
Object-Centric Alignments

Lukas Liss(B) , Jan Niklas Adams(B) , and Wil M. P. van der Aalst(B)

RWTH Aachen University, Aachen, Germany
{liss,niklas.adams,wvdaalst}@pads.rwth-aachen.de

Abstract. Processes tend to interact with other processes and operate
on various objects of different types. These objects can influence each
other creating dependencies between sub-processes. Analyzing the con-
formance of such complex processes challenges traditional conformance-
checking approaches because they assume a single-case identifier for a
process. To create a single-case identifier one has to flatten complex pro-
cesses. This leads to information loss when separating the processes that
interact on some objects. This paper introduces an alignment approach
that operates directly on these object-centric processes. We introduce
alignments that can give behavior-based insights into how closely related
the event data generated by a process and the behavior specified by an
object-centric Petri net are. The contributions of this paper include a
definition for object-centric alignments, an algorithm to compute them,
a publicly available implementation, and a qualitative and quantitative
evaluation. The qualitative evaluation shows that object-centric align-
ments can give better insights into object-centric processes because they
correctly consider inter-object dependencies. Findings from the quanti-
tative evaluation show that the run-time grows exponentially with the
number of objects, the length of the process execution, and the cost of the
alignment. The evaluation results motivate future research to improve the
run-time and make object-centric alignments more applicable for larger
processes.

Keywords: Process mining · Object-centric process mining ·
Alignments

1 Introduction

Process mining analyzes event data to provide insights into processes, using
a variety of conceptual models. One standard pipeline for this includes data
extraction, process model discovery, and conformance checking [14]. The insights
of each step are bound by the expressiveness of the used models. This paper
proposes to use more expressive models for conformance checking to correctly
handle inter-object dependencies, for which traditional methods fail to give cor-
rect insights. We introduce object-centric alignments that can model deviations
in interacting subprocesses with multiple objects. Traditional methods use rep-
resentations that model a process using a single case notion meaning that all
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. A. Almeida et al. (Eds.): ER 2023, LNCS 14320, pp. 201–219, 2023.
https://doi.org/10.1007/978-3-031-47262-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47262-6_11&domain=pdf
http://orcid.org/0000-0002-4719-7993
http://orcid.org/0000-0001-8954-4925
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-47262-6_11

202 L. Liss et al.

Fig. 1. A process execution of our running examples. Events are associated with objects
of type package (prefix p) or item (prefix i). The process execution describes the partial
order of events induced by the individual objects.

actions created for one object define a process execution. Real-world processes
often do not fit that assumption. For example, a supply chain process involves
multiple subprocesses operating on varied objects like raw materials, products,
orders, and customers. One execution of the supply chain is not defined by a
single object.

Recently, object-centric process mining [21] was introduced to generalize the
notion of a process so that one can follow multiple objects through multiple,
connected sub-processes. In object-centric process mining a process execution is
a graph showing the partial order between sub-process events [7] So far, replay-
based fitness has been proposed for object-centric conformance checking [5].
However, process owners are typically interested in aligning observed behavior to
modeled behavior, to identify deviations, i.e., using alignments [8]. The notion,
calculation, implementation, and feasibility analysis for alignments on object-
centric process mining are, so far, missing.

The running example is the process execution in Fig. 1 belonging to a pack-
aging process with cross-object dependencies between a package and multiple
items. This process is described using the object-centric Petri net in Fig. 2, which
differs from traditional ones by introducing place types with typified tokens and
variable arcs (highlighted in red). Tokens of a type can only occupy places of the
same type, and variable arcs can consume multiple tokens at once. There are
two types here: item (green) and package (blue). In this process, the paths of
the package and items depend on each other. The first event involves all objects
and decides whether it is a sample or product order which defines the following
allowed behavior for the package and the items. If a process owner would like to
find deviations in their object-centric processes today, they would need to flat-
ten [2] the observed process executions and apply traditional alignments to the
object-centric Petri net’s subnets of the same type. We show this for our exam-
ple process execution of Fig. 1 in Fig. 2. If flattened to one trace per object, the
three resulting traces get aligned to the type’s subnet in a way that is not pos-
sible in the composed model. Activity receive sample order and receive product
order can never happen both in one process execution since the de-jure model
forces a decision between product orders and sample orders. But the flattened
alignments do not agree on which activity should happen. The alignment for
p1 has receive product order in the model part whereas the alignments for i1

Object-Centric Alignments 203

Fig. 2. Top: De-jure model as an object-centric Petri net. Variable arcs are marked
red. Bottom: The process execution of Fig. 1 is flattened to the individual objects and
aligned to the de-jure model’s subnet of the object’s types. (Color figure online)

and i2 have receive sample order in their model part. As shown by the running
example, computing alignments on object-centric processes requires more than
just finding alignments for each object individually. Aligning the sub-processes
for all objects by respecting their object dependencies creates a computationally
complex problem that we tackle in this paper.

This paper presents four contributions to enable and investigate object-
centric alignments. First, we generalize the notion of an alignment to object-
centric processes. Second, we present an algorithm to compute optimal object-
centric alignments. Third, we implemented our algorithm and make it publicly
accessible as an open-source project1 based on the open-source object-centric
process mining library opca [6]. Fourth, we evaluate the quality and the com-
putation time of object-centric alignments on real-world event data. Thereby,
we gain insights into the scalability and suitability of the approach.

This paper is structured in the following way. We present related work in
Sect. 2 and preliminaries in Sect. 3. Then, we define object-centric alignments in
Sect. 4. Our algorithm to compute alignments consists of two parts: constructing
the synchronous product net (Sect. 5) and finding an optimal alignment in the
synchronous product net (Sect. 6). In this paper, we give a declarative description
of our algorithm. The formal definitions for all the steps in Sect. 5 and Sect.
6 are presented in the extended pre-print [26]. We present a qualitative and
quantitative evaluation in Sect. 7 and conclude the paper in Sect. 8.

2 Related Work

Process mining includes discovery, conformance checking, and enhancement of
business processes [1]. Our approach belongs to conformance checking, where

1 https://github.com/LukasLiss/object-centric-alignments.

https://github.com/LukasLiss/object-centric-alignments

204 L. Liss et al.

behavior from the event log is compared to allowed behavior that is specified by a
de-jure model [14]. For traditional processes, there exists a variety of conformance
checking approaches [20], which mainly use token-based replay [29] approaches,
or alignments [8]. Both have been used to derive quality metrics like precision
[9] and fitness [10]. Unlike token-based replay, alignments are independent of the
structure of the de-jure model [8]. Like our calculation, the traditional alignment
calculation defined by Adriansyah et al. uses a two-step algorithm to compute
alignments [8]. Adriansyah et al.’s approach creates a synchronous product net
such that finding optimal alignments relates to finding a shortest path in that net.
This is a well-studied problem that can be solved with the Dijkstra [17] or A∗ [15]
algorithm. Different ways to speed up the calculation have been researched [19,
31]. However, the alignment algorithm assumes the process to have a single case
identifier and can therefore not be used directly with object-centric processes.

Multiple extensions to the traditional alignment algorithm use higher-order
nets to consider additional dimensions together with the workflow dimension
[12,13]. The data and resource-aware conformance checking approach from de
Leoni et al. uses data Petri nets [25]. Felli et al. use data Petri nets together with
satisfiability modulo theories to compute data-aware alignments [22]. Sommers
et al. constructed a ν-Petri net to calculate resource-constrained alignments
[30]. But all of the approaches above assume the process to have a single-case
identifier. There are approaches that lift this generalization and model processes
as interacting sub-processes. Multi-agent process models describe the behavior
of agents and their interaction by composing Petri nets [27]. Conceptual models
like business artifacts [28] and GSM [23] can model the interactions between
multiple process entities but can not be generated automatically from real-world
event data. Thus, we use model notations from object-centric process mining [2]
to model processes with a variety of objects from different types that interact
with each other. Object-centric Petri nets can be discovered directly from event
data from current information systems [4]. Adams et al. defined the notion of
cases and variants for object-centric processes [7] as event graphs instead of
event sequences. The defined process executions serve as input for our alignment
calculation as well as object-centric Petri nets [4] that can describe allowed
behavior. Precision and fitness metrics to evaluate the quality of a model have,
recently, been proposed [5]. However, techniques to check conformance to a de-
jure model and spot deviations, such as object-centric alignments, are so far
missing.

3 Preliminaries

Object-centric process mining deals with events that operate on a variety of
objects of different types. Events are activities that happen at a timestamp for
a number of objects of different types. Uevent is the Universe of event identi-
fiers. The universe Uact contains all visible activities. Utyp is the universe of all
object types. The universe of objects is Uobj . Each object has exactly one type
associated with it πtype : Uobj → Utyp. Utime is the universe of all timestamps.

Object-Centric Alignments 205

Definition 1 (Event Log). L = (E,O,OT, πact, πobj , πtime, πtrace) is an event
log with:

– E ⊆ Uevent is a set of events, O ⊆ Uobj is a set of objects,
– OT = {πtype(o)|o ∈ O} is a set of object types,
– πact : E → Uact maps each event to an activity,
– πobj : E → P(Uobj) \ {∅} maps each event to at least one object,
– πtime : E → Utime maps each event to a timestamp, and
– πtrace : O → E∗ maps each object onto a sequence of events such that

πtrace(o) = 〈e1, ..., en〉 with
{e1, ..., en} = {e ∈ E|o ∈ πobj(e)} and ∀i∈{1,...,n−1} πtime(ei) ≤ πtime(ei+1)

Event logs can contain events from multiple process executions. When ana-
lyzing the behavior we want to extract one process execution.

Definition 2 (Process Execution). Let L = (E,O,OT, πact, πobj , πtime,
πtrace) be an object-centric event log. The object graph OGL = (O, I) with I =
{{o, o′}|∃e∈E{o, o′} ⊆ πobj(e) ∧ o �= o′} connects objects that share events. The
connected components con(L) = {X ⊆ O|X is a connected component in OGL}
of the object graph are sets of inter-dependent objects. Each set X ∈ con(L)
defines a process execution of L. A process execution is a graph PX = (EX ,DX)
with nodes EX = {e ∈ E|X ∩ πobj(e) �= ∅} and edges DX = {(e, e′) ∈
EX × EX |∃o∈X,1≤i<n〈e1, ..., en〉 = πtrace(o) ∧ e = ei ∧ e′ = ei+1}. The set
px(L) = {PX |X ∈ con(L)} contains all process executions of event log L.

Figure 1 shows the example process execution with one package and two
items. Object-centric Petri nets describe object-centric behavior by using types
like colored Petri nets [24]. B(A) is used to represent all multisets for a set A.

Definition 3 (Object-centric Petri Net [4]). An object-centric Petri net is
a tuple ON = (N, pt, Fvar) where N = (P, T, F, l) is a labeled Petri net with
places P and transitions T. F ∈ B((P × T) ∪ (T × P)) is the multiset of arcs
between places and transitions. Transitions are labeled with activities or τ by
l : T → Uact ∪ {τ} with invisible activity τ �∈ Uact. pt : P → Utyp maps places to
object types and Fvar ≤ F is the sub-multiset of variable arcs.

Note that we label all transitions to activities or τ with function l. Other
common definitions for object-centric Petri nets define l as a partial function.
This can be translated into our definition by assuming l(t) = τ for all t without
a label. We define the following derived notations for object-centric Petri nets

– •t = {p ∈ P |(p, t) ∈ F} is the preset of transition t ∈ T .
– t• = {p ∈ P |(t, p) ∈ F} is the post set of transition t ∈ T .
– pl(t) = •t ∪ t• are the input and output places of t ∈ T , plvar(t) = {p ∈

P |{(p, t), (t, p)} ∩ Fvar �= ∅} are places that are connected through variable
arcs and plnv(t) = {p ∈ P |{(p, t), (t, p)} ∩ (F \ Fvar) �= ∅} are places that are
connected through non-variable arcs.

– tpl(t) = {pt(p)|p ∈ pl(t)}, tplvar(t) = {pt(p)|p ∈ plvar(t)}, and tplnv(t) =
{pt(p)|p ∈ plnv(t)} are object types related to transitions.

206 L. Liss et al.

The object-centric Petri net in Fig. 2 models the running example using typed
places and has variable arcs for receive sample order and receive product order.
The variable arcs model that multiple items can be part of one package.

Definition 4 (Well-Formed Object-Centric Petri Net [4]). Let ON =
(N, pt, Fvar) be an object-centric Petri net with N = (P, T, F, l). ON is well-
formed if for each transition t ∈ T : tplvar(t) ∩ tplnv(t) = ∅.

In a well-formed object-centric Petri net arcs, connected to the same tran-
sition and places with the same object type, are either all variable or none of
them is. We assume for the following that all the object-centric Petri nets we
use are well-formed. Similar to colored Petri nets, object-centric Petri nets use
the notion of markings and bindings to describe the semantics of a Petri net.

Definition 5 (Marking of object-centric Petri Net [4]). Let ON = (N, pt,
Fvar) be an object-centric Petri net with N = (P, T, F, l). QON = {(p, o) ∈
P × Uobj |pt(p) = πtype(o)} is the set of possible tokens. A marking M of ON is
a multiset of tokens M ∈ B(QON).

A binding describes which transition fires and the consumed and produced
objects per object type. For example, a binding for the object-centric Petri net
in Fig. 2 can define that t1 fires using objects p1, i1, and i2.

Definition 6 (Binding of object-centric Petri Net [4]). Let ON = (N, pt,
Fvar) be an object-centric Petri net with N = (P, T, F, l). The set of all pos-
sible bindings is B = {(t, b) ∈ T × (Utype �→ P(Uobj))|dom(b) = tpl(t) ∧
∀ot∈tplnv(t)∀p∈plnv(t),pt(p)=ot|b(ot)| = F (p, t)}. A binding (t, b) ∈ B corresponds
to firing transition t in Petri net ON. The object map b describes what object
instances are consumed and produced. The multiset of consumed tokens given
binding (t, b) ∈ B is cons(t, b) = [(p, o) ∈ QON |p ∈ •t ∧ o ∈ b(pt(p))]. The multi-
set of produced tokens given binding (t, b) ∈ B is prod(t, b) = [(p, o) ∈ QON |p ∈
t • ∧o ∈ b(pt(p))].

Binding (t, b) ∈ B is enabled in marking M ∈ B(QON) if cons(t, b) ≤ M .
Applying binding (t, b) in marking M leads to new marking M ′ = M−cons(t, b)+

prod(t, b). We use the notation M
(t,b)−−−→ M ′ for applying (t, b) in M . This implies

that (t, b) was enabled in M and M ′ is the result of applying (t, b) in M .
This notation can be extended to a sequence of bindings σ =

〈(t1, b1), (t2, b2), ..., (tn, bn)〉 ∈ B∗ such that M0
(t1,b1)−−−−→ M1

(t2,b2)−−−−→ M2...
(tn,bn)−−−−→

Mn. We use the notation M
σ−→ M ′ to show that M ′ can be reached from M

by applying the bindings in σ after another. The transitions can be mapped to
activities using the label function l. This results in the visible binding sequence
συ = 〈(l(t1), b1), (l(t2), b2), ..., (l(tn), bn)) where (l(ti), bi) is omitted if l(ti) = τ .

Definition 7 (Accepting object-centric Petri Net [4]). An accepting
object-centric Petri net is a tuple AN = (ON,Minit,Mfinal) where ON =
(N, pt, Fvar) is a well-formed object-centric Petri net. Minit ∈ B(QON) and
Mfinal ∈ B(QON) indicate the initial and final markings of the net.

Object-Centric Alignments 207

Fig. 3. One synchronous, one log, and one model move for the running example.

Accepting object-centric Petri nets accept some binding sequences and some
not. The set of all binding sequences that are accepted form a language.

Definition 8 (Language of an Accepting Petri Net [4]). The language
φ(AN) = {συ|Minit

σ−→ Mfinal} of an accepting object-centric Petri net AN =
(ON,Minit,Mfinal) contains all the visible binding sequences starting in Minit

and ending in Mfinal.

4 Alignment

Alignments are a conceptual model to describe how observed (log) behavior and
normative (model) behavior relate. It consists of moves that represent whether
something occurs in the process execution, the de-jure model, or both of them.

Definition 9 (Moves). Let L = (E,O,OT, πact, πobj , πtimes, πtrace) be an
object-centric event log and PX = (EX ,DX) ∈ px(L) a process execution.
Let AN = (((P, T, F, l), pt, Fvar),Minit,Mfinal) be an accepting object-centric
Petri net. The set of all moves is moves(PX , AN) ⊆ ({πact(e)|e ∈ EX} ∪ {�
}) × P(O) × (T ∪ {�}) × P(O) with skip symbol ��∈ Uact ∪ T . A move
(alog, olog, tmod, omod) ∈ moves(PX , AN) is one of the following three types:
Log move - for an e ∈ EX : alog = πact(e), olog = πobj(e), tmod =�, and
omod = ∅.
Model move - for a (t, b) ∈ σ with συ ∈ φ(AN): tmod = t, omod =

⋃
o∈range(b) o,

alog =�, and olog = ∅.
Synchronous move - for an e ∈ EX and a (t, b) ∈ σ with συ ∈ φ(AN):
alog = πact(e) = l(t), tmod = t, and olog = omod = πobj(e) =

⋃
o∈range(b) o.

Figure 3 shows the three types of moves. Log and model moves model devia-
tions, whereas synchronous moves model conforming behavior. For synchronous
moves, activities and objects of model and log part have to be exactly the same.
For log and model moves, only one part has an activity and objects while the
other parts are skipped, represented by skip symbol �. The upper part is the
log part alog and olog. The lower block is the model part that contains tmod, the
activity l(tmod) it is labeled with, and omod. We define the following projections
on moves.

208 L. Liss et al.

Definition 10 (Move Projections).
Given a move m = (alog, olog, tmod, omod) ∈ moves(PX , AN) with process exe-
cution PX and accepting object-centric Petri Net AN = (((P, T, F, l), pt, Fvar),
Minit,Mfinal). We use the following projections to map moves to their attributes:

πla(m) = alog maps moves to their log activity.
πlo(m) = olog maps moves to their log objects.
πmt(m) = tmod maps moves to their model transition.
πma(m) = l(tmod) maps moves to the activity the transition is labeled with.
πmo(m) = omod maps moves to their model objects.

An alignment, which we define in Definition 12, is a directed acyclic graph of
moves. We need to reason about the model and log behavior individually to
define alignments. Therefore, we introduce the following reductions that remove
moves with skipped behavior in a given part from a directed acyclic graph of
moves while maintaining the partial order defined by the acyclic graph.

Definition 11 (Reduction to Log and Model Part). Let MG = (M,C) be
a directed acyclic graph with vertices M ⊆ moves(PX , AN) and edges C ⊆ M ×
M with process execution PX and accepting object-centric Petri Net AN . The
reduction to moves with visible activity in the log part is MG↓log = (M↓log, C↓log)
and the reduction to moves with visible activity in the model part is MG↓mod =
(M↓mod, C↓mod) with:

– M↓log = {m ∈ M |πla(m) �=�} synchronous and log moves.
– C↓log = {(m1,mn) ∈ M↓log × M↓log|∃<m1,...,mn>∈M∗ ∀1≤i<n (mi,mi+1) ∈

C ∧ ∀1<i<n πla(mi) =�} edges between synchronous and log moves and new
edges where model moves were removed.

– M↓mod = {m ∈ M |πma(m) �=�} synchronous and model moves
– C↓mod = {(m1,mn) ∈ M↓mod × M↓mod|∃<m1,...,mn>∈M∗ ∀1≤i<n (mi,mi+1) ∈

C ∧ ∀1<i<n πma(mi) =�} edges between synchronous and model moves and
new edges where log moves were removed.

In Fig. 4 both MG↓log and MG↓model are visualized for a directed acyclic
graph of moves. MG↓log describes a directed acyclic graph after removing all
model moves and related edges. New edges are added when two movements used
to be connected via removed model moves in the movement graph. MG↓model

behaves simultaneously for the model part. An alignment is a directed acyclic
graph of moves that requires the log part to contain the process execution and
the model part to be in the language of the de-jure model.

Definition 12 (Alignment). Let L = (E,O,OT, πact, πobj , πtimes, πtrace) be
an object-centric event log and PX = (EX ,DX) ∈ px(L) a process execution. Let
AN = (((P, T, F, l), pt, Fvar)Minit,Mfinal) be an accepting object-centric Petri
net. An alignment ALPX ,AN = (M,C) is a directed acyclic graph on M ⊆
moves(PX , AN) such that:

The alignment contains the process execution behavior in the log parts: PX

is isomorphic to ALPX ,AN↓log
with bijective function f : EX → M↓log such that

∀e∈EX
πact(e) = πla(f(e)) ∧ πobj(e) = πlo(f(e)).

Object-Centric Alignments 209

Fig. 4. Optimal object-centric alignment for the running example and reductions
MG↓log and MG↓model.

The alignment contains behavior that is accepted by the Petri net in the model
parts: There exists a binding sequence σ = 〈(t1, b1), (t2, b2), ..., (tn, bn)〉 ∈ B∗ with
συ ∈ φ(AN) and a bijective function f ′ : B → M↓mod such that:

– ∀(t,b)∈σt = πmt(f ′(t, b)) ∧ ⋃
o∈range(b) o = πmo(f ′(t, b))

– ∀m1,m2∈M↓mod
(m1,m2) ∈ C↓mod ⇒ ∃1≤i<j≤nm1 = f ′(ti, bi) ∧ m2 = f ′(tj , bj)

There can be multiple alignments for a process execution and an accepting
object-centric Petri net. al(PX , AN) is the set of all these alignments.

Figure 4 shows an alignment for the running example. Its reduction to log
and synchronous moves MG↓log, is isomorphic to the given process execution in
Fig. 1. This ensures that the alignment contains the process execution behavior.
The reduction to the model part relates to a binding sequence that is in the lan-
guage of the de-jure model in Fig. 2. This ensures that the model part describes
behavior that is accepted by the model. We want to find deviations between
the process execution and the most similar allowed behavior. Thus, we want
an alignment to have as few model or log moves as possible. By giving model
and log moves higher costs than synchronous moves, we can prefer synchronous
behavior.

Definition 13 (Standard Cost of Move Function).
Let ALPX ,AN = (M,C) ∈ al(PX , AN) be an alignment with process execution
PX and accepting object-centric Petri Net AN . The cost function costmove :
moves(PX , AN) → R is defined as:

210 L. Liss et al.

costmove(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if m is a synchronous move,
|πlo(m) ∪ πmo(m)| if m is a model or log move ∧ πma(m) �= τ,

ε if πma(m) = τ ∧ alog =�,

+∞ else

With ε being a positive very small number. The cost of a complete align-
ment is the sum over all alignment moves: costalignment(ALPX ,AN) =

∑
m∈M

costmove(m).

The cost of the alignment in Fig. 4 is 6 because there are 3 model and 3 log
moves that have one object each. The lower the cost the fewer deviations are in
the alignment. We call one of the cheapest alignments an optimal alignment.

Definition 14 (Optimal Alignment). Let L be an object-centric event log
and PX ∈ px(L) be a process execution. Let AN be an accepting object-centric
Petri net. An alignment ALPX ,AN = (M,C) ∈ al(PX , AN) is optimal if
∀a∈al(PX ,AN)costalignment(ALPX ,AN) ≤ costalignment(a).

Note that there can be multiple optimal alignments with the same cost for a
given process execution and a de-jure Petri net. Also, practitioners can modify
the cost function to weight deviations according to domain-specific knowledge.
Figure 4 shows the optimal object-centric alignment for the running example.
The inter-object dependencies that are defined in the object-centric Petri net in
Fig. 2 are respected by the object-centric alignment. For example, the object-
centric alignment agreed on one shared start activity for p1, i1, andi2 which
keeps the alignment consistent with inter-object dependencies. This differenti-
ates object-centric alignments and traditional alignments which can violate this
requirement.

5 Object-Centric Synchronous Product Net

This section presents a declarative description of the first part of our optimal
alignments algorithm. Additional formal definitions for each presented step can
be found in the extended pre-print [26]. This first part creates a synchronous
product net that can generate all possible alignments. It consists of three parts,
each relating to a move type. In the synchronous product net in Fig. 7 the log,
model, and synchronous parts are marked. First, we construct the log part from
the process execution. Then, we pre-process the de-jure model to finally merge
them together to the synchronous product net and add the synchronous part.
We assume the model to use the same objects that are in the process execution.

5.1 Process Execution Net Construction

The process execution net is the part of the synchronous product net that
ensures that the process execution is contained in the alignment. The construc-
tion relates to Petri net runs [16] and causal nets [3]. The process execution

Object-Centric Alignments 211

Fig. 5. Process Execution Net

contains directly follows relations on the level of objects. For example, the run-
ning example process execution in Fig. 1 shows that on item i1 add sample never
happens, whereas on item i2 activity add sample happens twice. Although they
both have the same object type, the process execution differentiates them. An
accepting object-centric Petri net is under-specified in that regard because it only
differentiates places by type and not by object. This differentiation is important
because otherwise, deviations in one object could compensate for a contrary
deviation in another. For example, the missing add sample activity on i1 could
be compensated by the additional add sample activity on i2 if one would not
strictly separate which event happened on which object. To seperate each object,
we have to create a new individual type for each object in the process execu-
tion. Since objects can only have one type, we also create a new object for each
object from the process execution to use them with the new types. We create the
process execution net with the new objects and types. The conditions defined in
the process execution are the directly follows relation per object. For each condi-
tion, the Petri net contains a place. Also, start and end places are added for each
object. The transitions relate to the events of the process execution. Thereby,
the process execution net precisely models the process execution behavior.

5.2 Pre-processing of the Object-Centric Petri Net

The pre-processed de-jure modes will be the part of the synchronous product
net that guarantees that allowed behavior is contained in the model part of the
alignment. The pre-processing replaces variable arcs in the de-jure model. For
transitions with variable arcs, we do not know beforehand how many objects they
use. This information is needed to find synchronous transitions when creating
the synchronous product net because two transitions can only be synchronous if
they use the same objects which implies using the same number of objects.

As aforementioned, we assume that the set of objects for the model part of
the alignment is defined by the process execution. Thus, these objects form the
initial and final marking. For a predefined set of objects, the number of objects a
variable arc can use is finite. Therefore, we can replace transitions with variable
arcs with a set of transitions without variable arcs. For each combination of
how many objects a variable arc could consume we add a new transition to the
Petri net that uses exactly that number of objects, but by replacing the variable
arc with a number of non-variable arcs. When doing this for the Petri net in

212 L. Liss et al.

Fig. 6. Pre-processed accepting object-centric Petri net without variable arcs

Fig. 2 the result will be the Petri net without variable arcs in Fig. 6. We call the
pre-processed accepting object-centric Petri net a de-jure net.

5.3 Creating the Synchronous Product Net

The synchronous product net models possible alignments. The two nets without
variable arcs from the previous steps represent the model and log part of the
synchronous product net. In an alignment, either process execution or de-jure
parts advance individually, or they progress synchronously. Activities can occur
simultaneously in both parts if they involve the same activity on identical object
instances. We add a synchronous transition for each pair of transitions from the
model and log part that have the same activity label and use the same number of
objects per type. For comparing types between the model and log part, we first
map the newly created types in the process execution net to their original types.
To ensure that in the model and log part the same objects and not only the same
types are used by a synchronous transition, we add ν-net requirements. The ν
net requirement function assigns variables to the in-going arcs of the synchronous
transitions. Arcs with the same variable have to consume the same objects. This
refers to the original objects not the newly created ones in the process execution
net. For each in-going arc from the process execution net, there has to be one
arc from every place that has the same original type, so that those arcs have the
same unique variable assigned by V ar. This requires the synchronous transition
to use the same object instance in the process execution net and the de-jure net.
Figure 7 shows the resulting synchronous Petri net for the running example.

6 Alignments from Synchronous Product Net

This section describes the second part of our approach to finding object-centric
alignments in a declarative way. Additional formal definitions and proofs can
be found in the extended pre-print [26]. The input is a synchronous product
net in which every binding relates to a move of an alignment. The activity
and the set of objects of the move are given by the label of the transition and

Object-Centric Alignments 213

Fig. 7. Synchronous product net for the process execution net in Fig. 5 and accepting
object-centric Petri net in Fig. 6

the objects that are defined in the binding. The type of the move depends on
whether the transition in the binding is from the log, model, or synchronous
part. All binding sequences from the initial marking to the final marking in the
synchronous product net relate to an alignment because the log part ensures that
the process execution is contained in the log part of the alignment and the model
part ensures that the model part of the alignment describes allowed behavior.
Therefore, searching for an optimal alignment relates to searching for an optimal
binding sequence from the initial to the final marking of the synchronous product
net. Interpreting markings as nodes and bindings as edges between markings,
we can set up the search space. The cost of the edges is given by the cost of the
move that relates to the binding. This is a well-defined search problem we can
solve with standard search algorithms for finding the cheapest or shortest path
in a graph.

As shown in the extended version, the search space is finite given that the
event log and the de-jure model have a finite size [26]. Thus, the Dijkstra algo-
rithm [15] can find the cheapest path. If there is no cheapest path, there is no
path at all. So the de-jure model has no option to complete for the set of objects
of the process execution meaning it does not contain any related allowed behav-
ior. In this case, there can be no alignment and the user is informed that the
de-jure model does not match the process execution. This is similar to tradi-
tional alignments with a de-jure model that has no option to complete. In the
normal case where the de-jure model describes behavior related to the given pro-

214 L. Liss et al.

Fig. 8. A process execution from [18] and a variation of it that has some noise.

cess execution, the cheapest path relates to the optimal alignment. The resulting
shortest path is a binding sequence from the initial to the final marking. It relates
directly to an optimal object-centric alignment for the given process execution
and the de-jure model. For the running example Fig. 4 shows the optimal object-
centric alignment. If there are multiple binding sequences with the same cost, it
depends on the implementation which one is found.

7 Evaluation

We conducted an evaluation with real-world data from the BPI2017 challenge
[18]. The evaluation is split into a qualitative part and a quantitative evaluation.

7.1 Qualitative

The qualitative evaluation aims to assess if object-centric alignment can give
better insights into object-centric processes compared to traditional alignments.
We used BPI2017 data, one of few public event logs convertible into an object-
centric format. Its process includes two object types: application and offer. For
this evaluation, we selected only the 4 most dominant variants that made up
19.6% of process executions, excluding the activities Submit, Complete, and
Accept for clarity. We discovered the de-jure Petri net from those 4 variants
using the python library ocpa [6] which implements the discovery approach from
van der Aalst and Berti [4]. We then introduced noise to the log by remov-
ing and replacing events. Figure 8 shows the original accepted process execution
and the one with noise. For object application 1, Cancel application is removed
and Cancel offer is replaced with Accept offer. This creates deviations from the
de-jure model behavior. For instance, it is impossible to accept an application
without accepting an offer, which is an inter-object dependency one wants to be
respected. Also, Cancel application and Cancel offer events, now only recorded
for an offer, represent unwanted behavior. We applied our object-centric align-
ment approach and the traditional one with flattening to the evaluation data.
The optimal object-centric alignment and traditional alignment for each object
can be found in Fig. 9.

The traditional alignment failed to detect that application 1 should not have
been accepted. This is because the traditional alignment does not consider the
inter-object dependency that there has to be a matching offer to accept. This iso-
lated view results in the traditional alignment suggesting Validate and Pending
activities are missing, reinforcing the false acceptance of application 1. However,

Object-Centric Alignments 215

Fig. 9. Traditional and object-centric alignments for the variant with noise and the
evaluation de-jure model.

our approach, considering all inter-object dependencies, identifies Accept Offer
as a log move. Additionally, the traditional alignment doesn’t indicate any devi-
ation for offer 1, creating a contradiction between alignments of offer 1 and
application 1. Such contradictions can not occur in an object-centric alignment
because the whole process execution is considered at once. The more inter-object
dependencies a process has, the bigger the benefit of object-centric alignments.

7.2 Quantitative

To evaluate the scalability of our approach, we performed a quantitative analysis
of the run time, comparing our method with traditional alignment methods.

Evaluation Setup. As the data source we used BPI2017 event data [18]. Only
the most frequent 50% of activities were used. All other activities were filtered
out. Afterward, the log consisted of 755 variants. We used a Petri net designed
so that the given log contains some dis-aligned process executions. The used
Petri net is available on GitHub (See Footnote 1). It has 6 visible transitions
and 4 silent transitions. There are 10 places in the net. We aligned all the 755
variants with the model and tracked their properties and the resulting alignment
calculation time. For comparison with current methods, we also tracked the
run time of flattening and then computing optimal alignments for the separate
objects using PM4Py [11]. The raw results of that evaluation can be found at
GitHub (See Footnote 1). The evaluation was performed on a 3.1 GHz Dual Core
Intel Core i5 with 8 GB of RAM.

Results. We computed 755 alignments with costs ranging from 0 to a maximum
of 5. Process executions had 3 to 20 events, mostly having 11 to 14 events.
Object instances varied from 2 to 7. The calculation time ranged from 0.007 s to
1051.8 s. Results at the end of the attribute range are less resistant to outliers
due to fewer data points. Moreover, the correlation coefficient between events
and objects is 0.59, while the correlation between events and cost is −0.38. We

216 L. Liss et al.

Fig. 10. Computation time on a logarithmic scale over input parameters. (Color figure
online)

plotted the calculation time against the number of events (Fig. 10a), number of
objects (Fig. 10b), and alignment cost (Fig. 10c), with a logarithmic scale for the
time. To mitigate the effect of the negative correlation, we grouped data points
in Fig. 10c by the number of events. The computation time for object-centric
alignments grows exponentially across all three dimensions.

This result can be explained by the structure of the search space. More events
increase the size of the process execution net and potentially the number of syn-
chronous transitions which creates more potential markings resulting in a bigger
search space. Similarly, more objects add parallel behavior, again increasing the
search space. The run time of the Dijkstra algorithm is on average exponential in
the size of the search space [17]. Therefore, the computation time grows exponen-
tially for the number of events and objects. For an alignment with a higher cost,
a bigger portion of the search space is explored, resulting in exponential growth
for the cost of the alignment. For small process executions, object-centric align-
ments (blue graph) can be faster than traditional ones (orange graph) because
of the overhead of flattening, but the traditional method has better scalability,
as one can see in Fig. 10a and Fig. 10b.

8 Conclusion

This paper presented four contributions for conformance checking in object-
centric process mining. First, we defined object-centric alignments generalizing
traditional alignments to graphs of moves. Second, we provided an algorithm to
calculate them. The two-step approach creates a synchronous product net and
searches for the optimal binding sequence from initial marking to final marking.
Third, we implemented this algorithm using the open-source library ocpa [6]
and made it publicly available on GitHub (See Footnote 1). There are some lim-
itations of the provided model notation and implementation. The notation does
not include additional perspectives to the workflow dimension, which makes it
less expressive in that regard. But it also makes the notation and implementation
applicable to any domain with normative and observed workflow information. If

Object-Centric Alignments 217

there are multiple cheapest alignments, it depends on the implementation which
one is returned. The presented algorithm does not detect missing or redundant
objects although the alignment notation would support that. Finally, we evalu-
ated our approach. The qualitative evaluation shows the benefits of object-centric
alignments in detecting deviations because they respect inter-object dependen-
cies. Our quantitative evaluation indicates an exponential computation time
in the number of object instances and cost of the alignment. This suggests,
that an alignment of a whole object-centric event log to a moderately fitting
model might be too time-consuming. In those scenarios, one might use object-
centric alignments to get specific diagnostics for individual process executions or
variants.

There are two directions for future work based on object-centric alignments.
On the one hand, one can investigate lifting limitations of the current approach,
like finding missing or redundant objects. On the other hand, one can work
towards decreasing the complexity and run time: Heuristics, using the A∗ algo-
rithm, and defining relaxations of the problem are all promising directions to
decrease the computation time.

Acknowledgment. We thank the Alexander von Humboldt (AvH) Stiftung for sup-
porting our research.

References

1. van der Aalst, W.M.P.: Process mining. Commun. ACM 55(8), 76–83 (2012).
https://doi.org/10.1145/2240236.2240257

2. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1 1

3. van der Aalst, W., Adriansyah, A., van Dongen, B.: Causal nets: a modeling lan-
guage tailored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23217-6 3

4. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam.
Informaticae 175(1–4), 1–40 (2020). https://doi.org/10.3233/FI-2020-1946

5. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric pro-
cess mining. In: 3rd International Conference on Process Mining, ICPM 2021,
Eindhoven, The Netherlands, 31 October–4 November 2021, pp. 128–135. IEEE
(2021). https://doi.org/10.1109/ICPM53251.2021.9576886

6. Adams, J.N., Park, G., van der Aalst, W.M.P.: ocpa: a python library for object-
centric process analysis. Softw. Impacts 14, 100438 (2022). https://doi.org/10.
1016/j.simpa.2022.100438

7. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.P.: Defining
cases and variants for object-centric event data. In: 4th International Conference
on Process Mining, ICPM 2022, Bolzano, Italy, 23–28 October 2022, pp. 128–135.
IEEE (2022). https://doi.org/10.1109/ICPM57379.2022.9980730

8. Adriansyah, A.: Aligning observed and modeled behavior (2014). https://doi.org/
10.6100/IR770080

https://doi.org/10.1145/2240236.2240257
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-642-23217-6_3
https://doi.org/10.1007/978-3-642-23217-6_3
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.1109/ICPM53251.2021.9576886
https://doi.org/10.1016/j.simpa.2022.100438
https://doi.org/10.1016/j.simpa.2022.100438
https://doi.org/10.1109/ICPM57379.2022.9980730
https://doi.org/10.6100/IR770080
https://doi.org/10.6100/IR770080

218 L. Liss et al.

9. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.)
BPM 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36285-9 15

10. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In: 11th International Conference on Application of Concurrency to Sys-
tem Design, ACSD 2011, Newcastle Upon Tyne, UK, 20–24 June 2011, pp. 57–66.
IEEE Computer Society (2011). https://doi.org/10.1109/ACSD.2011.19

11. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for
python (PM4Py): bridging the gap between process- and data science. CoRR
abs/1905.06169 (2019)

12. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business
process models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340–5352
(2014). https://doi.org/10.1016/j.eswa.2014.03.010

13. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016).
https://doi.org/10.1016/j.eswa.2016.08.040

14. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

15. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A*. J. ACM 32(3), 505–536 (1985). https://doi.org/10.1145/3828.3830

16. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

17. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959). https://doi.org/10.1007/BF01386390

18. van Dongen, B.: BPI Challenge 2017 (2017). https://doi.org/10.4121/UUID:
5F3067DF-F10B-45DA-B98B-86AE4C7A310B

19. Dongen, B.F.: Efficiently computing alignments. In: Weske, M., Montali, M.,
Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 197–214.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 12

20. Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-
the-art literature review. In: Proceedings of the 11th International Conference on
Subject-Oriented Business Process Management, S-BPM ONE 2019, Seville, Spain,
26–28 June 2019, pp. 4:1–4:10. ACM (2019). https://doi.org/10.1145/3329007.
3329014

21. Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Hand-
book. LNBIP, vol. 448, pp. 274–319. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-08848-3 9

22. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: CoCoMoT: conformance
checking of multi-perspective processes via SMT. In: Polyvyanyy, A., Wynn, M.T.,
Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 217–234.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0 15

23. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol.
6551, pp. 1–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19589-1 1

https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.1109/ACSD.2011.19
https://doi.org/10.1016/j.eswa.2014.03.010
https://doi.org/10.1016/j.eswa.2016.08.040
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1145/3828.3830
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/BF01386390
https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B
https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1145/3329007.3329014
https://doi.org/10.1145/3329007.3329014
https://doi.org/10.1007/978-3-031-08848-3_9
https://doi.org/10.1007/978-3-031-08848-3_9
https://doi.org/10.1007/978-3-030-85469-0_15
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-19589-1_1

Object-Centric Alignments 219

24. Jensen, K., Kristensen, L.M.: Colored Petri nets: a graphical language for for-
mal modeling and validation of concurrent systems. Commun. ACM 58(6), 61–70
(2015). https://doi.org/10.1145/2663340

25. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware
conformance checking of business processes. In: Abramowicz, W., Kriksciuniene,
D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 48–59. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-30359-3 5

26. Liss, L., Adams, J.N., van der Aalst, W.M.P.: Object-centric alignments (2023).
https://doi.org/10.48550/arXiv.2305.05113

27. Nesterov, R., Bernardinello, L., Lomazova, I.A., Pomello, L.: Discovering
architecture-aware and sound process models of multi-agent systems: a compo-
sitional approach. Softw. Syst. Model. 22(1), 351–375 (2023). https://doi.org/10.
1007/s10270-022-01008-x

28. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428–445 (2003). https://doi.org/10.1147/sj.423.0428

29. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008). https://doi.org/10.1016/
j.is.2007.07.001

30. Sommers, D., Sidorova, N., van Dongen, B.F.: Aligning event logs to resource-
constrained ν-Petri nets. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS
2022. LNCS, vol. 13288, pp. 325–345. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06653-5 17

31. Song, W., Xia, X., Jacobsen, H., Zhang, P., Hu, H.: Efficient alignment between
event logs and process models. IEEE Trans. Serv. Comput. 10(1), 136–149 (2017).
https://doi.org/10.1109/TSC.2016.2601094

https://doi.org/10.1145/2663340
https://doi.org/10.1007/978-3-642-30359-3_5
https://doi.org/10.48550/arXiv.2305.05113
https://doi.org/10.1007/s10270-022-01008-x
https://doi.org/10.1007/s10270-022-01008-x
https://doi.org/10.1147/sj.423.0428
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.1007/978-3-031-06653-5_17
https://doi.org/10.1007/978-3-031-06653-5_17
https://doi.org/10.1109/TSC.2016.2601094

	Object-Centric Alignments
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Alignment
	5 Object-Centric Synchronous Product Net
	5.1 Process Execution Net Construction
	5.2 Pre-processing of the Object-Centric Petri Net
	5.3 Creating the Synchronous Product Net

	6 Alignments from Synchronous Product Net
	7 Evaluation
	7.1 Qualitative
	7.2 Quantitative

	8 Conclusion
	References

