
Dynamic Programming

Thomas Neifer & Dennis Lawo

Abstract Dynamic Programming, or dynamic optimization, is an optimization ap-
proach that simplifies complex problems by breaking them into smaller, intercon-
nected subproblems. This method eliminates redundancy and significantly improves
efficiency. DP finds practical applications in various real-world problems within Op-
erations Research, enhancing decision-making processes. Its usefulness is shown by
two examples with a practical application in Python.

1 Introduction

Linear programming deals with the optimization of an objective function under
certain restrictions, if these are convex (or linear). A common solution method is
the simplex method, which is one of the fastest algorithms for solving such an
optimization problem. Depending on the complexity, however, the runtime of the
algorithm can be exponential [1]. However, it has also been shown that on average a
polynomial runtime can be obtained with random input data [2].

In the context of dynamic programming, or dynamic optimization, an optimization
problem is decomposed into smaller subproblems, so that the solution can be reduced
from possibly exponential to merely polynomial complexity. Furthermore, dynamic
optimization (DO) is not exclusively used to solve convex problems but allows the
solution of various structures. For example, a linear problem can be solved by DO
by decomposing it into smaller subproblems and following the corresponding DO
algorithm [3]. The term dynamic programming was coined by Richard Bellman,
who introduced it in the 1940s [4].

If the solution to a decision problem is assumed, in which the decisions are
interdependent in time, an optimum can be found for the entire problem by means of
the DO. Due to the sequential character of DO, some authors refer to a better name
as stepwise or sequential optimization [5].

201
F. W. Peren, T. Neifer (eds.), Operations Research and Management,

Springer Texts in Business and Economics,

https://doi.org/10.1007/978-3-031-47206-0_11

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

https://doi.org/10.1007/978-3-031-47206-0_11
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47206-0_11&domain=pdf

202 Thomas Neifer & Dennis Lawo

The special property of dynamic programming is shown in its ability not to have
to calculate things twice [6]. This can be illustrated by the simple example of the
Fibonacci series, which is programmed exemplarily in Python. Formally, the discrete
Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, . . .) for the 𝑛-th Fibonacci number 𝐹𝑛 can
be defined as:

𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1

with start values:

𝐹0 = 0 and 𝐹1 = 1

If we ignore the DO approach at the outset, a function for the recursive calculation
of Fibonacci numbers can be formulated as follows:

Recursive Calculation of Fibonacci Numbers

def fibonacci(n):
if n < 2:
return n

else:
return fibonacci(n-1) + fibonacci(n-2)

Both initial values 𝐹0 = 0 and 𝐹1 = 1 are mapped here by an if condition. As
long as 𝑛 is less than 2, only 𝑛 is returned. Otherwise, the calculation of 𝑛 ≥ 2
takes place over the repeated and additively linked call of the function, in each case
for 𝑛 − 1 and 𝑛 − 2. Caused by this recursion without intermediate storage of the
result, for example with the calculation of 𝑛 = 50 through ’fibonacci(50)’ again the
functions ’fibonacci(49)’ and ’fibonacci(49)’ are executed. Furthermore, this also
calls the functions ’fibonacci(48)’ and ’fibonacci(47)’ again for ’fibonacci(49)’. It
quickly becomes apparent that a double and thus redundant call of ’fibonacci(48)’
occurs here.

If this is visualized in a tree structure, the redundancy of the recursive approach
without memoization becomes clear (see Figure 1).

Fig. 1 Recursive Tree Struc-
ture. Source: Own represen-
tation according to Logofătu
(2014) [7].

Dynamic Programming 203

The connection of the Fibonacci series with the golden ratio (Φ) further reveals
the complexity of the approach: it can be shown that the quotient of consecutive
numbers of the Fibonacci sequence converges with 𝑛 → ∞ to Φ = 1, 61803.. [8].
Accordingly, a Fibonacci number 𝐹𝑛, assuming that zero corresponds to the first
number in the series, can be calculated as [9]:

𝐹𝑛 =
Φ𝑛

Φ + 2
From this, it can be seen that the 𝑛-th Fibonacci number can essentially be

described by Φ𝑛 and the running time of the algorithm can accordingly be described
by an exponential relationship [8].

Here, DO enables an enormous runtime reduction due to the polynomial relation-
ship. This happens by the simple buffering of the determined Fibonacci value and
the with a new calculation preceding the examination of whether the value is not
already known. A function written in Python, which corresponds to the DO, could
be designed as follows:

DO Approach with Memoization

dict = { }
def fibonacci(n):

if n < 2:
return n

elif n not in dict:
dict[n] = fibonacci(n-1) + fibonacci(n-2)

return dict[n]

This simple memoization allows the runtime to be reduced from several years
to a few milliseconds, even for 𝑛 > 100 [7]. For the sake of completeness, the
second possible solution to the problem using dynamic programming via a bottom-
up approach will also be illustrated below:

Alternative DO Bottom-Up Approach

dict = { }
def fibonacci(n):

dict = {0: 0, 1:1}
for i in range(2, n + 1):
dict[i] = dict[i-2] + dict[i-1]

return dict[i]

The bottom-up approach calculates the solution to the problem from the bottom
up, contrary to the recursive approach. In addition to the predefined start values for

204 Thomas Neifer & Dennis Lawo

zero and one, the function is no longer called repeatedly, but the auxiliary object
’dict’ is filled from bottom to top. In Operations Research (OR) there are several
problems for which DO can be used. Among them are the Knapsack problem, the
Traveling Salesman problem, and the order quantity problem. After the theory of
DO is explained in the following, it is presented in the context of more complex and
application-oriented problems of OR.

2 Theoretical Foundations

As we have already noted, DO is based on the simple premise that an optimization
problem can be solved through an iterative decision process by dividing it into several
subproblems. The smaller subproblems are now solved first in order to compose larger
partial solutions. Only those subproblems are calculated that are actually needed to
solve the larger problems. Values that have already been calculated do not have to be
calculated again [10]. In this case, such a decision process is distributed over several
stages (or periods), where each stage consists of a set of possible states and decisions
[5].

Before the specific properties of DO models are discussed, the general form of
dynamic optimization problems is described.

2.1 Definition and Properties of DO Models

The DO represents a complex procedure of the OR, which results in particular from
the difficulty of the suitable modeling of the optimization problem, the design of
the solution procedure as well as from stochastic influences of the problem. There-
fore, there are requirements for the mathematical representation of the optimization
problem, which is characterized in particular by the type of variables as well as the
existing restrictions. For simplification, we will assume a minimization problem in
the following, which uses an additive linkage of the stepwise objective functions.
However, this can easily be transferred to a multiplicative linkage as well as to a
maximization problem [5].

If the model is deterministic and discrete and is to be minimized by the sum of the
stage-related objective functions, the mathematical formulation is as follows [11]:

𝐹 (𝑥1, 𝑋2, ..., 𝑥𝑛) =
𝑛∑︁

𝑘=1
𝑓𝑘 (𝑧𝑘−1, 𝑥𝑘) → min!

The following restrictions must be observed [5]:

𝑧𝑘 = 𝑡𝑘 (𝑧𝑘−1, 𝑥𝑘) for 𝑘 = 1, ..., 𝑛

𝑧𝑘 ∈ 𝑍𝑘 for 𝑘 = 1, ..., 𝑛

Dynamic Programming 205

𝑧0 = 𝛼

𝑥𝑘 ∈ 𝑋𝑘 (𝑧𝑘−1) for 𝑘 = 1, ..., 𝑛

where: 𝑛 : Number of stages of a decision process
𝑧𝑘 : State of the system at the end of the stage 𝑘

𝑍𝑘 : Set of all possible states at the end of stage 𝑘

𝑧0 = 𝑎 : Initial state
𝑍𝑛 : Set of possible or given final states after 𝑛 stages
𝑥𝑘 : Decision in stage 𝑘

𝑋𝑘 (𝑧𝑘−1) : Set of all decisions that can be selected in stage 𝑘 starting
from state 𝑘 − 1

𝑡𝑘 (𝑧𝑘−1, 𝑥𝑘) : Transformation function that defines the state 𝑧𝑘 of which the
system transitions in stage 𝑘 after the decision 𝑥𝑘 is made at
the end of stage 𝑘 − 1 in state 𝑧𝑘−1.

𝑓𝑘 (𝑧𝑘−1, 𝑥𝑘) : Stage-related objective function, which describes the influ-
ence of the decision 𝑥𝑘 made in dependence on the state 𝑧𝑘−1
on the objective function value. In general, for each DO prob-
lem it must hold that 𝑓𝑘 depends only on the state 𝑧𝑘−1 of the
preliminary stage and the decision 𝑥𝑘 . This corresponds to
the Markov property [11], [12].

DO models can be classified according to the following criteria (see Table 1 [5]:

Table 1 DO Model Properties

Time intervals of the
periods or stages

Distinction between discrete and continuous models. While discrete
models represent changes of state at the point in time or in discrete
steps,
continuous models allow continuous changes of state.

Disturbance variable In deterministic models, the disturbance variable b_k (external
influences on the model) can only assume exactly one value. In
stochastic models, however, 𝑏𝑘 itself represents a random variable,
which means that it can assume different values with known
probabilities.

State and decision
variables

State and decision variables can be single-valued or multi-valued in
the
form of vectors.

Finiteness of state space 𝑍𝑘 and 𝑋𝑘 can be either finitely bounded or infinite with respect
to their set.

Source: Own representation according to Domschke et al. (2015) [5].

Figure 2 illustrates the causalities between the above terms once again.
Discrete and deterministic DO models can be clearly represented in a digraph

𝐺 = (𝑉, 𝐸) (see Figure 3) [5]. A digraph, or directed graph, is composed of a finite,
nonempty set of nodes 𝑉 and a set of arrows 𝐸 . The elements of 𝐸 are also called
directed edges [14]. Here,𝑉 represents the union set of all 𝑍𝑘 for 𝑘 = 1, . . . , 𝑛, where

206 Thomas Neifer & Dennis Lawo

Fig. 2 Graphical Representation of a DO Model. Source: Own representation according to
Schwarz (2010) [13].

each node 𝑧𝑘 ∈ 𝑍𝑘 describes an acceptable state. 𝐸 consists of arrows (𝑧𝑘−1, 𝑍𝑘)
with 𝑧𝑘−1 ∈ 𝑍𝑘−1 as well as 𝑧𝑘 ∈ 𝑍𝑘 for 𝑘 = 1, . . . , 𝑛. An arrow represents the system
transition from a state 𝑧𝑘−1 to 𝑧𝑘 , which can be explained by 𝑧𝑘 = 𝑡𝑘 (𝑧𝑘−1, 𝑥𝑘). Due
to the deterministic model assumption, the explicit specification of 𝑏𝑘 is omitted
here, since it is a constant.

With each transition from 𝑧𝑘−1 to 𝑧𝑘 , the objective function is influenced, because
with each state change period-related costs are associated, the amount of which is
determined by the stage-related objective function 𝑓𝑘 (𝑧𝑘−1, 𝑥𝑘).

Furthermore, 𝑧0 = 𝛼 as the initial state and 𝑧𝑛 = 0 as the final state applies as
usual [5].

Fig. 3 Digraph of an Exemplary DO Model. Source: Own representation according to Domschke et
al. (2015) [5].

2.2 Solution Principle of Dynamic Optimization

Finding an optimal policy for a discrete and deterministic DO model with initial state
𝑧0 = 𝛼 and a set 𝑍𝑛 of possible final states is called problem 𝑃0 (𝑧0 = 𝛼). Similarly,
the task of determining an optimal policy for transforming a state 𝑧𝑘−1 ∈ 𝑍𝑘 into one

Dynamic Programming 207

of the possible final states ∈ 𝑍𝑛 is defined as problem 𝑃𝑘−1 (𝑧𝑘−1). Here, the optimal
objective function value of a problem 𝑃𝑘 (𝑧𝑘) is 𝐹∗

𝑘
(𝑧𝑘).

Here, a policy denotes a sequence of decisions (𝑥 𝑗 , 𝑥 𝑗+1, ..., 𝑥𝑘) that transforms a
system to a state 𝑧𝑘 ∈ 𝑍𝑘 given a state 𝑧 𝑗−1 ∈ 𝑍 𝑗−1. Thus, assuming a minimization
problem, a sequence of decisions (𝑥∗

𝑗
, 𝑥∗

𝑗+1, ..., 𝑥
∗
𝑘
) is called an optimal policy if

it transforms a system from a given state 𝑧 𝑗−1 ∈ 𝑍 𝑗−1 to a state 𝑧𝑘 ∈ 𝑍𝑘 while
minimizing an objective function [11].

In order to determine an optimal overall policy of a system, the following applies
in accordance with the optimality principle going back to Bellman (1957) [15]:

Theorem 0.1 Let (𝑥∗1, ..., 𝑥
∗
𝑘−1, 𝑥

∗
𝑘
, 𝑥∗𝑛) be an optimal policy that transforms a system

from an initial state 𝑧0 = 𝛼 to a final state 𝑧𝑛 and let 𝑧∗
𝑘−1 be a state that the system

reaches at stage 𝑘 − 1 then follows:
(𝑥∗

𝑘
, ..., 𝑥∗𝑛) is an optimal (partial) policy which, starting from the state 𝑧∗

𝑘−1 in
stage 𝑘 − 1, transforms the system to the given or allowed final state 𝑧𝑛 (backward
recursion) and (𝑥∗1, ..., 𝑥

∗
𝑘−1) is an optimal (partial) policy that transforms the system

from a given initial state 𝑧0 = 𝛼 to a state 𝑧∗
𝑘−1 in stage 𝑘 − 1 (forward recursion)

[5].

Accordingly, an optimal policy exists exactly when each sub-policy is also opti-
mal. The DO uses Bellman’s optimality principle to derive an optimal overall policy
by forward or backward recursion [3].

2.3 Bellman’s Functional Equation Method

Bellman’s Functional Equation Method describes a methodology for process analysis
and optimization, which consists of the phases of decomposition, backward, and
forward recursion. In decomposition, the decision process is decomposed into several
sub-problems, where only the decision options are considered. By alternating the
solution of the sub-problems or their alternative decomposition into further sub-
problems, the smallest sub-problems are identified and finally solved. Thus, in the
next step, the solutions for the next larger (sub-)problems are created. By means of
backward recursion, optimal decisions of all intermediate states of the (sub)problems
are now made backward, taking into account the objective function, with the final
state as the starting point. Forward recursion, on the other hand, considers the existing
initial state as the starting point. The optimal decisions made under the objective
function are made on the basis of those decisions made in the previous backward
recursion [16].

The goal is to observe a trajectory (𝑥0, 𝑥1, ..., 𝑥𝑛) which satisfies the optimality
principle. For this Bellman defines the following equation:

𝑆(𝑥) = min
𝑦∈𝑈 (𝑥)

𝑔(𝑥, 𝑦) + 𝑆(𝑦)

208 Thomas Neifer & Dennis Lawo

where the value of the trajectory is defined as the summed value of the different
sub-problems. This means that:

𝑔(𝑥𝑖 , 𝑥𝑖+1, ..., 𝑥 𝑗) =
𝑗−1∑︁
𝑘=𝑖

𝑔(𝑥𝑘 , 𝑥𝑘+1)

where: 𝑥 : Finite set of possible system states
𝑥𝑖 , 𝑖 = 0, ..., 𝑛 : System States subdivided into several successive

sub-problems x
𝑈 (𝑥) : Set of subsequent states for each system state 𝑥 in

the frame of stages 0 to 𝑛 − 1
(𝑥𝑖 , 𝑥𝑖+1, ..., 𝑥 𝑗) : State sequences (trajectories), which allow transi-

tions between the states
0 ≤ 𝑔(𝑥𝑖 , 𝑥𝑖+1, ..., 𝑥 𝑗) : Non-negative evaluation function for the trajectories

and their sections
𝑆 : Optimal value that can be assigned to each state,

where the target set 𝑥𝑛 contains at least one optimal
value

𝑆(𝑥) : Value of an optimal trajectory. Assumes the value ∞
if no trajectory is present [16].

The Bellman-Ford algorithm thus works simplistically according to the following
principle (pseudocode) [17]:

Step 1: Assign 𝑥𝑖 to infinity and 𝑥0 to zero for 𝑖 ≠ 0
Step 2: for each edge(𝑢, 𝑣) do 𝑛 − 1 times:

𝑥𝑖 = min{𝑥𝑖 , 𝑥𝑢 + weight𝑢𝑣}
Step 3: for any edge(u, v):

if 𝑥𝑢 + weight𝑢𝑣 < 𝑥𝑖:
negative-weight cycle

3 Applications

3.1 Basic Example: Finding the Shortest Route

Let us assume that there are seven cities A to G (nodes), which have the following
traffic connections (edges) including the specified distances to each other (see Table
2):

If this is visualized by means of a graph, Figure 4 results.

Dynamic Programming 209

Table 2 Distances Between the Seven Cities

From To Distance
A B 17
A C 17
A D 1
A E 10
A G 2
B D 6
B E 16
C F 5
C G 7
D F 7
F E 18
F G 8

Source: Own representation.

Fig. 4 Graph: Distances Between the Seven Cities. Source: Own representation.

Initiation and Phase 1:
The goal is to find the shortest distance from the starting point A to the other

cities. Let us consider the example with A as the starting point. Accordingly, the
worst estimate applies for 𝑘 = 0, where A is assigned the value 0 and B to G is
assigned the value infinity.

In phase 1, all edges and the respective distances to the respective city are assigned
as well as the predecessor, i.e. the city crossed before. For A, the value 0 is still used,
since this is the starting point and no distance has to be covered.

The first edge is now A → B, which has a distance of 0 (coming from A) + 17 (to
B). Since 17 is less than infinity, the new value is assigned, as well as the information
that the predecessor node is A. The next edge, B → E, includes a distance of 16.
Thus, starting from the starting point A, E is 17 (to B) + 16 away, making a total
of 33. Since 33 is less than infinity, the new value is assigned as well as B as the

210 Thomas Neifer & Dennis Lawo

predecessor node. The edge B → D is treated analogously: Starting from A, 17 +
6 and consequently 23 are needed to get to D via B. 23 is less than infinity and is
therefore assigned as the new value. Since, in addition to A → B → E, there is also
a direct connection between A and E, which, at 11, is smaller than 33, the smaller
value is used here, starting from A. The same applies to the following edge A → D:
Since 1 is smaller than 23, the new value is used.

Edge D → F requires 1 (from A to D) + 7 (from D to F) and therefore 8. Since
the edge F → E comprises a total of 26 (8 from A to F + 18 from F to E) and this is
more than 11 (A → E), 11 remains.

The remaining edges are treated in the same way, resulting in Table 3.

Table 3 Finding the Shortest Route: Phase 0 and 1

k A B C D E F G
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 17 A 17 A 23 B 33 B 8 D 2 A

1 A 11 A

Source: Own representation.

Phase 2:
Phase 2 now iterates over the edges and nodes again and checks in an analogous

way whether an improvement of the previous results occurs. Since this is not the
case, the minimum distances of the cities to the starting point A were identified (see
Table 4).

Table 4 Finding the Shortest Route: Phase 2

k A B C D E F G
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 17 A 17 A 1 A 11 A 8 D 2 A
2 0 17 A 17 A 1 A 11 A 8 D 2 A

Source: Own representation.

3.2 Bellman-Ford Algorithm in Python

Next, let’s look at how an algorithm can solve the example from chapter 3.1. For this
purpose, we define the problem from Figure 4 again as input for the algorithm:

Dynamic Programming 211

Initiation of Nodes and Edges

Definition of nodes A - G as a list (A = 0, B = 1, etc.):
nodes = [0, 1, 2, 3, 4, 5, 6]

Definition of edges as dictionary:
edges = {(0,1): 17, (0,2): 17, (0,3): 1, (0, 4): 11, (0, 6): 2,

(1,3): 6, (1,4): 16,
(2,5): 5, (2,6): 7,
(3,5): 7,
(5,4): 18, (5,6): 8}

Then, a function is defined that reflects the Bellman-Ford algorithm:

Definition of the Bellman-Ford function

Definition of the Bellman-Ford function. The required arguments are the
nodes, the edges with their respective weights as well as the start node.

def bellmanford(nodes, edges, sourceNode = 0):
Initiation: start node is assigned 0, the rest infinite
pathDistances = {v: float(’inf’) for v in nodes}
pathDistances[sourceNode] = 0
Path definition
paths = {v: [] for v in nodes}
paths[sourceNode] = [sourceNode]
Bellman-Ford algorithm:
for _ in range(len(nodes) - 1):

for (u, v), w_uv in edges.items():
if pathDistances[u] + w_uv < pathDistances[v]:

pathDistances[v] = pathDistances[u] + w_uv
paths[v] = paths[u] + [v]

return pathLengths, paths

The determination and output of the result are as follows:

Apply the Bellman-Ford function

shortestDistances, shortestPaths = bellmanford(nodes, edges)

print(shortestDistances)
print(shortestPaths)

212 Thomas Neifer & Dennis Lawo

The output is now analogous to the above result from chapter 3.1:

print(shortestDistances)
{0: 0, 1: 17, 2: 17, 3: 1, 4: 11, 5: 8, 6: 2}
print(shortestPaths)
{0: [0], 1: [0, 1], 2: [0, 2], 3: [0, 3], 4: [0, 4], 5: [0, 3, 5], 6: [0, 6]}

For example, to get from the starting point 0 (A) to point 5 (F), a distance of 8 (0
+ 1 + 7) must be covered. This corresponds to the path [0, 3, 5] and therefore A →
D → F.

4 Conclusion

Dynamic programming is an important tool for breaking down complex real-world
optimization problems into small, manageable sub-problems. The Bellman-Ford
algorithm makes it possible to achieve optimization by an iterative approach. Recur-
sion is of essential importance, but it becomes more and more time and resource-
consuming. For this purpose, the memorization of the subproblem solutions serves
to counteract this weakness. All in all, dynamic optimization is suitable for the opti-
mization of many different real-world problems and thus represents a powerful tool
for operation research.

References

[1] V. Klee and G. J. Minty, “How good is the simplex algorithm,” Inequalities, vol. 3, no. 3, pp.
159–175, 1972.

[2] K.-H. Borgwardt, “The average number of pivot steps required by the simplex-method is
polynomial,” Zeitschrift für Operations Research, vol. 26, no. 1, pp. 157–177, 1982.

[3] H. Baumann et al., “Dynamische Optimierung,” in Lehrbuch der Mathematik für
Wirtschaftswissenschaften, H. Körth, C. Otto, W. Runge, M. Schoch, and W. Adler, Eds.
Wiesbaden: VS Verlag für Sozialwissenschaften, 1975, pp. 697–723. doi: 10.1007/978-3-
322-87545-7_13.

[4] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.
[5] W. Domschke, A. Drexl, R. Klein, and A. Scholl, Einführung in operations research. Springer-

Verlag, 2015.
[6] F. Gurski, I. Rothe, J. Rothe, and E. Wanke, Exakte algorithmen für schwere graphenprobleme.

Springer-Verlag, 2010.
[7] D. Logofătu, Grundlegende Algorithmen mit Java: Lern- und Arbeitsbuch für Informatiker

und Mathematiker. Springer-Verlag, 2014.
[8] T. von Brasch, J. Byström, and L. P. Lystad, “Optimal Control and the Fibonacci Sequence,”

Journal of Optimization Theory and Applications, vol. 154, no. 3, pp. 857–878, Sep. 2012,
doi: 10.1007/s10957-012-0061-2.

[9] G. B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics. Race Point Publishing,
2018.

Dynamic Programming 213

[10] D. Logofătu, “Dynamische Programmierung,” in Grundlegende Algorithmen mit Java, Wies-
baden: Vieweg, 2008, pp. 231–310. doi: 10.1007/978-3-8348-9433-5_8.

[11] S. Dempe and H. Schreier, Operations research: deterministische modelle und methoden.
Springer-Verlag, 2007.

[12] M. Frydenberg, “The chain graph Markov property,” Scandinavian Journal of Statistics, pp.
333–353, 1990.

[13] C. Schwarz, Effiziente Algorithmen zur optimalen Lösung von dynamischen Losgrößenprob-
lemen mit integrierter Wiederaufarbeitung. Berlin: Logos-Verl, 2010.

[14] W. H. Janko, Informationswirtschaft 1: Grundlagen der Informatik für die Informations-
wirtschaft. 1998. Accessed: Jun. 22, 2020. [Online]. Available:
http://link.springer.com/openurl?genre=bookisbn=978-3-540-64812-3

[15] B. Richard, “Dynamic programming,” Princeton University Press, vol. 89, p. 92, 1957.
[16] M. Papageorgiou, M. Leibold, and M. Buss, “Dynamische Programmierung,” in Optimierung,

Springer, 2015, pp. 357–386.
[17] D. Walden, “The bellman-ford algorithm and ‘distributed bellman-ford’” 2005.

http://springerlink.bibliotecabuap.elogim.com/openurl?genre=bookisbn=978-3-540-64812-3

	Dynamic Programming
	1 Introduction
	2 Theoretical Foundations
	2.1 Definition and Properties of DO Models
	2.2 Solution Principle of Dynamic Optimization
	2.3 Bellman’s Functional Equation Method

	3 Applications
	3.1 Basic Example: Finding the Shortest Route
	3.2 Bellman-Ford Algorithm in Python

	4 Conclusion
	References

