
Artificial Neural Network Modeling Small-Scale
Turbulence of Isotropic Turbulent Flows

Jiangtao Tan1,2 and Guodong Jin1,2(B)

1 The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy
of Sciences, Beijing 100190, China

tanjiangtao17@mails.ucas.ac.cn, gdjin@lnm.imech.ac.cn
2 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049,

China

Abstract. Small-scale fluid motions play an important role in the relative dis-
persion and clustering of inertial particles in turbulent flows. In this paper, an
artificial neural network (ANN) is used to recover the small-scale turbulence of
isotropic turbulent flows in the context of a prior large-eddy simulation (LES).
The nonlinear convection and pressure gradient terms in the governing equations
of subgrid-scale (SGS) velocity are treated as output labels Ci , and the large-scale
velocity and the velocity gradient tensor are taken as input features. The data
required for training and testing of the ANN are provided by the Direct Numer-
ical Simulation (DNS) and filtered Direct Numerical Simulation (FDNS). The
optimized model highly fits the relationship between input features and output
labels. Using the ANN model and large-scale flow field information, the approx-
imate governing equation of small-scale motions is solved numerically, and the
small-scale flow field can be obtained. The developed flow field can be statisti-
cally consistent with the results of DNS. The probability density function (PDF)
of small-scale velocity and velocity gradient tensor are consistent with those of
DNS. Our research indicates that the small-scale flow field can be calculated by
combining the large-scale flow field with the ANN methods. Furthermore, we
combine the ANN model with FDNS to predict the statistics of heavy particles as
a prior LES. The results show that the a prior LES with ANNmodel can improve
the prediction accuracy in clustering and relative velocity of particle pairs. This
study provides a feasible method for constructing small-scale turbulence, which
can reduce the amount of computation compared with DNS and used to the study
of small-scale turbulent mixing.

Keywords: Large-eddy Simulation · Small-scale model · Artificial Neural
Network · Inertial particles · Turbulent clustering

1 Introduction

Large eddy simulation (LES) is an important method for the numerical study of turbu-
lence. Its basic principle is to solve only the filtered Navier-Stokes equations containing
large-scale motion and establish a sub-grid scale (SGS) model to account for the influ-
ence of small-scale motion on large-scale motion and to close filtered N-S equations
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[1, 2]. Small-scale turbulence is closely related to the energy dissipation of turbulence,
which has the best prospect of being universal or quasi-universal [3]. The intermittency
of small-scale turbulence affects the propagation of sound waves in the atmosphere
and can strengthen the mixing effect on substances in combustion. In turbulent noise
and turbulent two-phase flow, small-scale motion plays an important role in the relative
dispersion and non-uniform preferential concentration of particles, turbulent noise high-
frequency signals and the deformation of droplets or bubbles [4]. Deepening the study
of small-scale turbulence can improve the accuracy of LES of flow field simulation at
high Reynolds numbers.

In LES, the large scales of motion containing energy are numerically simulated,
while unsolved sub-grid scales and their interactions with large scales are modeled [5].
On the one hand, SGS stresses are modeled to close the filtered N-S equations in LES.
The classic SGS models include the Smagorinsky model [6], the scale similarity model
[7, 8], the gradient model [9], the mixed model [10], the dynamic model [11–17], etc.
The study of SGS stress has always been a hot topic in LES. Germano et al. [12] proposed
a method to calculate the variation of the coefficients of the SGS eddy viscosity model
with space and time. Themathematical inconsistency in the formula of thismethod limits
the practicability of the model. Ghosal et al. [18] corrected these inconsistencies, and the
new model can be used for the general non-uniform flow. On the other hand, the study
of SGS velocity is also an important aspect of LES. However, the model established by
the coupling of approximate deconvolution and synthetic turbulence and the stochastic
differential equation method still has some shortcomings in simulating the intermittent
characteristics of small-scale motion [19, 20]. It is still a difficult problem to build a
high-fidelity SGS model.

The breakthrough in computer technology has led to a comprehensive improve-
ment in computing capabilities. Therefore, algorithms such as machine learning and
deep learning have played an important role in various research fields. Machine learn-
ing is a learning method that simulates humans through big data, and deep learning
aims to extract intrinsic features from data. These methods have made breakthroughs
in image classification, natural language processing, and face recognition. MacCulloch
and Pitts [21] first proposed the concept of machine learning in their computational
research on the principles of biological neural networks published in 1943. Later, with
the famous “Turing Test”, machine learning, an artificial intelligence research method,
began to enter the field of scientific research. The modeling of machine learning mainly
includes data processing, feature selection, building a framework, and optimizing param-
eters. Researchers in the computer field continuously propose and optimize different
algorithms for different processes. For example, according to learning methods, it can
be divided into supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning. The supervised learning data itself has tags, and the exist-
ing tags are used as expected results to optimize the model. The supervised learning
algorithm is usually divided into classification algorithms and regression algorithms,
including linear models, artificial neural networks, support vector machines, and so on.
Unsupervised learning data itself does not carry labels, and machines explore the inher-
ent relationships between the data. For example, clustering algorithms classify samples
without categories based on the similarity between the samples. In semi-supervised
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learning, only part of the data is labeled, resulting in low learning costs and high accu-
racy. Reinforcement learning (RL) is an area of machine learning inspired by behaviorist
psychology, concerned with how software agents ought to take actions in an environ-
ment to maximize some notion of cumulative reward. The most familiar example is the
AlphaGo that blooms in the Go game. Machine learning methods are widely used, and
have achieved breakthrough results in image classification, natural language processing,
and face recognition. Face recognition, intelligent capture, etc. in daily life have the
use of machine learning algorithms behind them. The interactive processing method of
parallel computing for big data has improved the adaptability of machine learning in big
data environments. Data sampling and attribute selection also provide modeling ideas
for machine learning to process big data issues [22]. Deep learning allows a comput-
ing model composed of multiple processing layers to learn data with multiple levels
of abstraction. These methods have greatly improved the technical level of many other
fields such as speech recognition, visual object recognition, object detection, and drug
discovery and genomics. Deep convolutional neural networks have made breakthroughs
in processing images, video, speech, and audio, while recursive networks have brought
research prospects for sequential data such as text and speech [23].

Artificial neural network (ANN) is a popular and widely used method in machine
learning (ML), which was first proposed in the 1950s. ANN combines neuroscience
and connects the theoretical model of biological neural networks - the McCulloch-
Pitts [21] (M-P) neuron model - into a network to simulate the operation of neurons
in the human brain. ANN utilizes the computing power of computers to process and
analyze data and has excellent data processing and modeling capabilities. However, in
the past, limited by the performance of computers, neural networkmethods once fell into
a slump. After entering the 21st century, ANN has once again demonstrated its ability
to fit data with deep learning. Deep learning, in a narrow sense, can be considered a
multi-layer neural network. Data is crucial for deep learning, as too little data can easily
lead to model overfitting. In the era of big data, deep learning has become more closely
related to various disciplines and research fields. The ability to learn in-depth has not
been disappointing and has played an extremely important role in various studies.

The application of machine learning to turbulence modeling has been increasingly
discussed. The universal approximation theorem [24] states that any function may be
approximated by a sufficiently large and deep neural network. Brunton et al. [25] dis-
cussed that ML is a useful technique for deriving information from data. He explained
the classification of ML and analyzed several successful cases of modeling throughML.
There are many opportunities and challenges in applyingML to the field of fluid dynam-
ics. Yarlanki et al. [26] used ML algorithms to optimize the CFD model, resulting in a
35% reduction in model error compared to the k-ε model. Wang et al. [27] used random
forest methods for turbulence modeling. The model was trained by Direct Numerical
Simulation (DNS) data. The Reynolds stress in different flows was predicted, and the
study has achieved good predictive effects. Fukami et al. [28] performed super-resolution
of low-resolution turbulent flow field data with the convolutional neural network to
reconstruct an accurate turbulence model, which promoted the efficient super-resolution
model of fluid flow. Qu et al. [29] extracted turbulence features through convolutional
neural networks, which reduced the error compared with previous work.
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Gamahara and Hattori [30] used ANN to study SGS stress models, showing that
ANN is a promising tool for building new SGSmodels. Sarghini et al. [31] used a multi-
layer feedforward ANN in LES to build an SGSmodel, with the flow field velocity as the
input and the turbulence viscosity coefficient as the output. The model was optimized
by the error backpropagation algorithm. Their results showed that the computation time
is shortened by 20% compared with the existing models without considering the time of
neural network training, which proves the feasibility of using ANN to study turbulence
dynamics. Xie et al. [32] used spatial artificial neural network (SANN) modeling to
improve the prediction accuracy of SGS stress and SGS heat flow in the compressible
isotropic turbulence model, which has a higher correlation and smaller error than the
gradient model. The SANN model has better prediction results for speed, temperature,
and instantaneous flow structure than the dynamic hybrid model in a posteriori compar-
ison. In the study of isotropic turbulence, Zhou et al. [33] obtained training data by a
spectral method, constructed a single hidden layer feed-forward ANN, took the velocity
gradient tensor and filter size as input, SGS stress as output, predicted the energy transfer
rate under different Reynolds numbers and filter sizes. The correlation of the training
results of the ANN model was higher than 0.9, which was significantly improved com-
pared with the traditional model. Beck et al. [34] rewrote the N-S equations for viscous
compressible fluids as: ∂U/∂t + R(FU ) = 0. The ANN and deep learning models
have been established for the R(FU ) terms and speed of the three dimensions. Their
results showed that a model with higher stability and accuracy was obtained. Milano
and Koumoutsakos [35] used an ANN to simulate and predict near-wall turbulent flow
fields. Yin et al. [36] used an ANN to establish a ML model for turbulence feature quan-
tity prediction, and the results showed that when the Reynolds stress error is small, the
error of predicting the average flow is also small. Xie et al. [37] compared the modeling
effect of three different ANN models on SGS stress in LES, and the correlation coef-
ficient of SGS stress of the ANN model was improved in the prior analysis compared
with the velocity gradient model, among which the relative error of the spatial ANN
model and the deconvolutional artificial neural networks model was less than 15%. In a
posterior verification, the prediction accuracy of the turbulence field of the three models
was higher.

Based on the theory of LES, the current study modifies the governing equations of
small-scale flows. The nonlinear term of small-scale velocity and pressure gradient in
the equation are modeled using ANN to achieve an approximate linearization of the
governing equation. The sum of the nonlinear term of small-scale velocity and pressure
gradient is defined as model parameters. By numerically solving the linearized equation,
velocity information of small-scale flows can be obtained. The ANN model constructed
in the study uses large-scale velocities and velocity gradient tensor as inputs, and model
parameters as outputs, and is optimized using an error backpropagation algorithm. The
data required for training and testing of the ANN are obtained from DNS and filtered
Direct Numerical Simulation (FDNS) of homogeneous isotropic turbulence. The pre-
diction accuracy and generalization of the trained ANNmodel are evaluated using DNS
data at various Reynolds numbers and filter widths.

The paper is organized as follows: The linearization of small-scale flow governing
equations and the derivation of model parameters are introduced in Sect. 2. In Sect. 3, the
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theory of neural networks, error backpropagation algorithms, and network optimization
schemes are introduced. In Sect. 4, the optimization results of neural networks are
introduced, including the use of hyperparameters and error loss functions. In Sect. 5,
we substitute the ANN model into a linearized governing equation to numerically solve
small-scale flows and verify the accuracy of the model results through DNS data and
FDNS data. Specifically, we tested the probability density distribution curve of velocity
and velocity gradient, velocity gradient tensor joint probability density distribution,
energy spectrum, etc. Section 6 gives the conclusions of this paper.

2 Governing Equations

This paper takes fully developed homogeneous isotropic turbulence as the modeling
object. Isotropic turbulence is a hypothetical turbulence model, but its isotropic prop-
erties exist in the fine structures of anisotropic turbulence [38]. This study uses neural
networkmodelingmethods to study the characteristics of isotropic turbulence, which can
expand the modeling ideas of isotropic turbulence and lay the foundation for the study
of anisotropic turbulence. The data used in the study were derived from databases for
direct numerical simulation of uniform isotropic turbulence and filtered direct numerical
simulation.

The pseudo-spectral method is used to process the N-S equations and uses Fourier
transform to transform the turbulent flow field from the physical field to the spectral
space. After solving the N-S equations in the spectral space, the inverse Fourier trans-
form is used to convert the velocities in spectral space back to the physical space. The
periodic boundary conditions of isotropic turbulence make Fourier expansion accurate
and effective [39]. FDNSuses the turbulence data obtained fromDNS to filter out Fourier
modes greater than the cutoff wave number in the turbulence energy spectrum through
filtering processing and then inverts them back into physical space to obtain a large-scale
velocity field. The small-scale velocity field is obtained by subtracting the large-scale
velocity field from the full-scale velocity field [20, 40].

The modeling parameters of the ANN model are derived from the Navier-Stokes
equations. The Navier-Stokes equations for incompressible flows are:

∂ui
∂t

+ ∂uiuj
∂xj

= − 1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (1)

∂ui
∂xi

= 0. (2)

In the study of LES, the governing equation of large-scale flow is obtained by filtering
the flow field.

∂ui
∂t

+ ∂uiuj
∂xj

= − 1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (3)

From Eq. (1) and Eq. (3), the governing equation for the filtered small-scale flow
can be obtained.

∂u′
i

∂t
+ ∂

(
uiuj − uiuj

)

∂xj
= − 1

ρ

∂p′
∂xi

+ ν
∂2u′

i

∂xj∂xj
, (4)
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where ui denotes the full-scale velocity, p is the pressure, ρ is the fluid density, ν is
the kinematic viscosity, ui is the large-scale velocity, and u′

i is the small-scale veloc-
ity component. The nonlinear unclosed terms in Eq. (4):

(
uiuj − uiuj

)
is processed as

follows:

uiuj − uiuj = uiuj − uiuj − (uiuj − uiuj) = uiuj − uiuj − τij =
(ui + u′

i)(ui + u′
j) − uiuj − τij = uiu

′
j + u′

iuj + u′
iu

′
j − τij, (5)

where τij = (uiuj − uiuj) donates the sub-grid scale (SGS) stress. Combine Eq. (5) with
Eq. (4) to obtain Eq. (6) and Eq. (7):

∂u′
i

∂t
+ ∂(uiu′

j + u′
iuj + u′

iu
′
j − τij)

∂xj
= − 1

ρ

∂p′

∂xi
+ ν

∂2u′
i

∂xj∂x′
j
, (6)

∂u′
i

∂t
+ uj

∂u′
i

∂xj
+ u′

j
∂ui
∂xj

− ν
∂2u′

i

∂xj∂xj
− ∂τij

∂xj
= Ci. (7)

On the left side of Eq. (7) are the linear terms for small-scale velocity u′
i and large-

scale velocity ui, which represent the acceleration, the convection of small-scale by the
large-scale velocity ui, the effects of the shear deformation on the small scales, viscous
dissipation, and sub-grid stress, respectively. The right side of the Eq. (7) represents the
sum of the nonlinear convection and pressure gradient terms,

Ci = − 1

ρ

∂p′
∂xi

− ∂u′
iu

′
j

∂xj
, (8)

which shall be modeled. Due to the interaction between large-scale flow and small-scale
flow in theflowfield, it is believed that large-scale velocity andvelocity gradient influence
Ci. Therefore, we used the ANN model to establish a mapping between large-scale
velocity, velocity gradient tensor, and model parameter Ci.

3 ANN Modeling

In biological neural networks, neuronal cells use the specialized nature of the outermem-
brane to receive signals from other neurons through dendrites, integrate these signals by
the cell body, and then transmit information to other neurons through axons to transmit
information. Artificial Neural Network is a machine learning method that simulates bio-
logical neural networks in computer science research. Artificial neural networks mimic
biological neurons, using a neuron-like M-P model (see Fig. 1) [41] as the basic unit to
build the model.

In the ANN, xj represents the input features, yi represents the output labels, ωij

denotes the weight of each input, θi specifies the corresponding threshold, f is the
activation function (refers to the function of mapping the neuron inputs to the outputs,
generally a step function or sigmoid function) to process the input values. The expression
for output yi is written as:

yi =
∑n

j=1
f (ωijxj − θi). (9)
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Fig. 1. M-P model of a neural cell.

Different neurons are connected by the outputs of the previous layer as the inputs
of the next layer, forming an overall model of the network of neurons. In this study,
the main use of feedforward neural networks - neurons are arranged in layers, and the
neurons in each layer only connect with neurons in adjacent layers before and after, and
neurons between the same layer and the compartment do not make connections (see
Fig. 2).

In this study, the model was improved by changing the number of neuronal layers
and the number of neurons, and the weight ωij and threshold θi in the neural network
were optimized by the error Back Propagation algorithm [42]. We use the error back-
propagation algorithm to optimize the model. First, we calculate the root mean square
error Ek between the ANN output y and the theoretical value y0.

Ek = 1

n

∑n

j=1

(
yj − yj0

)2
. (10)

Then calculate the negative gradient of the errorEk with respect to each of theweights
ωij, thresholds θi on the error representing their effect on the final output y.

�ωij = −η(∂Ek/∂ωij), (11)

�θi = −η(∂Ek/∂θi), (12)

where η donates the learning rate of the model, which controls the amplitude of each
parameter update. A too large learning rate will cause the optimization parameters to
fluctuate near the optimal value, and a too small learning rate can cause the model to be
optimized too slowly. The update expression for the parameter is:

ωij ← ωij + �ωij, (13)

θi ← θi + �θi. (14)

Finally, through the continuous iteration of this method, the error between the output
value of the model and the theoretical value can be gradually reduced. When the error
is less than a given small number, the model training is complete.

In the study, we used a total of 12 physical quantities, including 3 components of
large-scale velocity u and 9 components of velocity gradient tensor ∇u, as inputs to
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Fig. 2. FeedforwardNeural Network. The inputs include large scale velocities u, v,w and velocity
gradient tensor ∇u. Output Ci contains components in the x, y and z directions.

the neural network. With the model parameter Ci as outputs, a fully connected neural
network with 5 hidden layers and 128 network nodes per hidden layer is constructed.
The flow fields with Taylor Reynolds numbers 64.43 and 128.78 were trained. Since
the input has multiple features, to ensure that each feature has the same impact on the
network during initial training, the maximum and minimum values of each feature are
used to normalize the data.

x = x − xmin

xmax − xmin
(15)

The normalized data is in the [0, 1] range, and can be restored through inverse
normalization. To ensure the applicability of the model, the numerical data is randomly
divided into training data sets (X _train, y_train) and test data sets (X _test, y_test). The
amount of data in the training data set is larger than that in the test data set. The training
dataset is brought into the neural network model to optimize the weights and threshold,
and the test dataset is substituted into the optimized model to calculate the loss function
size to verify the accuracy of the model.

The sigmoid function is used instead of the step function to avoid discontinuity in
the substitution of the step function itself. The properties of the two are roughly similar,
mainly used to indicate that they are activated when the input quantity is multiplied by
the weight and the threshold value is greater than 0. The output is 1, otherwise, the output
is 0.

The optimization of the network takes the loss function as a reference. This model
is essentially a regression problem that uses mean square error as the loss function. The
expression is written as:

cost = 1

n

∑n

j=1

(
ypre − y0

)2 (16)

The model randomly divides the data into training data sets and test data sets accord-
ing to a ratio of 9:1 between the training set and the test set. The model adopts a small
batch training method. Small batch training refers to taking sample values from a train-
ing dataset. Because the data exists in a unified sample, it is considered that there should
be the same inherent laws in each data. Therefore, the amount of data selected should
not affect the training results of the final model. On this basis, small batch training is to
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subdivide each round of training into nbatch training sessions, with each epoch randomly
capturing batch_size pieces of data in the training dataset. The relationship between
nbatch, batch_size, and the total amount of data in the training dataset training_data_size,
is:

nbatch = training_data_size

batch_size
(17)

4 Training and Validation

Model optimization is a process of continuously adjusting parameters and iterative train-
ing. Hyperparameters refer to parameters that have been set before the model starts
training. The hyperparameters in this model mainly include the number of neurons in
the hidden layer, initial learning rate, decay-rate, momentum size, small batch training
rounds, and small batch data size. Different hyperparameters have different effects on
the fitting degree and operation speed of the network. The study adopted a group of
excellent super parametric combinations: the learning rate was 0.001, and the decay-
rate was 0.96, which means that the learning rate decayed to 0.96 times the initial value
per 1000 steps. The validation of the cost function with the training steps is shown in
Fig. 3.

Initially, the weight parameter inside the model is set randomly, and the threshold
parameter is 0. Therefore, the initial error is very large. With the training of the ANN
model, the error backpropagation algorithmcontinuously updates theweights and biases,
and the error decreases rapidly. The learning process iswell-formulated since the training
andvalidation losses are nearly stable after 500global iterations. The errors in the training
and validation datasets exhibit similar variations, which shows that the ANN model has
been successfully trained.

training step

co
st

500 1000 1500

0.1

0.2

0.3

0.4

0.5

Fig. 3. Training and validation cost with the training step.
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5 Results and Discussion

After training the ANNmodel, we can calculate the model parameterCi by inputting the
large-scale velocity and velocity gradient tensor of the initial flow field. Then, by substi-
tuting Ci into the governing equation and combining the initial value of the small-scale
velocity, we can obtain the subsequent small-scale flow field numerically. Subsequent
calculations only need the large-scale flowvelocity fromFDNS. The small-scale velocity
is derived from the initial flowfield, the large-scale velocity, and the governing equations.

The calculation process is shown in Fig. 4. First, input the initial flow field infor-
mation - including large-scale flow and small-scale flow velocity. Then, calculate the
model parameter Ci of the current flow field through the ANN model, and substitute it
into the governing equation to numerically solve the small-scale flow field velocity at
the next time-step. The large-scale flow at the later time-step is calculated by FDNS. In
this way, the flow field information at the next time-step can be obtained. By iterating
this process, the velocity of the flow field at any time can be calculated.

In this paper, we have deduced the flow field from the initial time to 500 time-steps,
approximately more than 30 Kolmogorov timescales. The flow field at this time was
used for data analysis to verify the effectiveness of the ANNmodel. We used two sets of
flow field data with Reynolds numbers of 64.43 and 128.78 to evaluate the ANNmodel.
The data are derived from DNS, FDNS, and ANNmodel. We compare the data obtained
by the ANN model with the data calculated by DNS and FDNS.

end

Substituting ui into the ANN model to calculate Ci

i = i + 1

Optimize the ANN models

Substitute Ci into the governing equation(7)

calculate the velocity u'i in ti+1 by numerical methods

if i n

the small-scale velocity u'i at t=tn

N

input u'i and ui at t=t0

start

Y

Fig. 4. Flow chart of small-scale velocity prediction.

Figure 5 shows the vortex contour for different models at the same time. In the
area where the vortex structures on the right side change significantly in Fig. 5(a), the
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Fig. 5. Two-dimensional contours of small-scale vorticity (Reτ = 64.43). (a) the small-scale
vorticity calculated by DNS and FDNS; (b) the small-scale vorticity calculated by ANN models.

structures obtained from the ANN model in Fig. 5(b) are consistent with those obtained
by DNS. It can be seen from the contour that the ANNmodel can predict the occurrence
of vortexwell, and the vortex structures in the flow can bewell reproduced. The flowfield
calculated by the ANN model can recover the structural characteristics of small-scale
flow fields to a certain extent.

The probability density functions (PDFs) of small-scale velocity obtained by DNS
and ANN model are shown in Fig. 6. Figure (a) shows the result at Reτ = 64.43, and
Figure (b) shows the result at Reτ = 128.78. Unlike the Gaussian PDFs of the full-scale
velocity, we can observe that the PDFs of small-scale velocity behaves apart from the
Gaussian distribution at the tails. Furthermore, the ANN results of both sets of data
can well match the DNS data. The results show that the ANN network is feasible in
reconstructing the velocity distribution of small-scale flow fields.

u'

PD
Fs

-0.5 0 0.510-6

10-5

10-4
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10-1

DNS-FDNS
ANN model

(a)

Gaussian

Rλ=64.43

(a)

u'

PD
Fs

-0.5 0 0.5
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10-4

10-3

10-2

10-1

DNS-FDNS
ANN model
Gaussian

Rλ=128.78

(b)

Fig. 6. The PDF of small-scale velocity. (a): Re = 64.43, (b): Re = 128.78.

Intermittency is an important property of small-scale turbulence. Statistically, inter-
mittency is characterized by the non-Gaussian nature of the probability density func-
tions of turbulent dissipation and velocity gradients. The non-Gaussian nature becomes
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increasingly evident as the Reynolds number increases. On the PDF diagram, the tails
will significantly deviate from the Gaussian curve, and the probability of data at both
ends will significantly increase. Figure 7 is a comparison of the PDFs of the velocity
gradients from the ANN model and DNS data, where Fig. 7 (a) shows the result at
Reτ = 64.43, and Fig. 7 (b) shows the result at Reτ = 128.78. Statistically, the ANN
model can recover the intermittency of the small structures in turbulent flows.

u'i,j
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R =128.78

Fig. 7. The PDF of small-scale velocity gradient tensor. (a): Re = 64.43, (b): Re = 128.78.

To further examine the capability of the ANN model to recover the turbulent struc-
tures [43], the Q-R joint probability density distribution of the velocity gradient tensor
was examined (see Fig. 8). Q and R are the second and third invariants of the velocity

gradient tensor, respectively, Q ≡ 1
2

(
u2i,i − ui,juj,i

)
and R ≡ Det(ui,j) [44]. According

to the comparison of two sets of data, we can observe that the ANN model performs a
good reconstruction of the flow structures.
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The energy spectrum of turbulent velocity is displayed in Fig. 9 for the DNS, FDNS,
and ANNmodels. Due to the sharp-spectral filter used in FDNS, when the wave number
k is greater than the cutoff wavenumber, the energy spectrum value is 0. The flow field
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Fig. 9. Energy spectra of the isotropic turbulent flow fields obtained from DNS coupled with
FDNS and the ANN model. (a) Re = 64.43, (b) Re = 128.78.

energy spectrumcalculated by theANNmodel canwell fit theDNScurveswhen thewave
number is smaller than the cutoff wavenumber. When the wave number is larger than the
truncated wave number, the curve trend is consistent with that of DNS. According to the
transformation between physical space and Fourier space, the larger the wave number,
the smaller the corresponding physical spatial scale. Therefore, the ANN model can
supplement small-scale information of the flow field, and the obtained energy spectrum
is relatively accurate.

Next, we apply the ANN model to a prior LES of the statistics of inertial particles
in isotropic turbulent flows. We calculate the motion of the inertial particles using DNS,
FDNS and FDNS with the ANN model by tracking the Lagrangian trajectory of indi-
vidual particles. The ANN model combined with FDNS is used to recover the missing
small-scale turbulent motions in FDNS and drive the motion of particles.

The equations of motion of inertial particles are

{ dxp(t)
dt = vp(t)

dvp(t)
dt = [u∗(xp(t),t)−vp(t)]f

τp

(18)

where xp(t), vp(t) are the particle position and velocity at time t, u∗(xp(t), t
)
is the

fluid velocity seen by the particle, which can be calculated by a three-dimensional sixth-
order Lagrangian interpolation scheme. u∗(xp(t), t

)
is used to represent u in DNS, ũ

in FDNS and ũ + u′
ANN in FDNS with the ANN model. f denotes the nonlinear drag

coefficient f (Rep) = 1 + 0.15Re0.687p , Rep = ∣
∣u∗ − vp

∣
∣dp/ν is the particle Reynolds

number, τp = ρpd2
p /18ρf ν is the particle response time, and dp = 0.4η and η is the

Kolmogorov length scale. To characterize the inertia of particles, we define the Stokes
number

St = τp

τη

, (19)

where τη is the turbulent Kolmogorov timescale. We set St = 0.5, 1, and 2 in this study.
In order to validate the performance of the ANN model in a prior LES of particle

relative motions, which is a long-lasting challenge for LES of small-scale process, we
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statistically analyze the Radial Distribution Function (RDF) and the Radial Relative
Velocity (RRV) of particle pairs [45–47]. The Radial Distribution Function is defined as
the relative probability of finding a pair of particles at a given separation distance within
a unit volume, compared to the expected number of pairs in a uniform distribution of
particles:

g(r) = Qp,r/�Vr

Qp/V
=

Qp,r

4
3π

[(
r+ 1

2 dr
)3−

(
r− 1

2 dr
)3]

1
2Np(Np−1)

(2π)3

(20)

where Np is the total number of particles in the turbulent flow. The number of particle
pairs is given by Qp = 1

2Np
(
Np − 1

)
. Qp,r represents the average number of particles

found within the spherical shell volume �Vr with a distance of r = |r| from the detect-

ing particle. Here, �Vr = 4
3π

[(
r + 1

2dr
)3 − (

r − 1
2dr

)3]
, and V = (2π)3 represents

the total volume of the flow field. The RDF g(r) is a measure of particle preferential
concentration, or clustering in turbulent flows. The Radial Relative Velocity of particle
pairs is defined as:

wr(r) = [
vp1

(
xp1, t

) − vp2
(
xp2, t

)] · l
|l| (21)

where vp1
(
xp1, t

)
and vp2

(
xp2, t

)
are the velocities of two particles located at xp1 and

xp2, respectively, and the relative separation between the two particles is l = xp1 − xp2.
We test the relative separation between particles, r ∈ [0.4η, 6.0η], divided into 280
segments. For each detecting particle pairs, we search particles within a spherical shell
with a thickness of 0.02η to calculate the RDF and RRV.

Figure 10 (a) (c) (e) compares the curves of RDF as a function of dimensionless
distance for St = 0.5, 1.0, and 2.0, in DNS, FDNS, and FDNS + ANN. Compared to
DNS, FDNSexhibits significant differences inRDFdue to the loss of small-scale velocity
caused by filtering. It is clearly observed that FDNS underpredicts the RDF at St = 0.5
and overpredicts theRDFat St= 2.0. Themissing small-scale turbulence has little effects
on the RDF at St = 1.0. With the incorporation of the ANN model, the contributions of
the missing small-scale velocity to particle clustering, RDF are compensated. The RDF
of FDNS + ANN is well consistent with that of DNS. Figure 10 (b) (d) (f) compares
the curves of the mean of the absolute RRV as a function of dimensionless distance for
DNS, FDNS, and FDNS + ANN at different St numbers. Compared to DNS, FDNS
underpredicts the RRV of particles due to the loss of small-scale velocity caused by
filtering at all of the 3 Stokes numbers. The inclusion of the ANN model compensates
for the small-scale velocity and mitigates the RRV errors between FDNS and DNS at
all of the 3 St numbers. Therefore, with the inclusion of the ANN model in FDNS,
significant improvements in the statistics of particle relative motions can be achieved.
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Fig. 10. Variation of the RDF [(a) (c) and (e)] and RRV [(b) (d) and (f)] with r/η in the DNS,
FDNS, and FDNS with ANN model for St = 0.5, 1.0, and 2.0.

6 Conclusion

In this study, we have modeled the nonlinear terms and pressure gradient terms in the
small-scale turbulence equations using an ANN model. The ANN model is used to cal-
culate these two terms from large-scale information of the flow field. The equation is
approximately linearized. InANNmodeling, large-scaleflowvelocity andvelocity gradi-
ent tensor are used as inputs for optimization using an error backpropagation algorithm.
Combining equations with ANN models can numerically solve turbulent small-scale
flows. The study used flow fields with Reynolds numbers of 64.43 and 128.78 to test the



Artificial Neural Network Modeling Small-Scale Turbulence 55

model. By comparing the ANN and DNS data, the ANN model can well maintain the
vortex structure of small-scale flow in the prediction of the flow field. Statistically, the
probability density distribution of small-scale velocity and velocity gradient of the ANN
model and DNS can also be well consistent. Through velocity gradient probability den-
sity distribution, ANN data can also reflect the intermittency of small-scale turbulence.
Since the ANN model is constructed using FDNS data for small-scale turbulence, it can
be seen from the energy spectrum that the ANN model can supplement the small-scale
flow field energy filtered out by FDNS during the filtering process. The addition of the
ANN model serves as a supplement to the small-scale flow, allowing FDNS to make
more accurate predictions of the relative motion of inertial particles. Once the neural
network model is modeled, the Reynolds number and resolution for the same flow field
remain unchanged, so only one network training is required, and then it can be directly
used. This makes this research method a good application prospect in engineering appli-
cations. Combining the method of large eddy simulation can not only obtain relatively
accurate small-scale flow field data but also save a lot of computational time and cost
compared with DNS. The results of this paper show that the method is feasible for con-
structing small-scale flow fields, and the calculated data are reliable. This study expands
the research methods of turbulent small-scale flows and further proves the feasibility of
applying ANN modeling to turbulent research.

In futurework,wewill continue to study howmany time-steps thismodel can recover
the missing SGS flow field while ensuring data accuracy. Our research currently focuses
only on flows at Reynolds numbers of 64.43 and 128.78, flows at higher Reynolds
numbers need to be studied in future work.
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