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Abstract. The ability to control product quality inmilling processes is an essential
target variable. Quality deviations can have different causes, which can be both
systematic and stochastic. Tracing data fromnumerous sensors ofmodernmachine
controls and combining them with a material removal simulation (MRS) allows
to predict the workpiece quality in a process-parallel manner. The accuracy of
the prediction depends on the underlying model and its parametrization. Model
parametrization usually requires measurements during which the machine tool
cannot be used. Additionally, the necessary measuring equipment is often not
available in companies. All this makes the implementation of MRS difficult in
the manufacturing industry. This article presents an approach that circumvents
the abovementioned disadvantages. With the help of a MRS, machine data is
refined and contextualized with quality data. The refined and contextualized data
is then used to fit various models, such as stiffnesses and process force. In future
the presented approach should enable a cost-effective parametrization without
machine downtime. With the parameterized models, MRS that predict quality can
be used both in advance during CAM planning and in a process-parallel manner
for quality monitoring.

Keywords: Machine Data Analysis · Process Modelling ·Model
Parametrization

1 Introduction

During machining, different effects occur which influence workpiece quality, produc-
tivity and availability of the tools and the machine (e.g. due to wear). During process
planning, these three parameters must be optimized to enable an economical produc-
tion [1]. With regard to productivity and tool wear, tool manufacturers already offer a
preselection of optimized parameters. However, the tool manufacturer cannot predict
the workpiece quality in its full complexity, since in-depth knowledge, e.g. about the
stiffness behavior of the machine tool, is usually necessary. In previous work, the pre-
diction of workpiece quality has been addressed in CAM planning [2] as well as in
process monitoring [3]. The prediction accuracy of these simulations depends on the
one hand on the discretization and on the other hand on the models behind it. Especially
the model parametrization is still very time-consuming and costly, due to the necessary
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measurements which have to be performed out of productionmode. At the same time, the
measurements require special equipment and qualified personell. All these factors lead
to the fact that the solutions are currently not used on an industrial level. An approach
that uses existing resources and does not disrupt production is therefore necessary.

In this paper, a concept is presented that addresses this challenge. In a first step, the
state of the art of modeling certain effects and parametrizing their model is discussed.
Subsequently, a concept is presented that enables a model parametrization based on
machine and quality data. The procedure of the concept is conducted for separatemodels.
Finally, a summary and an outlook are given.

2 Machining Errors

In recent years, numerous models and approaches have been developed along the dig-
ital process chain that enable quality prediction in machining. The influences on the
workpiece quality can be classified according to different criteria. Apart from the clas-
sification according to the degree of order of the defect on the workpiece (cf. [4]), the
influences can also be classified according to their source (machine-, workpiece-, tool-
and process-related) [5] or the type of generation [6]. When classifying according to the
type of generation, it should be noted that some of the influences interact with each other.
For example, the cutting edge geometry and its position (tool runout) have an influence
on mechanical and thermal factors such as the process force or the heat generation in the
process. Altogether, four types of influence are defined: 1) numerical (control) errors, 2)
thermal-induced errors, 3) load errors due to a static or dynamic forces and 4) geometric-
kinematic errors. In this article, this type of classification is used, since it is considered
to be the most useful for the systematic approach of the concept. In addition to [6], the
influence of post-processing, the form and location deviation of the raw part and the
influence of the clamping force deflection are added.

Mayr et al. state that up to 75% of all geometric defects on the workpiece can be
related to thermal influences [7]. In a case study [8], Schmitz investigated the individual
influences with regard to effects on the workpiece based on the circle-rhombus-square
sample component (NAS979). In the worst case scenario, 76% are due to cutting forces,
18% to geometric and numerical errors, and 6% to thermal expansion of the spindle
[8]. Depending on the process parameter setting and running time of the machine, the
dimensions can vary [8]. At the same time, the production of the workpiece is a three-
axis machining process, so that errors due to post-processing or path errors of the control
are rather negligible. Furthermore, the clamping situation is selected in such a way that
distortion due to clamping forces tends to be negligible. The variety of workpieces,
tools, machine tools, process parameters and environmental influences is so high that
the extent of each influence cannot be quantified generally. Rather, this challenge must
always be addressed in the context of the entire manufacturing process. In the following,
the modeling of the individual errors will therefore be discussed. The focus here is
primarily on the model parametrization.

Numerical errors can occur due to discretization or miscalculation. They occur
mainly in five-axis machining and arise during postprocessing after CAM programming
or to the path interpolation of theNC. Both a too high and a too low point density can lead
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to machining errors [9]. If the point density is too low, faceting of the surface can occur.
If the point density is too high, the feed rate may decrease. The resulting decrease in
process force can also lead to machining errors. This can be avoided by continuous-path
mode. A disadvantage of this mode is that the programmed contour won’t be traversed
precisely [10]. As a further numerical error, the interpolation error of the control, which
becomes apparent as chord error, should be mentioned [11]. Numerical Errors can be
reproduced by using machine-internal data or data from a virtual control (VNCK) [12].

Thermal-induced errors are split into two categories. On the one hand, different
thermo-elastic expansions occur on the machine side due to heat sources (e.g. power
losses of the drives), which influence the machine accuracy. On the other hand, thermal
expansions occur in the cutting zone as a result of the cutting energy induced. Most
current work in this area uses finite element method (FEM) [5, 8, 13, 14]. Increasingly,
however, hybrid approaches are finding an application as they allow faster calculation
of the displacements [15]. One way to measure the thermo-elastic machine behavior
is presented in [16]. Using position sensing detector sensors and a thermally stable
laser frame, 13 out of 21 errors for three-axis machines are detected. In [17], Denkena
et al. present a method to model the thermo-mechanical behavior in the cutting zone.
By means of a dexel-based material removal simulation (MRS), they calculate the chip
cross-section and the resulting forces aswell as the generated heat flux. An FE simulation
is used to get the actual workpiece expansion, which is stored in the respective dexels.
Subsequently, an inverse displacement of the triangulated tool surface is performed.

Load errors always dependent on both the forces and torques that occur as well as
the interacting stiffnesses.

Existing approaches already allow to predict process forces by means of machine
data. In most cases, these are often current based [18] or rely on a prediction based
on the difference of the encoders [19]. To parameterize the models, load-deformation
curves are used. At the same time, air cuts are run to determine the influence of motion
on the correlating variables. At low or reversing velocities these approaches often reach
their limits (e.g. due to static friction). In addition, the model parameters are affected
by further influences, e.g. due to the running time of the machine and past machining
operations, which cannot always be reproduced due to their variance. Hybrid approaches
provide an improvement of the prediction accuracy. In [20], Königs et al. use an artificial
neural network (ANN) for process-parallel process force estimation. Here, in addition
to the machine-internal data, the engagement conditions from the process-parallel MRS
are used as input parameters. In [21], Denkena et al. use an ANN with long-short-term
memory (LSTM) with motor currents and position data, as well as the variables derived
from them, such as axis velocity, acceleration and jerk, as input data for predicting the
process force. A disadvantage of approaches for process force prediction using machine
data is that dynamic effects cannot be modelled due to the low sampling rate (~500 Hz).
Additional sensor technology is required for this purpose. Brecher et al. use a spindle-
integrated force sensor (SIFS), which determines the process force via the displacement
of the bearing rings [22]. Postel et al. use accelerometers on the main spindle housing
to predict the process forces [23]. Furthermore, Denkena et al. use strain gauges on
the spindle slide to determine the process force as well as the tool stiffness [24]. All
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approaches have in common that in each case the transfer functions between tool center
point (TCP) and the sensor locations must be known.

For the prediction of the stiffness at the TCP (tool + machine), FE-based [25] or
analytical [26] approaches are mostly used. Bymeans of dynamic substructure coupling,
themachine stiffness can also bemodeled [25]. In [27], an approach is presented that uses
machine and quality data to determine the resulting stiffness. Using machine internal
data, a digital shadow is created that stores force information on the part. Based on the
shape deviations between the digital and real part, a calculation of the TCP stiffness is
performed.

Approaches for modeling the stiffness on the workpiece side deal with both the
deformation of thin-walled components [26] due to the occurring process forces and
the deformation due to the clamping situation [28]. These approaches are also mostly
FE-based.

Geometric-Kinematic Errors are all those errors that occur due to the interacting
geometries in the load-free state. These errorsmust be taken into account whenmodeling
the kinematics and the individual geometries. On the workpiece side, these are errors in
the raw geometry (e.g. casting allowances) and positioning errors. Machine data can be
used to detect tool engagement [29]. This theoretically offers the possibility to predict
casting allowances, provided that all other geometries are known. In addition, positioning
error can be reduced by continuous calibration of the blanks.

On the machine side, the errors of the individual axes and their position relative to
each other should be mentioned. These can be measured both directly and indirectly.
A direct measurement can be achieved, e.g. by means of laser measurement systems or
double-ball bars.An indirectmeasurement is possible by the use of specimenworkpieces.
The individual defects and their measurements are summarized in ISO230 [30].

From tool side, geometric errors are caused by tool runout and tool geometry.
Depending on the level of detail of the tool (cf. [31]), different orders of errors can
be reproduced. When representing the tool as a hull body, form deviations and the wavi-
ness can be modeled. By an additional consideration of the cutting edge geometry a
mapping of the roughness of the third order is possible (grooves). The tool geometry
is measured in the production scheduling. The individual cutting edge diameters at the
TCP as well as the tool runout in the holder can be measured. Clamping in the main
spindle causes an additional displacement of the tool rotation axis. At the same time,
wear occurs on the tool cutting edges as a result of machining. Schmidt investigated both
the calculation of tool runout and cutting edge wear with the help of a force measuring
platform [5]. At the same time, there are approaches that use machine data to monitor
tool wear [32].

Conclusion of the State of the Art. The current state of the art already allows the
modeling of many effects. The numerical effects can already be mapped well with the
help of VNCK [12]. When considering the errors according to their source, it becomes
apparent that geometric kinematic errors on the machine side can be partially recorded
by means of specimen workpieces [30]. The modeling of thermal influences on both
the machine and the process side is mostly done by means of FE simulations [5, 8, 13,
14, 17]. Variables that influence the process force, such as tool wear or runout, can be
predicted indirectly [5]. However, high-frequency force data are often required here.



Data-Based Model Parametrization 137

Controllers, however, offer only low sampling rates, so that the prediction possibilities
are limited. Furthermore, a concept to predict tool and machine tool stiffness based on
machine and quality data is already available [27].

3 Concept

The previous framework for quality prediction can be divided into a real and a virtual part.
In real world, the product is first designed in its target geometry and the manufacturing
process is planned and prepared. These data are virtually pre-processed to enable process
simulation. In practice, this is followed by the production of the product and its quality
control. During CNC-Process, data from the machine’s internal sensors can be recorded.
This data is transferred to a process simulation. Here, together with the pre-processed
data, the data is processed within the model chain. In addition to the MRS, typical
models describe themachine kinematic or stiffnessmodels of the interacting components
(machine, workpiece, tool). At the end of the process simulation, a digital shadow is
created. By comparing the real and virtual component, deviations can be determined.
These are dependent on the individual models as well as their parametrization. The
parameterization takes place only once. By adding an additional parameterization layer,
the individual information from the virtual models, the machine data as well as the real
and virtual quality data are now connected with each other and a parameter fitting is to
be made possible. The entire concept is shown in a simplified form in Fig. 1. Based on
this, the procedure will be explained exemplarily in the following for two models.

Fig. 1. Data-Based Model Parametrization – Concept

4 Data-Based Model Parametrization

For a data-based model parametrization, a deeper analysis of the models and their rela-
tionships is necessary. Due to the large number of machining errors, as mentioned in
Sect. 2, the procedure will be explained using two examples. One is a process force
model and the other is a stiffness model.
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In a first step, it shall be assumed that only models describing the ideal state are
available. Considering the force model, the resulting current at the main spindle ISpindle
consists of a cutting force component Icut, and several components related to the spindle
position s, speed n, acceleration a and jerk j. By means of an air cut, these process
force-independent components can be recorded so that the linear relationship between
cutting force Fcut and the effective cutting edge radius r of each tool edge and current
remains.

ISpindle = KI ,MFcut · r
︸ ︷︷ ︸

Icut

+ Ij(j) + Ia(a) + In(n) + Is(s)
︸ ︷︷ ︸

Parameterization based on air cuts

(1)

Kienzle [33] calculate the cutting force for each cutting edge in dependency to the
uncut chip thickness h and width b:

Fcut,Kienzle,i = kc,i · b · h1−mc,i (2)

The cutting conditions can be calculated with a MRS. Assuming that the force
coefficients kc,i and mc are known and constant for a sufficiently long time, the constant
KI ,M can be determined by changing the chip thickness or width:

KI ,M = �Icut
�Fcut · r = �Icut

�Mcut
(3)

Fig. 2. Force Model Parametrization – Concept

For the determination of KI ,M , it has to be ensured that factors which have an influ-
ence on the engagement, e.g. tool runout or tool deflection, are so low that they are
negligible. Figure 3 shows the force induced spindle current Icut during slot milling of
C45 with multiple Ø16 mmmilling tools (Fraisa Favora P45317610) in different holder
types. Each color shows one slot of in different parts. The selected cutting parameters
consist of a feed velocity of 525 mm/min, a spindle speed of 2585 rpm, and a cutting
depth of 5 mm. For evaluation purposes, a distance of 10 mm was used. It becomes
evident that while as Icut increases over time due to wear, the peaks and valleys remain
at a constant spindle position. Based on the extrema, therefore a prediction of the cutting
edge location is possible. Afterwards, the chip thickness can be calculated.

Using Eq. 2, Fcut is predicted. Here, the values kc,i and mc are taken from [34].
Based on Fcut Mcut is calculated and KI ,M is fitted. The result for one slot is shown in
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Fig. 3. Force induced spindle current Icut during slot milling

Fig. 4. Besides, all results are in Table 1 summarized. The reciprocals of KI ,M can now
be used to calculate Fcut during machining. Besides, further factors, which are related
to the force signals, can be calculated. Tool runout can be determined by observing
force oscillations, and tool wear by the increase of cutting force coefficients [5]. For the
determination of further geometric-kinematic errors, ISO230 can be used [30].
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Fig. 4. Force Model Parametrization – Results

Table 1. Force Model Parametrization – Results

To calculate TCP stiffness kTCP, a virtual workpiece as described in [27], is generated
where all stiffnesses are assumed as infinite. In total, three single stiffnesses are connected
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in series: 1) cutting part kcutting (cantilever beam), 2) holder part kholder (static) and 3)
machine part kmachine (static):

kTCP =
(

k−1
cutting + k−1

holder + k−1
machine

)−1
(4)

Fig. 5. Stiffness Model Parametrization – Concept

The cutting part is modeled as cantilever beam with a uniform load over the cutting
depth. By superposing the real and virtual workpiece, the deviation is calculated. Sub-
sequently, the product of Young’s modulus and surface moment of inertia is fitted for
the cutting edge part. In addition, the holder stiffness together with the machine stiffness
is also fitted. By using different tool-holder combinations, the machine stiffness can be
extracted later. It should be noted here that the workpiece stiffness is to be neglected. In
further work this should be investigated.

5 Summary and Outlook

This paper presents a concept that uses machine and quality data to parametrize models
for quality prediction. For this purpose, the machine data, which are recorded during the
production, are evaluated. Subsequently, individual models are parameterized separately
by means of a parameter fitting. The procedure of the concept is described concretely for
two models. One is a process force model and the other is a stiffness model. By means of
a material removal simulation, the data are brought together in a common context. Here,
the engagement variables such as cutting depth and cutting width are determined. By
means of a relative analysis, force models can then be fitted. At the same time, the fitted
force models can be used to determine other variables, such as tool runout. Furthermore,
stiffnesses at the TCP can be determined by superposing digital and real workpiece. In
the future, the presented concept can be used to parametrize quality-predictive material
removal simulations cost-efficiently during regular production. Therefore this concept
can be an enabler for the model parametrization of self-optimizing machining systems
as described in [35].
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