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Abstract. Industrialisation and the rapid progression in automation and digital-
ization have supported the common use of tools and machines in everyday life and
workplaces, especially in industrial environments. The paper proposes a critical-
analytical investigation aimed at fostering reflections on Human Factors and Neu-
roergonomics concepts and approaches to improve human-machine interactions
in the workplace and with the support of Neuroimaging technologies and met-
rics used to track the cognitive state of the user-operator. The primary objective
was to identify the industrial sectors most exposed to psychosocial risks, in order
to prefigure specifically adapted and highly contextualized solutions. Particular
attention was given to the integration of wearable and smart devices, designed
to amplify operator safety and to accurately monitor the user’s psychophysical
state. By exploring and analysing the state of the art of existing wearable and
intelligent devices, critical factors, functionalities, performance, innovative archi-
tectures and technologies from different industries emerged. The results of this
work have allowed critical factors and opportunities to emerge that are useful in
designing and developing work environments that are safe, efficient and focused
on the well-being of operators.

Keywords: Neuroergonomics approach · Human Factors · Industry 4.0 ·
Occupational safety ·Mental workload

1 Introduction

The reports on new and emerging risks (ESENER-3) by EuropeanAgency for Safety and
Health at Work (EU-OSHA) (2019) as part of the third European survey of enterprises
and recent Eurostat data (2023) show that occupational health and safety risks are being
analyzedwith a greater focus on psychosocial risks related towork and new technologies.
On the one hand, critical points are highlighted in relation to psychosocial and ergonomic
factors mainly related to human-machine interaction, and on the other hand, the role
that mechanisation and digitalisation have to play in mitigating these risks is explored
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(Niciejewska and Idzikowski 2022). According to the analysis of statistical data from the
main European databases, such as EU-OSHA (2023), Eurostat (2023) andWHO (World
Health Organization) (2023), the construction, transport and storage, manufacturing,
agriculture, silviculture and fishing sectors together account for about two thirds (63.1%)
of all fatal occupational accidents and more than two fifths (44.1%) of all non-fatal
occupational accidents in 2020.

In this year, of all fatal accidents at work in the EU, themanufacturing sector (15.2%)
had the highest share. The highest share of non-fatal occupational accidents in the EU
occurred on industrial sites for the manufacturing sector, totaling 78.1%, with loss of
control of machines, tools or transport and handling equipment (20.8% of the total),
movement of the body under or with physical stress (18.4%) and slipping or falling
(17.6%) being the most common causes. Loss of control of machines, tools or transport
and handling equipment was also the most common cause of fatal accidents at work,
accounting for 23.2% of the total number of work-related fatalities in the EU in 2020.
For the same year, the most common contact modes for non-fatal accidents in the EU
included: physical ormental stress (23%of all non-fatal accidents); impactwith a station-
ary object (in other words, the victim was in motion - 21.0%); contact with a sharp/sharp
or rough/rough agent (14.7%); and being struck by a moving object/collision (11.5%)
(Eurostat 2023).

A detailed review of the relevant context through a critical analysis of the state of the
art and national and international standards has shown that operators are often unable
to develop or maintain adequate levels of awareness, due to risk factors (see Fig. 1) that
assess the ergonomic, psychological and organizational factors and interaction between
the “operator” and “the environment”. In particular, it’s found from statistical data and
literature research, that the greatest risks are related to ergonomic (Dekker et al. 2021),
transversal and physical aspects such as the high complexity of systems, lack of experi-
ence in the use of systems and inadequate training and workstation design with respect
to the physical-dimensional compatibility of the operator (ESENER 2019; Nawi et al.
2022; Razali et al. 2022). Against this, current “augmented” safety devices have been
researched and systematized to support the operator in machine use and maintenance
activities and to assess the operator’s psychophysical state.

2 Human Error, Mental Workload and Human Reliability

The concept of the working environment encompasses, in a wide sense, the man-
machine-environment paradigm in constant interaction between the physical and psy-
chological spheres. It is therefore important to consider all the factors that contribute
to the occurrence of an error or accident. A correct design of work activities and work-
stations must consider the cognitive load and anthropometry of the operator. With the
aim to address these issues, it is important to estimate workers’ awareness of their own
safety (Körner et al. 2019) and relate it to their state of mental stress and fatigue in
order to improve interaction with machines. It is essential to analyse the actions between
the operator and the machines, emphasising the distinction between correct/incorrect
behaviour and unintentional error (such as malfunctions, faults, interface incompatibil-
ity, etc.), assessing environmental factors (microclimate, noise, lighting, etc.) and the
working conditions related to the design of the workstation (La Fata et al. 2023).
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Fig. 1. Histogram re-processed by comparing and synchronising statistical data on occupational
safety in industrial establishments (ESENER 2019)

One of themajor causes of accidents is the physical andmental fatigue of the operator.
Fatigue is defined as a decrease in mental and/or physical performance caused by

cognitive overload and physical exertion. Worker fatigue has been introduced as one
of the main factors that increase the error rate of workers and lead to unsafe work
actions, negatively affecting their alertness, reaction time and mental acuity. Therefore,
the quantification of fatigue is fundamental in relation to occupational health and safety.
In addition to being a physiological response of the human body that can prevent over-
load, fatigue is a symptomassociatedwith several diseases and health conditions (Kirwan
2017). Fatigue impairs cognitive and/or motor performance, reducing work efficiency,
productivity and product quality, and increasing the risk of injury and death (Körner et al.
2019). Since excessive or insufficient mental workload may be associated with reduced
efficiency and safety of human-machine interactions, cognitive and physical stress must
be analysed and evaluated in order to design new integrated and adaptive systems that
can assist the operator (Derosière et al. 2013).

It is necessary to assess the impact of human factors on risk through Human Relia-
bility Analysis (HRA), the functions of ‘identifying which errors can occur (human error
identification), what is the probability of these errors (error quantification) and, finally,
identifying ways in which the probability and consequences of errors can be reduced
(error reduction) (Kirwan 2017). Ayaz (2012) states that mental workload reflects “how
hard the brain is working to meet the demands of the task”. Therefore, the last three
decades have witnessed a revolution in understanding the brain processes that regu-
late human performance and attention of workers (Dehais et al. 2020). Moreover, HRA
applications are still scarce in the manufacturing sector, where human errors are often
overlooked and, therefore, there is a need for the creation of safety tools, based on neu-
roimaging technologies, that are sophisticated and portable and allow for a non-invasive
examination of the ‘brain at work’ in real time, monitoring the operator and providing
him with all the information he needs to complete his tasks while minimising risk fac-
tors. Cognitive evaluation emphasises the role of operators as they are involved in the
acquisition and processing of information through a holistic assessment of how design
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influences the acquisition of information and, conversely, how the operator’s mental
models (process understanding) influence the acquisition and processing of informa-
tion. This point of view is significant in the context of contemporary digital implants,
where humans generally act as decision-makers and perform monitoring, diagnosing,
and prognostication functions. Based on this, it is possible to develop countermeasures,
such as integrated intelligent systems, that “protect” the worker from problems related
to the psychophysical sphere and ensure the safety and quality of work in manufacturing
environments.

3 Design, Usability and Human Factors for HMI Evaluation

The interconnection between operator and industrial machine requires adequate training
of the worker in the use of the machine and knowledge of the characteristics of human
control and human modelling for machine design (Lu et al. 2022).

It is necessary to approach the study of Human Factors from a neuroscientific per-
spective, looking at the new paradigms of Industry 5.0 and focusing on the operator and
his capabilities (Lombardi et al. 2023). Human-machine interaction, therefore, is con-
sidered in the totality of its aspects, including those related to human reliability, fatigue
and physical/cognitive stress (Perrey et al. 2010) and systems usability.

There is a shift from a task-centric view of design to a human-centric view, in
which the entire system is designed to ensure well-being and usability (Buono et al.
2021); tools such as sensors, body scanners, and devices for detecting biometric and
cognitive parameters allow for the immediate detection of specific user characteristics.
Several researchers have attempted to address consumer usage behaviour regarding smart
wearable devices by extracting potential technical and psychological factors using user-
oriented theories and models (Park 2020). This approach allows modelling the user
experience through an ergonomic and cognitive study, the analysis of interaction systems
and the evaluation of usability and accessibility requirements (Buono et al. 2021), thus
helping to optimise the relationship between the user, device and its environment.

A total of 35 HRAmethods are identified in literature, divided into first- and second-
generation methods (Bell and Holroyd 2009), which allow risk assessors to predict and
quantify the probability of human error (Kim 2001). First-generation methods focus on
human actions (errors) based on skills and rules, but do not consider context, human
organisational factors and cognitive aspects. These methods include the technique for
human error-rate prediction (THERP), which involves performing a task analysis to
identify human involvement, define the sequence of events that must be performed
to ensure safety, and then quantify these sequences using a human error probability
database (Derosière et al. 2013). THERP also includes the calculation of dependency,
which means that the success or failure of the current action is related to the previous
action or task. Second-generation HRA methods, on the other hand, introduce cognitive
models to characterise human behaviour in the workplace, searching for the root causes
of human errors in the application of mental processes based on perception, thinking,
memory and action decision strategy (La Fata et al. 2023). These methods include per-
sonal, contextual and cognitive factors (e.g. Performance Shaping Factors - PSFs) that
can influence workers’ performance. In particular, the most significant PSFs on which
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primary actions can be taken to improve worker reliability during task performance can
be identified, which are: “Training”, “Procedures”, “Interface”, “Time pressure”, “Com-
plexity”, “Workload, stress and Stressors”, “Environment”, “Physiological parameters”,
“Work process”. The fundamental aim of these approaches/analyses is to make the sys-
tem safer by decreasing various hazards and reducing the possibility of human error.
For example, guidelines for the design of HMI (Human Machine Interface) in a control
room should be geared towards ensuring the ease of interaction of a user-operator with
the computer interface by analysing various aspects such as the readability of text on
an interface (e.g. font colour, size), level of detail (too much or too little), and alarm
status that differs from normal system operating conditions. The main source of human
error is a mismatch between human capabilities and system requirements. It is essential
that system design considers user characteristics and needs in relation to anthropomet-
ric variability, usage activities, and different levels of skill, experience and knowledge
under different conditions of use and for each user category. It is necessary to analyse
human-machine interactions by systemisinghumanandneuroergonomics factors such as
physical-dimensional, performance (physical workload or body posture), behavioural
and ability (e.g. personality, self-efficacy, personal control and motivation); cognitive
(e.g. cognitive fatigue, cognitive load, decline in attention); physiological (e.g. heart
rate, muscle oxygenation, body temperature, drowsiness, respiratory rate, sweating) and
environmental (e.g. ultrasound, noise, microclimate, vibration, lighting) (see Fig. 2).
Through the neuroergonomic approach and analysis, cognitive constructs of interest (e.g.
motivation or mental load) can be assessed and analysed in highly controlled artificial
environments in the laboratory. Through user-centred design, one aims to improve safety
and well-being in workplaces or everyday environments with the help of neurophysi-
ological measures that enable an understanding of the mental mechanisms of workers
subjected to specific work demands (Parasuraman and Wilson 2008). Therefore, cog-
nitive neuroergonomics investigates cognitive states and their impact on information

Fig. 2. Characterisation and synchronisation of HMI and neuroergonomic factors.
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processing in the workplace based on neurophysiological data. The continuous assess-
ment and monitoring of mental states and/or cognitive processing can contribute to
improving safety and well-being at work (Parasuraman and Wilson 2008). Measures of
mental workload can be classified according to performance, in relation to the subjective
self-assessment process or in response to psychophysiology or neurophysiology (Dehais
et al. 2020).

4 Neuroimaging Technologies Comparison for Cognitive
and Perceptual Processes’ Detection

Research into the behaviour of workers, the monitoring of neuroergonomics parameters
during collaborative work, and the monitoring of attention and fatigue contributed to
a better understanding of the events occurring and indicate the specifics of workers’
behaviour (Savković et al. 2022). The use of neuroimaging technologies for the analysis
and assessment of cognitive stress makes early and objective detection possible in the
event of declining levels of attention (Derosière et al. 2013) and concentration. EEG
systems, for instance, provide the possibility of a continuous and objective measurement
of workers’ attention, assisting the monitoring of their performance.

Advances in sensor technology have made it possible to objectively measure various
aspects of human cognition (Shahab et al. 2021); measures of mental workload can be
classified as performance-based, or related to the subjective self-assessment process, or
associated with psychophysiology or neurophysiology. Physiological measures such as
eye-tracking, electroencephalography (EEG), heart rate variability (HRV) and galvanic
skin response (GSR) have proven to be useful markers in providing critical information
on human cognition.

Among the technologies for detecting neuroergonomic processes is Neuroimag-
ing, or brain imaging, which uses various techniques to directly or indirectly map the
structure, function or pharmacology of the nervous system. Functional Neuroimaging
is used to diagnose metabolic diseases and lesions on a fine scale and is widely used
in psychological, neurological and cognitive research and in the construction of brain-
computer interfaces. The main approaches for assessing cognitive load include direct
measurements and indirect physiological ones (Lu et al. 2022). It is important to focus
on indirect measurements, which is those that estimate the mental stress or safety aware-
ness of workers based on their performance or physiological data obtained through
sensors or specialised devices. Performance is generally assessed by response time or
error in completing a task, but the worker’s psycho-physical state must also be taken into
account through the detection and analysis of physiological parameters such as brain
response feedback (UNI EN ISO 10075-3:2005), which could be heart rate (electrocar-
diogram - ECG), skin conductance (electrodermal activity - EDA), muscle oxygenation
(electromyography - EMG). Considering that the prefrontal cortex (PFC) is functionally
connected with several regions of the brain, this region mediates the complex interac-
tions between motor function and emotion (Doi et al. 2013; Dehais et al. 2020) and
performs a control function during routine cognitive operations, such as action selec-
tion, retrieval/updating in working memory and monitoring (Kirwan 2017). Michael
Posner (1980) pioneered a network approach to resource operation in the early days of
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neuroimaging. His influential analysis describes how specific networks were dedicated
to particular functions of attention regulation, e.g. alertness, orientation, focus. There
is evidence that a higher probability of failure is associated with PFC deactivation, for
operational performance in which failure can compromise the safety of oneself and oth-
ers, a higher probability of failure can also provoke strong emotional responses that are
associated with stress and cognitive interference, which can function as distractors from
the task at hand (Dehais et al. 2020).

Neuroimaging methods fall into two categories: those that reflect metabolic brain
processes associated with neural activity, such as functional magnetic resonance imag-
ing (fMRI) and transcranial Doppler sonography (TCD), and those that directly mea-
sure neural activity, such as electroencephalography (EEG) and event-related potentials
(ERPs). The merits and disadvantages of these techniques can be considered in terms
of three criteria: (a) spatial resolution in localising neural activity within the brain,
(b) temporal resolution in identifying the timing of neural processing, and (c) ease of
use in HF/E. Neuroimaging findings have supported the distinction between percep-
tual/cognitive, verbal/spatial and focal/environmental visual processing (Parasuraman
and Wilson 2008).

Among the most popular neuroimaging technologies, the ones mainly used for the
assessment of cognitive load during work tasks by means of PFC analysis are: electroen-
cephalography (EEG), which is a technique that detects electrical activities generated
by the brain. The EEG signal is an effective signal for representing changes in the auto-
nomic nervous system. The level of mental stress is frequently reflected by an increase
or reduction in brain activity in the frequency band. The study conducted by Al-Shargie
et al. (2016), used arithmetic tasks as stimuli to induce different levels of mental stress,
which could then be classified according to EEG signals; functional near-infrared spec-
troscopy (fNIRS), a non-invasive functional neuroimaging technology widely used to
detect physiological factors related to brain activity. It has a higher spatial resolution
than EEG and better temporal resolution than functional magnetic resonance imaging
(fMRI) (Russo et al. 2023). NIRS measures light intensity after passing through a tissue
(Song et al. 2020; Perrey et al. 2010; Varandas et al. 2022). It is believed that NIRS
measurement imposes considerably less physical and psychological burden than current
neuroimaging techniques (Doi et al. 2013). Aghajani et al. (2017) demonstrate that a
hybrid system (EEG+ fNIRS) allows higher classification accuracy formental workload
than using EEG or fNIRS alone. A recent study achieved over 90% accuracy in distin-
guishing between stress and non-stress conditions during a mental arithmetic task using
combined EEG and fNIRS (Al-Shargie et al. 2016). Since mental workload and psycho-
logical stress sharemany physiological markers, it can be difficult to distinguish between
them. For example, both mental workload and acute stress are known to affect heart rate
and heart rate variability (Parent et al. 2019), justifying the need for an integrated sys-
tem of multiple sensors in order to ensure physiological feedback. Both technologies
have limitations (e.g. external disturbance factors, motion artefacts, etc.), which is why
the combination of EEG-fNIRS revealed better results, indicating that additional data
sources may be useful for the detection of cognitive fatigue. Furthermore, the combina-
tion of different sensors such as NIRS and EMG are particularly useful for emotional
studies, providing a method for examining the theoretical process of fatigue. In this case,
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a decrease in haemoglobin can lead to a lack of muscle oxygenation, which can lead to
fatigue. The combination of measurements is not contaminated by technical interference
as both methods are based on different working principles (Balconi and Molteni 2016).

5 Devices and Integrated Systems for “Augmented Safety”
in Workplaces

In manufacturing industries, which require workers to be mentally alert and to carry
out repetitive tasks using specific muscle groups, cognitive and physical load levels are
assessed using technologies such as electroencephalography (EEG) for cognitive tasks
such as calculation or continuous performance that cause activation of the frontal region
of the brain (Eyam et al. 2021), the electrocardiogram (ECG) (Parent et al. 2019), eye
tracking also used tomonitor driver fatigue (Balconi andMolteni 2016) andmuscle elec-
tromyography (EMG) (Savković et al. 2022) for localised muscle fatigue to monitor, for
example, arm-shoulder muscle load in car assembly workers (Ferguson et al. 2013). To
estimate mental stress in the area of industrial environments, it is therefore necessary to
study the overall function of brain activity in the workplace. Supervisors must ensure
that workers are immediately aware of potential dangers to avoid accidents. Using wear-
able devices, workers can inform their supervisors about their location, fatigue levels,
health status and surroundings (Alberto et al. 2018). This digital connectivity and data
transparency allows supervisors to remotely observe workers, check safety compliance,
assess potential hazards and send early warnings or requests for help. The following are
examples of smart wearable devices (see Fig. 3), such as helmets, headbands, gloves,
glasses, textiles, etc. that use advanced sensing technologies, such as eye-tracking, haptic
feedback or neuroimaging technologies, have shown great promise in various applica-
tion fields, including manufacturing. These devices are designed to provide real-time
feedback and improve the user experience, making them ideal for applications where
precision and accuracy are crucial.

Figure 1 shows an overview containing a collection of devices currently on the
market, software and designs that are used today for monitoring, tracking and providing
‘augmented’ information to assist the operator in the use and maintenance of machines.

Among the devices examined, we can distinguish several categories: (1) headbands;
(2) helmets; (3) gloves; (4) goggles; (5) textiles; (6) exoskeletons; (7) smartwatches;
(8) and other devices and/or software. Many of the devices examined are integrated
systems combining different technologies. The state of the art reveals the increasing use
in industry of tools and systems to improve the safety and health of operators, including:
(a) technologies for detecting physiological parameters (heart rate) and biofeedback;
(b) cognitive parameter detection technologies (EEG and fNIRS); (c) eye tracking; (d)
remote control of machines; (e) real-time sensing and data transfer; (f) virtual reality;
(g) gyroscope and accelerometer systems; (h) tactile feedback and force translators; (i)
biomechanical overload assistance.

There are wearable tools and connected work platforms on the market, designed
towards monitoring safety at work (safe lifting of heavy loads, lifting assistance,
ergonomics, hazard identification, sleep monitoring, fatigue and stress management due
to extreme temperatures); increasing worker productivity (asset monitoring, augmented
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and virtual reality, gesture and movement control, cognitive parameter detection, work
stress management); monitoring health (work-related musculoskeletal disorders, move-
ment disorders, respiratory disorders, cardiovascular health, etc.) (Patel et al. 2022).
In particular, the devices examined are designed to monitor the operator, the machine
and the environment and to provide ‘augmented’ information. Protecting and improving
the safety, health and productivity of workers is crucial for companies. In this regard,
intelligent systems (deployable sensors and analytics) play a key role in facilitating
continuous monitoring, management and forecasting of workplace risks and organi-
sational resources. In this paper, we examined recent trends in commercial wearable
technologies and connected worker solutions applied to different work environments
to promote ergonomics, situational awareness, injury risk management, efficient work-
flow and healthy behavioural and cognitive habits. While most devices monitor human
performance (e.g., biomechanical functions, physical activity and/or physiological sig-
nals), new intelligent systems are being introduced to actively monitor and manage
mental health (e.g., stress, emotions, moods) using brainwave sensing, biofeedback and
human-in-the-loop models.

Most of the devices examined concern technologies related to the detection of cog-
nitive parameters as, due to the growing interest in and request for these, and thanks to
the rapid advances in the micro- and nanoelectronics industry, biomedical device man-
ufacturers have been able to drastically reduce the size of EEG and fNIRS devices (Di
Flumeri et al. 2019), allowing them to be used on a daily basis within the reach of all
types of users. Despite this, such existing systems are often not aesthetically appealing
or able to arouse positive emotions and thus influence and improve the user experience
(Radüntz and Meffert 2019). Some solutions turn out to be cumbersome or painful for
the operator when used over a long period of time (e.g. used during an eight-hour shift),
with the risk of altering user behaviour. There are also solutions that wet and soil the hair
and scalp (Di Flumeri et al. 2019) as they are made of the abrasive paste and electrolyte
gel, which, although minimally invasive and not harmful, are sticky products. Another
important factor is the electrode-skin impedance, which must be controlled and adjusted
to obtain acceptable low values; and also the awareness of being observed and detected,
and thus effectively prevented from performing the activities (Hanzal et al. 2023).

For example, if we consider devices that use neuroimaging technologies such as EEG
or NIRS (e.g. devices such as Emotiv Insight, Mendi or evenMuse) they are discrete and
(almost) invisible to others so as not to hinder the normal behaviour of the worker. This
is achieved with band-based systems or the use of electrode pads, but these only cover
a small area of the skull and therefore do not allow a clear separation of cortical sources
or of the origins of them and are extremely sensitive to artefacts created by movements.
The NirSport device, which uses Near Infrared Functional Spectroscopy technology, is
lightweight and easily transportable, so that it can be used for measurements in real loca-
tions and not just in laboratory setups. However, the parameters measured by measuring
the oxygen concentration in the blood vessels of the cerebral cortex being examined have
an increasing and decreasing phase that results in the detection of inaccurate cerebral
activation, as tissue oxygenation artefacts. Therefore, as well as devices recording the
physiological parameters of the operator, there is a need to integrate different parameters,
making it necessary to use adjacent systems for a complete overview of the state of health
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and to improve safety at work (e.g. the Honeywell BioHarness device).Or some devices
are cumbersome, to the point of preventing the operator from moving freely and easil
around the workstation or switching between workstations, tasks and activities, with-
out removing the device. For example, the Haptx Gloves G1 remote equipment control
gloves, which provide realistic tactile feedback. They feature a lightweight, wireless
Airpack, worn like a backpack, that generates compressed air and precisely controls
its flow; with this device, it is impossible to work on other tasks without removing the
glove, and the device worn on the shoulders is bulky, heavy and needs to be powered if
worn for an entire work shift (8 h), as the device’s autonomy is approximately 3 h.

This can increase the possibility of cognitive overload and mental strain and often
negatively affect the level of interaction and collaboration with other operators. In addi-
tion, there is a need to overcome the difficulties currently encountered in managing com-
munication and systematising heterogeneous data collected from different devices (often

Fig. 3. Overview of intelligent ‘augmented’ security devices.
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with incompatible SW) in relation to different parameters (physiological, cognitive,
environmental).

6 Conclusion

Integrated, adaptive and intelligent systems can help reduce the damaging effects of
humanerror during the execution of complicated tasks, relyingon a sensitive and accurate
collection of metrics to identify the various levels and combinations of mental effort and
psychological stress in real time (Parent et al. 2019).

For the human factors discipline, the study of mental workload serves two main
functions: (a) to quantify the transitions between operators and a set of task demands
or technological systems or operational protocols, and (b) to predict the probability of
performance failure during operational scenarios, which may be safety-critical (Dehais
et al. 2020). A challenge the field must deal with is to delineate a consistent relation-
ship between the measurement of mental workload and performance quality, based on
complex interactions between the person and the task. Both mental workload and psy-
chological stress are common in work environments and the two concepts can have a
mutual impact on each other. In this sense, maintaining a certain level of stress may also
be desirable during particular situations, such as during training, where stress may help
to consolidate information in the memory. It can be argued, then, that different situa-
tions lead to different optimal levels of workload and stress may result from different
situations and identifying these ‘weak points’ could maximize desirable effects such as
performance and learning.

Neuroergonomic approaches based on measurements of the human brain’s hemo-
dynamic or electromagnetic activity, combined with feedback from other technologies,
can provide a sensitive and reliable assessment of human mental workload in complex
work environments, in order to accurately assess mental workload, which could help
mitigate errors and enable early intervention by predicting the decline in performance
that may result from overwork or under-stimulation. In particular, the introduction and
use of digital technologies such as wearable devices and artificial intelligence represent
an opportunity to support production processes and safety in the workplace, as long as
the main criticalities concerning, for example, the wearability of the devices (such as the
inability to complete certain functions or the incorrect positioning of the system with
respect to the underlying body area or anatomical point, producing discomfort) are reme-
died efficiency (the inability to act correctly in synergy with the user’s movements and
the wearable’s expectations); and discomfort (such as friction, restriction to movement,
excessive temperature, etc.)., or possible pressure problems resulting from prolonged use
of wearables).Based on the analysis conducted in this paper, a comprehensive approach
is needed to address the complex issues of occupational safety and health, particularly
in the manufacturing sector. The combination of different technologies, including neu-
roimaging, can provide valuable insights into the cognitive and physiological aspects of
work and help identify potential sources of work overload and related psychosocial risks.
It is therefore essential to develop an integrated system capable of analysing and eval-
uating multiple data sources to provide a complete picture of the operator, the machine
and the working environment and ensure the well-being of workers.
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