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Abstract. ChatGPT is an advanced large language model (LLM) capa-
ble of generating code to solve specific problems when presented with
carefully designed prompts, among other capabilities. The existence of
ChatGPT raises signifi-cant questions regarding teaching practices and
evaluations within the dis-cipline. If ChatGPT can effectively solve exer-
cises assigned to students, it prompts a reevaluation of the skills and
knowledge that we teach and eval-uate. The objective of this paper is to
assess the proficiency of ChatGPT in solving exercises commonly encoun-
tered in a CS1 course. This serves as an initial step in exploring the
implications of ChatGPT for computer science education. By examin-
ing ChatGPT’s performance and comparing it with real students, we
aim to gain insights into its capabilities and limitations. Our evaluation
encompasses a comprehensive examination of 125 problems specifically
designed for CS1-level learners. The experiment revealed that ChatGPT
successfully solved approximately 60% of the provided prob-lems. Sub-
sequently, we conducted a detailed analysis of the characteristics of the
problems that ChatGPT could not solve, aiming to gain a deeper un-
derstanding of the nuances that make them challenging for LLMs. This
study contributes to the ongoing discourse surrounding the integration
of AI-based tools, such as ChatGPT, in computer science education,
and high-lights the need for a reevaluation of educational objectives and
methods employed in traditional educational institutions.
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1 Introduction

In recent years, the field known as Artificial Intelligence in Education (AIED),
which focuses on leveraging AI technologies for educational purposes, has expe-
rienced a surge of interest among researchers, practitioners, and educators. The
ultimate goal of the field is to improve the effectiveness of educational practices
by means of AI-powered tools [1]. Much like previous technological advancements
introduced in the education sector, “learning how to embrace new technologies
in teaching is not easy” [2] and presents both unique challenges and promising
opportunities. Over time, curricula and teaching practices should adapt and
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incorporate these new technologies to enable the development of even more
advanced competences [2]. For example, AI-based tools are being used today in
science curricula to improve the assessment - feedback loop that has typically
been too long and not specific enough [3].

Among all of the available technologies that fall within the scope of AIED,
Natu-ral Language Processing (NLP), Large Language Models (LLMs), and tools
based on them such as OpenAI’s ChatGPT [4,5] are creating the greater disrup-
tions. It is no secret that students all over the world have been extensively using
ChatGPT since it was released as a public (and free) service at the end of 2022, a
reality that has ignited considerable controversy in the educational sphere, even
prompting calls for prohibitions [6]. Similar to other advances from the past,
ChatGPT makes it possible for a machine to perform activities that were previ-
ously restricted to humans, such as writ-ing a paragraph or essay about a given
topic, with proper structure, internal coherence, and advanced use of the lan-
guage to pass as written by humans. Given that these characteristics are typically
central to the teaching and assessment processes [2], there exists a widespread
apprehension that students may excessively depend on this tool, which markedly
eases information acquisition, thereby engaging less with course materials, and
failing to develop skills to investigate, synthetize, and critically ana-lyze informa-
tion to come to their own conclusions and solutions [6,7]. Ultimately, overreliance
on AI-based tools and models may led to increased laziness, less creativi-ty, less
appreciation of human-generated content, and diminished communication abil-
ities [4,6,7]. Rather than adopting reactionary measures, such as outright bans
on these technologies, what is required is a strategy with educational systems
and curricula to adopt these technologies and use them to enable students to
understand and solve even more advanced problems than they do today [2,6].

Among ChatGPT’s most touted capabilities is its ability to interact with
code [4]. Specifically, it can generate code based on user prompts [8], identify
inefficiencies in code to recommend improvements and optimize algorithms [9],
and help developers to identify and resolve errors faster than with traditional
debugging tools [10]. The abilities that humans require to perform this kind
of activities are precisely a subset of the abilities typically targeted in a CS-
1 course [11], i.e., an introductory course to programming. Consequently, the
advent of ChatGPT has given rise to the same con-cerns regarding AIED in
these courses, as we discussed earlier.

Given that the AIED field is relatively new, there are still large uncertainties
and avenues for research. The open problems that we need to solve are varied
and will probably require the collaborative efforts of several disciplines such as
computer-science and psychology. In this paper, our intent is to contribute to the
discourse by examining a very specific problem we have encountered firsthand:
is it possible to write programming exercises for a CS-1 course that are solvable
by students but are not easily solved by ChatGPT? Our motivation for this
inquiry stems from the ob-servation that our students in a large CS-1 course have
been resorting to ChatGPT for assistance, in contravention of course rules and
arguably against their best interests. Since exercises in this course are mainly
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a formative tool to practice and strengthen abilities, delegating this work to
ChatGPT is counterproductive.

The rest of this paper is organized as follows. Section 2 presents the con-
text for our experiment, which is fully described Sect. 3. In this experiment we
evaluated ChatGPT’s capabilities with 125 exercises from our CS-1 course and
compared its results with actual students’ performance. Notably, all of our exper-
iments were per-formed in Spanish, the language of instruction of the course.
Next, Sect. 4 presents the analysis of the experiment’s results and tries to under-
stand what are the common characteristics among the 48 problems that Chat-
GPT failed to solve. Finally, Sect. 5 concludes the paper and discusses potential
avenues for research.

2 Experimental Context: A CS-1 Course

This research was conducted in the context of a large CS1 course at the Universi-
dad de los Andes in Colombia. This course teaches basic programming concepts
using Python and serves approximately 1000 students per semester from differ-
ent programs and schools (Engineering, Sciences, Economics, Design) in groups
of at most 24 students. The course is taught in Spanish, and it is divided into four
modules: (1) discovering the world of programming, (2) making decisions, (3)
repeating actions and handling one-dimensional data structures, and (4) solving
problems with arrays and libraries [12].

A key characteristic of this course is the usage of Senecode, an automated
grading tool to support deliberate practice [13]. When using Senecode, a stu-
dent gets the de-scription of a problem that he must solve by writing a Python
function with a specif-ic signature (function name and parameters). After he
submits a possible solution, the tool runs it using predefined inputs and com-
pares the produced output with the known correct answers. For several problems,
Senecode is also capable of generating synthetic inputs and outputs to use dur-
ing this evaluation phase which concludes when the student receives feedback
on his submission. Instead of rendering a binary verdict of‘correct’ or‘incorrect’,
this platform aims to provide constructive feedback that could assist students in
refining their solutions, thereby supporting their educational process.

There are currently 125 problems in the platform classified by course module,
with different degrees of difficulty: problem authors assign an intended difficulty
(a number from 0 to 50) but students may perceive difficulty in a different way.
Figure 1 shows, for each problem, the assigned difficulty compared to the per-
centage of submissions that have been successful, and the percentage of students
that have tried to solve a problem and have been able to do it after one or many
attempts. The latter may be considered the real difficulties of the problems since
they are grounded on student behavior. The figure shows that 1) the assigned
and the real difficulty typically do not match; 2) that there are “hard” problems
where most submissions are wrong; 3) and that for the majority of problems,
most students eventually solve the problems that they attempt.

The final characteristic of the Senecode platform is its ability to reject sub-
missions that employ language features that are above the course level at the
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Fig. 1. Assigned difficulty vs. Student success rate and submission success rate, for
each problem.

module. For example, problems intended to reinforce conditionals -in the sec-
ond module of the course- are configured to disallow the usage of loops and
lists. Another example is a module 1 problem where tree numbers have to be
sorted without using conditional statements. These restrictions are automati-
cally enforced and are clearly announced as part of problem statements. Finally,
some constructs that are not studied on the course, such as lambdas and list
comprehensions, are also disallowed.

3 Experimental Design and Results

It is not surprising that students are already using ChatGPT to help them
when solving code problems. Regardless of the ethical considerations and the
fact that it does not make sense to use external help to solve problems designed
for training, this generates interesting questions for instructors and problem
designers. For this paper, we have summarized these concerns into one research
question:

How can we design problems so that
ChatGPT will not be able to naively solve them.

(RQ.1)

We use the “naively” qualifier because we expect students to be using sim-
ple prompts based on the problem statements - even just copy-pasted text -
instead of very elaborated reinterpretations. After all, if students can write pre-
cise prompts, they are probably capable of solving every CS1 problem and do
not need ChatGPT help at all.

To answer this question, we planned an experiment based on asking Chat-
GPT to solve each problem in the Senecode platform and comparing its results
with those of actual students. For this purpose, we created an automated pipeline
that i) gets each problem statement from Senecode, ii) generates a complete
prompt, iii) uses OpenAI’s API to query GPT 3.5-turbo model in a new session
per problem, iv) gets the response and extracts the meaningful answer (a Python
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function), v) and submits the solution to Senecode so that it can be automati-
cally graded. After this pipeline was run for each problem, we first used Python
scripts to analyze the results and compare them with actual students, and then
performed a manual analysis - problem by problem - to try to understand the
characteristics of those that remained unsolved by ChatGPT.

For illustration purposes, we now present an example of a prompt used for
one of the simplest problems and the solution that ChatGPT offered for this
problem. Since the original experiment used a prompt completely written in
Spanish, ChatGPT provided a solution also written in Spanish. The following is
a translation as close to the original as possible.

Problem Prompt. I need a Python function to help me solve the following
problem.

“Create a function that receives the cost in pesos of a restaurant bill, and then
calculates the associated VAT tax and the tip for the waiter. The VAT rate is
19%, and the tip in the restaurant is 10% of the bill value (without tax).

The function must return a string showing the VAT, tip and total as follows:
“ ‘X,Y,Z” ’, where **X** is the VAT, **Y** the tip and **Z** the total.

Do not forget to approximate your result to the nearest integer.

Note: The approximation must be done only on the return string (not before)"

The function to solve the problem must be in Python, must be named
calculate_vat_tip_total_bill and must comply with the following restric-
tions:

The function must receive only the following parameter:
* bill_cost (parameter of type ‘int’): cost of the restaurant bill, without

tax or tip.

The return of the function must be of type ‘str’. The function returns a string
with the vat, tip and total bill, separated by commas.

In addition, the function must respect the following restrictions:

∗ It should not use the ‘if’ primitive to solve this problem.
∗ It should not use the ‘for’ primitive to solve this problem.
∗ It should not use the ‘while’ primitive to solve this problem.

ChatGPT’s Solution. The following is the solution that ChatGPT proposed
for the above prompt.

1 def calculate_ vat_ tip_total_bill bill_cost: int) -> str:
2 vat = int(round(bill_cost * 0.19))
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3 tip = int(round(bill_cost * 0.1))
4 total = bill_cost + vat + tip
5 return "{},{},{}".format(vat , tip , total)

As shown in this example, problem statements frequently have some context
and are not direct questions: they require some level of interpretation to get
to the correct answer. Also, some of the problems are known problems that
are typically found in any introduction to programming book, but most are
somehow original. Every prompt used for the experiment was structured in the
same way to be as clear as possible. Before the whole experiment was run, we
tested several prompt structures, and we selected the one that got the best
results. In ChatGPT’s answer we see that it has understood the general request
and has provided a function with the right signature. However, in this case it has
provided a faulty solution for the problem: it does not consider that rounding
must be done only in the return string (not before) and thus in some cases it
provides a wrong answer.

Fig. 2. Number and percentage of problems solved by ChatGPT per course module.

After running the whole experiment, we found that ChatGPT was able to
solve only 62% of the problems, which came as a surprise since we were expecting
a number close to 90%. Figure 2 shows the number of problems successfully solved
by ChatGPT for each of the four modules in the course.

4 Analysis and Discussion

In order to try to answer our research question (RQ1: How can we design prob-
lems so that ChatGPT will not be able to naively solve them) we have to analyze
the results obtained in the experiment, from a number of perspectives.

Figure 2 already showed that the course module is not a definitive factor. For
example, we initially expected problems from module 2, which do not require
loops and linear data structures, to be easier than problems in module 3 but that
was not the case. ChatGPT was unable to solve 52% of problems in module 2
and 33% of problems in module 3. This suggest that the content of the problems,
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at least in the context of a CS-1 course, is not a factor that makes a problem
easier of harder for ChatGPT. It is also worth noting that ChatGPT did not
solve all the problems of each module: it should be possible, in principle, to write
additional problems for each module that are “unsolvable”.

Our second analysis considered the difficulty of the problems. Figure 3 shows
the behavior of ChatGPT in each problem compared to their assigned difficulty,
the student success rate, and the submission success rate: each dot in the left
side of the diagram represents a problem that ChatGPT solved while dots in the
right side are represent those that remained unsolved. What we can see from the
first diagram is that ChatGPT success in each problem does not appear to be
related to the assigned difficulty. The second diagram shows that ChatGPT was
able to solve both problems that are hard and easy for students; moreover, all the
problems that ChatGPT failed to solve also have a success rate among students
that is less than 70%. Finally, the submission success rate appears to be related
to ChatGPT effectiveness. This means that problems where students typically
struggle and have to make more submissions to get to the correct answer, are
also harder for ChatGPT.

Fig. 3. ChatGPT results compared to a) assigned difficulty, b) student success rate,
and c) submission success rate.

These results led us into a problem-by-problem analysis of the problem state-
ments to understand what makes a problem hard to solve for ChatGPT (and for
students!). The first analysis considered the length of the prompts, measured by
the number of words. As shown in Sect. 3, the length of a prompt depends on the
amount of information on the problem statement, in the function description,
and in the restrictions. We found a correlation that was the contrary to the one
we were expecting: problems with longer prompts are more likely to be solved
than problems with shorter prompts. Our interpretation of this phenomenon
considers two aspects. First, that giving ChatGPT more information about a
problem steers him into the right direction. Secondly, that prompts for these
problems are not long enough to make it loose attention and start forgetting the
initial parts of each one. The lesson learned from this is that problem statements
should be succinct, but not too much, in order to confuse ChatGPT (Fig. 4).



78 M. Sánchez and A. Herrera

Fig. 4. ChatGPT results compared to the number of words in the prompts.

Next, we performed a qualitative analysis of each problem statement and
classified them according to four characteristics.

1. Direct or Indirect Problem. An indirect problem is understood as one
that gives a context or describes a scenario and then poses a problem to solve in
that specific scenario. An example of a short indirect problem is the following:
“The computing department tracks computer usage in one of the computer labs
for its students. Basic data is collected on the date and start time of each session,
how long the computer was used measured in minutes, and who was the student.
Find if there were concurrent sessions by the same student.”. An example of a
direct problem is the following: “Write a function that receives a string as a
parameter and removes all the vowels (lowercase or uppercase) in it”.

2. Typical Programming Problem. Typical problems are those problems
that are commonly studied in CS1 and are found in books, training materials,
videos, etc., without major variations. The following is a typical problem: “Write
a function that searches within a number (received by parameter) what is the
largest digit appearing in it”. On the contrary, the following is a non-typical
problem “Create a function that calculates the body mass index BMI of a person
with the formula BMI = weight/height2, where the weight is in kilograms and
the height is in meters. Note that the weight and height that your function
receives will be given in pounds and inches respectively”.

3. Problem with Format Requirements. While some problems ask for a
single and simple return, such as in the BMI example, there are some problems
that ask a specific format for the output data. For example, “The return of
the function must be of type ‘str’. The function returns a string indicating the
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person’s age in years, months, and days as integers separated by single blank
spaces”.

4. Problem with Rounding Requirements. The fourth characteristic is
related to the previous one and focuses on specific issues with rounding oper-
ations, including the number of decimal places in the answer and when round-
ing should be done. For example, “The function returns the angle (in degrees)
between the hands of the clock according to the hour and minute given as param-
eter, which must have a single decimal digit”. The problem presented in Sect. 3
also exhibits this characteristic.

After classifying the 124 problems in the experiment with respect to these
four characteristics, we obtained the results shown in Tables 1 and 2. Table 1
shows how many problems in the data set had each characteristic, and how many
of those problems remained unsolved for ChatGPT. These results show that
only the third characteristic proved to be a consistent challenge for ChatGPT:
in 51% of the problems with specific formatting requirements, ChatGPT failed
to provide a correct answer. The indirect and rounding characteristics followed
with 42% and 40% of unsolved attempts.

Table 1. ChatGPT results compared to single features.

Feature Indirect Typical Format Rounding
#Problems 79 66 41 20
Unsolved 42% 33% 51% 40%
Solved 58% 67% 49% 60%

Table 2 shows the results of the analysis by combining two of the four defined
characteristics. These results show that indirect problems requiring formatting
represent a challenge for ChatGPT, which fails in 53% of the cases. The prob-
lems requiring both formatting and rounding shows promising results because
ChatGPT failed in 100% of these problems, but unfortunately only 3 problems
in the problem set meet this combination of characteristics. We do not report
any combination of more than two characteristics because the problem set did
not have any problems with this combination of characteristics.

Table 2. ChatGPT results compared to combined features.

Feature Indirect +
Format

Indirect +
Rounding

Typical +
Format

Typical +
Format

Format +
Rounding

#Problems 30 6 19 9 3
Unsolved 53% 17% 47% 22% 40%
Solved 47% 83% 53% 78% 0%
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Another result in Table 2 that is worth studying is the 47% of success found
in the ‘Typical + Format’ column: a possible interpretation is that a strategy for
making typical problems harder is to add formatting requirements (and get from
42% to 47%). This is an important consideration given that typical problems
must be studied in CS1.

Finally, we also analyzed the impact on the success rate of ChatGPT of the
restrictions in problems which disallow certain language constructs. Initially,
close to 38% of ChatGPT’s solutions were rejected because they did not respect
or meet restrictions such as not using loops or lists in some problems. We lifted
the restrictions and identified a minimal increase in the percentage of unsolved
problems (from 38% to 35%). This showed that those restrictions are not the
defining factor that makes a problem easy or difficult for ChatGPT to solve.
This is interesting especially because empirical observations tell us that they
make the problems considerably harder for those students that already know
the language structures that are forbidden.

5 Conclusions

ChatGPT is already changing things in many contexts including software devel-
opment and education, and it is here to stay. Educators and curricula need to
adapt, learn how to use it to their benefit, and introduce changes in courses and
evaluation methods to take advantage of this technology instead of seeing it just
as a cutting-corner mechanism. Since it is impossible to control what students
do and, it is probably impossible to discover when a solution was created by
ChatGPT, we ought to learn how to design exercises that are not solvable - to
a certain degree - with this kind of technologies.

With the experiment reported in this paper, we showed that in the context
of a CS1 course, ChatGPT is not infallible. Even in the limited scope of the
124 problems in the Senecode platform, we found that especially problems with
special formatting restrictions tend to be harder for ChatGPT. This information
should be useful for us to write new problems in the future, but we believe that
it is also applicable to any CS1 course.

There are several limitations in the experiments that we report in this paper
that we expect to address in subsequent experiments. In particular, we would
like to see the behavior of more advanced models, like GPT-4, which was not
available via an API when this report was written. Another possible evaluation is
to analyze the difference between several of OpenAI’s models (ChatGPT, GPT-
3, GPT-4) since there are slight differences in their training methods and tuning,
and also with other companies’ models such as Bard from Google.

Anther future experiment is to assess the impact of language. All of our
prompts were prepared in Spanish, and the generated Python functions had
function names and parameters in Spanish as well. Even though restricted exper-
iments seem to imply that ChatGPT has a comparable behavior in Spanish and
English, it would be interesting to have a better confirmation. Another avenue
for research is the fact that ChatGPT does not always produce the same answer
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for the same prompt. In our experiment we only asked for one solution for each
problem, but maybe asking for several could lead to different and possibly better
answers. In fact, this is part of the strategy used by DeepMind’s AlphaCode to
succeed in programming competitions [14].

Finally, one of the goals of Senecode is to give students feedback for wrong
submissions and guide them to the right answer without giving away the solution.
Using ChatGPT we could assess the value of the feedback and improve it to
better help the students.
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