
Addressing the Diet Problem with Constraint
Programming Enhanced with Machine Learning

Sara Jazmı́n Maradiago Calderón, Juan José Dorado Muñoz(B),
Juan Francisco Dı́az Frı́as, and Robinson Andrey Duque Agudelo

AVISPA Research Group, Escuela de Ingenieria de Sistemas y Computacion, Universidad del
Valle, Cali, Colombia

{sara.maradiago,juan.jose.dorado,juanfco.diaz,
robinson.duque}@correounivalle.edu.co

http://avispa.univalle.edu.co

Abstract. In Colombia there is a problem related to eating habits that has its ori-
gin, mainly, in two causes: the lack of budget that allows access to a wider variety
of food, and the lack of awareness among the population about their nutritional
needs. To tackle this issue, a solution has been proposed using a Constraint Pro-
gramming (CP) approach enhanced with Machine Learning (ML) for a version
of the Diet Problem (DP).

A CP model was developed to find a shopping list that meets a family’s nutri-
tional needs while minimizing costs; and a synthetic dataset was created to test
the model, which was run multiple times to collect results. Since DP is an NP-
complete problem and computational time to find optimal solutions varies from
one solver to another, a ML classifier was used to choose a solver that best per-
forms in small cap time limits based on instance features (i.e., selection from an
Algorithm Portfolio). After carrying out an extensive evaluation of the CP model,
including our approach that implements a Classifier for algorithm selection, the
model correctly selects the best solver over 68.07% of the time, for a sample of
1378 instances.

By analyzing the performance of different solvers on a set of instances, it can
be predicted which solver is likely to achieve the best results on new instances.
This approach could be extended to tuning solver parameters, which would fur-
ther improve their efficiency and effectiveness. (The dataset used for the creation
of this paper is available on: https://github.com/Git-Fanfo/dataset CCC)

Keywords: Constraint Programming · Machine Learning · Classifier ·
Algorithm Selection · Diet Problem

1 Introduction

The problem of optimal food distribution dates back to ancient times, from the moment
the first societies were formed. The methods to ensure equitable distribution were lim-
ited to dividing portions for different foods based on arbitrary parameters such as size,
age, sex, occupation, and social caste. This arithmetic-based method persisted for most
of human history, aiming to feed armies, institutions, households, and others while min-
imizing costs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Tabares et al. (Eds.): CCC 2023, CCIS 1924, pp. 57–70, 2024.
https://doi.org/10.1007/978-3-031-47372-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47372-2_6&domain=pdf
https://github.com/Git-Fanfo/dataset_CCC
https://doi.org/10.1007/978-3-031-47372-2_6


58 S. J. Maradiago Calderón et al.

It was not until the 20th century, as modern computer science took its first great
steps, that the Diet Problem emerged. It is an optimization problem model created by
George Stigler in 1947 [11], “motivated by the desire of the United States military to
ensure nutritional requirements at the lowest cost” [6]. Stigler formulated the problem
in terms of Linear Programming, seeking to minimize the function corresponding to
the total cost of the food to be purchased while satisfying a set of constraints related
to a person’s nutritional requirements. The DP is considered a challenging problem,
classified as NP-Complete, and has been approached by multiple researchers since the
early 1960s in their attempt to computerize it.

This study employs Constraint Programming to address the Diet Problem. Various
methods exist for propagating and evaluating constraint problems, and the search for
the optimal solution depends on the algorithm (solver) utilized. However, it is known
that the chosen solver’s performance relies on the specific parameters of the problem,
including the problem domain, constraints, problem size, and objective function. To
mitigate this issue, the utilization of Machine Learning is proposed to identify patterns
that can establish a correlation between the initial parameters and the most suitable
solver, leading to the discovery of better solutions.

In the following sections, we start by presenting a detailed explanation of the fun-
damental subjects for this study, Constraint Programming (Sect. 2.1), Algorithm Port-
folio (Sect. 2.2) and Machine Learning (Sect. 2.3). Next, we delve into the details of the
Diet Problem Model Formulation (Sect. 3) as a Constraint Programming model; this
model defines the parameters, variables, and constraints necessary to optimize a shop-
ping list for meeting nutritional requirements within a given budget with the objective
to minimize nutritional deficiencies or excesses and minimize cost using a weighted
sum approach. We then present the experimental setup (Sect. 4) and results, showcasing
the performance and effectiveness of our proposed method.

Finally, we discuss the conclusions (Sect. 5) drawn from our findings and outline
potential directions for future work. Since our Machine Learning approach showcased
precise predictions, validating its effectiveness and potential for improvement, we were
able to significantly reduce the computational time for solving the computationally
intensive NP-Complete Diet Problem. This opens up possibilities for optimizing food
distribution in previously infeasible real-world scenarios.

2 Constraint Programming and Machine Learning

2.1 Constraint Programming

Constraint Programming (CP) is a problem-solving methodology that centers on the
definition and resolution of problems through the use of constraints. It involves the
specification of variables, their possible values, and the necessary conditions that must
be met. A key component in the CP approach is the utilization of a solver algorithm,
which is a specialized software tool or component responsible for finding solutions to
constraint satisfaction problems.

A Constraint Optimization Problem (COP) is a type of problem that involves find-
ing the best possible solution while satisfying a set of constraints. It requires optimizing
an objective function by adjusting variables within specified bounds, ensuring that all



Addressing the DP with CP Enhanced with ML 59

constraints are satisfied. The goal is either to minimize or maximize the objective func-
tion, depending on the problem’s requirements.

A “solver” in Constraint Programming applies various algorithms to systematically
explore the search space defined by the constraints assigning values to the variables,
propagating constraints, and backtracking when necessary. The solver’s role is to effi-
ciently navigate through the solution space, considering different combinations and
configurations of variable assignments, until a valid solution is found or proven to be
impossible [8].

2.2 Algorithm Portfolio

The term “Algorithm Portfolio” was first introduced by Huberman, Lukose, and Hogg
in 1997, where they describe a strategy to execute several algorithms in parallel [4]. An
algorithm portfolio refers to a collection of different algorithms that are selected and
combined strategically to solve a particular problem or class of problems. Instead of
relying on a single algorithm, an algorithm portfolio aims to leverage the strengths and
weaknesses of multiple algorithms to improve the overall performance and robustness.
Each algorithm in the portfolio may excel in specific situations, and by selecting the
most suitable algorithm for a given problem instance, better results can be achieved.
For this project, the algorithm portfolio consists of a set of Minizinc Solvers that will
be evaluated according to their performance.

2.3 Machine Learning

Machine Learning (ML) refers to a collection of techniques designed to automatically
identify patterns in data and utilize these patterns to make predictions or informed deci-
sions in uncertain situations [7]. It is commonly divided into two main types: supervised
learning and unsupervised learning. In supervised learning, which is the focus of this
project, the training dataset includes a set of input features and their corresponding
labels, enabling the model to learn the mapping between them and facilitating classifi-
cation and prediction tasks.

In the context of Machine Learning, a classification problem assigns input data
instances to predefined categories based on their features. The objective is to train a
classification model that can accurately classify new, unseen instances into the correct
categories. The training data for a classification problem consists of labeled examples,
where each instance is associated with a known class label. In real-world scenarios,
there is often limited knowledge about the relevant features, therefore, many candidate
features are typically introduced, resulting in the presence of irrelevant and redundant
features that can lead to overfitting in the training model [12]. A relevant feature is one
that directly contributes to the target concept, while an irrelevant feature does not have
a direct association with it, but still affects the learning process. A redundant feature
does not provide any new information about the target concept [1]. Hence, it is crucial
to select only the most informative features that provide relevant information for the
specific problem at hand. The classification model establishes relationships between
the selected features and the labeled examples to define decision boundaries that differ-
entiate between classes, enabling accurate classification of unseen data.



60 S. J. Maradiago Calderón et al.

Random Forest is an ensemble learning method that utilizes randomized decision
trees. It creates a diverse set of classifiers by introducing randomness during the con-
struction of each tree. The ensemble prediction is obtained by averaging the predictions
of individual classifiers. The parameter “n estimators” represents the number of deci-
sion trees included in the ensemble. It determines the size and complexity of the random
forest model [9].

k-fold Cross Validation is a technique that addresses the problem of overfitting by
splitting the data into subsets. The model is trained on a portion of the data, and its
performance is evaluated on the remaining subset. This process is repeated multiple
times, using different subsets for training and testing, to obtain a more robust estimation
of the model’s performance. The parameter “k” represents the number of subsets (folds)
into which the data is divided for cross-validation, but each subset is used for both
training and testing the model. The model is trained on k-1 subsets (i.e., using k-1
folds) and evaluated on the remaining 1 subset (i.e., using the last fold). This process
is repeated k times, each time using a different subset as the evaluation set, until all
subsets have been used as the evaluation set exactly once [10].

3 Diet Problem Model

Parameters:

– n: total amount of products available to buy (n ∈ N).
– budget: budget available to make the purchase (budget ∈ N).
– groceries: array containing information about each product available for purchase.
Each row contains information about a product, where the columns respectively rep-
resent: the amount of protein per unit, the amount of carbohydrates per unit, the
amount of fat per unit, the amount available in inventory and the price per unit. Then
groceriesp,d ∈ N, where p ∈ {1, ..., n} represents the index of each product, and
d ∈ {1, ..., 5} represents the columns mentioned above for each product.

– requirements: array containing information on the nutritional requirements of the
person or group of people. Each row represents one type of macronutrient: protein,
carbohydrates, and fat. The first column represents the minimum quantity required
per day and the second represents the maximum quantity required per day. Then
requirementsm,l ∈ N, where m ∈ {1, ..., 3} represents each macronutrient and
l ∈ {1, ..., 2} represents the columns mentioned above for each macronutrient.

– offset: array containing the values of the maximum deviation allowed for each
macronutrient, will be used in the objective function. Then offsetm,l ∈ N, where
m ∈ {1, ..., 3} represents the macronutrient and l ∈ {1, 2} represents the lower and
upper offset respectively.

– variety: maximum limit of units of the same product that can be purchased
(variety ∈ N).

Variables:

– grocerylist: represents the shopping list, stores the number of units to be suggested
for each product p (grocerylistp ∈ N).



Addressing the DP with CP Enhanced with ML 61

– acumprice: represents the accumulated price of the shopping list. It will be used
in the objective function (acumprice ∈ N).

– protein, carbo and fat: they represent the amount of total protein, carbohydrate,
and fat on the grocery list (protein, carbo, fat ∈ N).

– lackPro, lackCar and lackFat: they represent the missing quantity of proteins,
carbohydrates and fats necessary in the diet, for the requirements given according to
the shopping list (lackPro, lackCar, lackFat ∈ N).

– excessPro, excessCar and excessFat: they represent the excess quantity of pro-
teins, carbohydrates and fats in the diet, for the requirements given according to the
shopping list (excessPro, excessCar, excessFat ∈ N).

Constraints:

– Variety: ensures that the number of units of each product on the shopping list does
not exceed the value of variety (Eq. 1).

grocerylistp � variety, 1 ≤ p ≤ n (1)

– Protein, Carbohydrates and Fats: constraints that calculate the amount of total
protein (Eq. 2), carbohydrate (Eq. 3), and fat (Eq. 4) on the grocery list, respectively.

protein =
n∑

p=1

grocerylistp ∗ groceriesp,1 (2)

carbo =
n∑

p=1

grocerylistp ∗ groceriesp,2 (3)

fat =
n∑

p=1

grocerylistp ∗ groceriesp,3 (4)

– Range: these constraints establish the missing or excess amounts of each macronu-
trient in the diet, comparing the amounts calculated above with the dietary require-
ments defined in the requirements parameter. There are three constraints that mea-
sure deficiency (Eq. 5, Eq. 7, Eq. 9) and three that measure the excess (Eq. 6, Eq. 8,
Eq. 10).

• Protein Limits:

lackPro =
{
requirements1,1 − protein si requirements1,1 > protein
0 if not

(5)

excessPro =
{
protein − requirements1,2 si protein > requirements1,2
0 if not

(6)



62 S. J. Maradiago Calderón et al.

• Carbohydrates Limits:

lackCar =
{
requirements2,1 − carbo si requirements2,1 > carbo
0 if not (7)

excessCar =
{
carbo − requirements2,2 si carbo > requirements2,2
0 if not

(8)

• Fats Limits:

lackFat =
{
requirements3,1 − fat si requirements3,1 > fat
0 if not (9)

excessFat =
{
fat − requirements3,2 si fat > requirements3,2
0 if not (10)

– Offset: these constraints ensure that the deficiency and excess values are within the
minimum and maximum offset range allowed, with three restrictions for deficiency
(Eq. 11, Eq. 13, Eq. 15) and three for excess (Eq. 12, Eq. 14, Eq. 14).

• Protein Offset:

lackPro ≤ offset1,1 (11)

excessPro ≤ offset1,2 (12)

• Carbohydrates Offset:

lackCar ≤ offset2,1 (13)

excessCar ≤ offset3,2 (14)

• Fats Offset:

lackFat ≤ offset3,1 (15)

excessFat ≤ offset3,2 (16)

– Inventory: ensures that the number of units of each product on the shopping list
does not exceed the value of available units in inventory, which is defined in column
4 of the parameter groceriesp,d (Eq. 17).

grocerylistp � groceriesp,4, 1 ≤ p ≤ n (17)



Addressing the DP with CP Enhanced with ML 63

Objective: due to the nature of the problem, it was necessary to implement a multi-
target feature. In this case, the weighted sum method was proposed, which has three
objectives that must beminimized:

– Lacks: corresponds to minimum compliance with nutritional requirements. It is the
relationship between the deficiencies of each macronutrient and the minimum allow-
able gap.

– Excesses: corresponds to maximum compliance with nutritional requirements. It
is the relationship between the excesses of each macronutrient and the maximum
allowable gap.

– Budget: corresponds to minimizing the accumulated cost of the chosen products.
The relationship between the total price of food and the budget.

For the balancing of the weights in the weighted sum, the weights of all the objec-
tives are equalized in an equitable relationship, in this case, the results obtained in each
objective were transformed to a percentage scale so that they can be compared with
each other.

For the lacks objective the energy consumption of each macronutrient deficiency is
calculated, establishing a relationship with the minimum offset percentage allowed for
each one, then the average is calculated by summing and dividing by 3, rounding off
down since mnt ∈ N (Eq. 18).

lacks =

⌊
⌊

lackPro∗100
offset1,1

⌋
+

⌊
lackCar∗100
offset2,1

⌋
+

⌊
lackFat∗100
offset3,1

⌋

3

⌋
(18)

For the excesses objective, a similar procedure is applied. The energy consumption
of each macronutrient excess is calculated, establishing a relationship with the percent-
age of maximum offset allowed for each one, then the average is calculated by adding
and dividing by 3, rounding down since mnt ∈ N (Eq. 19).

excesses =

⌊
⌊

excessPro∗100
offset1,2

⌋
+

⌊
excessCar∗100

offset2,2

⌋
+

⌊
excessFat∗100

offset3,2

⌋

3

⌋
(19)

For the budget objective there is the variable acumprice, which represents the accu-
mulated price for the purchase of all the products (Eq. 20). As with the previous objec-
tive. The percentage value is calculated with the total budget, rounding down since
mnt ∈ N (Eq. 21).

acumprice =
n∑

p=1

grocerylistp ∗ groceriesp,5 (20)

bud = �acumprice

budget
× 100� (21)



64 S. J. Maradiago Calderón et al.

The weight variables W1, W2, and W3 are added as adjustable values to balance the
previously established relationships (Eq. 22).

mnt = lacks × W1 + excesses × W2 + bud × W3 (22)

Finally, the objective of the problem is defined as minimizing mnt (Eq. 23).

solve minimize mnt (23)

4 Experiments

For the elaboration of this paper, a computer equipped with an AMD RyzenTM 7 5800X
processor was utilized, accompanied by 16 GB of RAM memory. The experimenta-
tion took place within an isolated environment employing Python 3.9.13 and Minizinc
2.7.4 which is a language for specifying constrained optimization and decision prob-
lems over integers and real numbers. A MiniZinc model does not dictate how to solve
the problem, the MiniZinc compiler can translate it into different forms suitable for a
wide range of solvers, such as Constraint Programming (CP), Mixed Integer Linear Pro-
gramming (MIP) or Boolean Satisfiability (SAT) solvers [2]. Each test was conducted
using instances generated by a synthetic instance generator (Sect. 4.1). The evaluation
of the model, as described in Sect. 3, was performed using a search annotation provided
by Minizinc (variable selection: largest, value choice: indomain max) and with some
solvers installed on Minizinc (Sect. 4.2).

The objective of this study is to observe the presence of patterns in the syn-
thetic instances received by the Minizinc model, thereby justifying the employment
of Machine Learning techniques to select the algorithm that offers the best solution in
the shortest time [3].

4.1 Synthetic Instance Generation

Because the base Minizinc model requires data files to work, a synthetic instance gen-
erator written in Python was implemented. It provides a synthetic database that can be
used to test the model. These files consist of random data that is consistent with nutri-
tional inputs, requirements and budget constraints generated using real-world data from
the Instituto Colombiano de Bienestar Familiar (ICBF) [5].

4.2 Algorithm Selection

In order to create the Algorithm Portfolio, a comparison was conducted among five
solvers available for Minizinc. An initial set of tests were performed on multiple
instances, wherein the value of n (number of products) and related constraints were
varied, while maintaining a timeout of 5 s, in order to observe the behavior on five
different solvers (i.e., reach the optimal solution within the cap time).



Addressing the DP with CP Enhanced with ML 65

Table 1. Number of solved instances with a timeout of 5 s.

n HiGHS COIN-BC OR-TOOLS Gecode Chuffed

5 100 100 87 6 18

20 100 98 17 1 0

50 100 98 11 0 2

100 100 92 10 0 0

500 99 94 3 0 0

1000 79 79 6 0 0

2000 27 85 0 0 0

Total 605 646 134 7 20

Table 1 contains the results of 700 experiments (100 per number of products). The
values represent the number of instances an algorithm could solve in the cap time. OR-
TOOLS, Gecode and Chuffed decreased their solving rate significantly as n increased,
while HiGHS and COIN-BC won on the 86.42% and the 92.28% of the cases, respec-
tively. As a result, the last two were selected as potential contenders for achieving the
best solution within the optimal time limit.

alg portfolio = [HiGHS, COIN-BC]

4.3 Creating the Training Dataset from Synthetic Instances

The chosen algorithms are evaluated within a maximum time limit of 5 s, using 1400
synthetic instances. which range from 10 ≤ n ≤ 1700. The algorithm that successfully
solves each instance with the best mnt solution and in the shortest time is labeled as
the winner. Subsequently, a list called labels is generated, associating each instance
with its respective winning algorithm. Once the labeling process finished, the list had
an irregular distribution between both algorithms, where HiGHS won 49.21% of the
time and COIN-BC, the 50.78%. Therefore, undersampling was applied to COIN-BC,
resulting in a balanced dataset with an exact 50/50 distribution (i.e., 689 instances for
each).

The features matrix was constructed with n rows and 45 columns, where each col-
umn represents statistical values of the numeric instances, translating each instance into
its corresponding set of features (Appendix. B).

4.4 Exploration of Feature Selection in Machine Learning

For the feature selection, three main tools were used: the correlation matrix (Appendix
A), a scatter plot analysis (Fig. 2), and our previous knowledge about the problem.
These were employed to compare the interrelationships among all the available fea-
tures and identify those that may need to be removed to enhance the performance of
the model. In a correlation matrix, a value close to 1 means that the compared features
are highly directly correlated. That’s why features with values greater than 0.7 were



66 S. J. Maradiago Calderón et al.

removed. The features left were compared into a scatter plot to find for similar patterns
between them, discarding the ones with high correlation values.

Fig. 1. Correlation matrix with selected fea-
tures.

Fig. 2. Scatter plot of the relation between
var protein and var fat.

In Fig. 2, it can be observed that COIN-BC shows a higher concentration in the
values of protein and fat variations, while HiGHS exhibits a broader dispersion along
these axes. In this particular case, we can infer that for an instance that falls outside the
approximate range of 180, 000 ≤ var fat ≤ 240, 000 and 25, 000 ≤ var protein ≤
39, 000, it is more likely to be solved using HiGHS. However, it is important to consider
other features as well to obtain more precise predictions.

The presence or absence of remain features were discussed to make the nec-
essary changes for the next iteration. By repeating this process, a lot of the ini-
tial features were removed progressively. Giving as a result the selected features
to train the Machine Learning model: n ingredients, median protein, var protein,
median carbo, var carbo, median fat, var fat, budget, variety, as observed in the
Correlation Matrix (Fig. 1).

4.5 Evaluating Model Precision

The training of the model was made using a Random Forest Classifier configured with
a n estimators value of 100 and a k-fold cross validation with a “k” value of 7, the
selected features (Sect. 4.4) and labels (Sect. 4.3). The confusion matrix with the test
group and a feature importance, were plot to analyze the results. The model was able
to predict the algorithms that solve the problem more efficiently with an accuracy of
68.07%.

In the confusion matrix (Fig. 3), the vertical axis represents the actual values and
the horizontal, the values predicted by the model. For HiGHS, 515 instances were pre-
dicted correctly, and 174 were wrongly given to COIN-BC; and for COIN-BC, 423
were predicted correctly while 266 were wrongly given to HiGHS.

While in the Feature Importance graph (Fig. 4), can be observed that the most influ-
ential features during the classification were “n ingredients” and “req min cal”, which
can be analyzed in further feature selections to improve the model accuracy.



Addressing the DP with CP Enhanced with ML 67

Fig. 3. Confusion matrix for the test group. Fig. 4. Feature importance in prediction.

Finally, the results obtained are presented in a Classification Report (Table 2).
This report provides an assessment of the model’s performance by evaluating four
key metrics. Precision, which represents the accuracy of positive predictions made
by the model, was 0.66 for COIN-BC and 0.71 for HiGHS. Recall, which quantifies
the model’s ability to correctly identify all relevant positive instances, was 0.75 for
COIN-BC and 0.61 for HiGHS. F1-score, a harmonic mean of precision and recall, was
0.70 for COIN-BC and 0.66 for HiGHS. Lastly, support, representing the number of
instances of each class in the dataset, was 689 for both COIN-BC and HiGHS.

Table 2. Classification report for the test group.

Precision Recall f1-score Support

COIN −BC/largest− indomain max 0.66 0.75 0.70 689

HiGHS/largest− indomain max 0.71 0.61 0.66 689

5 Conclusions and Future Work

The existence of patterns that allow to predict the best solver to solve an instance
has been evidenced and justifies the exploration of the Machine Learning approach
to improve the precision even more. For this study, we applied our method using two
solving algorithms, but allowing integration with additional solvers as they emerge,
which holds significant importance for future experimentation and evaluation. The out-
comes indicate potential for further improvement through tuning using feature selection
algorithms for instance.

Given that the Diet Problem is an NP-Complete Problem, known for it’s computa-
tionally intensive nature, this method offers a solution. Trough Machine Learning we
were able to significantly reduce the computational time required to solve it. This app-
roach may have the potential to optimize the NP-Complete problems solvable at a larger



68 S. J. Maradiago Calderón et al.

scale. In the case of the Diet Problem, enabling the optimization of food distribution in
real-world scenarios that were previously deemed infeasible.

Appendix

A Correlation Matrix (All Features)



Addressing the DP with CP Enhanced with ML 69

B Candidate Features

– n ingredients: Quantity of products.
– mean protein: The mean protein value between between the products.
– median protein: The median protein value between between the products.
– std protein: The standard deviation protein value between between the products.
– var protein: The variance protein value between between the products.
– min protein: The minimum protein value between between the products.
– max protein: The maximum protein value between between the products.
– argmin protein: The position of the minimum protein value between between the
products.

– argmax protein: The position of the maximum protein value between between the
products.

– q1 protein: The first quartile protein value between between the products.
– q3 protein: The third quartile protein value between between the products.
– mean carbo: The mean carbohydrate value between between the products.
– median carbo: The median carbohydrate value between between the products.
– std carbo: The standard carbohydrate value between between the products.
– var carbo: The variance carbohydrate value between between the products.
– min carbo: The minimum carbohydrate value between between the products.
– max carbo: The maximum carbohydrate value between between the products.
– argmin carbo: The position of the minimum carbohydrate value between between

the products.
– argmax carbo: The position of the maximum carbohydrate value between between
the products.

– q1 carbo: The first quartile carbohydrate value between between the products.
– q3 carbo: The third quartile carbohydrate value between between the products.
– mean fat: The mean fat value between between the products.
– median fat: The median fat value between between the products.
– std fat: The standard fat value between between the products.
– var fat: The variance fat value between between the products.
– min fat: The minimum fat value between between the products.
– max fat: The maximum fat value between between the products.
– argmin fat: The position of the minimum fat value between between the products.
– argmax fat: The position of the maximum fat value between between the products.
– q1 fat: The first quartile fat value between between the products.
– q3 fat: The third quartile carbohydrate value between between the products.
– req min pro: The minimum requirement of proteins.
– req min carbo: The minimum requirement of carbohydrates.
– req min fat: The minimum requirement of fats.
– req max pro: The maximum requirement of proteins.
– req max carbo: The maximum requirement of carbohydrates.
– req max fat: The maximum requirement of fats.
– off min pro: The minimum offset of proteins.
– off min carbo: The minimum offset of carbohydrates.
– off min fat: The minimum offset of fats.



70 S. J. Maradiago Calderón et al.

– off max pro: The maximum requirement of proteins.
– off max carbo: The maximum requirement of carbohydrates.
– off max fat: The maximum requirement of fats.
– budget: The maximum budget.
– variety: The maximum variety.

References

1. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(1–4), 131–156
(1997)

2. Dekker, J.: Introduction to minizinc. https://www.minizinc.org/doc-2.7.2/en/intro.html
3. Dorado, J.J., Maradiago, S.J.: Menus. https://github.com/SJMC29/MENuS
4. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational

problems. Science 275(5296), 51–54 (1997). https://doi.org/10.1126/science.275.5296.51
5. ICBF: Resolución número 003803 de 2016 del ministerio de salud y protección social (2016)
6. Martos-Barrachina, F., Delgado-Antequera, L., Hernández, M., Caballero, R.: An extensive

search algorithm to find feasible healthy menus for humans. Oper. Res. 22, 1–37 (2022)
7. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
8. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amster-

dam (2006)
9. Scikit learn developers: 1.11. ensemble methods. Accessed May 2023. https://scikit-learn.

org/stable/modules/ensemble.html#random-forests (2007-2023)
10. Scikit Learn developers: 3.1. cross-validation: evaluating estimator performance. Accessed

May 2023. https://scikit-learn.org/stable/modules/cross validation.html# (2007-2023)
11. Stigler, G.J.: The cost of subsistence. J. Farm Econ. 27(2), 303–314 (1945)
12. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. Data Classif.

Algorithms Appl. 37 (2014)

https://www.minizinc.org/doc-2.7.2/en/intro.html
https://github.com/SJMC29/MENuS
https://doi.org/10.1126/science.275.5296.51
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/cross_validation.html#

	Addressing the Diet Problem with Constraint Programming Enhanced with Machine Learning
	1 Introduction
	2 Constraint Programming and Machine Learning
	2.1 Constraint Programming
	2.2 Algorithm Portfolio
	2.3 Machine Learning

	3 Diet Problem Model
	4 Experiments
	4.1 Synthetic Instance Generation
	4.2 Algorithm Selection
	4.3 Creating the Training Dataset from Synthetic Instances
	4.4 Exploration of Feature Selection in Machine Learning
	4.5 Evaluating Model Precision

	5 Conclusions and Future Work
	A Correlation Matrix (All Features)
	B Candidate Features
	References


