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Abstract. The reconfiguration of elastic beam-like structures (e.g. the foliage)
that subjected to cross-flow is widely encountered in nature and engineering
applications. Based on a fully coupled numerical algorithm, the fluid–structure
interaction between elastic cantilever and cross-flow is investigated in this paper.
The immersed boundary-lattice Boltzmann method (IB-LBM) is used to solve the
flow involving moving boundaries. The elastic cantilevers are modeled as inex-
tensible Euler-Bernoulli beams and their dynamics are governed by geometrically
nonlinear equations. The results suggest that the flow-induced dynamics and fluid
forces are sensitive to Cauchy number (Cy). In essence, the flow-induced recon-
figuration of elastic cantilevers discussed in this paper is the superposition of large
deformation and sustained oscillation. The amplitude as well as the periodicity of
drag and lift force are significantly modulated by structure motion. A greater Cy
is found to yield a lift force which is comparable with the drag force. The Cauchy-
Reconfiguration number curve overall fits the empirical values, in addition to the
underestimated values obtained by the present simulations, we attribute it to the
streamlined morphology and fluid force in transverse.

Keywords: Reconfiguration · Fluid–structure interactions · Immersed
boundary-lattice Boltzmann method · Cauchy number

1 Introduction

The dynamic interactions between fluid flows and flexible structures (FSI) are associate
with a broad range of physical process. In nature, the terrestrial/aquatic plants provide
important ecosystem services. Due to the flexibility attribute, fluid-structure interaction
is ubiquitous for various plant communities and plays a critical role in agriculture and
costal protection, involving the lodging of crops and wave attenuation by submerged
vegetation [1–3]. For a vegetation canopy, a wave-like motion, which is referred to as
Honami/Monami for terrestrial/aquatic vegetation flow, would be observed when the
blades or stalks are forced to bend and vibrate by aero/hydrodynamics loads [4, 5].
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Such coherent motion is induced by the flexibility attributes of plants and the mixing-
layer instability associated with the inflection point of the wind velocity profile [6]. This
strong coupling between flow and flexible plants has been confirmed to be correlated
with several key scalar transport process, e.g. the dispersion of seeds, spores, and pollens
[7, 8]. The fluid-structure interactions are also observed in engineering areas with the
increasing broad application of flexible structures. For the sake of flow control, passive
slender structures are adopted to augment the wake of bluff bodies [9]. Also, the energy
harvesting devices are applied to extract energy from the natural renewable resources
(e.g. currents and wind flow) by the special designed flexible oscillating foils [10, 11].
Therefore, with the increasing demands in making precise prediction for both structural
dynamics and resistance of the flexible cantilevered structures over a wide range of
physical properties and flow conditions, such physical interaction has attracted growing
attentions by researchers in the past decade. Moreover, the strong coupling between
flexible structures (e.g. flat blades, elastic flags, filaments) and surrounding flows has
become a hot and frontier topic in recent interdisciplinary research. Since the relevance
in various areas, the related theoretical achievements are crucial to help us comprehend
such interactions systematically and design various engineering structures, which take
advantage the FSI; on the other hand, predict conditions for structure failure.

Among these FSI cases, the elastic cantilevered structures (e.g. flat plates and fil-
aments) that exposed to cross-flow are widely seen, and the flexibility plays a vital
role. With the bending stiffness being overcome by fluid loads, these structures would
experience a set of complex dynamics responses, including significant deformations
accompanied by large amplitude vibrations [12]. In another way, the flow-driven recon-
figuration modulates the surrounding flow and yield a mitigated drag for a structure. Due
to this, the risks of failure in uprooting and fracture by surrounding flow are reduced
for natural plants. The early efforts, which tried to quantitatively reveal the relation
between reconfiguration and drag reduction for vegetation elements, could be dated to
Vogel et al. [13, 14]. As is known that, the resistance of rigid bluff bodies varies with
stream velocity and follows the classical quadratic scaling law, namely, Fd ∝ U2. Yet
the variation in resistance versus velocity was found to go more gently for the flexible
ones and the Vogel exponent v was introduced to quantify it, which reads as Fd ∝ U2+v.
Since then, the characterization and quantification of the drag scaling law as well as the
Vogel exponent have become an open problem. Amore comprehensively accepted scope
for the Vogel exponent is −1.3 < v < 0 and v varies around −0.7, which is summarized
from abundant experimental and numerical results, and also coincides with the v = −
2/3 recovered by dimensional analysis [15, 16]. The dimensional analysis also suggests
that Cauchy number (Cy) is the primary parameters in characterizing the coupling sys-
tem. Remarkably, both the reconfiguration and drag reduction exhibit similar behaviors
for those elastic cantilevered specimens with different morphologies, dimensions and
flexural rigidity [17, 18]. This suggests that the relation between reconfiguration and
drag reduction of these structures with different morphology is similar and controlled
by the dimensionless Cy. Following this framework, Cy has been used in the model of
flow-flexible vegetation interactions to characterize the impact of reconfiguration on the
resistance of an individual vegetation element [19, 20].
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Since the recent decade, the interactions between elastic cantilevered structures and
flows have been explored with abundant useful insights being gained by studies, espe-
cially in establishing the relation between reconfiguration and drag reduction. Nonethe-
less, furtherworks should be carried out on this issue.On one hand, plenty of experiments
have been performed,which verified the results derived from theoretical analysis and also
revealed more physical mechanisms. While, in terms of experimental measurements for
such FSI system, it is still restrained by the fewer choice of adjustable physical parame-
ters. Some variables, which are associatedwith the flow conditions and also the structural
attribution, are even hard to control. On the other hand, remarkably, the earlier numeri-
cal models on flow-induced reconfiguration were simplified. In which, structural motion
was confined to static deformation forced by drag and the background flow was reduced
to steady state. Thus, some crucial dynamic effects, e.g. the instantaneous, non-uniform
distribution structural loads induced by vortex shedding as well as the flow field pertur-
bation from structural vibration were all ignored. However, with the rapid developments
in numerical techniques. The FSI numerical methods e.g. Arbitrary Lagrangian-Eulerian
Method (ALE), immersed boundary method (IBM) have been confirmed to be capable
in fully capturing the coupling between fluid flows and various deformable structures.
So far, few numerical attempts have been performed on the elastic cantilevered structure
interacts with cross-flow. Therefore, the immersed boundary method is adopted here
within the framework of fluid-structure interaction, the present work would focus on the
effects of Cauchy number on dynamics behaviours and time-dependent fluid forces of
slender elastic cantilevers.

2 Physical Model Statement

In order to emphasize the basic mechanisms of flow-induced dynamics for elastic can-
tilevers, we consider the structure of lengthL and is subjected to a uniform incoming flow
(see Fig. 1). Available experimental observations suggested that the dynamics of such
slender structures were mainly two-dimensional [21]. Thus, following assumptions are
made for simplification: (i) The elastic cantilever is inextensible with constant physical
attribute of density (ρf ), elasticmodulus (E), width (w= 0.125L), thickness (t = 0.012w)
along the length. (ii) The cantilever only bend in x-y plane without torsion and any out-
of-plane deformation. (iii) The 2D background flow is viscous and incompressible. (iv)
Gravity and buoyant are disregarded due to structural morphology.

The schematic diagram of physical model is illustrated by Fig. 1. The computational
domain is [−11L, 31L] × [−11L, 11L]. The origin of Euler coordinate is fixed at the
cantilever’s mid-point of initial configuration. The x-axis and y-axis are respectively
parallel and normal to the incoming flow.
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Fig. 1. Schematic of physical model (a). Computational domain; (b). Partial enlarged detail

3 Governing Equations and Numerical Algorithm

Within the framework of IB-LBM, the flow would be solved on fixed Cartesian mesh,
while a set of discretized Lagrange grids are used to represent the 1-D elastic cantilever.
The effects of structure reconfiguration on the surrounding flow is modeled by a forcing
term incorporated into the momentum equations. Thus, the present study implement
the FSI simulation by solving the fluid field and structure motion sequentially. Such
coupling scheme has been confirmed to be accurate, efficient and robust in papers that
involve the similar issue of moving boundary [22–24].

3.1 Mathematical Formulation of Lattice Boltzmann Method for Fluid Flow

As an alternative solver, LBM has been widely adopted by recent papers to solve the
flows that governed by N-S equations, especially for the issues involving deformable
solid boundaries. Here, the evolution of particle distribution function for the IB-LBM
method in single-relaxation form is expressed as follows [25]

fα(r + eαδt, t + δt) − fα(r, t) = −1

τ
[fα(r, t) − f eqα (r, t)] + δtFα(r, t) (1)

Fα = (1 − 1

2τ
)ωα[ (eα − u)

c2s
+ (eα · u)

c4s
eα] · f (2)

Equations (1)–(2) include the external forcing term. Through the Chapman–Enskog
multi-scale expansion, they can be recovered back to N-S equations. Here, u is the
macroscopic velocity, f is the forcing term. α is the index of discretized velocity space.
eα is the local particle velocity. f α and f eqα are the density distribution function and
the equilibrium distribution function, respectively. Fα is the forcing term in discretized
velocity space. τ is the dimensionless relaxation time and defined as follows

τ = 0.5 + υ/c 2
s δt (3)



Flow-Induced Reconfiguration of and Force on Elastic Cantilevers 233

An incompressible D2Q9 LBGK model [26] is adopted here. It is also denoted as
D2G9, whose particle velocity set is same with that of the D2Q9 and the correspondent
equilibrium distribution function are given by

f eqα =

⎧
⎪⎨

⎪⎩

−4σ p
c2

+ s0(u);α= 0
λ

p
c2

+ sα(u);α = 1∼4
γ

p
c2

+ sα(u);α = 5∼8
(4)

where, sα(u) = ωα[ eα ·u
c2s

+ (eα ·u)2

2c4s
− |u|2

2c2s
], the sound speed cs = 1/

√
3, the weight

coefficients are ω0 = 4/9, ω1–4 = 1/9, ω5–8 = 1/36 and δ = 5/12, λ = 1/3, γ = 1/12.
Furthermore, the velocity u and pressure p are computed by following formulas

u = (
∑

α

fαeα)/ρf + δtf/2 (5)

p = c2s [
8∑

α=1

fα+s0(u)]/(1 − ω0) (6)

3.2 Equations for Structure Dynamics

Within large-deflection regime, the elastic cantilevers aremodelled as inextensible Euler-
Bernoulli beams, the geometrically nonlinear dynamics equations [27], which is defined
in curvilinear coordinate system, and given by

∂2X
∂t2

= ∂

∂s
(T

∂X
∂s

) + ∂2

∂s2
(−EI

∂2X
∂s2

) + F (7)

the Poisson equation for tension T, which is derived from the inextensibility condition
(∂ X/∂ s) (∂ X/∂ s) = 1, is expressed as

∂X
∂s

· ∂

∂s
(

∂

∂s
(T

∂X
∂s

)) = 1

2

∂2

∂t2
(
∂X
∂s

· ∂X
∂s

) − ∂2X
∂t∂s

· ∂2X
∂t∂s

− ∂X
∂s

· ∂

∂s
(Fb + F) (8)

in which, s denotes local coordinates of the Lagrangian points along the length, X =
(X, Y ) is the Eulerian coordinates of the Lagrange points; F is the external force exerted
by the surrounding flow; Fb, i.e. the second term on the right-hand side of Eq. (7), is
elastic bending force. Equations (7) and (8) are discretized by finite-difference method
(FDM) and calculated on staggered grids. More detailed discretization of the governing
equations and time marching scheme are described in [28], they would not be covered
here.
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3.3 Immersed Boundary Method

In this study, the implicit velocity correction-based immersed boundary-lattice Boltz-
mann method proposed by Wu and Shu (2009) [29] is adopted to solve the flow. As
compared to the conventional IB treatments, e.g. the penalty function method [30] and
the direct forcing method [31], the forcing terms of this IB scheme are calculated implic-
itly along with the merits of high computational efficiency and easy implementation. In
addition, the non-slip boundary condition could be satisfied precisely without any user-
specified parameter. In which, the force density f is taken as unknown, the velocity u is
compartmentalized into the intermediate velocity u* and the velocity correction δu, i.e.

u = u∗ + δu (9)

According to Eq. (5), they are defined as

u∗ = (
∑

α

fαeα)/ρf (10)

δu = (δt/2ρf )f (11)

For a given boundary point XB(sk), the unknown velocity correction δuB is introduced
here, k = 0, 1,…N. The velocity correction δu could be interpolated by

δu(r,t) =
∫

�

δuB
(
Xk
B,t

)
δ
(
r − Xk

B(s,t)
)
ds (12)

δ
(
r − Xk

B(s,t)
)

=Dk
i,j

(
ri,j − Xk

B

)
= 1


x
y
δ

(
xi,j − X k

B


x

)

δ

(
yi,j − Y k

B


y

)

(13)

in which, D is Dirac delta function, and the kernel distribution function as

δ(r) =
{

(1 + cos(π |r|/2))/4; |r| < 2
0; |r| ≥ 2

(14)

The following expression of δu is obtained by substituting Eq. (13) into Eq. (12)

δu(ri,j,t) =
∑

k

δuB(Xk
B, t)Dk

i,j(ri,j − Xk
B)
sk

=
∑

k

1


x
y
δuB(Xk

B, t)δ(
xi,j−X k

B


x
)δ(

yi,j−Y k
B


y
)
sk

(15)

where, velocity of the Lagrangian points UB, is interpolated by Dirac delta function

UB(Xk
B, t) =

∑

i,j

u(ri,j, t)Dk
i,j(ri,j − Xk

B)
x
y (16)
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it can be further re-written by substituting Eq. (9) and Eq. (15) into Eq. (16) as follows

UB(Xk
B, t) =

∑

i,j

(u∗(ri,j, t) + δu(ri,j, t))Dk
i,j(ri,j − Xk

B)
x
y

=
∑

i,j

u∗(ri,j, t)Dk
i,j(ri,j − Xk

B)
x
y

+
∑

i,j

∑

m

δuB(Xm
B , t)Dm

i,j(ri,j − Xm
B )
smD

k
i,j(ri,j − Xk

B)
x
y

(17)

Apparently, Eq. (17) could be written in the form of [A]{δuB} = {B}, in which the
unknown δuB = {δuB0 , δu1B, . . . , δumB , . . . δuNB }. Thus, the velocity correction δu could
be obtained by substituting the solved δuB into Eq. (12) and the force density f is also
determined by Eq. (11). Furthermore, the fluid load acting on the solid boundary, is

f′ = −2ρf δuB/δt (18)

The drag and lift force could be calculated by

(FD,FL) =
∫

�

(f ′
x , f

′
y )ds (19)

therefore, the drag coefficient and lift coefficient are defined as

(Cd ,CL) = (FD,FL)

(1/2)ρU 2∞L
(20)

3.4 Boundary Conditions and Discretization Schemes

For the fluid domain, the uniform velocity incoming flow is imposed on the boundary
of x = −11L, i.e.

u(y) = U∞; v = 0 (21)

The outflow condition is specified at x = 31L, i.e.

∂(u, v, p)/∂x = 0 (22)

On the top and bottom boundary, y = ±11L, the symmetry condition is specified,
i.e.

∂(u, p)/∂y = 0 (23)

The elastic cantilever is treated as moving no-slip wall boundary with its upper point
clamped at X0(0, 0.5L), i.e.

X = X0, ∂X/∂s = (0,−1) (24)
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For the free end of a cantilever, the boundary condition is given by

∂3X/∂3s = 0, ∂2X/∂2s = 0,T = 0 (25)

For the sake of reducing the amount of discretized lattice points and achieving a higher
computational efficiency, a non-uniform spatial discretization scheme is employed by
this work and the Taylor series least square-based LBM (TLLBM) is adopted to update
the particle distribution function. A detailed description for TLLBM could be referred
to [32], here it would not be repeat. For the following FSI simulations, uniform grids are
generated in the vicinity of the cantilever (a square domain of [−2L, 2L] × [−2L, 2L])
with the minimummesh size of the computation domain, i.e.
x0 = 
y0 = L/80.While,
the mesh size in both x- and y-direction is design to increase gradually in the region away
from the cantilever, the maximum mesh size is specified as 
xmax = 
ymax = 3.0
x0.
While, the cantilevers are discretized by uniformly-spaced Lagrangian points along the
length, and the structure mesh size is 
s = L/50.

4 Numerical Results and Discussion

Based on the numerical algorithm described above, the present study implements the
FSI simulation by solving Eqs. (1), (2), Eqs. (7), (8) and Eq. (17) sequentially. The
FSI simulation code is written by C++ programming language. From Eq. (1), (2), the
algorism is discovered to be featured by a good parallelism property. The OpenMP
parallelism scheme, therefore, is introduced to decrease the CPU time costs.

4.1 Verification of the Present Numerical Method

Both the treatment on immersed boundary and the numerical solution for structure
dynamics that governed by Eqs. (7), (8) are verified as bellow.

For the purpose of giving an assessment for the IB-LBM code on the calculation of
flow field, the numerical simulation of flow past a fixed cylinder is performed. It is a
classical research in CFD and abundant results are accessible in literatures. The diameter
of the circular cylinder is L, the minimum mesh size is set to be 
x0 = 
y0 = L/80.
Numerical simulations for both the state and unsteady state flow are performed.

Fig. 2. Velocity Contour and streamlines for flow past a circular cylinder

From Fig. 2, the flow reach the final steady state at Re = 20 and 40. A pair of Fopple
vortices developed in the wake of the cylinder forming the recirculating region, whose
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length increases with Re. While, the flow becomes unstable at Re = 100. The Fopple
vortices shed from the cylinder alternately, forming the kármán vortex street in the wake.
The non-dimensional vortex shedding frequency, which is also referred to as the Strouhal
number, is St = f vL/U. The time-dependent drag and lift coefficient of the cylinder are
defined as Eq. (20) and shown in Fig. 3.

Fig. 3. Evolution of drag and lift coefficient for flow past a circular cylinder at Re = 100

Table 1 shows a good coincidence of our data with the data given by the previous
literatures. Based on the above analysis, we can conclude that the present numerical
algorithm and code are accurate enough to solve flow over bluff body and capable of
calculating the fluid loads exerted on the solid-boundary.

Table 1. Drag coefficient, Strouhal number for flow past a cylinder

Case Reference Cd St

Re = 20 Hu et al. [33] 2.21 –

Niu et al. [34] 2.14 –

Cui et al. [35] 2.11 –

Present 2.21 –

Re = 40 Kim et al. [36] 1.51 –

Wu and Shu [29] 1.56 –

Cui et al. [35] 1.56 –

Present 1.51 –

Re = 100
(time-averaged)

Peng et al. [31] 1.18 0.167

Wu and Shu [29] 1.33 0.163

Cui et al. [35] 1.36 0.167

Present 1.30 0.162
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Similarly, the following simulation of a rope-pendulum like motion is carried out to
assess the performance of the structural dynamics code segment in the calculation of a
forced-vibrating slender beam. The governing equations and boundary conditions are
described by Eqs. (7), (8) and Eqs. (24), (25), respectively. The structure is initialized
by

X(s, 0) = (L − s)(cos θ, sin θ), X′(s, 0) = (0, 0) (26)

It would start to swing due to a time-independent force F = (0, Fy). Its length is
L = 1, the initial angle is θ = π /10, the bending rigidity γ = 0.01 and Fy = 10. All
of these parameters are identical to that adopted in the study of [28]. The time history
of y-displacement of the free-end is plotted in Fig. 4 and agree well with the previous
result.

Fig. 4. Time history of y-displacement of free-end

One can conclude from the above facts that both the numerical method and code
adopted here are feasible for the further studies in dealing with the flow-structure
interactions issue.

4.2 Flow-Induced Reconfiguration and Fluid Forces of Elastic Cantilevers

To systematically explore the interactions between elastic cantilevers and fluid flows, a
non-dimensional banding stiffness of flexible structures is introduced, which is defined
by Eq. (27) and referred to as Cauchy number (Cy) [2, 16].

Cy = Cd0ρf U
2A0/2EI (27)

in which, Cd0 and A0 are the drag coefficient and reference area of an equivalent rigid
structure at the same Reynolds number, respectively. EI is the flexural rigidity of an
elastic cantilever. In this study, Cy varies within 0.65 ≤ Cy ≤ 7.20, while both the
Reynolds number and mass ratio are kept and fixed to be Re = U∞L/ν = 200, m* =
735. According to the associated literatures, the overall attributes of the coupling system,
including the structure vibration and vortex dynamics, are fundamentally similarwithin a
wide range of Re. Therefore, they are confirmed to be relative insensitive to the variation
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of Re, especially for Re> 100 [37]. Thus, the parameters adopted here are considered to
qualify for the target of capturing the rich dynamics features of such FSI system, while
at the same time to provide a limitation in computation expense. In following sections,
we will focus on the effects of Cy on dynamics behaviors of elastic cantilevers and fluid
forces exerted on them.

Effects of Cauchy Number on Flow-Induced Vibration
First, the flow-induced dynamics of elastic cantilevers is investigated in this section. All
the FSI calculations are terminated at dimensionless time t* = tU/L = 1400, the time
span is sufficient for the coupled fluid-structure system to get the fully developed state.

The time history of non-dimensional displacement component X* free-end, which is
defined as X* free-end= Xfree-end/L, is shown in Fig. 5 for 6 selected cases with different
Cy.

Fig. 5. Time history of free end displacement in x-direction

Clearly that, the dynamics of cantilevers studied here is seen to be featured by vortex-
induced vibration (VIV) mode. Moreover, the cantilevers’ reconfiguration is featured by
large deflection and strongly modulated by Cauchy number. At the onset of reconfigu-
ration, the elastic cantilevers vibrate as the large periodic flapping regime, accompanied
by an evident convergence in amplitude. Obviously, an increment in Cy consequent in a
increment in vibration period for this regime. For the cases ofCy< 4.2, a transition from
flapping regime to flutter regime is seen over time, and then the structures vibrate within
the small amplitude-high frequency mode. For the flutter regime, the mean deflection
decrease for a reduced Cauchy number, also a smaller Cy tends to suppress the ampli-
tude. While, it is interesting to note that the beat vibration is discovered at Cy = 1.2. We
attribute it to resonance, as the vortex shedding frequency is found to approach the 2-th
order structural natural frequency. A detailed spectrum analysis of displacement will
be addressed in following sections. In order to give a better visualization for the main
signatures of structural motion, the instantaneous configuration of two cantilevers are
plotted in Fig. 6.
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Fig. 6. Instantaneous configuration of the elastic cantilever: (a, b). Cy = 2.7; (c, d). Cy = 6.2

With the flexural rigidity being overcome by the fluid loads, the elastic cantilevers
get aligned with flow through bending and deform to the streamlinedmorphology, which
further result in a reduced frontal area for structures, see Fig. 6. Moreover, the flow-
induced reconfiguration of the immersed structures is essentially the superposition of a
mean deflection and a sustained oscillation around it. This general trend of structural
motion is qualitatively similar to that given by [38, 39]. Figure 6(a, b) present the struc-
tural motion within flapping regime and flutter regime during half period of vibration.
As the amplitude is far less than the mean deformation, the cantilever is analogous to
‘motionless’ in Fig. 6(b). While, as shown in Fig. 5 and Fig. 6(c, d), the transition of
flapping regime to flutter regime is not observed for Cy > 4.2 and the vibration becomes
stable with an approximate constant amplitude. Here, we suggest that a threshold value
of Cy exists for the coupling system, and if Cy exceeds it, the structural displacement
would be fully controlled by flapping. For the present FSI system with Re = 200, m*

= 735 and aspect ratio L/t = 2000/3, the critical Cy is within the range of 3.5 < Cy <

4.2 and around 4.0. One can also conclude that, for a flow-elastic cantilever system, a
greater Cauchy number tends to sustain the flapping regime.

The dynamics of the elastic cantilevers is further explored from the perspective
of frequency domain property, the normalized power spectrum density (PSD) of X*
free-end(t*) are illustrated by Fig. 7.
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Fig. 7. Normalized power spectrum density of free end displacement in x-direction: (a). Cy =
0.8; (b). Cy = 1.2; (c). Cy = 2.7; (d). Cy = 3.2; (e). Cy = 4.2; (f). Cy = 6.2

At the onset of reconfiguration, the dynamics is featured by flapping and dominated
only by the 1-th order natural frequency ( f n1). While, the motion is dominated jointly
by 1-th and 2-th order natural frequency ( f n2) for the subsequent flutter regime. Thus,
high frequency oscillation that featured by quasi-periodic is apparent in Fig. 5. It can
be inferred from the PSD results that, within large deformation regime, the immersed
elastic cantilevers vibrate at the well-defined natural frequency. But it doesn’t mean that
the effects of the cross-flow, which acts as the excitation source, on dynamics of the
elastic cantilevers is absent. As is seen from Fig. 7 (b, d), the dominant frequency is f n2
for cantilevers under flutter regime. Here, the ratios of Strouhal number (St) to the 2-th
order natural frequency are St/f n2 = 1.03, 1.92 at Cy = 1.2 and 3.2. They are approach
to the integer times of f n2, indicating that the impact of f n2 on displacement response is
amplified by resonance in these cases.

Effects of Cauchy Number on Lift Force and Vortex Shedding
With the increase in Cy, the streamlining becomes more pronounced in cantilevers’
morphology. The fluid load component in transverse is thus observed and further forms
the lift force. The transverse loads, however, were underemphasized in previous studies.
The vortex shedding frequency ( f v), could also be calculated by applying fast Fourier
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transform (FFT) on the time series of lift force. Figures 8 and 9 show the evolution of
lift coefficient and the corresponding frequency spectrum for the selected cantilevers.

Fig. 8. Time history of lift coefficient for elastic cantilevers with different Cy: (a). Cy = 0.65; (b).
Cy = 1.2; (c). Cy = 2.7; (d). Cy = 3.7; (e). Cy = 6.2; (f). Cy = 7.2

From Fig. 8, the flow-induced reconfiguration of the examined elastic cantilevers
yielded a significant increment in lift coefficient. In terms of amplitude, the transition
of structural motion from flapping to flutter is seen to induce an obvious convergence in
amplitude of CL(t*), see Fig. 8(a, d). Note that, at high values of Cy, the lift force could
be comparable with the stream-wise fluid force, which would be presented in following
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section. Furthermore, the time series are characterized by random if Cy exceeds the
threshold, see Fig. 8(e, f). Also the isolated and brief snapping events are discovered to
be evident, which are associated with the large amplitude flapping motion.

Fig. 9. Normalized power spectrum density of lift coefficient: (a). Cy = 0.65; (b). Cy = 1.2; (c).
Cy = 2.7; (d). Cy = 3.7; (e). Cy = 6.2; (f). Cy = 7.2

As is shown in Fig. 9(a, d), four frequency components are evident in the two fre-
quency spectrum plots that are featured by multiple peaks. They are natural frequency
f n1 and f n2; fundamental frequency f 1 and its harmonic frequency f 2, both of them are
associated with Reynolds number and structural geometry. The dimensionless vortex
shedding frequency is determined by the dominant frequency, which is treated in the
same way to the case of flow past a rigid bluff body. Here, f 1 is identified as the Strouhal
number. At Cy = 0.65 and 1.2, the dominant frequency is f 1 for both the flapping
and flutter regime. With Cy increases, the modulation of frequency f n1 on time series
CL(t*), also the vortex shedding, becomes more significantly until f n1 supersede f 1 as
the dominant frequency within flapping stage, see Fig. 9 (d). While, for flutter regime
of structural motion, vibration amplitude is far less than mean deflection; the resulting
structural morphology is approximately fixed and the flow is essentially similar to that
past a rigid bluff body. Thus, the vortex shedding is dominated by f 1. Furthermore, an
evident increment in St for flutter regime could be also seen from Fig. 9(a–d) with the
increase in Cy. At relatively high values of Cy (e.g. Cy = 6.2 and 7.2), the vibration
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mode is maintained to flapping. In addition, the frequency spectrum of time seriesCL(t*)
manifests as continuous spectrum and presents the typical chaotic feature. Therefore, no
definitive peak could be chosen as the dominant frequency.

Effects of Cauchy Number on Drag Force
The effects of Cauchy number on drag force is explored in this section. For the sake of
comparison, the drag coefficient (Cd) evolution of the rigid structure is illustrated by
Fig. 10(a). At Cy = 0, the time series of Cd features by high-frequency fluctuation with
the time-averaged value Cdmean = 3.20 when the flow get fully developed.

From Fig. 10, the elastic cantilevers’ resistance is also found to be sensitive to Cy.
Obviously, the amplitude of drag force as well as the lift force is seen to be strongly
correlated to the periodicity and envelope of the structural displacement, especially
for flapping regime at onset of the structural reconfiguration, see Fig. 10(c–f). The
reconfiguration results in an evident reduction in frontal area. Furthermore, both the
streamlined morphology and the resulting reduced frontal area are confirmed to be the
two key mechanisms which would result in drag reduction. More visibly in Fig. 10, The
mean value of Cd(t*) gradually decrease withCy. Here, the Reconfiguration number (R)
is introduced to assess the drag reduction quantitatively and defined as

R = Fd

Cd0ρf U 2Lb/2
(28)

in which, Fd is the time-averaged drag force exerted on the elastic cantilever, Cd0 is the
drag coefficient of the equivalent rigid specimen [18]. For a rigid body, R = 1.

The Cy-R curve is plotted in logarithmic coordinate and illustrated by Fig. 11. It is
found that the reconfiguration numbers calculated by this work overall agree with the
values given in [15]. All the reconfiguration numbers of the simulated cantilevers are
less than 1.0. At small values of Cy, the mean deflection of the given elastic cantilevers
is indistinctive, thus the reconfiguration curve is seen to decrease mildly within the
range Cy < 1.0. In terms of structural resistance, their performance close to the rigid
ones. While, for Cy > 1.0, the curve starts to decline evidently accompanied by a great
slope. The corresponding Vogel exponent is v = 2d(logR)/d(logCy) ≈ −0.86, which
falls near the theoretical value of −2/3 and within the common accepted range of v
= (−1.2,−0.2) [40]. Although the overall tendency of R versus Cy reasonably fits the
results that derived from theoretical model, a deviation also exists. Several factors may
be responsible for the underestimation of our drag values. (i), it has been shown that the
elastic cantilevers becomemore andmore streamlined asCauchy increases.With the help
of the bi-directional coupling mode, the cantilevers’ time-dependent configuration could
be solved precisely by this work. For the theoreticalmodel proposed in [15], however, the
streamlining effects of structures on flow were not introduced. (ii), at greater values of
Cy, e.g. Cy > 1, as is seen from above analysis, the fluid force component in transverse
is of the same order of the magnitude as drag force. So, it also promote to a more
streamlinedmorphology for cantilevers. This contribution from the transverse fluid loads
for deformation, however, was neglected by the theoretical prediction. (iii), the energy
exchange between structures and the surrounding flows is omitted by the theoretical
model. Through the sustained storage-release of mechanical energy by structures, a
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Fig. 10. Time history of drag coefficient for elastic cantilevers with different Cy: (a). Cy = 0; (b).
Cy = 1.2; (c). Cy = 2.7; (d). Cy = 3.7; (e). Cy = 6.2; (f). Cy = 7.2

smaller drag is needed to maintain the mean deformation. These facts are likely to be
responsible for our underestimated value of R, especially at Cy > 1.

The effects of Cy on elastic cantilevers’ drag in terms of the frequency domain
property are illustrated by Fig. 12. Also, the PSD result of the rigid case is given.
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Fig. 11. Reconfiguration number R versus Cauchy number of elastic cantilevers

Fig. 12. Normalized power spectrum density of drag coefficient: (a). Cy = 0; (b). Cy = 1.2; (c).
Cy = 2.2; (d). Cy = 2.7; (e). Cy = 4.2; (f). Cy = 6.2

In Fig. 12(a), two spectral peaks are apparent, i.e. f ’ 1= 0.106, f 2 = 0.295. The ratio
of them is an irrational number, indicating that the time series has a typical quasi-periodic
feature. Usually, we have the dominant frequency f 2 = 2f 1 = 2St for flow past a bluff
body. For elastic cantilevers studied in this paper, multiple peaks appear in the frequency
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spectrum of time series Cd(t*). In addition to f ’ 1and f 2, the frequency f n1 and f 1 are
also observed. At Cy = 1.2 and 2.2, f 2 dominates the fluctuation of Cd(t*) under both
the flapping and flutter regime. The natural frequency f n1 shows a growing modulation
effect on Cd(t*) in flapping regime as Cy increases while it is less than the critical value.
In Fig. 12(d), f n1 supersedes f 2 as the dominant frequency for flapping regime. For
flutter regime, on the other hand, as the cantilevers become more streamlined with Cy,
a more pronounced modulation effect of f 1 on time series Cd(t*) is observed until f 1
displace f 2 as the dominant frequency, see Fig. 12(b–d). Moreover, as Cy exceeds the
threshold, the structural dynamics would be fully controlled by flapping mode, thus f n1
is seen to dominant the fluctuation of time series Cd(t*), which is in common with the
frequency spectra of structure motion.

5 Conclusions

In the framework of the immersed boundary-lattice Boltzmann method, this study
focused on the effects of Cauchy number on dynamics behaviors and fluid force exerted
on slender elastic cantilevers within 0.65 ≤ Cy ≤ 7.2.

In terms of the displacement response, the dynamic reconfiguration of the elastic
cantilevers discussed in this paper was mainly characterized by VIV and sensitive to
Cy. Two different vibration regimes, namely, flapping and flutter were identified based
on the periodicity of vibration. The flow-induced reconfiguration was essentially the
superposition of large deformation and sustained vibration. While, a greater Cy yielded
an increase in mean deflection for the structures and was found to sustain the flapping
regime. In addition, the PSD results revealed that the immersed elastic cantilevers vibrate
at the well-defined natural frequency under the large deformation regime.

The strong coupling between dynamic reconfiguration and fluid flow also induced
multiple frequency features in fluid forces on the structures. With the increase in Cy, the
modulation of natural frequency on both the fluid forces and the vortex shedding process
become more significant. Consequently, the amplitude of drag and lift force, as well
as the vortex shedding frequency is found to be strongly correlated to the periodicity
and the envelope of structural displacement, especially for the flapping regime at the
onset of reconfiguration. In transverse, a greater Cy also yielded fluid force component
which could not be negligible and its value could be even comparable with the drag
force in magnitude. In terms of the drag reduction performance, the time-averaged drag
simulated by this study overall agree with the previous results deduced from theoretical
model, except for the deviation of underestimation. The streamlined morphology of the
structures as well as the transverse fluid load were supposed to be responsible for the
deviation.
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