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Abstract. Robotic Process Automation is a technology for lightweight
task automation that empowers business users to build their own soft-
ware bots by combining predefined operations in a graphical user inter-
face. However, due to the detailed nature of these operations, which
are comparable to single code instructions, the graphical models become
complex and hard to understand. This complicates the sharing, discus-
sion, and maintenance of these software bots. At the same time, RPA
projects typically require extensive documentation of the process and
its automation aspects that must be kept in sync during the mainte-
nance phase. This paper presents a foundation for bot model abstraction
in RPA that leverages semantic information. It proposes an abstraction
method to generate smaller but still expressive bot models in an auto-
mated fashion. These abstract bot models can be used for documentation
purposes and to foster process understanding, as they convey key activ-
ities while hiding operational details that are not relevant to perceiving
the overall automation goal.

Keywords: Robotic Process Automation · Model Abstraction ·
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1 Introduction

Despite recent advancements in computer technology, repetitive and tedious
tasks are still the order of the day for many employees. These tasks are not
only costly due to the many working hours spent, they also increase the risk of
silently introducing errors by slips. Robotic Process Automation (RPA) enables
companies and employees to automate such computer-based tasks by employing
software robots: scripts that can operate on user interfaces but that can also
make use of programming interfaces, e.g., to access databases directly [9,10,25].

As opposed to traditional process automation, often considered costly and
laborious, RPA is a rather lightweight automation technique with its unintrusive
approach based on user interfaces [11]. Additionally, common tools for RPA focus
on business users and thus offer no-code or low-code solutions for building RPA
bots [2]. Their graphical interfaces allow users to select and connect predefined
operations, such as opening a program or entering text in an input field, resulting
in an automation workflow displayed in process model-like notations [4,9,11].
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While such graphical representations enable business users to create RPA
bots, they entail a major drawback: The atomic level of the individual opera-
tions quickly results in large graphical models. Whereas in business processes the
level of abstraction and, to this extent, the complexity of the model can be cho-
sen according to the model’s purpose and will most likely hide complexity, the
individual nodes in RPA bot models represent specific work instructions, e.g.,
the assignment of a value to a variable. Consequently, even smaller use cases
can result in large, confusing models. While they serve the purpose of automa-
tion, they are hard to comprehend or reason about, hindering maintenance and
communication tasks at later stages.

Similar to business process models, some RPA tools offer sub-process-like
constructs to better structure the model. However, just as with process models,
such representations are highly dependent on the modeler, who must manually
specify the desired levels of abstraction that are then “cast” into the model.
Furthermore, it does not help with already existing models or when using an
RPA software that does not support such constructs.

This paper addresses the challenge of extensive RPA bot models by proposing
an abstraction technique that automatically generates reduced and condensed
models that can be used for documentation and communication purposes. Unlike
traditional abstraction techniques, it does not rely on syntactic features, but
rather considers the semantics of the model elements grounded on the ontology of
RPA operations. With that, the goal is to create an abstract model that conveys
the overall purpose and main tasks of a bot model. Additionally, a slider-based
solution is devised that allows the user to control the level of abstraction.

The importance of model abstraction in RPA is motivated in Sect. 2. Subse-
quently, Sect. 3 presents related work on business process model abstraction and
introduces RPA and the ontology of RPA operations in more detail. Section 4
elaborates on the devised abstraction technique for RPA bot models, which is
extended in Sect. 5 to allow different levels of abstraction. A prototypical imple-
mentation of the approach, its application to an example, and current limitations
are discussed in Sect. 6, before the paper is concluded in Sect. 7.

2 Motivating Example

During execution, RPA bots follow a sequence of work instructions that was
previously modeled by a user. The available “building blocks” are predefined
by the respective RPA tool provider [9] and are rather atomic operations, such
as clicking a button or inserting a string into a text field [21]. Consequently,
even simpler tasks may require numerous instructions. Since most RPA tools
provide a graphical way to define these workflows, the created models can become
accordingly large. This section illustrates this issue with an example.

In the scenario, a common task suitable for RPA should be carried out.
Orders are received as PDF files attached to e-mails, and need to be populated
to multiple systems. Once the relevant data has been extracted from the PDF
file, it must first be entered into the company’s browser-based order management
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Fig. 1. High-level process model capturing the scenario

system (OMS), which returns an identifier for the order. Subsequently, some
information and the identifier need to be appended to a specific spreadsheet used
for reporting. Lastly, if the order surpasses a certain threshold, an e-mail needs
to be generated. Figure 1 shows a business process model with the described
steps.

While this scenario is not overly complex, its realization using RPA requires
certain intermediate steps. For example, the text extracted from the PDF file
needs to be analyzed, and the results must be cached locally, such as the address
or the list of order items. The web-based OMS may require a login, and the
bot occasionally needs to wait until certain UI elements are loaded. In Fig. 2, a
possible sequence of RPA operations is presented, demonstrating the complexity.
While all the steps shown are necessary to execute the bot properly, the model’s
complexity impedes communication and maintenance1.

Fig. 2. RPA bot model for the described scenario (intentionally not readable)

The goal of this work is to derive from an inherently detailed bot model an
abstract, yet meaningful, business process-like model, similar to the one shown in
Fig. 1. That is, the abstract representation should convey the overall purpose and
main functionality of the bot while hiding specific and intermediate steps. This
is also in line with the main purpose of abstraction for business process models,
providing a quick overview, as reported by Smirnov et al. [18]. In summary, the
developed approach should address the following requirements:

R1 Reduce the size of the model.
R2 Preserve information that is vital to understand the bot’s purpose.
R3 The level of abstraction should be adjustable by the user.

1 Due to the lack of a modeling standard in RPA [22], we use BPMN for visualization.
A high-resolution version can be found here: https://github.com/bptlab/onto-

rpa-platform/raw/main/components/abstraction/figures/BotModelExample.svg.

https://github.com/bptlab/onto-rpa-platform/raw/main/components/abstraction/figures/BotModelExample.svg
https://github.com/bptlab/onto-rpa-platform/raw/main/components/abstraction/figures/BotModelExample.svg
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R3 recognizes that there will not be a single level of abstraction that fits all
needs, e.g., a coarse abstraction may be sufficient for a quick overview, while a
more detailed version may be required for documentation and discussion.

3 Related Work and Preliminaries

To the best of the authors’ knowledge, the topic of automated abstraction of
RPA bot models has not been addressed in research so far. However, the related
discipline of business process management has developed several approaches to
business process model abstraction (BPMA), some of which are summarized
in this section together with ontology-based approaches to model abstraction.
This is followed by a brief introduction to Robotic Process Automation in gen-
eral and the ontology of RPA operations in particular. In addition, two general
abstraction methods used in the paper are outlined.

3.1 Business Process Model Abstraction

Business process models define a workflow consisting of activities which out-
line the process’ steps [24], like in Fig. 1. Unlike RPA, there are no predefined
activities to choose from (cf. Sect. 2) due to the complexity and diversity of the
business domains. Instead, the purpose of an activity is defined by a natural
language label, often without directly linking structured information [16].

Consequently, many abstraction approaches focus only on structural features
of the process model, like aggregating activities of “single entry single exit”
(SESE) fragments in the model [13] or applying abstraction techniques only
to manually selected parts of the model to create personalized views on the pro-
cess model [3]. In [19], the authors propose an abstraction approach that not
only considers activities for abstraction, but that also handles aspects like roles,
data objects, and messages based on a set of abstraction rules they provide.

Other approaches make use of external data not included in the model, such
as execution times or costs of certain model parts [12]. Based on this information,
Polyvyanyy et al. [12] propose the use of a slider that allows users to set a custom
threshold for those values and to abstract model elements with a lower value.

Another abstraction approach advises the use of a vector space model to
cluster activities of the process model regarding their similarity with respect to
different information available in the model, such as data objects, IT systems,
or roles [17]. Adding to this approach, Wang et al. [23] recently proposed a semi-
supervised clustering approach that not only considers the semantic similarity,
but also takes the consistency of the control flow more into account.

Theoretically, these abstraction techniques developed for business process
models could be applied to RPA bot models, as they exhibit similar syntactical
features and can be regarded as (part of) a business process model [7]. However,
RPA with its limited set of possible operations, captured by the ontology of
RPA operations presented below, offers semantic information about each task
that could be exploited for abstraction, which shall be the focus of this paper.
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3.2 Ontology-Based Abstraction

The lack of structured semantic information in common models hampers the
development of an abstraction technique that goes beyond purely syntactical
properties of the model [8]. This also applies to business process models, which
have no semantic information embedded by default, but rely on text-based labels
to convey their meaning, as noted above. However, since using only structural
information is not always sensible, as it likely combines model parts that are
semantically unrelated [16], Smirnov et al. [16] propose a semi-automated app-
roach for BPMA that is based on ontological knowledge, more specifically, that
utilizes a part-of relation defined between process activities. Groups of activities
in the model that are strongly related based on this relation can be aggregated
and replaced by their lowest common ancestor in the relation. As the approach
requires the existence of such an ontology of the specific business environment
of the process, it is not easily applicable to every business process model.

Apart from process models, there also are ontology-based abstraction tech-
niques that aim to reduce the complexity of conceptual domain models. For
example, Guizzardi et al. [8] present a rule-based abstraction approach for con-
ceptual models that are created using the ontology-based modeling language
OntoUML and which consequently can make use of semantic information. The
provided rules exploit the ontological underpinning and modify the graph of the
class diagram-like model to create a more abstract version of the model, for
example, to abstract from classes that describe relations. Related to the idea
of generating views on process models as described above, Figueiredo et al. [6]
define an abstraction approach that extracts views from OntoUML models based
on the ontology-induced semantics to reduce the complexity.

3.3 The Ontology of RPA Operations

Companies resort to Robotic Process Automation (RPA) for a fast and, com-
pared to traditional approaches, cheap process automation [11]. By combining
predefined automation operations, users can define automation routines that can
operate on the user interface, imitating the user’s behavior, and also access, for
example, web services and databases [1,9].

Compared to business processes with their plenitude of application domains
and user-defined activities, workflows in robotic process automation are
restricted to the predefined set of RPA operations provided by the respective
RPA tool vendor [9,21]. Völker and Weske [21] introduced the ontology of RPA
operations (ORPAO), that provides a vendor-agnostic view on RPA operations
and relates them to the software and the data that can be automated. It defines a
taxonomy (type-of relationship) of operations that classifies the available oper-
ations regarding their purpose, differentiating three main types of operations:
AutomationOperations that actually operate on the computer, such as accessing
data, performing mouse clicks, or starting software; InternalOperations that
are used for local data storage and checks; and ControlFlowOperations, such
as decisions that affect the execution [21]. Instances of the operations-taxonomy,
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Fig. 3. Excerpt of the operations-taxonomy in the ontology of RPA operations, showing
its main concepts and the branch for the ExcelReadCell operation with its connection
to the concept of Software in the ORPAO. Adapted from [21].

such as ExcelReadCell, represent a specific operation that is available for build-
ing an RPA bot [21]. Traversing the taxonomy, partly depicted in Fig. 3, reveals
that ExcelReadCell belongs to the concept (class) ReadCell, which in turn is
a DataExtractionOperation, and so on. Figure 3 also depicts the automates
relation, that connects AutomationOperations and Software.

In this paper, we refer to the operations-taxonomy as a rooted tree TO with
RPAOperation as its root rO. Let o be an element (node) in TO, then we define
type : TO → TO ∪ {⊥} as the function that returns for each element in the
taxonomy its parent element and undefined (⊥) for type(rO). For example,
type(ExcelReadCell) = ReadCell. Furthermore, we denote the set of all specific
operations (instances in the taxonomy) as O, which are the leafs in TO. Like-
wise, we introduce S as the set of all specific software programs in the ORPAO,
including, for example, MicrosoftExcel.

3.4 Abstraction Methods

While the different abstraction approaches address different goals and consider
different information for abstraction, they usually rely on the same two methods
on how to abstract elements in the model, i.e., how the model itself is pruned:
elimination and aggregation [3,5,14,15,18,19]. Likewise, the abstraction app-
roach presented in this paper makes use of these two methods, which is why
they and their effects on process models are introduced in more detail.

Dimensions of Abstraction. Smirnov et al. [18] characterize the effects of
elimination and aggregation operations on the model and highlight two dimen-
sions to consider: granularity and coverage. The degree of granularity describes
how detailed the model’s activities are. At a high level of granularity, the model
consists of many very detailed activities, whereas at lower levels, it consists of
only a few activities that outline the process. Coverage in turn considers the
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Fig. 4. Application of the abstraction methods elimination (top right) and aggregation
(bottom right) to B and C.

amount of information included in the model. A high degree of coverage means
that most of the available information is represented, while a lower level results
in a loss of information.
Elimination. Elimination removes elements from the model and thus decreases
its complexity. The level of coverage is reduced because the information car-
ried by the eliminated elements is no longer included and cannot be recovered
from the abstract model. Figure 4 illustrates the effect with a simple example.
Assuming activities B and C are supposed to be eliminated from the original
model at the left, the resulting abstracted model is depicted at the top right.
Any information about the eliminated activities is lost. The granularity remains
unchanged, as the level of detail (of the remaining activities) is unaffected.

Aggregation. The goal of aggregation is to combine a number of connected
elements of the original model and represent them as a new, single element in the
abstract model. The new element describes the subsumed parts in more general,
resulting in a lower degree of granularity. However, by reducing the granularity,
some detailed information may also be lost, slightly decreasing the coverage of
the model. Aggregating activities B and C in the example in Fig. 4 results in
the abstract model shown at the bottom right. Instead of two activities, a new
activity representing both is incorporated.

.

4 Generating Abstract RPA Bot Models

With the goal of creating an abstract bot model that conveys the bot’s key
functionality as motivated in Sect. 2, this section discusses the application of the
two abstraction methods, elimination and aggregation, in the context of RPA. By
leveraging ontological knowledge, the presented abstraction approach focuses on
the content of the model instead of syntactic features, with the aim of providing
a more meaningful abstraction.

Similar to business processes, RPA bots follow a well-defined sequence of
operations to achieve their automation goal [21]. This order is, as with busi-
ness processes, typically defined graphically using a notation based on workflow
graphs.

In previous work, we introduced the notion of a conceptual RPA bot as “a
vendor-independent representation of an RPA bot that is based on the concepts
of the ontology of RPA operations” [22]. Along this line, we introduce the concept
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of a conceptual RPA bot model in Definition 1 as a workflow graph whose nodes
are connected to instances in the ontology of RPA operations and thus yields
semantic information for each of its nodes.

Definition 1 (Conceptual RPA Bot Model). A conceptual RPA bot model
B is a tuple (N,F, concept), where
– N is a finite and nonempty set of nodes in the model;
– F ⊆ N ×N is the flow relation between operations, so that (N,F ) is a weakly

connected graph; and
– concept : N → O maps each node in the model to the corresponding individ-

ual in the operations-taxonomy TO, part of the ORPAO.

Existing, vendor-specific RPA bot models can be linked to the ontology using the
knowledge base of RPA operations which connects implementations of operations
by the various RPA vendors to their conceptual counterparts in the ontology,
thus enabling an automated transformation to conceptual RPA bot models that
can also be applied to text-based RPA bot models [21,22].

The central idea of the abstraction approach detailed in this section is built on
two pillars described in Sect. 4.1. First, it requires a mapping that assigns (classes
of) RPA operations in the ontology an abstraction method to apply. Second, the
bot model is analyzed to determine the execution context of each node in the
model, which is used to constrain and scope aggregation operations during the
abstraction. Both, the general mapping and the model-specific context analysis,
are prerequisites for performing the abstraction as described in Sect. 4.2.

4.1 Prerequisites and Preparation of the Abstraction

To be able to perform the abstraction, we introduce two new concepts: the
abstraction mapping and the operation context analysis. While the abstraction
mapping is independent of bot models, the automatic context analysis must be
performed on the model prior to abstraction.

Abstraction Mapping. The abstraction mapping determines how specific
operations should be treated during abstraction based on their importance
regarding the abstraction goal of creating a smaller model for communication
purposes (cf. Sect. 2). As defined in Definition 2, (classes of) operations in the
operations-taxonomy can be assigned one of the abstraction methods, elimina-
tion or aggregation.

Definition 2 (Abstraction Method Mapping). Let TO be the taxonomy
of operations in the ontology of RPA operations as introduced in Sect. 3.3. α is a
partial mapping that assigns elements in the taxonomy an abstraction method:

α : TO ⇀ {elimination, aggregation}
Based on the partial mapping, the abstraction method that should be applied

to any element o ∈ TO can be determined as follows:

abs(o) =

⎧
⎪⎨

⎪⎩

α(o) if α(o) is defined
abs(type(o)) elseif type(o) �= ⊥
⊥ else
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As each node n in a conceptual bot model is linked to the ontology via the model’s
concept function, the appropriate abstraction method to apply can be retrieved
using abs(concept(n)). According to the definition of abs(o), the function either
returns the abstraction method directly assigned to o (case 1) or the method
of the nearest ancestor of o in TO that has a method assigned by applying the
function recursively to the parent in TO (case 2). Otherwise, abs(o) will return ⊥
to indicate that o and none of its ancestors are assigned an abstraction method
and thus o is not to be abstracted (case 3). Inheriting the abstraction method
(case 2) allows assigning a method to classes of operations conveniently instead
of having to specify a method for each operation in O. At the same time, it is
still possible to overwrite the inherited method by assigning it directly (case 1).

For the mapping, we differentiate operations that (a) are essential for under-
standing the bot’s purpose and hence should not be affected by the abstraction,
(b) convey important information and whose semantics should therefore be pre-
served as well as possible (both relate to R2), and (c) operations that do not con-
tribute to understanding and thus can be concealed in the abstract model (R1).
Operations of type (a) are not assigned a method and consequently will not be
modified by the abstraction. This applies, for example, to ControlFlowOpera-
tions, which are essential to understand the execution logic.

Operations of type (b) are, in their sum, important for the understanding
and are therefore assigned aggregation, i.e., they can be merged and represented
at a higher level of abstraction, but should not be removed (R2). This applies
primarily to DataOperations, since data processing is the essence of RPA. In
addition, certain interactions with the UI may be relevant to understanding the
purpose of the bot. In the example, the operations performed in the OMS are
not that important individually, but taken together they convey that data is
being entered into this system.

Operations of type (c) are assigned elimination, reducing the size of the
model (R1) and focussing the attention to more important parts. Regarding the
example, this applies, among others, to the operations concerning the internal
data structure of the bot, such as matching a regular expression. While it is
essential for the bot to be functional, it is not necessary for grasping its purpose,
and is therefore also not included in the high-level process model presented in
the motivation (Fig. 1). Other examples include operations that resize windows,
wait for UI elements to appear, or navigating in the UI to a specific point.

In this paper, we establish the theoretical foundation for the abstraction
approach, but do not elaborate on a specific mapping. The development of such
a mapping is beyond the scope of this paper and should be done in collaboration
with domain experts (cf. Sect. 6.3).

Operation Context Analysis. Like in the motivating example, an RPA bot
will most likely automate different software and access various data during its
execution as defined in the bot model. Thus, each of its nodes is performed in
a specific context, defined in Definition 3. It comprises the specific application
on which the operation will be executed, and, if applicable, the data on which
the operation is being performed. For example, after opening the browser once
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(application context), the bot navigates to and operates on different websites
(data context) within this browser instance.

Definition 3 (Operation Context). Let B = (N,F, concept) be a conceptual
bot model. The contexts of B, CB , is a tuple (csoftware, cdata), where:

– csoftware : N ⇀ S where S are the specific software programs (instances) in
the ORPAO, and

– cdata : N ⇀ D where D is the set of strings describing all possible data
contexts, such as file names or URLs.

As some nodes and their respective operations are not executed in a specific
context, such as InternalOperations that have no effect outside the bot, the
context is defined as a partial mapping.

To be able to assign the correct context to nodes in the model, it needs to
be analyzed for context switches, i.e., points where the active software or data
changes during the bot’s execution. As there should be no external influence
on the context (only the bot operates the computer), context switches can be
determined by analyzing the operations linked in the bot model.

For this, we differentiate between two types of operations, application-specific
and generic operations. For application-specific operations, i.e., operations that
are tailored to a certain application, the software context can be directly derived
from their automates relation to a software in the ontology (cf. Sect. 3.3). In
contrast, generic operations can be applied to various applications, such as Get-
Text. Therefore, we also explicitly analyze the model for preceding operations
that change the active application to determine their software context, such as
SoftwareControlOperations. The software context can either be derived by
their automates relation as well, or, in the case of a generic SoftwareControl-
Operation, by analyzing the operation’s configuration. Generic operations are
then assigned to the context previously started by such an operation.

For the data context, we similarly analyze for operations that change the
data context, such as operations that open a file. As the data context is very
specific to each RPA bot, e.g., a URL or file path, the data context needs to
be derived from the specific configurations of the operations, i.e., the configured
inputs and outputs. If this is not possible, a unique string can be used to identify
a new data context and thus a context switch.

Open 
Browser GetText GetText GoTo GetText SetText SelectItem OpenExcel 

Workbook SetRange

URL A URL B Workbook 1

Excel ApplicationBrowser Application

Fig. 5. Exemplary bot model sequence with annotated context
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In Fig. 5, an excerpt of a bot model is shown, highlighting the different con-
texts in which operations are executed. The OpenBrowser operation causes a
context switch to the browser application and a specific configured URL, on
which the subsequent two operations are performed. GoTo is a browser-specific
operation and navigates to a new URL, i.e., the data context is changed. Finally,
OpenExcelWorkbook causes another context switch.

4.2 Performing the Abstraction

With the abstraction mapping and the results of the context analysis at hand, the
given (conceptual) bot model B can be abstracted by applying first elimination
operations and then aggregation operations as described below.

In the elimination step, all nodes ne ∈ N in the model B that reference
an operation that should be eliminated according to the abstraction method
mapping, i.e., abs(concept(ne)) = elimination, are removed from the set of
nodes N . At the same time, the flow relation F needs to be adjusted so that the
predecessor and successor of ne are now directly connected, thus omitting ne. As
ControlFlowOperations are neither considered for elimination nor aggregation,
ne cannot have multiple incoming or outgoing control flow arcs.

Compared to elimination, which only removes individual nodes, aggregation
requires determining suitable groups of nodes in the model.

Techniques for BPMA typically aggregate regions or fragments (cf. Sect. 3.1),
since the models’ complexity often stems from the involvement of multiple roles,
nested choices, and parallel execution, in addition to the overall intricacy of the
processes themselves. RPA processes, in turn, rarely exhibit parallel behavior,
do not have the concept of roles, and also do not feature too many choices, as
the behavior to automate would become too complex to handle and maintain.
Consequently, we focus only on the abstraction of sequences of nodes in this work
(cf. Sect. 6.3). This focus also ensures that ordering constraints are preserved, as
parallel or exclusive operations will not be aggregated.

An aggregation group A ⊆ N consists of the nodes that form a (maximal)
sequence of nodes in the model B according to its flow relation F , where for all
nodes na1, na2 ∈ A the following constraints hold.

Constraint 1 abs(concept(na1)) = abs(concept(na2)) = aggregation
Constraint 2 csoftware(na1) = csoftware(na2)
Constraint 3 cdata(na1) = cdata(na2)

Accordingly, each sequence of maximal length of nodes in the model that refer-
ence an operation intended for aggregation and that are performed in the same
software context and the same data context forms an aggregation group. Thus,
since only nodes in the same context are considered together, the aggregation is
context-preserving.

The nodes of an aggregation group A will then be replaced by a common
abstract node nA in the model. To maintain the connection to the ontology and
thus retain semantic information, nA is linked to the lowest common ancestor of
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Get Text 
in Browser 
at URL A

Handle Data 
in Browser 
at URL B

Set Range 
in Excel 

at Worbook 1

Fig. 6. Example sequence after applying elimination and aggregation

the operations referenced by the abstracted nodes in the operations-taxonomy
TO. By this, nA refers to the class of operations that describes the aggregated
operations as specific as possible.

Considering the example in Fig. 5 again, after performing the elimination on
the nodes marked gray and the aggregation step for each context present, three
abstract activities remain, as shown in Fig. 6.

4.3 Semantic Label Generation

Structural abstraction approaches often have problems providing meaningful
labels for aggregated activities [18]. Here, the semantic underpinning of the
abstract bot model can facilitate the automatic generation of labels.

To generate labels, the approach makes use of the ontology connection as
well as the context. It is composed of the brief natural language description
of the class in the ORPAO, the name of the software program of the context
(csoftware), and the string describing the data context (cdata).

In the example (Fig. 5), the two operations found in the first context are the
same (GetText). Thus, this operation name can be used to describe the abstracted
operations as well. The second context comprises three different operations, their
lowest common ancestor in the taxonomy being DataOperation, as we observe
both, reading and writing operations. Instead of the class name, its description in
the ontology, “Handle Data”, is used for the label. The third context consists of only
one operation that can be used directly again for the description. The labels are
then enriched with the respective context information, i.e., in which application
and on which data they are performed, as shown in Fig. 6.

In sum, this allows the reader of the abstract bot model to comprehend
which applications are being automated and what types of operations are being
performed on them.

5 Slider-Driven Abstraction

The ontology-based abstraction technique introduced in the previous section
already satisfies R1 and R2 by removing unimportant operations and group-
ing detailed work instructions to more high-level tasks. But it only provides a
single level of abstraction, which is potentially too fine or too coarse for certain
use cases. Therefore, we introduce an extension to this technique which allows
the user to adjust the degree of abstraction using a “slider approach” and that
addresses R3.

To match the two different employed abstraction methods, elimination and
aggregation, this dynamic approach utilizes two sliders. One for determining the
level of coverage, and a second for adjusting the granularity.
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5.1 Coverage Slider

The coverage slider gives the user control over how much information should be
removed from the model, i.e., how extensive operations should be eliminated,
based on weights. To enable an incremental elimination, an element o in the
operations-taxonomy TO can be assigned not only the abstraction method but,
if abs(o) = elimination, also a relevance weight w. Similar to abs, the weight
of an element o ∈ TO, welim(o), is either directly annotated at the element or
inherited from the closest ancestor in the operations-taxonomy that features
such a value.

Using the slider, the user can now set a minimum weight wmin. Nodes refer-
encing operations o with abs(o) = elimination and welim(o) < wmin are elimi-
nated in the abstract model.

This enables a step-wise reduction of the model and allows differentiating
the various concepts that are marked for elimination, but are not necessarily of
the same importance. For example, internal operations that are used to set up
and check the bot’s internal data structure could now be removed first, as they
might be considered less relevant than other types of operations.

5.2 Granularity Slider

The aggregation technique described in the previous section aggregates nodes
that occur in the same context. In Fig. 5, for example, the combination of input
and extraction operations results in a very abstract element, which might be too
coarse in some cases.

The granularity slider controls the extent of the aggregation by setting a
maximum depth d in the operations-taxonomy to which nodes will be aggre-
gated. Let conceptd(n) be the function that returns for a node n the ancestor
of concept(n) in TO at the depth d. With the granularity slider, an additional
constraint for determining the aggregation groups at a slider value d is added to
the constraints presented for aggregation in Sect. 4.2:

Constraint 4 conceptd(na1) = conceptd(na2), i.e., nodes refer to the same
operation (type) at currently set taxonomy depth d

That is, for each operation referenced in the model, its ancestor at the currently
set depth in the taxonomy is determined. Sequential nodes intended for aggrega-
tion that are performed in the same context and that have the same ancestor at that
depth are aggregated and replaced with that ancestor. The aggregation groups
grow larger with each step in the slider as the considered depth in TO decreases,
elements become more abstract and cover more descendants.

At the very first, the operations-taxonomy is considered to full extent, and
the aggregation is performed as prescribed by the constraints, i.e., only for the
nodes referring to the very same operations intended for abstraction. Applied to
the model in Fig. 5, this results in model 1 depicted in Fig. 7 where only the two
GetText operations in the first context are aggregated (elimination is applied as
well, concealing the operations marked in gray).
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Fig. 7. Different levels of aggregation applied to the example in Fig. 5

For each slider step hereinafter, the depth of the operations-taxonomy to
which the operations are abstracted is reduced stepwise and the aggregation
groups determined using the given constraints. To ensure that each slider step
entails a change, the slider range is set to the depth of the operations-taxonomy
pruned to the branches with operations that are actually referenced in the model.

In Fig. 7, this causes SetText and SelectItem to be combined next, as both are
of the type DataInputOperation (model 2). At the next level in the taxonomy,
all three operations in the original model are DataOperations and, consequently,
they are aggregated with the next slider step. The resulting model 3 corresponds
to the abstracted model of the static approach in Fig. 6.

As soon as no further aggregation is possible, as in model 3, the next slider
step will lift constraint 3, i.e., only the software context is considered and oper-
ations can be aggregated across different data contexts (see model 4). While
relaxing constraint 3 enables an even more compact abstract model, aggregating
data contexts may result in the loss of the corresponding information.

The label for the nodes is created similarly to the previous approach. As each
links to a concept, its brief description is used for label generation, along with
the respective context information, as described in Sect. 4.3.

Building on the abstraction approach presented in the previous section, the
slider extension provides a considerably more flexible solution that can generate
both less and more abstract models, depending on the current needs of the user
and thus satisfying R3.

6 Evaluation

To demonstrate the applicability and usefulness of the abstraction approach, we
provide a prototypical implementation of the slider approach presented in Sect. 5
and report on the application of the abstraction to the motivating example.
Additionally, we briefly discuss current limitations of the presented approach.
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Fig. 8. Application of abstraction method to motivating example

6.1 Prototype

The described abstraction technique has been implemented as an open-source
prototype2, extending the conceptual RPA bot modeler described in [22]. The
prototype features two interactive sliders, one for the elimination threshold and
one for the aggregation level, as introduced in Sect. 5, and displays the corre-
sponding abstracted bot model to the user. Internally, the conceptual bot model
is translated into a process tree [20] first, which then undergoes the context anal-
ysis (cf. Sect. 4.1). The result is an enriched version of the process tree, whose
leafs, i.e., the operations, are annotated with the respective application and data
context, if applicable. After the elimination candidates are determined, the pro-
cess tree is pruned and all sequences of operations are analyzed to determine the
aggregation groups. Based on the list of candidates for elimination and aggrega-
tion, specific model transformations are derived and applied to the bot model,
more specifically which operations to remove and which to rename, since aggre-
gation is performed by renaming the first operation of the aggregation group
using the abstract label and removing the other operations from the group.

6.2 Application to Motivating Example

Figure 8 shows the bot model of the motivating example introduced in Sect. 2,
abstracted using the slider approach. Here, the coverage slider was set high to
remove many not-so-relevant operations, and the granularity slider was config-
ured to match the level of abstraction of step 2 in Fig. 7, e.g., DataOperations
may be aggregated up to the main data classes that differentiate between input
and extraction of data, and the data context is preserved. Overall, it provides an
overview of what is happening in each application, while reducing the number
of elements from 20 to 6 (also counting if, as it is a control-flow operation [22]).

6.3 Current Limitations

This work provides a first step towards a more complex framework for abstraction
of RPA bot models. In the following, some current assumptions for simplification
made by the presented approach and points for improvement that should be
addressed in the future are discussed.

First, this work focuses on linear RPA workflows and does not consider par-
allel and exclusive behavior. While not too common, especially parallel behavior,

2 https://github.com/bptlab/onto-rpa-platform/tree/main/components/abstraction.

https://github.com/bptlab/onto-rpa-platform/tree/main/components/abstraction
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it poses interesting challenges and opportunities to further improve the abstrac-
tion. For one, abstracted models could contain empty branches in case every
node on them is eliminated, which should be removed from the model in a
post-processing step. In addition, the relation between the branches could be
analyzed. For example, adjacent branches could involve different types of oper-
ations in the same context (e.g., different ways to achieve the same based on
certain conditions) or the same operations in slightly different contexts (e.g.,
crawling different documents simultaneously), opening up new opportunities for
aggregation.

Another aspect is the detection of patterns that can be observed in RPA
bot models, such as alternating operations or contexts. For example, alternating
read and write operations in two contexts implementing a data transfer would
currently not be abstracted at all. They could be replaced by a node representing
the data transfer between the two contexts, or by a loop construct.

Regarding the context analysis, implicit context switches are currently not
considered. For example, the software context could also be changed by starting a
software using a sequence of UI commands, or the data context could be affected
by clicking a hyperlink or a button in a browser. Detecting such sequences could
be incorporated in the future to improve the context analysis.

Also, the paper does not provide a specific abstraction method mapping.
While it is intended as a flexible solution that can be adapted to specific needs,
expert interviews and user studies could yield a reasonable basis to start with.

7 Conclusion

Generating abstract views on process models is a crucial step to improve under-
standing and to get a quick overview of the process goal without having to work
through all the details. In this paper, we motivated and established the foun-
dations for the abstraction of RPA bot models that leverage contextual and
semantic information provided by the ontology of RPA operations. In addition,
we contributed a prototype that realizes the described abstraction approach.

Some RPA tools offer constructs similar to sub-processes in BPMN to struc-
ture the bot process. Our approach, however, is vendor-independent, can be
applied to existing bot models, and the level of abstraction can be dynamically
adjusted to the current needs thanks to the slider extension.

In the future, it is conceivable to extend the abstraction approach by more
facets, such as highlighting important areas or, making more use of the ontol-
ogy, focusing on specific applications or the flow of data. Other ideas for future
work include considering control-flow constructs besides sequences, such as deci-
sions or loops. In addition, certain RPA-specific patterns of operations could be
explored and addressed in the abstraction, such as interleaving read and write
operations. The generation of labels that are more model-specific than the solu-
tion in this paper should also be further investigated, as they convey the semantic
information to the reader. Finally, the abstraction approach and different map-
pings should be evaluated in a user study to analyze the perceived usefulness
and quality of the abstraction.
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