
Change Point Detection for Time
Dependent Counts Using Extended MDL

and Genetic Algorithms

Sergio Barajas-Oviedo1 , Biviana Marcela Suárez-Sierra2(B) ,
and Lilia Leticia Ramírez-Ramírez1

1 Centro de Investigación en Matemáticas, Guanajuato, Guanajuato, Mexico
{sergio.barajas,leticia.ramirez}@cimat.mx

2 Universidad EAFIT, Medellín, Antioquia, Colombia
bmsuarezs@eafit.edu.co

Abstract. This article introduces an extension for change point detec-
tion based on the Minimum Description Length (MDL) methodology.
Unlike traditional approaches, this proposal accommodates observations
that are not necessarily independent or identically distributed. Specifi-
cally, we consider a scenario where the counting process comprises obser-
vations from a Non-homogeneous Poisson process (NHPP) with a poten-
tially non-linear time-dependent rate. The analysis can be applied to
the counts for events such as the number of times that an environmen-
tal variable exceeded a threshold. The change point identification allows
extracting relevant information on the trends for the observations within
each segment and the events that may trigger the changes. The pro-
posed MDL framework allows us to estimate the number and location
of change points and incorporates a penalization mechanism to miti-
gate bias towards single regimen models. The methodology addressed
the problem as a bilevel optimization problem. The first problem involves
optimizing the parameters of NHPP given the change points and has con-
tinuous nature. The second one consists of optimizing the change points
assignation from all possible options and is combinatorial. Due to the
complexity of this parametric space, we use a genetic algorithm associ-
ated with a generational spread metric to ensure minimal change between
iterations. We introduce a statistical hypothesis t-test as a stopping cri-
terion. Experimental results using synthetic data demonstrate that the
proposed method offers more precise estimates for both the number and
localization of change points compared to more traditional approaches.

Keywords: Change point detection · Evolutionary algorithm ·
Non-parametric Bayesian · Non-homogeneous Poisson Process · Bilevel
Optimization

1 Introduction

Identifying change points in time series is paramount for several analysis that
helps understanding the underlying dynamic or performing some practically cap-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Tabares et al. (Eds.): CCC 2023, CCIS 1924, pp. 215–229, 2024.
https://doi.org/10.1007/978-3-031-47372-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47372-2_19&domain=pdf
http://orcid.org/0009-0001-2949-9971
http://orcid.org/0000-0003-2151-3537
http://orcid.org/0000-0002-9469-0887
https://doi.org/10.1007/978-3-031-47372-2_19

216 S. Barajas-Oviedo et al.

ital tasks as forecasting. A prime example of the latter is on the scenario of
cybersecurity, where the focus lies in monitoring the instances of breaching a pre-
defined threshold for data transfer volume over a network. This study employs
a cutting-edge model for identifying the number of change point and their val-
ues in a time series of counts, such as the threshold breaches as a function of
time.

The literature consistently emphasizes a fundamental flaw in many models
designed to detect change points in time series. These models tend to assume
equal and independent distribution of the data points within a segment, which
fundamentally contradicts their inherent nature. As eloquently discussed in [9],
this research endeavor ingeniously sidesteps the aforementioned assumption by
considering a flexible family of non-homogeneous Poisson processes.

This investigation leverages a genetic algorithm to ascertain the optimal solu-
tion for the time series groupings (segments) in the overall observation time inter-
val. A possible grouping is ingeniously represented as individuals (also referred
to in the literature as chromosomes, creatures, or organisms) consisting of binary
vectors, with a value of one indicating the time when we have a change point and
zero otherwise. The evolutionary principles of selection, mutation, mating, eval-
uation, and replacement are deftly applied, drawing inspiration from the realms
of probability, Bayesian computational methods, and information theory.

Pre-specifying the number of generations originated by the algorithm can
lead to unnecessary evaluation of the objective function, [14]. In this study, a
judicious stopping criterion is established, underpinned by a simple yet effective
decision rule involving a t statistic. Moreover, this research achieves a higher rate
of accurately pinpointing the number and location of change points, employing
the same principle as in [14], which relies on counting the exceedances to a thresh-
old value instead of using the measurements per se. Additionally, the algorithm
provides insights into the composition of the intensity function parameters gov-
erning the Non-Homogeneous Poisson process (NHPP), shedding light on the
non-linear tendencies inherent in the observational emission patterns.

In this work we assume that the NHPP has a decaying and non-linear inten-
sity described by a Weibull distribution, however, the methodology can easily be
extended to broader cases that can include some other possible families of inten-
sities. The decision to adopt the Weibull distribution as the intensity function is
primarily based on the interpretative potential of the Weibull’s shape parameter
and the wealth of experience gained from prior seminal works such as [1–3], and
[13].

Through computation experiments, we observe that this approach exhibits
superior efficacy in identifying change points, particularly when confronted with
extreme data scenarios.

2 Non-homogeneous Poisson Process

A Non-Homogeneous Poisson process (NHPP) extends the ordinary Poisson pro-
cess allowing the average rate can vary with time. Many applications that gen-

Change Point Detection Using MDL and Genetic Algorithms 217

erate counts (random points) are more faithfully modeled with such NHPP with
the cost of losing the practically convenient property of stationary increments.

NHPPs are an excellent tool for modeling counting processes of the number
of occurrences at time t due to their easy interpretability. In particular, the focus
of this study is to count the number of times a threshold is exceeded, with each
occurrence referred to as an “exceedance”. Therefore, this process generates a
new series of count observations that records, per unit of time, the number of
exceedance up to t, denoted as N(t).

We consider the stochastic process N(t) as an NHPP, where the increments
N(t+s)−N(t) follow a Poisson distribution with a parameter (m(t + s) − m(t))
that depends on time t. This condition allows for the change points identification
without assuming that the observations are equally distributed. Therefore, the
probability that starting at time t, the time to the next exceedance is greater
than a length of time s is denoted as G(t; s). In other words, the probability of
no exceedances occurring in the interval (t, t + s] is given by

G(t; s) = P (N(t + s) − N(t) = 0) = exp {−[m(t + s) − m(t)]} .

Then, the probability that starting at time t, the time to the next exceedance
is less than s is given by

F (t; s) = 1 − G(t; s) = 1 − exp {−[m(t + s) − m(t)]} .

The probability density function of the interval to the next exceedance is denoted
as

f(t; s) = λ(t + s) exp {−[m(t + s) − m(t)]} ,

where λ(t) is the intensity function that characterizes an NHPP and relates to
the process parameters as

m(ti+1) − m(ti) =
∫ ti+1

ti

λ(u)du. (1)

According to [5], for time-dependent Poisson processes, the intervals between
successive events are independently distributed. The probability, starting at ti,
that the next exceedance occurs in the interval (ti+1, ti+1 + Δt] is given by

λ(ti+1) exp {−[m(ti+1) − m(ti)]} Δt + o(Δt) (2)

If a series of successive exceedances is observed in the time interval (0, T],
occurring at D = {t1, t2, . . . , tn}, the likelihood function, which will be part of
the objective function in the genetic algorithm, is expressed as

[
n∏

i=1

λ(ti) exp {−[m(ti) − m(ti−1)]}
]
exp {−[m(T) − m(tn)]} , (3)

with t0 = 0. The last element in (3) is the survival probability G(tn; (T − tn))
since the interval (tn, T] do not register any exceedance.

218 S. Barajas-Oviedo et al.

Since m(0) = 0 and m(T) =
∫ n

0
λ(u)du, we can simplify the previous likeli-

hood to

L(D|φ) ∝
{

n∏
i=1

λ(ti)

}
exp {−m(T)} .

The parameter φ specify the model and it is present in the intensity λ(t) and
cumulative mean, m(t). Hence we can explicitly express this fact using the fol-
lowing expression for the likelihood

L(D|φ) ∝
{

n∏
i=1

λ(ti | φ)

}
exp {−m(T | φ)} . (4)

The estimation of parameters φ is one of the main objectives of this study.
However, there is another key characteristic we want to infer and this is the point
where we can have regimen changes (hence different φ values). These points are
called change points and we denoted them as τ = {τ1, τ2, . . . , τJ}, J ∈ N, where
0 ≤ τi ≤ T for i = 1, . . . , J .

The overall likelihood based on the observations D during the period of time
(0, T] of a NHPP with known change points τ corresponds to

L(D|φ, τ) ∝
⎡
⎣

Nτ1∏
i=1

λ(ti | φ1)

⎤
⎦ exp {−m(τ1|φ1)}

×
⎡
⎣ J∏

j=2

⎛
⎝

Nτj∏
i=Nτj−1+1

λ(ti|φj)

⎞
⎠ exp {−[m(τj |φj) − m(τj−1|φj−1)]}

⎤
⎦

×
⎡
⎣ n∏

i=NτJ
+1

λ(ti|φJ+1)

⎤
⎦ exp {−[m(T |φJ+1) − m(τJ |φJ)]} , (5)

where Nτi
is the cumulative number of observations up to time τi, φi is the

parameter that describes the NHPP during (τi−1, τi], i = 1, . . . , n, (with τ0 = 0),
and φJ+1 describes the NHPP during the last observe regimen in (τn, T]. For
more details see [13].

If we know the change points number and location, as in (5), we can select
the parameter φ that characterize the model that better fit the data using the
Bayesian paradigm. The log-posterior distribution, that describes the updated
information on the parameter φ is

ln f(φ|D, τ) ∝ ln(L(D|φ, τ)) + ln(f(φ|τ)), (6)

where f(φ|D, τ) is the posterior distribution and L(D|φ, τ) is the likelihood
(5) regarding the parameter φ as the variable, and f(φ|τ) contains the prior
information we have on the real value of φ for given values of τ .

Change Point Detection Using MDL and Genetic Algorithms 219

The expression (6) defines the posterior distribution for the parameters, and
we use the value of the parameter that maximizes it. This is called the maximum
a posteriori or MAP. With the genetic algorithm approach, we compute the MAP
among each generation and use them to compute to select the best individuals
for the following generation.

Now we proceed to describe the proposed method for the overall model with
unknown change points. For this, we require to determine the change points τ
before estimating the rest of the parameters involved. That is, the first step is
selecting the number and location of the change points. This involves a model
selection that will be handled with by the MDL approach.

3 MDL

The Minimum Description Length (MDL) combines Occam’s razor and informa-
tion theory to determine the model that better fits the data. It first appeared on
[11], but has been widely explored both theoretically [7] and in many popular
applications such as PCA [4].

In the early days of mathematical modeling, simple models, such as linear
ones, were the only ones explored to ‘fit’ the data. Since then, not only richer
models are being used but also some different criteria for selecting their parame-
ters have been developed. One of them is rooted in the information theory, which
focuses on encoding the data to describe the contained information. From a com-
putational point of view, data is encoded in many ways which include arrays,
matrices, and many kinds of structures. However, any kind of representation
costs a number of bits in memory space, this number of bits is what we call the
code length. Different representations might require a different code length and
when encoding data, shorter codes are preferred over longer ones as they take
less memory space. For efficiency, one of the main tasks consist in assigning a
model that has the shortest code and in the change point detection problem,
we need to encode the number and location of the change points, as well as the
model to fit the data within each regimen between consecutive change points.
The MDL principle is used to give a numeric value to the code length associated
with different assignations of the change points.

The MDL code length is divided into two summands.

MDL(τ) = − ln f(φ̂|D, τ) + P (τ). (7)

The first summand is a term related to the fitted model considering the
data and selected change points τ . This term corresponds to the negative of the
logarithm of the MAP for φ and measures how well the model fits the data on
each regimen, given τ . When considering the model associated with the posterior
(6), we notice that the length of the parameter φ = (φ1, ..., φJ) is fixed if we know
the number of change points |τ | = J . However, as τ is also a parameter to fit, the
parametric space for φ must consider spaces with different dimensions. That is,
the number of parameters is not constant. For estimating all parameters φ and
τ , in the complex parametric space they are defined, we use a non-parametric

220 S. Barajas-Oviedo et al.

approach to select τ and then we harness the posterior distribution and MAP
to establish a criterion for selecting all the parameters using (7).

Fixing the number of change points, we stablish the number of parameters
required, however, we still have to determine where to locate them as the poste-
rior depends on it to be properly defined. The second summand in (7) is meant
to control both, the number of change points and their location. It can be seen
as a penalization function that increases with the number of parameters that are
to be encoded in the model and their location in the selected model. Explicitly,
the penalization function takes the form of (8) which is an upgrade from [14].

P (τ∗) = R

j∗+1∑
i=1

ln (τ∗
i − τi−1

∗)
2

+ ln (j∗ + 1) +
j∗∑

i=2

ln(τ∗
i), (8)

where τ∗ = (τ∗
1 , . . . , τ∗

j∗) is a set of possible change points with j∗ different
elements, and R is the number of parameters the model has on each regimen.

In [14], the term ln(j∗+1) was ln(j∗). So when there is no change point, gave
a value of −∞ which made the single regimen model automatically win over any
other change point configuration. Because of this, this the single regimen had
to be explicitly excluded. Now with ln(j∗ +1) we can naturally incorporate this
case. This means that the single regimen model can also be incorporated and
compared against any other one models with multiple change points.

Let us notice that for evaluating (7) we need to calculate φ̂ for a given value
of the vector τ ∗. This procedure for the MDL classifies as a bi-level optimization
problem, where a problem is embedded within another. We refer to the embed-
ded and outer problems as inner and outer optimization, respectively. In this
case, the optimization for the MAP, φ̂, is the inner problem and the MDL app-
roach corresponds to the outer optimization problem. For a more mathematical
description of this kind of problem, the reader can refer to [8].

It is worth noting that the discrete nature of the location and number of
change points makes this optimization problem harder to solve using continu-
ous techniques such as gradient descent or the Newton Method, and in some
cases, these techniques may be completely inapplicable. Consequently, a genetic
algorithm proves to be a valuable tool for effectively exploring the parametric
space.

4 Genetic Algorithm Details

The genetic algorithm is one of the so-called bio-inspired optimization algorithms
based on evolution theory that aims to find the optimal value of a function. In
our case, to identify the change point and parameters that better describe the
data we use, we minimize (7).

The basic elements and tasks are done on the proposed genetic algorithm
are:

Individual. We codify each individual as a logical vector of the length of the
observed times. “True” means that the corresponding time is a change point,

Change Point Detection Using MDL and Genetic Algorithms 221

and “False”, otherwise. Though the beginning and end of the scope of time
are not properly change points, the coding should start and finish with “True”
to define at least one regimen. The algorithm in [14] is considered to directly
enlist the proposed ordered times as change points, but this new individual
encoding is more convenient in terms of memory space and genetic operators.

The scope of time. We consider the data that we want to estimate its change
points as equidistant and discrete observations for exceedances in equal and
non-overlapping units of time. Then the scope of time is equal to the length
of data observations.

Parameter estimation. Typical genetic algorithms do not include this step.
Once an individual is defined, the change points are given and (6) can be
optimized to find the MAP. The optimization can be done using any preferred
method being Nelder-Mead our selected choice. The values for the parameters
are part of the coding of an individual and are attached to the logical vector
once they are estimated.

A population. Consists of a fixed number of individuals and remains constant
for different generations. This number is denoted by n.

Fitness function. Once the parameter estimation is done, we can compute the
MDL (7). This plays the role of the fitness function that induces a ranking
for the individuals a generation. Based on this ranking, for each generation,
we order the individuals to have an increasing ranking.

Individual Generator. The first generation is generated with random individ-
uals. Each logical value in each individual is assigned the same distribution
where “True” is drawn as the “Success” in a distribution Bernoulli(α = 0.06).
In consequence, the number of change points in each individual has a binomial
distribution with an average of six percent.

Parents selection. In genetic algorithms, reproduction is simulated to generate
new individuals. For this task, a pair of parents are selected with replacement
with a weighted probability according to their rank. That is if i is the rank
of i-th individual in the current population, it is selected with probability
i/

∑n
j=1 j.

Crossover operator. The child will inherit all the change points from both
parents. Then we keep each of these change points with probability 0.5.

Corrector operator. In practice, it is inadequate to consider change points
to be right next to each other. This operator prevents this from happening.
In this scenario, one of the consecutive change points is randomly discarded.
This excludes the first and last elements in the individual that must remain
“True”.

Mutation operator. Each of the new individuals is submitted to the mutation
operator, where each change points is assigned a value of −1, 0 or 1 with
probabilities 0.4, 0.3 and 0.3 respectively. Then, the change points are mod-
ified accordingly by moving them one place to the left if the −1 value was
assigned, unchanged if the 0 value is selected, and one place to the right if
the 1 value is selected. This modification excludes the first and last elements
of each individual.

222 S. Barajas-Oviedo et al.

Evolutionary algorithms start by setting an initial population of individuals.
Since its selection involves some randomness, in an early stage, these individuals
have a huge spread on the feasible space (see example in Fig. 1a) with respect
to the best individual (red dot). This spreading is useful as it promotes the
exploration of the search space. However, as generations pass, this spreading
reduces considerably (Fig. 1b). While the typical genetic algorithm relies on a
fixed number of iterations, an alternative is proposed that takes advantage of
this behavior.

Fig. 1. Individuals in R
2 at different generations of the genetic algorithm (Color figure

online)

We define the Average Generational Spread (AGS) as a measure of the dis-
persion of individuals in a generation. It is formally defined as:

AGS(k) =
1
n

n∑
i=1

‖x
(k)
i − x∗(k)‖2 (9)

where x∗(k) is the individual with the best value according to the fitness function
MDL in the k-th generation, and x

(k)
i is the i-th individual in k-th generation.

The individual codified as a logical vector makes the AGS function be evaluated
very quickly using bit operations.

The AGS metric decreases rapidly in the first stages of the genetic algorithm
and more slowly in the latter stages. See Fig. 2. To exploit this phenomenon, we
propose using linear regression for the AGS values and the last K generations,
where K is a fixed number. The idea is to determine an approximate value for
the AGS slope ψ for these last K generations. As a linear model is adjusted
via linear regression, it can be determined, with a given significance, if there is
evidence that the slope is still decreasing.

It can be seen in Fig. 2, that the values for the AGS have some noise due to
the randomness induced by the genetic algorithm. For this reason, a statistical
test is ideal for the task. Even more, as AGS is defined as an average, this
suggests that it will tend to have a normal distribution. A classical t-test is used
to evaluate the null hypothesis H0 : ψ ≤ 0 versus H1 : ψ > 0. If we reject H0 we
proceed to obtain the next K generations, and we stop otherwise.

Change Point Detection Using MDL and Genetic Algorithms 223

Fig. 2. AGS value through generations. Fig. 3. Simulated Non-Homogeneous
Poisson Process.

Algorithms 1 and 2 present the overall proposed method.

5 Simulated Experiment

We evaluated the proposed algorithm using simulated data for which we know
the number and location of its change points.

We generated a non-homogeneous Poisson process that simulates the cumu-
lative counts of events with change points on times 299 and 699 with a scope
of time of 1000. In contrast with some popular time series, the simulated times
between counting increments are not equally distributed, which is one of the
difficulties that our algorithm has to handle.

Figure 3 shows the simulated data. On the x-axis the time at which an event
occurred and on the y-axis the cumulative counting process of these. It is shown
in blue, orange, and green the three regimens induced by the change points. All
three regimens are simulated with a Weibull rate function with parameters [α, β]
equal to [0.4, 0.1], [0.8, 1.0], and [0.4, 0.1] for each regimen, respectively.

Now, to compute the MDL, and more precisely, the posterior density, we
require to define the prior for the parameters involved. To do this we consider
α ∼ Gamma(1, 2) and β ∼ Gamma(3, 1.2), and an initial guess for parameter
estimation we use α = 0.1 and β = 0.5 for each regimen.

To assess the algorithm stability we ran it 100 times setting K = 10 and a
significance level of 0.05. This allows us to see if it is able to produce results that
are consistently close to the true values.

We recorded the fitted number of change points, their location, and the num-
ber of generations spent to produce the output.

As for the number of change points, the algorithm was able to identify
the true number of change points every single time. Regarding their positions,
Figs. 4a and 4b show the histograms for the fitted times for the first and second
change points. Both reported values are centered around the true values (lines in
red). Mean values and variances are 295.01, 43.65 for the first change point, and
706.82, 151.11 for the second change point. Figure 4c depicts both histograms
and makes evident how consistent the produced fitted values are in the 100
algorithm executions, as they present a very low deviation from the true values.

224 S. Barajas-Oviedo et al.

Algorithm 1. Genetic Algorithm
Require: A set of times where exceedances occurred.
Ensure: The individual that minimizes MDL.

Initialization Process.
for i = 1 : n do

Generate the i-th logical vector using Individual Generator
Apply Corrector Operator to last logical vector.
Estimate the parameters for this logical vector to form the i-th individual xi

Fi ← MDL(xi)
Order individuals in crescent order according to Fi

end for
Evaluate the AGS metric.
while Stopping criterion not fulfilled do

Iteration Process.
for i = 1 : n do

Choose two parents using Parents Selection.
Generate child i using Crossover Operator and the previous two parents.
Apply Mutation Operator to last child.
Estimate its parameters.
Evaluate its MDL.
Add the last child to the current population.

end for
Choose the half of the population with the highest MDL value to pass to next

generation.
Evaluate AGS for the new generation.
Determine Stopping criterion using the AGS metric for the last K generations.

end while
return The Best individual of the last generation.

Algorithm 2. Stopping criterion
Require: The AGS metric for the last K generations.
Ensure: A value True or False meaning to stop the algorithm or to continue, respec-

tively.
if AGS array does not have K values. then return False
else AGS array have K values.

Do the t-test for testing H0 : ψ < 0 versus H1 : ψ ≥ 0.
if There is evidence against H0 then return False
elsereturn True
end if

end if

Regarding the algorithm efficiency, we plot the histograms for the number of
generations before stopping. The algorithm was allowed to run a maximum of
100 generations, however, as we can see in Fig. 5a, most of the time it stopped
before reaching 100 generations, and an important number of times it stopped
close to the 20th generation.

Change Point Detection Using MDL and Genetic Algorithms 225

Fig. 4. Histogram for the first and second reported change points. (Color figure online)

Fig. 5. Resulting number of generations spend and MDL histograms.

Figure 5b shows the histogram of the MDL values reported for the best indi-
vidual in each of the 100 executions (between 332 and 346). With a red line,
we mark the MDL value for an individual having the real values for the change
points. It can be observed that our algorithm, achieves acceptable MDL values
that are equal or lower than the MDL value at the real change points.

5.1 Comparison with Other Algorithms

The comparison of our method has been done with other four algorithms: (1)
MDL2023, (2)Changepoint, (3) Prophet and (4) bcp.

MDL2023 is the version described in [14] and uses the same parameters
(maximum number of generations, prior distribution, likelihood function, pop-
ulation size) as in our method. Changepoint , is a method that comes from
the library changepoint in R, [10]. This library adjusts a Gaussian distribution
to each regimen and, using a probability test determines the location of change
points. For doing the fitting there are three options, (a) to detect a change in the
mean, (b) to detect a change in variance, and (c) to detect a change in mean and
variance. We report the results for these three options. Prophet corresponds to
Facebook’s prophet algorithm, which is available for both Python and R, [15].
This method decomposes time series into three components

y(t) = g(t) + s(t) + h(t) + ε, (10)

226 S. Barajas-Oviedo et al.

with g(t) as the trend component, s(t) as the seasonal component, and h(t) as a
special day component that considers events, like Easters, that occur every year,
but not on the same day. The term ε is an error with distribution N(0, σ2). More
features about the algorithm are detailed in [15].

Prophet is mainly focused on forecasting and the user can specify the known
change points. However, when the change points information is not provided,
it runs an algorithm to detect them. We considered four different options for
change point detection, the first one runs the default settings. This suggests 25
change points and then uses the trend parameters to decide if these change points
are significant or not. For the second option, the number of change points to be
detected is given, but we do not specify their position. For this case, we select a
number of 500 change points evenly distributed during the observation period.
The algorithm establishes which ones are significant. For the fourth option, we
set the threshold to a high value to keep more significant change points.

Finally, the fourth competing algorithm is Bayesian Change point, (bcp), [6].
This method is implemented in an R library that fits a Gaussian likelihood to
data and assigns a prior density to the location of change points by assuming
that whether a time is a change point or not depends on a subjacent Markov
process. The output is a list of probabilities for each time to be a change point
so we have to give a threshold to discriminate what we consider to be a change
point.

We use the previous simulated NHPP data, depicted in Fig. 3, as the input
for all the methods and we compare the results in terms of the number and
location of the produced change points. The first algorithm, MDL2023, does not
have a stopping criterion so the best individual at the last generation is reported.

For comparing the performance of MDL2023 and our proposed genetic algo-
rithms, we ran each algorithm a hundred times. The reason to consider this is
that the algorithms can return different results: number of change points and
their respective locations. After that, we use all returned change points, for each
method, to estimate their density. In a good identification scenario, we would
expect a density with values mainly distributed around 299 and 699 (the true
change points) and if the methods were similar we expected to have same density
high around these values. With this density, we intend to visualize in a single
plot, both fitting criteria (number and position) but we can also compare each
of the method’s consistency.

Figure 6a shows the density obtained from MDL2023. This method frequently
returned more change points than two, and their positions are pretty dispersed.
Figure 6b shows the estimated density returned by our algorithm which is much
more stable and consistently close to the real position values.

Change Point Detection Using MDL and Genetic Algorithms 227

Fig. 6. Density of change point reported.

As the algorithms Changepoint, Prophet and bcp provide only one possible
output, we only required to run them once to evaluate its results, however, some
options were explored to compare their performance against our method.

To apply Changepoint, we detrend the series by taking the first-order dif-
ferences. Its first option (mean) did not report any change point at all. The
second option (variance) detected only the change point at 699 which is the true
position for one change point. The third option (mean and variance) returns a
change point in 816 when the true position of the second change point is 699.

Prophet tends to return many more change points. The first option consid-
ered (default parameter values with 25 initial change points) 21 were returned
(Fig. 7a). From this 21 there are a pair that are close to the real values of 299
and 699. For the second option, we specify two change points but they are not
even close to their real position (Fig. 7b). For the third option, a total of 175
change points are returned (Fig. 7c). By default, the threshold parameter is set
to 0.01. In the fourth option, we set again 500 change points, but a threshold of
0.15. The number of change points is reduced to sixteen, but only the value of
699 is caught between the reported change points (Fig. 7d).

For the case of bcp, the method reports 185 change points when setting a
threshold of 0.9 for the probability of a time to be a change point.

228 S. Barajas-Oviedo et al.

Fig. 7. Resulting change points with Prophet using different parameter values: Number
of change points (NumCP) and Threshold value (Thr).

5.2 Conclusions and Future Work

One of the important features of the presented algorithm is that it can be used
for observations that are similar to NHPP with Weibull rates. This proposal
can be extended to other important types of parametric NHPP models, that
share the attributes of not having increments that are identically distributed.
Our method shows to be capable to identify the correct number of change points
and provide good estimates for the change points positions.

On the other hand, the proposed stopping criterion allows the method to be
highly efficient without sacrificing its precision. Compared to other competing
methods, the results based on the simulated data show that our proposal can
be very efficient, consistent, and can closely detect true change points (number
and location).

Though the algorithm is giving good results, there still are many features
that can be improved.

1. Starting point for parameter estimation. We used the same starting point for
each individual to be optimized, however, the estimated parameters for the
parents could provide a better initial estimate for the parameters of the child.

2. Hyper-parameters for the prior distribution. Justifying the parameters of
prior distributions is always something to have in mind as they could lead to
bias in the estimation. This usually is proposed using previous information,
but a cross-validation technique could be applied.

Change Point Detection Using MDL and Genetic Algorithms 229

3. Other penalization terms. Current penalization comes from [12] and informa-
tion theory. The penalization used in this paper has made a little upgrade, but
this can be improved by penalizing too short or too long regimes or promoting
the exploration of other specific and desired properties of the data.

4. Prior distribution for τ . MDL can be interpreted from a Bayesian perspective
as to give a prior distribution to τ . MDL could be modified using another
criterion rather than information theory to give a more informed penalization
term.

References

1. Achcar, J., Fernandez-Bremauntz, A., Rodrigues, E., Tzintzun, G.: Estimating the
number of ozone peaks in Mexico City using a non-homogeneous Poisson model.
Environmetrics 19, 469–485 (2008). https://doi.org/10.1002/env.890

2. Achcar, J., Rodrigues, E., Paulino, C., Soares, P.: Non-homogeneous Poisson
processes with a change-point: an application to ozone exceedances in México
City. Environ. Ecol. Stat. 17, 521–541 (2010). https://doi.org/10.1007/s10651-009-
0114-3

3. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint
arXiv:0710.3742 (2007)

4. Bruni, V., Cardinali, M.L., Vitulano, D.: A short review on minimum description
length: an application to dimension reduction in PCA. Entropy 24(2), 269 (2022)

5. Cox, D.R., Lewis, P.A.: The Statistical Analysis of Series of Events. Springer,
Heidelberg (1966)

6. Erdman, C., Emerson, J.W.: bcp: an R package for performing a Bayesian analysis
of change point problems. J. Stat. Softw. 23, 1–13 (2008)

7. Grünwald, P., Roos, T.: Minimum description length revisited. Int. J. Math. Ind.
11(01), 1930001 (2019)

8. Gupta, A., Mańdziuk, J., Ong, Y.S.: Evolutionary multitasking in bi-level opti-
mization. Complex Intell. Syst. 1, 83–95 (2015)

9. Hallgren, K.L., Heard, N.A., Adams, N.M.: Changepoint detection in non-
exchangeable data (2021). https://doi.org/10.1007/s11222-022-10176-1, http://
arxiv.org/abs/2111.05054

10. Killick, R., Eckley, I.: Changepoint: an R package for changepoint analysis. J. Stat.
Softw. 58(3), 1–19 (2014)

11. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

12. Rissanen, J.: Information and Complexity in Statistical Modeling, vol. 152.
Springer, Heidelberg (2007)

13. Rodrigues, E.R., Achcar, J.A.: Modeling the time between ozone exceedances. In:
Applications of Discrete-Time Markov Chains and Poisson Processes to Air Pollu-
tion Modeling and Studies, pp. 65–78 (2013)

14. Sierra, B.M.S., Coen, A., Taimal, C.A.: Genetic algorithm with a Bayesian app-
roach for the detection of multiple points of change of time series of counting
exceedances of specific thresholds (2023)

15. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

https://doi.org/10.1002/env.890
https://doi.org/10.1007/s10651-009-0114-3
https://doi.org/10.1007/s10651-009-0114-3
http://arxiv.org/abs/0710.3742
https://doi.org/10.1007/s11222-022-10176-1
http://arxiv.org/abs/2111.05054
http://arxiv.org/abs/2111.05054

	Change Point Detection for Time Dependent Counts Using Extended MDL and Genetic Algorithms
	1 Introduction
	2 Non-homogeneous Poisson Process
	3 MDL
	4 Genetic Algorithm Details
	5 Simulated Experiment
	5.1 Comparison with Other Algorithms
	5.2 Conclusions and Future Work

	References

