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Abstract. Aedes aegypti, the vector responsible for transmitting dis-
eases such as dengue, zika, and chikungunya, poses a significant public
health threat in many regions. Understanding the dynamics of Aedes
aegypti propagation is crucial for designing effective control and preven-
tion strategies.

Agent-Based Models (ABMs) have emerged as valuable tools for
studying complex systems like vector-borne disease dynamics. Hybrid
Agent-Based Models (HABMs), a variation of these models that incor-
porates Ordinary Differential Equations to model mosquitoes and ABMs
to model humans, have been proposed by several authors.

This study presents a comparative analysis of three HABMs to model
Aedes aegypti propagation dynamics, with a focus on the impact of dif-
ferent modeling frameworks. The first model was built using Repast Sim-
phony, a widely used ABM framework. It incorporates key factors such
as mosquito life cycle, environmental conditions, and human-mosquito
interactions. To enhance computational performance, the second model
is migrated to a high-performance environment using Repast HPC. This
migration leverages parallel computing capabilities to simulate larger
populations. The third model is migrated to Mesa-Geo, a Python library
specifically designed for geospatial agent-based modeling. This migration
facilitates the integration of geospatial data into the model.

Preliminary results show that migrating the model to a high perfor-
mance environment enables more comprehensive analyses and reduces
simulation runtime. Moreover, migrating to Mesa-Geo provides enhanced
geospatial capabilities, and allows us to analyze the results in a graphical
interface, which facilitates communication with decision makers.

The main contributions of this research are: 1) insights into the trade-
offs and benefits of using Repast Simphony, Repast HPC, and Mesa-Geo
for modeling the transmission of viruses, and 2) a guide to researchers and
stakeholders in selecting the most suitable modeling framework based on
their specific requirements and available computational resources.
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1 Introduction

The Aedes aegypti mosquito is recognized as the main carrier of diseases like
Dengue, Chikungunya, and Zika, making it a significant species. The prevalence
of these diseases has been on the rise in recent years, causing millions of peo-
ple around the globe to be affected each year. Transmission of these diseases
happens when infected female mosquitoes bite humans, and their presence is
closely associated with human habitation. While Dengue, Zika, and Chikun-
gunya impact individuals across various social strata, they exhibit a greater
propensity to affect the economically disadvantaged, particularly those residing
in suburban regions. Consequently, factors such as climate, social conditions and
human behavior play a crucial role in the spread of this mosquito species and
the occurrence of the diseases it carries.

This research is specifically driven by the case of Bello, a city in Colom-
bia, which possesses distinctive characteristics that make it an ideal subject
for examining the impact of dengue in densely populated urban areas. Bello’s
proximity to other urban centers and transportation hubs heightens the risk of
disease transmission, rendering it a potential epicenter for outbreaks that can
propagate to other parts of the country.

Agent-based modeling and simulation (ABMs) is a powerful framework for
understanding the dynamics of vector-borne disease transmission and devising
effective control and prevention strategies. ABMs captures the complex interac-
tions between individual agents, environmental characteristics, and intervention
strategies, considering the heterogeneous characteristics and behaviors of the
agents. It also allows the incorporation of spatial and temporal dimensions and
their impact on disease transmission.

However, the complexity of ABMs models in this context requires signif-
icant computational resources, which can be addressed by employing High-
Performance Computing (HPC). HPC provides the computational power to han-
dle large numbers of agents and their interactions, ensuring timely simulations.
Furthermore, HPC allows for the scalability of ABMs models, accommodating
the increasing complexity and size of an urban area such as Bello. This com-
bination of ABMs and HPC could enable researchers to gain valuable insights
into disease dynamics, assess the effectiveness of various strategies, and make
informed decisions for control and prevention efforts.

Limited research has been conducted on agent-based models that capture
the intricate dynamics of vector-borne disease transmission, particularly in rela-
tion to the diverse geospatial characteristics of urban areas. This paper aims to
address this gap by presenting an exploratory study that offers a comparative
analysis of three distinct agent-based modeling implementations using differ-
ent programming languages and simulation toolkits. The first implementation
employs Python, the second utilizes Repast Simphony (Java), and the third
utilizes Repast HPC. The analysis specifically considers factors such as compu-
tational capacity, computer memory usage, and implementation characteristics.
By evaluating these aspects, this study aims to provide valuable insights into
the strengths and limitations of each implementation, creating opportunities for
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further advancements in agent-based modeling approaches for studying vector-
borne diseases dynamics in urban settings.

This paper commences with a comprehensive review of the existing litera-
ture regarding the utilization of ABMs in modeling vector-borne diseases within
urban areas. Subsequently, it outlines the methodology employed to tackle the
research problem. The paper proceeds to present the findings in the results
section, followed by the conclusions drawn from the study and an exploration of
potential future research directions.

2 Literature Review

The existing literature on the use of agent-based models (ABMs) to simulate
the spread of vector-borne diseases has predominantly emphasized the relation
between human behavior and disease propagation. However, there is a notable
gap in considering other crucial factors, such as geospatial, social, and climate
characteristics, within these models. For example, [20] employed agent-based
models (ABMs) to investigate the influence of human behavior on the trans-
mission of infectious diseases. The study revealed that even minor alterations in
human behaviors can yield significant variations in outcomes, ultimately exert-
ing a profound impact on virus propagation. Similarly, a model to address the
propagation of Dengue and Chikungunya outbreaks in Colombia was developed
in [6]; however, the model overlooked important factors such as spatial complex-
ity and urban area density, limiting its ability to fully capture the dynamics of
disease transmission. Furthermore, [9] implemented an ABMs that focused on
simulating mosquito population dynamics at a neighborhood level. The study
revealed a notable relation between urban topology, human population density,
and adult mosquito flight. To account for the diverse geography of the area, the
researchers incorporated distinct values for characteristics like temperature and
light into different zones of the spatial representation. In [15], an agent-based
simulation framework to analyze and predict mosquito population density and
its impact on dengue spread, is proposed. The proposed framework provides
visualization and forecasting capabilities to study the epidemiology of a certain
region and aid public health departments in emergency preparedness. They iden-
tified several expected dengue cases and their direction of spread, which can help
in detecting epidemic outbreaks. In a similar manner, [1] developed an agent-
based model to investigate the African trypanosomiasis disease dynamics and
as a tool for scenario testing at an appropriate spatial scale to allow the design
of logistically feasible mitigation strategies. They implemented an agent-based
model because this vector-borne disease is prevalent in sparsely populated rural
environments, and the traditional compartmentalised models such as SIR don’t
always capture the spatial and demographic heterogeneity within an area, and
the varying exposure to the disease that this can cause. They incorporated spa-
tial data for the Luangwa Valley case study, along with demographic data for
its inhabitants.
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The literature has also shown that the utilization of hybrid agent-based mod-
els incorporating ordinary differential equations offers the advantage of captur-
ing both individual-level interactions and population-level dynamics, enabling a
more comprehensive understanding of the propagation of vector-borne diseases.
For instance, in a study by [16], a novel hybrid model was proposed for simulat-
ing the transmission of mosquito-borne diseases. Instead of explicitly modeling
the individual movement of each mosquito agent, the model employed Ordinary
Differential Equations (ODEs) to capture the dynamics of mosquito populations.
The authors argued that this approach offered a higher level of detail compared
to using solely agent-based methods, while also improving computational effi-
ciency.

Moreover, high-performance agent-based models (ABMs) provide a promis-
ing approach to study the propagation of vector-borne diseases. Recognizing
the need for computational power in analyzing the complex dynamics of dis-
ease spread, researchers have started investigating the use of HPC agent-based
models or migrated existing models to frameworks that support HPC and par-
allel simulation. An example of an HPC model in this context is the work by
[18], which focuses on assisting decision-making for disease prevention and con-
trol. However, to the best of the authors’ knowledge, there have been no other
High-Performance Computing (HPC) implementations dedicated to modeling
the propagation of Aedes aegypti mosquitoes.

Similarly, [11] describe how they converted an existing agent-based model for
simulating the population dynamics of the Anopheles gambiae mosquito, one of
Africa’s most significant malaria vectors, to a parallel model. The initial model
was created using AGILESim, a Java application designed exclusively for simu-
lating populations of disease vectors and the migrated model was implemented
in OpenCL. The authors’ findings suggest that using OpenCL for bigger pop-
ulation sizes is particularly successful, with a speed up of 46 times faster than
the Java version of AGILESim. [19] describe the design, implementation, and
parallelization of an epidemiological ABM that is used to model the spread of
direct contact infectious illnesses using real-world data. High memory consump-
tion and long execution times are both problems addressed by the authors in this
research. To address the memory issue, the authors implement an innovative fea-
ture which they name the bitstring approach. This approach consists in using an
array of bits instead of using conventional data structures to save the attributes
for each agent. To address the high computational demands, the authors develop
a parallel version of the model aiming multicore CPUs and GPUs architectures.
According to the authors’ findings, parallelization and the use of the bitstring
technique considerably reduced both computational time and memory consump-
tion. Computation time was reduced by 103.25%, and memory use was reduced
by 41%.

In addition, [5] present a case study of how an existing agent-based model
of Community Associated Methicillin Resistant Staphylococcus Aureus (CA-
MRSAS) transmission in Chicago from 2001 to 2010 was parallelized and dis-
tributed to produce a scalable general epidemiological model. The authors
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migrated the model from Repast Simphony to Repast HPC. In comparison to
the original approach, the parallelized strategy delivered a 1350% gain in run
time performance.

The literature consistently has highlighted the critical role of human behavior
in shaping the dynamics of disease spread and has exhibited the limitations of
using agent-based models (ABMs) for modeling vector-borne diseases, primarily
related to their computational complexity and the inability to conduct real-scale
experiments, thus limiting our understanding of virus dynamics. Moreover, there
is a gap in incorporating spatial characteristics into these models. Therefore,
by building hybrid models within high-performance computing (HPC) environ-
ments we can enhance realism by scaling the geographical representation and
population size, addressing these limitations.

3 Methodology

The transmission dynamics of vector-borne diseases are mostly the same regard-
less of whether Dengue, Zika, or Chikungunya is being discussed. It occurs from
vector to human and from human to vector. For Zika virus, it can occur from
human to human [3], but we will not consider this way of transmission.

Humans have four states of infection: Susceptible (S) which is when the
human does not have the infection in their body and has not been bitten by
a mosquito recently. Exposed (E) is when an infected mosquito has recently
bitten the human but the virus can not be transmitted yet because it has not
been incubated in the human body. The third stage of infection in the human
is the Infected state (I), which is when the virus is in the human body and can
be transmitted to other mosquitoes. In this state, is important to consider the
infection period, which is the time the virus will be in the human body. When this
time period is reached, the human will pass to the last state which is Recovered
(R). The infection in the mosquito occurs when a susceptible mosquito bites an
infected human. Unlike humans, mosquitoes can be in only 3 states: Susceptible
(S), Exposed (E), and Infected (I) and they never recover because their lifespan
is about 2 to 3 weeks, so it is not the longest enough to live until a recovery
happen. In the model, we will not consider the birth or death of humans, due to
the short simulation time contemplated, but it is considered the birth and death
of mosquitoes because their lifespan is shorter and their reproduction affects the
propagation of these viruses.

Agent-Based Modeling focuses on modeling individuals and the interac-
tions between them and the environment. The behavior of the whole system
is obtained as a result of these interactions [14]. Each individual in the model
is called an agent and it has its own sets of decision and behavior rules. Agents
can be modeled to represent various entities, such as individuals, animals, orga-
nizations, or even abstract concepts. They are typically characterized by their
state, which includes variables representing their current conditions, character-
istics, or attributes. Agents can perceive and sense their environment, gather
information, make decisions, and take actions based on predefined rules. They
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can also interact and communicate with other agents, influencing each other’s
behavior and potentially leading to emergent properties and complex system-
level behaviors. By simulating the actions and interactions of multiple agents,
ABMs provides a framework to study the dynamics, patterns, and outcomes
of complex systems. It allows researchers to explore how individual agent-level
behaviors and interactions can collectively shape the behavior and outcomes of
the entire system. ABMs has been widely used in various domains, including
social sciences, biology, economics, transportation, and ecology, to gain insights
into real-world phenomena and inform decision-making processes.

3.1 Conceptual Model

The model consists of two main components: humans and mosquitoes. Humans
are represented as individual agents, whereas mosquitoes are modeled as “clouds
of mosquitoes” distributed across the spatial area. The spatial representation is
achieved using patches, where each patch holds a cloud of mosquitoes with counts
for the number of mosquitoes in each state: susceptible, exposed, and infected.
These patches represent static agents characterized by state variables indicating
temperature and the number of mosquitoes in each state. Each human agent in
the model represents one citizen of Bello, and the spatial representation encom-
passes the entire territorial area of the city of Bello in Antioquia, spanning 149
square kilometers. This spatial layout is organized as a 2D grid with individual
squares, and each square contains a patch. The grid dimensions consist of 32 x 32
patches.

Each time step of the simulation, also known as a tick, represents one day.
The model was run for 365 days. Each day the temperature and the number
of mosquitoes in each patch change. Also, each human moves according to the
activities that it has assigned, and at the end of the day, each human returns
to its house. Each time a human makes a movement, the probability that this
human gets infected is calculated and it is determined whether this human gets
infected or not in this new place.

The input data for the model consisted of the minimum and maximum tem-

peratures of Bello in 2019, which were used to assign a temperature value to each
patch for every day. The model incorporates various parameters, as outlined in
Table 1, with values sourced from [16]. To address the inherent parametric uncer-
tainty in individual mosquito models, we adopted the authors’ approach, which
focuses on addressing heterogeneity in disease spread at the patch level rather
than individual mosquito locations.
To determine the temperature of each patch on a given day, a uniform distri-
bution with the minimum and maximum temperatures recorded in Bello during
2019 for that day was employed. To calculate the counts of susceptible, exposed,
and infected mosquitoes in each patch at every time step, a system of continu-
ous differential equations is solved using the 4th-order Runge-Kutta numerical
method with a time step of h = 0.1.
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Table 1. Parameters values

Variable | Name Value

Lo Per capita mosquito death rate ﬁ

Py Per capita natural emergence rate of mosquitoes 0.3

Boh Probability of transmission from an infectious human to a | 0.333
susceptible mosquito given that a contact between the two
occurs

Bho Probability of transmission from an infectious mosquito to | 0.333
a susceptible human given that a contact between the two
occurs

Ov Maximum number of bites per mosquito per unit time 0.5

Oh Maximum number of bites a human can get per unit time |19

K, Carrying capacity of the mosquitoes in the patch 1000

3.2 Mosquitoes Behavior

This section presents the process of calculating the number of susceptible (S,,k ),
exposed (E’U]c ), and infected mosquitoes (Ivk) in each patch k over time using
a system of differential equations. These equations depend on the number of
humans in the patch and the temperature of the patch. The equations used for
these systems of differential equations were taken from [16] and [17] and are
presented in 1.

ds,”
dt = hvk - )\'uksvk - ,U/v‘s’vk

dE,*
i = )\UkSvk — vvkEka,quvk (1)
I k:

dd'(; _ 'U»UkEvk_,U/UIvk

The subscript v refers to the mosquito vector, the superscript k refers to the
patch, h," is the total birth rate of mosquitoes in patch k, A" is the per capita
rate of infection of mosquitoes in patch k, v, is the per capita rate of progression
of mosquitoes from exposed state to the infectious state in patch k, and p,, is
the per capita death rate of mosquitoes (parameter).

The equations for calculating the total birth rate in patch k (hﬂk ), per capita
rate of infection of mosquitoes in patch k ()\vk)7 and per capita rate of progression
of mosquitoes from exposed state to the infectious state in patch k (v,*) are
shown in Eq. 2.
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lr?) *N'Uk
hvk = va (% - > Ty = 1/}1) — Moy

K,
I b*
)\'uk = bvk * ﬁvh * (]\%) buk = W (2)

Oy * va * O, * Nhk

bt =
Oyv *va—i—ah *Nhk

va = Svk + Evk + Ivk

1, refers to the natural per capita-emergence rate of mosquitoes (parameter),
7y is the mosquito population growth rate, K, is the carrying capacity of the
mosquitoes in a patch (parameter), and N,* is the total number of mosquitoes in
the patch k. The subscript h refers to humans, N,* is the total number of humans
in the patch k, B, is the probability of transmission from an infectious human to
a susceptible mosquito given that a contact between the two occurs (parameter),
and b," is the number of bites per mosquito per unit of time in the patch k. b*
refers to the total number of contacts between humans and mosquitoes (bites)
in the patch k, o, is the maximum number of bites per mosquito per unit of
time (parameter) and oy, is the number of bites a human can get per unit of
time (parameter).

The equation for calculating the per capita rate of progression of mosquitoes
from the exposed state to the infectious state in patch k (v,*) is

1
whe (3)

tincy,

where tine,® is the incubation time of the virus in the mosquito in patch k. We
have made a modification to this equation to establish a dependency for the incu-

bation time on the patch’s temperature (T*), with distinct modeling approaches
0.667—0.378(T"* —26) [22];
0.299+0.027(TF—26) )

for Chikungunya, tinc,” = 4 + ¢15-0.123T" [10]; and for Dengue: tine,” follows
a uniform distribution, more specifically U(10,25) if 18 < T* < 21, U(7,10) if
21 < Tk <26 and U(4,7) if 26 < T* < 31

For Zika and Dengue viruses, if the temperature of the patch is less than
15°C, the incubation time of the virus in the mosquitoes is not defined, and
the rate of progression of mosquitoes from exposed to infected (v,*) is equal to
zero. Similarly, for Chikungunya, if the temperature in the patch is less than
12°C, the mosquito incubation time is not defined in this patch and the rate
of progression of mosquitoes from exposed to infected (v,*) is equal to zero.
This happens because, at low temperatures, the incubation time of the virus
in mosquitoes is really long, so mosquitoes reach life expectancy and die before
incubating the virus.

applied for each of the viruses. For Zika, tinc,” = 7 +
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3.3 Human Behavior

This section focuses on representing human behavior within the model. Humans
are assigned specific activities to perform during the day, and their movements
are determined accordingly. As they move through different patches, certain
variables related to infection state, time since a successful mosquito bite, and
time since infection are updated.

At the beginning of each day, human individuals start at their respective
homes. The first activity is determined by selecting the activity’s coordinates
from their list, and the humans are then moved to that specific location. As the
probability of infection varies in each patch, the variables related to the human’s
infection state are updated with every movement they make. This updating
process helps to determine if the human will get infected in the new location
or not. Then, each human is moved to the coordinates of their second activity,
and the relevant variables are updated again. Finally, each human returns to its
home location, and the variables related to infection state, time since a successful
mosquito bite, and time since infection are updated for the last time.

Unlike the mosquito behavior, which is modeled using differential equations
to update state variables, the behavior of humans is modeled stochastically using
probabilities. This probabilistic approach accounts for the uncertainties and ran-
domness associated with human movement, infection, and recovery processes. In
the model, a susceptible human in patch k can transition to the exposed state
with a probability of pgzn”. Once in the exposed state, a human can become
infected with a probability of pgr,¥, and an infected human can recover with
a probability of prrn®. The probability pggn” is determined by calculating the
rate of infection of humans in patch k. On the other hand, both pggs* and pIth
are represented by random variables.

The equation for calculating the probability of a human passing from suscep-
tible to exposed in patch k (psg,*) is the following: pgg,* = 1 — e~ "
An" is the rate of infection of humans in patch k and is defined as

k k I r
)\h = bh * ﬂhv * W (4)

v

where

where I,* is the number of infected mosquitoes in patch k, N,* is the total
number of mosquitoes in patch k, 8y, is the probability of transmission from an
infectious mosquito to a susceptible human given that a contact between the two
occurs (parameter), and bn" is the number of bites a human receives per unit

]\?—:k, where b*
is the total number of contacts between humans and mosquitoes (bites) in the
patch k (as defined previously) and N,” is the total number of humans in patch
k.

As stated previously, the probability of a human passing from exposed to
infected in patch k (pgr,*) is calculated by using a random variable approach.
In this case the incubation time of the virus in patch k (¢;,e,%) is a random
variable that follows a different probability distribution for each virus. For Zika

time in the patch k and is defined in the following way: by* =
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it i8 tine, ~ Weibull (o = 2.69, 8 = 6.70) [12]; for Chikungunya it is tipe, ~
Lognormal (p = 1.099, ¢ = 0.139) [13] and [16]; and for Dengue it is tine, ~
Gamma (o= 5.5, §=1.12) [4].

per,” is obtained by calculating the probability that the random
variable(tnc, *) is exceeded by the time passed since the human received a suc-
cessful bite (timeSinceSuccessfulBite) which is a state variable of the human.
The equation for this probability calculation is described below.

pEL," = p(tine,” < timeSinceSuccess ful Bite) (5)

In this manner, every time a human moves, pgs,* is calculated in the patch k
using the human’s state variable timeSinceSuccessfulBite. Knowing this proba-
bility, it is then used to determine if the human gets infected or not.

The probability of a human passing from infected to recovered in patch k
(prr,*) is also calculated by using a random variable approach. In this case,
the time of infection of the virus in patch k (tmfhk) is a random variable
that follows a different probability distribution for each virus. For Zika t;,,f, ~
norm (= 6,0 = 1) [7]; for Chikungunya ti,r, ~ Uniform (a =3,b=7) [16]
and for Dengue i, 5, ~ Uniform (a =2,b=7) [4].

prr,” is obtained by calculating the probability that the random variable
(tin fhk) is exceeded by the time passed since the human got infected (timeSince-
Infected) which is a state variable of the human. The equation for this probability
calculation is presented below.

pIth = p(tmfhk < timeSinceln fected) (6)

This probability pg;, * is then used to determine if the human gets recovered or
not.

3.4 Computational Implementation

The computational implementations of the conceptual model that we described
above, were done using the following two frameworks: Mesa-Geo library, which is
an ABMs library implemented in Python, and the Repast Suite. Figure 1 shows
the process overview of the model implementation.

Repast Suite is a free and open-source family of agent-based modeling and
simulation platforms. It includes Repast Simphony, a Java toolkit that provides
a range of features and tools to facilitate the creation, visualization, and analysis
of complex systems using agent-based modeling. It also offers Repast HPC, a
C++ toolkit that implements the core concepts of Repast Simphony and extends
them into a parallel distributed environment.

Mesa-Geo provides a simple and intuitive interface for ABM simulations,
making it easier for beginners to get started. As it is built using Python, a widely
used and popular programming language known for its simplicity and readabil-
ity, allows users to leverage the extensive Python ecosystem and easily integrate
with other data analysis and visualization tools. It also includes built-in spatial
analysis capabilities, allowing users to simulate and analyze geospatial patterns
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and interactions among agents. It provides tools for handling geographic data
and visualizing spatial patterns. One of the disadvantages of Mesa-Geo is that it
is primarily designed for small to medium-scale simulations. It may not perform
optimally for large-scale simulations with thousands or millions of agents. On
the contrary, Repast HPC is specifically designed to handle large-scale agent-
based simulations efficiently. It also offers a wide range of advanced features and
functionalities, including complex agent behaviors, network modeling, and dis-
tributed computing capabilities. However, integrating the geography of a region
could be a challenging task that requires more advanced programming knowl-
edge.

4 Results

Results obtained from the conducted simulations provide valuable insights into
the dynamics of the transmission of the virus in an urban area. In this section,
we present an analysis of the outcomes, highlighting key findings and their impli-
cations. The results not only shed light on the effectiveness and performance of
the three models implemented but also offer valuable information on the impact
on simulation capabilities.

The behavior shown by the three implementations reflects the typical behav-
ior of SEIR models. Figure 2 shows the propagation of Dengue among humans
over 100 days in the Python implementation. Figures3 and 4 show the propa-
gation of Dengue, Zika, and Chikungunya during a calendar year, using Repast
Simphony and Repast HPC, respectively. For the Mesa-Geo model, we are not
showing the results for the three diseases and overall the year due to the high
computing time required to run it. Each virus has a peak, as real disease out-
breaks do. After those peaks, no significant spread of the disease occurs and
the number of susceptible humans stabilizes, which was also expected since we
are not considering reinfection for any disease. Also, it is important to notice
that we are simulating the viruses in a separate environment, i.e., agents are not
exposed to Dengue, Zika, and Chikungunya at the same time.

4.1 Mesa-Geo Implementation

Mesa-Geo is a Python-based ABM framework providing built-in core compo-
nents to easily create, visualize, and analyze simulations. It is one of the most
used and actively supported ABM libraries, which exploits Python’s popularity
to provide ease of use and accessibility [2]. The model implemented in Mesa-Geo
was initialized with a total number of humans of 1000 and an initial number of
infected humans of 10 and the results are shown on Fig. 2.

Mesa-Geo implements a GeoSpace that can host GIS-based GeoAgents,
which are similar to usual Agents, except that they have an attribute for its
Coordinate Reference System. It allows to directly create arbitrary geometries
or import them from a file. Mesa-Geo allows to create GeoAgents from any vector
data file, GeoJSON objects or a GeoPandas GeoDataFrame [21].
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Fig. 2. Results of Python Model for Dengue.

Two key factors impact the performance of this model. In the first place,
the model includes the representation of all individuals in the city and their
respective states (susceptible, exposed, infected, and recovered) each time they
move. This process involves updating the state of each individual, which incurs
significant computational overhead. As the number of humans increases, the
computational burden grows exponentially, leading to longer execution times.
In addition to that, the graphical representation of humans as points on a map
exacerbates the computational demands of the model. Visualizing each human’s
position and state in a city requires rendering graphics or updating a graphical
user interface (GUI) in real-time. These graphical operations involve additional
calculations and memory management, leading to increased computational com-
plexity. Consequently, the model’s runtime is significantly prolonged due to the
computational cost of maintaining an up-to-date graphical representation of the
city and its inhabitants.

4.2 Repast Simphony Implementation

Repast Simphony is a richly interactive and easy to learn Java-based modeling
toolkit that is designed for use on workstations and small computing clusters.
It provides automated methods to perform all the common tasks required in an
ABMs simulation [2]. The model implemented in Repast Simphony was initial-
ized with a total number of humans of 120571 and an initial number of infected
humans of 1000 and the results are shown on Fig. 3.

Events in simulations are driven by a discrete-event scheduler, and each
timestep is equivalent to a tick. Ticks do not necessarily represent clock-time but
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Fig. 3. Results of Repast Simphony model for Dengue, Zika and Chikungunya.

rather the priority of its associated event. A context encapsulates the agents,
contexts can have projections that establish relationships within agents. For
instance, a grid projection allows agents to move in a matrix-type structure
where each agent has a location.

4.3 Repast HPC Implementation

Repast HPC is an expert-focused C++-based distributed agent-based modeling
toolkit that is designed for use on large computing clusters and supercomputers.
This toolkit enables the execution of massive simulations containing hundreds
of thousands of agents of very complex behavior whose execution requires high
computational power [2]. The model implemented on Repast HPC framework
was initialized with a total number of humans of 120571 and an initial number
of infected humans of 1000 and the results are shown on Fig. 4. Because of the
model’s geography (which was divided in four sectors), the model was designed
to be run with four processes.

Repast HPC is object-oriented. An agent’s internal state (e.g. its age, wealth,
level of hunger, etc.) is easily represented in an object’s fields while the agent’s
behavior (e.g.eating, aging, acquiring and spending wealth, etc.) is modeled using
an object’s methods. Agent types are implemented as C++ classes [2].
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Fig. 4. Results of Repast HPC model for Dengue, Zika and Chikungunya.

This framework also incorporates Message Passing Interface (MPI), an
industry-standard for message passing. The implementation of MPI allows send-
ing and receiving messages between processes. This includes performing opera-
tions on data in transit and synchronizing information from the agents and the
geographical context. In MPI applications, a process can not see the other pro-
cesses’ memory. Each process is responsible for the agents local to that process.
When a process contains non-local agents, the copies must be updated with the
latest state from the original. Movement from one process to another can be the
result of grid movement and may be handled automatically by Repast HPC or,
in certain cases, it may require manual synchronization.

The model’s definition must allow different processes to run in parallel with-
out sharing all memory. Our model fit this description because the Dengue, Zika,
and Chikungunya do not have human-to-human transmission. Each subsection
of the grid can make computations to update the number of susceptible, exposed,
infected, and recovered humans with the information about the mosquitoes and
the temperature in that patch. Thus, the parallelization of the model does not
violate any assumptions regarding the behavior of the diseases.

An analysis of memory usage yielded an average 31% decrease in memory use
over the Repast Simphony models. The improvement in memory usage is notable,
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however, part of the improvement may be due to the differences between pro-
gramming languages. Notably, the Repast Simphony model required an increase
in memory allocation to run the model. An analysis of the program revealed
that the lack of memory was not due to a memory leak. Thus, it is related with
the way Java handles memory and garbage collection causes excessive memory
use. Unfortunately, the java memory management scheme is automated and is
not subject to change. In contrast, it is possible to improve the results obtained
in the Repast HPC models through more customized memory management.

4.4 Comparative Analysis

This section presents a comparative analysis of three different agent-based mod-
eling implementations aimed at studying vector-borne disease dynamics in urban
settings. The goal of this analysis is to gain valuable insights into the strengths
and limitations of each implementation and its potential applicability in under-
standing disease dynamics and developing control strategies.

Table 2 provides a comparison of the three distinct agent-based modeling
implementations. The comparison considers essential factors such as the pro-
gramming language used, computer memory usage, and parallelization support.
These factors play a critical role in determining the efficiency and scalability of
the models. Additionally, we examine the ease of model development and the
visualization capabilities, which are crucial for aiding non-experts, such as health
decision-makers.

Table 2. Comparative Analysis of the Agent-Based Modeling Implementations.

Aspect Python | Repast Simphony | Repast HPC
Programming Language Python | Java C++

Ease of Model Development | Easy Moderate High
Computer Memory Usage | High High Moderate
Parallelization Support Limited | Limited High
Scalability Limited | Moderate High
Visualization Capabilities | Yes Limited Limited

Regarding programming language and ease of model development, Java, Python,
and C++ are all free and open-source programming languages. Python’s syntax
is simpler and more concise compared to Java and C++. Java follows a class-
based object-oriented approach and has a syntax similar to C and C++4. Python
stands out in ease of model development due to its straightforward process,
whereas Repast Simphony and Repast HPC require a moderate and high level
of expertise, especially for non-experienced programmers. Python is an easier
language to learn, while Java and C++ require more experience and program-
ming skills. Our aim for the model is to assist health decision makers. We seek
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to create a user-friendly and intuitive platform that allows non programming
experts to use the model effectively, enabling them to gain valuable insights
and make informed decisions. To use it on a day-to-day basis, Python could be
more approachable due to its simplicity, readability, and extensive libraries and
frameworks. Finally, Python has included in the library Mesa-Geo an easy way
to visualize the spread of the disease in a graphical interface. Repast Simphony
also allows a graphical interface but is not as easy to implement as in Python.
Repast HPC does not include a graphical interface.

In terms of computer memory usage, Python and Repast Simphony exhibits
relatively high consumption, while Repast HPC require moderate memory
usage. The high memory consumption in Python and Repast Simphony can
be attributed, on the one hand, to the graphical interface of the library, and
on the other hand, to the memory management approach employed by these
programming languages, which lack flexibility. Conversely, C++ offers a flexible
memory management system that can be customized to meet the requirements
of each processor.

The parallelization support aspect examines the capacity to enable multiple
processes to be executed simultaneously [8]. Python and Repast Simphony offer
limited support, while Repast HPC excels in high parallelization. Additionally,
the scalability aspect assess the ability of an implementation to handle larger and
more complex simulations. The key advantages of Repast HPC over Repast Sim-
phony or Python-based ABMs are its focus on parallelization, efficient resource
utilization, and compatibility with high-performance computing environments.
This allows it to handle more extensive and complex simulations, making it a
better choice for scalability when dealing with large-scale agent-based models.

All three implementations support the incorporation of spatial and temporal
dimensions in the modeling approach, as well as agent heterogeneity and environ-
mental interaction capabilities. Agent heterogeneity is represented by modeling
agents with diverse characteristics and behaviors, and environmental interac-
tion examines whether the implementations allow agents to interact with the
environment.

Overall, this comparative analysis aids researchers in understanding the dif-
ferent features and performance characteristics of each implementation, enabling
them to make informed decisions regarding the choice of agent-based modeling
approach for studying vector-borne disease dynamics in urban settings, based
on their specific requirements and constraints.

5 Conclusions and Future Research

In this paper, we explored the use of agent-based modeling and simulation
(ABMs) to analyze the dynamics of vector-borne disease transmission, specifi-
cally focusing on the Aedes aegypti mosquito and its role in spreading diseases
such as Dengue, Chikungunya, and Zika. We conducted an exploratory study in
the city of Bello, Colombia, which possesses characteristics that make it suitable
for examining the impact of dengue in densely populated urban areas. Our study
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aimed to address the limited research conducted on ABMs models that cap-
ture the complex dynamics of vector-borne disease transmission in urban areas.
We compared three distinct agent-based modeling implementations using differ-
ent programming languages and simulation toolkits: Python, Repast Simphony
(Java), and Repast HPC. By evaluating factors such as computational capac-
ity, computer memory usage, and implementation characteristics, we aimed to
provide valuable insights into the strengths and limitations of each implementa-
tion and contribute to the advancement of agent-based modeling approaches for
studying vector-borne disease dynamics in urban settings.

The results obtained from the three implementations showed the typical
behavior of SEIR models, with each virus exhibiting a peak and the number
of susceptible humans stabilizing over time. The Python implementation using
Mesa-Geo provided a simple and intuitive interface, while the Repast Simphony
implementation offered advanced features and tools for complex agent behaviors.
The Repast HPC implementation demonstrated the scalability and efficiency of
HPC in handling large-scale simulations.

We encountered computational difficulties while running simulations for the
three models on a desktop computer, preventing us from experimenting with the
actual population of the city of Bello. Although the HPC model showed satis-
factory results in reducing memory usage, our next step is to test the models
on a supercomputer since they have been specifically optimized for such devices.
Furthermore, as part of our future work, we plan to explore the possibilities of
parallelizing the Python model to enhance its performance and speed. By lever-
aging parallel computing techniques, we can achieve significant improvements
in execution time. The substantial decrease in processing time will enable us to
conduct numerous experiments, perform a comprehensive sensitivity analysis,
estimate parameters, and validate the models. As a result, we will gain a deeper
understanding of the transmission dynamics of the virus in an urban area.

In conclusion, our research contributes to bridging the gap in ABMs models
for studying vector-borne disease transmission in urban areas. The compara-
tive analysis of different implementations provides insights into their strengths
and limitations, paving the way for further advancements in agent-based mod-
eling approaches. By incorporating spatial, social, and climate characteristics
and leveraging the computational power of HPC, researchers can gain valuable
insights into disease dynamics, assess the effectiveness of control strategies, and
make informed decisions for disease prevention and control efforts in urban set-
tings.
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