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Abstract. The prediction of workpiece quality in process planning, using
machine learning models, is a common-researched topic. Until now, trained mod-
els were static and could not update themselves with new data. However, this
aspect is crucial when considering the continuously changing manufacturing
circumstances in regards to new process parameters, materials, and workpiece
geometries. In addition, repeatedly training process models with an extended
mixed dataset decreases the prediction quality due to the increased data diver-
gence. This paper presents an approach to automatically generate sub-models,
which maintain the prediction quality even if novel data is considered. The chal-
lenge is to define the amount and content of these sub-models through clustering.
Tool grinding experiments will be conducted with different process parameters,
materials, and workpiece geometries in order to obtain a divergent dataset. Sub-
sequently, cluster approaches are compared to obtain dynamic growing models,
which enable optimized planning for a more resource efficient process. Finally,
the method will be generalized in order to ensure a process-independent usage.
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1 Introduction

Besides empirical and numerical modelling approaches, machine learning methods are
being used more and more to describe relationships in a machining context [BRIO6,
DEN19, KON17]. The future vision of an autonomous machine tool needs to include
this knowledge in order to perform a successful production [DIT21]. Because of their
ability to map even complex and comprehensive processes, the automatic generation
and evaluation of machine learning models is frequently researched [DEN20, KRU19].
In this research, the limits of modelling are specifically focussed on due to the limited
complexity a model can include. To visualize this limit, Fig. 1 depicts three synthetically
generated datasets and the support vector machines (SVM) of various dataset combi-
nations. Their quality is evaluated using the mean absolute percentage error (MAPE)
which is defined as the absolute model error per mean value of the modelled target
parameter. A perfect model has a MAPE of 0%, while a larger MAPE indicates lower
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model qualities [MYT16]. The combination of Dataset 1 and 2 in Fig. 1 results in a
model quality between them. The 5.8%-MAPE of Dataset 2 is nearly average with the
higher MAPE of Dataset 1 because all datasets have the same size. This effect can’t be
observed for the combination of all three datasets. Due to the inauspicious location of
Dataset 3, the MAPE is even greater when compared to the single datasets” MAPEs. A
possible solution could be clustering the datasets into two data clusters with one model
each, instead of one model including all of the datasets. One cluster with Dataset 3 and
another including Dataset 1 and 2 yields a compromise with fewer models and higher
model quality, despite the included data complexity.
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Fig. 1. Limited complexity of linear support vector machines on synthetic data

Currently, it is common practice to generate a separate model for each dataset (e.g.
for each material-tool combination), resulting in a large amount of different models
[DIT20, UHL21]. This process means that any new data, e. g. of a slightly different
material, cannot be processed because the models have only a small definition range.
Thus, an approach by which models can adapt to the database, and thus process new
data points, is missing. This capability is essential for an autonomous machine tool with
self-optimizing process planning and is, therefore, the subject of this paper.

In contrast to machine learning approaches, there is only limited research on clus-
tering approaches in a machining context. Ochel et al. cluster continuous milling data
as current signals, as well as axis position signals, to differentiate between geometrical
workpiece features [OCH22]. Before the similarity to the predefined signal patterns per
feature is calculated, the signals are roughly analysed by the spindle speed to omit tool
changes. This approach is used by Brecher et al. to create a tool wear model for milling
processes [BRE22]. It becomes clear that not just for the previously described data pro-
cessing, but even for machine learning and clustering purposes, process knowledge is
crucial [BRE20]. Those self-optimizing systems need to be able to automatically adapt
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to changing inputs [MOH20]. For this aim, manually clustering using expert knowledge
must be structured and automated by algorithm-based methods.

2 Approach

Based on the literature, before am automated hierarchical cluster algorithm is discussed
as step towards an autonomous machine tool, manually clustering according to the
most dominant process input parameters is presented. Analyzing both strategies suc-
cessively, makes it possible to develop a general method of clustering for incorporating
new data while maintaining prediction quality. The used dataset originates from helical
flute grinding experiments conducted during the manufacturing of shank tools. Detailed
information about the data is listed below.

e Machine tool: Vision 400 L (Walter Maschinenbau GmbH), Fanuc 31i-B5 control.

e Workpiece: Diameter D = 6, 10, 12 mm and core diameter D, = (0.3, 0.5) x D;
cemented carbide from Tigra GmbH with amount of cobalt = 3, 6, 10%.

e Grinding tool: Hybrid bonded diamond grinding wheels, shape 1A1, grain size =
D33, D46, D54 pm.

e Process parameters: Feed rate vi = 50, 100, 200 mm/min; cutting speed v, = 15, 18,
22 m/s. Between two and three executions to ensure statistical reliability.

e Simulation data: Local cutting conditions by the software IFW CutS® in terms of
local contact length 1, and equivalent chip thickness heq as established in [DEI10].

e Target parameter: Spindle current in % adjusted for frictional effects named DTRQ.

There are many methods for evaluating the found clusters [FRA10]. The given use
case is to model the spindle current value DTRQ of helical flute grinding processes.
Here, clustering should lead to more optimized regression model qualities within a set
of clusters when compared to a comprehensive single model. The quality of a single
cluster is evaluated by generating a regression model. The average quality of a cluster
set can then be used for comparison with other sets. The quality of a single model can
be expressed as a combination of the MAPE and the determination coefficient R. The
latter describes the variance of explanation for due to the model in a range from O (not
explained) to 1 (fully explained) [BAC16]. The equal modelling method is used for the
regression models of all clusters in every cluster set, to ensure comparability. A linear
SVM was chosen as the modelling method because of its short calculation times and
successful performance in preliminary investigations [UHL22]. The modelling is done
by Mathworks® Matlab using standard hyper parameters since an optimization of them
wouldn’t improve the model quality. Reliable regression models have similar prediction
qualities in regards to both the validation data and the test data. Otherwise, the model
is said to overfit or underfit. To omit models with an indication of under- or overfit, the
MAPE and the R? of validation and testing were compared using a fitting indicator Fir,
as established in Eq. 1. Preliminary work urge the use of models with Fit < 10. To ensure
a statistical certainty, the modelling was done at least 20 times, for every model, with a
5-fold-cross validation and 20% unknown test data.

MAPE (Testing) R?(Validation)
MAPE (Validation) R2(Testing)

Fit — 0.5*( (1)
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3 Manually Clustering Using Expert Knowledge

Defining clusters based on expert knowledge, strongly depends on the given use case. In
terms of tool grinding, the available process input parameters, presented in the previous
section, are possible indicators for clustering. Figure 2 presents the model quality for
DTRQ of the grinding wheel D46 engaging a workpiece with 10% cobalt (D46T10). In
the upper graph, with an increasing amount of D46T10 data points, a mostly constant
model quality is already achieved using 30 data points. Including 60 data points, the
final modelling quality is reached (green line in Fig. 2). This result shows that at least 30
observations are necessary in order to obtain a SVM regression model for helical flute
grinding processes with an acceptable model quality as also found in [DIT20].
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Fig. 2. Differing data influencing the quality of a common regression model (Color figure online)

For the lower graph of Fig. 2, additional data in terms of D33T10, is used to train
the model. In comparison to D46T10 the datasets differ in the grinding wheel’s grain
size, which is reduced from 46 um to 33 wm. Due to this variance, there is a base
of 30 data points, which is consecutively increased by the D46T10 data. Even with
this additional 30 data points of D33T10, when compared to the upper graph, the final
model quality of D46T10 values is first reached with about 110 data points (30 out of
D33T10 and 80 out of D46T10) in terms of the mean value. The modelling complexity
in the lower graph was too high, thereby preventing the final model quality from being
achieved before the 1101 data point. In addition to the mean value, model variance is
also affected by additional D33T10 data. This additional data allows for an even earlier
attainment of the final model quality with 5% of D46T10 (lower graph) as compared
t0 9.5% of D46T10 (upper graph). Furthermore, the resulting range of variation for the
MAPE doubles independently of the ratio of the data points from D33T10 to D46T10
included in the training data. This shows a crucial influence of the training datasets’
composition on the model quality.
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Besides the grinding wheel specification, other process variables are also possible
for clustering based on expert knowledge. Surprisingly, models created with data that
was clustered after the workpiece geometry parameters D or D, fail immediately. In
contrast, clustering by vy or using local cutting conditions as a cluster indicator yields
reliable performance as presented in Fig. 3. It becomes clear, that a combined dataset,
including all three stages of feed rate, performs up to 7.7% (MAPE) worse than the
individual stages’ models. This difference is visible in both the MAPE and the R? model
quality criterion. Remarkably the MAPE for the vi = 200 mm/min dataset is clearly
lower when compared with the vi = 100 mm/min dataset, while their R? is mostly the
same. This result confirms the differences in model quality, at least in regards to the used
quality measurement method, are thereby supporting the use a combined MAPE and R?
for objective model evaluation.
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Fig. 3. Model quality after clustering D46T10 by feed rate v¢

The presented results lead to the following boundary conditions for generating and
evaluating clusters for regression models:

1. The approach shall generate clusters with at least 30 data points each to ensure a
proper model quality (in terms of helical flute grinding).

2. Additional data, which differs from the existing data, can drastically decrease model
quality. The approach shall be able to identify and split those datasets into clusters.

3. Even a small number of additional data added to a huge dataset are able to reduce the
model quality. The approach shall be sensible for those data points and allocate them
into a new cluster.

4. Considering the previous boundary conditions, the approach shall minimize the
number of clusters (and with this, the number of models).

5. The generated models should be evaluated based on several quality metrics.
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The major disadvantage of this knowledge-based clustering is that well-educated
and experienced employees are necessary to cluster the data. They have to decide which
process parameter is sufficient as a cluster indicator, or even, if a combination of several
parameters has to be taken into account. In addition, they have to define which data could
decrease the model quality when combined with other data, although there is no estab-
lished approach for measuring this data divergence. To conclude, besides the process
knowledge, brief insights into data preprocessing and model creation are required for
knowledge-based clustering. Another approach is to use hierarchical cluster algorithms
which can handle the confusing number of data points systematically and within shorter
durations.

4 Clustering Automated by a Hierarchical Algorithm

Hierarchical methods are well researched and often used in combination with a euclidean
distance criterion to split data into clusters [FRA10]. The hierarchical method starts with
a cluster for each point of the dataset and calculates a matrix of differences between every
possible pair of clusters. Subsequently, the two clusters with the shortest distance are
merged into a common cluster, whereby the number of clusters for the whole dataset
decreases. The repetition of this procedure with new distance matrices and merged
clusters leads, in the end, to one single cluster containing every point of the dataset. The
generated structure of clusters is called “dendrogram” and enables the classification of
data points into a given number of clusters [FRA10].

Differences in this hierarchical cluster method can be seen in the cluster linkage
for euclidean distance measurements. For example, the distance between two clusters
can be calculated by the shortest distance between two points of the clusters or by their
farthest distance. There are many different linkage criteria, but to obtain clusters with low
variance and comparable sizes (see Sect. 2), the ward linkage method is more suitable
[FRA10, WARG63]. The method aims to minimize the overall error sum of squares (ESS)
of a dataset with ¢ points P;; € R" in a cluster j by calculating ESS for every possible
merge of two clusters, as presented in Eq. 2.

ESS = min Z]’l > (Pi,j - 0<R2)>2 )

The model quality of hierarchical clustered datasets with the ward linkage is depicted
in Fig. 4 for different clustering input parameters and numbers of clusters. The grey bars
going in the vertical direction present the model quality in regards to the whole D46T10
dataset as one single cluster. The horizontal bars in blue and yellow depict two, or rather,
three clusters out of the D46T10 dataset. These clusters were generated by the cluster
algorithm using different input parameters. As a benchmark, the manual clustering that
utilized the v¢ presented in Fig. 3 is done with this approach too.

Figure 4 points out that a clustering by the local cutting conditions 1l and heq is also
suitable for achieving an improved model quality in comparison to the overall model with
only one cluster (grey bar). In contrast to manual clustering, this method combines at least
two input parameters to create the set of clusters. Because of the numeric optimization
seen in Eq. 2, a manual approach can’t achieve this same clustering in manageable time
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periods. Across all input parameters, Fig. 4 shows that three clusters (yellow) tend to
result in in an average 2.7% lower MAPE than the two clusters (blue). However, with an
increasing number of clusters, the Fit indicator increases with a mean of 8.2%, thereby
decreasing model quality. This result supports the boundary conditions of Sect. 2, in
regards to prefer a minimal amount of models.
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Fig. 4. Model quality of hierarchical clustered datasets by different clustering inputs (Color figure
online)

The benefit of this automated approach, in comparison to the expert knowledge
needed for manual clustering, is the structured proceeding that leads to an optimized
clustering. The user can focus more on the evaluation and comparison of clusters rather
than generating and testing them. Even combinations of process input parameters can be
used as cluster inputs in this approach, which is more challenging and time consuming
in the manual way. As presented in Fig. 4, an individual cluster isn’t necessary for every
stage of a process parameter. The algorithm-based approach can test every combination
of process parameters for every number of desired clusters. This leads to reliable process
models that enable more resource efficient production. The following section sumarizes
the approach and gives guidance on how to modify the inputs for clustering purposes.

5 Generalization of the Method

A general description, as presented in Fig. 5, illustrates the usage of the automated clus-
tering approach with a hierarchical algorithm independently of the machining process.
On the left side, the regular use of the process model is depicted with unlabelled data
and the predictions are calculated with the current model. The latter can be used, for
example, in process planning or quality prognosis. When newly labelled data becomes
available, the current model’s quality can be evaluated by predicting the new input data.
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Therefore, the current model is used to generate the labels for the data. A comparison
of the predicted labels with the actual ones gives the prediction quality of the current
model for the new, labelled data. MAPE, R2, and Fit are used to ensure a sustainable
assessment of model quality. If this new prediction quality equals or exceeds the current
prediction quality, no action is needed. Conversely, new clusters and corresponding new
models would have to be generated. In order to account for influences from measurement
uncertainties and model building on the forecast quality, a threshold can be introduced.
For example, clustering would only be triggered at a 5% reduction in model quality. To
account for any possible influence on model quality, a new clustering is also conceivable
for the first variation of a previously constant process input variable.

Regular use Generation of clusters and models

Y

Evaluation

1) Define relevant process input
parameters.

2) Define maximum number of
clusters by minimum cluster size.

3) Generate cluster sets according
to possible combinations of
process input parameters.

4) Evaluate cluster sets by model
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5) Select cluster set with highest
quality.
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Fig. 5. Method of clustering for incorporating new data while maintaining prediction quality.
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Generating new clusters requires the definition of relevant process input parameters
included in the dataset. For example, helical flute grinding would include feed rate,
cutting speed, local cutting conditions, workpiece material, and grinding wheel speci-
fications. The maximum number of clusters is determined by the minimum number of
data points per cluster. For every combination of the defined process input parameters
a set of clusters is generated with the automated hierarchical cluster algorithm. This
process enables the user to evaluate each cluster set. Therefore, a regression model is
built for every cluster to compare the model quality. The most suitable set of clusters
and models is then chosen to become the new current set for regular usage.

6 Conclusion and Outlook

The paper presented the limits of machine learning models in the case of complex tool
grinding datasets concerning their dynamic growth during production. To overcome
this challenge, datasets can be clustered to generate a set of models, instead of just
a single one, for modelling the process relations. This clustering requires knowledge
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about the number and subdivision of the clusters. Both a manual and an algorithm-based
approach for splitting datasets into suitable clusters were analysed to develop a general
method of automated clustering. This method allows more than one process parameter
to be considered in clustering, resulting in a reduced number of clusters, creating high
quality process models for even complex datasets. Reliable process models are required
in process planning to ensure a resource-efficient production. It can be seen as a step
towards self-optimizing process models that automatically adapt to new processes. Such
systems are necessary in order to achieve the vision of an autonomous and energy-
efficient machine tool. Further work is necessary to explore this developed approach,
including different linkage criteria and algorithms, like a density-based method. The
presented approach uses a linear SVM to model the process relations and evaluate the
clusters. Other methods, such as neuronal networks or gaussian process regressions,
should be investigated too. Additionally an automated selection of the best set of clusters
as well as the required calculation effort should be explored too.
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