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Abstract. Multiphase turbulence driven by coupling between the
phases can arise in the absence of mean shear. For example, due to grav-
ity (or other body forces) in disperse multiphase flows (e.g., particle-
laden and bubbly flows), the mean-slip velocity between phases and
spontaneous cluster formation generate strong turbulence that is nearly
one dimensional. Such complex flows can be modeled using Eulerian–
Eulerian two-fluid models. Here, starting from a compressible two-fluid
model, a Reynolds-averaged turbulence model is derived for disperse
multiphase flows driven by gravity. Due to the diagonal form of the
Reynolds-stress tensors, the model equations are hyperbolic and thus
require time-dependent solutions and dedicated numerical solvers.
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1 Introduction

Multiphase turbulence takes many different forms and arises in many different
contexts [1–10]. Here, we will consider only disperse multiphase flows with a
discrete phase (e.g., solid particles, droplets or bubbles) and a continuous fluid
phase. Furthermore, for simplicity, we will focus on cases where the disperse-
phase elements are identical, i.e., have the same material density and geometry.
In other words, we will consider only monodisperse multiphase flows. Even with
these restrictions, disperse multiphase turbulent flows can be further categorized
into two broad classes: (i) flows where the turbulence originates in the continuous
phase with the discrete phase modulating the small scales of the turbulence [11–
17], and (ii) flows where the turbulence arises due to the coupling between the
discrete and continuous phases. The former is often associated with particle-
laden turbulent flows and its study is mainly focused on how the discrete phase
modifies the classical turbulence structures seen in single-phase flows. The latter,
which is the topic of this work, can be observed in gas–particle flows when the
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mass of the particles is of the same order or greater than that of the gas phase;
or in bubbly flows when the bubble volume fraction is high enough to lead to
buoyancy-driven instabilities.

The remainder of the work is organized as follows. First, we present the
Eulerian–Eulerian (EE) two-fluid model for compressible disperse multiphase
flows developed in [18,19] (but not considering pseudoturbulence nor particle
internal energy for the sake of clarity). Next, we describe the Reynolds-averaged
turbulence model that results from the EE model after averaging and applying
closures. This turbulence model is our main result, and care is taken to ensure
that it is globally hyperbolic (as described in [18]). As an application, we then
reduce the model equations for the case of statistically stationary, homogeneous
turbulence driven by gravity (e.g., cluster-induced turbulence (CIT) [20] and
buoyancy-driven turbulence (BDT) [21]). The paper concludes with some general
remarks concerning multiphase turbulence models and open questions.

2 Compressible Two-Fluid Model

The starting point for formulating the turbulence model is the inviscid, com-
pressible two-fluid model in Table 1. As discussed in detail in [18,19], this model
accounts for added mass by allowing a portion of the fluid with volume frac-
tion αa = α�

p − αp to move with the particle-phase velocity up. The particle
material density ρp is constant, while the fluid density ρf varies due to compres-
sion/expansion. The particle-phase volume fraction is αp, and αf = 1 − αp is
that of the fluid phase.

2.1 Mass

In the mass balances, the source term Sa models fluid exchange between the
particle wakes and the bulk fluid. The latter has velocity uf and volume fraction
α�

f . As demonstrated in [18], treating the added mass is this manner is exactly
equivalent to the virtual-mass force used in two-fluid modeling, but has the
advantage of ensuring that the model is hyperbolic for arbitrary material-density
ratios Z = ρf/ρp. Thus, the model in Table 1 is applicable to gas–particle flows
with ρp � ρf , as well as to bubbly flows with ρp � ρf or suspensions with
ρp ≈ ρf . In order to allow for large-density fluids (e.g., water or other liquids),
the fluid equation of state (EOS) is modeled as a stiffened gas:

pf = ρf (γf − 1)Θf − γfpo
f , (1)

but any other EOS could be used as well. The conserved variables in the mass
balances are

(X1,X2,X3) = (αp, ρeα
�
p, ρfα�

f ) (2)

where ρe is the effective density of the particle with its added mass. Thus, the
volume fractions and fluid density are found from the conserved variables by

(αp, ρf , αa) =
(

X1,
X3 + X2 − ρpX1

αf
,
X2 − ρpX1

ρf

)
. (3)
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Finally, to enforce the limit 0 ≤ αa ≤ αf , a new variable cm is introduced such
that αa = cmαfαp. In the very dilute limit, cm corresponds to the virtual-mass
constant, whose value is 0.5 for spherical particles. The latter is imposed in the
model for Sa using the parameter c�

m. In summary, the two-fluid model in Table 1
contains three mass balances in order to account for added mass while remaining
globally hyperbolic [18,19].

2.2 Momentum

The two momentum balances in Table 1 use the two conserved variables

(X4,X5) = (ρeα
�
pup, ρfα�

fuf ), (4)

which correspond, respectively, to the momentum of the particles with the added
mass, and to the momentum of the bulk fluid.1 The phase velocities are related
to the conserved variables by

(up,uf ) =
(

X4

X2
,
X5

X3

)
. (5)

In addition to the fluid pressure pf and the particle pressure pp, a pressure
contribution due to the slip-velocity tensor R appears for the particle phase.
This particle-fluid-particle (pfp) pressure tensor Ppfp arises in the kinetic theory
derivation of a binary system [22], and is nonzero whenever the slip velocity ufp

is nonzero. As shown in [22], it plays an important role in gas–particle flows
to ensure that the system is hyperbolic. The particle pressure pp is the sum
of two contributions. The first is the usual collisional pressure that depends on
particle-phase granular temperature Θp. The second is the frictional or elastic
pressure for close-packed particles (αp > 0.63) that depends on αp only. The
parameter pc is set to a large value to resist increases in αp once the particles are
in contact. The latter is controlled by the tanh function, which provides a sharp
transition near αp = 0.6. Note that this pressure contribution is present in dense
flows such as fluidized beds, but will be absent for riser flows where αp � 0.63.
For frictional particles, by including a interparticle-friction dependence and a
saltation model in the particle pressure and viscous terms (which are neglected
here), good agreement with discrete particle simulations of dense liquid–particle
flows has been reported in the literature [23].

The source terms on the right-hand sides of the momentum balances rep-
resent, respectively, fluid drag; buoyancy; forces due to fluid density gradients,
expansion/contraction, and mean shear (e.g., lift); momentum transfer due to
added mass; and gravity. The drag coefficient CD depends on Rep and αp and
a correlation [24] must be provided to complete the model, e.g., CDRep = 24

1 As discussed in [18], the total fluid velocity vf is related to the bulk fluid velocity by
αfvf = αaup + α�

fuf . Thus, depending on the value of αa, the turbulence statistics
will be different for the bulk and total fluid. In most two-fluid simulations [21], the
statistics are computed using vf .
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Table 1. Inviscid, compressible two-fluid model for monodisperse elastic particles in a
fluid modeled as a stiffened gas with parameters γf and po

f [18]. The drag coefficient,
CD, depends on Rep and αp. The slip-velocity tensor R is the exact expression from
kinetic theory and defines the pfp-pressure tensor Ppfp.

Mass

∂tαp + ∂x · (αpup) = 0

∂t(ρeα
�
p) + ∂x · (ρeα

�
pup) = Sa

∂t(ρfα�
f ) + ∂x · (ρfα�

fuf ) = −Sa

Momentum

∂t(ρeα
�
pup) + ∂x · (ρeα

�
pupup + ppI + Ppfp) = Kufp − α�

p(∂xpf + Fpf ) + Sfp + ρeα
�
pg

∂t(ρfα�
fuf ) + ∂x · (ρfα�

fufuf + pf I) = Kupf + α�
p(∂xpf + Fpf ) − Sfp + ρfα�

fg

Total Energy

∂t(ρeα
�
pEp) + ∂x · (ρeα

�
pEpup + ppup + Ppfp · up) = Ppfp : ∂xup

− K (3Θp + up · upf ) − α�
pup · (∂xpf + Fpf ) + SE + ρeα

�
pup · g

∂t(ρfα�
fEf ) + ∂x · [ρfα�

fEfuf + (α�
fuf + α�

pup)pf ] = −Ppfp : ∂xup

+ K (3Θp + up · upf ) + α�
pup · (∂xpf + Fpf ) − SE + ρfα�

fuf · g
where

αf + αp = 1 α�
f + α�

p = 1 α�
p = αp + αa ρe =

ρpαp + ρfαa

αp + αa

ufp = −upf = uf − up K =
3ρeα

�
pCDRep

4τp
τp =

ρed
2
p

μf
Rep =

α�
f

αf

dpufp

νf

Sa =
ρf

τa
(c�

mαfαp − αa) Sfp = max(Sa, 0)uf + min(Sa, 0)up

SE = max(Sa, 0)
1

2
u2

f + min(Sa, 0)Ep τa =
4d2

p

3νfCDRep
c�

m =
1

2
min (1 + 2αp, 2)

Fpf = R · ∂xρf − ρf (γf − 1)tr(Γ)ufp +
4

5
ρfS · ufp R =

1

5
u2

fpI +
2

5
ufpufp

Γ =
1

2

[
∂xuf + (∂xuf )t] S = Γ − 1

3
tr(Γ)I

pf = ρf (γf − 1)Θf − γfpo
f Ppfp = Cpfpρfα�

pR Cpfp = c�
m

pp = ρeα
�
pΘp(1 + 4αpg0) + pcαpg0

1

2

[
1 + tanh

(
αp − 0.6

0.01

)]
g0 =

1 + αf

2α3
f

Θf = Ef − 1

2
u2

f Θp =
2

3

(
Ep − 1

2
u2

p

)
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for Stokes drag. As shown in [18], Ppfp is crucial for ensuring that the system is
globally hyperbolic for bubbly flows and for gas–particles flows when, e.g., the
granular temperature Θp is negligible. Note that Ppfp scales like α�

p (i.e., it is
first order in particle concentration2) and corresponds to particle–particle inter-
actions mediated by the fluid. For global hyperbolicity for any Z, the parameter
Cpfp is set equal to c�

m, but smaller values can be used in gas–particle flows.

2.3 Total Energy

The total energy balances in Table 1 are written in terms of the two conserved
variables

(X6,X7) = (ρeα
�
pEp, ρfα�

fEf ), (6)

and thus the specific total energies are related to the conserved variables by

(Ep, Ef ) =
(

X6

X2
,
X7

X3

)
. (7)

For the particle phase (including the added mass), the internal energy is not
included in the total energy, implying that the phase is adiabatic. This is possible
when the particle–particle collisions are assumed elastic. When inelastic collisions
are required (e.g., high-speed gas–particle flows [24]), then the energy dissipation
term in the particle phase would appear as a source term in the particle-phase
internal energy balance [19]. The granular temperature Θp corresponds to the
particle velocity fluctuations relative to the mean velocity up. In contrast, the
fluid-phase thermodynamic temperature is proportional to its internal energy
Θf . The relationship between these temperatures and the total energies are
given in Table 1 where γf is the heat-capacity ratio for the fluid.

As shown in [22], kinetic theory provides closed forms for the energy fluxes.
The total energy flux for the particle phase has the classical form of an ideal gas,
but with an additional contribution due to the pfp-pressure tensor. For the fluid
phase an additional energy-flux term appears due to the presence of the particle
phase. Note that (α�

fuf + α�
pup) is the volume-average velocity of the fluid–

particle mixture, which sees the continuous phase pressure pf . The source terms
on the right-hand sides of the total energy balances represent, respectively, the
work done by the fluid on the particles to lower αp due to the pressure Ppfp,3 fluid
drag, buoyancy, work done by forces Fpf , potential energy, and mass transfer.
Many of these terms represent energy exchange from the particle phase to the
fluid phase (i.e., fluid heating and pseudoturbulence [18,19]). Here, we neglect
pseudoturbulence and focus on large-scale multiphase turbulence accompanied
by fluctuations in αp (i.e., cluster-induced and buoyancy-driven turbulence). A
two-fluid model that includes heat transfer and pseudoturbulence can be found
in [19].

2 A second-order model is also analyzed in [18].
3 Using the mass balance for αp, ∂x · up can be replaced by the rate of change of αp

as it moves with velocity up.
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For systems with inelastic collisions and/or strong fluid drag, the granular
temperature can be very small and care must be taken to ensure that numerical
errors do not result in negative Θp when it is found by subtracting the mean
kinetic energy 1

2u2
p from Ep. Alternatively, a non-conservative equation for Θp:

3
2
∂t(ρeα

�
pΘp) +

3
2
∂x · (ρeα

�
pΘpup) = − pp∂x · up − 3KΘp (8)

could be employed. Note that this equation does not depend on Ppfp, and is
valid for elastic collisions and αp � 0.63. For inelastic collisions or larger αp,
dissipation terms appear that change the particle-phase internal energy [19]. In
practice [19], when the conservative form is used to solve for Ep, it suffices to clip
Θp to non-negative values when evaluating terms on which it depends. This is
possible because when Θp is negligible, the eigenvalues of system are real-valued
due to Ppfp and, hence, the fluxes are non-degenerate. In most applications, the
eigenvalues associated with pf will be much larger than those associated with
the particle phase, especially if the fluid phase is a liquid. For reference, when
Z ≈ 0 (e.g., gas–particle flows), the particle-phase speed of sound is

√
5Θp/3

[18]. Thus, the particle-phase Mach number can correspond to hypersonic flow
when Θp is small. This is also approximately true for larger values of Z where
other physical mechanisms in addition to drag are important (e.g., buoyancy).

2.4 Summary

In summary, the two-fluid model in Table 1 is the starting point for developing
a turbulence model for compressible disperse multiphase flows. Aside from the
body force g, these equations conserve mass, momentum and total energy for the
mixture, i.e., by summing together the two equations representing each phase.
As shown in [18,19], this model is globally hyperbolic and can be solved using
numerical methods for hyperbolic conservation laws [25]. Nonetheless, the wide
range of timescales appearing in the fluxes (especially for liquids) make the
numerical solution challenging from the point of view of their cost. In high-
speed multiphase flows, the fluid-phase Mach number will be very large, implying
that shocks will be present in the solutions. As in single-phase flows, shock-
resolving solutions require fine grids (at least locally near the shock). In contrast,
in gravity-driven flows the fluid phase usually has a low Mach number and the
fluid density ρf can be treated as constant, eliminating the need for the fluid-
phase total energy balance [18].

The principal objective when developing a turbulence model will be to reduce
the grid-resolution requirement due to ‘turbulent viscosity/diffusion’ and by
decreasing the particle-phase Mach number. Indeed, as the eigenvalues of the
fluid phase will not be significantly changed (or removed by taking ρf constant)
in the turbulence model, a coarser grid will allow for larger time steps while
still satisfying the CFL condition. Nonetheless, even after phase averaging, the
system must remain hyperbolic and large temporal variations in the volume
fraction will not be damped out. Thus, the model will usually not exhibit stable
time-independent solutions unless the particle-phase Mach number is very small.
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3 Multiphase Turbulence Model

The turbulence model in Table 2 is found by phase averaging the two-fluid model
in Table 1 following the method presented in [26,27]. During this process, numer-
ous unclosed terms are introduced that require physics-based closures. The tur-
bulence model in Table 2 is the final closed form, and care has been taken to
ensure that the closures for the fluxes do not change the hyperbolicity of the
system. We remind the reader that only terms involving space and time deriva-
tives influence the hyperbolicity. Thus, the closures for point-wise source terms
do not affect the eigenvalues and, hence, more latitude is available when choos-
ing their mathematical forms. In general, we have chosen forms that attempt
to capture the behavior of cluster-induced (CIT) and buoyancy-driven (BDT)
turbulence [27]; however, turbulence arising due to mean shear is also included.
At this stage, we consider only the simplest forms for the Reynolds-stress trans-
port equations corresponding to linear relaxation. Likewise, the spatial transport
of scalar quantities due to turbulent fluctuations is modeled using a gradient-
transport model [28]. For clarity and simplicity, we drop the subscripts intro-
duced in [26] to denote phase averages, and give the final closed forms for the
turbulence model developed in [27].

One important point that is often underestimated in multiphase turbulence
models is that for CIT and BDT the phasic Reynolds stresses are nearly one-
dimensional turbulence [28]. In other words, the shear stress components are
very small, implying that turbulent transport in the directions normal to grav-
ity is small (or even null). In this case, the Reynolds stresses do not add a
‘turbulent’ viscosity to the momentum balances because the shear stress is null.
Consequently, the mean volume fraction 〈αp〉 will be time-dependent in fully
developed flows because the ‘molecular’ viscosity is not large enough to smooth
out velocity fluctuations and the compression/expansion of the disperse phase.
In short, even a Reynolds-averaged model like the one in Table 2 will exhibit
large-scale fluctuations characteristic of single-phase large-eddy simulations [29]
if the CIT/BDT forces are large enough.4 For systems with low mass loading or
very dilute systems, there is no mechanism (besides mean shear) to sustain the
turbulence in spatially homogeneous flows and thus it will decay in time as seen
in single-phase turbulence. Such flows have been widely studied in the litera-
ture, and thus are not the target application for the turbulence model described
in this work. As shown recently for particle-laden channel flows [30], there is a
clear separation between CIT and classical channel flow that occurs for a mass
loading near unity. The former lacks ‘turbulent’ viscosity giving a hyperbolic
system, while the latter has strong ‘turbulent’ viscosity leading to a parabolic
system with a time-independent statistics.

4 For CIT, the mass loading of the particle phase is the key parameter [30], while in
BDT the key parameter is 〈αp〉 [21].
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3.1 Mass

The mass balances in Table 2 use the conserved variables

(X1,X2,X3) = (〈αp〉, 〈ρeα
�
p〉, 〈ρfα�

f 〉), (9)

which are chosen such that the phase-averaged velocities are defined by 〈up〉 and
〈uf 〉. Closures relating (X1,X2,X3) to Reynolds-averaged quantities, e.g., 〈ρf 〉,
〈αa〉 and 〈cm〉, are provided in the table. These formulas simplify significantly
when ρf can be treated as constant. Because the conserved variables in the mass
balances, as well as their fluxes, have the same mathematical form as in the
original two-fluid model, the hyperbolicity will not be affected by these choices.

3.2 Momentum

The momentum balances in Table 2 use the conserved variables

(X4,X5) = (〈ρeα
�
p〉〈up〉, 〈ρfα�

f 〉〈uf 〉), (10)

and, hence,

(〈up〉p, 〈uf 〉f ) =
(

X4

X2
,
X5

X3

)
. (11)

The momentum fluxes on the left-hand sides of the momentum balances have
an additional contribution due to the phasic Reynolds stresses Rp and Rf . At
first glance, one might conclude that the eigenvalues associated with these terms
would increase (i.e., the effective pressure increases). However, this is not the
case because the total energy is fixed so that increasing Rf results in decreas-
ing 〈Θf 〉 (see definitions of phase-average temperatures in Table 3). Nonetheless,
the effective particle-phase pressure can increase, especially when the granular
temperature is small. In contrast, the closure for 〈R〉 can change the eigenvalues.
This closure is given in Table 3 and contains a ‘laminar’ contribution 〈R1〉 and
a turbulent contribution 〈R2〉. In general, the latter will modify the eigenvalues
(e.g., increase their magnitude) due to the difference in turbulence intensities in
each phase. Note that the Reynolds-stress tensors are symmetric, positive defi-
nite, and therefore the symmetric, non-negative square-root (RfRp +RpRf )1/2 is
uniquely defined using the positive square roots of its (real-valued) eigenvalues.5

Rescaling this matrix by one-half its trace yields the matrix Rfp. In the hyper-
bolicity analysis, tr(〈R〉) increases the eigenvalues and tr(〈R2〉) = 2(k1/2

f −k
1/2
p )2

is non-negative. For the other flux terms, the ‘laminar’ closures given in Table 3
are retained to ensure that the turbulence model is hyperbolic.

For CIT and BDT, the most important turbulence closure in the momentum
balances is the drag modification represented by (1 − Cd) [26]. If the particles
remained uniformly distributed in space, then Cd = 0; thus, 0 < Cd ≤ 1/2
5 For CIT and BDT, the Reynolds-stress tensors are diagonal, and hence RfRp is

diagonal and non-negative. However, for mean-shear flows this is not the case, so
care must be taken when defining Rfp to be sure that the eigenvalues are real-valued.
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Table 2. Turbulence model for mean statistics found from two-fluid model in Table 1.
The deformation 〈Γ〉 and strain-rate 〈S〉 tensors use the phase-average fluid velocity
〈uf 〉. The pressure tensors are defined in Table 3. The Reynolds stresses Rp and Rf

and turbulent viscosities νp,t and νf,t are defined in Table 4.

Mass

∂t〈αp〉 + ∂x · (〈αp〉〈up〉) = 0

∂t〈ρeα
�
p〉 + ∂x · (〈ρeα

�
p〉〈up〉) = 〈Sa〉

∂t〈ρfα�
f 〉 + ∂x · (〈ρfα�

f 〉〈uf 〉) = − 〈Sa〉
Momentum

∂t(〈ρeα
�
p〉〈up〉) + ∂x · (〈ρeα

�
p〉〈up〉〈up〉 + 〈ρeα

�
p〉Rp + 〈pp〉I + 〈Ppfp〉) =

(1 − Cd)〈K〉〈ufp〉 − 〈α�
p〉∂x〈pf 〉 − 〈α�

p〉〈Fpf 〉 + 〈Sfp〉 + 〈ρeα
�
p〉g

∂t(〈ρfα�
f 〉〈uf 〉) + ∂x · (〈ρfα�

f 〉〈uf 〉〈uf 〉 + 〈ρfα�
f 〉Rf + 〈pf 〉I) =

(1 − Cd)〈K〉〈upf 〉 + 〈α�
p〉∂x〈pf 〉 + 〈α�

p〉〈Fpf 〉 − 〈Sfp〉 + 〈ρfα�
f 〉g

Total Energy

∂t(〈ρeα
�
p〉〈Ep〉) + ∂x · [〈ρeα

�
p〉〈Ep〉〈up〉 + 〈ρeα

�
p〉Rp · 〈up〉 + (〈pp〉I + 〈Ppfp〉) · 〈up〉] =

∂x · (〈ρeα
�
p〉νp,t∂x〈Ep〉) + 〈Ppfp〉 : ∂x〈up〉

− 〈K〉
[
3〈Θp〉 + 2kp − 2(kfkp)1/2 + (1 − Cd)〈up〉 · 〈upf 〉 − Cb〈ufp〉2

]

− 〈α�
p〉〈up〉 · ∂x〈pf 〉 − 〈α�

p〉〈up〉 · 〈Fpf 〉 + 〈SE〉 + 〈ρeα
�
p〉〈up〉 · g

∂t(〈ρfα�
f 〉〈Ef 〉) + ∂x · [〈ρfα�

f 〉〈Ef 〉〈uf 〉 + 〈ρfα�
f 〉Rf · 〈uf 〉 + (〈α�

f 〉〈uf 〉 + 〈α�
p〉〈up〉)〈pf 〉] =

∂x · (〈ρfα�
f 〉νf,t∂x〈Ef 〉) − 〈Ppfp〉 : ∂x〈up〉

+ 〈K〉
[
3〈Θp〉 + 2kp − 2(kfkp)1/2 + (1 − Cd)〈up〉 · 〈upf 〉 − Cb〈ufp〉2

]

+ 〈α�
p〉〈up〉 · ∂x〈pf 〉 + 〈α�

p〉〈up〉 · 〈Fpf 〉 − 〈SE〉 + 〈ρfα�
f 〉〈uf 〉 · g

where
〈αf 〉 + 〈αp〉 = 1 〈α�

f 〉 + 〈α�
p〉 = 1

〈ρfαa〉 = 〈ρeα
�
p〉 − ρp〈αp〉 〈ρfαf 〉 = 〈ρfα�

f 〉 + 〈ρfαa〉

〈ρf 〉 =
〈ρfα�

f 〉 + 〈ρeα
�
p〉 − ρp〈αp〉

〈αf 〉 〈αa〉 =
〈ρeα

�
p〉 − ρp〈αp〉
〈ρf 〉 〈cm〉 =

〈ρfαa〉
〈ρfαf 〉〈αp〉

〈K〉 =
3〈ρeα

�
p〉CDRep

4τp
Rep =

〈α�
f 〉

〈αf 〉
dp〈ufp〉

νf
c�

m =
1

2
min (1 + 2〈αp〉, 2)

〈Sa〉 =
1

τa
〈ρfαf 〉〈αp〉(c�

m − 〈cm〉) 〈Sfp〉 = max(〈Sa〉, 0)〈uf 〉 + min(〈Sa〉, 0)〈up〉

〈SE〉 = max(〈Sa〉, 0)
1

2
〈uf 〉2 + min(〈Sa〉, 0)〈Ep〉 g0 =

1 + 〈αf 〉
2〈αf 〉3

〈Fpf 〉 = 〈ρf 〉 [Cc tr(〈Γ〉)I + Cl 〈S〉] · 〈ufp〉 〈upf 〉 = −〈ufp〉 = 〈up〉 − 〈uf 〉
〈ufp〉2 = 〈ufp〉 · 〈ufp〉 〈uf 〉2 = 〈uf 〉f · 〈uf 〉 〈up〉2 = 〈up〉 · 〈up〉
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Table 3. Pressure tensors for turbulence model in Table 2. Reynolds stresses Rp and
Rf are defined in Table 4. All pressure tensors are non-negative and symmetric. 〈R2〉 is

a closure for the turbulent contribution to the pfp-pressure with trace 2(k
1/2
f − k

1/2
p )2.

Slip-Velocity Tensor
〈R〉 = 〈R1〉 + 〈R2〉

〈R1〉 =
1

5
〈ufp〉2I +

2

5
〈ufp〉〈ufp〉

〈R2〉 =
2

5
(k

1/2
f − k1/2

p )2I +
2

5

(
Rf − 2(kfkp)1/2Rfp + Rp

)

where the symmetric tensor Rfp = rfp(RfRp + RpRf )1/2 has tr(Rfp) = 2, which fixes
rfp given the Reynolds-stress tensors.

Particle-Fluid-Particle-Pressure Tensor

〈Ppfp〉 = Cpfp〈ρf 〉〈α�
p〉〈R〉

Fluid Pressure
〈pf 〉 = 〈ρf 〉(γf − 1)〈Θf 〉 − γfpo

f

Granular Pressure

〈pp〉 = 〈ρeα
�
p〉〈Θp〉(1 + 4〈α�

p〉g0) + pc〈αp〉g0 1

2

[
1 + tanh

( 〈αp〉 − 0.6

0.01

)]

where

〈Θf 〉 = 〈Ef 〉 − kf − 1

2
〈uf 〉2

〈Θp〉 =
2

3

(
〈Ep〉 − kp − 1

2
〈up〉2

)

represents reduced drag due to particle clustering. In general, Cd depends on
many parameters such as 〈αp〉 and Rep [31]. However, here we simply take
Cd = 0.5 as the default value, knowing that in most flows it will be smaller.
For the other source terms in the momentum balances, most of which affect
the hyperbolicity, we use the ‘laminar’ closure and introduce parameters Cc

(compression) and Cl (lift) with default values of unity. These parameters could
be fit to canonical cases, for example, involving shocks passing over particle
beds (Cc) and mean shear flow (Cl). For the various pressure tensors, use of the
‘laminar’ forms is justified because they are usually small [18] and will mostly
be important for low-turbulent-Reynolds-number flows.

3.3 Total Energy

The total energy balances in Table 2 use the conserved variables

(X6,X7) = (〈ρeα
�
p〉〈Ep〉, 〈ρfα�

f 〉〈Ef 〉), (12)
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and thus

(〈Ep〉, 〈Ef 〉) =
(

X6

X2
,
X7

X3

)
. (13)

The flux closures are analogous to the ‘laminar’ model but with the additional
contribution of the Reynolds stress and the gradient-diffusion model involving
turbulent viscosity νt (see Table 4). As discussed earlier, one role of the turbulent
viscosity is to ‘thicken’ the shock-like structures that arise due to the high Mach
number of the particle phase.

The source terms on the right-hand sides of the energy balances in Table 2 are
analogous to the ‘laminar’ model, but with additional terms that depend on the
turbulent kinetic energies (TKE) kf , kp and the mean slip velocity 〈ufp〉2. Recall
that, aside from gravity g, the sum of the source terms for the two phases must be
zero due to conservation on energy. Because in most gas–particle flows kp < kf ,
the transfer terms move TKE from the particle phase to the fluid phase where it
ultimately dissipates to increase 〈Θf 〉. The source terms depending on the mean
slip velocity also depend on the material density ratio Z = 〈ρf 〉/ρp such that
Cd = Cb +Cg. As a default closure, we propose the relation given in Table 5, but
acknowledge that it is a crude approximation for large Z (i.e., bubbly flows).
Physically, Cb corresponds to the particle-phase TKE generated by buoyancy
(e.g., BDT) [21], while Cg corresponds to the fluid-phase TKE generated by
gravity (e.g., CIT) [26]. In fully developed flow, the terms involving buoyancy
and drag are much larger than all of the other source terms. It is interesting
to note that the dependence of Cb and Cg on Z implies that in homogeneous
bubbly flows kf ≤ kp [21], while in gas–particle flows kp ≤ kf [32]. Naturally,
for homogeneous suspensions with Z ≈ 1, kp ≈ kf . Finally, we must remind the
reader that the proposed models for Cb and Cg are based on limited data from
EE and EL simulations. As is true for Cd, further work is needed to account for
the other flow parameters.

3.4 Multiphase Turbulence Statistics

The proposed multiphase turbulence model uses the Reynolds-stress model given
in Table 4. By construction, the balances for the Reynolds stresses reduce to those
of the TKE, e.g., 2kf = tr(Rf ). The turbulent length and time scales are found
using the turbulent dissipate rates (TDR) ε. The models in Table 4 for the TKE
and the TDR were first proposed in [26] as generalization of the classical k–ε
model [28]. There are two coupling terms, one involving the fluid drag 〈K〉 and
the difference in the statistics in each phase (i.e., the drag-exchange term), and
the other is a production term due to the mean-slip velocity. Because the TKE
is part of the total energy, the same source terms appear (along with several
others) in the total energy balances. Observe that the drag-exchange terms (in
isolation) work to equalize the TKE in both phases. On the other hand, the
mean-slip-production terms depend on Cb and Cg and inject TKE extracted
from the mean kinetic energy. Of these two terms, Cg is important for gas–
particle flows, while Cb is important in bubbly flows. At present, only Cg has



128 R. O. Fox

been studied in detail [32]. The scaling in terms of Z in the drag-production
term involving Cb is unknown, but likely must increase with Z in bubbly flows.
Unlike for the total energy of the mixture, the sources terms for TKE of the
mixture need not be conservative. In fact, the drag-exchange terms are strictly
dissipative for the mixture [26]. At very large mass loading, the magnitudes of
the drag-exchange and mean-slip-production terms are much larger than the
others and thus determine the values of the TKE and TDR.

The TDR in the TKE balances has the usual form as in single-phase turbu-
lence models, i.e., it dissipates k due to the turbulent energy flux from large to
small scales. The constant Cε,2 controls the turbulence decay rate in homoge-
neous systems [28]. As discussed in [26], the granular temperature equation has
the form

3
2∂t(〈ρeα

�
p〉〈Θp〉) + 3

2∂x · (〈ρeα
�
p〉〈Θp〉〈up〉) = 3

2∂x · (〈ρeα
�
p〉νp,t∂x〈Θp〉)

− 〈pp〉∂x · 〈up〉 − 3〈K〉〈Θp〉 + 〈ρeα
�
p〉εp (14)

where the final term represents production of uncorrelated granular energy due
the turbulent dissipation of kp. Because we use the conservative form of the
model with the total energy, this balance equation is not needed. However, one
can clearly observed that 〈Θp〉 is only dissipated by drag (i.e., viscous heating
of the fluid). In other words, in the particle phase there is a cascade of energy
from large to small scales: 1

2 〈up〉2 → kp → 〈Θp〉 → 〈Θf 〉.
The balance equations for TDR are described in detail in [26]. Again, the two

new terms are due to drag exchange and mean-slip production. These terms have
the same forms as for the TKE, but there are subtle differences from classical
closures used for multiphase turbulence. First, instead of multiplying the drag-
exchange term from the TKE by a turbulence time scale, here we define the drag-
exchange term using ε (which automatically has the correct units). As shown in
[26], by adjusting Cε,3 this simple model reproduces the decay of homogeneous
multiphase turbulence in the absence of a mean-slip velocity [11]. The mean-slip-
production term uses the timescale τp modified by the constant Cε,4. The latter
is likely a function of Z and/or mass loading ϕ = 〈ρpαp〉/〈ρfαf 〉. In general, for
fixed Z, the value of Cε,2/Cε,4 controls the magnitude of the steady-state TKE
in systems with no production due to mean shear.

Turning now to the balance equations for the Reynolds-stress tensors in
Table 4, it is easily verified that their traces reduce to the TKE balances as
expected. For the second-order tensors appearing in the balances, the drag-
exchange terms are written in terms of the symmetric matrix Rfp, defined by
rescaling the square-root matrix found from the symmetric form RfRp + RpRf

such that the trace is equal to two. To the author’s knowledge, this simple form
has not been used previously and has yet to be tested for flows with mean shear
(i.e., away from one-dimensional turbulence). The mean-slip-production terms
involve the tensor Pfp, which is the dyadic product of the mean-slip velocity. It
is this simple (closed) form that leads to diagonal Reynolds stresses for gravity-
driven flows in the absence of mean shear. For the other terms, the isotropization
tensors Φ have the classical linear form used in single-phase turbulence models
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Table 4. Closures for higher-order statistics in the multiphase turbulence model in
Table 2. Default values of the model constants are provided in Table 5.

Turbulent Kinetic Energy

∂t(〈ρfα�
f 〉kf ) + ∂x · (〈ρfα�

f 〉kf 〈uf 〉) = ∂x · (〈ρfα�
f 〉νf,t∂xkf ) − 〈ρfα�

f 〉εf

− 〈ρfα�
f 〉Rf : ∂x〈uf 〉f + 2〈K〉

[
(kpkf )1/2 − kf

]
+ Cg〈K〉〈ufp〉2

∂t(〈ρeα
�
p〉kp) + ∂x · (〈ρeα

�
p〉kp〈up〉) = ∂x · (〈ρeα

�
p〉νp,t∂xkp) − 〈ρeα

�
p〉εp

− 〈ρeα
�
p〉Rp : ∂x〈up〉 + 2〈K〉

[
(kpkf )1/2 − kp

]
+ Cb〈K〉〈ufp〉2

Turbulent Dissipation Rate

∂t(〈ρfα�
f 〉εf ) + ∂x · (〈ρfα�

f 〉εf 〈uf 〉) = ∂x · (〈ρfα�
f 〉νf,t∂xεf ) − Cε,2〈ρfα�

f 〉 εf
kf

εf

− Cε,1
εf
kf

〈ρfα�
f 〉Rf : ∂x〈uf 〉 + 2Cε,3〈K〉

[
(εpεf )1/2 − εf

]
+ Cε,4

1
τp

Cg〈K〉〈ufp〉2

∂t(〈ρeα
�
p〉εp) + ∂x · (〈ρeα

�
p〉εp〈up〉) = ∂x · (〈ρeα

�
p〉νp,t∂xεp) − Cε,2〈ρeα

�
p〉 εp

kp
εp

− Cε,1
εp
kp

〈ρeα
�
p〉Rp : ∂x〈up〉 + 2Cε,3〈K〉

[
(εpεf )1/2 − εp

]
+ Cε,4

1
τp

Cb〈K〉〈ufp〉2

Reynolds-Stress Tensor

∂t(〈ρfα�
f 〉Rf ) + ∂x · (〈ρfα�

f 〉〈uf 〉Rf ) = ∂x · (〈ρfα�
f 〉νf,t∂xRf ) − 〈ρfα�

f 〉Φf − 〈ρfα�
f 〉εf

+ 〈ρfα�
f 〉Pf + 2〈K〉

(
(kfkp)1/2Rfp − Rf

)
+ 2Cg〈K〉Pfp

∂t(〈ρeα
�
p〉Rp) + ∂x · (〈ρeα

�
p〉〈up〉Rp) = ∂x · (〈ρeα

�
p〉νp,t∂xRp) − 〈ρeα

�
p〉Φp − 〈ρeα

�
p〉εp

+ 〈ρeα
�
p〉Pp + 2〈K〉

(
(kfkp)1/2Rfp − Rp

)
+ 2Cb〈K〉Pfp

where (Y)† = 1
2
(Y + Yt), Rfp ∝ (RfRp + RpRf )1/2 with tr(Rfp) = 2,

τp =
〈ρeα

�
p〉

〈K〉 νf,t = Cμ,f

k2
f

εf
νp,t = Cμ,p

k2
p

εp
Pfp = 〈ufp〉〈ufp〉 Pfp = tr(Pfp)

Pf = −2(Rf · ∂x〈uf 〉)† Pf = tr(Pf ) Pp = −2(Rp · ∂x〈up〉)† Pp = tr(Pp)

Φf = C1f
εf

kf

(
Rf − 2

3
kf I

)
+ C2f

(
Pf − 1

3
Pf I

)
+ Cfp

2Cg〈K〉
〈ρfα�

f 〉
(

Pfp − 1

3
PfpI

)

Φp = C1p
εp

kp

(
Rp − 2

3
kpI

)
+ C2p

(
Pp − 1

3
PpI

)
+ Cfp

2Cb〈K〉
〈ρeα�

p〉
(

Pfp − 1

3
PfpI

)

εf =

(
Cf

1

kf
Rf +

2

3
(1 − Cf )I

)
εf εp =

(
Cp

1

kp
Rp +

2

3
(1 − Cp)I

)
εp
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Table 5. Default values of the turbulence model constants with Z = 〈ρf 〉/ρp. For
water, γf = 6.1 and po

f = 4 × 108 Pa. For air, γf = 1.4 and po
f = 0 Pa. Except perhaps

for Z ≤ 1, the expressions for Cg and Cb are rough approximations and should not
be used for 1 � Z (where Cg ≈ 0) as explained in the main text. More generally, the
dissipation model parameters must be fit to data for statistically homogeneous flows,
especially for large Z (bubbly flows).

Constant Value

cf 0.2

Cc 1

Cl 1

Cg [〈αf 〉 − 〈αa〉 min(Z, 1)]Cd

Cb [〈αp〉 + 〈αa〉 min(Z, 1)]Cd

Cd 0.5

Cμ,f , Cμ,f 0.09

C1f 1.5

C1p 1.5

C2f 0.6

C2p 0.6

Cfp 0

Cf , Cp 0

Cε,1 1.44

Cε,2 1.92

Cε,3 1.92

Cε,4 1.92

[28], and the Rotta model is used for the turbulent dissipation tensors ε. Obvi-
ously, other forms of these terms are possible, and likely desirable, to capture
the temporal and spatial variations of the Reynolds stresses in real disperse
multiphase flows.

Finally, we should note that in the hyperbolicity analysis the eigenvalues
associated with the TKE and TDR balances are just the mean velocities. Thus,
the hyperbolicity of the turbulence model is not compromised. Nonetheless, as
mentioned earlier in the discussion of Table 2, the magnitude of some of the
eigenvalues will increase with increasing TKE. In other words, the speed of
some processes will become faster when turbulence is present. However, the
largest eigenvalues (which control the numerical time step [18]) are usually fixed
by the speed of sound in the fluid (

√
γfpo

f ). If the fluid phase were treated
as incompressible [18], then the speed of sound for the particle phase (which
depends on

√
6kp) would determine the time step.
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3.5 Summary

In addition to the seven conserved variables Xi corresponding to the mean statis-
tics, the turbulence model introduces four additional conserved quantities:

(X8,X9,X10,X11) = (〈ρeα
�
p〉Rp, 〈ρfα�

f 〉Rf , 〈ρeα
�
p〉εp, 〈ρfα�

f 〉εf ). (15)

The Reynolds stresses contain six variables each; however, in homogeneous CIT
and BDT, only two of the six are independent. The default values for the model
constants are provided in Table 5. Nonetheless, further research is needed to
determine whether (1) the simple linear-relaxation model used for the Reynolds
stresses is sufficient to handle a wide range of flows, (2) whether the default values
of the constants need to be adjusted or made to depend on flow parameters such
as Rep and 〈αp〉, and (3) what additional terms beyond the ‘laminar’ terms are
needed in the flux and source-term closures.

Finally, we should remind the reader that the starting two-fluid model in
Table 1 neglects viscous stresses in the fluid phase, assumes elastic collisions
for the particles, and treats all particles as adiabatic spheres with identical
properties. While all of these additional effects can easily be included in the
turbulence model, at present the model in Table 2 is applicable only to high-
turbulent-Reynolds-number flows. For many applications, the main effect of the
turbulence model will be to modify the phasic speeds of sound due to the TKE.
For example, gas–particle flows with Z = 0 and negligible granular temperature
have a particle-phase speed of sound equal to

√
6kp. In principle, if kp were large

enough to make the particle phase subsonic, then a much coarser grid could be
employed to resolve the particle phase.

Another important consideration when applying the turbulence model to real
flows are the boundary conditions. For example, in particle-laden channel flows
with significant mass loading the fluid-phase turbulence structures are altered by
the presence of the clusters, which changes the behavior of the turbulent bound-
ary layer [17,30]. Although some initial work on developing boundary conditions
for channel flows has been reported [33], much work remains to accommodate
more general flow geometries. Thus, in the example applications below, we will
focus on homogeneous systems for which boundary conditions are not required.

4 Application to Statistically Homogeneous Flows

As an example application, we consider statistically homogeneous flows that are
controlled by the drag-exchange and mean-slip-production terms. Two specific
examples of such flows are (i) cluster-induced turbulence with Z ≈ 0 [20] and
(ii) buoyancy-driven turbulence with 1 � Z [21].

4.1 Mass Balances

For statistically stationary and spatially homogeneous flows, the turbulence
model reduces to algebraic relations. For example, 〈αp〉 is a fixed constant, so
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that 〈cm〉 = c�
m = 1

2 +〈αp〉 and 〈αa〉 = 〈cm〉〈αp〉〈αf 〉 are constants. Furthermore,
compressibility plays no role in these flows, so that ρf is constant and

〈ρfα�
f 〉

〈ρeα�
p〉

=
Z〈α�

f 〉
〈αp〉 + Z〈αa〉 (16)

where Z = ρf/ρp and the second term in the denominator is the contribution due
to added mass. In general, any averaged variable involving the volume fractions
and/or densities is time independent for spatially homogeneous flows.

4.2 Momentum Balances

The mean-slip velocity 〈ufp〉 is with respect to the bulk fluid velocity 〈uf 〉 and
not the fluid velocity 〈vf 〉. As shown in [18], they differ by a factor of 〈αf 〉/〈α�

f 〉,
i.e., 〈α�

f 〉〈upf 〉 = 〈αf 〉〈vpf 〉. In most simulations of statistically homogeneous
flows, 〈vf 〉 is set to zero by controlling the fluid pressure gradient. For the fluid
velocity to be null, we must have 〈ρfα�

f 〉〈uf 〉 = −〈ρfαa〉〈up〉, i.e., the bulk fluid
velocity is opposite the particle velocity and proportional to the added mass.
The mean-slip velocity is related to the mean particle velocity by

〈upf 〉 =
〈αf 〉
〈α�

f 〉 〈up〉. (17)

Thus, 〈α�
f 〉d〈upf 〉/dt = 〈αf 〉d〈up〉/dt for statistically homogeneous flows.

We can take gravity to be g = g(t)ex where g(t) is a possibly time-dependent
magnitude. From the mixture momentum balance, we then find

∂x〈pf 〉 + ρp〈αp〉∂t〈up〉 = (ρp〈αp〉 + ρf 〈αf 〉)g(t)ex. (18)

The mean-slip velocity is then set by 〈upf 〉 = 〈upf 〉ex, which is determined from
the balance between gravity, buoyancy and fluid drag. Using (18) to eliminate
the fluid-phase pressure gradient, the particle-phase momentum balance reduces
to

ρp〈αp〉〈α�
f 〉 + ρf 〈αa〉
〈K〉

d〈up〉
dt

= −(1 − Cd)〈upf 〉 +
〈α�

f 〉ρp〈αp〉(1 − Z)
〈K〉 g(t). (19)

For a steady-state system, g(t) = g is constant. With Stokes drag, 〈K〉 is

〈K〉 = 〈ρeα
�
p〉

18μf

ρpd2p
= 〈ρeα

�
p〉

1
τp

(20)

and the mean-slip velocity is

〈upf 〉 =
〈α�

f 〉(1 − Z)τpg

(1 − Cd)(1 + Z〈cm〉〈αf 〉) . (21)

For CIT, Z ≈ 0 so that 〈upf 〉 has the same direction as gravity. The opposite is
observed with BDT.
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Recall that the factor (1 − Cd) accounts for clustering, i.e., the magnitude of
the mean-slip velocity increases compared to uniform flows. In the very dilute
limit (〈αp〉 → 0) there are no clusters, so that the mean-slip velocity for Stokes
flow is

〈upf 〉0 =
1 − Z

1 + Z〈cm〉τpg. (22)

For finite Rep, the drag coefficient will depend on Rep and the volume frac-
tion. Nevertheless, the mean-slip velocity is uniquely determined from (19). By
defining τ�

p as

τ�
p =

〈ρeα
�
p〉

〈K〉 , (23)

the terminal velocity Vt = τ�
p g|1 − Z|/(1 + Z〈cm〉) is defined for arbitrary Rep.

4.3 Granular Energy Balance

The total energy equation for the fluid provides no new information. For the
particle phase, the steady-state granular temperature is found from (14):

〈Θp〉 =
〈ρeα

�
p〉

3〈K〉 εp =
1
3
τ�
p εp, (24)

and thus depends on the value of τ�
p εp. In the model for CIT and BDT, the

granular temperature does not affect any of the other variables. However, direct-
numerical simulations of uniform systems suggest that it may modify the drag
coefficient CD [34]. At least for CIT, the amount of total energy represented
by 〈Θp〉 is relatively small as compared to kp (i.e., approximately 10% of the
turbulent kinetic energy [32]).

4.4 Turbulent Kinetic Energy Balances

The TKE and TDR are found by solving four differential equations:6

ρf 〈α�
f 〉

〈ρeα�
p〉

dk̂f

dt̂
= 2(k̂pk̂f )1/2 − 2k̂f + Ĉgγ(t̂) − ρf 〈α�

f 〉
〈ρeα�

p〉
ε̂f , (25)

dk̂p

dt̂
= 2(k̂pk̂f )1/2 − 2k̂p + Ĉbγ(t̂) − ε̂p, (26)

ρf 〈α�
f 〉

〈ρeα�
p〉

dε̂f

dt̂
= 2Cε,3[(ε̂pε̂f )1/2 − ε̂f ] + Cε,4Ĉgγ(t̂) − ρf 〈α�

f 〉
〈ρeα�

p〉
Cε,2ω̂f ε̂f , (27)

6 Only algebraic equations are required at steady state, but the differential equations
provide information concerning the stability and relaxation behavior of the solution.
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dε̂p

dt̂
= 2Cε,3[(ε̂pε̂f )1/2 − ε̂p] + Cε,4Ĉbγ(t̂) − Cε,2ω̂pε̂p (28)

where Ĉg = Cg/Cd and Ĉb = Cb/Cd (which are non-negative, depend on Z, and
sum to unity) modify the split of the TKE between the phases. The dimensionless
variables are defined by

t̂ =
t

τ�
p

, k̂ =
k

CdV 2
t

, ε̂ =
τ�
p ε

CdV 2
t

, ω̂ =
ε̂

k̂
, γ(t̂) =

〈upf 〉2
V 2

t

(29)

where τ�
p is defined by (23). The forcing term γ(t̂) is constant at steady state,

but can be made to vary with time by making g(t) time dependent in (19), e.g.,
with periodic forcing g(t) = g cos(ωg t̂).

The steady-state solution depends on the parameter ratios R3 = Cε,3/Cε,2

and R4 = Cε,4/Cε,2. In general, if R3 = 1 then the steady-state solution gives
ω̂p = ω̂f , and hence ε̂f = ω̂k̂f and ε̂p = ω̂k̂p where ω̂ = R4 is the shared
frequency. Then, for Z = 1, if Ĉg(1) = 〈α�

f 〉 and Ĉb(1) = 〈α�
p〉, the steady-state

solution will be k̂f = k̂p = 1/R4. In general, Cd is used to control the mean-slip
velocity, thus the magnitude of the TKE can controlled using R4.7 Then the
TKE ratio RTKE = k̂f/k̂p for other values of Z is controlled by the model for
Ĉg(Z) (given that Ĉb(Z) = 1− Ĉg(Z)). For example, for 1 � Z it is known that
RTKE < 1 but nearly constant for fixed 〈αp〉, e.g., RTKE ≈ 0.696 for 〈αp〉 = 0.5
and Z = 1000 [21]. On the other hand, for Z ≈ 0, RTKE > 1, e.g., RTKE ≈ 1.66
for 〈αp〉 = 0.01 and Z = 0.001 [32].

In summary, the default dissipation parameters are Cε,3 = Cε,2 = 1.92 and
Cε,4 = R4Cε,2 where R4 can be set to control the level of the TKE. The param-
eters Cb(Z) and Cg(Z) have the property Cb + Cg = Cd where Cd fixes the
mean-slip velocity and depends on Z, Rep and 〈αp〉. The ratio Ĉg(Z) must have
the properties Ĉg(1) = 〈α�

f 〉 and Ĉg(0) = 1. For other values of Z, Ĉg(Z) is
chosen to fix the TKE ratio RTKE , but must always be non-negative and less
than unity. Also, for simplicity, the drag-exchange term for TKE and TDR is
written here with the correlation constants βk and βε (see [26]) equal to one. At
least for CIT with Ĉg = 1, other values may be needed for these parameters to
get the correct RTKE . As in other dynamical systems, it would be informative
to compare the model to Euler–Lagrange or two-fluid simulations with periodic
forcing, i.e., g(t) = g cos(ωg t̂), for different values of the forcing frequency ωg. For
a given Z, the dynamical response of RTKE would provide valuable information
concerning R3 and R4 that is indiscernible from the steady-state solution.

7 Adjusting R4 is physically equivalent to adjusting the timescale for the cluster-
induced turbulence relative to τp as defined in (23). For bubbly flow with 1 � Z the
predicted value of kf is very small when R4 = 1. However, since part of the fluid
travels with the particles, kf is less than the TKE of fluid reported in [21].
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4.5 Reynolds Stresses

Turning now to the Reynolds stresses, in the coordinate system with the x-axis
aligned opposite of g (i.e., ex · g = −g), the stress tensor will be diagonal with
R�

xx > R�
yy = R�

zz. Thus, for each phase there are only two independent compo-
nents and 2k� = R�

xx +2R�
yy. The mean-slip-production tensor Pfp has only the

xx-component nonzero and is equal to 〈ufp〉2. The dimensionless isotropization
tensors are traceless and have the form

Φ̂f = 2C1f ε̂f

(
R̃f − 1

3
I

)
+ 2CfpĈgγ(t̂)

〈ρeα
�
p〉

ρf 〈α�
f 〉

(
exex − 1

3
I

)
(30)

Φ̂p = 2C1pε̂p

(
R̃p − 1

3
I

)
+ 2CfpĈbγ(t̂)

(
exex − 1

3
I

)
(31)

where R̃ = R�/(2k�) is diagonal with unit trace. The first term reorients TKE
from the xx-component towards the other diagonal components, while the second
term makes the mean-slip-production term more isotropic. The dimensionless
dissipation tensors are

ε̂f = 2
(

Cf R̃f +
1
3
(1 − Cf )I

)
ε̂f ε̂p = 2

(
CpR̃p +

1
3
(1 − Cp)I

)
ε̂p (32)

where tr(ε̂) = 2ε̂. As in single-phase turbulence, the term involving Cf (Cp) in
(32) can be combined with the C1 term in Φ, hence we can let Cf = Cp = 0.8

With these definitions, the Reynolds stresses are found from

ρf 〈α�
f 〉

〈ρeα�
p〉

dR̂f

dt̂
= 2(k̂f k̂p)1/2Rfp − 2R̂f + 2Ĉgγ(t̂)exex − ρf 〈α�

f 〉
〈ρeα�

p〉
(Φ̂f + ε̂f ) (33)

dR̂p

dt̂
= 2(k̂f k̂p)1/2Rfp − 2R̂p + 2Ĉbγ(t̂)exex − (Φ̂p + ε̂p) (34)

where tr(R̂) = 2k̂ and Rfp is defined such that tr(Rfp) = 2:

Rfp = 2(R̃1/2
xx + 2R̃1/2

yy )−1diag(R̃1/2
xx , R̃1/2

yy , R̃1/2
yy ), (35)

and R̃xx, R̃yy are the two independent components of the diagonal matrix R̃f R̃p.
Given the solution for the TKE and TDR, the xx-component of the relations in
(33) and (34) can be solved to find R̂xx for each phase. Note that the drag-
exchange terms couple the two phases and work to equalize the anisotropy
between phases. In contrast, the mean-slip-production term is highly anisotropic
and would drive the system to R̃xx = 1 if not for the isotropization term Φ̂. For
example, with Cfp = 1 the production terms will be isotropic so that R̃xx = 1/3.

8 For particle-laden flows, the particle-pressure tensor is highly anisotropic [35]. In
general, if a full second-order model is used for the particle phase [36], nonzero Cp

is required to predict this anisotropy [32].



136 R. O. Fox

For the isotropization term, one can first set C1 to the standard value for single-
phase turbulence [28], and then use 0 ≤ Cfp < 1 to achieve the correct value
for R̃zz. This statement assumes that with Cfp = 0, R̃xx is too large when the
standard value of C1 is used. If this is not the case, then C1 must be decreased
to get the desired value for R̂xx.

Table 6. Steady-state predictions from the turbulence model with default values of
parameters in Table 5. The particle volume fractions are chosen to correspond to CIT
[32] and BDT [21]. The statistics R̃ are the xx component of the Reynolds-stress tensor
scaled by 2k̂. For the default parameters ε̂ = k̂ and dimensionless mean-slip velocity is
unity.

Z 〈αp〉 k̂f k̂p RTKE R̃f R̃p

0.001 0.01 1.307 0.588 2.223 0.871 0.750

1 0.1 0.154 0.154 1 0.778 0.778

1000 0.5 0.403 0.569 0.708 0.752 0.797

1000 0.1 0.057 0.102 0.559 0.774 0.818

4.6 Example Results

To show predictions from the multiphase turbulence model, we will use the
default parameters and three values for Z, namely, 0.001, 1, and 1000. The first
corresponds to gas–particle flow, the second to buoyancy-neutral flow, and the
third to bubbly flow. For the default parameters, the steady-state frequencies are
ω̂p = ω̂f = 1. Steady-state results for the other statistics are given in Table 6.
As expected, for Z = 1 both phases have the same values for all statistics.
We should mention that for Z = 1, we find Vt = 0 so that the dimensional
statistics are null. As expected, for gas–particle flow k̂f � k̂p and R̃f is near
0.9 [32]. However, RTKE is larger than observed in [32]. Likewise, for bubbly
flow k̂f < k̂p [21]. Here, RTKE for 〈αp〉 = 0.5 is close to the value observed
in [21]. These trends validate the structure of the mathematical model and its
dependence on Z. Quantitative agreement with direct-simulation data can be
obtained by optimizing the parameters around their default values in Table 5.
For bubbly flow, no turbulence is observed for 〈αp〉 ≤ 0.3 in direct simulations
[21]. The turbulence model predicts a much lower, but nonzero, value for the
dimensionless TKE. However, recall that Cd = 0 when the flow is non-turbulent
(i.e., when only pseudoturbulence present [37]) and, hence, the dimensional TKE
k� will be null. In other words, the transition to turbulence must be incorporated
into the drag closure for Cd.

An example of the time-dependent turbulence model predictions for gas–
particle flow with periodic forcing g(t̂) = cos(ωg t̂) and ωg = π/3 is shown in
Fig. 1. In the top panel, up is scaled such that the steady-state value is unity.
At the chosen frequency, the mean-slip velocity lags behind the forcing and has
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maximum magnitude of approximately 0.5. In the second panel, as expected, the
TKE oscillates at twice the frequency of g(t̂) and its magnitude is significantly
lower than the steady-state value in Table 6. In the third panel, the TKE and
TDR ratios are seen to vary significantly with time, as is the case for ω̂ in the
bottom panel. It is noteworthy that the phasic ω̂ are not equal, and most of
the time are below the steady-state value of unity. These differences are due to
the fact that the characteristic timescale for the fluid from (16) depends on the
value of Z. The results for Z � 1 follow similar trends to those in Fig. 1. From
the point of view of fitting the model parameters, the periodic-forcing data are
much richer than the steady-state data. It would therefore be useful to obtain
such data from direct simulations for model validation. Finally, we can note that
the dissipation parameter Cε,2 can be fit to direct-simulation data by starting
from steady state and observing the decay rate of ε̂ with g = 0.

Fig. 1. Example predictions from multiphase turbulence model for CIT with Z = 0.001,
〈αp〉 = 0.01, ωg = π/3, and default parameters in Table 5. All model variables are
dimensionless and Rf and Rp are the xx-component of the Reynolds stresses. top
g(t̂) and up(t̂). middle-top k̂f (t̂), k̂p(t̂), ε̂f (t̂), ε̂p(t̂), R̂f (t̂), R̂p(t̂). middle-bottom
RTKE(t̂), RTDR(t̂). bottom ω̂f (t̂), ω̂p(t̂)
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5 Conclusions

Starting from a hyperbolic two-fluid model for monodisperse multiphase flow
consisting of a compressible fluid and incompressible spherical particles, a mul-
tiphase turbulence model is proposed based on Reynolds averaging. In order
to allow for arbitrary material-density ratios, the two-fluid model includes the
added mass due to the fluid in particle wakes, which travels with the velocity
of the particles. The fluid phase is thus divided into a bulk fluid and the added
mass, which travel at different velocities. As shown in previous work [18], this
two-fluid formulation involving seven equations is globally hyperbolic. By care-
fully formulating the closures in the turbulence model, the latter retains the
same hyperbolicity characteristics as the original two-fluid model. However, the
phasic speeds of sound are altered due to the ‘turbulent pressure’ associated with
the phasic turbulent kinetic energies.

In addition to the seven conserved variables, the turbulence model includes
four additional balance equations for the fluid- and particle-phase Reynolds
stresses and turbulence dissipation rates. In the target application—gravity-
driven turbulence—the Reynolds-stress tensors are diagonal but anisotropic.
Thus, they do not produce ‘turbulent-viscosity’ terms in the mean momen-
tum balances as in classical mean-shear flows. For this reason, the character-
istic timescales in the hyperbolic multiphase turbulence model are similar to the
original two-fluid model (albeit with a higher speed of sound due to the turbu-
lent kinetic energy), and solutions to the multiphase turbulence model for real
applications—such as particle-laden riser flow—will not be time independent.
Nonetheless, ‘turbulent diffusion’ of turbulent kinetic energy and its dissipation
will be present. Together with the higher speed of sound in the particle phase,
this should make it possible to achieve accurate time-dependent solutions on
coarser grids than would be the case with the original two-fluid model.

The closures employed in the balances for turbulent kinetic energy were, for
the most part, originally proposed in [26]. Both drag and mean-shear production
are included in these balances, and the form of the drag-exchange term has been
discussed in detail in [26]. The balances for the turbulent dissipation rates follow
the same formulation, but we have introduced a slight (but important) change in
the drag-production term. Contrary to what was done in [26], the characteristic
timescale for drag production in the dissipation equation is τp. This change was
made to allow for stationary solutions for homogeneous gravity-driven turbu-
lence, and is consistent with the treatment of pseudoturbulence in [18]. We have
also shown that the dissipation parameters must be made to depend on Z (i.e.,
the material-density ratio) in order to reproduce the behavior seen in CIT and
BDT (and the anticipated equality of the turbulence statistics for Z = 1). Nev-
ertheless, further work is needed to determine how these parameters depend on
the other properties of the flow (e.g., mass loading, particle Reynolds number,
etc.).

For the Reynolds-stress balances, the closures for the isotropization tensors
are the simplest linear-relaxation models from the literature. This choice was
made because data are lacking to validate more complex closures involving non-
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linear terms. The proposed closures for the drag-exchange terms for the Reynolds
stresses are novel. First, their trace yields the correct expression for the drag-
exchange model for the turbulent kinetic energies. Second, their mathematical
forms are analogous to the latter (e.g., linear terms keep the same form but
replace the scalar with the tensor). Thus, the most speculative closure is the
tensor Rfp towards which the phasic Reynolds stresses relax due to drag coupling.
Obviously, this tensor is not unique, but its form (e.g., symmetric, positive-
definite) can be tested for gravity-driven and mean-shear flows in future work.

In summary, we have presented a ‘basic’ multiphase turbulence model for
compressible disperse multiphase flows. This model has favorable mathematical
properties (e.g., hyperbolic, realizable, etc.) that will make its numerical imple-
mentation in compressible flow codes very robust. Future work will be devoted
to validating the closures and extending them as needed to account for multi-
phase turbulence physics in systems with both gravity-driven and mean-shear
turbulence production.
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