
Planning Navigation Routes in Unknown
Environments

Laura Rodriguez(B) , Fernando De la Rosa , and Nicolás Cardozo

Systems and Computing Engineering Department, Universidad de los Andes, Bogotá,
Colombia

{la.rodriguez,fde,n.cardozo}@uniandes.edu.co

Abstract. Self-driving robots have to fulfill many different operations,
as coordinating the motors’ traction, camera movement, or actuator arms
mechanics, as well as more high-level operations like driving to different
places. Autonomous navigation is of utmost importance for exploration
robots, which must drive around exploring areas with unknown terrain
conditions, as for example is the case of mars rovers and other space
exploration vehicles. Given that the environment is unknown, planning
a specific route and driving plan is challenging or even inappropriate
due to blocking obstacles in the terrain. To overcome such problems
we propose an adaptable plan for driving robots in different situations.
Our solutions mixes both global and dynamic planning algorithms to
take advantage of available information, if it exist beforehand, and to
overcome unknown obstacles if they appear, while still moving towards
the goal. In particular, we apply our algorithm to the movement of robots
between posts in environments with partial information, as it is the case
of space mission competitions. We evaluate our solution in a simulated
environment taking into account the effectiveness in fulfilling a mission
in the shortest time, using the shortest possible path. Our results show
that of the A* algorithm with diagonals in combination with the ABEO
algorithm offer the best combination reaching the goal in most cases, in
optimal (planning + execution) time.

Keywords: Mobile robotics · Autonomous driving · Dynamic planning

1 Introduction

Autonomous navigation is one of the goals in space missions, as promoted by the
University Rover Challenge (URC)1 or the European Rover Challenge (ERC)
competitions.2 In these missions, a rover robot is required to navigate given
GNSS-only waypoints through posts across an easy and moderate terrain. Teams
may visit locations in any order, but must declare when they are attempting an
objective out of order. Teams are provided with a high-accuracy coordinate at
the start gate as a reference. Each post has a marker displaying a black and
white ARUCO tag using the 4×4 50 tag library as shown in Fig. 1.
1 https://urc.marssociety.org.
2 https://roverchallenge.eu/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Tabares et al. (Eds.): CCC 2023, CCIS 1924, pp. 128–140, 2024.
https://doi.org/10.1007/978-3-031-47372-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47372-2_13&domain=pdf
http://orcid.org/0009-0000-9715-0475
http://orcid.org/0000-0002-9066-7225
http://orcid.org/0000-0002-1094-9952
https://urc.marssociety.org
https://roverchallenge.eu/
https://doi.org/10.1007/978-3-031-47372-2_13


Planning Navigation Routes in Unknown Environments 129

Fig. 1. ARUCOS to visit in a competition.

One problem in navigation competitions is that teams have partial or
unknown information about the terrain in which the competition takes place.
This means that it is not possible to predefine a route to successfully reach the
desired posts, as unknown obstacles (e.g., rocks, steep hills, craters) may be in
the way.

The contribution of this paper consists of the exploration of a combination
of planning algorithms that allow a rover to autonomously navigate between
ARUCO waypoints sorting unknown obstacles. Our solution (Sect. 2) uses a
global planning algorithm with the available information to sketch the shortest
route between waypoints. Then, at run time, we use ABEO, a bio-inspired algo-
rithm to avoid obstacles and continue towards the goal. Our evaluation of the
combination of global and dynamic planning (Sect. 3) proves effective in finding
an optimal route with respect to the execution time (i.e., route planning and
navigation between the points) using an improvement of the A* algorithm we
posit by drawing diagonals between the points in the route. Moreover, our algo-
rithm is also effective in reaching the goal in spite of possible obstacles in the
planned route, thanks to the ABEO algorithm.

2 Route Planning for Unknown Environments

We posit a solution to the problem of autonomous navigation in unknown envi-
ronments, in two parts: (1) a global or static planning, to define a potential
route using available map information, and (2) a dynamic planning to sort out
obstacles (e.g., rocks, steep hills, craters) unknown during the planning phase.

2.1 Global Planning

In known environments it is possible to plan a route between two points avoiding
all obstacles, as explained in the following. In our case, the robot only has partial
information about the environment. Nonetheless, it is possible to plan an initial
route. Take for example the environment in Fig. 2a. The rover may produce an
approximated map as the one shown in Fig. 2b, where the most visible obstacles
on the map are marked in black. From this image it is possible to plan a route,
globally, given the initial and destination waypoints.

We explore three different algorithms to define a route globally, based on clas-
sic shortest-path and computational geometry. We present the reasoning behind
each of the algorithms now, presenting the results later, in Sect. 3.



130 L. Rodriguez et al.

(a) Original Terrain (b) Image Transformation

Fig. 2. View of the terrain and the identification of obstacles for the robot

A*. The A* algorithm [4] is a heuristic-based search algorithm to find the
shortest path between two points in a graph. If we represent the map as a graph,
where each pixel corresponds to a node and the edges between nodes correspond
to the robot’s movements (e.g., up, down, left, and right), we can use A* to
plan a route between the given initial and end waypoints. The objective used for
the heuristics is to find a path between waypoints that takes the shortest time,
and/or the shortest distance.

A* with Diagonals. Starting from the A* algorithm, we implement an exten-
sion using diagonals to cut corners between the points used to surround obstacles.
The diagonals are drawn by taking rays from the points in the route and project-
ing them in the direction of the destination. If we intersect the route, then this
is updated with the diagonal. This extension of A*, should reduce the distance
between waypoints.

Convex Hull. The Convex hull [6] is an algorithm to calculate the smallest
convex polygon that encloses all the points in a set. We use the convex hull to
enclose each of the obstacles in the map in its convex hull. Then we use the
A* algorithm to better avoid obstacles. This extension should give a shorter
distance, as we are stepping away from obstacles’ irregularities.

2.2 Dynamic Planning

As mentioned before, having an initial route may not be sufficient in unknown
environments as obstacles may appear in the route. To overcome this problem
we evaluate three algorithms designed for obstacle avoidance.



Planning Navigation Routes in Unknown Environments 131

The Bubble Rebound Algorithm. This algorithm detects obstacles within the
robot’s sensitivity bubble. The area covered by the sensitivity bubble depends
on the robot’s sensors, speed, and geometry, among other characteristics. Upon
detecting an obstacle, the robot bounces in a direction that has the least obstacle
density and continues its movement in this direction until the target becomes
visible or the robot encounters a new obstacle [8].

Figure 3a shows the sensitivity bubble at work, as a semi-ring (only 180◦)
equidistant from the robot’s center. The bubble defines a protection field, where,
if a sensor detects an obstacle in a direction (e.g., ray −3), it bounces the robot
to the area with the lowest obstacle density (e.g., rays −2, −1, and 1), as repre-
sented in the distribution in Fig. 3b, where higher bars mean less density.

(a) Sensitive bubble (b) Sonar readings

Fig. 3. Sensitive bubble (taken from [8])

The flow chart in Fig. 4 shows the algorithm’s process. The algorithm con-
tinuously tries to move towards the objective, once an obstacle is found, the
movement direction is adjusted until the robot surrounds the obstacle.

Fig. 4. Flow chart Bubble rebound algorithm [8]

Obstacle-Dependent Gaussian Potential Field (ODG-PF). The idea
behind this method is that, after receiving distance data from the range sen-
sors, the robot considers the objects within a given threshold as obstacles. To
avoid obstacles, these are made larger with respect to the size of the vehicle,



132 L. Rodriguez et al.

building a Gaussian (repulsive) potential field. Next, we calculate the attractive
field from the yaw angle information of an Inertial Measurement Unit (IMU).
The total field is a combination of the two fields. We choose the angle with the
minimum value of the total field [1]. Figure 5 describes the process to define the
Gaussian field around the robot and choose the minimum angle for the robot’s
direction.

Fig. 5. Algorithm flowchart for the ODG-PF [1]

Bioinspired Algorithm for Obstacle Avoidance (ABEO). The ABEO
algorithm [7] is a bio-inspired algorithm mimicking the behavior from nature
combining two approaches: a force vector system, and a contour following. The
force vector system builds a system of forces, which is determined by the repulsive
forces Fr (in red) produced by the obstacles, and the attractive force Fa (in
green) received by the target, as shown in Fig. 6.

Fig. 6. ABEO force vector system approximation [7]

One of the most significant advantages of this approach, is that the robot
gradually moves away from obstacles, and deviates its trajectory in short steps,
so its movements are smooth. Additionally, the low complexity in computing
and implementing the Fr and Fa vectors is an advantage of the algorithm. This
computation entails basic linear algebra vector operations.



Planning Navigation Routes in Unknown Environments 133

2.3 Implementation

The development of the route planing in unknown environments is built on top
of: (1) the Robot Operating System (ROS), to communicate with the robot’s
sensors and actuators, and (2) Gazebo, used as a simulation environment to test
the different algorithms.

We first use Jupyter notebook to implement and test algorithms, to then
deploy them into the robot.

ROS. ROS consists of a set of software libraries and tools to build robot appli-
cations. The main functionality of ROS is to communicate robot systems. ROS
defines the components, interfaces, and tools to build robots. The connection
between tools and components is done through topics and messages [2].

We use two main topics in the project. One topic is used to publish the initial
and final coordinates for the robot. The second topic is used to publish the route
to follow. The architecture of our solution using ROS is shown in Fig. 7.

Fig. 7. ROS nodes’ graph and associated topics

In Fig. 7 three main nodes (in black) publish information: the planning node
(Planning is in charge of planning the route given its coordinates), the publish
coordinates node (/Publish) is in charge of publishing the initial and final coor-
dinates, and the control node (/Control) is in charge of sending signals to the
robot’s wheels, so that it moves. These nodes, in turn, subscribe and publish
different information to different topics. For example, the /zed2/odom topic is
in charge of receiving and publishing the information about the odometry (posi-
tion) of the robot; the /Robocol/start end topic is in charge of receiving and



134 L. Rodriguez et al.

publishing the information of the initial and final waypoints for the planning,
and the /Robocol/MotionControl/route topic is in charge of connecting the
planning nodes and control of the rover.

Gazebo. Gazebo is an open source robotic simulator, which provides an oppor-
tunity to simulate different environments with a complete toolbox of develop-
ment libraries and cloud services. In this project, we use the Gazebo environ-
ment from the ERC competition as the platform to run our experiments on
autonomous navigation. This simulation environment loads the information of
the rover and the ARUCOS to mark each of the way-points, and the informa-
tion about the terrain conditions. Figure 8 captures images from the simulation
environment used in this project.

(a) (b) (c)

Fig. 8. Simulation Environment in Gazebo

Jupyter Notebook. We use Jupyter Notebook as the implementation platform
for the route planning algorithms. The algorithms’ implementation, results and
simulation examples are available at our online repository.3

3 Route Planning Evaluation

This section presents the evaluation of the planning algorithms described in the
previous section, taking into account the global and dynamic planning algorithms
individually. Our experiments are run in a ASUS - ROG Zephyrus machine with
16GB of RAM and a AMD Ryzen 9 processor, using Python version 3.8.10 with
the roslib, rospy, cv2, numpy, cv bridge, matplotlib, rospkg, pynput libraries.
Additionally, video recordings of the simulation for the different algorithms are
available online.4

3 Repository: https://anonymous.4open.science/r/Navigation Planning-C3D9.
4 Simulation videos: https://tinyurl.com/Simvid52.

https://anonymous.4open.science/r/Navigation_Planning-C3D9
https://tinyurl.com/Simvid52


Planning Navigation Routes in Unknown Environments 135

3.1 Global Planning Results

To evaluate the effectiveness of global planning algorithms we measure three
variables: (1) the time that the algorithm takes to finish the planning, (2) the
number of coordinates that it sends to the control node to start moving the
rover, and (3) the total distance in the planned route. The evaluation scenario
for the three algorithms consists of 6 waypoints visited in order.

Table 1. A* Results.

Waypoint Time (ms) Number of Coordinates Total Distance (m)

W1 3.1178 9 12.68857754

W2 6.0641 26 21.65640783

W3 9.9446 15 16.94107435

W4 3.5518 20 20.29778313

W5 4.0237 25 21.9544984

W6 10.0512 24 29.84962311

Table 1 shows the results for the global planning using the A* algorithm,
which we use as a baseline for the comparison with the other two implementa-
tions. A* shows the best planning time performance. However, we observe that
A* generates multiple coordinates between waypoints, as these are the points in
which the robot turns to avoid obstacles. Finally, the last column presents the
total distance traveled by the robot in between waypoints.

Table 2. A* with Diagonals Results.

Waypoint Time (ms) Number of Coordinates Total Distance (m)

W1 4.0906 7 9.38083152

W2 11.9102 17 12.32882801

W3 21.9023 24 15.23154621

W4 4.2370 6 21.72556098

W5 8.2526 18 19.89974874

W6 18.8678 20 14.83239697

Table 2 shows the results for our extension of the A* algorithm using diag-
onals. In the table we see that this algorithm has a better performance with
respect to the distance traveled and the number of points visited than the base-
line A* algorithm. The gained performance in the distance (0.10× to 0.76×
shorter routes) comes at the cost of having to plan the route for longer, as we
now need to project the diagonals in the route, and therefore take longer in



136 L. Rodriguez et al.

planning the route; a slowdown factor of 0.16× to 0.55×. The advantage of this
algorithm is that in an unknown environment, a shorter planning route is an
advantage because the rover may encounter fewer unknown obstacles.

Table 3. Convex Hull Results.

Waypoint Time (ms) Number of Coordinates Total Distance (m)

W1 5.3812 11 13.6898965

W2 11.9906 30 21.98456783

W3 17.0895 27 18.5643461

W4 5.0672 25 25.2873613

W5 6.3678 30 23.95444345

W6 25.9430 27 34.1131986

The convex hull algorithm has the worst performance results across the three
metrics, shown in Table 3. This can be explained as to calculate the route, we
first calculate the convex hull, and then use A* (or A* with diagonals) to plan the
route. Moreover, as we use either A* or A* with diagonals to plan the route, the
distance covered would be at best that of the original algorithm, disproving our
hypothesis that we generate less intermediate points traveling a shorter distance.

Figure 9 shows the route planned for the 6 way-points using each of the
aforementioned global algorithms.

(a) Simple A* (b) A* with diagonals (c) Convex Hull

Fig. 9. Comparison of the planed routes



Planning Navigation Routes in Unknown Environments 137

3.2 Dynamic Planning Results

For dynamic planning we concentrate on the evaluation of the ABEO algorithm
by means of a simulation placing unknown obstacles in the path between way-
points, as shown in Fig. 10. The initial simulation environment tests the algo-
rithm in 10×10 and 20×20 grids, before testing them on the Gazebo. We focus
on the ABEO algorithm, as this is the algorithm that presents the best oppor-
tunities to sort obstacles with a lower computational cost. In our evaluation we
focus on the success of the robot to avoid obstacles placed in the route between
waypoints. To do this, we run ABEO 60 times starting randomly from any of the
yellow numbered points in the Fig. 10, to reach the green square in the middle.
All blue squares are obstacles unknown to the robot. The result of this simula-
tion is that all executions successfully reach the objective without crashing into
any of the obstacles.

Fig. 10. Jupyter Notebook simulation environment

Once tested, we used ABEO on the Gazebo simulator (Fig. 11), where we
observed that the robot can indeed reach the destination in most cases. Inaccu-
racies in reaching the goal are due to terrain conditions that cause the robot to
tip over, or get stuck in a hill because the motor has insufficient power to climb,
these factors are not related to the algorithm’s performance but to the robot’s
specification and the environment conditions.

4 Related Work

There exist different route planning algorithms for autonomous navigation, as
the ones already discussed in the previous sections. In this section we present
further algorithms relevant to route planning in unknown environments, and put
them in perspective of our work.



138 L. Rodriguez et al.

Fig. 11. Video of the ABEO simulation

Planning algorithms are split into two categories, global planning and local
planning [1], matching the division we use in this paper. Global planning refers to
plans that require geographic information, gathered from sensors, and a global
localization of vehicles/robots. This allows us to set a defined route and see
the robot’s position in every step of said route. Local planning is based on
relative positioning (of the robot and obstacles) to avoid obstacles effectively.
In our work, this division is used to define routes between waypoints globally,
and sorting obstacles locally (to return to the planed route afterwards). Global
planning algorithms are off-the-shelf standards with the Dijkstra or A* algorithm
as a base, optimized with an heuristic. This is similar to our algorithm, where we
use A* with diagonals as an optimization heuristic. Therefore, the results using
other variants, should be comparable with the ones we obtained.

Local planing algorithms have a larger variability, as we now discuss. A bio-
inspired algorithm for local planning and emergence is that of ant colony behav-
ior [5]. Route planning using ant colony algorithms is based on the probabilistic
states of transition and a strategy based on the pheromones of the ants, which
are used to follow a functional route planning algorithm. The behavior of ant
colony algorithms is similar to the approach taken by us. However, the imple-
mentation of ABEO is simpler as we do not require to encode pheromones, which
would require a sensor signaling in the robot.

A second category of algorithms consists of field-boundary definition algo-
rithms, in which a boundary field is build around the robot/obstacle to avoid
collisions. Dynamically, the robot is pushed away from high density boundary
detection (i.e., obstacles). Exemplars of these algorithms are the bubble rebound
algorithm [8], and ODG-PF [1], discussed previously.

Finally, genetic algorithms are also used for obstacle avoidance. Here, a
genetic search technique is used for a faster execution to find a way of avoiding
an obstacle [3]. This algorithm presents a strategy called survival of fitness to
determine the best solution over a set of competing potential solutions. The alter-
native of genetic algorithms adds the complexity of defining the fitness function



Planning Navigation Routes in Unknown Environments 139

and population to generate the potential solutions, but is an interesting possi-
bility to study further.

5 Conclusion and Future Work

Route planning in unknown environments is a challenging task, as autonomous
vehicles/robots may find a variety of obstacles blocking their path, and possibly
get stuck. Unfortunately, these situations are common in rover space missions
or disaster area exploration, where no defined satellite images are available to
plan a route avoiding all obstacles. To tackle the complexity of moving through
unknown environments, in this work, we use a combination of global and dynamic
planning to route robots. We use global planning optimizing the route that
the robot should follow, taking into account the trade off between the routing
algorithm’s execution time and total distance traveled. Our experiments show
that while the A* algorithm with diagonals is between 0.16× and 0.55× slower
than the A* baseline in calculating the route, the distance traveled by the robot
is between 0.10× to 0.76× shorter (in most cases). Therefore, we conclude that it
is better to use the A* with diagonals algorithm for the global planning, as this
is the algorithm that optimizes time overall. Now, since we know obstacles may
appear at run time, the robot uses the ABEO dynamic planning algorithm to sort
obstacles in the way. Our evaluation shows that in a small simplified simulation
environment, the robot is always able to avoid unknown obstacles and reach its
destination. However, we note that in the simulated environment, the robot does
not always reach its goal, due to terrain conditions and the physical capabilities
of the robot, which are not included in the simulation.

As future work, we foresee the further evaluation of dynamic planning algo-
rithms to be able to identify the optimal algorithm for the fastest route, with the
highest success rate. Finally, we require a real-world experimental environment
to work with our rover and make tests to fine tune the algorithms.

Acknowledgment. Laura Rodriguez acknowledges the support of a UniAndes-
DeepMind Scholarship 2023

References

1. Cho, J.H., Pae, D.S., Lim, M.T., Kang, T.K.: A real-time obstacle avoidance method
for autonomous vehicles using an obstacle-dependent gaussian potential field. J.
Adv. Transp. 1–16 (1: school of Electrical Engineering. Korea University, Seoul,
Republic of Korea (2018)

2. Garage, W.: Ros robot operating system. https://www.ros.org/ (12 2007). Stanford
Artificial Intelligence Laboratory Open Robotics

3. Han, W.G., Baek, S.M., Kuc, T.Y.: Genetic algorithm based path planning and
dynamic obstacle avoidance of mobile robots. In: International Conference on Sys-
tems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 3,
pp. 2747–2751 (1997). Intelligent Control and Dynamic Simulation Lab

https://www.ros.org/


140 L. Rodriguez et al.

4. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

5. Meng, X., Zhu, X.: Autonomous obstacle avoidance path planning for grasping
manipulator based on elite smoothing ant colony algorithm. Symmetry 14(9), 1–20
(2022)

6. Sklansky, J.: Finding the convex hull of a simple polygon. Pattern Recogn. Lett.
1(2), 79–83 (1982)

7. Susa Rincon, J.L., Ramos, D.: (ABEO) - Algoritmo Bioinspirado de Evasión de
Obstáculos. Tecnura 13(25), 36–47 (2009)

8. Susnea, I., Minzu, V., Vasiliu, G.: Simple, real-time obstacle avoidance algorithm
for mobile robots. In: International Conference on Computational Intelligence, Man-
machine Systems and Cybernetics. World Scientific, Engineering Academy e Society,
pp. 24–29. WESEAS 2009 (2009)


	Planning Navigation Routes in Unknown Environments
	1 Introduction
	2 Route Planning for Unknown Environments
	2.1 Global Planning
	2.2 Dynamic Planning
	2.3 Implementation

	3 Route Planning Evaluation
	3.1 Global Planning Results
	3.2 Dynamic Planning Results

	4 Related Work
	5 Conclusion and Future Work
	References


