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Abstract. This paper provides a comprehensive synthesis of a decade’s
advancements in field investigations into snow settling dynamics, car-
ried out at the EOLOS field research station in Rosemount, MN, USA.
The research deployed a succession of progressively sophisticated parti-
cle characterization and tracking systems, culminating in the develop-
ment of a 3D particle tracking velocimetry (PTV) system. Our findings
show the compelling role of preferential sweeping mechanisms, noting
a consistent enhancement in snow particle settling velocities in associ-
ation with turbulent eddies across multiple deployments. However, the
magnitude of this turbulence-induced enhancement displayed variability,
potentially modulated by the differences in turbulence and snow condi-
tions inherent to each deployment. Additionally, intriguing patterns in
snow clustering were revealed, characterized by an exponent power-law
decay of -2 in cluster size distribution. This, coupled with a vertical ori-
entation of clusters indicative of gravitational influences, adds a layer of
complexity to our understanding of snow dynamics. Our research further
deciphers the interplay between preferential sweeping and the preferen-
tial concentration, or clustering, of snow particles. Higher concentrations
of snow particles were consistently found on the downward side of vor-
tices, irrespective of vortex type, with an accelerated settling in these
regions. Intriguingly, this disparity in average settling velocity was more
pronounced in the case of prograde vortices. The advent of 3D particle
tracking velocimetry (PTV) has allowed a nuanced examination of 3D
settling trajectories and clustering dynamics. By providing insights into
the intricate movements of snow particles as they traverse atmospheric
turbulence, it uncovers the subtle variations in motion that could be over-
looked in a 2D analysis. These findings offer valuable insights into the
effects of snow particle morphology and turbulence on settling dynamics,
promising to improve the accuracy of snowfall forecasts and ground snow
accumulation predictions.
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1 Introduction

Predicting ground snow accumulation is a pivotal task, touching on diverse appli-
cations from anticipating flood risk due to snowmelt [31], providing avalanche
hazard warnings [45], to ensuring traffic safety during snowfalls [37]. This predic-
tion hinges heavily on understanding the intricacies of snow settling dynamics
in the atmosphere [24], a process that is far from simple. Influenced by the
morphological characteristics of snow particles and the impacts of atmospheric
turbulence, it presents challenges that are not easily replicated in lab conditions
or numerical simulations. Cloud conditions, including temperature and humid-
ity, can dramatically shape the morphology of snow particles [29], thus altering
their settling velocities. These velocities can fluctuate from virtually zero to up
to 3 m/s [16,28], adding a dynamic element to the snow’s path as it descends
from cloud to ground, possibly drifting over vast distances. Atmospheric turbu-
lence, known for its complex structures and high Reynolds numbers, introduces
an additional layer of complexity to the settling process. This complexity under-
scores the need for more comprehensive research into the physical mechanisms
underlying snow settling, to not only improve the precision of snow accumula-
tion models but also enhance our ability to predict and prepare for the diverse
impacts of snowfall.

In the previous scientific investigations, the influence of snow morphology
on settling velocity has received much attention, although earlier studies did
not explicitly account for the impact of atmospheric turbulence. The pioneering
empirical work of Locatelli & Hobbs [28] laid the groundwork by establishing
correlations between snow particle dimensions, mass, and settling velocity, each
tailored to distinct snow morphologies through field measurements. Passarelli
[39] examined the effect of snow collection efficiency on the formation of aggre-
gates and their subsequent fall speed. Moreover, Mitchell, Zhang & Pitter [34]
explored the snowfall rate under the influence of riming, a process in which super-
cooled water droplets deposit on snow crystals. The advent of the Multi-Angle
Snowflake Camera (MASC) system [15] marked a significant breakthrough, pro-
viding a more nuanced approach to assessing snow morphology and settling
velocity across diverse snow types. On the theoretical and modeling front, Böhm
[8] proposed a universal model to estimate snow settling velocity, encapsulating
the correlation among drag coefficient, particle Reynolds number, and Best num-
ber. His model ingeniously linked particle shape and settling dynamics by consid-
ering the ratio of the actual snow projected area to the elliptical area enclosing
it. Building on Böhm’s foundational work, Mitchell & Heymsfield [33] advanced
the understanding of ice particle fall speeds across a range of shapes, refining the
relationship between Reynolds number and Best number. Heymsfield & West-
brook [20] then introduced new computational methods for predicting snow fall
speed. Their approach, grounded in laboratory measurements on various snow
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morphologies, effectively corrects the projected area ratio bias. These collective
efforts underscore the pivotal role of snow morphology in understanding and
predicting snow settling velocity.

Taking the study beyond morphology alone, it becomes apparent that atmo-
spheric turbulence plays a considerable role in snow settling dynamics. The
complexity of this influence is evident when considering that snow particles,
given their range of shapes, sizes, and densities greater than surrounding air,
effectively behave as heavy inertial particles within turbulent conditions. This
behavior results in characteristic patterns, such as clustering and settling veloc-
ity modulation, strongly indicating the presence of intricate particle-turbulence
interactions [6]. Influenced by factors like turbulence characteristics, represented
by the Kolmogorov time scale, τη, and particle properties such as size (Dp), den-
sity (ρp), and aerodynamic characteristics. These particle properties collectively
define the particle response time, τp [32], a key mechanism within this dynamic
unfolds. This mechanism, known as preferential sweeping, leads particles to accu-
mulate in strain-dominated regions, descending as clusters [3,12,17,55,56], and
can significantly amplify the settling velocity when the Stokes number St = τp/τη

is around 1 [3,14,42,56]. However, it is important to highlight that much of the
existing literature has been based on the simplified assumption of spherical or
point particles, which overlooks the intricate diversity of snow morphologies, sug-
gesting a crucial gap that future research needs to address in order to enhance
our understanding of snow settling dynamics in turbulent conditions.

Moving beyond the common assumption of spherical particles in particle-
turbulence interaction studies, several investigations have expanded their scope
to consider non-spherical geometries, including disks, ellipsoids, and fibers. This
shift in focus has yielded valuable insights into the settling behavior of non-
spherical particles in turbulence, revealing unique mechanisms influenced by tur-
bulence. Among these mechanisms, the preferential orientation of non-spherical
particles has emerged as a significant factor, as has the presence of preferential
sweeping [44]. Notably, the work by Siewert et al. [44] employed direct numerical
simulation (DNS) to delve into these phenomena, providing a robust computa-
tional perspective. Voth & Soldati [54] further contributed to this field with
a comprehensive review of anisotropic particles in turbulence, reinforcing the
importance of considering non-spherical particles in such studies. A standout
study in this area is the work by Esteban, Shrimpton, & Ganapathisubramani
[11], who meticulously examined the settling dynamics of disk-shaped particles in
turbulence. Using a stereoscopic vision system consisting of two digital cameras
and a diffuse light source, they traced the complex three-dimensional trajec-
tories of these particles. Their work revealed an intriguing correlation between
the natural frequency of particles and the turbulent flow frequency at the par-
ticle length scale. While these investigations have advanced our understanding
of non-spherical particles within turbulence, they do not fully encapsulate the
realistic scenario of snow settling dynamics due to the inherent simplification in
the chosen particle geometries.
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Despite substantial efforts in laboratory experiments and simulations, a con-
spicuous gap persists in field data regarding the settling of inertial particles,
such as snow, droplets, and dust, in atmospheric turbulence. This shortage in
data is largely attributed to the inherent challenges in performing field measure-
ments [43], including the need to parameterize local turbulent field conditions
and the complex task of discerning the influences of particle interaction and flow
Reynolds numbers on non-Stokesian particle kinematics. Notable strides in this
area have been made recently [12,40,52], yet limitations persist. Incorporating
particle-turbulence interaction mechanisms into predictive models at geophys-
ical scales remains particularly challenging due to the disparity in conditions
between the field and laboratory or simulation environments. The conventional
models that typically utilize simplified ellipsoidal shapes for particles fall short in
accurately representing the drag coefficient and wake characteristics of genuine
snow particles [46,47].

Addressing the compelling challenges of field measurements, our team has
implemented and advanced the snow particle imaging approach, initially applied
in the study of wind turbine wake flows [1,10,21] and atmospheric boundary
layer research [18,51]. This systematic refinement of these methodologies, span-
ning nearly a decade, has allowed us to delve into the complex dynamics of snow
settling within natural environments, providing invaluable firsthand observations
that incorporate both the snow morphology and the influence of turbulence. The
present paper is not just a summary of previous publications but represents a dis-
tillation of nearly a decade’s worth of dedicated effort in field measurements and
research into snow settling dynamics. It brings together our key findings encap-
sulated in four landmark publications [9,25,26,36], each contributing unique
insights and advancements to the study of this intricate phenomenon. Moreover,
the review process has allowed us to synthesize these contributions and extract
new insights. The layout of this paper is thoughtfully structured: Sect. 2 offers a
comprehensive overview of our approach, detailing the progression of field exper-
iments and data analysis techniques, specifically centered on the intersection of
snow particle dynamics and atmospheric turbulence. Section 3 collates the sig-
nificant findings from our sustained field campaign, drawing upon the insights
from the referenced publications and previewing our ongoing research initiatives.
Concluding in Sect. 4, we reflect on the valuable insights and the journey of our
dedicated research into the complex process of snow settling. This final section
also proposes future research avenues, acknowledges the limitations encountered
in this journey, and explores potential strategies to overcome these challenges.

2 Methods

Over the span of the last decade, our research team has undertaken more than 15
field deployments at the EOLOS field research station in Rosemount, MN. These
deployments have been instrumental in our ongoing exploration of snow settling
dynamics. To delve into this complex phenomenon, we have harnessed a range
of innovative imaging techniques, including planar particle tracking velocime-
try (PTV), simultaneous planar super-large-scale particle image velocimetry
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(SLPIV) and PTV, field 3D PTV, and a pioneering snow particle character-
ization tool that employs digital inline holography (DIH). The utilization of
these advanced methodologies has propelled us into uncharted territory in the
study of snow settling dynamics.

The EOLOS field station, initially established as a wind energy research facil-
ity and equipped with a 2.5 MW turbine and a 130 m meteorological tower, has
proven to be a unique site for our snow settling studies. The station’s relatively
open terrain, with minimal canopy interference, provides an ideal setting for
capturing video footage of snow settling under a wide range of conditions. The
meteorological tower is fitted with a comprehensive suite of sensors that measure
wind velocity, temperature, and humidity, which are essential for characterizing
the atmospheric and turbulence conditions during our field experiments. Specifi-
cally, the tower hosts four sonic anemometers and temperature sensors (CSAT3,
Campbell Scientific), operating at a 20 Hz sampling rate, strategically placed at
elevations of 10, 30, 80, and 129 m. Additionally, six cup-and-vane anemometers,
along with temperature and humidity sensors (1 Hz sampling rate), are installed
at 7, 27, 52, 77, 102, and 126 m elevations. This extensive sensor setup enhances
our ability to collect detailed and accurate data.

In this paper, we turn our focus to five major deployments that have been the
subject of our previous publications. Each of these deployments was conducted
under unique flow and snow conditions, which were analyzed to understand their
impact on snow settling dynamics. To quantify the atmospheric and turbulent
conditions during each deployment, we utilized the sonic anemometer at 10-m
elevation and other sensors installed on the meteorological tower. Key param-
eters for each deployment, including atmospheric stability, integral time scale,
length scale, and turbulence dissipation rate, etc., are summarized in Table 1.
The atmospheric stability was estimated using the bulk Richardson number (Rb)
and the Monin-Obukhov length (LOB). The integral time scale (τL) and the
length scale (L) were estimated based on the temporal autocorrelation function
of the streamwise velocity. The turbulence dissipation rate (ε) was estimated
using the second-order structure function of the streamwise velocity component,

Table 1. Estimated meteorological and turbulence conditions from the sonic anemome-
ter at z = 10 m. See the text for the definition of the symbols. Note that Bristow et
al. [9] only provides mean flow conditions for Apr. 2022 deployment not the turbulence
statistics.

Dataset
U

(m/s)

urms

(m/s)

Rb

(−)

LOB

(m)

L

(m)

τL

(s)

ε
(
cm2/s3

)
η

(mm)

τη

(ms)

Reλ

(−)

Jan. 2016 1.98 0.16 0.03 811 4.9 30.6 8 1.29 126 938

Nov. 2018 1.55 0.38 0.12 1007 3.4 8.9 21 1.04 83 3548

Jan. 2019 5.95 1.18 0.03 -2643 14.6 12.9 314 0.49 20 9180

Jan. 2020 5.47 1.07 0.16 1651 6.2 5.8 355 0.51 19.4 6478

Apr. 2022 1.69 0.27 0.08 191 1.47 5.35 9.7 1.2 117 2558
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with the Taylor hypothesis employed to convert the measured time series into
spatial velocity variations. For a more detailed discussion of the methods and
equations used in these calculations, we refer readers to our previous publica-
tions [25,26,36]. This comprehensive analysis of the atmospheric and turbulent
conditions during each deployment has provided us with a deeper understanding
of their implications on snow settling dynamics.

Shifting focus from atmospheric and turbulent conditions to the specifics of
our snow particle measurements, it is pertinent to note the significant advance-
ments we have achieved using the digital inline holography (DIH) technique for
capturing the morphology of snow particles. The evolution of our snow ana-
lyzer technology, which has seen two distinct generations of development, is
depicted in Fig. 1. Figure 1a illustrates the first-generation snow particle ana-
lyzer, a DIH sensor mounted atop a field vehicle, an effective but compara-
tively rudimentary system. Recognizing the need for more comprehensive data,
we developed a second-generation snow particle analyzer that greatly enhanced
our measurement capabilities. Shown in Fig. 1b, this new analyzer combines the
DIH sensor with a high-precision scale to measure snow particle weight, thereby
enabling simultaneous measurement of particle size, shape, type, and density.
The improved data accuracy and expanded scope of our second-generation ana-
lyzer necessitated a more advanced data processing solution. To meet this need,

Fig. 1. (a) First-generation snow particle analyzer based on digital inline holography
(DIH) sensor mounted atop a field vehicle. (b) Second-generation snow particle ana-
lyzer designed for simultaneous measurement of particle size, shape, type, and density,
combining the DIH sensor and a high precision scale. (c) Real-time data processing soft-
ware developed for the second-generation snow particle analyzer. The software includes
image enhancement to eliminate static background (highlighted in red dashed boxes),
snow particle detection and categorization using machine learning models, and particle
volume and density estimation derived from weight measurements on a high-precision
scale.
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we developed real-time data processing software, as demonstrated in Fig. 1c. This
custom software, built around the YOLOv5 machine learning model, is capable
of image enhancement, snow particle detection, categorization, and estimation
of particle volume and density derived from weight measurements on the high-
precision scale. The software categorizes snow particles into six types according
to their shape and aerodynamic response, achieving an impressive 99% parti-
cle detection rate and an average classification accuracy of 95%. For a more
comprehensive understanding of the snow particle analyzer’s development and
operation, readers are referred to [27].

Fig. 2. The probability density functions (PDFs) of (a) size (ds) and (b) aspect ratio
(dm/dM ) of the snow particles for January 2016 (solid blue line), November 2018
(dotted red line), January 2019 (dashed green line), January 2020 (dash-dotted magenta
line), and April 2022 (solid cyan line).

With the particulars of our snow particle measurement technique estab-
lished, we then focus on the resulting data. The probability distribution func-
tions (PDFs) of snow particle size and aspect ratio are presented in Fig. 2. This
figure provides a comparative analysis of data from the five deployments, offer-
ing insights into the variations in snow particle characteristics under different
conditions. Complementing the graphical data in Fig. 2, Table 2 consolidates the
mean values, standard deviations of particle diameter and aspect ratio, and esti-
mates of snow number concentration and volume fraction from the different
deployments.

With the advancement of our measurement techniques in quantifying turbu-
lence and snow particle conditions, we concurrently developed a method based
on light sheet-based particle tracking velocimetry (PTV). This technique, which
proved vital in tracing the snow settling trajectory and concentration distri-
bution of snow particles, was rooted in the super-large-scale particle image
velocimetry (SLPIV) methods established by [21,51]. The experimental setup
for this method is illustrated in Fig. 3a. In Fig. 3a, the setup integrates a 5-kW
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Table 2. The snow particle properties and concentration measured using the snow
analyzers from different deployments.

Dataset

Mean diameter

d

( mm)

Aspect ratio

dmaj /dmin

(−)

Number concentration

N
(
m−3

)

Volume fraction

φV × 10−7

(−)

Jan. 2016 1.09 ± 0.45 0.73 ± 0.11 816 7.4

Nov. 2018 0.65 ± 0.41 0.65 ± 0.16 1644 6.3

Jan. 2019 0.39 ± 0.23 0.57 ± 0.17 56620 44

Jan. 2020 0.39 ± 0.29 0.62 ± 0.15 28460 38

Apr. 2022 0.97 ± 0.90 0.54 ± 0.21 933 17

searchlight paired with a curved mirror to vertically expand the beam into a
light sheet. This light sheet illuminates the snow particles, and it is oriented
parallel to the average wind direction to minimize out-of-plane motion. Typi-
cally, this setup is positioned 50 m upwind or downwind of the meteorological
tower, thus enhancing the precision of the flow condition quantification. Along
with the illumination setup, our measurement approach employs a Sony A7RII
(Sony Corp.) camera to capture detailed particle motion. This camera records
at a high frame rate of 120 FPS and a resolution of 720 × 1280 pixels within a
targeted field of view. Table 3 details the field of view and other specifications
pertinent to this camera.

To enable the elucidation of the underlying mechanism of the flow-particle
interaction, we implemented a dual-camera setup, as shown in Fig. 3b. This setup
complements the Sony camera with a Nikon D600 (Nikon Inc.) camera, thereby
enabling simultaneous measurements of the turbulent flow field and snow particle
trajectories. The Nikon camera is configured to record a broader field of view
at a frame rate of 30 FPS and a resolution of 1080 × 1920 pixels, providing a
comprehensive view of the overall turbulent flow field. Both cameras, referred to
as PTV (Sony A7RII) and SLPIV (Nikon D600) in the subsequent sections, are
mounted on tripods, with their specifications documented in Table 3.

To process the data captured through our PTV and simultaneous
SLPIV/PTV systems, we utilized particle image velocimetry (PIV) analysis with
the aid of LaVision Davis 8.2.0 software. We employed a multi-pass setting, with
the final pass configured to 32 × 32 pixels and a 50% overlap, ensuring a compre-
hensive analysis of the captured data. For the extraction of particle Lagrangian
trajectories, we turned to the four-frame best estimate algorithm, a method
proposed by Ouellette, Xu & Bodenschatz [38]. This algorithm proved to be a
solid foundation for our data extraction process. Building on this foundation, we
implemented the learning-based method developed by Mallery, Shao & Hong [30]
in our most recent study. This method further enhanced our ability to accurately
track and analyze the trajectories of snow particles.

In our latest research endeavor, we have designed and implemented a mobile
field 3D PTV system, as detailed in [9]. This system, illustrated in Fig. 3c, is



66 J. Li and J. Hong

engineered to capture the intricate 3D settling dynamics of snow particles. The
system consists of four Wi-Fi synchronized cameras, arranged in a fan-like array
spanning 90◦C. These cameras surround a light cone, which is reflected and
expanded by a curved mirror from the same searchlight used in our planar mea-
surements. Each camera is positioned 5.5 m away from the searchlight and angled
at 58◦C, looking upward at a height of 10 m above the ground. Moreover, each
camera is outfitted with an enclosed data acquisition unit, housing a board-
level computer for image capturing commands, a solid-state drive for system
and image storage, and a power supply. To ensure accurate measurements, we
employ a calibration process using an unmanned drone equipped with two col-
ored LEDs, set 34.5 cm apart on a wand. This calibration process is based on
the wand calibration method [49]. We have developed a custom-designed camera
control software that synchronizes the image capturing process across all four

Fig. 3. Illustrations of the experimental setups used for field snow settling measure-
ments, including (a) the planar particle tracking velocimetry (PTV) measurement
setup, (b) the setup enabling simultaneous measurements using super-large-scale par-
ticle image velocimetry (SLPIV) and PTV, and (c) the ground-based multiview field
3D PTV measurement setup.

Table 3. Summary of key parameters of the super-large-scale particle image velocime-
try (SLPIV), particle tracking velocimetry (PTV), and 3D field PTV measurement
set-ups for the deployment dataset used in the present paper. Here FOV denotes field
of view.

Dataset SLPIV/PTV setup DIH setup

Duration

(min)

zFOV

( m)

ΔxFOV × ΔzFOV(
m2

)
Resolution

(mm/ pixel )

θ

( deg. )

LCL

( m)

Resolution

(μm/ pixel )

Volume
(
cm3

)

Jan. 2016 5 10.8 7.1 × 4.0 5.6 21.1 25 24 18.8

Nov. 2018 17 9.1 8.4 × 4.7 6.5 14.5 31 14 42

Jan. 2019 15 20.2 14.7 × 8.3 12.0 19.9 53 14 42

Jan. 2020 11 18.4 39.2 × 22.1 20.5 19.9 53 14 42

11 7.9 5.3 × 3.0 4.2 18.4 19.1

Apr. 2022 1 10 4 × 4 (ΔyFOV ) × 6 6.3 58 5.5 14 88
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cameras. Once calibrated, the snow particle trajectories are obtained using an
open-source implementation of the shake-the-box (STB) method [48]. The mea-
surement sample volume of this setup is 4 m × 4 m × 6 m, offering a resolution
of 6.3 mm per voxel, as summarized in Table 3.

3 Results

In this section, we aim to provide a succinct review of our recent advancements
in the 2D field measurement of snow settling dynamics, while also offering a
preview of our ongoing work on 3D PTV field measurements. The primary focus
will be on the outcomes of our measurements, the comparisons drawn between
different deployments, and the novel physical insights and implications that have
emerged from these observations. A key aspect of this review will be the new
insights gained from cross-comparison of different deployments, which go beyond
the findings reported in the original papers. For a more detailed understanding of
the techniques and data analysis tools that form the foundation of these findings,
we recommend referring to our recent publications [9,25,26,36].

3.1 Preferential Enhancement of Snow Particle Settling

In this section, we explore the impact of turbulence on the settling velocity of
snow particles, a pivotal aspect of our study. This exploration is grounded in
data from several deployments, including those documented in [25,36], and [26].
Our primary objective is to compare the terminal velocity of snow particles in
still air with their measured settling velocity under the influence of atmospheric
turbulence.

To estimate the terminal velocity of snow particles, we first need to determine
their aerodynamic response time, which is extrapolated from the probability den-
sity functions (PDFs) of normalized snow particle acceleration (ap/〈a2

p〉1/2). As
depicted in Fig. 4a, the blue triangles correspond to data from January 2016 [36],
the red diamonds to November 2018 [25], and the magenta squares to January
2020 [26]. Our findings are compared with previous experimental and simulation
measurements [5,7,35]. The acceleration PDFs of January 2016 and November
2018 are well-defined, facilitating the estimation of the range of Stokes num-
bers (St). However, the PDF for January 2020 shows larger variability, with the
probability density approaching that of November 2018 in the lower range of
normalized accelerations but approaching that of January 2016 for higher val-
ues. It is important to note that while the kurtosis of the acceleration PDFs
is sensitive to the Stokes number of the particles, the influence of turbulence
properties, particularly the Taylor microscale Reynolds number (Reλ), on the
acceleration distribution of snow particles remains an active area of research.
Existing simulations and experimental findings [22,23,53] suggest an increase
in acceleration kurtosis for both fluid tracers and inertial particles with Reλ.
However, the effect of Reλ on acceleration kurtosis might be relatively minor
in the high Reynolds number regime [22]. Given these considerations, we have
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estimated the Stokes numbers for the snow particles based on three separate par-
ticle tracking velocimetry (PTV) deployment datasets. The estimated ranges of
Stokes numbers are as follows: 0.09–0.37 for January 2016, 0.15–1.01 for Novem-
ber 2018, and 0.09–1.01 for January 2020. These ranges reflect the variability in
the Stokes numbers of snow particles, influenced by factors such as size, shape,
and density.

Building on the estimated range of Stokes numbers, we can leverage the
Kolmogorov time scale of turbulence (τη) to calculate the particle aerodynamic
response time (τp = St · τη = Wt/g). This calculation allows us to also predict
the terminal velocity of snow particles in still air (Wt). The estimated termi-
nal velocity ranges are as follows: 0.12–0.47 m/s for January 2016, 0.12–0.82 m/s
for November 2018, and 0.02–0.19 m/s for January 2020. The notably smaller
terminal velocity for January 2020 can be attributed to the smallest particle
size and the significantly smaller turbulence Kolmogorov time scale used for
its estimation. In Fig. 4b, we compare the predicted terminal velocity (Wt) of
snow particles with the settling velocity (wp) as measured through PTV in the
field. Across all three deployments, we observed an increase in settling velocity
under the influence of turbulence. However, the most substantial enhancement
was recorded in the January 2020 deployment. Specifically, the average settling
velocity observed during the January 2020 deployment was seven times greater
than the predicted terminal velocity, which was significantly higher than those
derived from the January 2016 and November 2018 datasets. This pronounced
enhancement in settling velocity during the January 2020 deployment may be
largely attributed to the more intense turbulence conditions during this period,

Fig. 4. (a) Probability density functions (PDFs) of normalized in-plane snow particle
acceleration from different PTV deployments, compared with St = 0 from [35] (dots),
[7] (St = 0.16, solid line; St = 0.37, dotted line; St = 1.01, dash-dotted line; St =
2.03, dashed line), and [5] (St = 0.09, ×; St = 0.15, +); (b) comparison of the mea-
sured distribution (same symbols as the acceleration PDF) and average (vertical lines,
January 2016, blue solid line; November 2018, red dotted line; January 2020, magenta
dotted line) of settling velocity with the estimated range of still-air terminal velocities
(January 2016, blue region; November 2018, red region; January 2020, magenta region).
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as evidenced by the highest Reynolds number (Reλ) and dissipation rate among
all the datasets. This turbulence condition brought the Stokes number closer to
the critical value of ’1’. This near-critical Stokes number suggests an optimal
dynamic interaction between the snow particles and the turbulent air motion,
leading to a heightened settling velocity. Secondarily, the January 2020 deploy-
ment had a notably higher snow particle concentration. This increased concen-
tration intensified particle-particle interactions, which could potentially further
boost the settling velocity. Though our study offers notable contributions, the
conclusions are somewhat influenced by uncertainties due to simplifications in
our methodology. Notably, the representation of snow particles as perfect spheres
and their assumed size being smaller than the Kolmogorov scale can contribute
significantly to the variance in our findings.

3.2 Snow Particle Clustering

In this section, we turn our attention to the intriguing phenomenon of snow
particle clustering under intense turbulence. This occurrence, often associated
with preferential concentration due to turbulence, has substantial implications
for regional ground accumulation rates and interactions between particles. The
data utilized for this analysis stems from multiple field deployments, as detailed
in [25,26].

To delve into this investigation, we need to estimate the concentration of snow
particles. This is achieved by analyzing the intensity of images captured through
super-large-scale particle image velocimetry (SLPIV), as demonstrated in Fig. 5.
As established by [41], there is a linear correlation between the scattered light
intensity in PIV images and the number concentration of particles. Consequently,
we can compute the estimated relative concentration, denoted as C∗, using the
formula C∗ = I/I1 min. Here, I represents the instantaneous image intensity,
while I1 min denotes the 1-minute moving average of the image intensity. Figure 5
reveals the presence of clustering during both the January 2019 and January
2020 deployments. However, a closer look reveals distinct qualitative differences
between the two. The January 2020 sample exhibits larger variability in relative
concentration and larger clusters. In contrast, the January 2019 sample displays
clusters that resemble thin filaments, extending in the vertical direction.

Expanding upon the initial observations noted in Fig. 5, we pursued a more
intricate understanding of snow particle clustering through a thorough quantita-
tive analysis. Figure 6 offers a meticulous comparison of the statistical character-
istics tied to cluster morphology across different deployments, thereby highlight-
ing salient variations. Figure 6a focuses on the cluster area (AC) distributions
normalized by the Kolmogorov scale (η), from each deployment. Interestingly,
these distributions reveal a power-law decay, echoing patterns seen in prior labo-
ratory assessments and simulations. This decay indicates a self-similarity across
clusters of diverse sizes, hinting at the prominent role turbulent eddies play in
their formation. An observation of larger clusters in the January 2020 dataset
seems to underscore the enhanced influence of turbulence on snow particle con-
centration and the broader imaging field of view (FOV). Conversely, Fig. 6b
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Fig. 5. Samples of instantaneous normalized snow concentration map derived from (a)
January 2019 and (b) January 2020 deployments.

shifts focus towards the statistical distribution of the aspect ratio (s2/s1) of
the clusters. The elongated shape of clusters in both datasets, most exhibit-
ing an aspect ratio around 0.5, reflects the gravitational forces acting on them.
The elongation is not a random trait but a specific characteristic of heavy iner-
tial particles navigating turbulent flows under gravitational pull. Figure 6c offers
insight into the orientation (θC) of the snow particle clusters, which predomi-
nantly assumes a vertical disposition-another testament to gravity’s influence.
Nevertheless, a notable shift in peak aspect ratio towards one and a more evenly
distributed orientation are observed in the clusters from January 2020. This sub-
tle shift indicates a reduced gravitational influence relative to turbulence when
compared to the January 2019 data.

Fig. 6. (a) The probability density functions (PDFs) of snow particle cluster area (AC)
normalized by Kolmogorov length scale (η) show a power-law decay with an exponent
close to −2. The PDFs of (b) the cluster aspect ratio and (c) angle orientation of the
clusters. The green circles represent January 2019, and the magenta squares represent
January 2020.
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Overall, our analysis indicates that the consistent patterns of cluster size and
morphology across the datasets signal the presence of universal physical mech-
anisms (i.e., the interplay of turbulent eddies and gravitational forces
in snow cluster formation) that dictate clustering behavior. This discovery
raises the possibility of constructing predictive models based on these principles.
Despite these consistencies, variances across the datasets could be ascribed to
the intricate interplay between atmospheric turbulence, gravity, and the unique
properties of snow particles. However, considering the similar characteristics of
snow particles and turbulence across the datasets, it is plausible that the promi-
nent factor driving the difference in cluster behavior is the elevation variation
between sampling zones. Specifically, the January 2020 dataset, for instance,
focuses on a lower elevation and hence may capture images within the internal
shear layer that is densely populated by potent prograde vortices. These vigorous
coherent structures within turbulence could locally overshadow gravity’s effects,
diminishing cluster elongation and preferential orientation.

3.3 Connection Between Preferential Sweeping and Snow
Clustering

In this section, we delve deeper into the mechanisms of the enhanced snow parti-
cle settling velocity and clustering, focusing on the preferential concentration and
preferential sweeping hypothesis. To substantiate these hypotheses, we present
direct measurements of the turbulent flow field and snow particle settling tra-
jectories. These measurements, derived from the super-large-scale particle image
velocimetry (SLPIV) and particle tracking velocimetry (PTV) deployment pre-
sented in [26] and the method section of the current paper, shed light on the
intricate interplay between the turbulent coherent structures, snow particle con-
centration, and settling velocity. The results of these measurements are illus-
trated in Fig. 7, providing an overview of the turbulent flow field and snow
particle settling behavior. Figure 7a presents the swirling strength contour of a
sample instantaneous flow field with the mean velocity removed. The swirling
strength, λci, refers to the imaginary part of the complex eigenvalues
of the velocity gradient tensor, D = ∇u, and vortices can be identified
by a finite λci value, as explained in [2]. This visualization allows for the
identification of turbulence vortices, highlighting both prograde and retrograde
vortices based on their direction of rotation. Building on this, Fig. 7b super-
imposes a snow particle concentration color map, derived from image intensity,
onto the identified vortices. This overlay reveals an interesting pattern: enhanced
particle concentration on the downward moving side of vortices, suggesting a
preferential concentration effect. To further explore the preferential sweeping
mechanism, we combine SLPIV and PTV results to track the motion of snow
particles around identified vortices. Figure 7c and d illustrate this process for a
retrograde vortex and a prograde vortex, respectively. The trajectories of snow
particles colored based on the dimensionless time t∗, show a clear acceleration
in alignment with the downward fluid motion around both types of vortices.
Conversely, on the upward moving side of these vortices, falling snow particles
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decelerate, even exhibiting a degree of upward motion. This direct observation
provides compelling evidence for the preferential sweeping mechanism and its
role in enhancing snow particle settling velocity and promoting snow clustering
in turbulent flows.

We further reinforce our qualitative observations with statistical evidence,
as depicted in Fig. 8. Figure 8a–c display comparative data between ensemble-
averaged concentrations sourced from the SLPIV dataset within the core region
of vortices and their surroundings, segmented by azimuthal locations for both
prograde and retrograde vortices. A conspicuous pattern arises: higher concen-
trations are found on the downward side of both vortex types, suggesting a mech-
anism of preferential concentration. Notably, the highest localized concentration
is found at the base of the downward side of retrograde vortices, contrasting with
the more uniformly high concentration seen in prograde vortices. This disparity
might be understood in light of the dominant presence of prograde vortices in
internal shear layers, as supported by [18,57]. Their interaction with neighboring

Fig. 7. (a) Swirling strength (λci) contour of a sample of instantaneous flow field (mean
velocity removed). (b) Corresponding snow particle concentration colourmap (C∗ is the
relative concentration) with vortices detected from (a). Samples of snow particle tra-
jectories around (c) a retrograde vortex and (d) a prograde vortex. Black dashed lines
represent vortex boundaries, and trajectories are colored based on the dimensionless
time t∗, defined as the difference between the timestamps of snow particles and that of
a selected vortex at one time instant normalized by the Kolmogorov time scale. Note
that the figure is adapted from [26] with different samples.
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vortices likely distributes particle concentration evenly along the downward side.
In contrast, the relative isolation of retrograde vortices possibly fosters accumu-
lation of snow particles at their base, likely driven by gravity and descending
fluid motion. These findings constitute direct evidence of preferential concen-
tration of snow particles in turbulent eddies, thus marking a significant stride
in understanding snow particle dynamics in atmospheric turbulence. Figure 8d
and e further deepen our insights by presenting the disparities in the average
settling velocities of snow particles on downward and upward sides of both pro-
grade and retrograde vortices, normalized by the average snow settling velocity.
In both scenarios, it is apparent that the snow particles settle more swiftly on
the downward side of the vortices. A larger disparity in average settling velocity
between the downward and upward sides is seen in the case of prograde vortices
compared to retrograde ones. This difference may be ascribed to the distinctive
self-organization of these vortex types. Specifically, prograde vortices, typically
observed in internal shear layers, may yield a compounded effect on enhancing
the settling velocity of snow particles.

Fig. 8. Comparison between the ensemble-averaged concentration from the SLPIV
dataset in the central region (dashed lines) of the vortices, and in the proximity (solid
lines) for (a) prograde vortices, (b) retrograde vortices and (c) reference background.
Histograms of the differences (normalized by the average snow settling velocity 〈w〉)
between the settling velocities on the downward (w−) and upward (w+) sides for (d)
prograde and (e) retrograde vortices.
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In summary, this study presents a pioneering direct visualization and quantifi-
cation of the preferential sweeping of snow particles in atmospheric turbulence.
The findings underscore the significant role turbulent vortices play in shaping the
interactions between snow particles and atmospheric turbulence while shedding
light on the influence these vortices exert on the enhanced settling velocity of
snow particles. Additionally, our analysis suggests potential intra-cluster particle
interactions. Preferential sweeping might lead to increased particle collision rates
within clusters, possibly causing the fragmentation or aggregation of particles.
This dynamic interplay has the potential to markedly alter the physical prop-
erties of snow particles, thereby influencing their behavior within the turbulent
atmospheric environment.

3.4 Snow Settling Dynamics in Three Dimensions

While planar measurements have provided significant insights into snow parti-
cle dynamics, their two-dimensional nature inherently limits our ability to fully
capture the spanwise motion and three-dimensional spatial distribution of snow
particles. To overcome these limitations, we have advanced our research method-
ologies. We have developed a novel three-dimensional (3D) field particle tracking
velocimetry (PTV) system, as detailed in a recent publication by [9]. This sys-
tem enhances our ability to track and analyze the motion of snow particles in a
three-dimensional space. In parallel, we have incorporated a snow particle ana-
lyzer into our research toolkit, as described in [27]. This tool provides a deeper
understanding of the properties of snow particles, including their size, shape,
type, and density. By combining these innovative approaches, we can simultane-
ously monitor various properties of freshly falling snow and track particle settling
trajectories in a field setting. This integrated approach not only addresses the
limitations of previous methodologies but also paves the way for a more com-
prehensive understanding of snow particle dynamics.

Capitalizing on advancements in our research methodologies, we executed
nine 3D PTV field experiments across the winter seasons of 2021/2022 and
2022/2023. These experiments utilized our novel systems and encompassed a
broad spectrum of turbulence and snow conditions. The mean flow ranged from
0.5 to 8.5 m/s, and our observations captured all six prevalent snow parti-
cle types: aggregates, dendrites, graupel, plates, needles, and smaller particles.
These field experiments inform our ongoing and future endeavors, primarily con-
centrated on the three-dimensional settling of snow particles. We are particularly
keen on dissecting the role of snow morphology and the various turbulence condi-
tions in this process. The preliminary insights gained from these deployments are
gradually illuminating the complex behavior of inertial particles within atmo-
spheric flows. A selection of these findings, specifically derived from the dataset
of our April 2022 deployment, will be discussed in the section below.

By harnessing our 3D measurement capabilities, we successfully determined
the 3D trajectories and corresponding kinematics of snow particles, illustrated
in Fig. 9. Figure 9a showcases a selection of snow trajectories, each color-coded
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based on its settling velocity. This visual display offers a glimpse into the spa-
tial variability of settling velocities among different particles. Figure 9b further
highlights the spanwise acceleration of these particles along their extended tra-
jectories. The periodic variation in spanwise acceleration suggests a meandering
motion that may be linked to the dominant presence of dendrite particles in
the sample. The particles also display a characteristic trait of inertial particles
in turbulence - exponential tails in the acceleration PDFs, depicted in Fig. 9c.
A clear asymmetry is noted in the streamwise and vertical acceleration compo-
nents, which may be attributed to atmospheric flow in the positive x direction
and the gravitational force acting on snow particles in the negative z direction.
Additionally, our 3D measurements facilitate the extraction of compelling set-

Fig. 9. (a, b) Sample snow particle trajectories, colored by (a) vertical velocity, uz,
and (b) spanwise acceleration, ay, with the arrows indicating the directions of mean
flow (streamwise) and gravity. Probability density functions (PDFs) of (c) acceleration
components compared to the corresponding Gaussian distribution (black dashed line),
and (d) radii of curvature, where Snow 3D and 2D represent curvature measured using
x, y, z components and x, z components, respectively. The results are derived from
different dataset from the same deployment as in [9].
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tling kinematics, including the curvature of the trajectories. The curvature can
be determined using the formula κ = 1

R = ‖v×a‖
‖v‖3 , with R representing the radius

of curvature, and v and a denoting the Lagrangian velocity and acceleration,
respectively. The L2 norm is symbolized by ‖·‖. Figure 9d compares the PDFs of
the particle trajectory curvature calculated from both full 3D and 2D x−z com-
ponents. The discrepancies between these distributions underscore the variable
spanwise motion, also reflected in Fig. 9b.

Fig. 10. Probability density functions (PDFs) of (a) Voronoi cell length scale LV and
(b) normalized cell volumes V/〈V 〉, derived from a full 3D volume (snow 3D) and the
volume corresponding to a thin slice parallel to the x-z plane extracted from the entire
volume (snow 2D). In (b), the results are compared against models f3D and f2D from
[13] for randomly distributed particles.

In addition to our Lagrangian analysis, we have incorporated Voronoi anal-
ysis, a powerful spatial tessellation technique, to the reconstructed 3D particle
field. This method offers a unique perspective on local particle concentration,
as it inversely correlates with the volume of each individual tessellation cell. As
illustrated in Fig. 10a, the PDFs of the length scales of both 3D and 2D Voronoi
cells reveal the typical particle spacing, as indicated by the peak location. The
contrast between the 3D and 2D measurements underscores the potential biases
introduced by the thin light sheet used in planar measurements, thereby high-
lighting the value of comprehensive 3D measurements. Delving deeper into our
findings, the PDFs of normalized cell volume, as depicted in Fig. 10b, show a
higher probability for both small and large cell sizes compared to a random par-
ticle distribution. This pattern suggests a clustering tendency among the snow
particles. The increased probabilities at both ends of the size spectrum corre-
spond to the snow clusters and voids, respectively. Setting a size threshold for
the Voronoi cells allows us to quantify these 3D snow particle clusters, which
opens up new avenues for in-depth analysis. For instance, we can delve into a
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comparative study of particle settling dynamics within the clusters versus in the
voids. This comparison could reveal significant insights into the enhancement
or hindrance of settling velocity within these distinct environments. Moreover,
we can explore the differences in acceleration dynamics attributable to particle-
particle and particle-turbulence interactions. Comprehending these interactions
offers potential illumination on the dynamics governing the observed snow par-
ticle trajectory behaviors within atmospheric turbulence, while also providing
critical insights into the effects of local particle concentration on particle settling
and interactions. These prospective analyses underline the remarkable potential
of our 3D field imaging approach in propelling forward our knowledge of snow
particle behaviors within atmospheric turbulence.

4 Conclusions and Discussion

This paper embarked on a comprehensive review, spanning nearly a decade, of
field research conducted at the EOLOS Field Research Station, Rosemount, MN,
USA, on the subject of snow settling. Utilizing a remarkable array of field imag-
ing tools, we revisited and integrated the outcomes from four previous studies
[9,25,26,36]. This undertaking not only served as a capstone for these works,
but also spurred the generation of new insights. Our exploration of this research
field was made possible through the employment and continuous refinement of a
suite of measurement tools, specifically designed for characterizing snow settling
dynamics. The technology deployed has evolved through three generations: pla-
nar particle tracking velocimetry (PTV), simultaneous super-large-scale particle
image velocimetry (SLPIV) and PTV, and field 3D PTV. This endeavor was
complemented by the development of a digital inline holography (DIH) method,
custom-designed for discerning snow particle types, concentration, and size dis-
tribution.

By harnessing the power of these pioneering tools, our work uncovered several
intriguing findings. Firstly, data gleaned from multiple deployments consistently
point towards the preferential sweeping mechanism. Both statistical evidence
and direct imaging unambiguously indicated an enhanced snow settling velocity
in conjunction with turbulent eddies. The magnitude of this turbulence-induced
enhancement, however, varies across different deployments, likely modulated by
diverse turbulence and snow conditions. Secondly, snow clustering-a phenom-
ena observed across different deployments-revealed intriguing trends in cluster
size characteristics. An exponent power-law decay of -2 was observed in clus-
ter size distribution across both deployments, while aspect ratio and preferen-
tial vertical orientation of clusters suggested gravitational influences. However,
detailed distributions, such as mean and standard deviation, seem to be sculpted
by the interplay between the significance of turbulent structures, gravity, and
snow properties. Thirdly, our direct imaging painted a compelling picture of the
interconnection between preferential sweeping and preferential concentration, or
clustering, of snow particles. We found that higher concentrations tend to con-
gregate on the downward side of vortices, regardless of rotation direction, and
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that snow particles descend more swiftly in these regions. Notably, this disparity
in average settling velocity is more pronounced in the case of prograde vortices as
compared to their retrograde counterparts. Finally, the deployment of 3D PTV
unveiled the intricacies of 3D settling trajectories and the dynamics of snow par-
ticle clusters. It offered unprecedented insight into the complex movements of
snow particles as they travel through atmospheric turbulence, unveiling subtle
variations in motion that might otherwise have been obscured in a 2D analysis.

In general, the research undertaken in this study has led to a variety of
valuable insights and findings regarding the interplay of turbulence and snow
morphology in the process of snow settling under field conditions. Our work pro-
vides extensive field evidence and detailed characterization of the preferential
sweep and concentration mechanisms that are essential for understanding snow
settling dynamics. By employing novel imaging tools with field research, we have
uncovered complex behavioral patterns and identified key contributing factors.
However, it is crucial to acknowledge the limitations and challenges encountered
in our investigation. One of the most prominent challenges we faced lies in the
complexity of disentangling the influence of snow morphology from turbulence
on the snow settling dynamics. More specifically, quantifying the exact influence
of snow morphology on the aerodynamic response time and settling behavior of
snow particles remains a significant hurdle. Our current response time estima-
tions are based on assumptions about snow properties, which, in reality, could
vary within a deployment or between the sampling regions of PTV and DIH.

Looking to the future, we are determined to tackle these challenges head-on.
A promising development in our arsenal is the introduction of the snow particle
analyzer [27]. This tool offers direct measurements of snow particle properties,
such as size, shape, type, and notably, density. By capturing these specifics in
real-time field conditions, we pave the way for an intricate and precise quantifica-
tion of snow particle aerodynamics. By employing models like the Best number
[8], which is dependent on particle density, ambient air density and viscosity,
particle diameter, and the projected area, we can now estimate snow terminal
velocity. This estimation would allow for a more detailed calculation of the aero-
dynamic response time, reducing the need for broad assumptions and providing
us with data from actual field conditions.

Moreover, the integration of 3D PTV technology is set to revolutionize our
understanding of snow particle kinematics and the complex mechanics of snow
particle clustering. This technology helps us visualize the settling trajectories
and clustering patterns in three dimensions. It allows us to delve into the influ-
ence of particle morphology on their behavior, elucidating complex patterns like
meandering and tumbling motions influenced by turbulence-induced instabili-
ties [4,19,54]. Notably, the combination of 3D PTV and Voronoi analysis lends
us the capability to visualize and quantify 3D snow clusters, leading to further
insights into the behavior of snow particles within these clusters.

With the integration of our newly introduced snow particle analyzer and
3D PTV, we are well-positioned to extract more precise information about snow
properties and dynamics in the field. This allows us to conduct systematic studies



Snow Settling in Atmospheric Turbulence 79

under various turbulence and snow particle conditions. As a result, we can draw
direct comparisons with well-controlled laboratory experiments, such as those
conducted by [11,44,50], to elucidate the individual and combined effects of
snow morphology and turbulence on snow settling.

The implications of these forthcoming investigations are considerable. Our
efforts are likely to pave the way for the development of more robust and accurate
models of snow settling dynamics. By establishing a comprehensive understand-
ing of snow settling behaviors under realistic field conditions, we can create
models that more accurately reflect the complexities of these processes. These
improved models will not only serve as valuable tools for academic research but
could also have practical applications in areas such as meteorology and climate
science. By making predictions more precise, we can better anticipate, plan for,
and respond to weather events and climate change impacts.
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