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Abstract. DevOps has significantly enhanced application operations
through the utilization of containers and CI/CD. It still relies on human
intervention in the event of failures in any system component. Many
existing solutions are limited to specific issues, such as reacting to server
outages and scaling them up. As the complexity of distributed systems
continues to grow due to the simultaneous operation of numerous com-
ponents, even minor unavailability can substantially impact application
reliability and result in significant economic consequences for businesses.
Therefore, it is imperative that the solutions being developed minimize
risks and increasingly automate these operations. In light of these chal-
lenges, the emergence of AIOps offers a promising solution using arti-
ficial intelligence techniques, including machine learning and big data,
to operate and maintain application infrastructures, reduce operational
complexity, and automate IT operations processes. Implementing such
solutions has been shown to improve system quality and significantly
reduce the time it takes to detect errors and recover from them. These
advancements mark significant progress in the realm of operations. How-
ever, despite these benefits, widespread adoption of AIOps solutions by
most companies remains limited due to the challenges associated with
implementing them in large projects and the lack of clear integration
pathways for emerging solutions. In this paper, we propose a holistic
architecture that facilitates the integration of cloud-native distributed
systems with these new solutions.

Keywords: Software Architecture · Distributed Systems · AIOps ·
Cloud-Native

1 Introduction

In distributed environments, maintaining multiple services at the same time
is challenging. AIOps seeks to reduce this operational complexity of the sys-
tems and automate all operational processes through the application of machine
learning algorithms and big data to have services that are capable of managing
themselves. Using AIOps, the MTTD (Average time to detect an error) can be
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reduced from 10 min to 1 min and the MTTR (Average time to repair an error)
can be reduced from 60 min to 30 s [1] which shows the great power that we can
achieve by implementing this type of technology.

The use of distributed systems implies several complexities such as the fact
of using multiple programming languages, libraries, and frameworks, different
development teams within the same system, the fact that each architecture car-
ries its own challenges, and that there are multiple clouds that provide different
customized services to manage the applications.

Currently, there are specialized solutions that target specific aspects of IT
operations management by employing artificial intelligence techniques (partic-
ularly within AIOps subcategories). However, there is a lack of clear guidance
on effectively harnessing these tools to establish an administration framework
based on AIOps. This challenge is especially prominent in the context of dis-
tributed systems, where the simultaneous operation of multiple services and the
failure of a single component can significantly impact the proper functionality
of the system. Consequently, a comprehensive approach is needed to address
these complexities and ensure the seamless integration of AIOps principles in
managing distributed systems.

Several prior research works have primarily addressed individual tasks or
specific subareas within the realm of AIOps [2–4]. The majority of these studies
primarily focus on algorithms [1], such as anomaly detection [5–7], clustering
analysis [8], failure prediction [9–11], and cost optimization [12]. This motivates
the need for a study focused on investigating the main architectures used in case
studies of systems managed by AIOps solutions. This research will serve as a
foundation for systems to migrate to this type of self-managed administration
or new systems that want to take advantage of these powerful solutions.

To build this architecture, 45 articles were analyzed to identify the key pat-
terns, principles, and tools used for integration with AIOps platforms. Next,
critical points were identified, and the main patterns for distributed systems
were searched to build the proposed architecture, using the C4 model for its
presentation. Finally, this new architecture was evaluated through one use case,
measuring the MTTD and MTTR times to assess its successful integration with
the AIOps platform, along with five specific metrics to evaluate the facility pro-
vided by this architecture.

2 Literature Review

Using the IEEE Xplore, Scopus, ACM Digital Library, ScienceDirect, and arXiv
databases, an exhaustive search was made for papers that met all the inclu-
sion/exclusion criteria. Different filters were used to discard articles based on
their publication date between 2017–2023, English language, free online accessi-
bility, and only science papers or books.

45 papers were selected, of which 39 were discarded, from which the relevant
information for our research topic was extracted. We created a comparative table
analyzing the relevant aspects and finally, we synthesized the main conclusions
of this review.
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Table 1. Patterns, principles, and tools used to integrate with AIOps platforms.

Article Architectural pattern Cloud- Native Patterns and principles Tools

Evolving from Traditional
Systems to AIOps: Design,
Implementation and
Measurements, 2020 [1]

Layered, Microservice Y Logging, tracing, Monitoring,
Interoperability, DNS, Authority,
Approval, REST

ES Cluster, MySQL, Hive,
Influxdb, Python, Spring Cloud

A Context Model for Holistic
Monitoring and Management of
Complex IT Environments, 2020
[13]

Layered Y Monitoring, Virtualization Docker, Kubernetes, OpenStack,
AWS, MySQL

An Anomaly Detection Algorithm
for Microservice Architecture
Based on Robust Principal
Component Analysis, 2019 [14]

Microservice, Reactive Y Synchronous communication,
Middleware, Containerization,
Logging, Monitoring

Docker, Oracle

AI-Governance and Levels of
Automation for AIOps- supported
System Administration, 2019 [15]

N/A Y Virtualization, Load balancing,
CI/CD, Self-healing, Self-
stabilizing

Kubernetes

Ananke: A framework for
Cloud-Native Applications smart
orchestration, 2020 [16]

Microservice, Serverless,
Metal-as-a- service

Y API gateway, REST, gRPC,
Asynchronous communication,
Monitoring, Analyzers, Actuators,
Shared libraries

Prometheus, OpenShift,
Kubernetes, Kafka, DBMS,
SPOUT, Raphtory

Managing Distributed Cloud
Applications and Infrastructure A
Self-Optimising Approach.
Chap. 3: Application
Optimisation: Workload
Prediction and Autonomous
Autoscaling of Distributed Cloud
Applications, 2020 [17]

Client-server, Cloudlet, Service-
oriented, Microservices

Y API gateway, REST, Load
balancing, Autoscaling,
Remediation, Virtualization,
Monitoring

RECAP

Table 1 presents a comparison of the information found in the selected articles
summarizing the patterns, principles, and tools used in each one. There we can
see that all the reviewed solutions are focused on the cloud due to the benefits
that facilitate the implementation in distributed systems. There are three critical
sections that are commonly found in all the papers:

• Monitoring of all system components, relying on existing solutions provided
by each cloud provider.

• A middleware in charge of intercepting requests from external clients and
between services. Here there are multiple options such as using an API Gate-
way or a DNS that allows load balancing.

• Apply virtualization strategies for the deployment of components, especially
based on containers using technologies such as Docker and Kubernetes as
they provide additional advantages to scale each component independently.

After collecting and analyzing the list of patterns for each of these three
critical sections, we can detect the similarity that exists among many of them.
Developers often face similar problems and come up with similar solutions to
solve them. However, some patterns may require more effort to implement than
others. Although there are more patterns, the selected ones are those that have
been identified as the most useful and effective in those areas, with which archi-
tectures for distributed systems can be easily built (Table 2).

In the monitoring section, all patterns must be used, as the more information
is collected about the state of the application, the better decisions can be made,
especially when working with AIOps platforms where information is the most
important. The use of monitoring patterns is crucial in collecting the right data
and insights to help identify and resolve issues.

For the middleware patterns, we can select only one and it will be enough.
The best pattern may vary, but the API gateway is easy to implement than the
service mesh pattern. The asynchronous messaging pattern is only applicable
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Table 2. Recommended patterns.

Section Recommended Discarded

Monitoring Health check API, log aggregation,

distributed tracing, exception tracking,

application metrics, microservices

chassis, sidecar

Middleware API Gateway, Service Mesh,

Asynchronous messaging

Replicated load-balanced services,

Ownership election, Adapters

Virtualization Kubernetes Virtual machines, Containers

for specific use cases. Replicated load-balanced services, ownership election, and
adapters are patterns already implemented in tools like Kubernetes.

The big winner in the virtualization section is Kubernetes. This pattern pro-
vides all the advantages of containers and includes the benefits of having an
orchestration system. This must be the default solution to use for deploying
distributed systems in most cases, it has become the de-facto standard for man-
aging containerized applications in the cloud. It would also be possible to use
other self-managed approaches like serverless and get the same benefits, but the
use cases for applying it are fewer than Kubernetes.

3 Proposed Architecture

Based on the previous analysis, a general architecture is proposed that is easy to
adapt and implement by developers working with distributed systems. For this,
the C4 model was used as a tool to create and visualize the different views of the
architecture, this because it is a holistic way of diagramming a system from all
its levels. The C4 model is focused on a certain perspective of the system [18].
It is based on a hierarchy of four levels: system context, container, component,
and code. Each level provides a different level of detail and abstraction.

3.1 System Context Level

At the system context level, there is not much to show as the proposed archi-
tecture can be used in any context, so this level may vary depending on the
specific business of the application being built. It is important to note that this
level defines the boundaries of the system being built and the external systems
or users it interacts with. Therefore, it is crucial to understand the business
requirements and the stakeholders of the system to determine the appropriate
boundaries (Fig. 1).
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Fig. 1. System context view.

3.2 Container Level

At this level, we applied some patterns such as sidecar and asynchronous mes-
saging. We also have a container dedicated to middleware and represent the
monitoring systems.

It is important to highlight that the logging server implements the log aggre-
gation pattern. Similarly, the monitoring server is used to collect all metrics
generated using the application metrics pattern. Finally, the alerting server pro-
vides the capabilities to implement the exception tracking pattern. All of this
observability section collects and sends data to the AIOps platform. These 3
containers were added separately because they can be handled as standalone
systems created from scratch or using existing cloud tools that provide these
functionalities.

The middleware container is critical and added as a layer between the client
and the application backend. It can also intercept requests between backend
services that communicate with each other. At this point, the API gateway or
service mesh pattern can be used depending on the use case, but for ease of
implementation, the recommendation is the former for most applications.

In the backend, multiple containers representing the backend are observed,
which is typical in distributed systems. Kubernetes is used to manage these
containers, which also implements additional patterns such as health check API,
replicated load-balanced services, and ownership election. The adapter pattern
can also be implemented at this point or in the middleware through the API
gateway. The sidecar pattern can be customized depending on the use case, but
Kubernetes provides Envoy Proxy to implement it easily and natively within
Kubernetes.

In Fig. 2, the backend communicates with external systems such as databases,
third party systems, and message brokers. While these are optional and may not
be present in every use case, they are included since it is very common to connect
distributed systems with these types of systems. However, for the architecture
being proposed, the main focus will be on the backend itself.
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Fig. 2. Container view.

3.3 Component Level

It’s not possible to provide specific details on which components to use as it will
depend on the specific system, but some generic ones are proposed that can be
used in most distributed systems applications (Fig. 3).

In the middleware, we must include security responsibilities. Usually in the
API gateway, we can add authentication and authorization concerns, however,
it can also communicate with a security component, either internal or external.
In addition, an extra layer of security can be added, such as the WAF. This
component may be integrated within some API gateways or it may be an external
component. Clouds usually provide a ready solution for these security issues.

Fig. 3. Component view.

We also have a cache component which is common among distributed sys-
tems, since it stores frequently accessed data in memory or a faster storage
medium to reduce the response time of read requests. Caching is an effective
technique for improving the performance of database-driven applications, as it
reduces the number of database queries required to serve requests [19].

Finally, a component widely used in enterprise and cloud-based systems is
the facade for third-party systems. It abstracts communication complexity and
provides a simpler and more standardized interface with external third-party
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systems. It is responsible for handling the communication and translation of
data formats and protocols.

3.4 Code Level

We cannot propose a generic code-level view with the C4 model because it is
designed to be a high-level model that is independent of any particular pro-
gramming language or implementation. The model is intended to be a tool for
communication and collaboration between stakeholders, allowing them to bet-
ter understand the system’s architecture and make informed decisions. So, it
depends 100% on the use case. It varies according to the business requirements,
the languages, frameworks, and libraries to be used.

4 Validation and Results

As AIOps Platform we will use DevOps Guru which is an AWS service that
helps developers and IT teams improve application reliability and performance
[20]. It uses ML algorithms to analyze application telemetry data, such as logs,
metrics, and events, to identify operational issues, provide root cause analysis,
and make recommendations to resolve or prevent incidents. In that case we only
configure it to take the logs generated on CloudWatch and generate an alert to
create new instances before the error occurs.

We tested the architecture with one use case and model a business that allows
users to order food delivery from local restaurants. Although such applications
may have multiple functionalities, we will focus on the ability of the user to order
food for delivery.

A detailed view of the C4 model will be presented, specifically for the Com-
ponents and Code levels. The other 2 views (system context and containers) are
not modeled because they do not change with respect to the one shown in the
proposed architecture (Fig. 4).

Fig. 4. Component view for the order food delivery application.
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It is a typical microservices architecture where each one has its own database
and all of them are behind an API gateway that receives all external HTTP
requests and redirects them to the corresponding service. All microservices have
a similar architecture at the code level, so we are going to diagram the Order
service which is the main one for this business model.

An important point to highlight in all microservices is that they have config-
uration files that allow them to generate logs of the operations they are perform-
ing. This configuration class was introduced in each service using the Microser-
vice Chassis pattern, so for the creation of each microservice, we shared the same
base code for them. It also includes the configuration to enable a health check
endpoint (Fig. 5).

Fig. 5. Code view for the Order service.

This application was deployed in EKS using a t2.nano (512 MiB RAM and
1 vCPU) machine with a single instance for each microservice in the cluster and
the opportunity to scale up to 2 instances manually. Load tests using JMeter
5.5 were carried out on the order microservice, simulating 100 concurrent users
trying to create new orders for 22 min. For this test, errors were also injected
into all microservices every 5 min, so those errors shut down the Java virtual
machine, requiring new instances to be created in those cases. DevOps Guru
was configured to trigger the alert to EKS and ask it to create a new instance.

The percentage of failed requests was 0.492% of 1159040 requests executed,
which is low considering the conditions provided. It is important to note that
these results obtained by JMeter reflect the responses of the order microservice,
so the behavior of the pods in each microservice should be analyzed separately
(Table 3).
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Table 3. Microservices results AWS.

Microservice Number of pods

created

Average down-

time (seconds)

MTTD (seconds) MTTR (seconds)

Order 5 34.4 24.5 9.9

Consumer 5 21.5 15.2 6.3

Kitchen 5 23.9 15.8 8.1

Accounting 5 24.3 16.1 8.2

Notification 5 20.3 15.2 5.1

It makes sense that all microservices had 5 pods created as they were shut
down 4 times plus the initial pod creation. The average downtime is easy to
calculate as Cloud Watch provides the exact second when each microservice
went down and the exact time when it became available again.

Average downtime =
∑num of restarts

0 (first successful request−first failed request)
number of restarts (1)

For the MTTD, we took the time from when the first failure was recorded in
Cloud Watch until the alert was created in DevOps Guru.

MTTD =
∑num of restarts

0 (time insight created − time first failed request)
number of restarts (2)

Finally, for the MTTR, we took the moment when the alert was generated
and the exact time when the requests started functioning again. All the values
were approximated to only one decimal point.

MTTR =
∑num of restarts

0 (time first successful request− time insight created)
number of restarts (3)

Considering the benchmark values obtained in the state of the art for MTTD
times of less than 1 min and MTTR of less than 30 s, the results obtained in this
case are very good, which demonstrates that the AIOps platform works very
well integrated with this use case. It is important to mention that Java was used
for these microservices, so the time to create a new instance depends on the
application’s execution.

Now we need to find out if this architecture truly facilitates integration with
AIOps platforms. To do this, we will measure the ease in terms of the non-
functional requirements of Adaptability and Interoperability [21]. There is no
single way to measure these two requirements, however, a time-based approach
is proposed that is easy to validate and contrast. For adaptability, the following
measures were considered:

Scalability Capability: Scalability can be measured in units of time by the
system response time when the workload is increased. For example, the time
required to process a request when the number of users is increased. In this case,
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when a single request is launched, the average response time is 511 milliseconds,
when 100 concurrent users are launched the average time is 726 milliseconds,
and if 1000 users are launched in parallel the average time is 759 milliseconds. It
can be evidenced that the application is not degrading significantly, so it scales
correctly. Robustness of a system: It measures a system’s ability to maintain
its operation despite errors or changes in its environment. This metric can be
quantified by the frequency and severity of errors and the system’s ability to
recover from them. Thanks to the results obtained in AWS, we can conclude
that the application recovers in less than 10 s, demonstrating its robustness.
Flexibility: Flexibility can be measured in units of time by the time required
to make a change in the system. For example, the time required to add new
functionality or to adapt the system to a new environment. See Fig. 6.

For interoperability, the following measures were considered: Response
time: The response time is the period of time it takes for a system to respond
to a request from another system. This time can be a good metric for measuring
interoperability in terms of time, especially in real-time applications. In the test
performed, the average response time was 738 milliseconds, which aligns with
the number of operations to be performed. Integration time: Integration time
is the period of time it takes to integrate two or more systems to work together.
This time can be a good metric to measure interoperability in terms of time. See
Fig. 6.

Flexibility and integration time are two metrics that require input from mul-
tiple individuals to avoid biases in the results. For this exercise, the evalua-
tion techniques of Experiments and Surveys [22] were combined. This approach
involves conducting controlled experiments and then using surveys to obtain the
participants perceptions. It is a great option for measuring complex topics that
are subjective and do not have a single, exact way of measurement. It is ideal for
measuring these two times. In this way, a more comprehensive understanding of
the architecture’s impact on adaptability and interoperability can be achieved.

An analysis was conducted on a sample of 22 Java developers from Colombia
to add integration of the Consumer microservice from scratch with the AIOps
platform through the logs to be generated. The code for the microservice was
provided to them without the chassis that included the configuration to send
the logs to Cloud Watch. With this experiment, we can measure the integration
time. After integrating it, they were asked to modify the configuration to also
generate logs in a local plain file to measure the flexibility.

The average integration time spent was 44.8 min. This means that for a per-
son adopting the architecture and wishing to integrate with an AIOps platform,
the time investment required is less than an hour, which is considered a very
good result. The average time spent on flexibility was 24.7 min. This means that
for someone using the architecture, it takes less than half an hour to make modi-
fications to it to add new functionality, which is considered a very positive result.
Both results show that in a few minutes the architecture can be integrated and
made changes (flexible).
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Fig. 6. Survey results for integration time and flexibility.

5 Conclusions

Out of the 16 patterns analyzed, 11 were selected, 7 of which correspond to
monitoring patterns. These were used to build the proposed architecture, in
which the use of monitoring patterns, middleware, and virtualization. Although
the validation with the use case required extensive analysis, the benefits provided
by the proposed architecture were successfully evaluated. A low error rate of less
than 1% was obtained, and error detection and correction times were below
the standards (MTTD of 1 min and MTTR of 30 s). Based on the results of
the 5 metrics obtained for the use case, it can be inferred that the architecture
implemented in this use case is adaptable and interoperable. As a result, we can
conclude the proposed architecture facilitates integration with AIOps platforms.

The proposed architecture provides a clear blueprint for designing, deploying,
and managing distributed systems in a way that aligns with AIOps principles
and it is easy to adapt for any business problem. It ensures that the various
components, such as middleware, monitoring systems, and virtualization, are
properly integrated to support AIOps capabilities effectively. By following this
architecture, organizations can ensure easier integration between distributed sys-
tems and AIOps platforms.
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