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Abstract. Wear monitoring is a critical aspect of maintaining the health and
performance of machinery. During centerless grinding, grinding and regulating
wheels as well as work rest blades wear out over time due to contact with work-
pieces, which impairs the geometrical accuracy and surface quality of the pro-
cessed parts, and ultimately the productivity of the process. Acoustic emission
sensors are a promising source of information for wear monitoring which in turn
allows to optimize dressing intervals and prevent rejects. During an experimental
series, acoustic emission signals were collected from a centerless through-feed
grinding process to identify changes in the signal that could be indicative of wear.
The collected acoustic emission signals were preprocessed by digital filtering and
extracting a comprehensive set of features. A one-class support vector machine
was used to quantify the signal evolution over the span of the experimental series.
The resulting resemblance of the signal evolution to the grinding wheel wear
effects observed in the geometric properties of the workpieces from the series
suggests the validity of this approach.

Keywords: Wear Monitoring · Acoustic Emission Signals · Centerless Grinding

1 Introduction

Wearmonitoring plays a critical role inmaintainingmachinery as it enables timely detec-
tion and intervention to prevent expensive breakdowns and ensure optimal performance.
To effectively address these challenges, it is essential to carefully choose parameters that
can offer real-time insights into internal conditions and mechanical faults of the device
[1].

In the context of centerless grinding processes, traditional methods of wear monitor-
ing, such as visual inspection, manual measurements, or fixed grinding wheel dressing
intervals, have been commonly used. However, these methods have limitations that hin-
der their effectiveness in real-time wear monitoring. Visual inspection relies on human
judgment and may suffer from subjectivity and inconsistency. Manual measurements,
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althoughmore quantitative, can be time-consuming and impractical for continuousmon-
itoring. Similarly, fixed grinding wheel dressing intervals may not capture wear-related
issues in a timely manner, leading to potential quality issues and production delays.

The complex nature of centerless grinding processes, influenced by factors like the
grindingwheel, grinding anddressing conditions, andmachine setup, further underscores
the importance of tool wear monitoring in this field [2]. The condition of machinery can
be also monitored using various techniques, including vibration analysis, thermography,
and ultrasonic inspection. These techniques can help detect early signs of degradation,
thereby allowing for timely intervention.Vibration has been used to pinpoint the potential
sources of vibrations and identify the componentwith faulty behavior [3]. Thermography
was also used to locate potential issues using hot or cold spots in a machine [4], while
the ultrasonic inspection is a reliable method that gives valuable information about the
internal state of the machine through the analysis of sound waves [5].

In the context of grinding processes, acoustic emission (AE) signals have been found
to be particularly useful for monitoring wear, which implies a high probability of suc-
cessful applications in centerless grinding. Especially, detecting grinding wheel wear,
loading, chatter analysis, collision detection, grinding burn and cracks, gap elimination,
process control, and dressing/truing verification have been deemed feasible [6]. Signal
processing methods in both time and frequency domains, such as time direct analysis
(TDA), singular spectrum analysis (SSA), Fourier transform, and wavelet transform,
have been utilized for online process monitoring. Moreover, different predictive tech-
niques including multivariate regression, artificial neural networks, and support vector
machines (SVM)havebeen applied considering the correlating features of the parameters
under study [7].

Previous research has provided evidence of the feasibility of utilizing vibration and
acoustic emission signals for monitoring grinding processes. However, the effectiveness
and practicality of implementing these approaches for efficient online monitoring in
centerless through-feed grinding processes have not yet been thoroughly investigated and
validated. Although the feature-based analysis of AE signals appears to be applicable
for wear monitoring in centerless through-feed grinding, no thorough investigations
and validations have been performed yet. Further research is required to establish the
consistency of tool wear detection by these monitoring methods with the measurement
of corresponding process conditions and result variables. Therefore, the effectiveness of
the method, specifically in the context of centerless through-feed grinding operations,
is still to be investigated.

By enhancing wear monitoring in centerless grinding processes, this research makes
a distinct contribution by focusing on the development of a one-class support vector
machine (SVM) [8] model for evaluating the process state in centerless through-feed
grinding using acoustic emission (AE) signals. The one-class SVM is amachine learning
algorithm specifically designed for anomaly detection, capable of identifying instances
that deviate from the norm. In the context of wear monitoring, the one-class SVM can
effectively detect patterns inAEsignals, indicating changes inmachine behavior possibly
relating towear. To validate the proposed approach, the researchwill conduct experimen-
tal studies in real-world centerless through-feed grinding operations, specifically in an
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industry-like process setup. This validation will demonstrate the practical applicability,
reliability, and effectiveness of the one-class SVM model for wear monitoring.

The paper is structured as follows: Section 2 presents the methodology, including
the experimental setup, data acquisition, feature-based process analysis, and the use
of the one-class Support Vector Machine (SVM) algorithm for grinding tool condition
monitoring. Section 3 provides a summary of the results and includes a discussion of
their implications. Section 4 concludes and provides an overview of the entire research,
highlighting its contributions and potential directions for future research.

2 Methodology

2.1 Experimental Setup

A partially hardened C53 steel with an initial workpiece diameter of dw,0= 15.1 mm
was ground with a depth of cut of ae = 0.3 mm. Workpieces with two different lengths
were examined in order to investigate any correlation between the grinding wheel width
to workpiece length ratio on the process results. The workpiece length for the short
workpiece was lw,1= 284 mm and for the long workpiece was lw,2= 425 mm. The
centerless through-feed grinding experiments were carried out on a Mikrosa Kronos
S250 grinding machine. The cooling lubricant used was a Hocut 4570 emulsion from
Quaker Houghton at a concentration of c = 6%. A vitrified bonded grinding wheel of
grit size F90 from Effgen Lapport was used for the tests. The regulating wheel was
rubber-bonded with the corundum grit size F120 and from the company Effgen Lapport.

The grindingwheel has been profiledwith a run-in zone, grinding zone and spark-out
zone. At a total grinding wheel width of bgw,tot = 250 mm, the grinding zone took a
width of bgw,2= 150 mm. Grinding was performed with an elevation of h = 3.7 mm
over the center and a regulating wheel inclination of αr = 3.0°.

In the grinding investigations, the circular shape deviation fk , the straightness devi-
ation fg , the cylindrical shape deviation fcyl , the arithmetic mean roughness Ra and the
maximum height of profile Rz were measured. For the form deviations fk , fg, fcyl , a
form measurement machine of the type MMQ-400 from the company Mahr was used.
The roughness values Ra,Rz were measured using an Etamic Nanoscan roughness and
countour measurement machine from the manufacturer Hommel. The grinding wheel
was dressed in an identical manner before each test point. After the dressing process,
the grinding wheel wear behavior was investigated. Vw was continued until a material
removal of Vw= 800,000 mm3 was achieved. At this point, the grinding wheel wear
was considered critical due to a diameter deviation of the ground parts in all test points
considered. Acoustic emission data were recorded during the process using a measuring
chain for acceleration sensors of the type Piezotron/8852A from the company Kistler
was used and set to a sampling rate of 1MHz. During the tests in centerless through-feed
grinding, the AE sensor was placed a few millimeters below the workpiece in the run-in
zone of the work rest, which lead to well analyzable results. The test setup and the sensor
are shown in Fig. 1
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Fig. 1. Experimental configuration and sensor placement.

2.2 Data Acquisition

For the grinding experiments carried out, the grinding wheel radial wear was measured
on the basis of the dimensional deviations of the workpieces as a function of the material
removalVw. It was found that increasing dimensional deviations are present starting from
a material removal of Vw = 500,000 mm3 after the previous grinding wheel dressing
process. It can be assumed that this is due to a macroscopic grinding wheel wear state
in which the entire spark-out zone width has been involved in the material removal
process, following a diameter loss of the grinding zone. For the given experimental
setup, an increase in the circular shape deviations fk as well as straightness deviations fg
occurred starting from a material removal of Vw = 300,000 to 500,000 mm3.

The AE dataset utilized in this research includes four distinct experiments involving
two different work rest geometries and two different workpiece lengths. In the first
experiment, focusing on the standard support rail geometry, data were recorded for the
long workpieces spanning from the 55th to the 270th workpiece (164,000 mm3 < Vw

< 803,000 mm3). This range was obtained due to a measurement issue encountered
during the experiment. For the short workpieces, the AE signal was captured from the
1st workpiece up to the 270th workpiece (0 mm3 < Vw < 803,000 mm3). The second
experiment involved a non-standard work-rest geometry which was characterized by
different workpiece heights on the infeed and outfeed sides of the grinding gap. The
exact design of the work rest was not of further importance for the investigations in
this study. This experiment merely served to obtain further test data in a divergent
process. Herein, the AE signals were recorded for all repetitions of both long and short
workpieces (in every case 0 mm3 < Vw < 803,000 mm3). For the long workpieces,
data was collected continuously for 270 consecutive workpieces. Similarly, for the short
workpieces, theAE signals were recorded for a total of 390 consecutiveworkpieces. This
experimental design allowed for comprehensive data collection across variousworkpiece
ranges, enabling a comprehensive analysis of the AE signals in relation to the different
geometries and workpiece sizes.
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2.3 Feature-Based Process Analysis

Time series analysis encompasses various techniques, including deep learning
approaches such as convolutional neural networks (CNN) or long-short term memory
neural networks (LSTM), which can directly process raw or preprocessed time series
data without prior feature extraction [9]. Alternatively, the second approach involves
transforming the time series into a feature space before further analysis. It entails for
instance identifying suitable features from the statistical domain (e.g., mean or median)
or the spectral domain (e.g., FFT coefficients). The process of transforming the raw
data into a feature space is known as feature extraction. This step is essential to capture
relevant patterns and characteristics of the time series [10].

In this paper, the TSFEL (Time Series Feature Extraction Library) [11] was used as
a tool for feature extraction in the context of the acoustic emission (AE) signal analysis.
The utilization of the TSFEL library allowed for the extraction of a diverse set of features
from the AE signal. These features cover various domains, including statistical, spectral,
and entropy-based measures [12]. A total of 260 features were extracted for analysis,
encompassing various signal characteristics such as FFT mean, Wavelet variance, and
absolute energy. These features were selected to provide a comprehensive representation
of the data and capture relevant information related to the studied phenomenon. The FFT
mean feature quantifies the average frequency content of the signals, while the Wavelet
variance feature captures the variability of the signal across different scales.Additionally,
the absolute energy feature reflects the overall magnitude of the signals.

2.4 Grinding Tool Condition Monitoring Using the One-Class Support Vector
Machine (SVM) Algorithm

Several researchers have explored the application of machine learning algorithms for
tool condition monitoring. Sick [13] proposed tool wear monitoring using Artificial
Neural Networks (ANN), while Shi and Gindy [14] developed a tool wear prediction
model using Least Square Support Vector Machines (SVM). Elangovan et al. [15–17]
utilized Bayesian classifiers, decision trees, and SVM for single point tool condition
monitoring in turning processes based on vibration signals. Wang et al. [18] studied
machine tool conditions using the SVM algorithm. Krishnakumar et al. [19] applied
decision trees and ANN for multipoint tool condition monitoring in high-speed machin-
ing. Zhang [20] implemented neuro-fuzzy models for tool wear studies using vibration
signals. Arun et al. [21] experimentally evaluated grinding wear in cylindrical grind-
ing processes using vibration-based techniques, comparing the performance of various
machine learning classifiers [22]. This paper introduces a novel approach for tool wear
monitoring based on a one-class support vector machine (SVM) algorithm. Unlike tradi-
tional supervised learningmethods, our proposed framework operates in an unsupervised
manner, focusing on anomaly detection rather than classification. By leveraging the one-
class SVM,we aim to address the limitations of existing tool wearmonitoring techniques
in centerless grinding processes. Our approach utilizes acoustic emission signals as input
data, capturing the unique patterns associated with tool wear.

One-class SVM works on the basic idea of minimizing the hypersphere of the sin-
gle class of examples in training data and considers all the other samples outside the
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hypersphere to be outliers or out of training data distribution. Figure 2 illustrates the
concept of using a one-class SVM to create a hypersphere for classifying out-of-training-
distribution data. The process of obtaining the hypersphere, defined by its center c and
radius r, involves solving the following constrained optimization problem:

min
r,c

r2 subject to ||Φ(xi)−c||2 ≤ r2∀i = 1, 2, . . . , n (1)

However, a more flexible formulation that allows for a certain degree of tolerance
towards outliers is given by:

min
r,c,ζ

r2 + 1

νn

n∑

i=1

ζi (2)

subject to, ||Φ(xi)−c||2 ≤ r2 + ζi∀i = 1, 2, . . . , n (3)

In the given formulation, the function � represents a transformation function that
maps the original data points xi into a different space, the mathematical variable ζi,
represents scalars that describe distances from the hypersphere around c to datapoints
outside of the sphere and v is a positive parameter that determines the compromise
between the volume of the sphere and the number of outliers [23].

Fig. 2. Hypersphere representation of target data with center c and radius r.

Following the feature extraction process, the extracted features serve as inputs for
the algorithm. During the training phase, the algorithm learns to differentiate normal
operating conditions from abnormal or worn-out conditions by establishing a boundary
in the feature space. Subsequently, the trained one-class SVM is employed to classify
new acoustic emission signals based on their similarity to the learned normal behavior.
By assessing the proximity of the extracted features from these signals to the established
boundary, the algorithm identifies instances that deviate significantly from the norm,
indicative of potential wear in the grinding tool.

3 Results and Discussion

To establish a comparison between data analysis and real-world experiments, it is nec-
essary to consider the computational factors relating to the number of short and long
workpieces, as well as the value of cutting volume (Vw). The conversion between the
number of parts and the Vw value is determined using specific factors, as outlined in the
provided Table 1.
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Table 1. Conversion factors for establishing comparison between number of workpieces and
cutting volume Vw .

Workpiece length lw [mm] Cutting volume = π
d2wA−d2wE

4 · lw [mm3]

Short (284) 1987.4

Long (425) 2974.1

Based on the measurements obtained from the experiment, it is observed that an
increase in the novelty score of the analysis occurs between Vw values of 300,000 mm3

and500,000mm3.During this range, there is also a significant rise in both the straightness
deviation ( fg) and the cylindricity deviation ( fcyl) due to grinding wheel wear.

This finding suggests that as the Vw value increases within this specific range,
the deviation in straightness and cylindricity becomes more pronounced. This can be
attributed to the wear of the grinding wheel, which impacts the accuracy and precision
of the workpiece geometry.

Fig. 3. Figures 3(a) and 3(b) showcase the application of novelty detection on long and short
workpieces with a standard work rest geometry, while Figs. 3(c) and 3(d) demonstrate novelty
detection on long and short workpieces with a non-standard work rest geometry.
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The figures show that there is a comparatively large scatter in the calculated novelty
scores. Nevertheless, there was good agreement between the moving average of the
novelty scores and the wear-related rise in component shape deviations.

Figures 3(a) and 3(b) depict the application of novelty detection on both long 3(a) and
short 3(b) workpieces with a standard work rest geometry. For the short workpieces, 50
training pointswere used for subsequent prediction, while the longworkpieces employed
30 training points. Similarly, Figs. 3(c) and 3(d) demonstrate novelty detection on both
long 3(c) and short 3(d) workpieces with a non-standard work rest geometry. In this
case, 75 training points were utilized for the short workpieces, and 50 training points
were employed for the long workpieces. The variation in the number of training points
allows for tailored prediction and analysis based on the specific characteristics of each
workpiece.

The presence of bends in the graphs reflects interesting observations regarding tool
wear. Specifically, in Figs. 3(b), 3(c) and 3(d), there is a notable change in the trend,
indicating a distinct behavior related to toolwear. The bend in the graph signifies a critical
point where the tool wear effects become more pronounced, leading to a deviation
from the previous trend. This bending point can serve as a reference to identify the
threshold at which the tool’s condition significantly impacts the machining process. The
significance of this observation cannot be reliably confirmed in Fig. 3(a) due to failures
in the recording of measurements, which necessitated the use of more than 300,000mm3

for training data. Nevertheless, the findings from the first and second experiment series
remain compelling and warrant further investigation.

In summary, the key finding of this research is the consistent observation of a signif-
icant increase in the novelty score between cutting volume values of 300,000 mm3 and
500,000 mm3 in the analyzed data. This trend was observed regardless of the specific
workpiece series or geometry under investigation. Consequently, this finding indicates
the critical relevance of this cutting volume range in detecting novel or anomalous
instances within the grinding process. Furthermore, the presence of bends in the graphs
illustrates a distinct behavior related to tool wear, signifying a threshold at which the
tool’s condition significantly impacts the machining process. These findings highlight
the importance of further investigation into the factors influencing tool wear and the
relationship between anomalies and grinding process variables.

4 Conclusion and Future Work

This research aimed to improve wear monitoring in centerless grinding processes using
acoustic emission (AE) signals by integrating a one-class Support Vector Machine
(SVM) algorithm. The combination of feature extraction using TSFEL and SVM algo-
rithm proved to be effective in detecting anomalies during centerless through-feed grind-
ing operations. The analysis of various workpiece geometries and sizes successfully
identified wear-related changes in the grinding process, specifically the impact of grind-
ing wheel wear on workpiece geometry accuracy. The observed increase in novelty score
and the presence of bending points in the graphs provided evidence of the threshold at
which grinding wheel wear significantly affected the machining process, supported by
geometry measurements of the workpieces.



122 D. Gelbich et al.

The key finding of this research work is the successful detection of deviations asso-
ciated with grinding wheel wear through AE signal analysis. This finding contributes to
the understanding of wear monitoring in centerless grinding operations and highlights
the importance of timely intervention and preventive maintenance measures to optimize
machine performance and improve product quality.

While this study shows promising results, there are several limitations that need to
be addressed in future research. The limited variation in geometry and parameters in the
current study calls for further investigation to verify the applicability of the proposed
approach in different settings. Additionally, exploring additional features such as vibra-
tion and investigating featureless methods that can extract information directly from
raw data could provide a more comprehensive understanding of the grinding process
and improve wear detection accuracy. Increasing the data sample size and refining the
one-class SVM model by fine-tuning parameters, exploring different kernel functions,
or considering alternative anomaly detection algorithms is essential to enhance the app-
roach’s generalizability and robustness. Future research should also focus on optimizing
themodel, validating it in larger-scale industrial environments, exploring different grind-
ing processes, and expanding the range of parameters under monitoring. Advancements
in these areas will significantly contribute to improving process control and ensuring
high-quality results in grinding operations.
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