS Dataset. In order to further validate the efficacy of our approach
in a clinical setting, we perform experiments utilizing the Clinical MS dataset, an
in-house multi-scanner dataset for MS lesion segmentation. The dataset consists
of 109 MS patients. The data is divided into three centers, denoted as C1, C2,
and C3, where the data from each center is obtained using identical scanners. All
lesion masks in the dataset are manually annotated by at least two experienced
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neuroimaging analysts. For each center, we adopt a 60-40 data split, with 60%
of the data utilized for training the model and the remaining 40% for testing.
As per the default configuration, we randomly select 1/4 of the training data
as groundtruth data, while the remaining 3/4 are utilized as raw data without
groundtruth.

4.2 Implementation Details

The student and two teacher networks in our study are constructed using the
3D U-Net architecture [3] with GroupNorm [18]. Unless otherwise specified, we
set the local batch size B = 16, the local epochs E = 1, the iterations per epoch
I = 300, the total number of rounds T = 10, and the learning rate η = 0.00025.
Additionally, we employ the Adam optimizer for our experiments. We use the
FLAIR image as the input and use input intensity normalization at the pre-
processing step. Model training is conducted on a Nvidia DGX Station, with
four V100 GPU.

Table 1. Experimental results on MSSEG-16 dataset. All the performances are
reported in subject-wise DICE score.

Training data site Use unlabled data Method Results

C1 C2 C3 C4 C1 C2 C3 C4 All

� Single Client 0.078 0.520 0.638 0.616 0.080

� Single Client 0.487 0.540 0.471 0.397 0.490

� Single Client 0.108 0.136 0.085 0.049 0.090

� Single Client 0.333 0.428 0.378 0.440 0.391

� � � � Centralized 0.478 0.598 0.462 0.583 0.522

� � � � � FL 0.495 0.544 0.416 0.567 0.501

� � � � � FL + PL 0.578 0.599 0.567 0.576 0.569

� � � � � FL+MT 0.368 0.492 0.391 0.457 0.430

� � � � � Fed-CoT 0.607 0.600 0.614 0.598 0.605

4.3 Experimental Results

MSSEG-16. We first perform comparison experiments on the MSSEG-16
dataset. We incorporate the following methods in FL setting into the comparison:
supervised segmentation utilizing only labeled data, semi-supervised segmenta-
tion with pseudo-label (PL) [9], and semi-supervised segmentation with mean-
teacher (MT) [7]. Moreover, we report the performance of supervised learning
utilizing only labeled data for each individual center. The results are presented
in Table 1.

The FL baseline model (DICE = 0.501 for testing data from all centers) uti-
lizing labeled data from all centers demonstrates superiority over results obtained
using only labeled data from a single client. Moreover, the results illustrate
that training on a limited number of labeled data from a single client, i.e., C1
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(DICE = 0.08) or C2 (DICE = 0.09), can be unfeasible. These results high-
light the effectiveness of general federated learning. Our proposed Fed-CoT out-
performs the FL baseline by 0.104 in DICE score by utilizing unlabeled data. It
also exhibits better results than the other two semi-supervised learning methods,
Pseudo Labeling and Mean-teacher. While both Fed-CoT and Pseudo Labeling
improve the FL baseline, the Mean-teacher method performs worse than the
FL baseline. A plausible explanation for this inferior performance of the Mean-
teacher method in FL is that the Mean-teacher model is not explicitly designed
for the FL setting. In FL, the weight aggregation step of the student model may
prevent the teacher model from updating properly, which is not a concern in
centralized learning. This can lead to less effective guidance from the teacher
model, resulting in sub-optimal segmentation performance.

Clinical MS Data. We validate the generalization ability of our method on
a different dataset, the Clinical MS. The results are presented in Table 2. It is
worth noting that Clinical MS is a larger dataset compared to the MSSEG-16
dataset. We observed that both Pseudo Labeling and Mean Teacher methods
achieved inferior results compared to the baseline. This observation implies that
designs that are not specifically tailored for the FL setting may lack the necessary
adaptability and robustness to effectively address the unique challenges of FL. In
contrast, our Fed-CoT, which is specifically designed for this setting, consistently
outperformed the other methods on every client, demonstrating its efficacy and
robustness in various scenarios.

Table 2. Experimental results on in-house Clinical MS dataset. All the performances
are reported in subject-wise DICE score.

Method Results

C1 C2 C3 All

FL baseline 0.540 0.605 0.444 0.526

FL + PL 0.516 0.583 0.419 0.502

FL + MT 0.522 0.594 0.431 0.510

Fed-CoT 0.556 0.616 0.482 0.547

5 Conclusion

In this study, we propose Fed-CoT, a semi-supervised lesion segmentation
method in a federated learning framework. Fed-CoT utilizes two teacher net-
works, namely, sync-teacher and async-teacher, to apply regularization consis-
tency to the student network. The sync-teacher network aggregates inter-client
information, while the async-teacher preserves more intra-client client-specific



Fed-CoT: Co-teachers for Federated Semi-supervised MS 365

knowledge. We evaluate the proposed method on both public and in-house brain
lesion datasets and demonstrate its superiority over other semi-supervised learn-
ing methods in the federated learning framework. Our findings suggest that
Fed-CoT has the potential in relaxing the requirement for client participation,
thereby facilitating the deployment of federated learning.
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Abstract. Decentralized machine learning has broadened its scope
recently with the invention of Federated Learning (FL), Split Learning
(SL), and their hybrids like Split Federated Learning (SplitFed or SFL).
The goal of SFL is to reduce the computational power required by each
client in FL and parallelize SL while maintaining privacy. This paper
investigates the robustness of SFL against packet loss on communication
links. The performance of various SFL aggregation strategies is examined
by splitting the model at two points – shallow split and deep split – and
testing whether the split point makes a statistically significant difference
to the accuracy of the final model. Experiments are carried out on a seg-
mentation model for human embryo images and indicate the statistically
significant advantage of a deeper split point.

Keywords: SplitFed Learning · packet loss · human embryo image
segmentation

1 Introduction

Federated learning (FL) [14] enables the training of machine learning models
by multiple clients without sharing data. FL holds great promise for healthcare
because of privacy constraints regarding medical data. In FL, clients train their
local models and send them to the server for aggregation, after which the aggre-
gated global model is sent back to the clients. Although FL addresses privacy
concerns, it requires all clients to train local models that are usually of the same
size as the global model. Since clients might not have the necessary computing
resources (comparable to the server), this presents a challenge, especially for
training large models.

Split Learning (SL) [7,22] was developed to overcome this client-server pro-
cessing disparity. In SL, a model is split into several parts that can reside in
various locations and/or devices. Typically, the front-end of the model (usually
the first few layers) is located on a client device, and the more computation-
ally demanding back-end is located on a server. During model training, features
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are sent from the front-end to the back-end, while gradients are sent from the
back-end to the front-end. Thus, SL can solve the existing computational imbal-
ance between the client(s) and the server in FL. However, SL on its own does
not enable clients to collaborate in model training. Hence, recent research has
blended FL and SL, resulting in hybrid Split-Federated Learning (SFL) [17,20],
which combines the best of both worlds. SFL allows privacy preservation and
collaboration between clients (like FL) while balancing computational resources
between the client(s) and the server (like SL).

Error resilience is a critical challenge in distributed learning. The robustness
of SFL to annotation errors has recently been studied in [9], while the issue of
noisy communication links was tackled in [8]. Packet loss is another frequent
transmission error in real-world communication networks, which occurs when
one or more data packets fail to reach their destination. Several attempts have
been made to address packet loss in the FL literature.

Authors in [18] modeled the link between the clients and the server in FL
as a packet erasure channel and experimentally studied the model convergence
with and without packet loss. Loss tolerant FL (LT-FL) was explored in [24] in
terms of aggregation, fairness, and personalization. Authors used ThrowRight-
Away (TRA) to accelerate the data uploading for low bandwidth devices by
intentionally ignoring some packet losses. In SL, packet loss happens at model
split points. Therefore, the question of where to split directly impacts the loss
resilience. The optimal choice of split points [11,21] and loss resilience [1,3,5]
have been active, but thus far separate, research topics in split inference (SI)
or colloborative intelligence (CI) [2,10]. However, to the best of our knowledge,
there appear to be no existing studies of the impact of the choice of split points
on loss resilience in SL, let alone the more recent SFL paradigm.

This study investigates the impact of model split points on the loss resilience
of SFL. We examine five parameter aggregation algorithms under various con-
ditions such as different numbers of clients facing packet loss and different loss
rates. Section 2 describes the system model and the aggregation methods exam-
ined. Section 3 describes the experiments and provides an analysis of the results.
Conclusions and suggestions for future work are given in Sect. 4.

2 System Model

Figure 1 shows a SplitFed U-Net model for human embryo component segmen-
tation on which our experiments are conducted. The U-Net consists of four
downsampling blocks between the input and the bottleneck, and four upsam-
pling blocks between the bottleneck and the output. Each block contains two
convolutional layers with 3 × 3 kernels, a batch normalization layer, and ReLU
activation. Each downsampling block starts with the aforementioned two con-
volutional layers followed by a 2 × 2 max-pooling layer. The number of filters
in the four downsampling blocks increases as 32, 64, 128, and 256, from input
towards the bottleneck. The bottleneck consists of two convolutional layers with
512 filters. Each upsampling block starts with a 2 × 2 upsampling layer followed
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by a transpose convolutional layer. The number of filters in the four upsampling
blocks increases to 256, 128, 64, and 32 toward the output. The final upsampling
block is followed by a convolutional layer with the argmax function.

We examine two ways of splitting the model: shallow split and deep split,
indicated in Fig. 1. In shallow split, the first convolutional layer (front-end, FE),
and the last two convolutional layers together with the output argmax layer
(back-end, BE) are located on the client side, while the rest of the model is on
the server. In deep split, the first two convolutional layers and the first max-
pooling layer (front-end, FE), and the last three convolutional layers together
with the final upsampling layer (back-end, BE) are located on the client side,
while the rest of the model resides on the server.

Fig. 1. Split U-Net architecture

The training process is as follows. First, initial copies of FE and BE are sent
to each client, and the server makes a separate copy of its own model for each
client. Each client then trains its local FE and BE in collaboration with its own
copy of the server model for a certain number of local epochs. After that, each
client sends its FE and BE models to the server, and aggregation is applied to
all clients’ FEs, BEs, and copies of the server model. The new aggregated global
model consists of FE, server model, and BE. The server sends global FE and
BE to each client to perform local validation. This completes one global epoch.
During the forward pass, the features produced by the FE are sent from the
client to the server. The server processes them through its own model and sends
the resulting features back to the client to be processed by the BE. Client-side
BE produces the prediction, computes the loss, and starts the back-propagation.
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Gradient updates from the client-side BE are sent to the server, back-propagated
through the server model, and then sent to the client-side FE. Figure 2 shows
the adopted splitFed architecture of the U-Net model.

Fig. 2. SplitFed U-Net architecture [17]

We implemented five well-known parameter aggregation algorithms: näıve
averaging [14], federated averaging (FedAvg) [14], auto-FedAvg [23], fed-
NCL V2 [12], and fed-NCL V4 [12]. In näıve averaging, parameter aggregation
is based on the number of clients, while FedAvg considers the client’s data dis-
tribution. Auto-FedAvg considers client’s current training progress with their
data distribution. In Fed-NCL V2, each layer gets the same weight, while in
Fed-NCL V4, layer weights are proportional to their divergence from the global
model. In both cases, parameter aggregation is based on the client’s data dis-
tribution and local model divergence from the aggregated global model, while
fed-NCL V2 additionally considers training loss of local training data on the
aggregated global model.
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3 Experiments

3.1 Experimental Setup

The dataset consists of 781 human embryo images [13], each with ground-truth
segmentation masks for five components: Background, Zona Pellucida (ZP), Tro-
phectoderm (TE), Inner Cell Mass (ICM), and Blastocoel (BL). Of these, 70
images are saved as the test set, and the rest are used for training. Data are
distributed among 5 clients - 240, 120, 85, 179, 87. Each client reserves 85% of
its data for training and 15% for validation. During training, the input images
are resized to 256 × 256. Augmentation is performed using horizontal and ver-
tical flipping. Soft Dice loss [19] is chosen as the loss function. Adam optimizer
is used with the initial learning rate of 10−4. Mean Jaccard index (MJI) [4]
without background is taken as the performance metric. The system is trained
for 12 local and 15 global epochs. As in [3], each packet is assumed to be one
row of a feature map. Data from the lost packets are assumed to be zero (i.e.,
no sophisticated packet loss concealment is deployed), so packet loss results in
zeroing out some rows in the feature maps and gradient maps at split points.
Figure 3 shows an example of a feature map in the forward pass and a gradient
map in the back-propagation pass in the first epoch of SFL, both subject to 10%
packet loss.

Fig. 3. A feature map (top row) and gradient map (bottom row) subject to 10% packet
loss. Missing data is indicated by black horizontal lines. (a) Client FE feature map
output before loss; (b) Server input after loss; (c) Server output feature map; (d)
Client BE input after loss; (e) Client BE output gradient map; (f) Server input after
loss; (g) Server output gradient map; (h) Client FE input after loss.

3.2 Baseline Experiments Without Packet Loss

First, we verify the performance of our core U-Net model by comparing it with
BLAST-NET [15], a state-of-the-art network for human embryo image segmen-
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tation. We trained our U-Net model without splits, in a centralized manner1 on
the same dataset [16] of 235 images that BLAST-NET was trained on. The MJI
of our U-Net was 81.70%, while the MJI of BLAST-NET [15] is 79.88%. Hence,
our model compares favorably against BLAST-NET. Instead of achieving the
new best embryo segmentation result, the aim of this experiment was simply to
show that our U-Net model is a reasonable one.

Next, we verify the performance of our model in a split-federated scenario
without packet loss. We test the performance of all five aggregation methods
over 10 runs. Average MJI were 82.78%, 82.57%, 82.99%, 83.02%, and 82.95%
for näıve avg, FedAvg, auto-FedAvg, fed-NCL V2 and fed-NCL V4, respectively.

We performed pairwise statistical significance testing for the difference in
these average MJIs. Specifically, if Jmethod1 and Jmethod2 are MJI’s of two param-
eter aggregation methods, the two-tail t-test is

H0 : Jmethod1 = Jmethod2

H1 : Jmethod1 �= Jmethod2

(1)

When the p-value [6] is less than 0.05, the null hypothesis H0 can be rejected
(at the significance level of 0.05) to conclude that the difference is significant.

Most of the MJI differences were not statistically significant (p ≥ 0.05),
except that FedAvg had a significantly lower MJI than auto-FedAvg, fed-
NCL V2, and fed-NCL V4. This is not surprising, as all three methods were
developed to improve over FedAvg.

3.3 Experiments with Packet Loss

In our experiments, packet loss is assumed to be independent and identically
distributed (iid) with probability PL ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 4 shows
the average MJI of the final trained model vs. PL over 10 runs for shallow-
and deep-split models. In each case, six curves are shown: baseline performance
without packet loss (green horizontal line) and the curves for m/5 clients expe-
riencing packet loss, where m ∈ {1, 2, ..., 5}. For PL ∈ {0.1, 0.3, 0.5}, deep and
shallow split curves are close to the performance without packet loss, regardless
of how many clients are experiencing packet loss. When PL = 0.7, MJI starts to
decrease, and more so when a larger number of clients experience packet loss.
When PL = 0.9, the shallow-split model ends up with near-zero MJI, regardless
of how many clients experience packet loss. Meanwhile, the deep-split model
can still be trained close to its no-loss performance when only a single client is
experiencing packet loss, but in all cases ends up with higher MJI values than
the shallow-split model.

Based on Fig. 4, it appears that the deep-split model can be trained to a
higher MJI than the shallow-split model under all conditions. To test this, we
performed 125 pairwise t-tests comparing shallow vs. deep split, for each unique
combination of PL and the number of clients experiencing packet loss. Table 1

1 That is, without distributing data across the clients.
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Fig. 4. MJI vs. PL for shallow split (left) and deep split (right), with various numbers
of clients experiencing packet loss.

shows the p-values of the corresponding one-tailed t-test comparing the MJI
with deep and shallow splits, Jdeep and Jshallow, respectively:

H0 : Jdeep ≤ Jshallow

H1 : Jdeep > Jshallow
(2)

As seen in the table, in all cases we have p < 0.05, so one can reject the null-
hypothesis H0 and conclude that deep split produces a higher MJI than shallow
split at the significance level of 0.05. Moreover, table cells highlighted in green
indicate the cases where p < 0.01, and in all these cases, we can conclude that
deep split is better than shallow split at a stronger significance level of 0.01.
Hence, in SFL over lossy links, the split point has a significant influence on the
final model performance, and a deeper split is better.
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Table 1. Summary of the pairwise t-tests between shallow and deep split under
various conditions. Values less than 0.01 are highlighted in green.

Parameter
aggregation
algorithm

# clients w/loss One-tail p-value
rounded off to 2nd

decimal place

PL 0.1 0.3 0.5 0.7 0.9

Nave avg. 5 0.01 0.02 0.02 0.02 0.02

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.03 0.00 0.02 0.00

2 0.00 0.00 0.02 0.02 0.00

1 0.00 0.00 0.02 0.03 0.00

Fed avg. 5 0.00 0.00 0.00 0.02 0.03

4 0.00 0.00 0.00 0.02 0.02

3 0.01 0.03 0.00 0.00 0.00

2 0.00 0.00 0.01 0.03 0.00

1 0.00 0.00 0.00 0.00 0.00

Auto-Fedavg. 5 0.02 0.01 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

2 0.02 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.03 0.00

Fed-NCL V2 5 0.00 0.00 0.01 0.00 0.00

4 0.01 0.02 0.02 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

2 0.00 0.01 0.00 0.01 0.00

1 0.00 0.01 0.02 0.00 0.00

Fed-NCL V4 5 0.00 0.02 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00

Finally, we examined whether any aggregation methods perform significantly
better than others under the packet loss scenario for the deep-split model. With
five aggregation methods,

(
5
4

)
= 10 pairwise comparisons can be made for five

values of PL and five numbers of clients experiencing packet loss; hence 10 ×
5 × 5 = 250 comparisons. We performed a t-test for each of the 250 cases. Some
methods performed (significantly) better than others in certain cases, but we did
not notice any pattern that would allow us to conclude that a certain method
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is better than others across the board. The full results can be found at https://
drive.google.com/drive/u/0/folders/140f6OGYLRhjqcNQe2aLbnfy1dA7dYt60.
4 Conclusions and Future Work
In this paper, we examined the effects of model split points in split-federated
learning (SFL) under packet loss. Experiments with five state-of-the-art aggre-
gation methods showed that the split point has a statistically significant impact
on the final model performance and that a deeper split is better. The reason for
this is twofold: (1) the deep-split model has more layers available in the client-
side back-end to learn how to recover the lost data, and (2) in our deep-split
U-Net model, the first skip connection was fully located at the client and was
able to transfer some features without packet loss.

It was also observed that SFL with our U-Net model was fairly robust to
packet loss of up to 50%, with both shallow and deep split. This can be due to
two reasons. The first reason is the use of ReLU activations in our split U-Net.
It was reported in [3] that models with ReLU activations tend to be fairly robust
to packet loss, because ReLU activations produce a lot of zeros in their output.
Hence, when a missing feature value is replaced with a zero, much of the time,
the zero value is the actual value that was lost. On the other hand, many high-
performance models for applications in medical image analysis and computer
vision use other activation functions, and such models could be more sensitive
to packet loss. The second reason is that packet loss can act as a regularization
technique, similar to dropout. To test this, we compared the MJI of models
trained under packet loss with PL ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and models trained
with dropout rates that match these values. A split U-Net model was trained on
all training samples ten times for each PL and a matching dropout rate at the
split points. At the significance level of 0.01, there were no statistically significant
differences between the MJI of the models trained with packet loss and dropout
of PL ∈ {0.1, 0.3, 0.5}. For higher loss rates, models trained under packet loss
had significantly lower MJI than those trained with the dropout. Hence, for low
to moderate loss rates, the effect of packet loss is similar to dropout and will not
negatively affect the MJI of trained models.

Other avenues for future work include testing the effectiveness of SFL with
multiple application scenarios that apply diverse semantic segmentation net-
works across multiple split points, studying SFL with more realistic packet loss
models, such as bursty loss or real packet traces, as well as developing more
robust parameter aggregation algorithms for SFL and methods for packet loss
recovery. Some work on missing data recovery in feature maps has been done in
the context of collaborative inference [1,3,5]. However, in SFL, a loss is observed
not only in feature maps but also in gradient maps, creating a new challenge.
As the first study on the effects of packet loss in SFL, we hope that this paper
will stimulate further work on that topic.
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1. Bajić, I.V.: Latent space inpainting for loss-resilient collaborative object detection.
In: Proceedings of IEEE International Conference Communication, pp. 1–6 (2021)

https://drive.google.com/drive/u/0/folders/140f6OGYLRhjqcNQe2aLbnfy1dA7dYt60
https://drive.google.com/drive/u/0/folders/140f6OGYLRhjqcNQe2aLbnfy1dA7dYt60


376 C. Shiranthika et al.
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