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Abstract. Differential cryptanalysis has proven to be a powerful tool
to identify weaknesses in symmetric-key cryptographic systems such as
block ciphers. Recent advances have shown that machine learning meth-
ods are able to produce very strong distinguishers for certain crypto-
graphic systems. This has generated a large interest in the topic of
machine learning for differential cryptanalysis as evidenced by a growing
body of work in the last few years. In this paper we aim to provide a
guide to the current state of the art in this topic in the hope that a
unified view can better highlight the challenges and opportunities for
researchers joining the field.
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1 Introduction

Since the seminal paper of Rivest [24], a large number of machine learning
approaches for cryptanalysis have been proposed. While a steady flow of progress
has been sustained since, the recent paper of Gohr [12] has provided a new
flurry of excitement as it manages to employ recent deep learning architectures
to improve upon known results in differential cryptanalysis.

Given that the space of cryptographic systems is quite large, and that there
exist many machine learning techniques, it can be hard to gather a clear picture
of the current state of the art in the field of machine learning for cryptanalysis.
This paper aims to provide a guide to the current state of the art in this field,
especially in regards to differential cryptanalysis, where most of the recent work
has centered.
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1.1 Related Work

In spite of the increasing number of works in the field of machine learning for
cryptanalysis there are very few surveys on the topic. In [4], the authors pro-
vide a detailed analysis of the strengths and weaknesses of various machine
learning techniques and their effectiveness in breaking different types of cryp-
tographic systems. However, being over a decade old, it does not consider the
recent progress in the field. A more recent survey [1] provides a wider overview
of machine learning in cryptography, considering not just cryptanalysis but also
image steganalysis, side-channel analysis, power analysis attacks, and encrypted
traffic classification. With this wider spectrum of applications, the topic of crypt-
analysis receives a corresponding limited attention span, thus focusing on only
the most relevant contributions according to the authors. Finally, the most recent
survey [33] considers the dichotomy between neural networks and cryptography,
and in particular covers the application of neural computing to attack crypto-
graphic systems. The survey considers a number of contributions in this area
but misses the proposal of neural distinguishers by Gohr [12] and others, which
is a key development in the area. In this survey paper we provide an up-to-date
guide to these and other recent advances in the field of machine learning for
differential cryptanalysis.

In the following we provide some background definitions to summarize the
main concepts in both differential cryptanalysis and machine learning. Next, we
survey existing works in the area of machine learning for differential cryptanal-
ysis, with a focus on the most recent results.

2 Foundations

In this section we provide a brief summary of definitions of symmetric cryptog-
raphy and machine learning necessary for the discussion on how these topics
coalesce around cryptanalysis.

2.1 Symmetric Cryptography

Symmetric-key algorithms use the same key for encryption and the decryption.
One type of symmetric-key algorithms are stream ciphers, where the bits of the
message are XORed with a pseudorandom secret key, which is expensive but fast,
such as ARC4. Another type are block ciphers, where the message is divided into
blocks of the same size. Block ciphers are typically made of several rounds, which
are almost the same, except for some special values (called round constants) and
the round key. These round keys are built from the secret key using an algorithm
called “key schedule”.

There are several families of block ciphers, such as the ones based on
substitution-permutation networks (SPN), examples of which include the stan-
dard AES, Serpent and PRESENT. In SPNs, each round involves an XOR
between the message and the round key followed by an substitution box (S-Box)
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and a permutation box (P-Box) that is in charge of distributing the outputs of the
S-box to many other S-boxes in the next round. Another family is the one con-
structed using a Feistel structure, such as DES, TEA, Blowfish and Twofish. In
this structure, the message is divided in left and right parts. The right part is the
input of a so-called F function and its output is XORed with the left part of the
message. The F function is made by a non-linear function that has an SPN struc-
ture and hides the relation between the ciphertext and the key ensuring Shanon’s
property of confusion. A simpler set of block ciphers are those in the ARX
(Add-Rotate-Xor) family, such as SPECK and SIMON. The symmetric cryptog-
raphy used in constrained environments (e.g. IoT) is called lightweight. The ARX
cipher is considered to be a lightweight, fast, and secure encryption method. It
is widely used in applications that require high-performance cryptography, such
as embedded systems, mobile devices, and network security protocols. Exam-
ples include Salsa20, ChaCha and SPECK, SIMON and SIMECK. Lightweight
cryptosystems based on other structures include PRESENT and GIFT64.

Block ciphers structures are often used as the base of Message Authenti-
cation Code (MAC) schemes, like Chasky, and for the construction of Hash
functions. Also, some permutation primitives can be used to build high-security
block ciphers, stream ciphers, ans MAC’s, authenticated ciphers, hash functions,
etc. with a unified hardware. Examples include Gimli, KNOT and ASCON.

Symmetric ciphers can also be found in different so-called modes, like for
example Electronic Codebook (ECB) and Cipher Block Chaining (CBC) modes.
In ECB mode, each block is encrypted independently while in CBC mode, each
plaintext is XORed with the ciphertext. They have different advantages and
some of them can provide more security.

2.2 Symmetric Cryptanalysis

There are a number of different techniques to analyze the security of symmetric
cryptosystems, such as brute force attacks, linear and differential cryptanalysis,
among others.

On the one hand, linear cryptanalysis looks for linear relationships between
the plaintext, ciphertext and the key and by analyzing these relationships, an
attacker can deduce information about the secret key. On the other hand, differ-
ential cryptanalysis methods depend on identifying high-probability differences
between plaintext and ciphertext pairs. These differences, also known as char-
acteristics, are essential for successful attacks. The idea was first introduced in
1990 [6] where it was used to attack DES. Since then, differential cryptanal-
ysis has been considered to attack a wide range of symmetric key cryptosys-
tems, including AES, Blowfish, and Twofish. The goal is to find techniques that
are aimed at tracking differences across the transformation network, identify-
ing instances where the cipher deviates from random behavior, and exploiting
such properties to recover the secret key. Let E : {0, 1}n → {0, 1}m be a map.
A differential transition for E is a pair (Δin,Δout) in {0, 1}n × {0, 1}m. The
probability of the differential transition is defined as
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P (Δin → Δout) =
Card ({x ∈ {0, 1}n : E(x) ⊕ E (x ⊕ Δin) = Δout})

2n
.

Considerable research has been devoted to improving methods for finding
characteristics. In the seminal paper by Wang et al. [30], characteristics of the
hash function SHA-0 were manually constructed using knowledge of the hash
function’s structure. Later advancements were made by De Canniere and Rech-
berger in [10], and by Leurent in [18] and [19], who enhanced Wang’s approach
by imposing constraints on the plaintexts. Additionally, Chen et al. introduced
a ranking system for discovering differential characteristics and applied it to
lightweight block ciphers [7]. Furthermore, novel methods utilizing Mixed-Integer
Linear Programming have been proposed to enhance the process of characteris-
tic finding, as demonstrated by Mouha et al. in [22], Sun et al. in [29], and Zhao
et al. in [32].

For cryptographic systems built based on the iteration of a cipher block, a
differential trail or differential characteristic is a sequence of differential transi-
tions. Thus, these characteristics show how the differences in the input propagate
through the internal components of the primitive. The higher the probability of
the differential characteristic, the more pairs that can be studied to recover the
key, which increases the insecurity of the encryption, since for the basic differ-
ential attack, one particular output difference is expected to be more frequent,
which means the cipher output can be distinguished from a random one. Any
dependence of the differential probability on the key is usually suppressed. Fur-
ther details can be found in [11,26] and [28].

2.3 Machine Learning

Machine learning (ML) comprises a large number of methods that enable com-
puters to learn patterns from datasets. It has found many applications in com-
puter vision, natural language processing, voice recognition, among others. In
cryptography, supervised learning, a type of ML, helps recognize encrypted data
patterns and detect malicious activity. In particular, neural networks are ML
models composed of a number of nodes linked by weighted connections. Neural
networks are trained by adjusting connection weights and biases to minimize a
loss function, L(θ), which can be represented as

L(θ) =
1
N

N∑

i=1

L(yi, f(xi; θ)),

where N denotes the number of samples, yi represents the observed output,
f(xi; θ) the predicted output, and L(yi, f(xi; θ)) measure the difference between
the observed and the predicted outputs. The objective of training the neural
network is to find the optimal parameters θ∗ that minimize the loss function,
i.e.,

θ∗ = argmin
θ

L(θ). (1)
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As discussed in the next section, many of the ML approaches for cryptanalysis
rely on neural networks to build so-called neural distinguishers.

3 Machine Learning Approaches for Differential
Cryptanalysis

This section presents a number of recent approaches for differential cryptanal-
ysis based on machine learning methods. We classify these approaches in two
categories: attacks on SIMON and SPECK, as many methods centered on these,
and attacks on other cryptosystems. Table 1 provides a summary of the meth-
ods considered, classified by the cryptosystem attacked and the type of neural
network employed.

Table 1. Comparative Table for Distinguisher Approach

Neural network
Residual Net Multilayer Perceptron Convolutional LSTM

Cryptosystem SPECK [2,12,14] [31] [8]
SIMON [13,14,20] [31]
SIMECK [20] [15]
GIMLI [3] [3] [3]
ASCON [3] [3] [3]
KNOT [3] [3] [3]
CHASKEY [3] [3,8] [3]
TEA [5] [5]
RAIDEN [5] [5]
PRESENT [15]
GIFT64 [31]
DES [8]

3.1 Attacks for SIMON and SPECK

As mentioned before, the recent contribution by Gohr [12] has become a key-
stone in the area of machine learning for differential cryptanalysis. The paper
presents a novel technique to improve attacks on the round-reduced version of
the Speck32/64 block cipher using deep learning. The author argues that exist-
ing attacks on the cipher are limited by the complexity of the differential and
linear approximations used to analyze the cipher. To overcome this limitation,
the proposed approach consists of training a deep neural network to predict the
cipher output for a given input, considering a specific number of rounds. The
author demonstrates the effectiveness of the approach by applying it to up to
eight rounds of Speck 32/64 and shows that it can improve the success rate of
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the attack compared to existing techniques. The author also shows that the app-
roach is robust to noise and can generalize to larger numbers of rounds, although
it is limited by the amount of training data needed, which increases with the
number of rounds. A number of papers have extended and improved Gohr’s work
recently, as we describe next.

Next, Hou et. al. [13] use deep residual neural networks to train differen-
tial distinguishers for SIMON32 with eight and nine rounds. They investigate
how patterns in the input differences affect the model accuracy. Even though
the input differences they employ result from differential characteristics with
the same probability, they discover that their accuracy is different. Employing
this distinguisher, the paper develops an 11-round SIMON32 last subkey recov-
ery attack, extends the 9-round SAT-based distinguisher to an 11-round distin-
guisher, and subsequently suggests a 13-round SIMON32 attack. They employ a
Ghor-inspired architecture and discover that for SIMON32, the input difference
has a significant impact on the model’s performance. The suggested attacks have
a success rate of over 90% and require about 45 s to obtain the last subkey. To
locate the key, they employ a Bayesian search technique.

In [2], the authors look for alternatives to the Gohr distinguisher that are
either smaller or perform better. They are able to successfully prune to one layer,
resulting in a network that performs within 1% of the original network. Convo-
lutional autoencoders, a type of neural network, are trained on the ciphertext
pairs in order to test whether preparing the input improves performance. They
find out, though, that the network was no longer sufficiently sophisticated to
extract pertinent data from the input, and employ LIME [23] to further assess
the significance of the characteristics. They use iterative and one-shot trimming
techniques and note that at least 90% of the 10-layer network (and even the
1-layer network) may be pruned without degrading average performance, and
that some of the resulting networks are superior to the original network. Addi-
tionally, they investigated whether all 64 input bits were required using LIME,
and discovered that each feature’s significance is very limited and no region in
the bit space has a significant impact on the ranking.

An improvement to neural distinguishers based on SAT/SMT is proposed
in [14], where new distinguishers for SIMON and SPECK are proposed. Specif-
ically, the approach is able to consider large-size block-based ciphers, which
leads to key recovery attacks for 13 rounds of SIMON32/64, and 14 rounds of
SIMON48/96, as well as an attack on 13 rounds of SIMON64/128 using an 11-
round neural distinguisher. Unlike Gohr [12], which uses text and ciphertext
pairs as samples, the authors in [14] design the distinguisher by taking sev-
eral differences, arranged in a matrix, as a sample. The matrix is treated as an
image, and each output difference is treated as an objective feature, such that if
all output differences of the matrix are from the same input difference, the sam-
ple is labeled with one, and zero otherwise. They show experimentally that the
improvement in the accuracy of distinguishers is due to learning more features
from the relationship between the output differences.
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More recently, [20] proposes an improved differential neural distinguisher for
the SIMON and SIMECK block ciphers. The proposed method improves upon
previous neural distinguishers by incorporating related-key attacks, which can
improve the accuracy of the distinguisher when the attacker has access to related
keys. On the 8-round SIMON-64 cipher with a single key, the proposed neural
distinguisher achieved an accuracy of 99.98%, while on the same cipher with
related keys, it achieved an accuracy of 94.9%. On the six round SIMECK-64
cipher, the proposed neural distinguisher achieved an accuracy of 99.92% for a
single-key attack, and of 91.7% for a related-key attack.

3.2 Attacks on Other Systems

Baksi et. al. [3] propose distinguishers for non-Markov ciphers to replicate “all-
in-one” differentials, i.e., differentials that take into account the impact on all
output differences under the same input difference. The paper presents distin-
guishers based on deep learning for eight rounds of Gimli-Hash, Gimli-Cipher,
and Gimli-Permutation, three rounds of the Ascon-Permutation, ten rounds each
of the Knot-256 and Knot-512 permutations, and four rounds of the Chaskey-
Permutation. The paper compares different net architectures and experimentally
shows that the multi-layer perceptron (MLP) outperforms both CNN and LSTM
networks in terms of precision.

In [15], Jain et. al. propose a distinguisher based on deep neural networks for
PRESENT-80 and Simeck64/128, attaining excellent precision for six and seven
rounds, respectively. They pick a few input differentials and closely follow the
steps in [3]. Additionally, they test four differential distinguisher models, the first
of which makes use of the design recommended in [3] while the second makes
use of the authors’ own architecture, with input differentials selected at random.
Models three and four employ the same architectures as models one and two,
respectively, but with selected differentials instead of random ones. Their tests
show model four outperforms the rest with a validation precision of 0.86, 0.76,
0.39 and 0.27 for three, four, five and six rounds of PRESENT, respectively. For
SIMECK, this precision is 1, 1, 0.83, 0.48 and 0.27 for three, four, five, six and
seven rounds, respectively.

Yadav and Kumar [31] aim to create a framework for ML-based distinguish-
ers to tackle Feistel, SPN, and ARX block ciphers. They apply it to SPECK,
SIMON, and GIFT64, lowering the amount of data complexity needed for 9,
12, and 8 rounds, respectively. The paper proposes the first SIMON 12-round
distinguisher with a complexity lower than 232. They name this approach as
hybrid Differential-ML distinguisher, which combines traditional differential dis-
tinguishers with ML models to tackle more rounds. They take advantage of
Gohr’s suggested design [12] and Baksi’s improvements [3]. The network is
trained using the differences directly rather than ciphertext pairs and employ a
multi-layer perceptron architecture. The results show that the hybrid approach
is able to increase the number of rounds considered without the need for much
more data.
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The Tiny Encryption Algorithm (TEA) and its evolution, RAIDEN, are put
to the test in [5] using two deep learning-based distinguishers. Compared to
Speck32/64, in TEA and RAIDEN the block and key sizes are both doubled.
The neural distinguishers proposed are based on a multi-layer perceptron archi-
tecture and a convolutional architecture, which are shown to outperform tradi-
tional ones based on differential trails and statistical methods. Additionally, the
paper shows that the loss can be greatly reduced while keeping the number of
training samples constant. This is done by breaking the problem into two phases:
first, a time-distributed network that treats each 32-bit chunk individually, and
second, a fully connected layer. With this approach, the paper shows that the
neural distinguishers are able to improve upon traditional bitflip and differen-
tial distinguishers for up to six rounds of TEA, with as little as 103 samples.
This result holds too for a large number of rounds employing a larger number of
samples.

A simplified version of DES (S-DES), SIMON, and SPECK, which are con-
sidered lightweight systems, are considered in [27], which proposes a general deep
learning-based cryptanalysis algorithm that starts with pairs of known plaintext
and ciphertext and attempts to determine the block cipher key. The authors
consider two setups: i) a simplified setup where the key is made of 8 characters,
each one corresponding to one of 64 ASCII characters; ii) a general setup where
the key can be made of any string of bits. The neural network model proposed
is able to fully attack S-DES, but it can only break SIMON and SPECK under
the simplified setup. Under this setup, the ML-based attack broke the S-DES
cipher with a success probability of 0.9 given 28.08 known plaintexts. Also, it
achieved a 0.99 success probability to find 56 bits of Simon32/64 with 212.34

known plaintexts and 56 bits of Speck32/64 with 212.33 known plaintexts, both
under the simplified setup.

Another approach is presented in [16], which proposes a deep learning-based
cryptanalysis technique for S-DES, S-AES, and S-SPECK. The proposed method
utilizes a fully-connected neural network to learn the characteristics of plain-
texts and their corresponding ciphertexts in order to predict the key used by
the encryption algorithm. The paper introduces an improvement to Gohr’s deep
learning model [12] by incorporating skip connections and gated linear units into
the neural network structure, enabling a more stable learning. As a result, an
average improvement of 5.3% in accuracy is achieved compared to previous works
on S-DES [27], while reducing the number of parameters by 93.16%. Further-
more, when applied on S-AES and S-SPECK, the method is able to successfully
recover keys of up to 12 bits for S-AES and 6 bits for S-SPECK.

In [8] the authors propose the Extended Differential-Linear Connectivity
Table (EDLCT), a tool that describes a cipher and its features relevant to
a ciphertext pair. They build various machine learning-based distinguishers,
including the neural distinguisher in [12], using these features. They also develop
a Feature Set Sensitivity Test (FSST) to identify influential features and cre-
ate surrogate models based on these features. Experiments on Speck32/64
and DES confirm that the distinguisher learns features corresponding to the
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EDLCT. Additionally, the authors explain phenomena related to the neural
distinguishers using the EDLCT and demonstrate how machine learning can
be used to search for high-correlation differential-linear propagations in the
differential-linear attack. The advantages of machine learning in applications
such as Chaskey and DES are also showcased.

Another approach is presented in [25], which proposes an artificial neural
network-based cryptanalysis method for a simple 8-bit substitution-permutation
cipher. The method utilizes a multi-layer perceptron network with a backprop-
agation learning algorithm to estimate the cipher’s inverse function and recover
the plaintext. The authors demonstrate the effectiveness of the proposed method
on several test cases and show that it outperforms traditional cryptanalysis meth-
ods in terms of speed and accuracy.

Finally, we would like to mention an earlier paper [9], which proposes the
application of a neural network to S-DES to seek a relationship between plain-
text, cipher text and key bits. The network can map the relation between inputs,
keys and outputs and to obtain the correct values for the key bits k0, k1 and
k4. They also propose new S-boxes, which are more resistant to the differential
attack, such that the neural network was not able to point out bits of the key
under these S-boxes.

4 Discussion

Prior to the breakthrough generated by Gohr’s proposal [12], machine learn-
ing applications to cryptanalysis were too limited to be considered efficient in a
real-world context. What highlights Gohr’s work is its ability to achieve a clear
improvement in accuracy and data complexity in contrast to traditional differ-
ential analysis. Soon after the publication of this proposal, a number of works
have emerged exploring different approaches, in particular considering changes
on the network type [3], tweaks to the input layer [2,5,14] and hybrid approaches
[13,31], to mention just a few.

Out of the many recent works in this direction, the work by Baksi [3] deserves
particular attention as it performed a comparison between network architectures
to find experimentally that the multi-layer perception had the best results. This
result led several authors to focus their research on this type of network archi-
tecture. However, machine learning is currently a rapidly evolving field and new
architectures are regularly proposed in a variety of areas of application, opening
the door for new methods to be considered for differential cryptanalysis.

While this paper has focused on machine learning methods for differential
cryptanalysis, these methods have been considered in many other areas of cryp-
tography. For instance, [21] examines the use of ML for the identification of
encryption algorithms. The objective is to determine the encryption algorithm
being used by employing a set of plaintexts and their ciphered versions under
several encryption algorithms. Seven encryption methods, each in the EBC and
CBC modes, six classification algorithms, and plaintexts in seven distinct lan-
guages were employed. Specifically, the paper considers DES, Blowfish, RSA,
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ARC4, Rijndael, Serpent, and Twofish as the encryption methods, while the
machine learning methods are C4.5, PART, FT, Complement Naive Bayes, Mul-
tilayer Perceptron, and WiSARD. The authors find that the classification algo-
rithms are unaffected by the plaintexts’ original language, and perform signifi-
cantly better in ECB than in CBC mode. In ECB mode, the Complement Naive
Bayes algorithm displays the best performance with 100% accuracy.

Another prominent application of machine learning in cryptanalysis lies in
profiled side-channel analysis [17], where information leaked from a physical
cryptosystem is used to break it. Here, convolutional neural networks have shown
significant potential, especially by means of adding artificial noise to the input
signal, which improves the performance of the neural network and reduces the
number of measurements needed to reveal the secret key. These are but a cou-
ple of examples of the diverse and promising applications of machine learning
in cryptography, from differential cryptanalysis and identification of encryption
algorithms to profiled side-channel analysis.

5 Conclusion

This survey has shed light on the remarkable progress of machine learning in the
field of cryptography, with a particular focus on differential attacks and the uti-
lization of deep learning for distinguishers. These findings emphasize the dynamic
and ever-evolving nature of the machine learning domain. As new architectures
and algorithms emerge, there is great potential for significant advancements in
the performance and efficiency of these distinguishers. The integration of deep
learning techniques is a novel approach in the field of cryptanalysis, empow-
ering researchers to tackle complex cryptographic problems and enhancing the
security of modern cryptographic systems. As machine learning continues to
mature, we can anticipate further breakthroughs, highlighting the importance
for researchers and practitioners to remain vigilant and adapt to the evolving
landscape of machine learning to stay ahead of potential security threats and
leverage the transformative potential of this technology for the betterment of
cryptography.

References

1. Alani, M.M.: Applications of machine learning in cryptography: a survey. In: Pro-
ceedings of the 3rd International Conference on Cryptography, Security and Pri-
vacy, pp. 23–27 (2019)

2. Băcuieti, N., Batina, L., Picek, S.: Deep neural networks aiding cryptanalysis: a
case study of the speck distinguisher. In: Ateniese, G., Venturi, D. (eds.) ACNS
2022. LNCS, pp. 809–829. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-09234-3_40

3. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential dis-
tinguishers for lightweight ciphers. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 176–181 (2021)

https://doi.org/10.1007/978-3-031-09234-3_40
https://doi.org/10.1007/978-3-031-09234-3_40


Recent Advances in ML for Differential Cryptanalysis 55

4. Baragada, S., Reddy, P.S.: A survey on machine learning approaches to crypt-
analysis. Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS) 2(4), 148–153
(2013)

5. Bellini, E., Rossi, M.: Performance comparison between deep learning-based and
conventional cryptographic distinguishers. In: Arai, K. (ed.) Intelligent Computing.
LNNS, vol. 285, pp. 681–701. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-80129-8_48

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4, 3–72 (1991)

7. Chen, J., Miyaji, A., Su, C., Teh, J.: Improved differential characteristic searching
methods. In: 2nd International Conference on Cyber Security and Cloud Comput-
ing, pp. 500–508. IEEE (2015)

8. Chen, Y., Yu, H.: Bridging machine learning and cryptanalysis via EDLCT. Cryp-
tology ePrint Archive (2021)

9. Danziger, M., Henriques, M.A.A.: Improved cryptanalysis combining differential
and artificial neural network schemes. In: 2014 International Telecommunications
Symposium (ITS), pp. 1–5 (2014)

10. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_1

11. Ferguson, N., Schneier, B.: Practical Cryptography, vol. 141. Wiley, New York
(2003)

12. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

13. Hou, Z., Ren, J., Chen, S.: Cryptanalysis of round-reduced simon32 based on deep
learning. IACR Cryptology ePrint Archive 2021, 362 (2021)

14. Hou, Z., Ren, J., Chen, S.: Improve neural distinguisher for cryptanalysis. IACR
Cryptology ePrint Archive 2021, 1017 (2021)

15. Jain, A., Kohli, V., Mishra, G.: Deep learning based differential distinguisher for
lightweight cipher present. IACR Cryptology ePrint Archive 2020, 846 (2020)

16. Kim, H., Lim, S., Kang, Y., Kim, W., Seo, H.: Deep learning based cryptanalysis
of lightweight block ciphers, revisited. Cryptology ePrint Archive (2022)

17. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptographic Hardw. Embed. Syst. 148–179 (2019)

18. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34961-4_15

19. Leurent, G.: Construction of differential characteristics in ARX designs application
to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
241–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4_14

20. Lu, J., Liu, G., Sun, B., Li, C., Liu, L.: Improved (related-key) differential-based
neural distinguishers for SIMON and SIMECK block ciphers. Comput. J. (2023)

21. de Mello, F.L., Xexéo, J.A.M.: Identifying encryption algorithms in ECB and CBC
modes using computational intelligence. J. Univers. Comput. Sci. 24, 25–42 (2018)

22. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7_5

https://doi.org/10.1007/978-3-030-80129-8_48
https://doi.org/10.1007/978-3-030-80129-8_48
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/978-3-642-40041-4_14
https://doi.org/10.1007/978-3-642-40041-4_14
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5


56 I. Martínez et al.

23. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1135–1144.
Association for Computing Machinery, New York (2016)

24. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Mat-
sumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-57332-1_36

25. Ruzhentsev, V., Levchenko, R., Fediushyn, O.: Cryptanalysis of simple
substitution-permutation cipher using artificial neural network. In: 2020 IEEE
International Conference on Problems of Infocommunications. Science and Tech-
nology (PIC S&T), pp. 631–634 (2020)

26. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in
C. Wiley, Hoboken (2007)

27. So, J.: Deep learning-based cryptanalysis of lightweight block ciphers. Secur. Com-
mun. Netw. 2020, 1–11 (2020)

28. Stinson, D.R., Paterson, M.: Cryptography: Theory and Practice. CRC Press, Boca
Raton (2018)

29. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block
ciphers and automatic enumeration of (related-key) differential and linear charac-
teristics with predefined properties. Cryptology ePrint Archive (2014)

30. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_1

31. Yadav, T., Kumar, M.: Differential-ML distinguisher: machine learning based
generic extension for differential cryptanalysis. In: Longa, P., Ràfols, C. (eds.) LAT-
INCRYPT 2021. LNCS, vol. 12912, pp. 191–212. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88238-9_10

32. Zhao, H., Han, G., Wang, L., Wang, W.: MILP-based differential cryptanalysis on
round-reduced midori64. IEEE Access 8, 95888–95896 (2020)

33. Zolfaghari, B., Koshiba, T.: The dichotomy of neural networks and cryptography:
war and peace. Appl. Syst. Innov. 5(4), 61 (2022)

https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/11535218_1
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10

	Recent Advances in Machine Learning for Differential Cryptanalysis
	1 Introduction
	1.1 Related Work

	2 Foundations
	2.1 Symmetric Cryptography
	2.2 Symmetric Cryptanalysis
	2.3 Machine Learning

	3 Machine Learning Approaches for Differential Cryptanalysis
	3.1 Attacks for SIMON and SPECK
	3.2 Attacks on Other Systems

	4 Discussion
	5 Conclusion
	References


