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Abstract. Land use and land cover classification (LULC) is a funda-
mental input for ecological and socioeconomic models worldwide, gener-
ating a large volume of data from space-based platforms, mainly optical
technologies. However, these can be affected by atmospheric conditions.
Colombia has a high percentage of cloud cover due to its geographical
location, which makes it challenging to map LULC changes. Studies have
emerged that evaluate the integration of optical and radar images with
algorithms that allow for good results despite the information gaps that
affect these processes. Therefore, this work compares three supervised
machine learning approaches, Support Vector Machines, Random For-
est, and XGBoost, to classify land use and land cover from multispectral
and radar images, contemplating four scenarios for data fusion. Optical,
optical + SAR, optical + SAR ascending, and optical + SAR descend-
ing. The result for the Random Forest model using optical + ascending
SAR has the best accuracy (76.02%), followed by Random Forest with
optical + descending SAR data (75.97%) and with little difference for
Random Forest using optical data (75.83%). In future studies, it is of
great interest to explore feature extraction on both data sets to improve
LULC representation and classification.
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1 Introduction

Natural resources in the world are excessively exploited by human beings to sat-
isfy subsistence needs, such as food, health, economy, and leisure [1]. However,
the great tendency of waste and over-exploitation of these resources produces
severe consequences for the planet year after year. Some of the human activities
that cause these effects are the expansion of the agricultural frontier, livestock,
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infrastructure, and mining, in addition to other indirect causes associated with
social, political, and economic changes [2]. Thus, the care and evolution of natu-
ral resources have awakened great interest in generating information and knowl-
edge on land use, land cover, and its changes over time, representing a great
need in the scientific community [3].

Large volumes of remote sensing data are produced annually from various
systems, also associated with many Earth observation satellites used to monitor
activities related to land use and land cover [4]. This increased availability of
remotely sensed data has led to a rapid advance and interest in the fusion of
optical and radar data. Whereas optical sensors are passive and receive the
solar electromagnetic waves reflected from objects to obtain spatial and spectral
information, while synthetic aperture radar (SAR) is active, and its images are
not affected by weather conditions or sunlight levels [4,5], which together allow
obtaining the best of both and complement each other’s deficiencies [6]. However,
this data fusion has not yet received sufficient attention.

For LULC processing and classification, multiple algorithms have been stud-
ied; among these, machine learning (ML) techniques are one of the most relevant
[7]. This technique seeks to extract knowledge from the data. Its main objective
is to find models that can identify patterns to obtain more secure and reliable
classifications [3]. In studies on supervised methods in classification applications,
Support Vector Machines (SVM), Random Forest (RF), and Extreme Gradient
Boosting (XGBoost) are reported as the most popular ones [8]. Since these gen-
erally provide better performance than other traditional classifiers [9]. Further-
more, it is valuable to highlight the potential of machine learning to deal with
large historical and current data sets, which are indispensable in applying these
algorithms for LULC analysis and classification [10].

Therefore, the purpose of this study is to identify the possibility of increasing
the performance of the LULC classification through the fusion of optical and
radar data in areas with a high percentage of clouds. It is hoped that this fusion
will allow for mitigating the deficiency in data acquisition with optical sensors
due to atmospheric conditions in Colombia, a country in which these studies are
currently minimal. Initially, the use of 4 of the 5 classes specified in Level 1 of
CORINE Land Cover (CLC) is proposed to allow a generic exploration of very
common areas in the territory; some examples are artificialized territories (urban
areas), agricultural territories (crops), forests and semi-natural areas (pastures),
and water surfaces (watercourses).

2 Methods

This research used the main steps of the methodology shown in Fig. 1 to examine
land cover classification and analysis from radar and optical data:
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Fig. 1. Data and Methods. Source: Created by Authors.

2.1 Study Area

The study area chosen for this research is located in Antioquia, Colombia. It cov-
ers approximately 190,000 hectares of widely diversified territory and is better
known as the Oriente Antioqueño sub-region, precisely between the municipali-
ties of Guarne, Guatapé, La Ceja, and Cocorná.

2.2 Data Base

The database comprises optical images from the Sentinel 2 sensor and SAR
images from the Sentinel 1 sensor, taken as of August 2019. For Sentinel 2 data,
we used the bands with spatial resolution below 20 m and level 2 A (i.e., the
orthorectified image with reflectance levels below the atmosphere). While for
Sentinel 1, the data were taken from the Ground Range Detected (GRD) collec-
tion in vertical transmit and receive (VV) and vertical transmit and horizontal
receive (VH) polarization, each in ascending and descending orbit. Resampling
was performed for both datasets using the Google Earth Engine tool so that the
Sentinel 2 bands were all taken to 20 m, as were the SAR data.

Table 1 details the satellite images and sensors used for the different tasks in
this study.

Table 1. Optical and SAR data details

Sensor Number of bands Date Download
Source

Optical Sentinel 2 10 2019 Google
Earth Engine

SAR Sentinel 1 4 2019 Google
Earth Engine
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CORINE Land Cover. As reference data to validate the process, the CORINE
Land Cover (CLC) methodology map currently led in Colombia by the Institute
of Hydrology, Meteorology and Environmental Studies (IDEAM) is considered,
which includes land cover classifications obtained from the visual interpretation
of expert cartographers, detailed from level 1 to level 6. For this study, 4 of the 5
classes defined at level 1 (artificialized territories (ArT), agricultural territories
(AgT), forests and semi-natural areas (FSA), wetlands and water surfaces (WS))
are taken, as shown in Fig. 2.

Fig. 2. Study Area & CLC Classes. Source: Created by Authors.

2.3 Preprocessing

The data preparation generally included the construction of the data sets for
each image, organizing the matrices of equal length and order according to the
bands of each sensor; additionally, all the data were normalized using the Min-
MaxScaler function and divided in a relation of 70% training and 30% test using
the train test split function.

Data Fusion. The pixel values of each image were used for data fusion, con-
sidering four scenarios: Optical, Optical + SAR, Optical + ascending SAR, and
Optical + descending SAR. The fusions’ composition details can be seen in
Table 2.

Training Data Set. The information for the training dataset is initially struc-
tured using the QGIS Geographic Information System software. Multiple slices of
the image are extracted in specific areas so that each class of interest is properly
identified, as can be seen in Fig. 3.
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Table 2. Composite Images

Composite Images Bands

Optical B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12

SAR VV ascending, VV descending, VH ascending, and VH descending

Optical + SAR B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12,

VV ascending, VH ascending, VV descending, VH descending

Optical + SAR B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12,

Ascending VV ascending, VH ascending

Optical + SAR B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12,

Descending VV descending, and VH descending

Fig. 3. Training Data Sets. Source: Created by Authors.

2.4 Classification

Models. Three models with supervised machine learning approaches, all set
in classification mode, were used for comparison. The first one is SVM which
behaves as a tool that maximizes prediction accuracy by automatically avoid-
ing overfitting the data. It seeks to find hyperplanes that determine the decision
boundary to classify data points into different classes [11,12]. In addition to sup-
porting multiple continuous and categorical variables and linear and nonlinear
samples. The training samples that constrain the margin or hyperplane are the
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support vectors [7]. The second model is RF which consists of a collection of
tree-structured classifiers with identically distributed independent random vec-
tors, where, each tree casts a unitary vote for the most popular class of the
input, allowing to obtain a more accurate and stable prediction [6,7]. Finally,
XGBoost with a concurrent tree boosting approach provides more accurate large
scale problem solving. [8] A classifier is constructed from gradient boosting that
predicts a new classification membership after each iteration in an additive man-
ner, making predictions from a weak tree that constantly improves the error of
previous classifiers to create a robust classifier [13].

2.5 Validation

Performance Evaluation

Confusion Matrix (CM). A tool for visualizing the performance of an algorithm
used in supervised learning, it contains information about the actual and pre-
dicted classifications performed by the classification system (See Fig. 4). The per-
formance of these systems is usually evaluated using the matrix data itself [14].

Fig. 4. Confusion matrix. Source: Created by Authors.

Accuracy. It is a metric widely used to evaluate classification models, where the
probability that a sample is correctly classified is established: the sum of true
positives plus true negatives divided by the total number of samples analyzed [6].

Accuracy =
TruePositive + TrueNegative

AllSamples
(1)

3 Result and Discussion

The results obtained for the database are shown in the Table 3 with the number
of records for each class according to the training and validation test respectively.
The number of records is equal for each of the 4 data sets.

The classification of optical images, SAR, and the fusion of both was per-
formed using Random Forest, Support Vector Machine, and XGBoost algo-
rithms. The parameters established for the models were the following: SVM
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with Kernel Radial Basis Function (’rbf’), RF with a maximum depth of the
tree at 2 and Random State at 0, and XGBoost was set for multiple classes
using the softmax objective and Random State at 42.

The best accuracies obtained were using the Random Forest model, specifi-
cally with optical data + ascending SAR (76.02%), followed by optical data +
descending SAR (75.97%), and with little difference continued with optical data
(75.83%). Table 4 shows the comparison of accuracies according to the data set
and each model. Overall over the data sets, the classification using optical imag-
ing + SAR was surprisingly the least accurate, very close to the optical imaging
set; however, when considering the difference in data by orbit, the accuracy using
optical imaging + ascending SAR increased.

Table 3. Database Size

Class Train Test

ArT 12819 460853

AgT 28961 2960360

FSA 20826 1240530

WS 5991 149005

Total 68597 4810748

Table 4. Comparison of Model Accuracy

Data Model Accuracy

Optical RF 75,83%

Optical XGB 68,91%

Optical SVM 75,27%

Optical + SAR RF 75,59%

Optical + SAR XGB 69,80%

Optical + SAR SVM 75,19%

Optical + SAR Ascending RF 76,02%

Optical + SAR Ascending XGB 69,19%

Optical + SAR Ascending SVM 75,17%

Optical + SAR Descending RF 75,97%

Optical + SAR Descending XGB 69,47%

Optical + SAR Descending SVM 75,25%

Figure 5 shows the classification maps obtained using the RF model with the
Optical, SAR Ascending, and Descending images, respectively, to allow visual
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(a) Optical RF. (b) Optical + SAR Ascending RF.

(c) Optical + SAR Descending RF.

Fig. 5. Images of predictions. Source: Created by Authors.

comparison of the effectiveness of the different dataset approaches that obtained
the best accuracy.

With the optical data, it can be identified that the presence of clouds does
indeed affect the predictions, and these are classified on the map as artificialized
territories; however, the shadows produced by these are also classified, but in
this case, as primarily water surfaces. Meanwhile, with the fusion of optical and
SAR data, a visually improved land cover map was obtained since the pixels
erroneously classified by the phenomenon of cloudiness was reduced.

Figure 6 presents the confusion matrices for the three best results obtained
with RF mentioned above. The number of correct classifications is shown in the
diagonals in dark green shades. For example, 2537175 optical pixels were cor-
rectly classified as AgT, while for the merged data, it increases to around 40000
samples, respectively. It is also identified that this class is the most preponderant
in all the classifications obtained, possibly because of the specific properties that
differentiate it from the others. In turn, the second best-predicted class is WS,
where the class has about 75,4% equivalent to 112395 correctly sorted samples,
specifically in optical data.
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Table 5. Label abbreviation

ArT Artificialized territories

AgT Agricultural territories

FSA Forests and semi-natural areas

WS Water surfaces

(a) CM optical data. (b) CM optical + SAR Ascending data.

(c) CM optical + SAR Descending data.

Fig. 6. Confusion matrix of predictions. Source: Created by Authors.

4 Conclusion

This research fused optical and SAR imagery for LULC classification using
machine learning algorithms and evaluates the accuracy of maps obtained with
optical imagery, SAR, and the combination of both.

The accuracy of the map obtained using optical and SAR imagery was superior
to that obtained with optical imagery alone, demonstrating that better land cover
classification can be obtained by providing details from both systems that allow
them to complement each other. However, there is still an increase in the error of
the classifications due to the presence of clouds in the optical data, for which it is
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necessary to advance in the investigation of techniques to reduce the interference
of these clouds in the information provided by the data characteristics.

Finally, this research presents baseline results that can be used to give con-
tinuity to the analysis of multisensory data fusion techniques and optimization
of supervised models for LULC classification (Table 5).
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