
Using a Conceptual Model
in Plug-and-Play SQL

Shubham Swami1, Santosh Aryal1, Sourav S. Bhowmick2 ,
and Curtis Dyreson1(B)

1 Department of Computer Science, Utah State University, Logan, UT 84322, USA
{a02345936,curtis.dyreson}@usu.edu

2 School of Computer Engineering, Nanyang Technical University,
Singapore, Singapore
assourav@ntu.edu.sg

https://www.usu.edu/cs/people/CurtisDyreson ,
https://personal.ntu.edu.sg/assourav/

Abstract. We propose using a conceptual model for a database query’s
input type. The input type is the shape of the data needed by a query.
Pairing a conceptual model with a query creates a plug-and-play query
that can be type matched to a database’s schema to determine whether
the query can be safely evaluated. Plug-and-play queries are portable,
easier to write, and are type safe. We describe a simple conceptual
model based on virtual hierarchies, show how a virtual hierarchy is type
matched to a relational schema, and how to transform an SQL query
into one that can be evaluated on the matched schema.

Keywords: SQL · query evaluation · hierarchical data · query guards

1 Introduction

This paper proposes using a conceptual model to improve database queries. More
specifically we propose using a conceptual model as the query’s input type. In a
broad sense a database query has an input type and an output type; the query
transforms data from the input to the output type. The input type is either a
generic type, e.g., Any, or (a subset of) a database’s schema. In languages for
schemaless databases, like XQuery and Cypher, the input type is generic. There
is no compiler type check for the input type, instead a query will evaluate on
any data collection, producing an empty result if a path expression in the query
fails to navigate to desired data.1 In languages for databases that have a schema,
such as SQL, the input type is the names of tables and columns that appear in
the query, which is a subset of a schema. The compiler checks the input type
and generates an error if there is a mismatch.

Suppose that instead of a generic type or a subset of the schema we used a
conceptual model as the input type. The conceptual model describes the mini-
world in which the query needs to be evaluated. The idea is depicted in Fig. 1.
1 XML and Graph schema specifications are used and checked for data modification,

rather than (read) query evaluation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. A. Almeida et al. (Eds.): ER 2023, LNCS 14320, pp. 145–161, 2023.
https://doi.org/10.1007/978-3-031-47262-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47262-6_8&domain=pdf
http://orcid.org/0000-0003-1957-8016
http://orcid.org/0000-0003-0236-1515
https://doi.org/10.1007/978-3-031-47262-6_8

146 S. Swami et al.

Fig. 1. Using a conceptual model as the input type

A query together with the conceptual model of the data needed by the query is
type matched to the schema of the database. The match produces a transformed
query that is executable against the schema as well as a report on type errors or
potential information loss in the transformation. There are several benefits that
potentially accrue.

– Type Safety - A query that ignores the input type is said to lack type safety.
The evaluation of the query cannot determine whether the query is mal-
formed, e.g., a name in a path expression is misspelled, or whether there
is no data that matches the query since both cases produce the empty set.
A type safe query, on the other hand, evaluates the structure of the input
to determine if it conforms to that expressed by the conceptual model, i.e.,
needed by the query.

– Portability - A query is portable if it can be type safely evaluated on different
data collections. The conceptual model is not only critical to describing the
input type to safeguard the query, but the model can be used to transform
the query so that it can adapt to the data’s type.

– Simplicity - A key challenge for query writers, especially novice query writers,
is understanding the (conceptual model of a) database. It is simpler and easier
for writers to express their conceptual understanding of the data needed by
the query and let the compiler match the input type to the data’s type,
transforming the query to adapt to the data’s type as needed.

– Resilience - Queries written with respect to a specific schema are brittle in
the sense that if the schema changes, even small changes, the query may
fail. To make a query resilient to schema evolution it is best to capture in a
conceptual model what the query needs to evaluate and match the conceptual
model to the current schema.

In summary using a conceptual model as the input type potentially makes a
query type safe, portable, easier to code, and more resilient to schema changes.

Using a Conceptual Model in Plug-and-Play SQL 147

This paper describes a system that has these potential benefits and specifi-
cally does not address the issue of determining what is the best conceptual model
to use as the input type. We address instead the research question of what are
the potential benefits of using a conceptual model as the input type. We chose to
use the hierarchical model as the input type, surprisingly, for queries in SQL, a
relational query language. The advantages of the hierarchical model are simplic-
ity and prior research by others in virtual hierarchies, which are hierarchies that
are not stored, rather they are constructed during query evaluation.

In his 1970 seminal paper on the relational model, E. F. Codd argued in favor
of the relational model by describing important drawbacks of the popular (at
that time) hierarchical model [7]. One of the drawbacks of the hierarchical model
that Codd identified was access path dependence. Codd pointed out that queries
in a hierarchical (or network) model necessarily have to use access paths (“dot”
operators) to navigate to desired data. The access paths tightly couple the query
to a specific hierarchy, which is problematic since the same data could be orga-
nized in different hierarchies, so a query written for one hierarchy would fail if the
same data were organized differently. Access path dependence decreases query
portability and increases the brittleness of queries to changes in the structure of
the data.

But hierarchical data also makes some aspects of querying easier. First, access
paths in hierarchical queries are simpler and more straightforward to express
than joins in a relational database, an advantage also present in graph queries
in languages such as Cypher and GQL, and in SQL for SurrealDB, which uses a
RELATE clause to build relationships between tables that can be navigated by
path expressions. Joins are implicitly embedded in a hierarchical data structure,
performed when creating the data model, and these embedded joins in the data
are easily navigated with a path expression. Second, grouping and aggregation
can be more naturally expressed in hierarchical data. Their expression in SQL has
been shown to be cognitively challenging for many users, especially programmers
learning SQL [1,17,18]. Third, Codd’s critique of access path dependence applies
only to stored hierarchies. Virtual hierarchies are dynamically constructed as
needed for query evaluation, hence have no such dependence.

This paper leverages virtual hierarchies as a conceptual model to support
plug-and-play SQL. We propose coupling a query to a hierarchical specification
of its input type, we call the specification a query guard, to create a plug-and-
play query. A plug-and-play query is similar to a plug-and-play device. Such a
device can be plugged into any socket and if the socket provides the necessary
electrical input or other required input, then the device will play. Similarly, a
plug-and-play query can be plugged into any data source and, if the data source
provides data in a sufficient structure specified by its input type or guard, it will
“play” producing a desired result.

We motivate the utility of query guards with an example. Suppose that we
have a relational database with data about biological specimens collected in
the field. A user could query the database using the query in Fig. 2 to retrieve
the names of botanists who collected Asteraceae (plants in the Daisy family)

148 S. Swami et al.

Fig. 2. Retrieve the names of botanists who collected Asteraceae specimens in 2023

Fig. 3. Retrieve the names of those who collected Asteraceae specimens in 2023

specimens in 2023. The query does a join between the taxa, occurrences, and
collectors tables, applies the appropriate selection conditions, and projects
the name of the botanist. The query explicitly uses logical pointers (foreign key
to key associations) from the taxa table to the occurrences and collectors
tables. We can rewrite the query as a plug-and-play SQL query using a query
guard as shown in Fig. 3. The guard specifies the shape or type of the input to
the query. The guard stipulates that the query can be evaluated on any data
collection that has this hierarchy, or that can be converted or transformed to
the desired shape (within information loss guarantees).

One big advantage of plug-and-play SQL queries is that they are portable.
The query in Fig. 3 is portable to data collections that have different shapes (i.e.,
we do not care how many steps are involved in “joining” the tables to construct
the hierarchy). A second advantage is that the hierarchy naturally groups the
data, and the grouping can be exploited in a query for aggregation. Suppose for
instance we only wanted those collectors who collected more than 40 specimens
then we could modify the query as shown in Fig. 4. Querying against a hierarchy
simplifies grouping and aggregation (as in XQuery and Cypher).

This paper focuses on matching and transforming the shape of the data.
We are agnostic about the semantic matching of labels between the guard and
the source, e.g., does person in the guard mean the same as person in the
data, because the semantic matching problem is already being researched by
other communities, e.g., work on ontologies in the Semantic Web community.
The focus of our research is on the shape of the data and because the problem
is orthogonal we can add Semantic Web solutions to plug-and-play queries to
address the problem of semantic mismatch. Note that the table names in the
query guard in Fig. 3 are present to help in the semantic matching. The guard

Using a Conceptual Model in Plug-and-Play SQL 149

Fig. 4. Retrieve the names of botanists who collected more than 40 Asteraceae speci-
mens in 2023

Fig. 5. Simplified guard for the query in Fig. 3

could be simplified to that shown in Fig. 5. To better combine the output of any
semantic matching technique with the guard, a MATCH clause could be added
that maps names in the schema to those in the guard.

This paper makes the following contributions.

– We describe using a conceptual model as the input type for an SQL query.
We call the model a query guard.

– We show how to match the query guard to the schema of a relational database.
– We give a denotational semantics for converting a plug-and-play query to

SQL.
– We report on the implementation of plug-and-play SQL.

This paper is organized as follows. The next section describes how an input
type specification is matched to a schema hierarchy and how the match is used
to rewrite the query to one that can be evaluated. We then explain how we
implemented query guards and give a brief evaluation. Section 5 covers related
work. The paper concludes with a short summary and gives some avenues for
continuing the research in future.

2 Model

In this section we describe, at an abstract level, how the virtual hierarchy is
constructed for a guard when evaluated on a relational database. The key ideas
are to model data-relatedness using a multigraph of associations among relations.
A spanning tree in the multigraph determines how to best relate names in a
hierarchical context. The tree is used to construct an SQL query to extract data
for formatting in the shape specified by a guard.

150 S. Swami et al.

2.1 Guard

A guard is a specification or declaration of the structure of the data needed by
the query.

Definition 1 (Guard). Let database, D, consist of names N = n1, . . . , nk.
Then guard G = (M,E) where M ⊆ N and

E = {(np, nc) | np, nc ∈ M}

forms a connected, acyclic graph.

Essentially a guard is a tree of database column or table names.
We assume that a guard is specified using JSON-like syntax, as is common

in other tools, e.g., GraphQL.

Definition 2 (Guard JSON Specification). A guard conforms to the EBNF
grammar given below.

guard ← GUARD pair
pair ← name obj?
name ← TABLE_NAME | COLUMN_NAME
obj ← { pair (, pair)* }

The tree of names in a guard is built from the nested values of name/obj pairs
in the guard specification. For example, the guard in Fig. 3 is the tree consist-
ing of nodes {collectors, occurrences, name, family, and year} and edges
{ (collectors, name), (collectors, occurrences), (occurrences, family),
(occurrences, year) }.

2.2 Association Multigraph

For our purposes a relational database, D, is a set of relations, {R1, . . . , Rn},
and a set of associations among attributes in the relations K = f1, . . . , fm,
e.g., K could be a set of foreign key constraints, inclusion dependencies, or user
specified “edges” (such as specified by the RELATE clause in SurrealDB SQL).
Each relation in D has some number of attributes, that is, the schema for relation
Ri is (A1, . . . , Ak) and each relationship in K is of the form Rj → Rm, that is,
relation Rj is related to Rm, e.g., there is a foreign key from Rj to Rm.

Definition 3 (Association Multigraph). The association multigraph, G =
(V,E), for D is an undirected multigraph where V = {R1, . . . , Rn} is the set of
vertices and E = {(Rj , Rm, i) | fi ∈ K ∧ fi = Rj → Rm} is the set of edges (i
is the label of the edge).

Using a Conceptual Model in Plug-and-Play SQL 151

Note that there is one edge per association. The edge is labelled with the identi-
fier for the association. As there could be more than one association, e.g., more
than one foreign key, between a pair of relations, there can be more than one
edge between nodes, but each edge will have a different label.

As an example consider the relational schema depicted in Fig. 6. The schema
is for Symbiota, a commonly used biodiversity data management system [11].
The schema depicted is a small part of Symbiota’s schema, which has 74
tables and 97 foreign keys. Symbiota stores specimen biodiversity data such
as occurrences of taxa that are part of collections housed in herbaria, nat-
ural history museums, and private collections. A collection may involve various
collectors and images of the specimens. The taxa table is the taxonomic
hierarchy of scientific names that may be synonyms (recorded in the statuses
table) as stipulated by taxonomic authorities. The taxa records also have
descriptions derived from taxonomic treatments. The taxa table has a foreign
key to itself that associates child to parent taxa. The association multigraph for
the schema in Fig. 6 is given below and depicted in Fig. 7.

– V = {statuses, descriptions, authorities, taxa, occurrences,
collections, images, collectors}

– E = {(authorities, statuses, 1), (authorities, descriptions, 2),
(statuses, taxa, 3), (descriptions, taxa, 4), (occurrences, taxa, 5),
(collections, occurrences, 6), (taxa, images, 7),
(collectors, occurrences, 8), (taxa, taxa, 9)}
In general in this paper we will utilize foreign keys for the associations. We

focus on foreign keys not only because foreign keys describe important semantic
connections between tables, but also because the keys are stored in the schema
and so can be automatically read and used. But the multigraph could be con-
structed by computing other associations among relations, e.g., inclusion depen-
dencies, and the techniques described in this paper would be the same.

2.3 Relating Data Through Names

The association multigraph can be used to relate names in a guard based on the
notion of closeness [20]. Closeness can be described as the property that two data
items are related if they are connected (by a path) and that no shorter paths that
connect items of the same type exists. In the context of relational databases the
type of a datum is the domain (an attribute in a relation) to which it belongs.

Suppose that a guard specifies that affiliation should be related to
scientific name. The affiliation type exists in the collectors relation,
while scientific name is part of taxa. There is a path of length two that
connects collectors to taxa as well as paths of length greater than two (by
traversing the link from taxa to itself). Closeness stipulates that the shortest
path is preferred.

Definition 4 (Parent/Child Closeness). Let plug P have parent p with child
c where p is an attribute of relation Rp and c is an attribute of relation Rc.

152 S. Swami et al.

Fig. 6. Reduced schema of the Symbiota2 database

Closeness stipulates that a path from Rp to Rc makes p closest to c if and only
if there is no shorter path between Rp and Rc in a association multigraph, F ,
that is,

⊗(F, P, p, c) = {(Rp, R1, i1), . . . , (Rn, Rc, in)}
⊗ is the closest operator and (Rp, R1, i1), . . . , (Rn, Rc, in) is a shortest path.

As an example assume the pattern contains affiliation (in relation
collectors) and description (in relation descriptions), then the shortest
path is below.

{(collectors, occurrences, 8), (occurrences, taxa, 5),
(taxa, descriptions, 4)}

Parent/child closeness relates a pair of names in a guard, but a guard could
contain many names. Closeness for the guard is built from parent/child closeness.

Definition 5 (Guard Closeness). Let P be the set of parent child relation-
ships, (p, c), in a guard. Then for association multigraph F the data relationship
operator,

⊗
, is defined as follows.

⊗
(F, P) =

⋃

∀(p,c)∈P

⊗(F, P, p, c)

Using a Conceptual Model in Plug-and-Play SQL 153

Fig. 7. Association multigraph for the Symbiota2 database

Guard closeness defines a spanning tree within the graph over the nodes
corresponding to relations that have attributes in the guard. To relate data in a
guard, P , the paths on the plug are joined using an in-order walk of the tree for⊗

(F, P).

Definition 6 (Relating Data). Given a guard, P , and an association multi-
graph, F , with spanning tree, C, for

⊗
(F, P) that relates names x1, . . . , xk in

P , let an inorder walk of the spanning tree yield the list of relations [R1, . . . , Rn].
Then the data relationship operator, ��P , is defined as follows.

��P (C, [x1, . . . , xk]) = πx1,...,xk
(��[R1, . . . , Rn])

where �� is the left outer join (on the attributes in the foreign keys).

For example, to relate affiliation to scientific name, the inorder walk for
the spanning tree is [collectors, occurrences, taxa]. The data relationship
operator applied to this list yields the query given below.

πaffiliation,scientific name(collectors �� occurrences �� taxa)

2.4 Potential Information Loss

There may be more than one closeness spanning tree that connects pairs of
names. For instance there are two paths of length two from authorities to taxa,
one through statuses and one through descriptions. To determine which
spanning tree to use, we rank the trees by their potential information loss.

Definition 7 (Loss Ranking). Let spanning trees T1, . . . , Tn connect names
x1, . . . , xk. Then Ti is the most complete spanning tree if the data relatedness of
the tree produces the most tuples, i.e.,

|
⊗

(Ti, [x1, . . . , xk])| = max1≤j≤n|
⊗

(Tj, [x1, . . . ,xk])|.

154 S. Swami et al.

Fig. 8. Taxa and the managers who manage collections of them

The idea of loss ranking is to choose the spanning tree that produces the most
tuples since such a join represents the most complete connection among the set
of relations. Note that the loss ranking is an instantaneous measure, that is, it
produces a ranking with respect to the state of a database as of when the query
is evaluated. Since relations change over time an alternative path may represent
the most complete connection at some future time. To compute a measure of the
completeness the association multigraph can be annotated with join selectivity.
Suppose foreign key f is from relation R to relation S, that is, R borrows a key
from S. Then the join selectivity for f be Lf = |S � R|/|S|. Note that S � R
using f will produce between 0 and |S| tuples. We can annotate the association
multigraph with join selectivities and multiply the selectivities along branches
in a spanning tree to get total completeness; alternative spanning trees can be
ranked by their total completeness.

Completeness factors can also be used to categorize plugs by the amount
of information loss. A completeness factor of 1 for a plug represents that the
construction of a hierarchy loses no information, i.e., it is complete in the sense
that every value at a leaf can be reached from the root. A completeness factor of
less than 1 indicates that some leaf values might not be represented. For exam-
ple, consider the guard specified in Fig. 8. which relates taxa to collections.
The guard specifies joins along the following path: taxa, occurrences, and
collections. If the completeness factor is 1 then every taxon is part of some
collection that has a manager. On the other hand, a completeness factor less
than 1 indicates that some taxa may be unrelated to a manager (are not in a
collection). Note that because we are using outer joins to compute the hierarchy
those taxa will still be present in the hierarchy, but the manager will be a null
value.

Guard closeness as defined above is based on the closeness of parent/child
relationships in a guard rather than the minimal number of relationships overall
in a guard. An alternative is to use the Steiner tree, which is a minimal spanning
tree among a subset of nodes in the multigraph. Computing the Steiner tree is
NP-complete [14], even for an unweighted multigraph. Though approximation
techniques exist [5], it is unclear if the Steiner tree gives a better intuitive solution
to the data-relatedness problem since a guard designer may construct a guard
by reasoning about parent/child relationships in a hierarchy rather than overall
minimality of the edges in a guard.

Using a Conceptual Model in Plug-and-Play SQL 155

Fig. 9. Denotational rule for translating a plug-and-play query into SQL

Fig. 10. SQL for retrieving who collected Asteraceae specimens in 2023

2.5 Combining the Guard with the Query

In this section we give the denotational semantics of a plug-and-play query.
There are two cases: with and without an aggregate function. We consider the
without case first.

If a query does not have an aggregate function then the transformation is
relatively straightforward using the data-relatedness operator, ��P . In the rule
given in Fig. 9, D is the database on which the query is evaluated. As an example,
the transformation of the query in Fig. 3 is given in Fig. 10. Note that the outer
join operator generates a path from collectors to taxa through occurrences
to relate name to family, hence the final hop in the path back to occurrences
is not needed in the join expression.

A query with an aggregate function has to add grouping (more than one
aggregate is a repetition of this case). In the denotation rule given in Fig. 11 we
assume a is an aggregate applied to a name at level k in the tree (with ancestor
names g1 to gk). We further assume a is both in the SELECT and the WHERE clause.
As an example, the transformation of the query in Fig. 4 is given in Fig. 12.

3 Implementation

In this section, we describe the code structure for our application. Most of the
code is written in Java. We used ANTLR for parsing and translation and mod-
ified the grammar for SQLite. The code structure for the application is shown

156 S. Swami et al.

Fig. 11. Denotational rule for translating a plug-and-play query with an aggregate into
SQL

Fig. 12. SQL for retrieving who collected Asteraceae specimens in 2023

in Fig. 13. It consists of five modules. The database module is handles database
communication We used JDBC for communicating. The grammar module con-
tains the lexer and parser rules for the SQL and query guard, and a custom
listener to implement the denotational semantics for the translation of a plug-
and-play SQL query into SQL. The data pull module contains the logic to
evaluate a query and display results. The join graph module builds and main-
tains the association multigraph. Lastly, the tree module communicates with
the listener and the data pull module to generate the queries.

Figure 14 shows a screenshot of our JavaFX application that displays the
generated query (the guard and query are in the context of a baseball database).
As shown in Fig. 15, the user selects the query they want to execute and hits the
Execute Query button to generate the result.

4 Plug-and-Play Evaluation

We provide a comparative analysis of the run-time cost of ordinary SQL queries
with plug-and-play queries. Of course the plug-and-play queries were easier to
write, but in this evaluation we focus on the run-time cost. We wrote six plug-
and-play queries on a baseball database with 2GB of data (the Lahman baseball

Using a Conceptual Model in Plug-and-Play SQL 157

Fig. 13. Plug and Play SQL- Code Structure

Table 1. Cost Analysis

Query No. Manual Query Cost Generated Query Cost

Query 1 318.61 2009.71
Query 2 3684.72 3684.72
Query 3 0.29 709
Query 4 3906.91 3924.3
Query 5 2500.25 2677.22
Query 6 3040.94 3040.94
Query 7 2004.75 8958.4

database is publicly available). We ran the queries using Postgres version 14.7
on a Linux system running Ubuntu with 16GB of RAM. Table 1 shows the cost
comparison of the manually created SQL queries compared to the queries gener-
ated by the plug-and-play application. We observe that the plug-and-play queries
are often the same cost as the hand-crafted queries, but sometimes incur higher
cost due to the cost of left outer joins versus inner joins. We plan to focus on
optimizing queries to consider edge cases in future work.

5 Related Work

To the best of our knowledge, there is no previous work in querying SQL using
hierarchies, in fact, the relational model replaced the hierarchical model and is
widely considered an improved successor. But there has been previous research in
querying with input types that can be broadly classified into several categories.

Query Relaxation/Approximation. One way to loosen the tight coupling
of the input type to the data is to relax the path expressions in a query or

158 S. Swami et al.

Fig. 14. Generated Queries

approximately match them to the data within a given edit distance [2,3,13].
Though such techniques work well for small variations in data structure or values,
there can be a very large edit distance among the same data organized in different
structures, which we would like to consider as the same data. Relaxing a query
to explore all data shapes within a large edit distance is overly permissive, and
includes many shapes which do not have the same data. Query correction [8]
and refinement [4] approaches are also best at exploring only small changes to
the data.

Declarative Transformations. There are declarative languages for specify-
ing transformations of (hierarchical) data [15,16]. However, each transformation
depends on the hierarchy of the input and would have to be re-programmed for
a different hierarchy. It would be more desirable if a programmer could simply
declare the desired hierarchy in a single guard.

Schema Integration. Data can be integrated from one or more source schemas
to a target schema by specifying a mapping to carry out a specific, fixed trans-
formation of the data [6]. Once the data is in the target schema, there is still
the problem of queries that need data in some schema other than the target
schema. In some sense schema mediators integrate data to a fixed schema, which
is the starting point for what query guards do. The different problem leads to
a difference in techniques used to map or transform the data. For instance,
tuple-generating dependencies (TGDs) are a popular technique for integrating
schemas [9,12]. Part of a TGD is a specification of the source structure from
which to extract the data. Specifying the source schema will not work for a
query guard, a query guard must be agnostic about the schema and work for
any given schema (work in the sense that the input type can be matched or
the matching produces information about potential data loss or errors). A sec-
ond concern for query guards is that the transformation must be fully auto-

Using a Conceptual Model in Plug-and-Play SQL 159

Fig. 15. Results

matic. A third difference is the need to determine potential information loss,
which is an important part of a query guard, but absent from such mappings
for data integration. For schema mediation, if a programmer programs a data
transformation that loses information, that information is gone and subsequent
queries on the transformed data will never know about the information loss. Fan
and Bohannon explored preserving information in data integration, namely by
describing schema embeddings that ensure invertible mappings that are query
preserving [10]. Query guards focus on an important special case of the mappings
they investigated. Query preservation concerns all possible queries, while query
guards are designed to check a single query. Our approach for quickly determin-
ing whether a mapping is invertible (or in our terminology reversible) is based
on the concept of closeness, and in those cases where mapping is not reversible
we can identify weaker, but still useful classes of mappings that permit some
information loss.

Finally we note that our research focuses only on the structure, not the
semantics, of the data because Semantic Web technologies, i.e., ontologies,
already address the orthogonal semantic matching problem. Hence, solutions
developed by the Semantic Web community can be used to semantically match
in plug-and-play queries.

160 S. Swami et al.

6 Conclusions and Future Work

This paper describes how to pair a query with a conceptual model, which we call
a query guard. The query guard is a specification of the query’s input type, that
is, the structure or shape of the data that the query needs in order to correctly
evaluate. The combination of query guard and query creates a plug-and-play
query. Plug-and-play queries are more portable, more reliable because they are
input type safe, and are potentially easier to write.

In this paper we chose a very simple conceptual model for expressing a query
guard, namely, a hierarchical specification. We used this specification for a rela-
tional query language, thereby demonstrating that the model for the input type
can be independent of the data model for the query. Though we focused on how
to run a plug-and-play query on a relational database, a plug-and-play query
could be equally run on JSON data or graph data. But the input type must be
matched to a given data model. We described how to match the query guard to
a relational schema. Once the schema is matched the query can be transformed
to a query that can be safely evaluated on the relational database.

In future we plan to investigate whether there is a better way to express a
query guard, i.e., what is the best conceptual model to use? Concurrent with
this effort we will conduct a user survey to help evaluate the effectiveness of plug-
and-play SQL in lowering the time and effort to write queries. The user survey
will investigate the use of different conceptual models using a randomized app-
roach [19]. The user survey requires a separate treatment than this paper, which
focuses on conceptual modeling. We also plan to expand the range of queries
we handle to include subqueries, relational operations (union, intersection, and
difference), and data modification. Another direction of future research is guard
inference. Relying on programmers to specify query guards for plug-and-play
queries has two problems: First, a programmer may change a query but forget
to change the guard. Second, a programmer may give an incorrect guard, for
instance, specify a guard that is in the wrong shape for a query. The best way
to solve both problems is to automatically infer a guard, Qp, from a query Q.
Ideally, Qp, will be minimal, that is we will infer Qp such that there does not
exist another guard, Q′

p, for Q, which is tighter than Qp.

Acknowledgements. This work was supported in part by the National Science Foun-
dation under Award No. DBI-1759965, Collaborative Research: ABI Development: Sym-
biota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data.
Opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect those of NSF.

References

1. Ahadi, A., Prior, J., Behbood, V., Lister, R.: A quantitative study of the relative
difficulty for novices of writing seven different types of SQL queries. In: Proceedings
of the 2015 ACM Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2015, pp. 201–206 (2015). https://doi.org/10.1145/2729094.
2742620

https://doi.org/10.1145/2729094.2742620
https://doi.org/10.1145/2729094.2742620

Using a Conceptual Model in Plug-and-Play SQL 161

2. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree pattern relaxation. In: EDBT, pp.
496–513 (2002)

3. Augsten, N., Böhlen, M.H., Gamper, J.: The q-gram distance between ordered
labeled trees. ACM Trans. Database Syst. 35(1), 1–36 (2010)

4. Balmin, A., Colby, L.S., Curtmola, E., Li, Q., Ozcan, F.: Search driven analysis of
heterogenous XML data. In: CIDR (2009)

5. Beyer, S., Chimani, M.: Strong Steiner tree approximations in practice. J. Exp.
Algorithmics 24(1), 1.7:1–1.7:33 (2019)

6. Bhide, M., Agarwal, M., Bar-Or, A., Padmanabhan, S., Mittapalli, S., Venkat-
achaliah, G.: XPEDIA: XML processing for data integration. PVLDB 2(2), 1330–
1341 (2009)

7. Codd, E.F.: A relational model of data for large shared data banks. CACM 13(6),
377–387 (1970)

8. Cohen, S., Brodianskiy, T.: Correcting queries for XML. Inf. Syst. 34(8), 690–710
(2009)

9. Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio:
schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02463-4_12

10. Fan, W., Bohannon, P.: Information preserving XML schema embedding. ACM
Trans. Database Syst. 33(1), 1–44 (2008)

11. Gries, C., Gilbert, E., Franz, N.: Symbiota - a virtual platform for creating voucher-
based biodiversity information communities. Biodivers. Data J. 2, e1114 (2014)

12. Jiang, H., Ho, H., Popa, L., Han, W.S.: Mapping-driven XML transformation. In:
WWW, pp. 1063–1072 (2007)

13. Kanza, Y., Sagiv, Y.: Flexible queries over semistructured data. In: PODS (2001)
14. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Sym-

posium on the Complexity of Computer Computations, pp. 85–103 (1972)
15. Krishnamurthi, S., Gray, K.E., Graunke, P.T.: Transformation-by-example for

XML. In: PADL, pp. 249–262 (2000)
16. Pankowski, T.: A high-level language for specifying XML data transformations. In:

ADBIS, pp. 159–172 (2004)
17. Poulsen, S., Butler, L., Alawini, A., Herman, G.L.: Insights from student solutions

to SQL homework problems. In: Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education, pp. 404–410 (2020).
https://doi.org/10.1145/3341525.3387391

18. Taipalus, T., Siponen, M., Vartiainen, T.: Errors and complications in SQL query
formulation. ACM Trans. Comput. Educ. 18(3), 1–29 (2018)

19. Uesbeck, P.M., Peterson, C.S., Sharif, B., Stefik, A.: A randomized controlled trial
on the effects of embedded computer language switching. In: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, Virtual Event, USA, 8–13 November
2020, pp. 410–420. ACM (2020). https://doi.org/10.1145/3368089.3409701

20. Zhang, S., Dyreson, C.E.: Symmetrically exploiting XML. In: WWW, pp. 103–111
(2006)

https://doi.org/10.1007/978-3-642-02463-4_12
https://doi.org/10.1007/978-3-642-02463-4_12
https://doi.org/10.1145/3341525.3387391
https://doi.org/10.1145/3368089.3409701

	Using a Conceptual Model in Plug-and-Play SQL
	1 Introduction
	2 Model
	2.1 Guard
	2.2 Association Multigraph
	2.3 Relating Data Through Names
	2.4 Potential Information Loss
	2.5 Combining the Guard with the Query

	3 Implementation
	4 Plug-and-Play Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

