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Abstracts of Keynotes 

Suspension Bridges and Their Main Cables, 
from the Industrial Revolution to Present 

Fabio Brancaleoni 
E.D.IN. Ltd, Consulting Engineers, former Full Professor of Structural Engineering 
f.brancaleoni@ediningegneria.com 

Abstract 

The presentation is devoted to an overview of the development of technologies, 
materials, and methods for the erection of suspension bridges’ main cables in the 
contemporary age, from the drive given by the Industrial Revolution to the present 
times. For a wider scenario, fundamental aspects of the conception of suspension 
bridges in the same period are also outlined. In the first part, attention is given to 
the development of chain bridges and to the transition toward wires as the basic 
unit for cable forming. The respective roles of the European and the American civil 
engineering environments are discussed, with the first pioneers and their works, 
be they successes or failures. The difficulties in cable erection are described, until 
the European invention of the aerial spinning technique, which became in turn the 
premise of the great “American Century” from half Eighteenth to half Nineteenth 
Century. Of this magnificent period in the history of bridge construction figures of 
engineers, accomplishments and technical solutions are presented. In the second part, 
the progress brought up to the present is followed, outlining the respective role of 
technological and scientific development. Going through the bridges built in the first 
half of the Nineteenth century, the improvements in cable erection methodologies are 
commented on, with the first bridges built adopting the successful novel approach 
based on the adoption of prefabricated parallel wire strands (PPWS) and with the 
subsequent improvements for on-site spinning methods, with the so-called modi-
fied aerial spinning. These two methods are nowadays dominant in the construction 
industry, with spiral ropes adopted as a rare and minor exception. As a conclusion, 
a short brief is given to the overall concepts that allow the possibility of super-long 
spans, today with the 2023 m of the “1915” suspension bridge on the Dardanelles and 
with possible larger spans worldwide, such as the known design for a 3300 m span 
on the Strait of Messina, whose main cable layout is commented, together with some 
aspects of interest both for future research and innovative engineering solutions.

mailto:f.brancaleoni@ediningegneria.com


viii Organization

A Learning Framework for Pragmatic Management 
of the Dynamic Performance of Infrastructure Assets 

Colin Taylor 
Department of Civil Engineering, University of Bristol 
Colin.Taylor@bristol.ac.uk 

Abstract 

The dynamic performance of infrastructure assets, such as cable-stayed and suspen-
sion bridges, guyed masts, and aging nuclear reactor cores, is often complex, intricate, 
and nonlinear, with highly uncertain loading conditions and asset properties. Analysis 
requires imaginative theorization and often very large, time-consuming, computation 
to explore the performance space. However, usually, the asset management decision 
resolves simply to the selection of one option from a small number of viable courses 
of remedial action. The asset manager only needs parsimonious information from 
dynamic analysis that is necessary and sufficient, first, to choose the option, and 
second, to refine and execute the chosen course of action to achieve the desired 
outcomes at an affordable cost. This paper describes an outcomes-focused learning 
framework that helps accelerate progress toward this asset management goal. Based 
on modern cognitive and learning science, the framework was developed and tested 
in the context of the seismic performance of aging graphite cores in nuclear power 
plants, the dynamic performance of the historic Clifton Suspension Bridge, and even 
customer switching between bank current accounts. The framework is applicable to 
any kind of outcomes-focused decision-making and is valuable for guiding impactful 
research. The framework principles will be illustrated by reference to typical cable 
dynamics problems.
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Preface 

This book contains the Proceedings of the papers presented at the 3rd Interna-
tional Symposium of Dynamics and Aerodynamics of Cables (ISDAC 2023). The 
conference was held at SAPIENZA University of Rome, Italy, on June 15–17, 2023. 

At its inaugural edition organized in Liège, Belgium (1995), the Conference was 
called the International Symposium on Cable Dynamics (ISCD). The Conference was 
then held every two years until 2011 with the editions taking place in Tokyo, Japan 
(1997), Trondheim, Norway (1999), Montreal, Canada (2001), Santa Margherita 
Ligure, Italy (2003), Charleston, USA (2005), Vienna, Austria (2007), Paris, France 
(2009), and Shangai, China (2011). In 2014, the Conference was renamed Cable 
Dynamics and Aerodynamics Symposium (SDAC) and was held in Kongens Lyngby, 
Denmark. From 2017 to the present, the Conference has been established as the 
International Symposium on Dynamics and Aerodynamics of Cables (ISDAC) and 
is currently attended by scholars and researchers from several relevant institutions 
from all over the world. 

In continuity with the scientific tradition of past editions, the Symposium has 
promoted the development of all the traditional and emerging areas related to the 
Dynamics and Aerodynamics of Cables. The conference was held in Porto, Portugal 
(2017) and in Stavanger, Norway (2021). The ISDAC 2023 edition was hosted by the 
DISG—Department of Structural and Geotechnical Engineering of Sapienza Univer-
sity of Rome (Italy), and organized in collaboration with DICA—Department of Civil 
and Environmental Engineering of Politecnico di Milano (Italy), and DICCA— 
Department of Civil, Chemical and Environmental Engineering of University of 
Genoa (Italy). 

The main topics of the conference have included nonlinear cable dynamics, cable 
structures and moving cables, cable aging, fatigue, degradation and failure mecha-
nisms, laboratory testing of cable dynamics and aerodynamics, field investigations 
of cable dynamics and aerodynamics, computational models for cable dynamics and 
fluid-structure interaction, cable vibration control, cable-driven parallel manipula-
tors and cable cranes, monitoring of cable performance, environmental and anthropic 
loads on cable structures, new materials for structural cables, and design perfor-
mance criteria. The volume is organized, according to the Symposium sessions, in

ix



x Preface

five thematic sections, namely: (i) cable structures, (ii) aerodynamics and nonlinear 
dynamics, (iii) monitoring and testing, (iv)  identification and control, and (v) models. 

The papers published in this volume have been selected among those submitted 
by the participants after a rigorous review process by expert referees and members 
of the International Scientific Committee. This process ensured a high quality of the 
publication, highlighting how research conducted with different backgrounds finds 
a common interest in the physical phenomena of cable vibrations, ultimately leading 
to a fruitful exchange of multidisciplinary knowledge and expertise. 

Thriving for excellence, gender diversity has been considered during the Sympo-
sium as a contribution to promoting gender equality in research and innovation. 

We would like to thank Fabio Brancaleoni, EDIN Ltd, Consulting Engineers, 
former Full Professor of Structural Engineering of ROMA TRE University, Italy, for 
his lovely opening lecture, Colin Taylor, Emeritus Professor of Earthquake Engi-
neering at the University of Bristol, UK, for his first keynote lecture, a window into 
the future, Shaohong Cheng, Full Professor at the Department of Civil and Environ-
ment Engineering, University of Windsor, Canada, for her second keynote lecture of 
excellent inspirational and motivational value for young and experienced researchers. 

On behalf of ISDAC 2023, we would like to express our great appreciation to 
all the supporting institutions, sponsors, scientific committee members, organizing 
committee members, and participants of this scientific event. We also express our 
special thanks to all the people who contributed to the success of the Conference. 

The Local Organizing Committee, coordinated by Prof. Andrea Arena, worked 
very hard and gave us enormous and decisive support for the organization of the 
Symposium and its Proceedings. We wish to express our sincere gratitude for that. 

Rome, Italy 
Milan, Italy 
Genoa, Italy 
September 2023 

Vincenzo Gattulli 
Luca Martinelli 
Marco Lepidi
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Keynotes



Explore Essential Elements 
in the Generation Mechanisms 
of Wind-Induced Cable Vibrations: 
An Insight Offered by Numerical 
Techniques 

Shaohong Cheng and Ran Wang 

Abstract The inclined and/or yawed orientation of bridge stay cables results in 
the formation of secondary axial flow on the leeward side of cable surface, the 
intensity of which depends on the effective attack angle. On the other hand, the 
cross-sectional shape of a real stay cable is usually not perfectly round. It is believed 
that the presence of axial flow and roundness imperfection would contribute to trigger 
some unique wind-induced cable vibration phenomena. To clarify their respective 
role in the excitation mechanisms, a delayed detached eddy simulation (DDES) 
is performed in OpenFOAM on an inclined circular cylinder. The effect of cable 
orientation is studied for α = 0◦, 30◦, 45◦, 60◦ at Re = 1.0 × 104 and 1.4 × 104, 
whereas the impact of cable cross-sectional shape is examined for four different 
levels of roundness imperfection. Results show that the interaction between Kármán 
vortex and axial vortex causes an “S” pattern movement of a low Cp region along 
cable leeward surface, which generated an intermittently amplified transverse lift. 
This could be the source which triggers unstable cable motion. Further, the strength 
of axial flow is found critical to its interaction with Kármán vortex. This explains why 
aerodynamic instability of a cable was only observed at certain cable orientations in 
lab and on site. In addition, an imperfectly round cable is observed to have a smaller 
recirculation region in the wake, which helps to trap more axial flow close to the 
cable leeward surface and may enhance the interaction between axial and Kármán 
vortices. 

Keywords Stay cable · Axial flow · Kármán vortex · Intermittent amplification

S. Cheng (B) · R. Wang 
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4 S. Cheng and R. Wang

1 Introduction 

Stay cables on cable-stayed bridges are susceptible to dynamic excitations such as 
wind. Over the past three decades, many experimental and analytical studies have 
been conducted to investigate wind-induced vibrations occurred with and without 
precipitations. While mechanisms associated with rain-wind-induced cable vibra-
tions are better understood than before, the cause of wind-induced oscillations of dry 
cables still require intensive research effort. Existing studies on dry cables show that: 
(a) the emergence of critical Reynolds number regime [1, 2]; and (b) the presence of 
axial flow [3] would affect the aerodynamic forces acting on a cable; (c) the correla-
tion of sectional aerodynamic forces [4] can decide how well they collaborate along 
cable span to excite a cable; and (d) the sustained duration of critical condition [5] 
would govern the built-up amplitude of cable response. The contributions made by 
(a), (c), and (d) are supported by experimental and analytical results, whereas the role 
of axial flow is yet to be clarified. The strength of axial flow and the level of its impact 
on the surrounding flow structure are affected by the cable orientation. In addition, 
the imperfectly round cross-sectional shape of a real stay cable would also have an 
influence on the surrounding flow. Although much progress has been made in iden-
tifying the contributing factors for triggering unstable cable response, the obtained 
information regarding the surrounding flow and how it is affected by cable orienta-
tion and geometric imperfection through wind tunnel tests and site measurements is 
still limited. 

The Computational Fluid Dynamics (CFD) simulation grants the access to rich 
information in the entire flow field with unlimited level of details. Further, it offers 
the possibility of conducting investigations beyond the conditions that are achievable 
in lab environment. This allows to explain the physics associated with the excitation 
mechanisms in more depth. In the current study, we use the delayed detached eddy 
simulation (DDES) in OpenFOAM version 4.1 (Open source Field Operation and 
Manipulation) to scrutinize how flow surrounding an inclined cable is affected by 
cable orientation and geometric imperfection, and thus impact on its aerodynamic 
response. 

2 Role of Cable Orientation 

Aerodynamic behaviour of an inclined circular cylinder has been extensively studied 
by many researchers through wind tunnel tests and numerical simulations [e.g. 2, 
6–9]. It has been found that the relative angle between the oncoming flow and the 
cylinder axis had a decisive impact on the aerodynamic stability of a cylinder. Liter-
ature data indicate that unstable cable motion is possible to occur in the sub-critical 
and critical Reynolds number range when the equivalent attack angle is within the 
range of α = 20◦ and 60°, and mostly reported at α = 30◦ and 45°. To find 
out what is special in the surrounding flow structure within this cable orientation
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Fig. 1 Computational 
model 

range, CFD simulation is conducted at Re = 1.4 × 104 for four attack angels of 
α = 0◦, 30◦, 45◦, 60◦. 

2.1 Numerical Model 

The computational domain has a cylindrical geometry (Fig. 1). A rigid circular 
cylinder is located at the center of the computational domain whose diameter is 
40 times that of the cylinder. The x-axis represents the stream-wise direction for the 
case α = 0◦, and it will not change its direction for the other cases; the z-axis coin-
cided with the axis of the circular cylinder; and the y-axis is perpendicular to the x-
and z-axes. A turbulent inlet with an intensity of 1% is adopted. The surface pressure 
and velocity gradient at the outlet are set as zero. A no-slip condition is applied to the 
cylinder surface wall and the periodic condition is prescribed at the span-wise wall. 
The non-dimensional time is defined as t∗ = tU∞/D, where t is the dimensional 
time, U∞ is the free-stream velocity, and D is the diameter of the circular cylinder. 
For more details of the numerical model, such as model validation, duration for the 
sampling window, and turbulence model, please refer to [9]. 

2.2 Near Wake Structure 

Figure 2 shows the wake vertical vorticity, ωZ , of a cylinder at four different attack 
angles. The direction of the vertical vorticity is perpendicular to the streamwise 
direction. It enables to visualize the detached shear layers in the streamwise direction. 
It can be seen that as α increases, the shear layers become less curved and more stable. 
If placing a probe in the vicinity of the shear layer to measure cross-flow velocity at 
this point and perform a spectrum analysis, the strength of Kármán vortex shedding 
is found to gradually weaken as the attack angle increases (Fig. 3). In Fig. 3, the  
horizontal axis represents the Strouhal number based on the normal component of
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Fig. 2 Time-averaged vertical vorticity 

Fig. 3 Spectra of cross-flow velocity in the vicinity of shear layer 

the free-stream velocity U∞, and the vertical axis for the cross-flow velocity spectral 
energy normalized by the free-stream velocity U∞ and the cylinder diameter D. 

2.3 Sectional Lift 

Figure 4 describes the evolution of the sectional lift along the entire span during the 
studied time frame when the cylinder is inclined at four different attack angles at 
Re = 1.4 × 104. The presence of Kármán vortex shedding can be recognized from 
the periodic pattern of the red/blue or yellow/cyan stripes. It is noticed that when 
α = 30◦, there exists a moving pattern of “peak lift” in the lift contour, implying 
the propagation of a strong Kármán vortex shedding along the cylinder span over 
time. This kind of propagation becomes weaker and discontinued at relatively larger 
angle of attack.

To have a better understanding of the cause of this moving pattern of peak lift, 
the time variation of sectional lift at 100 equal-spaced span-wise locations along the 
cylinder span were investigated. Figure 5 depicts a sample sectional lift coefficient
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Fig. 4 Sectional lift coefficient contour at Re = 1.4 × 104

time history at section 60, which shows a periodic time variation of lift with the same 
frequency as Kármán vortex shedding. Besides, the existence of a low frequency 
variation is also observed from the figure such that the sectional lift is enhanced once 
every few Kármán vortex shedding cycles. This can be seen more clearly from the red 
envelope curve and is also confirmed by the power spectrum analysis results given 
in Fig. 6, where two peaks, one corresponding to Kármán vortex shedding (St = 
0.2), and another (designated by the red broken line) at a frequency a fraction of the 
former, are present. It is worth noting that the low frequency peak is slightly broad-
banded and centered roughly at St = 0.05. An examination of the power spectrum of 
sectional lift at all 100 span-wise locations reveals the presence of these two peaks 
in all sections. 

The time variation of sectional lift at different span-wise locations are then 
compared. Figure 7 shows the sectional lift time history from section 43 to 78, 
which covers close to 40% of the cylinder length in the mid-portion. The enhanced 
lift event at a specific span-wise location is observed to propagate along the cylinder 
span, indicating that the occurrence of strong vortex shedding events along cylinder 
span has a slight time lag.

The span-wise propagation velocity of the enhanced lift event can be calculated 
based on the distance between the sections and the time interval between the events.

Fig. 5 Time history of lift 
coefficient at section 60 
when α = 30° at Re = 1.4 × 
104
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Fig. 6 Power spectrum of 
lift at section 60

Fig. 7 Time history of lift 
coefficient at sections in the 
mid-portion of a cylinder 
inclined at 30° when Re = 
1.4 × 104

For example, for Events A and B shown in Fig. 7, the span-wise spacing between 
sections 43 and 50 is 0.112 m, and the time interval between their occurrence is 
0.14 s, this gives a propagation speed from A to B as 0.80 m/s. If conducting the 
same calculation for the rest events, an average propagation speed of 0.82 m/s can be 
obtained. This is nearly identical to the axial component of the free-stream velocity,
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Fig. 8 Numerical model of 
an imperfectly round cable 
cross section 

which is 0.83 m/s, implying that axial flow is responsible for the moving pattern of 
peak lift appeared in the lift contour. 

3 Effect of Roundness Imperfection 

3.1 Numerical Model 

Due to manufacturing precision, assembling processes, and deformations during 
shipping and storage, surface irregularities exist in HDPE tubes of stay cables, so 
the cross-sectional shape of a real stay cable usually is not perfectly round. A similar 
definition of roundness used in an existing experimental study [10] is adopted. In 
the numerical model, the cross-sectional shape of the cylinder is formed by super-
imposing a half-sine curve on 1/8 of a circle. This pattern repeats every 45° of axial 
rotation until the entire cross section is formed, as depicted in Fig. 8. The control 
variable of roundness is defined as the ratio between the maximum groove depth, e, 
and the cylinder diameter, D. Flow around a cylinder inclined at 45° was studied for 
e/D = 0, 1%, 4% and 10% at Re = 1.0 × 104, with e/D = 0 for a perfectly round 
circular cylinder. 

3.2 Sectional Lift 

Figure 9 illustrates the spatial and temporal distribution of sectional lift coefficient 
at α = 0° and 45°. The non-dimensional parameter LZ /D is used to define the span-
wise location of a section, where LZ is the z-coordinate. The color scale provides the 
magnitude of the lift coefficient. The presence of Kármán vortex shedding can be 
recognized from the periodic pattern of the yellow (or red) and cyan (or blue) stripes. 
In the normal flow case, the stripes are generally perpendicular to the horizontal 
axis of time in the contour, indicating that the roundness imperfection defined in 
the current study has negligible impact on the synchronization of Kármán vortex
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shedding over the cylinder span. For e/D = 4%, sectional lift has very large absolute 
values over most part of the cylinder or even the entire cylinder, suggesting the 
presence of strong Kármán vortex shedding events along the cylinder span. 

At α = 45°, the sectional lift contour has two important features: In all four 
roundness imperfection cases, the color stripes representing Kármán vortex shedding 
events are tilted against the horizontal axis of time, which indicates the occurrence 
of Kármán vortex shedding along the cylinder span has a time lag. This is believed to 
be caused by the inclined orientation of the cylinder. In addition, a moving pattern of 
peak lift can be seen in the contour. It is most distinctive when e/D = 4%, and becomes 
less obvious when the roundness imperfection becomes less or more sizable. 

By examining the sectional lift contour for the 4% roundness imperfection case 
over a longer time period (Fig. 10), it is found that the appearance of moving pattern of 
peak lift have an irregular intermittent characteristic, with the time interval between 
the two successive ones varies between roughly three to six times of a conventional 
Kármán vortex shedding period. This would lead to an intermittent amplification of 
sectional lift at a frequency much lower than that of Kármán vortex shedding. This 
irregular intermittency is consistent with the slight broad-banded low frequency peak 
observed earlier in the sectional lift contour. A similar moving pattern of peak lift 
has also been observed for a perfectly round cylinder at α = 30° and Re = 1.4 × 104

Fig. 9 Sectional lift coefficient contour at α = 0° and 45° when Re = 1.0 × 104 
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Fig. 10 Sectional lift 
coefficient contour when e/D 
= 4% (α = 45°, Re = 1.0 × 
104) 

in Sect. 2.3. We speculate that the roundness imperfection might disturb the flow in 
a similar way as the combined effect of the Reynolds number and the attack angle. 

To evaluate the coordination of sectional lift along the cylinder span, the cross-
correlation of sectional lift at five span-wise locations with a spatial interval of D 
to 4D are analyzed. The spatial interval between sections i and j (i = 1 to 5,  j 
= i + 1 to 5) is designated by Sij. As shown in Fig. 11, for all four roundness 
imperfection levels in α = 0° and 45° cases, the periodicy of the local maximum in 
the correlogram of sectional lift matches the Strouhal number deduced based on the 
span-wise averaged lift. When α = 45°, although the Strouhal number of the e/D 
= 4% and e/D = 0 cases are the same, the sectional CL contour of these two cases 
are found to exhibit considerably different patterns. The correlogram of sectional lift 
for e/D = 4% also show a low frequency fluctuation that the correlation of sectional 
lift is much enhanced once every few Kármán vortex shedding cycles, the interval 
between which is found to associate with the moving pattern of peak lift.

3.3 Surface Pressure 

The instantaneous Cp contour of a cylinder at α = 45° with e/D = 4% is portrayed 
in Fig. 12 for time instants t∗ = 565, 569, 572, 576, 579, and 582. The x-axis repre-
sents the angular position along the cylinder circumference direction, and the y-axis 
represents the span-wise location. The two red regions (0° < θ < 30° and 330° < θ < 
360°) in the surface pressure plots are under pressure, whereas the rest of the cylinder 
surface is subjected to suction (in green or blue). The low Cp (or high suction) region 
is denoted by a red rectangular box and the local minimum Cp is denoted by a red 
cross. If using a black dashed line to connect the locations of local minimum Cp 
at different time instants, an “S” shaped motion trajectory of the low Cp region 
can be identified, which has strong three-dimensional characteristics. The motion 
can be decomposed into two components, with one being tangent to the cylinder 
circumference and the other along the cylinder axis.

If we estimate the moving speed of the low Cp region along the cylinder axial 
direction using the geometric center of the regions enclosed by the red rectangular 
box and the time lag between the leftmost and the rightmost points on the “S” pattern, 
this speed is determined to be 1.25 m/s. On the other hand, the free-stream velocity 
component in the cylinder span-wise direction is 1.17 m/s. The close match between 
these two suggests that the formation of the “S” pattern motion path is strongly related 
to the near-wake flow along the cylinder axial direction. Further, the frequency of
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Fig. 11 Cross-correlogram of sectional lift for α = 0° and 45° when Re = 1.0 × 104 and e/D = 0, 
1%, 4% and 10%

the tangential movement is found to agree well with the Strouhal number. These 
clearly indicate that this unique “S”-shaped flow structure in the cylinder near wake 
is generated under the combined effect of Kármán vortex and axial flow. 

3.4 Stream Trace 

The instantaneous stream-trace of a cylinder inclined at 45° with e/D = 0 and 4% 
is shown in Fig. 13. It is seen that when flow approaches and passes the cylinder 
at a non-zero attack angle, at any arbitrary cross section of the cylinder, part of 
the flow is trapped within the recirculation zone and travels downward along the 
cylinder axial direction, which is indicated by the black arrow A and often referred 
to as the axial flow. The presence of roundness imperfection would reduce the size 
of the recirculation zone so the axial flow would be retained closer to the cylinder 
leeward surface and thus enhance its strength. Axial flow “pushes” the flow around 
the leeward side of the cylinder surface and that in the near-wake to move along the 
cylinder axial direction. Thus, as time progresses, the low CP region would not only 
alternate its location along the tangential direction of the cylinder circumference
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Fig. 12 Instantaneous Cp contour at α = 45° for e/D = 4%

but also continuously travel along the cylinder axial direction, which leads to the 
formation of a unique flow structure that moves in an “S” pattern in the cylinder 
near-wake. 

Besides, it is observed that this newly formed axial flow is not stable. Instead of 
remaining in the recirculation zone while moving along the cylinder axial direction, 
it would “escape” after a short while by forming vortices and shedding from the 
cylinder surface, as indicated by the black arrow B. The formation and shedding 
of the axial vortices would interact with other flow structures, i.e., the von Kármán 
vortices. If the shedding of the axial vortex and Kármán vortex happen to occur at 
the same time, the interaction between the two would lead to the amplification of the 
Kármán vortex shedding and thus enhance the transverse lift. Since the frequency 
of axial vortex formation and shedding is found to be a fraction of that of Kármán

Fig. 13 Stream-trace of a cylinder inclined at α = 45° when e/D = 0 and 4% 



14 S. Cheng and R. Wang

vortex, so the transverse lift is amplified intermittently. If such kind of intermittently 
amplified lift events occur continuously and also at different cross-sections along the 
span, it is possible to become an excitation source to trigger unstable cable motion. 

It is also observed that if the roundness imperfection is considerable, then the 
formed axial flow would be “too strong” such that instead of interacting with the 
Kármán vortex shedding and amplify it intermittently, it would suppress the formation 
and shedding of the Kármán vortex instead. 

4 Concluding Remarks 

A series of CFD simulations have been conducted in the current study at Re = 1.0 × 
104 and 1.4× 104 to explore the role of axial flow and roundness imperfection of cable 
cross-sectional shape on the generation mechanisms of wind-induced vibrations of 
dry cables. Results showed that the intensity of the axial flow, which depends on the 
cable orientation and the level of roundness imperfection of the cable cross-sectional 
shape, is critical to the occurrence of intermittently amplified lift for triggering wind-
induced vibrations of dry cables. The axial flow cannot be too weak for forming axial 
vortex, and meanwhile cannot be too strong to suppress Kármán vortex. The suitable 
level of axial flow intensity which allows to interact with and intermittently enhance 
Kármán vortex formation and shedding can only be satisfied for certain range of 
cable orientation and certain level of geometric imperfection. This explains why 
aerodynamic instability of a cable was only observed at certain cable orientations in 
lab and on site. 
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Abstract Cable-Driven Parallel Robots are considered an effective automated solu-
tion to tackle some open industrial problems such as the manipulation of large pay-
loads into a large workspace. They are considered fully-constrained when the . n
degrees-of-freedom of the end-effector are commanded by means of .n + 1 cables. 
The dynamics of this extended configuration is strongly non-linear and, in addi-
tion, position control strategies must face the problem of maintaining cable tensions 
within an acceptable range. This paper proposes a simple but effective and robust 
control strategy based on adding a control signal offset to the output of a linear PID 
type control. Simulation results show that this proposal provides an excellent track-
ing of the end-effector pose in a planar case maintaining all cable tensions into the 
allowed range. The results presented in this work can be easily applied to spatial 
configurations. 
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1 Introduction 

Cable-driven parallel robots (CDPRs) are a type of parallel manipulator where the 
end-effector is supported by flexible cables instead of rigid links [ 1]. This partic-
ular property of cables provides CDPRs several advantages such as smaller inertia 
and higher payload to weight ratio, which allows high speed and acceleration of the 
end-effector. The limitations of cables, which can only be driven by tension rather 
than compression, restrict the robot’s workspace and make defining the motion range 
very important [ 1]. The robot’s equilibrium equation can only be solved for positive 
cable tensions, and the cable forces must be kept within certain limits to prevent 
sagging and to avoid exceeding the torque limits of the actuators. Cable sagging is 
not usually taken into account (see [ 2]), but it is a complex issue that affects end-
effector positioning and cable coiling. Other issues such as positioning accuracy, 
stiffness and vibration of CDPRs are caused by cable flexibility and compliance. 
Generally, CDPRs with . n degrees-of-freedom (DOFs) driven by .m cables can be 
classified according to their mobility and statics. CDPRs are under-constrained when 
.n + 1 > m, fully-constrained when.n + 1 = m, and redundantly or over-constrained 
when .n + 1 < m. In the case of fully and over-constrained CDPRs there is an infi-
nite number of force distributions that satisfy the force equilibrium equation for a 
certain end-effector pose and externally applied wrench. Therefore, the underlying 
mathematical problem is undetermined. In the last decade, several researches have 
proposed algorithms to compute force distributions for cable-driven parallel robots. 
These algorithms include interval analysis and gradient-based optimization [ 3], real-
time control algorithms [ 4], including finding a closed-form solution [ 5]. Later, in 
[ 6] Pott compared the most studied methods to compute tension distributions and 
presented his new improved closed-form algorithm. The desirable characteristics of 
these algorithms include their computational cost, ability to deliver continuous ten-
sion along a trajectory, and ability to adjust tension levels from highly antagonistic 
to minimally antagonistic to achieve high stiffness or low power consumption [ 7]. 
Most control strategies for CDPRs involve linearization of the non-linear dynamic 
equations that describe the behaviour of the robot using feedforward linearization or 
inverse dynamics techniques (see [ 8]). Other approaches include sliding mode con-
trol [ 9], adaptive control [ 10] or model predictive control [ 11]. Hybrid position-force 
control strategies are also used to maintain cable forces within certain limits while 
controlling the end-effector pose [ 12]. 

This paper presents a new and simpler control technique for CDPRs, which adds 
a control signal offset to the output of a robust cascade PID controller. Compared to 
more complex algorithms for cable force distribution or advanced control techniques 
such as fuzzy-logic or adaptive control, this novel and robust control strategy has 
proved to be as efficient and achieve proper performance of end-effector positioning 
and trajectory tracking while maintaining tension within the allowed range. The 
technique is implemented for a conventional CDPR for comparative purposes and 
can be easily applied to any configuration or spatial case.
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2 Cable-Driven Parallel Robot Modelling 

2.1 Kinematic and Static Models 

Consider the planar conventional CDPR shown in Fig. 1. This manipulator possesses 
4 cables of equal length, .m = 4, allowing for 2 translational and 1 rotational DOFs, 
.n = 3. The main elements of the robot, which can be seen in Fig. 1, are: fixed frame, 
end-effector, cables, actuation system using DC motors/gear boxes, and transmission 
system composed of pulleys that drive the cables to the end-effector. The actuation 
system is fixed to the upper and lower corners of the frame, and a winch mechanism 
converts the motor rotational motion into linear displacement to retract and release 
the cables. 

Figure 2 shows important points to formulate the robot geometry. Distances . W , 
. H , and. w, . h are the width and height of the frame and the end-effector, respectively. 
.T = [T1, ..., Tm]T is the cable tension array, and the pose of the end-effector, . Qe =
[xe, ye, δe], is defined by its position (.qe = [xe, ye]) and orientation (. δe). 

The geometry of the frame is defined by the proximal anchor points, PAP, 
.Ai ∈ R2(i = 1, ...,m) w.r.t. the world reference system, whereas the end-effector 
geometry is defined by distal anchor points, DAP, .bi ∈ R2(i = 1, ...,m), w.r.t the 
local reference system of the end-effector. In this sense, the position of the DAP w.r.t 
the world reference system is obtained as .Bi = qe + Rz(δe) · bi , where .Rz(δ) is the 
rotation matrix around the. z axis. The kinematic model relates the joint angles,. α, to  
the end-effector pose,.Qe. This relationship is split into two: one relates joint angles. α
to cables lengths.L = [L1, ...Lm], and the other one relates the cable lengths. L to the 
end-effector pose.Qe. In this way, motor angles can be obtained as.α = ΔL

r = L−L0
r , 

where . r is the combined winch radius that considers the effective winch radius and 
the gear box connected to the actuators, and the cables lengths, . L, are obtained 
as .L = φI K (Qe), being .φI K the inverse kinematic transform considering mass-less 

Fig. 1 Planar fully 
constrained CDPR
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Fig. 2 Geometry of the CDPR 

cables. As it can be seen, the solution of the inverse kinematic function always exits, 
it is always unique (ignoring the solutions that provide negative lengths), and it exists 
for arbitrary end-effector poses, .Qe. 

The static model of the robot is composed by the sum of external forces acting 
on the end-effector, i.e., the force equilibrium in the . x and . y axes, and the torque 
equilibrium around the. z axis. In the static situation, the cable tension is equal along 
the cable path. The equilibrium of the system is formed by the following set of 
equations: 

.AT
e (Qe)T + We = 0 (1) 

where.AT
e is the structure matrix containing the directions in which cables exert force 

and torque to the end-effector. It is a .n × m matrix that yields: 

.AT
e =

[
u1 . . . um

Rz(δz)b1 × u1 . . . Rz(δz)bm × um

]
(2) 

defining.ui = Ai−Bi
Li

as the unity vector containing the direction in which cable forces 
are exerted on the end-effector. On the other hand, .We is a vector containing the 
external wrench applied on the end-effector, and if the end-effector is only subjected 
to its own weight: .We = [0,−me · g, 0]T , being.me the end-effector mass and. g the 
gravity acceleration. The static equilibrium of the system contains . n equations and 
.m unknowns, this means that with .m = n + 1 and an arbitrary end-effector pose, 
the problem is under-determined and the redundancy remains.r = m − n = 1. In an  
under-constrained system of equations exits infinite solutions. In this way, a lot of 
efforts of the CDPR community are focused on proposing a proper tension (force) 
distribution among all the feasible solutions.
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2.2 Dynamic Model 

As it has been mentioned, CDPRs are an effective solution in works that require large 
workspace and high payload capabilities. Modelling and simulating the dynamic 
behaviour is basic to analyse such extreme scenarios quickly, without risk, and in 
a cost-efficient way. The input variables to the system are the torques exerted by 
motors, . τ , and the output is the end-effector pose.Qe. Assuming that the only forces 
acting over the end-effector are those exerted by cables and the gravity, the dynamic 
behaviour of the end-effector is obtained using the Newton-Euler formulation: 

.MeQ̈e = AT
e (Qe)T + We (3) 

where .Me is the diagonal mass/inertia matrix. On the other hand, the motor/gear 
box/winch set dynamic expression yields: 

.τ = Jα̈ + bmα̇ + rT (4) 

with. J the rotational inertia matrix and.bm the viscous friction coefficient. Equations 
(3) and (4) constitute the dynamic model of the robot. To obtain the control scheme 
that allows the design of a controller for each actuator, the following coupled dynamic 
model is employed: 

.
MeQ̈e = AT

e (Qe)T + We

τ = Jφ̈I K (Qe) + bm φ̇I K (Qe) + rT
(5) 

Dynamic model (5) can be expressed in both, Cartesian and joints coordinates. The 
second one is commonly used mainly because joint coordinates control is much more 
easier to implement than Cartesian coordinates control. 

2.3 Workspace Limitation and Control Requirements 

A procedure to find solutions of the static equilibrium equations is required to deter-
mine the workspace. These solutions are restricted by the maximum, .Tmax , and 
minimum, .Tmin , allowed cable tension. .Tmax is determined by the maximum torque 
the motor is able to exert and the break limit of the cable, whereas .Tmin is restricted 
by the sagging effect of the cables (see e.g. [ 2]). Defining .κ = Tmax

Tmin
, the workspace 

is directly defined by . κ. For a planar fully constrained scheme, Fig. 3 represents the 
static workspace for different values of . κ with and without gravity (.δe = 0◦).
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Fig. 3 Workspace for a planar fully constrained CDPR (.δe = 0◦) 

3 Control System Design 

3.1 Preliminaries 

During the last two decades a lot of control strategies have been proposed for the 
position control of cable-driven parallel robots. The main open problems are: (a) The 
dynamic model is strongly non-linear. Some tensions near the edge of the workspace 
are high, while in the central workspace positions, a much lower force distribution 
is possible. 

A linear controller can be tuned for one of these areas but its behaviour deteriorates 
in the others. This issue yields to adaptive controllers or non-linear controllers; (b) 
All cable tension shall be in the desired range .[Tmin, Tmax ]. The most extended 
tendency is to determine a feasible tension distribution inside this range for the 
actual/reference position of the end-effector. This is normally addressed with hybrid 
force/position control strategies. The following section propose a simple but effective 
control strategy which is able to tackle both problems using a linear controller, such 
a cascade PID without any online tension distribution (e.g., [ 13]). 

3.2 Novel Proposal 

The main goal of the control scheme in a CDPR is to effectively track a target 
end-effector pose, .Qe, along a manoeuvre while maintaining cable tensions within 
the range .[Tmin, Tmax ]. Joint coordinates control requires the inverse kinematic for 
generating the joints reference,.α∗ = [α∗

1,α
∗
2,α

∗
3,α

∗
4]T . The control block is a diag-

onal matrix of .4 × 4, so SISO controllers can be tuned for each motor. Furthermore, 
given that finding the motor positions is easy by means of encoders, the control vari-
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Fig. 4 Proposed control scheme 

ables are joint positions. Figure 4 represents the proposed control approach, where 
.Q∗

e = [x∗
e , y

∗
e , δ

∗
e ]T is the end-effector position reference and . ε the error signal. 

In order to maintain cables tension inside the allowed range .[Tmin, Tmax ] and to 
ensure a good behaviour of the controlled system in all the workspace, a reference 
value of control signal, .τ ∗ = [τ ∗

1 , τ ∗
2 , τ ∗

3 , τ ∗
4 ]T , has been added to the output of the 

linear controller, .τ c = [τ c
1 , τ

c
2 , τ

c
3 , τ

c
4 ]T . In this sense, the new control signal yields 

.τ = τ c + τ ∗. This work proposes to compute the reference torque value as . τ ∗ =
rTset , being .Tset = [Tset1, Tset2, Tset3, Tset4]T the reference value of cable tensions 
that can be fixed to any tension value inside of .[Tmin, Tmax ] in the same way as all 
distribution tension algorithm (e.g., [ 14]). This proposal is based on adding to the 
torque control signal the equivalent torque to apply a.Tset force under static condition 
(.KT = r ). 

3.3 Controller Tuning 

For each actuator . i the PID constants, .Kp, Ki , Kd , are selected to ensure a high 
performance trajectory tracking with zero steady state error, fast time response and 
no overshoot in its transient response. For illustrative purpose, a frequency domain 
tuning method has been selected. Neglecting the non-linear terms of (4), the transfer 
function of the actuator . i with .i = 1, ..., 4, can be written as .Gi = Ki

s(Ti s+1) , being 
.Ki = 1/bmi and .Ti = Ji/bmi . Denoting the transfer function of controllers 1 and 
2 (see Fig. 4) as  .R1(s) and .R2(s), respectively, the equivalent open-loop transfer 
function, .GOL(s), for each actuator is .GOL(s) = Gi (s) (R1(s) + R2(s)) and the 
complex tuning equation in frequency-domain is therefore: 

.(R1( jωc) + R2( jωc))Gi ( jωc) = −e jϕ (6) 

being .ωc the gain crossover frequency and . ϕ the phase margin. Constants .Kp and 
.Kd can be easily obtained with the frequency-domain tuning equations, whereas . Ki

can be selected to fulfil an additional requirement.
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4 Simulation Results 

4.1 Preliminaries 

In order to validate the novel control technique performance, the CDPR dynamic 
model described in Sect. 2.2 has been modeled using Matlab® and Simulink®. A 
fixed sample time of . 1ms has been set while using ode45 solver (Dormand-Prince). 
The main parameters of the robot are: frame size .[2.224, 1.112] m, end-effector 
size .[0.281, 0.287] m, end-effector mass and inertia, . 1 kg and .1 · 10−1kgm. 

2, and 
motors/winch set with a pulley radius, .r = 0.06m, and dynamics parameters . K =
0.0137 and .T = 0.03. 

4.2 Controller Tuning 

As the robot is mechanically symmetric, all controllers are tuned identically. The 
equivalent linear transfer function of the motors is .G(s) = 0.4574

s(s+33.3) . Using  a fixed  
gain crossover frequency,.ωc = 10 rad/s, and phase margin,.ϕ = 70◦, to reach a rapid 
and damped response of the controlled system, the resulting controller parameters 
are.Kp = 758.87, and.Kd = 8.1450. On the other hand, the value of .Ki is increased 
till the best controller for any metrics is found. In this sense, the maximum value of 
the integral constant before hunting effect is .Ki = 1250.0. Assuming a reasonable 
maximum torque of .17.7 Nm, the maximum allowed tension is .Tmax = 295 N. On 
the other hand, a minimum tension value of .Tmin = 10 N has been fixed to avoid the 
sagging cable effect. In this way, .Tset has been selected in the middle of the allowed 
range .[10, 295] N, i.e., .Tset = 152.5 N. 

4.3 Trajectory Tracking Results 

For validating the proposed control scheme, several trajectories along the WFW of 
the robot are executed. To measure the kindness/performance of the novel control, 
the end-effector travelling and cable tensions are tracked and the Integral Absolute 
Error (IAE), . γ, between the end-effector pose, .Qe, and its reference, .Q∗

e , is com-
puted. Dynamic model (5) is a second order system, so .8th Bezier trajectories are 
implemented to ensure smooth trajectories and avoid abrupt changes in the control 
signal value. For illustrative purpose, a set of .10 non-oriented trajectories are exe-
cuted within the limits of the WFW of the robot. All these trajectories are executed 
in .ts = 3 s. Figure 5 represents the set of the .10 trajectories used for checking the 
control strategy performance. Note that most of them have been configured to travel 
near the workspace limit where the difference between cables tensions are maximum 
(worst case).
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Fig. 5 Trajectories for control strategy validation 
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Fig. 6 Results of the end-effector position tracking (Trajectory 3) 

Figure 6a represents the end-effector trajectory tracking for Trajectory 3 and 
Fig. 6b shows the control signal of the motors and the cables tension, which are 
inside the allowed limit .[Tmin, Tmax ] = [10, 295] N. The obtained IAE of the trajec-
tory tracking is .γ = 0.02479. 

In order to check the control strategy performance, IAE. γ has been obtained for all 
trajectories and for.Tmin = 10, 20, 30, 40 and.50 N. Figure 7 represents the obtained 
. γ values. 

For all trajectories cables tension remains into the allowed range.[Tmin, Tmax ] and 
the obtained . γ results allow concluding a good trajectory tracking in all workspace 
areas.
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Fig. 7 IAE results for all 
trajectories and different 
values of. Tmin

5 Conclusions 

In this work, a novel control technique for CDPRs based on adding an offset to 
the output of a robust cascade PID controller is proposed. First, the kinematic and 
dynamic model of a conventional CDPR is presented together with one of its main 
disadvantages, i.e., the workspace reduction due to cable tensions restrictions. Then, 
the control scheme and the control strategy, together with the election of the appropri-
ate offset set, are introduced. In order to test the performance of the proposed control 
strategy in terms of robustness, several trajectories are executed inside the workspace 
of the robot while tracking the end-effector trajectory and computing the IAE. Results 
show that the proposed simple control approach for CDPRs allows an accurate posi-
tion control of the robot maintaining all cable tensions inside the allowed range 
.[Tmin, Tmax ]. It is notable how the travelling dexterity of the end-effector improves, 
even in complicated zones such as the workspace borders. In addition, this novel strat-
egy improves the overall stiffness of the end-effector, specially near the workspace 
borders. 
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Kinetostatic Analysis of a Novel Planar 
Cable-Driven Robot with a Single Cable 
Loop 

Sergio Juárez-Pérez , Andrea Martín-Parra , 
Francisco Moya Fernández , David Rodríguez Rosa , 
and Antonio Gónzalez Rodríguez 

Abstract One of the main problems of Cable-Driven Robots is the limited workspace 
in comparison to the frame area (in planar cases) or frame volume (in spatial cases). 
Depending on the presence of external force and the minimum and maximum allowed 
tension values, the workspace can be significantly decreased. Previous works focused 
on solving kinematic or dynamic problems when cables are sagging and, as a conse-
quence, to include these end-effector poses into the usable workspace of the robot. In 
this paper, we tackle the problem of increasing the workspace of cable-driven robots 
by means of two mechanical modifications: adding passive carriages to the frame 
and using a single cable loop to command the end-effector pose. The workspace gain 
for a planar case is presented taking into account the different robot parameters. 

Keywords Cable-driven robot · Parallel robot · Kinematics · Statics · Workspace 

1 Introduction 

Cable Driven Parallel Robots (CDPRs) are parallel manipulators in which conven-
tional rigid links are replaced by cables. The use of cables to constrain a moving 
platform (end-effector) offers a number of advantages that stem mainly from the 
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lightweight design of the robot. Each link is driven by a single actuator, so that no 
single actuator carries the weight of another actuator. Furthermore, when the actuator 
is attached to the robot frame, only the passive structure of the machine needs to be 
lifted, balanced and accelerated, i.e. smaller actuators and lighter links can be used. 

CDPRs may achieve high precision, high end-effector speed and acceleration (due 
to much lower inertia and higher payload-to-weight ratio), large achievable working 
space and greater flexibility [ 1]. However, the cables can only act unilaterally through 
tension which limits the moment resisting and exertion capabilities [ 2]. One of the 
main problems of this type of robot is to keep the cable forces or tensions within 
reasonable limits [ 3]. Cable tensions must be kept above a certain value to avoid 
cable sagging, and below a certain maximum due to the maximum possible torque 
exerted by the actuators. Cable sagging is one of the main drawbacks of CDPRs, as 
it reduces positioning accuracy in large workspace applications [ 4]. 

A common kinematic classification of CDPRs is presented in [ 5]. It is based on the 
number of cables, . m, and degrees of freedom (DOF), . n, and distinguishes between 
under-constrained (.m ≤ n ≤ 6) or  incompletely restrained positioning mechanism 
(IRPM), fully-constrained (.n + 1 = m) or  completely restrained positioning mecha-
nisms (CRPM), and redundantly constrained (.n + 1 < m) or  redundantly restrained 
positioning mechanisms (RRPM). The case where .n = m is also special because 
the robot would be kinematically fully-constrained, although the force equilibrium 
depends on external forces, such as gravity. If the robot relies on gravity for balancing 
and its workspace is mostly below the robot frame, then it is commonly referred to 
as a suspended or crane configuration. 

For fully-constrained and over-constrained CDPRs, there are an infinite number 
of force distributions that satisfy the equilibrium equation for a given pose and 
acceleration of the end-effector and an externally applied wrench. The indeterminacy 
of the force distribution has implications not only on the size of the wrench feasible 
workspace (WFW) of the robot, but also on the control approach to be used. In the case 
of conventional CDPRs, limiting the cable tensions significantly reduces the WFW 
compared to the area of its frame [ 6]. Specifically, in planar CDPRs, the reduction 
in the size of the WFW occurs both at the top of the frame, due to the maximum 
allowable tension, and at the sides, due to the minimum value of these limits. A 
solution to not losing so much WFW would be to extend the tension limits, but 
this requires much larger actuators or to take sagging into account when modelling 
the system. This problem can be tackled in three ways: Using algorithms for the 
calculation of the force distribution [ 7, 8], adding passive elements to the robot to 
improve overall dexterity [ 9, 10], or adding active elements to the robot design [11] in  
order to reconfigure the position of the anchor points of the cables in the end-effector. 
Finally, previous works have proven that it is not necessary to add more actuators to 
the design, instead, adding passive elements to the robot design increase the WFW of 
the robot immensely. In [ 12, 13] the addition of passive carriages, that move freely 
along linear guides in the robot frame, is shown to provide a significant increase 
of the robot WFW. These carriages are fitted with pulleys that redirect the cable 
towards the end-effector, reducing the variation in the direction of the cables during 
end-effector travel. The result of using passive carriages is that the required cable
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tension is lower, so that reasonable tension limits are achieved, providing a much 
higher WFW. In [ 13] the kinetostatic analysis of a CDPR with passive carriages is 
presented together with other studies that influence the size of the WFW of the robot, 
such as the modification of geometrical parameters and stiffness analysis. The main 
issue of the design is the loss of stiffness along the x-axis. 

In this paper, a second mechanical modification is introduced to reduce vibra-
tions when the end-effector manoeuvres. The novel mechanical modification is to 
use a single cable loop to command the end-effector pose together with the passive 
carriages. Both modifications obtain an enlargement of the WFW while maintaining 
constant robot stiffness. This paper presents the new mechanical concept, the math-
ematical foundations and the comparison of the WFW of the robot with respect to 
that of a conventional CDPR. Finally, a control strategy is proposed and simulated 
results are presented. 

The following sections are organised as follows. Section 2 presents the new 
mechanical concept and analyses the workspace gains of the novel proposal. Section 3 
develops the mathematical model of the robot. Section 4 proposes a kinematic con-
trol to validate the mathematical foundations. Section 5 shows the simulation results 
and, finally, Sect. 6 summarises the conclusions of this work. 

2 System Description 

Conventional CDPRs as shown in Fig. 1 exhibit a reduced WFW because of cable 
tensions which have to be kept within certain limits in order not to degrade per-
formance. This is shown in Fig. 2 where static workspace of a conventional CDPR 
is obtained using the same geometric parameters as in simulations (see Sect. 5), a 
maximum tension, .Tmax , determined by the maximum holding torque of the motors 
and the breaking strength of the cables, and different minimum tension limits .Tmin . 
It must be pointed out that the borders/boundaries of the WFW are delicate zones to 
manoeuvre because of undesired vibrations of the end-effector, i.e., loss of stiffness. 

This paper proposes a solution for both problems using a single cable loop CDPR 
(sCDPR), as shown in Fig. 3. It uses passive carriages as presented in [ 13], but with a 
twist. Instead of using four independent cables, this new mechanical concept employs 
a single cable loop. The loop is driven by two actuators placed at the lower corners 
of the frame that change the pose of the end-effector through a set of driven pulleys. 
One remarkable characteristic of this modification is that the cable length remains 
constant for every end-effector pose. 

The dimensions of the frame are determined by its width, . W , and height, . H , 
while the end-effector is determined by its width, . w, and height, . h, as well. Other 
dimensional parameters are the widths of the upper carriage .wuc and lower carriage 
.wlc, and the radius of the driven pulleys, . r , attached to both actuators. 

To further develop the kinetostatic model, the generalized coordinates of the sys-
tem are: . xe, for the horizontal coordinate of the end-effector, and .ye for the vertical
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Fig. 1 Conventional planar CDPR 

Fig. 2 Workspace of the conventional planar CDPR 

coordinate of the end-effector. In this proposal, the carriages are considered to be 
aligned with the end-effector at all times, so there is no rotation of the end-effector. 
As for the actuators, their angular coordinates are .θ1 and. θ2, respectively for the left 
and right actuator, and the input torque exerted by both motors are, .τ1 and . τ2.
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Fig. 3 Single cable loop planar CDPR proposal: sCDPR 

2.1 Workspace Gain 

The CDPR workspace is an important parameter for designing the robot structure, 
calculating the stiffness, as well as controlling the moving trajectory of the end-
effector. There are three commonly used methods to define the workspace of a CDPR: 
The pointwise method that considers whether a finite set of discrete points satisfy 
the workspace constraints, the continuous method with the most commonly used 
algorithm being interval analysis, and the analytical method that focuses on defining 
the boundary (geometrical shape) of the workspace. The advantage of this method 
is that it gives a visual look at the geometry of the workspace [ 14]. 

With the novel proposal, assuming that after a manoeuvre both carriages are 
aligned with the end-effector, the equilibrium of forces is guaranteed, so the end-
effector should be able to reach most of the frame area. The reachability is restricted 
by the static conditions: 

.

wlc
2 ≤ x ≤ W − wlc

2
b ≤ y ≤ H − a

(1) 

being . a the distance between the end-effector and the upper pulley centres, and 
.b = w

2 . 
The feasible workspace of the new design is formed by all the coordinates of the 

end-effector satisfying (1). In this proposal the workspace only depends on the geom-
etry of the frame and end-effector, so the analytical method is easy to apply. Figure 4 
represents the static workspace of the novel sCDPR using the same parameters as in 
the simulations presented in Sect. 5. 

It should be noted that, unlike the workspace of a conventional CDPR (see Fig. 2), 
the workspace of the sCDPR is not limited by the cable tensions or system pretension.
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Fig. 4 Workspace of the sCDPR 

The workspace of a sCDPR can be adjusted by changing the geometry of the mechan-
ical elements of the design. This offers scalability advantages over its conventional 
CDPR counterpart. 

3 Mathematical Model 

3.1 Kinetostatic Model 

One of the advantages of a design with a single cable loop is that the complexity 
of its kinematic formulation is significantly reduced. The change in the end-effector 
position is only influenced by the angle variation in the actuators that roll or unroll a 
certain amount of cable. Therefore, forward and inverse kinematic expressions yield: 

.
[Δxe,Δye] = φFK (Δθ1,Δθ2)
[Δθ1,Δθ2] = φI K (Δxe,Δye),

(2) 

being .φFK = [ r(Δθ1+Δθ2)
2 , r(Δθ1−Δθ2)

2 ] and .φI K = [ (Δxe−Δye)
r ,

(Δxe+Δye)
r ] the forward 

and inverse kinematic transforms respectively. 
Tension or pretension of the cables do not influence the kinematic positioning, 

however it greatly affects the system accuracy as it has direct consequences on the 
stiffness while manoeuvring the end-effector. On the other hand, the static model 
discussed in the previous section guarantees the equilibrium of forces. It is not nec-
essary to solve a static equilibrium system in order to choose the tension values that 
remain within the tension limits while complying with the kinetostatic equilibrium.
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4 Kinematic Control 

As this paper only addresses the kinetostatic behaviour of the novel proposal, a 
kinematic control scheme is used in order to validate the kinematic model presented. 
Joint coordinates (.θ = [θ1, θ2]T ) will be used in the feedback loop of the control 
scheme. They are selected in preference to Cartesian coordinates (.Qe = [xe, ye]T ) 
because measurable variables are the angular position of the motors. Therefore it 
only requires the inverse kinematics to generate the joints references, .θ∗. In this  
sense, the controller block is a.2 × 2 diagonal matrix and SISO controllers are tuned 
for each motor. Dynamics of actuator . i can be written as: 

.τi (t) = Ji θ̈i + bi θ̇i + τc(t) (3) 

where.Ji is the motor inertia,.bi is the viscous friction coefficient and.τc(t) the torque 
due to Coulomb friction. Disregarding the Coulomb torque, the dynamics of the 
actuators becomes linear and the Laplace transform can be applied to (3), to obtain 
the dynamic model of the motors: 

.τi (s) = Jiθi (s)s
2 + biθi (s)s (4) 

Finally, the transfer function of the system can be written as: 

.Gi (s) = θi (s)

τi (s)
= Ai

s(s + Bi )
(5) 

being.Ai = 1
Ji
and.Bi = bi

Ji
. These parameters are specific to each motor and should 

be determined experimentally. Figure 5 shows an schematic of the control scheme 
employed. 

Assuming PID controllers, .R(s) = Kp + Kds + Ki
1
s , where .Kp, Kd and .Ki are 

the proportional, derivative and integral gains [ 15], conventional frequency domain 
tuning method has been used to obtain the controllers gains. In this sense, by fixing the 
desired values of gain crossover frequency, .wcg, and phase margin, .ϕm , (see [  16]), 
the best PID gains were found to be .Kp = 2.2791, .Kd = 0.8972 and no integral 
action for a gain crossover value of .wcg = 80 rad/s and phase margin of . ϕm = π/2
rad. 

Dynamic model 
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Fig. 5 Control scheme for positioning the end-effector
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5 Simulation Results 

Simulations are developed using Matlab® and Simulink®. The sample time is set to 
. 1 ms using ode8 (Dormand-Prince) as solver. The model parameters considered for 
the study are shown in side table of Fig. 7. 

As the actuators dynamics model (3) is of second order, Bezier trajectories of. 4th 
order have been implemented to ensure smooth end-effector trajectories. These kind 
of trajectories avoid abrupt changes in the control signal values, which could yield 
to non-desirable vibrations of the end-effector. In order to illustrate the kinematic 
behaviour of the novel proposal, several simulated trajectories are presented along 
this section. 

Figures 6 and 7 shows the tracking results of a horizontal, vertical and diagonal 
movement from .[0.1585, 0.5560] m to  .[2.0655, 0.5560] m, .[1.112, 0.1865] m to  
.[1.112, 0.9255] m and.[0.1585, 0.1865] m to.[2.0655, 0.9255] m, respectively. Note 

Fig. 6 Horizontal and vertical movement of the sCDPR 

Fig. 7 Diagonal movement and simulation parameters for the sCDPR
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Fig. 8 Spiral movement of the sCDPR 

that the trajectories cover a large area of the workspace, since they start from its 
boundaries and go all the way to the other side. In addition, the tracked integral 
absolute error (IAE) [ 17] for each trajectory are of .0.0238, .0.0092 and .0.0330 m. 

Finally, Fig. 8 shows the trajectory tracking of a spiral type trajectory which starts 
and ends in the middle of the frame, the IAE error is of .0.1751 m. 

These results show the feasibility of the proposal and evidence that the novel 
design is capable of reaching most of the entire frame area. 

6 Conclusions 

This paper proposes a novel design for fully-constrained CDPRs with 3 DOFs based 
on adding a second mechanical modification to the design with passive carriages 
presented in [ 13]. The new modification consists of using a single cable loop to 
command the robot. The main goal of the new design is to reduce vibrations, i.e. the 
loss of stiffness along the x-axis, while maintaining the WFW improvement achieved 
adding the passive carriages to the design. 

The kinematic and static models of the novel design are presented. It is remark-
able how this second modification greatly reduces the kinetostatic complexity of the 
model compared to that of the previous novel design, and even to that of a conven-
tional CDPR. The single cable loop reduces the kinematics to expressions where 
the variation of pose of the end-effector is directly related to the variation of angle 
suffered on the motors. 

Regarding the main setback of the passive carriages design, the single cable loop 
provides more robustness to the design. In order to prove this, several simulated 
trajectories are executed and tracked. Results evidence the high reachability of the 
proposal within the sCDPR workspace, while the kinematic control provides good 
accuracy when manoeuvring the end-effector.
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Taking into account all of the above, it could be interesting to study the dynamic 
behaviour of the sCDPR, and design new control strategies that suits the requirements 
of the new design, together with the requirements of the task they are going to perform. 
In fact, this type of CDPRs, because of its performance, are thought to be very useful 
in logistic tasks such as picking and automatic storage. 

Acknowledgements Authors wish to thank the University of Castilla-La Mancha for the financial 
support provided by the pre-doctoral grant 2020-PREDUCLM-16080 and to European Regional 
Development Fund and Junta de Comunidades de Castilla-La Mancha for grant SBPLY/21/180501/ 
000238. 

References 

1. Berti A, Merlet J-P, Carricato M (2016) Solving the direct geometrico-static problem of under-
constrained cable-driven parallel robots by interval analysis. Int J Robot Res 35(6):723–739 

2. Qian S, Zi B, Wang D, Li Y (2018) Development of modular cable-driven parallel robotic 
systems. IEEE Access 7:5541–5553 

3. Pott A (2018) Geometric and static foundations. In: Cable-driven parallel robots. Springer 
tracts in advanced robotics. Springer International Publishing, Cham, pp 15–44 

4. Qian S, Zi B, Shang W-W, Xu Q-S (2018) A review on cable-driven parallel robots. Chin J 
Mech Eng 31(1):1–11 

5. Pott A (2018) Classification and architecture. Cable-driven parallel robots: theory and appli-
cation, pp 15–43 

6. Pott A, Pott A (2018) Workspace. Cable-driven parallel robots: theory and application, pp 
157–227 

7. Hassan M, Khajepour A (2011) Analysis of bounded cable tensions in cable-actuated parallel 
manipulators. IEEE Trans Robot 27(5):891–900 

8. Pott A (2014) An improved force distribution algorithm for over-constrained cable-driven 
parallel robots. In: Computational kinematics: proceedings of the 6th international workshop 
on computational kinematics (CK2013). Springer, pp 139–146 

9. Youssef K, Otis MJ-D (2020) Reconfigurable fully constrained cable driven parallel mechanism 
for avoiding interference between cables. Mech Mach Theory 148:103781 

10. An H, Yuan H, Tang K, Xu W, Wang X (2022) A novel cable-driven parallel robot with movable 
anchor points capable for obstacle environments. IEEE/ASME Trans Mechatron 27(6):5472– 
5483 

11. Barbazza L, Oscari F, Minto S, Rosati G (2017) Trajectory planning of a suspended cable 
driven parallel robot with reconfigurable end effector. Robot Comput-Integr Manuf 48:1–11 

12. Rubio-Gómez G, Juárez S, Rodríguez-Rosa D, Bravo E, Ottaviano E, Gonzalez-Rodriguez 
A, Castillo-Garcia FJ (2021) Addition of passive-carriage for increasing workspace of cable 
robots: automated inspection of surfaces of civil infrastructures. Smart Struct Syst 27(2):387 

13. Martin-Parra A, Juarez-Perez S, Gonzalez-Rodriguez A, Gonzalez-Rodriguez AG, Lopez-Diaz 
AI, Rubio-Gomez G (2023) A novel design for fully constrained planar cable-driven parallel 
robots to increase their wrench-feasible workspace. Mech Mach Theory 180:105159 

14. Tho TP, Thinh NT (2022) An overview of cable-driven parallel robots: workspace, tension 
distribution, and cable sagging. Math Probl Eng 2022 

15. Ogata K et al (2010) Modern control engineering, vol 5. Prentice Hall, Upper Saddle River, NJ 
16. Feliu-Batlle V, Castillo-García FJ (2014) On the robust control of stable minimum phase plants 

with large uncertainty in a time constant. A fractional-order control approach. Automatica 
50(1):218–224 

17. Feliu-Batlle V, Rivas-Perez R, Castillo-García F (2021) Design of a pi.α controller for the 
robust control of the steam pressure in the steam drum of a bagasse-fired boiler. IEEE Access 
9:95123–95134



Dynamic Testing of a Long-Span 
Suspension Cable Net 

Robert Soltys , Michal Tomko , Stanislav Kmet , 
and Christos Thomas Georgakis 

Abstract This paper presents a study of dynamic testing conducted on a long-span 
suspension cable net, which serves as the supporting structure for a lightweight roof. 
The original suspended cable net was replaced with this new structure, and the shape 
and stress state of the cable net depend on various factors, such as the geometry of 
circumferential supports, cable lengths, and cable prestress. The structural behaviour 
is significantly influenced by system nonlinearity, prestress, mass, service loading, 
flexibility of the circumferential supports, creep effects of cable elements, structural 
and geometrical symmetry, stiffness of upper non-structural layers, and temperature, 
which have been considered in the structural design of the new roof. Obtaining the 
modal parameters of the roof will be important for validating the real structure with 
a numerical model created for structural design purposes, both immediately after the 
final construction and during its lifecycle. The identified modal parameters estimated 
through in-situ dynamic testing are discussed. The dynamic tests were conducted 
immediately after the final construction stage of the cable net to estimate the roof 
modal parameters, serving as a reference for further analysis during the lifecycle of 
the roof. The paper focuses on discussing the estimated modal parameters, including 
the natural frequencies and natural modes. Finally, the continuous dynamic moni-
toring of the cable net is presented, enabling the analysis of the dynamic behaviour 
throughout its entire lifecycle. 
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1 Introduction 

Cable nets are widely used as structural systems to cover large buildings, such as 
stadiums and velodromes, due to their structural efficiency. Their specific shape 
created by a double curvature stabilises the roof structure under external loadings 
while the cables act only in tension. This allows the system to balance entire struc-
tural frames, and applying tension to these cables can make structural members 
resistant to compression [5]. The susceptibility of cable structures to vibrations has 
sparked interest in assessing their structural condition through permanent dynamic 
monitoring [3]. 

The role of dynamic testing was discussed in [3]. In [4] full-scale measurements of 
wind effects on a long-span cable-supported roof were presented. The wind-induced 
response data were analysed in the time–frequency domain. Other full-scale measure-
ments of long-span roofs can also be found in [6, 8, 10]. Rizzo et al. [9] discussed 
the dynamic modal identification and the FEM (Finite Element Method) predic-
tive numerical modelling of flexible hyperbolic paraboloid roofs of scaled aeroe-
lastic models. Vassilopoulou presented extensive research of dynamic behaviour of 
saddle-form cable nets [11]. 

Temperature increase and the creep effect of cables lead to an increase in cable 
length, resulting in an increment of the sag of the carrying cables. This, in turn, leads 
to a decrease in the prestress of stabilising cables and an overall reduction in cable 
tension, resulting in a decrease in the natural frequencies of the suspended cable roof. 

The paper presents a study of a dynamic test of a new long-span cable net, which 
replaced the original one in 2020 after reaching its lifecycle. The dynamic test was 
performed immediately after the final construction of the roof. The identified modal 
parameters obtained using the FDD method are presented and will serve as reference 
values for further analysis of the structural health of the roof. It is believed, that by 
extracting the modal parameters of the roof during its lifecycle, it will be possible 
to detect a decrease of prestress of the stabilising cables and possible asymmetry of 
the stress state of the cable net. 

The identified modal parameters calculated from the performed in-situ dynamic 
test represent the reference values for further dynamic analysis of the roof with 
a focus on effects influencing its structural response. These effects include wind-
induced vibrations, the influence of temperature changes, and the creep effects of 
cables, which are supplemented by numerical simulations as studied in previous 
research. 

2 Characteristics of the Structure 

The Ice hockey stadium in Presov was built in 1966 with a seating capacity of 
5500 people. A digital visualization of the hall is shown in Fig. 1. The prestressed 
cable net (Figs. 2 and 3) is anchored into massive reinforced concrete arches with
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dimensions of 77.4 × 92.0 m. The arches are supported with concrete columns with a 
circular cross-section and ends which are anchored into concrete pylons to stabilise 
the whole structure [7]. The carrying cables consist of spiral two-layered strands 
with a nominal diameter of 24 mm and stabilising cables with the same structure 
and a nominal diameter of 12 mm. The cladding was installed after prestressing 
the stabilising cables of the cable net to a desired force of 30 kN, estimated by the 
computational form-finding technique proposed by [1]. The cable net was replaced 
in 2020 after the original reached the end of its lifecycle. The cables form a plan 
view raster of squares with side length of 1.0 m. The structural system of the new 
roof was designed by Technical University of Kosice. 

In contrast to the previous cable roof, which included a relatively heavyweight 
sprayed concrete layer used as roof cladding [7], the new roof was designed to use a 
thin trapezoidal sheet as cladding. The difference in mass between the previous roof 
and the new roof resulted in a different cable net geometry with respect to the position

Fig. 1 Visualisation of the Ice hockey stadium of Presov 

Fig. 2 Side view of the cable net
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Fig. 3 View of the cable net from inside the structure

and angles of inclination of the holes in the concrete arches for anchoring the cables 
and sag of the cables in the post construction stage, i.e. with all permanent loadings 
in place. The cable net was designed to be symmetrical in terms of geometry and 
its stress state exhibiting specified tension forces in each cable during the structural 
design phase. Due to the limited number of force sensors installed in the cable net, 
the estimation of modal parameters using the dynamic test was performed to visually 
assess the symmetry of the stress state of the cable net through the visualisation of 
the identified natural modes. 

2.1 Monitoring System and Dynamic Test 

A total of 17 accelerometers were installed in the roof with a recording frequency of 
20 Hz connected to two HBM MX840BR transducers. The measured data are perma-
nently recorded using HBM DataRecorder CX22BR type and are available online 
via Ethernet connection. The frequency domain decomposition (FDD) technique [2] 
was applied to data to extract the dynamic properties of the structure. 

In the FDD, a cross power spectral density (CPSD) matrix is calculated from the 
measured acceleration and decomposed into singular values and singular vectors at 
each frequency point using singular value decomposition (SVD) [6]. 

Vibration of the roof was excited by a suddenly released mass of 350 kg (Fig. 5) 
hanging at the node of the cable net (Fig. 4). The position of the excitation was 
specified to avoid locations where vibration nodes were expected to occur (a node 
in vibration is a point where no vibration occurs). A single excitation (i.e. mass 
release) was performed at a specified location, allowing for the excitation of a wide 
range of natural modes simultaneously. Data from all 17 installed accelerometers
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Fig. 4 Plan view of the 
cable net with the location of 
the hanging mass (circle in 
red) before release

were collected. The position and numbering of all 17 accelerometers correspond 
to intersections of the red lines marked as points 1 to 17, as is shown in Fig. 7. 
Figure 6 shows measured accelerations from four selected accelerometers marked 
1, 3, 7 and 9, as is depicted in Fig. 7. Identified natural modes of the roof using the 
FDD technique applied on the recorded acceleration data are shown in Fig. 7 and 
corresponding natural frequencies are shown in Table 1. 

The first natural frequency f 0,1 = 0.688 Hz was identified and the symmetry of 
the roof is evident from the identified natural modes. 

3 Conclusions 

The presented study deals with modal identification of the cable roof of the Ice 
hockey stadium in Presov using the FDD technique. The natural modes and natural 
frequencies of the structure were successfully identified from the free-decay vibration 
excited by the release of a mass. These values are a part of the permanent structural 
health monitoring system of the structure to increase its safety and lifecycle. 

In future, the identified modal values will be compared to those obtained from 
numerical simulations using the finite element method and the damping from the 
free decay vibration will be calculated.
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Fig. 5 View of the hanging mass before release 

Fig. 6 Time-histories of the measured accelerations from accelerometers no. 1, 3, 7 and 9
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Fig. 7 Identified natural modes using the FDD technique of the roof: a 1st mode, b 2nd mode, 
c 3rd mode and d 4th mode. Black dashed lines represent the characteristic geometry lines of the 
roof while the red lines represent identified natural mode. The positions of 17 accelerometers are 
marked with numbers from 1 to 17 

Table 1 Identified natural frequencies 

Natural frequency (Hz) f0,1 f0,2 f0,3 f0,4 

Measurement—FDD 0.688 0.864 0.988 1.129

Acknowledgements The paper is carried out within the project No. 1/0129/20, partially funded by 
the Science Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy 
of Sciences.
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Vibration Mitigation of Catenary Bridges 

Gergely Szabó and Gábor Hochrein 

Abstract Catenary pedestrian bridges are apparently spreading all over the world. 
These structures are highly popular as they provide the pedestrians with excitement 
and adventure. Consequently, there is a need to increase the span length, which 
might lead to the reconsideration of the conventional approaches. A novel structural 
configuration was proposed with special focus on the feasibility and proper static 
and dynamic performance of slender catenary bridges. A dedicated physical model 
was built and measured as a demonstration. The behavior of this model was also 
investigated by using numerical simulation. 

Keywords Catenary bridge · Geometrically non-linear dynamics · Iso-tensioning 

1 Introduction 

1.1 Catenary Bridge Structures 

The main elements of these bridges are the catenary cables that are fixed at both 
ends. These cables carry the vertical loads, such as the self-weight or ice loading. 
When necessary, wind cables and connecting cables are also involved in order to 
provide extra stiffness to the whole structure, which was studied in detail in [1, 2]. 
The problem with these bridges is that the connecting cables are complicated to 
tension evenly due to their mutual interaction. There can be loose cables that may 
vibrate, and the others can be overloaded. In addition, the overall structural behavior 
is strongly temperature dependent. To overcome the above mentioned problems, a 
novel structural configuration is proposed shown in Fig. 1. In contrast to conventional 
catenary bridges, the evenly distributed and temperature independent connecting 
cable forces can be conveniently ensured by adopting pulleys that are used for railway 
overhead electric wires for instance. Post-tensioning cables on both sides of the
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Fig. 1 The 14 m long physical model with the monitored points and the colored cable types 

catenary with ballasts at their end points are used to adjust the desired pre-stressing 
to the structure. The novel approach has been first introduced at the WIBE (World 
Innovation in Bridge Engineering) prize competition. The main criterion was to 
propose a novel structural solution in the field of bridge engineering, with physical 
model as a demonstration. In this paper the fabrication and the test of this model are 
addressed. Numerical modeling and simulation are also introduced. The results of 
the measurements and the computational results are compared. Based on the results 
acquired from the physical and numerical models, the proposed novel configuration 
appears to be promising for catenary bridge structures. 

2 Physical Model 

2.1 Model Fabrication 

The feasibility and the principle of the proposed novel structure were demonstrated on 
a physical model shown in Fig. 1. Steel wire ropes were used for the main catenary as 
well as for the wind cables. Soft fishing line was used for the post-tensioning and the 
connecting cables. The multi-strand fishing line is advantageous due to its bending 
flexibility, which reduces the overall friction of the pulley system. The different cable 
types are highlighted by using coloring. The span of the main catenary cable is L = 
14 m. The diameter of the catenary cables is 3.0 mm (EA = 560 kN), and that of the 
wind cables is 1.0 mm (EA = 75 kN). The fishing line diameter of the post-tensioning
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Fig. 2 Conventional (top) and the proposed structural system with the connecting cable forces 

and the connecting cables is 0.40 mm (EA = 2 kN). When the bridge was ready and 
the ballasts were released, the spatial pre-stressed structure was qualitatively studied; 
the connecting cable forces were indeed close together as desired, loose cables were 
not found. 

The projected schematic top view of the original and the proposed structural 
configuration is shown in Fig. 2. In case of the conventional structure, the connection 
between the main catenary cable and the wind cables is ensured by using connecting 
cables (see Fig. 1). The desired internal forces can be adjusted by pre-stressing the 
wind cables and the connecting cables, which is practically complicated to carry out 
precisely due to the mutual interaction of the cables. The connecting cable force 
distribution depends on the stiffness properties of the whole structure and the pre-
stress applied to the cables. In case of conventional catenaries, no post-tensioning 
cables are used, which will be referred to as model v1 in this paper. 

2.2 Principles of the Proposed Structural Arrangement 

The proposed system requires ballast weights in order to set the desired cable forces. 
In contrast to model v1, the connecting cables do not connect the wind cables and 
the catenary directly. Instead, two post-tensioning cables are included in the whole 
system belonging to the two wind cables on the two sides of the catenary. The 
post-tensioning cables are referred to as A-B and C-D, according to the points on 
the ballast weights. The whole system of a post-tensioning cable and the belonging 
connecting cables are referred to as branches A-B and C-D. There are two versions 
of the proposed system; in case of model v2, all the four ballast weights move
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independently from each other. Model v3 is different, as the neighboring ballasts 
are connected together; the motion of ballasts A and C is not independent, instead a 
common upward or downward motion is allowed only. The same applies to ballasts 
B and D. Model v2 and v3 both produce equal connecting cable forces within a 
branch if the friction of the pulleys is neglected. For model v2 the connecting cable 
forces of the two branches are equal: SA-B = SC-D. The pulley system gives an 
additional flexibility to the system, which may reduce the horizontal stiffness of the 
main catenary. Therefore, it was of utmost importance to compare the static and 
dynamic behavior of the proposed models v2 and v3 to the original one named v1. 
The physical model was constructed with special attention to this need; the pulley 
system was equipped with a constraint that was capable of fixing the post-tensioning 
cables, which made it feasible to investigate and compare the behavior of model v1, 
v2 and v3. The structural details of the physical model are shown in Fig. 3. The  
slender catenary bridges are sensitive to wind loading; therefore the behavior due 
to horizontal static loading was studied and compared. Every catenary nodes was 
loaded horizontally. The load test can be seen in Fig. 4. All the three configurations 
were tested. Model v1 was set by fixation of the post-tensioning cables around the 
pulleys. 

The connecting cable forces are independent from each other in this case. For 
model v2 the above mentioned fixation was released. Model v3 was set by joining

Fig. 3 Structural details of the physical model: catenary node, pulleys and the ballast weights 

Fig. 4 Horizontal static deflection of the catenary and the vertical displacement of the ballast 
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the neighboring ballasts together. The pulley friction can be an important factor in 
the proposed system; therefore the initial friction value was measured by applying 
force difference onto the two ends of a test cable hanging on the two sides of a 
single V-groove ball bearing. The force difference reached 5% at the boundary of 
stall and motion, but drops to 1–2% when even moderate motion appears. Time-
dependent behavior was also observed, which was explained by the presence of 
grease in the bearings. Due to the friction and viscous properties of the pulleys, 
the whole structure was given slight vibration at each static measurement in order 
to help the pulleys and the post-tensioning cables arrange and approach the ideal 
frictionless state. This was particularly important for model v2. In case of model 
v1, the ballast weights do not move and there is no pulley rotation either. In case of 
model v2, however, as the distance between the catenary and the wind cable changes, 
the ballasts move accordingly. The horizontal displacement of the catenary results in 
vertical displacements of ballasts A and C in the opposite direction (see Fig. 4). In 
case of model v3 the neighboring ballasts are joined together, therefore no significant 
ballast motion was observed. By using an accelerometer, the horizontal vibration of 
point P was monitored in a dynamic test. The first sway mode was excited by hand, 
which resulted in a free decay motion for each model. 

3 Static Numerical Model 

3.1 Introduction of the Numerical Approach 

The static behavior was studied on a 72 DOFs numerical model (24 nodes with 
3DOFs each), which was written in Octave (see Fig. 5). The model consists of two-
node spatial truss elements with tension capabilities only. The structural elements 
are the main catenary cable, the wind cables on both sides, the connecting cables and 
the vertical elements. The post-tensioning cables and the ballasts are not shown in 
this model, but their effects are included as described below. 

Fig. 5 Spatial view of the numerical model (post-tensioning cables are not shown)
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3.2 Static Equations of the Geometrically Non-linear 
Structure 

The considered mechanical system involves geometrical non-linearity; therefore the 
Newton–Raphson iterative approach was applied to find static equilibrium (Eq. 1), 
which was carried out in two steps. 

Ki (xi )Δxi = Δqred,i (1) 

At the first construction stage the main catenary cable was activated with its self-
weight, which was complemented by the wind cables and the connecting cables at 
the second stage. Therefore, the sizes of the matrices and vectors are different in 
these two construction stages. The results of the first stage (e.g. cable length and 
forces, geometry and stiffness matrices) are used as initial condition for the second 
one. The first stage is the same for the three models. In case of model v1, the pre-
stressing is defined to the wind cables and the connecting cables as kinematic loads, 
i.e. cable shortening. The connecting cable force distribution strongly depends on the 
kinematic loads. In case of model v2 and v3, however, the connecting cable forces 
are the same in every cable and depend on the ballast weight only. The additional 
horizontal forces are applied at stage two. The key step during the Newton–Raphson 
process is the formulation of the tangential stiffness matrix that belongs to the actual 
state of the structure, which can be assembled from the element stiffness matrices. 
Spatial truss elements were used with an element stiffness matrix according to Eq. 2. 

Ke =
[
k − s 

L

]
e · eT + s 

L 
· I (2) 

The spring stiffness is k = EA/L, with EA = normal stiffness; L = cable length; 
e = cable orientation unit vector; s = cable force; I = identity matrix. The element 
matrix takes structural and geometrical stiffness into account. For model v1 the 
formulation of the element matrices is straightforward, the internal force variation of 
the jth connecting cable isΔsj = f(ΔLj), which is the function of the length variation. 
For model v2 and v3, however, special further considerations have to be made. The 
force of the jth connecting cable depends not only on the displacement of the nodes 
of its two end points, but that of every connecting cable. Therefore, a compatibility 
equation of the coupled system of the post-tensioning and connecting cables has to 
be solved at each iteration step in order to obtain the cable force changes based on 
the nodal displacement variation vector Δxi. The arrangement of branch A-B can be 
seen in Fig. 6.

The forces in the connecting cables of a branch are equal, provided that pulley 
friction is neglected, which leads to the analogy of serial coupling in electricity. By 
using this principle, the cable-mass-pulley system (see Fig. 6) was reduced into an 
inhomogeneous spring, which includes all the connecting cables and the tensioning 
cable belonging to branch A-B (see Fig. 7). The points Mj were merged into point M, 
and points A and B into point A-B. The total displacement variation reduced to point
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Fig. 6 Top view of the of branch A-B (D and h are displacement values, s is the cable force)

M is calculated as ΔxA-B = ΣΔDj, where ΔDj = end points distance variation (see 
Fig. 8) of the  jth connecting cable of the branch A-B. The linear reduced stiffness can 
be calculated by using a reciprocal formula for the serially coupled linear springs of 
branch A-B: 

kred,A−B = 1Σ L j 
E A  j 

+ L A−B 

4E AA−B 

(3) 

In Eq. 3 Lj = length of a connecting cable; EAj = normal stiffness of a connecting 
cable, LA-B = length of the post-tensioning cable, EAA-B = normal stiffness of the 
post-tensioning cable. Branch C-D can be handled likewise. Symmetrical horizontal 
loading was considered only. 

If there is no horizontal load, models v2 and v3 can be considered equivalent as the 
force is s = 2 mg in every connecting cable, where m = weight of one ballast and g = 
9.81 m/s2. The behavior of these two models, however, is different if horizontal load 
is also applied, which is illustrated in Fig. 9. In case of model v2, branches A-B and 
C-D are independent; therefore the ballast weights can move freely. Consequently

Fig. 7 Derivation of the idealized spring (left) and its reduced model (right) 

Fig. 8 Connecting cables of model v1 (left) and v2-v3 (right) 
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Fig. 9 Difference between the behavior of model v2 (left) and v3 (right) 

the connecting cable forces do not change due to any structural displacement field, 
that is ΔsA-B = 0 and ΔsC-D = 0. This can be modeled by simply eliminating term k 
in the element stiffness matrix of the connecting cables (Eq. 2), which means that the 
geometrical stiffness belonging to the constant connecting cable forces exists only. In 
case of model v3 points A-C and B-D are connected together; the two inhomogeneous 
springs belonging to the branches A-B and C-D are now coupled in a parallel way. 

The internal force variation for branch A-B is ΔsA-B = f(ΔDj, j  = 1..2n) and that 
for the branch C-D isΔsC-D = g(ΔDj, j= 1..2n), where n = number of the connecting 
cables on one side, namely 7 in our case. Unlike model v2, the connecting cable 
forces are not invariant with respect to the reduced displacement variation in case of 
model v3. If the reduced displacement variation of ΔxA-B and ΔxC-D are not equal, 
a difference will appear between the connecting cable forces of the two branches 
due to the constraint caused by the connection of the corresponding ballast weights. 
The reduced displacement variations for branch A-B can be calculated as Δxred,A-B 
= ΔxA-B–(ΔxA-B + ΔxC-D)/2 and that for branch C-D is Δxred,C-D = ΔxC-D–(ΔxA-B 
+ ΔxC-D)/2. If symmetrical horizontal forces are applied, the connecting cable force 
variations are calculated asΔsA-B =Δxred,A-B·kred,A-B andΔsC-D =Δxred,C-D·kred,C-D. 
Compared to model v2, stiffness k in the element stiffness matrix is not zero. The 
normal stiffness values k for each connecting cable of branch A-B and C-D are 
n·kred,A-B and n·kred,C-D; respectively. 

4 Dynamic Numerical Model 

The dynamic behavior of the three models was studied by extending the static equa-
tions with the inertia and damping forces. A non-iterative incremental time advance-
ment version of the Leap-frog scheme was used instead of a more complicated nested 
Newton–Raphson scheme. Model v1 required to solve Eq. 4. 

MΔai + CΔvi + Ki (xi )Δxi = ΔQi (4) 

In Eq. 4 M = mass matrix; C = damping matrix; a = acceleration vector; v = 
velocity vector; x = displacement vector; Q = external load vector. As the structure 
is geometrically non-linear, the stiffness matrix has to be updated at each time step
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based on the geometrical position of the nodes (see Fig. 5) and the cable forces. 
Although the explicit scheme was easy to implement, the time step necessary for a 
stable and accurate solution was typically 10 times less than usual in linear dynamics. 
The dynamic behavior of model v2 is different from the static one. Since the struc-
tural nodes have accelerations, so have the ballasts, therefore the variations in the 
connecting cable forces appear during the dynamic load conditions. To handle this, 
a separate dynamic equation has to be solved for the vertical dynamic motion of the 
ballast weights. Model v3 does not differ from the principles of the static modeling. 
More details of the dynamic formulations of model v2 and v3 can be found in [3]. 

5 Validation 

In the previous chapters the proposed structural system was investigated by means 
of physical and numerical approaches. The input for the numerical simulation was 
set in accordance with the properties of the physical model. A horizontal static load 
of 5 N was applied to the catenary nodes. In Table 1 the measured and calculated 
horizontal displacement of point P (see Fig. 10) and vertical displacement of ballast 
points A and C are compared. The measured and simulated displacement values are 
in good agreement for models v1 and v3. The results based on model v1 and v3 are 
close together, which means that there is no significant loss in the overall stiffness 
due to the dominant horizontal loading by applying the proposed post-tensioning 
system of model v3. Model v2, however, gave 2–3 times larger displacement, which 
can be explained by the unconstrained vertical displacement of the ballasts and the 
consequently constant connecting cable forces. The connecting cables with constant 
forces need to change spatial orientation in order to balance the horizontal load, 
which is the source of the significantly larger horizontal displacement. The measured 
horizontal displacement is lower by 35 per cent than the calculated one due to the 
friction of the pulleys. The ballast displacement shows the difference between models 
v2 and v3; points A and C move in the opposite direction and so do points B and D 
in case of model v2. On the other hand, in case of model v3, points A-C and B-D are 
connected together, resulting in a small common displacement, which constrains the 
horizontal displacement of the catenary. 

Table 1 Measured and calculated displacement of point P and ballast points A and C in mm 

Model Physical Numerical 

P_hor A_vert C_vert P_hor A_vert C_vert 

v1 21 – – 22 – – 

v2 50 –190 178 67 –276 276 

v3 28 3 3 29 8 8
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Fig. 10 Monitored points and the directions of the displacements 

The developed dynamic numerical method was also validated. The natural 
frequencies were determined by using FFT analysis of the time series of the geomet-
rically non-linear time stepping method. The simulation was started on the completed 
bridge structure as a result of the nonlinear static calculation. The time-dependent 
horizontal load was applied to each catenary node; it was ramped up in a quasi-steady 
manner and then set to zero in one time step, obtaining a free decay oscillation to 
study. 

The results are shown in Table 2 for the three models extended with stage1 for the 
catenary alone state. The measured and simulated natural frequencies of the sway 
mode are in good agreement. According to expectations, model v1 has the highest 
frequency as it has the highest stiffness. Model v3 showed somewhat higher static 
deflection and the frequency is consequently lower. Model v2 is interesting as the 
sway mode has a frequency close to that of models v1 and v3. On the other hand, 
the extra freedom of the ballasts provided a slow vibration mode that belongs to 
the vertical motion of the ballasts and the horizontal motion of the catenary. The 
frequency is around 0.30 Hz, which is shown in Table 2 in parentheses. This mode 
was spotted numerically but did not show up in the measurements, which is explained 
by the behaviour of the pulleys; the bearings of this size give relatively high friction 
and viscosity, which might hinder the whole pulley system from accommodating this 
vibration mode. On the qualitative observation of the behaviour of model v2 it was 
found that the motion of the ballasts might be mitigated by using viscous dampers. 
By using such elements, the damping of the whole bridge is hoped to be increased, 
which could effectively contribute to the span length maximization [4].
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Table 2 Natural frequencies 
of the symmetrical sway 
mode in Hz 

Model Physical Numerical 

Stage1 0.68 0.66 

v1 1.50 1.44 

v2 1.37 1.30 (0.30) 

v3 1.38 1.28 

6 Conclusions 

In this paper a novel post-tensioning method was proposed for long-span catenary 
bridges. The system involves pulleys, which have a number of advantages. First 
of all, the pre-stressing is temperature-independent. Secondly, the connecting cable 
forces are evenly distributed, therefore any vibration of a loose cable is unlikely. The 
proposed structural configuration was demonstrated and tested on a physical model. 
The evenly distributed connecting cable forces were indeed observed, which was 
our main goal to achieve. Static and dynamic numerical models were also devel-
oped. Three structural configurations were investigated; the conventional one named 
model v1, and the novel pulley-based system with and without fixing the neighboring 
ballasts together, named models v3 and v2; respectively. The measured and calcu-
lated results were in good agreement. It was found that model v2 has more flexibility 
due to the unconstrained motion of the ballasts, which is a drawback of this config-
uration. Each ballast, however, can be equipped with hydraulic dampers, which are 
believed to be capable of adding extra damping to the whole structure. The increase 
of damping is of utmost importance in case of slender steel structures, which will be 
our main goal to achieve in the forthcoming research projects. Also, our numerical 
models are planned to be updated in order to include the friction of the pulleys both 
under static and dynamic conditions. 
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Field Observation of Global and Local 
Dynamics of a Cable-Stayed Bridge 

Jasna Bogunović Jakobsen, Jónas þór Snæbjörnsson, and Nicolo Daniotti 

Abstract This work examines dynamic characteristics of a cable-stayed bridge, 
utilizing acceleration data from the bridge deck as well as the cables. A weather 
station installed on the bridge provides additional data for the interpretation of the 
observed wind and traffic induced vibrations. The measurement data are acquired on 
the Stavanger City Bridge. The bridge layout, combining steel and concrete girder 
segments supported by a tower and stay cables, makes it an interesting case for system 
identification analysis especially as all three parts of the bridge structured are moni-
tored to some extent. Especially as cable vibration sensors are rarely included in 
long-term wind and structural health monitoring of the cable-stayed bridges. The 
data analysis investigates the characteristics of the suspended steel box and the 
supporting concrete girder, synchronization in response between the different struc-
tural components and the interaction between deck vibrations and cable vibrations. 
The paper explores the performance of system identification techniques for estima-
tion of damping, which is challenging for damping levels as low as 0.05%, such as 
in the case of the stay cables. It is found that there is a strong interaction between the 
cables and the deck structure. Detailed identification of the cable properties showed 
a clear dependency between the total cable damping and the wind velocity, revealing 
the contribution of aerodynamic damping. 
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1 Introduction 

Large vibration amplitudes of the stay cables of the Stavanger City Bridge, in Norway, 
associated with the combined effects of wind and rain have been reported on different 
occasions [1]. Previous work [2, 3] has also established that the structural damping 
of the cable vibrations is very low, with damping ratios of the order of 10–4. It is of  
interest to explore further the simultaneous bridge girder and stay cables dynamic 
response, with special attention to methods suitable for identification of low damping 
levels of stay cables. In the following, the key information about the studied cable-
stayed bridge and the monitoring system is presented, followed by the analysis of 
the selected bridge girder and cable vibration data. 

1.1 The Study Case 

The central part of the Stavanger City bridge is a cable-stayed bridge with a suspended 
main span of 185 m supported by a 75 m-high A-shaped tower (see Fig. 1). The main 
span is a steel box girder of 15.5 m width and 2.4 m depth, whereas the rest of bridge 
consists of pre-stressed concrete side-spans supported by concrete columns [1]. 

Three sets of stay-cables at each side connect the pylon with the bridge deck. The 
length of the stays ranges from 61 to 141 m with constant diameter of 79 mm. The 
stay cables are of the locked-coil ropes type. 

Two of the stay cable-sets on each side are comprised of four individual cables 
having a center-to-center distance of 320 mm and 480 mm to 580 mm with rigid 
connections between individual cables at two or three locations along the cable 
length, as depicted in Fig. 1b. The third and shortest cable stays are in a pair, with 
rigid connections placed in two locations along the stay span. Passive rubber dampers

Fig. 1 The Stavanger City Bridge. a A side view from west. b A view towards south, showing the 
cable setup, the accelerometers on one side and the anemometer pole 
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at the ends of the stay cables are installed to reduce vibration effects on the anchor 
heads. 

The following sections provide an overview of the bridge instrumentation, the 
acceleration data collected, and analysis of a relevant vibration event. 

1.2 Instrumentation 

The cable monitoring system is comprised of four wireless battery-powered tri-axial 
accelerometers (G-Link200-8G from Microstrain), which are installed on stay cables 
referred to as C1 and C2 (on each side of the deck) about 4 m above deck level, 
see Fig. 2a, b. The sampling frequency of the sensors is 64 Hz. The accelerations 
components of each sensor are normal to the cable axis along the in-plane (vertical) 
and out-of-plane (lateral) direction. 

Two tri-axial accelerometers (CUSP-3D from Canterbury Seismic Instruments) 
are located inside the bridge deck on each side of the pylon. One is mounted on 
the east wall of the concrete deck north of the tower, 20.8 m from the anchor beam 
of the stay cables C1 and C2 whereas the other one is in the steel box girder 35 m 
south of the tower. The sampling frequency of the sensors is set to 50 Hz. The deck 
accelerometers north and south of the tower are denoted DN and DS, respectively, 
see Fig. 2. 

A weather transmitter (WXT530 from Vaisala) is mounted on a 3.5 m-high pole 
between the anchors of cable C1-C2 and C3 on the east side of the bridge deck (Fig. 2). 
The instrument measures the horizontal wind components, the absolute temperature, 
relative humidity, pressure, and rain intensity with a sampling frequency up to 4 Hz. 

Data from the accelerometers (DN & DS) inside the bridge deck and the weather 
station are gathered and synchronized using a single data acquisition unit whereas the 
wireless accelerometers installed on the cables transmit data to a dedicated logging 
unit. Synchronization between all signals is then carried out in the pre-processing 
phase, based on individual time stamps.

Fig. 2 Instrumentation of the Stavanger City Bridge 
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2 Data Analysis 

The following data analyses are based on vibration data gathered over 24 h on 
28.08.2019. The focus is on the dynamic properties of the bridge, including the 
natural frequencies, and damping of the cables. 

Figure 3 shows the mean wind velocity and direction relative to the bridge axis 
over the 24-h period (UTC) on August 28, 2019. The velocity was in the range of 
3 m/s to 9 m/s, and the wind direction varied from Southeast during the first 12 h 
toward South-southwest in the afternoon. It should be noted that the bridge axis lies 
about –18° from North, towards Northwest. It rained in the afternoon around 15:30 
and again around 16:30, but as the mean wind velocity was below 5 m/s and the wind 
direction was along the bridge axis at the time, large wind-rain induced vibrations 
did not occur. 

Figure 4 (left) shows the vibration time-series recorded by the tri-axial accelerom-
eter in the steel deck at location (DS). As can be seen the acceleration amplitude 
generally follows the magnitude of the mean wind velocity. Traffic-induced vibra-
tions of short duration are also noticeable as regular spikes on top of the wind-induced 
response. It is also clear that the vertical vibration is about three times the transversal 
vibration and close to 7 times higher than the axial vibrations in the deck. The accel-
erations in the concrete deck on the other side of the tower (DN), follow the same 
amplitude pattern, but the magnitude is about half of the acceleration levels at (DS) 
in the steel deck.

Figure 4 (right) shows the cable accelerations recorded during the 24-h period at 
cable location C1E. As can be seen the sway and heave accelerations are a magnitude 
larger than the axial vibrations. It is also clear that the sway and heave acceleration 
levels follow the wind velocity variations closely.

Fig. 3. 10-min mean wind velocity and wind direction relative to the bridge axis on 28.02.2019 



Field Observation of Global and Local Dynamics of a Cable-Stayed Bridge 65

Fig. 4 Accelerations recorded on 28.8.2019 in the steel deck at DS (left) and on cable C1E (right). 
Axial component (top), sway component (middle) and heave component (bottom)

2.1 Spectral Analysis 

The recorded signals were investigated in terms of their spectral properties, as illus-
trated in Fig. 5. The variance normalized spectra of three acceleration components 
in the steel and the concrete deck are shown, along with the associated co-coherence 
between the corresponding vibration components. The axial vibrations in both parts 
of the deck show a similar spectral pattern and have a relatively high coherence over 
the whole frequency range. Negative co-coherence is observed for the across-deck (y) 
accelerations below 5 Hz, whereas the co-coherence is largely positive at the lower 
frequencies for the along-deck (x) and the vertical (z) accelerations. This is partially 
linked to the influence from the cable vibrations, especially for the vertical accelera-
tion. It is particularly the y-acceleration that clearly demonstrates some deck-modes 
that cannot be directly linked to the cable vibrations.

2.2 System Identification Using the SSI-COV Method 

The modal properties of the cables and bridge deck were derived from each sensor 
system, i.e. the three channels, using an automated covariance-driven stochastic 
subspace identification algorithm (SSI-COV) toolbox from [4], which was inspired 
by [5]. 

A summary of the results for the cable vibrations is shown in Fig. 6 along with a 
typical stabilization diagram in Fig. 8. It was found that most of the spectral peaks 
gave several frequency values, as can be seen in Fig. 7, which affected the evaluated
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Fig. 5 Variance normalized spectra and coherence of accelerations in the concrete (DN) and steel 
(DS) parts of the bridge deck, based on 24-h of data from 28.08.2019

damping. The damping varies more when evaluated for all three components of 
motion than for a single component, see Sect. 2.3. However, it is seen that the damping 
is generally of the order of 10–3 and below 0.005, at least for the first three and last 
three of the eight cable modes reported. The variability in the damping estimation 
is found to be greatest for modes 4 and 5, which are likely more influenced by the 
deck structure than the other modes.

Although not apparent from Fig. 6, it was found that sensor C2W, gives the lowest 
damping on average and a slightly higher natural frequencies than the other sensors, 
indicating that the C2W cable may have somewhat higher tension than the other 
cables. Similarly, C2W showed the highest damping on average. 

System identification results from the deck vibrations are shown in Fig. 8, for  
frequencies up to 21 Hz. As can be seen, the eigen- frequencies fall in many instances 
close to the cable frequencies, shown by dashed lines. This indicates the close 
coupling between the deck and the cables, particularly for the lower cable modes. 

The analysis shows that the bridge deck is partly excited by the cable vibrations. 
Therefore, the vibrations recorded in the deck are to some extent forced vibrations, 
rather than ambient vibrations. An output only system identification method is there-
fore somewhat inadequate, when analyzing the deck vibrations, as it is difficult to
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Fig. 6 Damping ratio as a function of natural frequency for the sway and heave motion from all 
cable sensors for each hour on 28.8.2019, estimated using the SSI-COV method. The vertical lines 
give a regular multiple of the first eigen frequency (1.04 Hz) 

Fig. 7 An example of a stabilization diagram for the SSI-COV estimation process for cable C1E. 
The PSD estimate of the vertical response is superposed to the identified poles
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Fig. 8 Damping ratio as a function of natural frequency for different combinations of the compo-
nents of deck vibrations from both sensors (DN & DS) over the 24-h period on 28.08.2019, estimated 
using the SSI-COV method

separate the deck modes and the cable modes since the steel deck is supported by 
the cables, which are then anchored in the concrete side span. 

2.3 Cable Dynamics in Relation to Weather Conditions 

The following describes a more detailed analysis of cable dynamic characteristics in 
relation to influencing parameters such as temperature and wind conditions, for the 
three lowest modes of the C1E cable. Distinct spectral peaks for the three sway and 
heave modes are utilized to isolate the resonant responses, in a 0.1 Hz wide frequency 
band centered at a considered peak frequency. 

The eigen-frequencies and damping ratios are estimated considering one accel-
eration component at the time, using the eigen-value analysis (singular value de-
composition) of the covariance block Hankel matrix [6, 7]. To ensure a robust analysis 
of the random signals in a limited frequency band, a convergence study of damping 
estimates was performed prior to an automatized analysis of all the signals. The range 
of identified eigen-frequencies and damping ratios are presented in Table 1. For  the  
first mode, the mean heave frequency is 1% higher than the sway frequency, due to 
the cable sag effect [8]. The difference corresponds to a sag of about 0.25 m for the 
98.3 m long cable, or a 2% increase in the effective tension force. For the second 
and the third mode, the average frequencies in the two directions differ by less than 
0.1%.

In Fig. 9, the daily variation of all the six eigen-frequencies is displayed, together 
with the ambient temperature. A clear effect of temperature on the eigen-frequencies 
is demonstrated, with a temperature rise and fall giving a reduction and increase,
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Table 1 Minimum, Mean and Maximum values of eigenfrequencies ( f ) and damping ratios (ξ) 
for the first three cable modes evaluated separately for heave and sway motion 

Mode 1 Mode 2 Mode 3 

Heave Sway Heave Sway Heave Sway 

f 
Hz 

ξ 
% 

f 
Hz 

ξ 
% 

f 
Hz 

ξ 
% 

f 
Hz 

ξ 
% 

f 
Hz 

ξ 
% 

f 
Hz 

ξ 
% 

Min 1.032 0.027 1.022 0.066 2.041 0.033 2.043 0.038 3.068 0.031 3.071 0.042 

Mean 1.038 0.090 1.028 0.139 2.055 0.082 2.056 0.101 3.088 0.078 3.091 0.098 

Max 1.043 0.144 1.033 0.245 2.065 0.193 2.065 0.225 3.102 0.162 3.105 0.202

respectively, in the eigen-frequencies. This concurs with findings from another 
bridge [9]. 

In Figs. 10 and 11, the associated damping ratios for the three sway and heave 
modes during the 24 h are illustrated, together with the mean wind components in the 
two directions. A significant correlation between the magnitude of the relevant wind 
velocity components and damping can be observed, demonstrating the important 
contribution of aerodynamic damping to the estimated damping levels, which is 
largest for the lowest vibration mode. The results complement former field studies 
on wind-cable interaction [10] and [11]. In the absence of wind, pure structural 
damping is in the range 0.02% to 0.05%, in line with estimates from free vibration 
data analysis [3].

Fig. 9 Natural frequency for modes 1, 2 and 3 normalized by their initial value, as a function of 
time on 28.08.2019, along with 10 min mean values of atmospheric temperature 
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Fig. 10 Damping ratio for modes 1, 2 and 3, for sway motion evaluated based on 24 h acceleration 
data from 28.08.2019 plotted as a function of time, along with mean values over 10 min of the wind 
velocity acting horizontally across the cable 

Fig. 11 Damping ratio for modes 1, 2 and 3 for heave motion, evaluated based on 24 h acceleration 
data from 28.08.2019, plotted as a function of time, along with mean values over 10 min of the 
wind velocity acting upward across the cable 

3 Summary and Conclusions 

The paper studies acceleration data from a cable stayed bridge, gathered over 24 h on 
28.08.2019. Both deck and cable accelerations are studied. The bridge is a complex 
structure to analyze, as it combines a concrete deck and tower, that anchors and
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supports the cable stayed steel deck providing the crossing over the entrance of 
Stavanger harbor. 

The natural frequencies observed in the deck data are partly the same as the natural 
frequencies of the cable vibrations, indicating that the deck vibrations are to some 
extent forced by the cable actions, in addition to being induced by wind action and 
traffic. 

Evaluation of the deck damping gave traditional values in the range of 1% to 
2%. Whereas the cable damping was found to be more than an order of magnitude 
lower, except for modes with a frequency between 4 and 6 Hz, where there is likely 
a coupling between deck modes and cable modes. 

The frequency and damping of the three lowest cable modes were studied in more 
detail for a single cable. It was found that the natural frequency of the cable was 
influenced by the ambient temperature changes over the 24 h, with higher ambient 
temperature resulting in lower natural frequencies. It was also found that the overall 
damping ratios of cable were strongly correlated with the variations in wind velocity 
during the 24-h, indicating the significance of aerodynamic damping. 
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Wake Galloping Suppression in Two 
Closely Spaced Cylinders with Surface 
Modification 

Thu Dao , Tomomi Yagi , Kyohei Noguchi , and Gabriel Mohallem 

Abstract Wake galloping is often observed in two closely-spaced circular cylinders. 
Previous studies have reported large amplitude transverse oscillation (galloping) in 
the downstream cylinder, where streamwise and transverse center-to-center distances 
between two cylinders were 3.0D–3.5D and 0.3D–0.5D, respectively (D is the diam-
eter of the cylinders). In this study, the mechanism and countermeasure of wake 
galloping of two cylinders in these arrangements are discussed. Due to the dynamics 
between the wake of the upstream cylinder and the oscillation of the downstream 
cylinder, the unsteady wake was hysteretic and initiated wake galloping in the down-
stream cylinder. Wake galloping, when occurred, depends on reduced velocity and 
not Reynolds number because both cylinders were in the subcritical Reynolds number 
regime at the wake galloping onset. A cylinder attached with twelve spiral protuber-
ances at a 27° winding angle was introduced to suppress wake galloping. The modi-
fied cylinder with the spiral protuberances performed most effectively against wake 
galloping when it was placed on the downstream side. The aerodynamic forces on 
the cylinder with spiral protuberances did not generate negative damping. Therefore, 
the surface-modified cylinders successfully suppressed wake galloping. 

Keywords Wake-induced vibration ·Wake galloping · Parallel cylinders · Surface 
modification · Spiral protuberances
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1 Introduction 

Parallel-twin-cylinder structures are susceptible to wake-induced vibrations. Studies 
on this topic have been conducted covering an extensive range of spacing scenarios 
between the two cylinders [1–4]. Wake galloping (WG) was observed in the down-
stream cylinder spaced at 3.0D–3.5D longitudinally and 0.3D–0.5D transversely 
from the upstream cylinder [1]. In another wind tunnel free vibration test, where the 
streamwise spacing between the two tandem cylinders ranged from 7.0D to 7.4D, the  
downstream cylinder also underwent WG [5]. Surface helical wires/spiral protuber-
ances on the cylinders have been introduced to suppress WG. Successful applications 
of such surface modifications were reported in [5–7]. However, elaborative discus-
sion on the suppression mechanisms, especially those related to flow phenomena, 
are often overlooked. 

This study focuses on WG in parallel cylinders, spaced at 3.0D in the streamwise 
direction, and 0.3D–0.5D in the transverse direction. Twelve surface spiral protuber-
ances were attached to the cylinders to suppress WG, following the original design 
proposed in [8] and subsequently utilized in [5]. The mechanism of WG in two plain 
cylinders is firstly discussed considering relevant flow phenomena. The performance 
of the cylinders with 12 spiral protuberances against WG is then evaluated. Finally, 
the suppression mechanism of the spiral protuberances is presented. 

2 Wind Tunnel Tests 

Aerodynamic pressure measurement tests were conducted in the room-circuit Eiffel-
type wind tunnel at Kyoto University whose capacity was 30 m/s. The test section 
measures 1.0 m wide and 1.8 m high. 

The cylinder models were two aluminum pipes of the same diameter D = 0.7 m 
and length L = 0.9 m. For the surface-modified cylinders, 12 rubber protuberances 
of dimensions 3.36 mm wide and 2.10 mm thick were glued to the surface of the 
cylinders in a spiral shape whose winding angle was γ = 27°, calculated as in Eq. (1): 

γ = tan−1 (2D/P) = 27◦ (1) 

where P [m] is the length of one spiral turn in the spanwise direction. The 12 spiral 
protuberances define the pitch d = 22.9 mm, the spanwise distance between two 
adjacent protuberances (Fig. 1).

On the downstream cylinder set a pressure ring consisting of 12 pressure taps 
distributed evenly along its circumference such that the protuberances were situated 
right in-between the protuberances. The angular position of the pressure taps was 
defined by θ [deg] from the stagnation point. The pressure ring was set at 0.4 and 0.5 
m from the two ends of the cylinder. The position of pressure ring defined the origin
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Fig. 1 Cylinders with 12 surface spiral protuberances

of the spanwise axis z, where a number of pressure taps lined up in z-direction. The 
spanwise pressure taps were spaced at d to accommodate the protuberances (Fig. 1). 

The arrangement of the two cylinders in the tests is described in Fig. 2, where 
W [m] and S [m] denote the center-to-center distances between the two cylinders 
in the streamwise and transverse directions respectively. In the tests, both cylinders 
were normal to the incoming flow. The upstream cylinder was fixed to the walls of 
the wind tunnel so that no displacement was allowed. The downstream cylinder was 
assigned with transverse harmonic oscillations via an oscillating frame connected 
to a motor. The frequency of the prescribed oscillations was 0.673 Hz. The dimen-
sionless transverse double amplitude was set at 2A = 0.4D. In Fig.  2, y(t) [m]  is  
the instantaneous displacement of the downstream cylinder during the oscillation 
with reference to the upstream cylinder. For a downstream cylinder at S/D = 0.5, its 
displacement y(t) during one oscillation cycle would range from 0.3D to 0.7D. The 
displacement of the downstream cylinder was measured by two laser sensors at two 
ends. The downstream oscillated in the smooth flow with freestream velocity U = 
5.0–12.0 m/s, resulting in a reduced velocity ranging from U/fD = 106 to 255. 

During the harmonic oscillations, unsteady surface pressure at each pressure tap 
was measured using a 1.2 m vinyl tube connected to a multipoint-pressure sensor. 
The measured unsteady pressure was made dimensionless by Eq. (2): 

CP (θ,  t) = 
P(θ,  t) 
0.5ρU 2 

(2)

Fig. 2 Arrangement of two 
cylinders 
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where P(θ ) [Pa] is the unsteady measured surface pressure at θ with reference to the 
static pressure in the test section which was obtained by placing the pitot tube below 
the downstream cylinder (Fig. 1), ρ [kg/m3] is the air density. 

Conventionally, harmonic oscillations are prescribed to the solid body in the wind 
to extract flutter derivatives. In this study, H∗

1 is the concerned flutter derivative, which 
is a transverse aerodynamic damping parameter and calculated as in Eq. (3): 

H∗ 
1 = 

−FL0 sin�

ρ(0.5D)2 ω2 A 
(3) 

where FL0 [N] is the amplitude of the unsteady lift force, Ψ [deg] is the phase 
difference between the unsteady lift and displacement y(t), ω [rad/s] is the angular 
frequency of the prescribed oscillation. In this study however, H∗

1 can be evaluated 
in an integral manner, where it is calculated on small segments on the body of the 
cylinder. Therefore, segmental lift amplitude Lθ0 and segmental phase difference Ψ θ 
are introduced, where Lθ0 is the amplitude of dimensionless unsteady lift acting on 
a unit surface area and calculated as in Eq. (4): 

Lθ 0 = CP0|sin θ | (4) 

where CP0 is the amplitude of dimensionless unsteady pressure at θ ; and Ψ θ [deg] is 
the phase difference between the segmental unsteady lift at θ and the displacement 
y(t). 

3 Results and Discussion 

3.1 Wake Galloping in Two Plain Cylinders 

Wake galloping in two cylinders at (W /D = 3.0, S/D = 0.3) reportedly occurred at U/ 
fD = 100 [1]. Therefore, the following sections focus on the reduced velocity range 
of U/fD ≥ 100. 

The effect of spacing between the two cylinders on WG was discussed in [1] based 
on the values of the flutter derivative H∗

1 . Figure 3 presents the contour map of H∗
1 

of the downstream cylinder spaced at (3.0D–3.5D) in the streamwise direction, and 
(0.0D–0.5D) in the transverse direction from the upstream cylinder at U/fD = 136. 
In Fig. 3, within W /D = 3.0–3.2, the transverse distance of S/D = 0.3–0.4 marks 
a switch in value of H∗

1 , where the downstream cylinder at S/D < 0.3 would gallop 
(H∗

1 > 0), while it would be stable at S/D > 0.4  (H∗
1 < 0).

Wake galloping in the downstream cylinder at (W /D = 3.0–3.2, S/D = 0.0–0.4) 
is related to the evolution of the flow patterns around it upon small perturbation 
[7]. Figure 4 shows the instantaneous surface pressure distributions on the down-
stream cylinder at (W /D = 3.0, S/D = 0.3) when it oscillated transversely with a
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Fig. 3 Flutter derivative H∗
1 

at U/fD = 136 in various 
spacing scenarios [1]

double amplitude of 0.4D. The flow patterns are sketched based on stagnation pres-
sure (CPmax) and circumferential pressure gradient (∂CP/∂θ ). In Fig. 4a, b, when the 
downstream cylinder is spaced at y = 0.5D and 0.3D, respectively, from the upstream 
cylinder, large negative pressure with a significant negative pressure gradient is 
observed immediately following the stagnation region of CPmax, which suggests flow 
acceleration on the inner surface. This was probably achieved by squeezing the wake 
of the upstream cylinder into the space between two cylinders. Hence, such acceler-
ated flow is called ‘gap flow’. For a thorough description of the flow fields, refer to 
[9]. When reaching y = 0.1D, the inner surface of the downstream cylinder exhibited 
a flat pressure gradient which indicates no flow, in other words, the upper half of the 
downstream cylinder was submerged in the wake of the upstream (Fig. 4c). Such flow 
evolution was hysteretic. The evolution of the flow on the approaching cylinder devi-
ated from that on the departing cylinder. This is illustrated by Fig. 4b and d, where 
the downstream cylinder is at y = 0.21D transversely from the upstream one but 
the two instantaneous pressure distributions noticeably differ. Firstly, the stagnation 
pressure in Fig. 4b is  CPmax ≈ 0.9, which means the velocity of the incoming flow 
was almost the same as the freestream. Conversely, the stagnation pressure in Fig. 4d 
is CPmax ≈ 0.4, suggesting the incoming flow was slowed down by the wake of the 
upstream cylinder. Consequently, considering the pressure gradient, the gap flow on 
the inner surface in Fig. 4d was underdeveloped when compared to Fig. 4b. Secondly, 
the flow on the outer surface at t = 0.7 T sustained higher negative pressure than 
that at t = 0.3 T. Such hysteresis resulted in positive work done by the flow where 
the downstream cylinder would extract energy from the flow and start galloping. 
Additionally, the hysteresis is absorbed into the phase difference Ψ in H∗

1 calcula-
tion, such that WG onset was successfully determined by H∗

1 . This mechanism is 
thoroughly discussed in [7].

The following section discusses the arrangement of (W /D = 3.0, S/D = 0.5), 
where H∗

1 < 0, to highlight the spacing sensitivity of WG. Instantaneous pressure 
distributions on the downstream cylinder at four instants—t = 0.0, 0.25, 0.5, and 
0.75 T—during a transverse oscillation around (W /D = 3.0, S/D = 0.5) with a 
double amplitude of 0.4D are presented in Fig. 5 (other than equilibrium position, 
other parameters are the same as those in Fig. 4). Strong gap flow on the inner



80 T. Dao et al.

(a) 

(b) (c) 

(d) 

Fig. 4 Dimensionless instantaneous surface pressure and schematic flow patterns at four instants 
within one cycle at U/fD = 183, W /D = 3.0, S/D = 0.3

surface was observed at t = 0.5 T when the downstream cylinder was at y = 0.3D, 
similar to the gap flow mechanism described in Fig. 4b. However, there are two major 
differences from the case in Fig. 4. Firstly, the stagnation region resided outside the 
wake of the upstream cylinder at all times, which is inferred from the stagnation 
pressure of CPmax ≈ 1.0. Secondly, considering how the pressure distribution at t = 
0.25 T resembles that at t = 0.75 T, the flow evolution showed almost no hysteresis, 
leading to H ∗

1 ≤ 0 as seen in Fig. 3. 
To summarize, WG in parallel plain cylinders is sensitive to the traverse spacing 

between the two cylinders. In more detail, WG would occur in the downstream 
cylinder if its trajectory involved immersion into the wake of the upstream cylinder 
and vice versa.

Fig. 5 Dimensionless instantaneous surface pressure at four instants within one cycle at U/fD = 
183, W /D = 3.0, S/D = 0.5 
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Fig. 6 Dimensionless instantaneous surface pressure on the downstream cylinder with spiral 
protuberances at four instants within one cycle at U/fD = 183, W /D = 3.0, S/D = 0.3 

3.2 Wake Galloping Suppression by Cylinders with Spiral 
Protuberances 

The performance of the surface-modified cylinders with spiral protuberances was 
reported in [7], where the surface-modified cylinder was most effective against WG 
when placed on the downstream side. Considering industrial applications, it is prac-
tical to focus on the case of two cylinders with spiral protuberances instead of a 
combination of two types of cylinders. Therefore, the following section elaborates 
on the case of two cylinders with spiral protuberances at U/fD = 183. 

Unlike WG in two plain cylinders, the spacing sensitivity of WG was not found 
in the case of two modified cylinders with spiral protuberances. To illustrate this, 
two spacing scenarios—(W /D = 3.0, S/D = 0.3) and (W /D = 3.0, S/D = 0.5)—are 
discussed. Figures 6 and 7 show the instantaneous surface pressure on the modified 
downstream cylinder whose equilibrium position was at (W /D = 3.0, S/D = 0.3) and 
(W /D = 3.0, S/D = 0.5) respectively.

In the case of (W /D = 3.0, S/D = 0.3), the downstream modified cylinder already 
immersed into the wake of the upstream at y = 0.3D, which was in sharp contrast to 
the plain cylinder at y = 0.21D in Fig. 4b. The wake of the former was significantly 
less resistant to entrainment than that of the latter. This also holds in the case of (W / 
D = 3.0, S/D = 0.5) in Fig. 7. While the downstream plain cylinder at S/D = 0.5 
remained outside the wake during the oscillation (Fig. 5), the inner surface of the 
modified cylinder in Fig. 7 advanced into the wake at the uppermost position y = 
0.3D. In that perspective, the flow on the modified downstream cylinder experienced 
equally drastic evolution—inside and outside the wake of the upstream cylinder—as 
in the case of two plain cylinders in Sect. 3.1. However, hysteresis was not recorded 
in the downstream cylinder with spiral protuberances as the pressure distributions at 
t = 0.25 and 0.75 T were almost the same in both Figs. 6 and 7.
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Fig. 7 Dimensionless instantaneous surface pressure on the downstream cylinder with spiral 
protuberances at four instants within one cycle at U/fD = 183, W /D = 3.0, S/D = 0.5

Upon the application of spiral protuberances, the theme of three-dimensional 
flow around a single cylinder with surface modification was explored in [8]. Three-
dimensionality in the context of two parallel modified cylinders is also of interest. 
Figure 8 presents the segmental lift amplitudes Lθ0 and phase differences Ψ θ along 
the span of the downstream cylinder at (W /D = 3.0, S/D = 0.3). Three angles—θ = 
60°, 270°, and 300°—were chosen to represent the inner, outer, and stagnation regions 
respectively. While the segmental lift amplitudes at the same angle θ significantly 
vary spanwise for all three regions, the segmental phase differences are consistent 
along the span at either Ψ θ = 0°, 180°, or −180°, and hence, sinΨ ≈ 0, which results 
in H ∗

1 ≈ 0. The only exception at (θ = 300°, z = 3d), where Ψ θ = 53°, is because 
the segmental lift amplitude here was so small that it was difficult to detect the phase 
difference. This observation also holds for the case of (W /D = 3.0, S/D = 0.5). 

Fig. 8 Segmental lift 
amplitude Lθ 0 and phase 
difference Ψ θ along the span 
at U/fD = 183, W /D = 3.0, 
S/D = 0.3, unfilled markers 
denote two cylinders with 
spiral protuberances, filled 
markers denote two plain 
cylinders



Wake Galloping Suppression in Two Closely Spaced Cylinders … 83

Fig. 9 Flutter derivative H∗
1 

and phase difference Ψ 
along the span at U/fD = 
183, W /D = 3.0, S/D = 0.3 

In summary, the downstream modified cylinder with spiral protuberances can 
suppress WG by eliminating the hysteresis of the flow evolution when the spacing 
between two cylinders varied during oscillation. The flow properties seemingly varied 
spanwise due to the surface protuberances. However, the suppression mechanism can 
be explained in two-dimension, that is, flutter derivative H∗

1 calculated at any cross-
section along the span would be negative as shown in Fig. 9. Even though positive 
H∗

1 was observed at some locations, their values are trivial for a reduced velocity of 
183 (note that H∗

1 is not normalized by wind speed, which means it should increase 
as the wind speed in-creases). In comparison, H∗

1 in two smooth cylinders with the 
same spacings an reduced velocity is of order of 1000 [1]. 

4 Conclusions 

This study explored the wake galloping phenomenon in the downstream cylinder 
which was spaced at 3.0D longitudinally, and 0.3D–0.5D transversely from the 
upstream cylinder. The concluding remarks are as follows: 

• Wake galloping in the case of two plain cylinders was because of the hysteretic 
flow evolution when the downstream cylinder advanced into the wake of the 
upstream cylinder and then departed from it. 

• Wake galloping did not occur in the case of two cylinders with 12 spiral protuber-
ances. The surface protuberances eliminated the aforementioned hysteretic wake. 
Therefore, the modified cylinders were stable against wake galloping. 

• Unsteady surface pressure on the downstream cylinder with 12 spiral protuber-
ances varied spanwise in amplitudes because of the three-dimensional protu-
berances. However, wake galloping was suppressed at any two-dimensional 
cross-section along the span.
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Comparison of Observed and Simulated 
Galloping Responses of a Four-Bundled 
Conductor Under Wet Snow Accretion 

Hisato Matsumiya , Saki Taruishi , Hiroki Matsushima, and Teruo Aso 

Abstract Field observations of four-bundled conductors have been carried out at 
the Kushiro test line since 2014 to investigate the galloping characteristics caused 
by wet snow accretion on overhead transmission lines. On January 12, 2022, a large 
galloping was observed at this site. It was seen that the conductors mainly vibrated in 
the vertical two-loops/span mode coupled with the horizontal and torsional modes. 
The maximum total amplitude reached approximately 5.8 m in the vertical direction. 
Numerical simulation is an effective method for estimating the galloping response 
amplitude of full-scale overhead transmission lines; however, the simulated response 
amplitude is highly dependent on the input conditions, such as snow accretion shape 
and wind speed. Therefore, this study conducted a parametric analysis to evaluate 
the sensitivity of the response amplitudes to the input conditions by varying the snow 
accretion shape and its development angle in addition to wind speed. The results of 
the analysis under the snow accretion conditions closest to those observed on January 
12, 2022, were found to approximately reproduce the observed response amplitudes. 

Keywords Galloping · Wet snow accretion · Overhead transmission lines 

1 Introduction 

Galloping is occasionally observed in overhead transmission lines owing to ice accre-
tion. Because the ice accretion shape can vary depending on the type, galloping 
characteristics and the effects of countermeasures might vary accordingly. Atmo-
spheric icing is typically classified into two categories: in-cloud icing and precipi-
tation icing, depending on its developmental process [1, 2]. In-cloud icing occurs in 
clouds containing supercooled droplets that remain in the liquid phase at temperatures
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below 0 °C; therefore, in-cloud icing is likely to occur in high-altitude transmission 
lines. Depending on the cloud liquid water content, the size of distribution of the 
cloud droplets, air temperature, and wind speed, the ice accretion characteristics can 
be classified into soft rime and hard rime. In contrast, precipitation icing is caused by 
freezing rain and wet and dry snow, which can even occur in plain areas. Freezing rain 
falls under a specific temperature distribution with elevation, such as when a temper-
ature inversion occurs in the lowest layer. Regarding freezing rain, glaze ice forms 
when the droplet freezing time is sufficiently long for a film of water to cover the 
accreting surface. Graze ice is compact, smooth, and usually transparent. Conversely, 
wet snowflakes, which precipitate at a temperature of approximately 0 °C, contain 
some liquid water and easily accrete to the conductor [3]. In addition, wet snow 
accretion is characterised by its occurrence even under strong winds, whereas dry-
snow accretion occurs only under weak-to-calm winds. As mentioned above, the 
development direction and shape of icing vary significantly depending on the type 
of impacting droplets or particles and the wind speed. Galloping can occur under 
every condition except dry-snow accretion, when strong winds blow after icing but 
before the ice shedding. In Japan, galloping is often caused by in-cloud icing and 
wet snow accretion in the mountain and plain regions, respectively. Therefore, the 
authors have conducted field observations of full-scale transmission lines to inves-
tigate the accretion characteristics and dynamic response of the lines to galloping 
under in-cloud icing [4] and wet snow accretion [5, 6]. 

Furthermore, numerical simulation is an effective method for estimating the 
galloping response amplitude of full-scale overhead transmission lines. In general, 
the overhead transmission line is modelled using the finite element method, and 
the amplitude is estimated through time history response analysis [7, 8]. Aerody-
namic force modelling has been investigated by wind tunnel tests [9] while structural 
modelling has been investigated by observations on full-scale test lines with an ideal 
and artificial snow accretion [10]. Therefore, the numerical simulation method has 
been validated to some extent. However, the simulated response amplitude depends 
highly on the input conditions such as icing shape and wind speed, as well as their 
distribution in the span. A parametric analysis has been performed when identifying 
the cause of a galloping accident where the icing shape is unknown and examining 
countermeasures based on the analysis by gradually varying the icing shape and 
its development angle as well as the wind speed. Moreover, to obtain a response 
amplitude, a parametric analysis with many different conditions can be performed; 
however, setting conditions that are not appropriate to the actual situation can result 
in excessive response amplitudes. Therefore, it is important to consider how to set 
input conditions based on the actual ice accretion and wind speed distribution to 
achieve an accurate amplitude estimation. 

This study presents the observation result of noticeable galloping of four-bundled 
conductors at the Kushiro test line, where field observations for wet snow accretion 
have been carried out since 2014. Then, the sensitivity of the response amplitudes 
to the input conditions is indicated via a parametric analysis, wherein the icing 
shape and its development angle are varied gradually in addition to the wind speed.
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Furthermore, the results of the analysis under the icing conditions closest to those of 
observation are compared to the observed response amplitudes. 

2 Overview of the Kushiro Test Line 

The Kushiro test line was constructed in 2013 in Kushiro City, Hokkaido, Japan, 
to enable field observations of galloping in overhead lines and wet snow accretion 
on conductors and insulators [6, 11]. During severe snowfall events at this site, by 
approaching a low pressure, precipitation at approximately 0 °C continues under 
moderate to strong winds. Figure 1 shows the Kushiro test line, which comprises 
three towers that are currently connected by two phases of four-bundled conductors 
(between the upper arms of Towers 1 and 2) and 11 phases of single conductors 
(between the middle arms of Towers 1 and 2 and the lower arms of Towers 1 and 3). 
The test line extends at 115° in the azimuthal direction. 

The test line includes various meteorological instruments to measure wind speed 
and direction, air temperature, relative humidity, atmospheric pressure, precipitation, 
radiation balance, and snowfall drop size distribution and its falling velocity. Further-
more, tension metres for the conductors and web cameras are installed on the towers,

Tower 1 

Upper arm (height above 
ground level: 40m) 

Middle arm 

Lower arm 

Tower 3 

Tower 2 

Fig. 1 Kushiro test line 
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Table 1 Structural condition 
Conductor ACSR410 mm2 

Diameter 28.5 mm 

Distance of sub-conductors 400 mm 

Span length 393.9 m 

Sag* 15.2 m 

Tension of sub-conductors* 22.5 kN 

* At the temperature of 13.1 °C 

and LED markers are installed in the span. The vertical, horizontal, and torsional 
displacements of the line can be obtained by analysing the images captured using 
the web cameras. Moreover, the cameras are set at the spacers in the span to capture 
the images and identify the snow-accreted conditions for bundled conductors. 

This study subjects to the four-bundled conductor line without any anti-galloping 
device. The structural conditions of the line are shown in Table 1. Figures 2 and 
3 show the type of spacers installed and the spacer spacing, respectively. These 
conditions are identical to those of a typical 500 kV transmission line in Japan. 

Fig. 2 Normal spacer 

22.1m 30m 35m 45m 45m 40m 35m 30m 22.1m 

Tower 1 Tower 21/4 of span 

LED 

40m 49.7m 

SP No.3 SP No.5 SP No.6 
LED Camera 1 Camera 2 

SP No.7 

1/2 of span 3/4 of span 

Spacer (SP) 

Fig. 3 Location of spacers and equipment in the span
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3 Galloping Observed on January 12, 2022 

3.1 Meteorological Conditions During the Development 
of Wet Snow Accretion 

A well-developed low pressure approached the Kushiro test line resulting in severe 
snowfall from 11 to 12 January 2022. Figure 4 shows the time series of 10 min 
statistics of meteorological data and tension. Air temperature and relative humidity 
were measured at a height of 4 m above the ground, and the wind speed and direction 
were measured at 44 m from above the ground. The tension measured at two insulator 
support points on Tower 1 was added up, divided by the number of sub-conductors 
(four), and converted into tension per sub-conductor. The maximum, minimum, and 
mean values of tension were calculated every 10 min. Figure 5 shows the amount of 
snow accretion per unit length estimated from the mean tension. It is assumed that 
cylindrical snow accretion (snow density: 600 kg/m3, drag coefficient: 1.0) occurs 
uniformly across the span and the effect of an increase in the mean tension due to 
wind loads is excluded to estimate the snow accretion amount from the mean tension. 
Although it is necessary to consider the fact that the snow accretion is not uniformly 
distributed in the span and the drag coefficient varies depending on the shape of the 
snow accretion, the snow accretion amount can be approximately estimated in Fig. 5. 
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Fig. 4 Time series of a 10 min statistics of meteorological data and tension (2022/1/11 18:00–2022/ 
1/12 12:00)



90 H. Matsumiya et al.

Fig. 5 Snow accretion 
amount calculated from 
tension 
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Snowfall started after 19:00 on the 11th, and snow accretion developed after 

0:00 on the 12th at temperatures between 0–1 °C and relative humidity of 95% 
or higher. The wind speed gradually increased and maintained an average speed 
of 8–16 m/s until 6:00. During this period, the wind direction was close to the 
perpendicular direction of the line (azimuth angle: 25°), and the mean value of the 
turbulence intensity of the wind was 0.13. Based on the snow accretion classification 
method using temperature, humidity, and wind speed [12], this case was classified 
as a strong-wind wet snow accretion. 

The amount of snow accretion increased until around 5:30, then decreased rapidly 
as the temperature increased, eventually decreasing completely by 6:00. Some 
cameras were able to capture the snow accretion situation just before snow shedding. 
The snow accretion situation captured by spacer camera 2 at spacer No. 7 looking 
in the direction of the Tower 1 is shown in Fig. 6. The remaining snow accretion 
on the upper left-hand conductor shows a triangular-shaped snow accretion devel-
oped on the upwind side (right-hand side) of the conductor. The height of snow 
accretion to the windward direction was approximately the same as the diameter of 
the sub-conductor. Furthermore, the surface of the accreted snow became smooth. 
It is speculated that the reason for this is that snowfall particles are compacted and 
attached to the snow body, which melts owing to the heat transfer from the air. In the 
case of in-cloud icing, when supercooled water droplets with small diameter impact 
conductors at relatively high wind speed, icing develops on the windward side of the 
conductor; however, the surface of the icing body is generally relatively rough [1, 2, 
4]. In the case of freezing rain, the attached water droplets do not freeze immediately 
but develop by covering the conductor surface or in the direction where the droplets 
drop [1, 2]. Therefore, the accretion shape differs depending on the icing type.
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Fig. 6 Snow accretion 
situation just before the snow 
shedding (2022/1/12, 
6:00:05) 

Remaining 
snow accretion 

Wind 

3.2 Response of the Four-Bundled Conductor Due 
to Galloping 

As shown in Fig. 4, a large variation in tension (difference between maximum 
and minimum tension) can be observed, especially between 4:30 and 5:30, due to 
galloping. A time series of displacement at the LED markers installed in the spacers 
was calculated by conducting an image analysis from 21:00 to 5:30. Figure 7 shows 
the total amplitudes (difference between the maximum and minimum values every 
10 min) of the vertical and horizontal displacements as well as the torsional angles of 
the four-bundled conductor. The vertical amplitude increased after 3:00, indicating 
the occurrence of galloping. 

The video images showed that the two-loops/span mode (asymmetric first mode) 
was dominant in the observed galloping, with larger values at the spacer No. 3, which 
was close to the quarter of the span located at the antinode of this mode, compared 
to the spacer No. 6. The amplitude was particularly large between 4:30 and 5:30. 
The maximum amplitude at the spacer No. 3 was 5.8 m and 5.6 m for the vertical 
total amplitude and horizontal displacement total amplitude, respectively, and 216° 
for the torsional angle total amplitude. As an example of galloping response, Fig. 8 
shows the time history waveforms of the vertical and horizontal displacement as 
well as the torsional angle at spacer No. 3 from 4:31:00 to 4:31:20, accompanied by 
the tension waveform. The vertical and horizontal displacements and the torsional

0 

40 

80 

120 

160 

200 

240 

0 

1 

2 

3 

4 

5 

6 

21:00 0:00 3:00 6:00 

Horizontal 
Vertical 
Torsional 

H
or

iz
on

ta
l/ 

ve
rti

ca
l 

to
ta

l a
m

pl
itu

de
 [m

] 

Torsional total am
plitude [°] 

(a) Spacer No.3 

0 

40 

80 

120 

160 

200 

240 

0 

1 

2 

3 

4 

5 

6 

21:00 0:00 3:00 6:00 

Horizontal 
Vertical 
Torsional 

H
or

iz
on

ta
l/ 

ve
rti

ca
l 

to
ta

l a
m

pl
itu

de
 [m

] 

Torsional total am
plitude [° ] 

(b) Spacer No.6 

Fig. 7 Total amplitudes of displacements and torsional angles at spacers No. 3, 6 
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Fig. 8 Time history waveforms of displacements and torsional angles (4:31:00–20) 

angles are coupled, resulting in a steady response. The coupled vibration in three 
degrees of freedom is a characteristic of the galloping of the four-bundled conductor. 
However, the waveforms of all displacements showed a slightly deformed shape 
from a sinusoidal wave, particularly in the vertical displacement, where a bump was 
observed in the waveform at the same timing of one cycle. This can be attributed to 
the effects of aerodynamic and structural (geometrical) non-linearity as the response 
reached a large amplitude. Additionally, the tension fluctuated at twice the frequency 
compared to the displacement, considering the tension increases when the conductor 
moves in either the positive or negative directions, which is characteristic of the 
even-loops/span modes (asymmetric modes). 

Figure 9 shows the mean values of the torsional angle of the four-bundled 
conductor. Because the torsional angle is an angle from the horizontal plane, it has a 
value even without snow accretions. The occurrence characteristics of galloping are 
highly dependent on the direction of snow accretion (angle of attack to the wind) in 
addition to the shape of the snow accretion and the wind speed. If snow accretion 
develops on the windward side, galloping occurs when a certain angle of attack exists 
between the direction of snow accretion and the wind [4, 9]. As the spacers hold the 
sub-conductors without rotation, the torsional angle of the four-bundled conductor 
at the spacer position can be used to approximately determine the angle of attack to 
the wind in the span. Figure 10 shows the relationship between the mean torsional 
angle and the vertical total amplitude. Although the distribution of torsional angles 
in the span might affect the galloping onset characteristics, the effect of the torsional 
angle around the anti-nodes of the mode is dominant. Therefore, Fig. 10 indicates the 
relationship at spacer No. 3, which is near the quarter of the span and corresponds 
approximately to the antinode of the two-loops/span mode. A large amplitude was 
observed when the four-bundled conductor was rotated by approximately −10 to − 
20° (downwards) from the initial angle (−10°).

Figure 11 shows the relationship between the mean wind speed and the vertical 
total amplitude of displacement. Snow accretion developed when the wind speed 
increased in this case, and the wind speed range where galloping was observed 
(above about 12 m/s) corresponded approximately to the wind speed range where 
snow accretion occurred. Therefore, Figs. 10 and 11 show the cases where the snow
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Fig. 9 Time series of mean 
torsional angle of 
four-bundled conductor 
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Fig. 10 Relationship 
between the mean torsional 
angle and vertical total 
amplitude at spacer No. 3
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Fig. 11 Relationship 
between the mean wind 
speed and vertical total 
amplitude at spacer No. 3 
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accretion amount exceeds 0.1 kg/m and is less than 0.1 kg/m, respectively. Under the 
conditions where snow accretion occurred, the amplitude increases with the wind 
speed. 
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4 Comparison with Simulated Galloping 

Time history response analyses was conducted to clarify the sensitivity of the 
response amplitudes of galloping to the snow accretion shape and its develop-
ment angle using the three-dimensional nonlinear finite element analysis code called 
‘CAFSS’ [10]. The analysis model was validated for natural frequencies and struc-
tural damping characteristics by conducting excitation tests on the Kushiro test line 
[13]. The aerodynamic forces acting on each sub-conductor were modelled by a 
quasi-steady aero dynamic force model [9] and calculated using the aerodynamic 
force coefficients for a single conductor with triangular-shaped snow accretion [14]. 
Fluctuating wind waveforms in the span were generated using a multidimensional 
autoregressive model with a specific power spectrum and coherence [15]. The turbu-
lence intensity was 0.15. The vertical total amplitude was calculated from the differ-
ence between the maximum and minimum values over the latter 600 s of each 660 s 
analysis time period. 

Figure 12 shows the vertical total amplitudes at spacer No. 3 for each snow 
accretion height and angle. The snow accretion angle corresponded to the angle 
without wind, and hence, changes as the wind speed increased. The maximum values 
of amplitude were compared when the snow accretion angle was set within the 
respective angle range (in every 2° intervals). For all snow accretion heights, the 
response amplitude increased up to a certain range of the snow accretion angle 
(approximately 30°); however, the maximum response amplitude does not increase 
when the angle range was greater than 50°. The larger the snow accretion height, the 
larger was the response amplitude, and the maximum amplitude could be obtained 
even for a small snow accretion angle. Furthermore, the amplitude increased as the 
wind speed increased.

Figure 13 compares the vertical total amplitude at spacer No. 3 between time 
history analysis for three accretion heights (snow accretion angle range: 0 to − 
10° or 0 to −30°) and the field observation. When there was snow accretion (over 
0.1 kg/m), the observed results showed a trend close to the analysis results with 
S = D/2 ∼ D. On comparing the snow accretion situation observed in Fig. 6, it was  
observed that the snow accretion conditions with close response amplitudes were 
close to the actual conditions. Therefore, the analysis based on the assumption of 
ideal triangular snow accretion showed that reasonable amplitudes can be obtained.
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Fig. 12 Comparison of maximum response amplitudes at spacer No. 3 for each snow accretion 
angle range and snow accretion height (results of CAFSS)

Fig. 13 Comparison of 
vertical total amplitude at 
spacer No. 3 between time 
history analysis and field 
observation 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0  2  4  6  8  10 12 14 16 18 20  
Wind speed [m/s] 

0~0.1 kg/m 
>0.1 kg/m 

Ve
rti

ca
l t

ot
al

 a
m

pl
itu

de
 [m

] Time history analysis 
S=D0~-10° S=D/2 S=D/4 
S=D0~-30° S=D/2 S=D/4 

Field 
observation 

5 Conclusions 

The large galloping of a four-bundled conductor under wet snow accretion was 
observed at Kushiro test lines. The conductors, without any countermeasures, 
vibrated mainly in the vertical two-loops/span mode coupled with the horizontal and 
torsional modes, where the maximum total amplitude reached approximately 5.8 m 
in the vertical direction. Simultaneously, triangular-shaped snow accretion occurred 
on the windward side of the conductors. Furthermore, when the direction of the snow
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accretion faced downwards owing to the rotation of the four-bundled conductor, a 
large amplitude was observed. Under the conditions where snow accretion occurred, 
the amplitude increased as the wind speed increased. 

Through time history analysis, the sensitivity of the response amplitudes of 
galloping to the snow accretion shape and its development angle were indicated 
using the three-dimensional nonlinear finite element analysis code ‘CAFSS’. The 
larger the snow accretion height was, the larger was the response amplitude, and 
the maximum amplitude could be obtained even for a small snow accretion angle. 
Furthermore, the results of the analysis under the snow accretion conditions closest 
to those observed were found to approximately reproduce the observed response 
amplitudes. 

References 

1. Poots G (1996) Ice and snow accretion on structures. Research Studies Press, Taunton 
2. Farzaneh M (2008) Atmospheric icing of power networks. Springer, Dordrecht 
3. Sakamoto Y (2000) Snow accretion on overhead wires. Phil Trans R Soc A 358:2941–2970 
4. Matsumiya H, Yukino T, Shimizu M, Nishihara T (2022) Field observation of galloping on 

four-bundled conductors and verification of countermeasure effect of loose spacers. J Wind 
Eng Ind Aerodyn 220 

5. Matsumiya H, Ichikawa H, Aso T, Shugo M, Nishihara T, Shimizu M, Sugimoto S (2019) Field 
observation of wet snow accretion and galloping on a single conductor transmission line. In: 
Proceedings of international workshop on atmospheric icing of structures, Reykjavik, Iceland 

6. Matsumiya H, Matsushima H, Aso T, Nishihara T, Sugimoto S (2021) Field observations 
of snow damage to overhead transmission lines at the Kushiro test line. In: Proceedings of 
international workshop on atmospheric icing of structures, Montreal, Canada 

7. Desai YM, Yu P, Shah AH, Popplewell N (1996) Perturbation-based finite element analysis of 
transmission line galloping. J Sound Vib 191:469–489 

8. Shimizu M, Shugo M, Sato J (1998) A geometric nonlinear analysis of transmission lines’ 
galloping (in Japanese). J Struct Eng 44A:951–960 

9. Matsumiya H, Nishihara T, Yagi T (2018) Aerodynamic modeling for large-amplitude galloping 
of four-bundled conductors. J Fluids Struct 82:559–576 

10. Shimizu M, Sato J (2001) Galloping observation and simulation of a 4-conductor bundle 
transmission line (in Japanese). J Struct Eng 47A:479–488 

11. Nishihara T, Matsumiya H, Sugimoto S, Hashimoto A, Ichikawa H, Aso T, Shugo M (2017) 
Field observation of snowstorm damage to overhead transmission lines at Kushiro test line— 
Construction of full-scale test lines and analysis of typical snow accretion during two winter 
seasons (in Japanese). CRIEPI research report, N16003 

12. Sugimoto S, Aso T, Saeki M (2012) Proposal of a type classification method for snow accretion 
on overhead transmission line using meteorological data (in Japanese). CRIEPI research report, 
N11059 

13. Taruishi S, Matsumiya H, Matsushima H, Shimizu M (2019) Evaluation of validity of method 
for making FEM model of a four-bundled conductor by excitation tests and simulations. In: 
Proceedings of second international symposium on dynamics and aerodynamics of cables. 
Stavanger, Norway, pp 183–190 

14. Matsumiya H, Nishihara T, Shimizu M () Aerodynamic characteristics of ice and snow accreted 
conductors of overhead transmission lines. In: Proceedings of 13th International Conference 
on Wind Engineering, Amsterdam, Netherlands



Comparison of Observed and Simulated Galloping Responses … 97

15. Iwatani Y (1982) Simulation of multidimensional wind fluctuations having any arbitrary power 
spectra and cross spectra (in Japanese). J Wind Eng 1982(11):5–18



Statistical Study of Aeolian Vibration 
Characteristics of Overhead Conductor 

Shaoqi Yang , Luc Chouinard, Sébastien Langlois, Josée Paradis, 
and Pierre Van Dyke 

Abstract Overhead transmission conductors are vulnerable to fretting fatigue due to 
aeolian vibrations. Accurate estimation of vibration severity is essential to determine 
the residual life of in-service lines and to schedule timely maintenance or replace-
ment. For most transmission line networks, vibration monitoring systems are not 
available, and thus the vibration hazards must be derived from local wind conditions. 
The most widely accepted estimation procedure of the severity of aeolian vibration 
is by calculating the maximum oscillation amplitudes of the conductor based on the 
Energy Balance Principle (EBP), which establishes the balance between the energy 
transmitted to the conductor by the wind and the energy dissipated by self-damping of 
the conductor and dampers. However, the EBP is based on wind tunnel results where 
only one frequency is excited, while observations and experimental results show that 
multiple resonant modes are excited simultaneously. Furthermore, the distribution 
of vibration amplitudes and number of cycles for each amplitude are required to 
calculate cumulative damage due to fretting fatigue. In this paper, vibration data 
from an experimental undamped ACSR test line in Quebec, Canada, is analyzed 
in conjunction with concurrent winds over a 2-month period. The first step of the 
analysis is to identify observations corresponding to aeolian vibrations in both the 
time and frequency domains. For each record of aeolian vibrations, amplitudes are 
fitted to a Rayleigh distribution based on the narrow-band assumption. The number 
of cycles and Rayleigh parameter are then related to wind conditions through a modi-
fied Strouhal frequency and EBP methodology. A statistical model is proposed to 
understand the relationship between vibration profiles and wind input, taking into 
consideration the influence of wind speed and turbulence intensity, as well as the 
influence of conductor tension.
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Keywords Overhead conductor · Aeolian vibration · Vibration profile · Damage 
accumulation · Residual life 

1 Introduction 

Wind-induced vibrations on overhead transmission lines are a well-known topic. 
Of these, aeolian vibration induced by vortex shedding can lead to fretting fatigue 
near the fixed location of conductors [1]. Aeolian vibration amplitudes are usually 
controlled by installing the conductor at a tension below the safe design tension 
(H/w), as well as adding an adequate damping system. Such threshold is meant to 
ensure that fatigue cannot occur during the service life of the conductor. However, 
in practice, an accurate estimation of the residual fatigue life of the conductors is 
desired to support the maintenance of transmission networks. 

The fatigue of conductors is often evaluated by the stress-life (S–N) approach [2], 
while the stress levels are calculated from Yb, the bending amplitude measured at 
a distance of 89 mm from Last Point of Contact (LPC) [3] or  f ymax , the product 
of vibration frequency by antinode amplitude [2]. Due to its close correlation with 
the stress at the uppermost surface of the conductor near the suspension clamp, 
and its accessible location, Yb is widely used as an indicator of fatigue exposure 
severity. Considering a specific span of conductor in service, a profile of Yb, in  
terms of number of cycles at each amplitude levels, is only available through onsite 
measurements. Despite the advance in monitoring hardware [4], it is still impossible 
to install monitoring system to the entire network. Thus, a methodology for estimating 
Yb profiles directly from wind data is required. 

The two most common procedures to calculate aeolian vibrations are dynamic 
analyses and the Energy Balance Principle (EBP). The dynamic analyses, either 
analytical [5, 6] or numerical [7, 8] are not applicable to estimate a Yb profile, 
given that the input wind excitation is spatiotemporally random. The EBP is based 
on experimental measurements of wind energy input and energy dissipated by the 
conductor self-damping and dampers. When applying EBP in practice, the frequency 
of vibration is first determined using the Strouhal number: 

fs = 0.185 v/D (1) 

where fs is the frequency of vibration, v is the wind speed (in m/s) perpendicular 
to the line, and D (in meters) is the diameter of the conductor. An estimate of the 
maximum amplitude corresponding to fs can be obtained from the wind energy input 
and damping curves [9, 10]. However, the EBP is based on wind tunnel results where 
only one frequency is excited, while observations and experimental results show that 
multiple resonant modes are excited simultaneously. 

Since the 1980s, researchers and engineers [11–14] have been attempting to incor-
porate statistical modifications into EBP in order to account for the randomness of 
wind excitation, specifically in terms of turbulence intensity, and Yb profile. As shown
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in sections below, the dominant frequencies of aeolian vibrations are located within a 
narrow band of 10 Hz, which leads to a reasonable assumption that aeolian vibration 
is a stationary narrow-band random vibration [15] within a short time duration T . 
The narrow-band assumption allows for the estimation of the number of cycles from 
the frequency domain when multiple frequencies are excited. Furthermore, assuming 
that the instantaneous vertical displacement yb(t) is a stationary Gaussian process, 
the bending amplitude Yb obtained from yb(t) can be shown to be a Rayleigh random 
variable [16]. In this paper, vibration and wind data from an experimental undamped 
ACSR test line in Quebec, Canada, are analyzed over a 2-month period. Several 
statistics from both vibration and wind observations are estimated and analyzed, and 
a novel method for estimating number of cycles and Rayleigh parameter of Yb from 
wind data is proposed. 

2 Test Setup and Data Structure 

A statistical analysis was performed on experimental data from the Hydro-Québec 
test line located near Varennes, Quebec [17]. The line was a single ACSR Bersfort 
48/7 conductor without any dampers. A brief description of conductor properties is 
provided in Table 1. The experiment was conducted from 2019-09-09 to 2019-10-11 
with a tensile force of 27 kN, which is 15% of the conductor rated tensile strength 
(RTS), and again from 2019-10-30 to 2019-11-29 with a tensile force of 45 kN (25% 
RTS). 

Wind conditions and conductor motion in the 450 m central span (Fig. 1) were  
recorded by multiple sensors. Among those, two data sets are analyzed in this paper: 
(1) yb(t): the relative displacement between clamp and conductor at 89 mm from LPC 
at NW end of the central span; (2) v(t): the horizontal wind speed perpendicular to the 
line direction measured by the nearest anemometer. The anemometer is positioned 
at the line level, 150 m away from the northwest end of the central span. The height 
of the line and the anemometer height vary under different tension forces.

Every 10 min, the wind speed and direction were recorded for 5 min with an 
acquisition rate of 10 Hz, and the displacement was recorded for 71.4 s with an 
acquisition rate of 420 Hz. According to their acquisition speed and duration, the 
start time of every record is adjusted so that both acquisition end simultaneously. 
The wind speed and direction were then converted to the horizontal wind speed 
perpendicular to the line direction. And the displacement data was processed by a 
2–50 Hz bandpass filter to remove the constant term and any high frequency noise.

Table 1 Mechanical properties of conductor 

Designation Stranding Diameter Linear weight RTS 

ACSR Bersfort 48 × 3.32 mm steel, 
7 × 4.27 mm aluminum 

35.56 mm 2.369 kg/m 180.1 kN  
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45kN: 20.78m 
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Fig. 1 Test setup of Hydro-Québec’s Varennes test line

For the analysis, both yb(t) and v(t) were separated into short time intervals. As 
a dynamic system, the vibration amplitude is delayed in response to variations of the 
wind speed due to inertia of the line. Thus, if yb is observed for an interval from t0 
to (t0 + T ), the corresponding v interval is sampled from (t0 − /t) to (t0 + T ). The  
optimal combination was found to be T = 50s and /t = 20s and an example of 
intervals is provided in Fig. 2. More details regarding T and/t are given in Sect. 3.2. 
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Fig. 2 An example of record intervals with T = 50s,/t = 20s. Top: v(t), horizontal wind speed 
normal to the line direction, bottom: yb(t), the relative displacement between clamp and conductor 
at 89 mm from LPC
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3 Statistical Characteristics of Aeolian Vibration 

3.1 Preliminary Analysis 

For each T + /t wind speed interval, the mean and standard deviation (SD) were 
first calculated. A histogram was also constructed and saved for further use. For 
corresponding vibration interval, the amplitudes of vibration (peak and valley in 
each cycle) were first extracted. Since Yb is defined as peak-to-peak amplitude in 
aeolian vibration, the amplitudes are referred as Yb/2 hereafter. The mean and SD 
of normal wind speed are plotted against the maximum amplitude in Fig. 3a, b. A 
larger amplitude level can be observed for the 45 kN line, which agrees with the 
theory that higher tension in the conductor results in lower self-damping. For both 
27 kN and 45 kN cases, the data points at the top-left corner of the figures correspond 
to intervals that are not aeolian vibrations, a clear boundary can be observed at the 
0.025 mm amplitude level.

The Fast Fourier Transform (FFT) was applied to each sampled interval. Let 
y0, . . . ,  yN be the observations in a given time interval for yb, the FFT is: 

F( fk) = 1 
N

|
|
|

EN−1 
n=0 yne

−i2πkn/N
|
|
|, k = 0, 1, . . . ,  N − 1 (2)  

where fk = k/T is the kth frequency components and N = 420T is the total number 
of data points in the interval. The energy contribution of each frequency component 
can be evaluated as 

EC( fk) = F( fk )2 
RM  S  

(3) 

where RMS is the root-mean-square of yb. The frequencies which contribute more 
than 5% to the RMS are considered major frequencies. For  T = 50 s and /t = 20 s, 
the major frequencies are usually limited in a band of 10 Hz (Fig. 3c), and the total 
energy contribution (Fig. 3d) is higher than 50%. The 0.025 mm amplitude level 
boundary can also be seen clearly. 

The major frequencies can be used to estimate the total number of cycles. In the 
time domain, for each interval, a nominal frequency fno is defined as 

fno = observed number of cycles 
T 

(4) 

And a central frequency fc can be calculated from the FFT spectrum as, 

fc =
EF ( fi )2· fi
EF ( fi )2 (5) 

where fi are the major frequencies. This approach was found to be very accurate in 
both 27 kN and 45 kN cases (Fig. 4).
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Fig. 5 The workflow for validation and selection of T and /t 

3.2 The Optimal T and Δt 

The idea of determining nominal frequency from wind histogram was tested in 
conjunction with the search for the optimal T and /t . The algorithm is illustrated 
in Fig. 5 and the results are shown in Fig. 6. For both 27 kN and 45 kN cases, all 
combinations of T ranging from 30 to 60 s, and /t from 0 to 30 s, were tested in the 
following manner: Given a specific T and /t pair, all the aeolian vibration intervals 
(i.e., maximum amplitude > 0.025 mm) were first identified. A randomly selected 
set comprising 80% of the records were used as training set and the remaining 20% 
were used as testing set. For each wind histogram in the testing set, its nearest 
approximation was located in the training set (the orange matrix in Fig. 5) based 
on the root-mean-square difference. Once the nearest wind histogram is located, the 
corresponding FFT spectrum in training set (the blue matrix in Fig. 5) was used as 
the predicted FFT for the testing wind histogram. The central frequencies calculated 
from the predicted FFT spectrum were compared to the nominal frequencies of the 
testing set to check the quality of prediction by the R2 score. The algorithm verified 
that two similar wind histograms always lead to a similar nominal frequency, but 
the optimal duration for the 27 kN and 45 kN were found to be different. Since 
45 kN case is more important, the 50 s + 20 s combination was selected and used 
for both cases for consistency. Further study will be conducted to consider not only 
the tension force, but also the frequency and damping.

3.3 Rayleigh Distribution and Y b 

The Rayleigh distribution has a probability density function (PDF) 

f (x; s) = x 
s2 e

− x2 

(2s2) (6) 

where x is the random variable and s is the distribution parameter. The theorical 
mean, standard deviation and coefficient of variance are 

μ = 
/

π 
2 s, σ  = 

/
4−π 
2 s, cov = 

/
4−π 
π = 0.523 (7)
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Fig. 6 The quality of prediction in terms of R2 between the predicted central frequency and the 
observed nominal frequency

If the instantaneous vertical displacement yb(t) is a stationary Gaussian process 
N (0, σB ), the bending amplitude Yb is a Rayleigh random variable with s = 

√
2σb 

[16]. The maximum, mean and standard deviation of observed Yb are plotted in 
Fig. 7. For both 27 kN and 45 kN case, the max-mean and SD-mean were found 
linearly correlated with very high R2 scores. The constant max/mean and SD/mean 
ratio suggest Yb follows a same distribution despite of the change of tension. Further-
more, the observed cov is 0.5343 for 27 kN and 0.5313 for 45 kN, both agree with 
the theorical value of 0.523, which is a strong evidence supporting the Rayleigh 
assumption. And the max/mean ration (2.73 and 2.70) suggests the maximum value 
is the 99.67% percentile of Rayleigh distribution. 

Similar to the nominal frequency, the Rayleigh parameter s can also be estimated 
from the frequency domain. Given Yb is a Rayleigh random variable with s = √

2σb,
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Fig. 7 Relationship between the statistics of bending amplitude Yb. Left: maximum amplitude 
versus the mean of Yb in each interval; Right: standard deviation of Yb versus the mean of Yb in 
each interval. Simple linear regression line and R2 scores are provided in the plots 
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Fig. 8 Relationship between 
mean of Yb and the 
root-mean-squared value of 
yb (or the left-hand side term 
in Eq. 9) in each slice 

y = 1.5291x + 0.0011 
R² = 0.9646 

y = 1.5061x + 0.0007 
R² = 0.9627 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0 0.05 0.1 

M
ea

n(
Y

b/
2)

 [m
m

] 
RMS(yb) [mm] 

45kN 
27kN 

the expected value of Yb is 

E(Yb) = 
/

π 
2 s =

√
πσb (8) 

On the other hand, Parseval’s theorem indicates that 

/

2
EF ( fi )2 ≈ RM  S[yb(t)] (9) 

where fi are the major frequencies, and RMS stands for the root-mean-square value. 
Since yb(t) is a Gaussian process N (0, σB ), its RMS is equal to its standard deviation 
σB . Combining the above equation yields that 

E(Yb) = √
πσb = √

π RM  S[yb(t)] = √
π 

/

2
EF ( fi )2 (10) 

As shown in Fig. 8, the linear relationship described by the above equations is 
observed in the data. While the ratios (1.5291 for 45 kN and 1.5061 for 27 kN) 
are again very close to the theoretical value of

√
π (≈ 1.77), further study will be 

conducted to address the difference between observed and theorical values. 

4 Conclusion 

Several statistical and probabilistic analyses were conducted on the aeolian vibration 
data. By appropriately selecting a record duration of 50 s + 20 s, it was determined 
that the bending amplitude Yb followed a Rayleigh distribution. Furthermore, the 
two significant parameters, nominal frequency and Rayleigh parameter, were calcu-
lated from the frequency domain. The wind speed histogram was utilized to forecast 
primary frequencies and demonstrated a positive potential for estimating the nominal
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frequency. Future research will focus on refining the estimation of the Rayleigh 
parameter and completing the entire method to evaluate the number of cycles and 
amplitude of vibrations given a certain wind distribution and line configuration. 
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Three-Dimensional Flow 
Characterizations for Yawed 
and Inclined Circular Cylinders 
for Bridge Cable Stays 

Michael Hoftyzer and Elena Dragomirescu 

Abstract The vibrations induced by the wind on inclined cables of cable stayed 
bridges has been well established with both experimental and numerical investiga-
tions following observations made in the field of under construction and in-service 
long span structures. The characteristics and the patterns of the axial flow formed on 
the leeward surface of stay cables inclined and yawed to the direction of main wind 
flow is investigated in this study. To supplement the experimental and numerical work 
in this area, CFD simulations were performed on various cylinder models with cable 
inclination angles of 0°–60°, and yaw angles of 0°–40°. To determine the effect of the 
axial flow on the leeward side of the circular cylinder and the pressure induced on the 
cylinder the pressure coefficients distributions along the downstream surface of the 
circular cylinder model were investigated. From these it was noted that the change 
in the orientation of the cylinder, with both inclination and yaw as described above, 
changes the pressure distribution along with the development of rotational varia-
tions (appearance of rotating flow) of the flow along the leeward side of the circular 
cylinder. A frequency domain analysis was performed for characterizing the flow 
along the leeward side of the cylinder providing additional information compared to 
the time domain analysis. The coherence between the frequency components of the 
lift coefficient, the pressure coefficient along the leeward side of the cylinder, and 
the velocity near the leeward side of the cylinder was calculated, to determine the 
level of interaction between these parameters. 
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1 Introduction 

For long span bridge construction cable-stayed bridges are the preferred option, over 
the more expensive suspension bridge. This has led to the construction of cable-
stayed bridges to expand over the past number of years. As a result of their long 
and slender shape, stayed cables of these long span structures are known to vibrate 
during both the construction phase of the project and/or upon completion and opening 
of these massive bridges. The vibration of the slender cables may be a result of 
several know fluid–structure interactions such as rain-wind effect, wind buffeting 
turbulent effect, parametric excitations, wake effects, or by a combination of these 
above mechanisms. Wind engineers and aerodynamists are of particular interest in 
the stay cables vibration phenomenon, known as dry cable galloping, as it is not 
well understood. Thorough experimental programs have been carried out by several 
researchers to better understand this phenomenon including [1, 5, 6, 8] and others. 
Dry cable galloping, the aerodynamic instability of the structural stay cables, has been 
noted to occur around the Reynolds number of Re = 2.2 × 105 for a cable inclination 
at the angles of 57° and higher [6]. Based on the variation of aerodynamic coefficients 
with the Reynolds number and the inclination of the inclined cable, a formulation has 
been offered for the aerodynamic forces applied to a cable in the attempt to predict the 
galloping condition [7]. A structural damping recommendation has been established 
by FHWA [3] for cable-stayed bridges in an attempt to lower the occurrence of stay 
cable galloping. However, tests performed in the wind tunnel and results obtained in 
field observations on similar cable models tested within the similar Reynolds number 
range have led to different aerodynamic coefficients resulting in different structural 
responses [1, 5, 15]. Increasing the structural damping of inclined stay cables is not 
necessarily effective in reducing the dry inclined cable galloping vibration, which is 
of concern for both bridge designers and bridge builders around the world [11]. 

To assist in better understanding the flow around an inclined circular cylinder, 
many visualization techniques have been used in the laboratory with the assistance 
of flow visualization. In the wind tunnel oil film visualization techniques were used, 
which resulted in noting the presence of an axial flow on the leeward side of the 
cylinder inclined at 42.5° and yaw varying between 0° and 45° for a Reynolds number 
of Re = 1.5 × 105 [8], and also noted in similar studies performed by Matsumoto 
et al. [9] for up to Re = 1.65 × 105. The presence of the axial flow along the leeward 
side of the inclined stay cable has been linked to the on-set wind speed for dry 
inclined cable galloping. The development of the axial flow along the leeward side 
of the cylinder has been connected to the on-set of rain-wind vibration caused by the 
presence of the water rivulet along the length of the stay cable, though the Reynolds 
number and the inclination of the cables for which the two phenomena are different: 
dry inclined galloping, and rain-wind vibration [10]. 

Presented in this paper are some of the results from a study where the flow was 
numerically simulated around an inclined circular cylinder representing a section of 
an inclined stayed cable. This was completed to assist in clarifying the conditions for 
the occurrence of dry cable galloping of inclined cables and a connection between
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the axial flow along the leeward side of the cylinder. The results presented are part 
of a study for cases with Reynolds numbers varying between 1.1 × 105 to 5.5 × 105 
and with cylinder inclination angles (α) of 0° to 60° and yaw angles (β) of 0° to 40°;  
cases α = 60°, β = 0°, φ = 60°; and α = 50°, β = 40°, φ = 60.5°; for Re = 1.1 × 
105 and 3.3 × 105 presented. 

The angle between the flow and the cylinder measured in the plane of the flow is 
defined as the relative angle of attack (φ) between the incoming flow and the cylinder 
[1] where the angle φ is a unique value for a given set of inclination angles (α) and 
yaw angles (β). This is an important parameter in the interpolation of the results as 
it best describes how the wind interacts, or ‘sees’, the cylinder as it approaches and 
influences the resulting flow around the cylinder. 

2 Computational Model 

A closed space rectangular computational domain was employed in this study to 
model the flow around a circular cylinder, as illustrated in Fig. 1 below. The compu-
tational domain consisted of the following dimensions: the flow field extending 30D 
along the length of the cylinder; 22.5D in the direction of flow, 11.25D upstream and 
downstream from the center of the cylinder; and 22.5D in the direction perpendic-
ular to the direction of flow centered around the cylinder. With the inclination of the 
cylinder the height of the domain changes to correspond to the cylinder length of 
30D. Over 3,000,000 cells were used to mesh the entire computational domain with 
over 200,000 elements used to mesh the face of the cylinder surface with a sample 
of the mesh used shown in Fig. 1. High Reynolds numbers of Re = 1.1 × 105 to 5.5 
× 105 were used in this study resulting from wind speeds ranging between 18.0 m/ 
s and 90.3 m/s, These Reynolds number values correspond to the precritical regime 
of the TrBL (Transition in Boundary Layers) flow regime as defined by Zdravkovich 
[14] which is known for the abrupt decrease in drag force with an increase in wind 
speed and is defined as the drag crisis [12, 14].

For this research the LES turbulence model is used throughout the entire domain 
with Smagorinsky model used for turbulent viscosity. The flow perpendicular and 
inclined/yawed to circular cylinders were studied in this research with a cylinder 
diameter D = 0.089 m and cylinder length of 30D = 2.67 m investigated (Fig. 1). The 
resulting aerodynamic characteristics of inclined/yawed slender circular cylinders 
were calculated from the simulations, and the three-dimensional characteristics of 
the axial flow which materialized were visualized. 

The size of the computational mesh was a balance between the convergence rate 
of the model, computational time of the model, and accuracy of the model as outline 
in [4].
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Fig. 1 Computational domain and mesh details

3 Pressure Distribution Around the Cable Model 

To determine the effect of the flow pattern around a circular cylinder on the pressure 
induced at the surface of the cylinder the pressure distributions upstream and down-
stream of the cylinder is shown in Figs. 2 and 3 for the two cases presented: α = 60°, 
β = 0°, φ = 60°, Re = 1.1 and 3.3 × 105; and for α = 50°, β = 40°, φ = 60.5°, Re 
= 1.1 and 3.3 × 105. The pressure distributions are shown in the visualizations on a 
plane parallel to the approaching flow and passing through the center of the cylinder 
for the cylinder’s entire length. 

Fig. 2 Pressure distribution around the cylinder: φ = 60°; α = 60°, β = 0°; (i) Re = 1.1 × 105, 
(ii) Re = 3.3 × 105. The approaching flow is marked with a black arrow
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Fig. 3 Pressure distribution around the cylinder: φ = 60.5°; α = 50°, β = 40°; (i) Re = 1.1 × 105, 
(ii) Re = 3.3 × 105. The approaching flow is marked with a black arrow 

Starting with the well-known case of flow perpendicular to the cylinder, an area of 
high negative pressure develops along the leeward side of the cylinder. The results for 
this case are presented in Hoftyzer and Dragomirescu [4]. The developing vortices 
from the flow around the perpendicular circular leads to this build-up of pressure on 
the leeward face of the cylinder before the flow continues downstream. This variation 
in pressure along the length of the cylinder is due to the known three-dimensionality 
of the flow around circular cylinders perpendicular to the flow for this Reynolds 
number. 

With the cylinder inclined to the flow the pressure surrounding the cylinder 
produces a rotational variation (appearance of rotating flow) of the pressure along 
the length of the leeward side of the circular cylinder. This rotational variation differs 
for different Reynolds numbers and angles of inclination and yaw tested with some 
rotational formations closely spaced while others are more spread along the length 
of the cylinder. 

Examining the pressure distributions for the cases presented in Figs. 2 and 3, 
it is noted that there are regions of weak layer pressure variations along the 
leeward length of the cylinder including a non-periodic variation in the pres-
sure distribution recorded in this area for cases α = 60°, β = 0°, φ = 60°, 
Re = 1.1 × 105, and α = 60°, β = 0°, φ = 60°, Re = 3.3 × 105 shown in 
Fig. 2. 

In contrast, the velocity distribution along the leeward length of the cylinder 
shows rotational formations of low velocity intensity generated along the leeward 
side of the cylinder. These formations are closely spaced for the cases resulting 
in high negative pressures being reported along the leeward side of the cylinder: 
α = 50°, β = 40°, φ = 60.5°, Re = 1.1 × 105 and α = 50°, β = 40°, φ = 60.5°, Re 
= 3.3 × 105 shown in Fig.  3 for very similar angle of attack to the cases presented 
in Fig. 2: α = 60°, β = 0°, φ = 60°.



114 M. Hoftyzer and E. Dragomirescu

4 Velocity Distribution Around the Cable Model 

The velocity distribution is shown on the same plane defined above for the flow field 
upstream and downstream of the circular cylinders through the center of the cylinder 
for its entire length as shown in Figs. 4 and 5 for the previously defined cases. This 
was completed to aid in establishing the effect the flow pattern has on the pressure 
induced at the surface of the cylinder, in particular the flow along the leeward side 
of the cylinder. 

Rotational formations are noted in the velocity distributions presented are of low 
velocity intensity along the leeward side of the cylinder. These formations are low 
intensity rotational formations with more widely spaced with gaps between them for 
areas of lower negative pressure: α = 60°, β = 0°, φ = 60° for both Reynolds number 
presented, Re = 1.1 × 105 and Re = 3.3 × 105, as shown in Fig. 4.

Fig. 4 Velocity distribution around the cylinder: φ = 60°; α = 60°, β = 0°; (i) Re = 1.1 × 105, 
(ii) Re = 3.3 × 105. The approaching flow is marked with a black arrow 

Fig. 5 Velocity distribution around the cylinder: φ = 60.5°; α = 50°, β = 40°; (i) Re = 1.1 × 105, 
(ii) Re = 3.3 × 105. The approaching flow is marked with a black arrow 
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These formations are closely spaced for the cases where high negative pressures 
were reported: α = 50°, β = 40°, φ = 60.5°, Re = 1.1 × 105 and α = 50°, β = 40°, 
φ = 60.5°, Re = 3.3 × 105 shown in Fig. 5. 

5 Pressure Distribution on the Leeward Side 
of the Cylinder 

As noted above, the pressure distributions within the flow shows the development 
of a rotational variation of the flow along the leeward side of the circular cylinder. 
This rotational flow variation changes along the length of the circular cylinder with 
the change in Reynolds number, angle of inclination (α), and yaw of the cylinder (β) 
tested. Some of the rotational formations are noted to be closely spaced while others 
spread out widely over the length of the cylinder. 

For the flow perpendicular to the cylinder, α = 0°, β = 0°, φ = 0°, Re = 1.1 and 
3.3 × 105 there were alternating pressures from negative to positive noted without 
presenting any identifiable pattern along the length of the cylinder [4]. This is not 
surprising with the well-known variation in pressure distribution along the length of 
the cylinder is due to the three-dimensionality of the flow. 

With the entire leeward surface of the inclined and/or yawed cylinder presented, 
it is noted that the width of the pressure distribution along the leeward side of the 
cylinder also varied for the different cases. The pressure distribution varied as follows: 
from a narrow band for some cases, to a relative fairly wide band (for the cases α = 
60°, β = 0°, φ = 60°, for Re = 1.1 and 3.3 × 105; and α = 50°, β = 40°, φ = 60.5°, 
for Re = 1.1 and 3.3 × 105; presented here in Figs. 6 and 7), or up to very wide band 
for other cases.

Small areas of low-pressure intensity, alternating with high intensity pressure 
along the length of the cable, formed wave shapes for the cases α = 50°, β = 40°, φ 
= 60.5°, for Re = 1.1 and 3.3 × 105, as shown in Fig. 7. 

A possible change in flow regime may be encountered with the noted differences 
in the pressure distributions and associated flow patterns around the cylinder. These 
changes in regimes include variations in flow properties such as lower pressure along 
the leeward side of the cylinder, higher pressure along the leeward side of the cylinder, 
and altering between lower and higher pressure along the leeward side of the cylinder. 

6 Cross-Coherence 

In most of the experimental and numerical investigations carried out on the flow 
around circular cylinders the time domain analysis is the primary focus in evaluating 
the study results including the vortices in the wake of the inclined circular cylinder.
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Fig. 6 Pressure distribution on the leeward side of the cylinder model: φ = 60°; α = 60°, β = 0°; 
(i) Re = 1.1 × 105, (ii) Re  = 3.3 × 105 

Fig. 7 Pressure distribution on the leeward side of the cylinder model: φ = 60.5°; α = 50°, β = 
40°; (i) Re = 1.1 × 105, (ii) Re = 3.3 × 105

This is some of the analysis carried out and presented as part of this study. The char-
acteristics of the wake velocities behind the inclined circular cylinders are presented 
in the flow visualizations above to provide additional information to that provided 
by the time series for the cylinder wake velocities. By using the frequency domain 
analysis additional information about the wake vortices may be obtained [2]. 

To evaluate the results of this study in the frequency domain, the cross-coherence 
is calculated between coefficient of lift, the pressure coefficient along the leeward side 
of the cylinder, and the velocity fluctuation along the leeward side of the cylinder. It 
is assumed that the sampled variables used are all ergodic processes. The bispectrum
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is used in statistics to search for nonlinear interactions and bicoherence builds on 
this as a squared normalized version of the bispectrum. The relationship between 
three sets of variables is measured by the cross-bicorrelation in the time domain [13] 
and gives an indication of the persistence of that interaction. The measurement in the 
frequency domain of such interaction is presented as the cross-bispectrum density. In 
the use of this analysis, the three data sets are segmented into possibly overlapping 
records where the mean from each record is removed, and then the time-domain 
window is applied. 

For the same four cases outlined above, the results of the cross-coherence between 
the coefficient of lift, the pressure coefficient along the leeward side of the cylinder, 
and the velocity fluctuation along the leeward side of the cylinder are presented in 
Figs. 8 and 9. The lower the cross-coherence present between the variables the darker 
the colour shown, and the lighter the colour the more intensive coherence is between 
the variables for the given Strouhal (St) number, as shown in the colour scale in the 
right of the figures below. The cases presented in this section show varying levels 
of cross-coherence between the three variables with the cross-coherence intensity 
increasing with the increase in Reynolds number including more Strouhal numbers 
taken into consideration with the increase in Reynolds number. 

The results for the overall study were categorized under three cases, low 
non-linear interaction, intermediate non-linear interaction, and high non-linear 
interaction, as illustrated by the cross-coherence. The case α = 50°, β = 40°, φ = 
60.5°, for Re = 1.1 × 105 presented shows low non-linear interaction, and α = 60°, 
β = 0°, φ = 60°, for Re = 1.1 and 3.3 × 105, and case α = 50°, β = 40°, φ = 60.5°, 
for Re = 3.3 × 105 presented of the inclined circular cylinder shows intermediate 
non-linear interaction between the three variables mentioned.

Fig. 8 Cross-coherence between CL-Pressure-Total Velocity: φ = 60°; α = 60°, β = 0°; (i) Re = 
1.1 × 105, (ii) Re  = 3.3 × 105
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Fig. 9 Cross-coherence between CL-Pressure-Total Velocity: φ = 60.5°; α = 50°, β = 40°; (i) Re 
= 1.1 × 105, (ii) Re  = 3.3 × 105

7 Conclusions 

The focus of the current study is to numerically investigate the flow behaviour around 
the inclined and yawed circular cylinders. The objective was to clarify the occur-
rence and properties of the axial flow along on the leeward side of an inclined 
circular cylinder with the influence this could have on dry inclined cable galloping 
phenomenon of inclined cables for cable-stayed bridges. Several cases of inclined 
(α) and yawed (β) circular cylinders with angles between 0° and 60°, and 0° and 40° 
respectively were studied with the results for cases α = 60°, β = 0°, φ = 60°; and 
case α = 50°, β = 40°, φ = 60.5°; with Reynolds numbers of 1.1 × 105 and 3.3 × 
105 presented here. 

The pressure distributions for the cases presented noted that regions of weak 
layers of pressure variation along the leeward length of the cylinder including a 
non-periodic variation in the pressure distribution, or rotational formations of low 
velocity intensity generated along the leeward side of the cylinder with closely spaced 
formations cases resulting in high negative pressures. 

The velocity distributions show the rotational formations of low velocity intensity 
generated along the leeward side of the cylinder, or low intensity rotational formations 
with widely spaced gaps between them noted in areas of lower negative pressure. 
These formations are closely spaced for the cases where there are high negative 
pressures. 

When capturing the pressure distribution along the length of the leeward side of 
the cylinder some cases showed low-pressure intensity alternating with high intensity 
pressure along the length of the cylinder. Continuous shear layers detachment occurs 
as the flow is directed along the length of the cylinder creating lower pressure. 

The cross-coherence results are presented above between the coefficient of lift, the 
pressure coefficient along the leeward side of the cylinder, and the velocity fluctuation 
along the leeward side of the cylinder are presented.
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The results presented in the current paper add to the database of flow visual-
izations for flow around the inclined circular cylinder to help understand the flow-
structure interaction for inclined cables of cable-stayed bridges. Further clarification 
is required for the influence of the yaw angle for flow around a circular cylinder 
inclined to the flow especially around the relative angle of 60°. 
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Propagation of the Uncertainty 
in the Dynamic Behavior of OPGW 
Cables Under Stochastic Wind Load 

Damián Campos , Andrés Ajras , and Marcelo Piovan 

Abstract In power transmission lines, conductors and guard wires are subjected to 
different types of mechanical vibrations, such as galloping, aeolian vibrations, and 
in the case of conductor bundles, sub-span oscillations. In this paper, a calibrated 
finite element model (FEM) is developed to evaluate the dynamic response due to 
aeolian vibrations of a single OPGW (Optical Ground Wire) cable with Stockbridge 
dampers. The model included the geometric, material, and damping characteristics 
of the OPGW cable and dampers, calibrated in previous work. The wind power input 
was simulated using a stochastic wind model based on Wiener processes, which 
allowed for a more realistic representation than deterministic models available in the 
literature. In addition, a Polynomial Chaos-Kriging (PCK) metamodel of the FEM 
model was constructed to reduce the computational cost of the model evaluation. The 
uncertainty of the wind load was propagated through the metamodel to obtain the 
distributions of the variables regarding the dynamic response, including the antinode 
and bending amplitudes, as a function of the Von Karman vortex shedding frequency. 
This was achieved using a Monte Carlo simulation approach, in which a large num-
ber of random simulations based on the wind model probability distribution were 
generated. The results were aggregated to obtain the distributions of the variables of 
interest. Field measurements were recorded with specific equipment to validate the 
simulation results. The results obtained in this study provide valuable insights into 
the dynamic behavior of cable-damper systems under aeolian vibrations, which are 
of great importance in their robust design. 
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1 Introduction 

The Optical Ground Wire (OPGW) cables protect the phase conductors of overhead 
power transmission lines from two main problems: high discharge currents caused by 
lightning strikes and instantaneous current surges generated by short circuits or faults. 
They are also used to provide data transmission for telecommunication purposes [ 1]. 
Overhead transmission lines are the mechanical structures with the most considerable 
extension of slender and flexible elements, which makes the cables highly exposed 
to wind. Under the action of this phenomenon, cables can vibrate and oscillate due 
to different types of aerodynamic and aeroelastic instabilities [ 2]. 

The problem of wind-induced vibration can be analyzed, in principle, according 
to the configuration of the line. If the line has only one conductor per phase or in 
the guard wire, the fundamental cause of vibration is vortex shedding, called aeolian 
vibration. If a bundle of conductors per phase forms the line, the primary cause of 
the oscillation is the vortex wake effect, known as sub-span oscillations. Finally, 
galloping is a self-excited vibrational phenomenon characterized by low frequency 
and large amplitude. Its occurrence is commonly associated with cables with surface 
ice formation in winter. 

Due to the stochastic nature of wind speed, random phenomena arise that make it 
difficult to evaluate. Mainly, they produce harmful dynamic effects and damage to the 
lines. In the particular case of aeolian vibration, being the most frequent phenomenon, 
without proper protection, it causes fatigue problems, which can lead to breakage 
in the cables themselves and in the fittings and supports, and can also cause failures 
due to wear of the fittings. In order to mitigate these harmful effects and prevent 
probable failures, it is necessary to reduce vibrations and dynamic stresses within 
tolerable limits, which is achieved by increasing the damping of the system. This can 
be achieved by installing energy absorbers or Stockbridge-type dampers in the line 
[ 3]. 

Generally, in the design of transmission lines, the manufacturer recommends a 
specific type of damper and specifications on the distances of its positioning on the 
cable, guaranteeing a reduction of vibration amplitudes to the required levels. In 
this sense, projects should contemplate higher requirements for vibration damping 
employing Stockbridge dampers since the fiber optic cable is more sensitive to the 
consequences of vibrations due to the micro-curvatures of the fibers that occur dur-
ing oscillations with the consequent possibility of signal attenuation. A vibration 
modeling and study are required to limit the maximum values and to set the damping 
conditions. In addition, the conditions for measuring vibrations after commissioning 
must be established to verify the calculations performed. 

In this paper, a energy balance model based on a non linear finite-element for-
mulation was used to analyze the dynamic behavior of a system composed of a 
single OPGW cable and Stockbridge dampers. In this case, since the finite element 
model (FEM) was calibrated in previous works, we intend to analyze the propaga-
tion of uncertainty in the system’s response to the excitation of a stochastic wind
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model. In order to alleviate the computational burden and propagate uncertainty 
more efficiently, the proposed simulation model is replaced by a metamodel based 
on Polynomial-Chaos-Kriging (PCK). 

2 Deterministic Model 

The Energy Balance Method (EBM) is the most popular concept used to predict the 
vibration of transmission lines. This method states that the cable self-damping and 
the dampers dissipate the wind’s energy transferred by the wind to the conductor. 
The mathematical interpretation is given below: 

.PW = PSD +
E

n

(Pd)n (1) 

Where (P. W ) is the wind power input, (P.SD) is the power dissipated through cable 
self-damping, and (P. d ). n is the power dissipated by the nth damper. 

When implementing the EBM, a fundamental assumption is that steady-state 
cable vibration is a sinusoidal standing wave of the mode corresponding to the lock-
in frequency and requires some experimental characterization of system parameters 
as indicated by International Standards. Several researchers have developed EBM-
based calculation methods to predict the aeolian vibration level of the combined 
cable and damper system [ 4– 6]. The EBM is simple to implement and does not 
involve a high computational cost. Nonetheless, this method is restricted since it 
does not consider the following issues: cable flexural rigidity, contributions from 
other vibration modes, traveling-wave effects, and damper mass. This implies that 
the cable is modeled as a string instead of a beam. Consequently, it can considerably 
influence the amplitude of cables vibration, affecting the clamps’ bending stress. 
Also, the maximum amplitude of vibration is overestimated because of the negligible 
stiffness. 

The motion equation, where the displacement vector is denoted by . u, can be 
written in the following form: 

.[K]u + [C]u̇ + [M]ü = F (2) 

where [K] and [M] are stiffness and mass matrix, whereas [C] is the Rayleigh 
damping matrix, whose calculation is explained later. The stiffness matrix has two 
main parameter.E I and. T that can affect the dynamics of the whole structure. Finally, 
the F term relates to the system excitation force associated with the wind load. 

In this work, the motion of the cable and the damper system is solved numerically 
using the finite element method (FEM), where the cable is modeled as a simply 
supported very slender beam under axial tension (. T ). The Euler-Bernoulli theory is 
applicable since the ratio of the length of the cable to its diameter (. D) is smaller than  
the span length. The mass per unit length (. ρA), is uniform across the cable span, since
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the diameter is constant. The model accounts for the two-way coupling between the 
cable and the damper, the bending stiffness of both the damper and the cable, and 
the mass of the two counterweights of the damper [ 7]. 

The bending stiffness (.E I ) of the OPGW cable and the damper messenger cables is 
an important parameter in studying the dynamic response. Several models of the non-
linear variation of this parameter with respect to the curvature have been developed [ 8, 
9]. The non-linearity of bending stiffness creates a hysteresis that dissipates energy. 
In addition, the self-damping with hysteric characteristics depends on other factors 
such as the amplitude of vibration and axial tension. 

To account for the self-damping of the cable, a Rayleigh damping model was 
used alongside the constant bending stiffness model. This damping model is a linear 
combination of the mass and stiffness matrix of the finite element method equations 
of motion (Eq. 3). 

.[C] = α[M] + β[K] (3) 

Where. α and. β are the Rayleigh damping coefficients related to the modal damping 
and frequency of the cable, respectively [ 10]. 

In order to solve the equations of motion of the system, a FEM model was devel-
oped using the open source CodeAster software [ 11]. The geometry proposed of the 
cable was a one dimensional discretization, where a density function was applied in 
order to increment the number of finite elements near the clamps. A non-linear solver 
was applied to evaluate the dynamic evolution of the cable. Energy balance equa-
tions are established for the Newmark time integration algorithm, forming a sequence 
applicable to balancing internal forces due to inertia, damping, and stiffness with the 
external forces constituting the wind load [ 12]. 

3 Uncertainty Propagation 

Uncertainty propagation usually requires a large number of iterations of the deter-
ministic model (. M) for different values of the input parameters, e.g., by a Monte 
Carlo simulation procedure. In order to reduce the computational cost associated 
with this process, it was considered necessary to implement a metamodel to evaluate 
the system’s dynamic behavior. In particular, Kriging models have gained popularity 
in recent years thanks to their great flexibility to approximate responses with a high 
degree of nonlinearity by providing statistical information on the error made in the 
prediction [ 17]. The Kriging feature is to interpolate the local variations of the com-
putational model output as a function of neighboring experimental design points. In 
contrast, Polynomial Chaos Expansions (PCE) approximate the global behavior of 
.M using a set of orthogonal polynomials [ 18]. 

Combining the two techniques is intended to capture the global behavior of the 
computational model with the set of orthogonal polynomials in the trend of a uni-
versal Kriging model and the local variability with the Gaussian process (.σ2). This 
approach, called Polynomial-Chaos-Kriging (PCK), combines these two different
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metamodeling techniques and their characteristics and can be expressed in polyno-
mial notation as follows: 

.M ≈ M(PCK )(x) =
E

α∈A

aαψα(x) + σ2Z(x) (4) 

Where.
E

α∈A aαψα(x) is a weighted sum of orthonormal polynomials describing the 
mean value of the Gaussian process, and .A is the set of polynomial indices. While 
.Z(x) is a stationary Gaussian process of zero mean and unit variance, defined by 
an autocorrelation function .R

(||x − x '|| ;φ
)
and parameterized by a set of hyperpa-

rameters . φ. In brief, the construction of a PCK metamodel consists of two parts: the 
determination of the optimal set of polynomials contained in the regression part (i.e. 
truncation. A) and the calibration of the correlation hyperparameters. φ, as well as the 
Kriging parameters .

{
σ2, aα

}
. Finally, the model uncertainty was propagated by the 

generation of Monte Carlo samples. 

4 Wind  Model  

As the function changes with time, we regard the force generated by the shedding of 
vortices as a stochastic process. There are numerous stochastic processes available to 
represent uncertainties in the flow field, which affect the system’s external excitation. 
The normalized mean power input can be calculated using the time history signal of 
the signal force, as stated in the following equation [ 13]: 

.
W̄

f 3D4
= func

( u

D

)
= 1

nTS

1

f 3D4

{ t+nTS

t
FL(t)u̇(t)dt (5) 

Where.W̄ is the mean power input,. n is the number of cycles in the time signal,.Ts the 
period,.FL(t) the time history of the lift force and.u̇(t) the cable velocity. In addition, 
the uncertainties around the wind power input due to the flow field are modeled as a 
bounded, weakly stationary, narrowband random process .η(t) given [ 14]: 

.
FL = 1

2
ρU 2DCLη(t)

η(t) = cos(vt + ξW (t) + γ)
(6) 

Where . v is the central vortex shedding frequency, .W (t) is the standard Wiener 
process,.CL is the non-dimensional lift coefficient,. U is the free stream velocity,. ρ the 
flow density, and. ξ is the strength of the random process. The constant. γ corresponds 
to the phase of the vortex-induced excitation. The lift coefficient is obtained from 
the following relationship [ 15]: 

.CLr = CLr
2 (7)
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Fig. 1 Probability Density 
Function (PDF) of parameter 
. e and calculated KDE 

Where. r is the parameter that defines the wind velocity variations in the synchronous 
field. Assuming a harmonic motion and a linear relationship between .u/D and . CL

by the proportionality constant.KL , the following expression is obtained for the wind 
power input, for . uD < 0.3: 

.

e = πρKL

nTs S2t

{ t+nTs

t
η(t) cos(2π f t)dt

func
( u

D

)
= e

( u

D

)2
(8) 

The parameter. e is dependent of the following random variables. The phase constant 
. γ is a uniform random variable: .γ ∼ U [0, 2π]. In addition, .St is Strouhal num-
ber and is assumed to distribute uniformly between values from the literature, such 
as .St ∼ U [0.18, 0.2]. Indeed, the .KL constant is set as a uniform random variable 
.KL ∼ U [3, 3.6], based on the experimental data from the literature [ 15]. The stochas-
tic process samples are generated using the Monte Carlo simulation approach, gen-
erating a total of 100,000 samples. The Probability Density Function (PDF) of . e is 
presented and the corresponding Kernel Density Estimation (KDE) (see Fig. 1). The 
stochastic model is compared with the literature wind power models (see Fig. 2). 

5 Case Study 

The case study focuses on the OPGW cable of a high voltage power line (.500kV ) 
installed in the northern Patagonian region of Argentina, with more than 30 years 
of commercial operation. The characteristics of the OPGW cable and the dampers 
correspond to those described previously. The cable is composed of two layers of
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Fig. 2 Stochastic wind model contrast with specific power input literature data [ 16] 

aluminum wrapping steel and aluminum alloy wire and a core where an aluminum 
casing surrounds several layers of polymeric materials and optical fiber wires. The 
Stockbridge dampers installed in the line are symmetrical with 0.64 kg of weight 
per mass. The parameters for the FEM model for the dynamical properties of the 
cable and the damper were calibrated in previous work by a Bayesian Inversion 
with experimental data [ 19, 20]. The analysis contemplates a span with a length of 
500 m in which it is proposed the installation of two dampers at each end of the span 
(four dampers in total), at a distance of 0.6 m from the suspension clamps and 0.6 m 
between subsequent dampers. In this setup, a tension load of 10.% UTS is specified. 

The measurements of aeolian vibrations were made with a VIBREC 500 [ 21] 
aeolian vibration sensor and recorder (see Fig. 3). The processing of information was 
made through specific software. The recorder measures the differential displacement 
(vertical movement) between the suspension clamp and the cable during vibration 

Fig. 3 VIBREC 500 installation detail (a) VIBREC 500 sensor, (b) Input arm of the recorder, (c) 
OPGW cable and Stockbridge damper system, and (d) Suspension clamp
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activity. The input arm of the recorder is secured to the cable at a specified distance 
from the suspension hardware. In this sense, the IEEE recommends 89 mm distance 
from the last contact point of the cable with the bolted suspension clamp and the 
vibration sensor. In this case, given the type of clamp installed (armor rod), the 
sensor is installed 200 mm from center to clamp, standardizing the measurement to 
89 mm from the correction proposed by the specific measurement software. 

Recording periods have a three-week established duration. Because of this, con-
tinuously measuring vibrations becomes unfeasible due to hardware limitations. The 
recorder must then take 10 s measurements every 15 min to provide the desired res-
olution in the data [ 22]. The technical specifications consider maximum amplitude 
values to 150 .. µm peak-to-peak for 95% of the total cycles registered and 250 .. µm 
peak-to-peak for the remaining cycles. The analysis of the aeolian vibrations records 
showed that the maximum value reached in 95% of cycles was 125.. µm peak-to-peak. 

6 Results and Discussion 

This section presents the results obtained from the application of the proposed 
methodology in the case study. The vibration amplitude for the standardized .Yb is 
presented and contrasted with the field measurement records. Uncertainty propaga-
tion due to stochastic wind excitation is observed in the band up to the.95% percentile 
of the PCK metamodel. Good agreement with the records is seen, particularly for 
the excitation frequencies that produce the maximum displacements (See Fig. 4). 

Some of the observed discrepancies may be due to the following phenomena. 
The modeling of the cable is done for a stationary condition, however, due to the 
complex effects between the turbulence of the flow and the cable-wind interaction, 
this condition is hardly encountered, and multiple frequencies are excited. Also, the 
calibration of the Stockbridge damper properties was performed using data obtained 
on a shaker and not in situ on the cable line. 

Due to the high computational cost of the model evaluation, the design of the 
experiment for the construction of the metamodel contemplated the implementation 
of a Docker container which was evaluated in a parallelized configuration on an 
on-demand cloud computing provider. The number of model evaluations for the 
metamodel construction was 1000, and demanded a computational cost of 10,800 
vCPU processing hours. By means of the proposed parallelization, the results were 
obtained in a few hours.
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Fig. 4 Uncertainty propagation of vibration amplitude (.Yb at 89 mm) as a function of frequency. A 
colormap (RdPu) is applied from increasing percentiles up to the 95th, where the strongest shade 
of purple color corresponds to the median for every frequency 

7 Conclusion 

This work proposes a stochastic wind model based on the specific power absorbed as 
a function of vibration amplitude. Its implementation allows propagating the uncer-
tainty associated with the large scatter evident in the curves obtained by various 
research groups over the last decades (see Fig. 2). 

The methodology is a powerful tool to evaluate models of increasing complexity 
by studying the interaction of the stochastic variables involved. The application 
of surrogate modeling techniques considerably reduces the cost of assessing the 
proposed models, making this analysis technically feasible. In short, the methodology 
provides more accurate information about the parameters of interest for designing 
and verifying power transmission lines.
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Investigation of Ice Accretion Conditions 
in Observed Galloping Events 
of Four-Bundled Conductor 

Saki Taruishi and Hisato Matsumiya 

Abstract Ice accretion characteristics and the relationship between ice accretion 
and tension fluctuations caused by galloping were investigated based on 28 icing 
events observed in the test line located on a mountain ridge in Japan. The details of 
three significant ice accretion and galloping events that were well available from the 
data and photographs regarding ice accretion were discussed. Observation results 
showed that ice accretion grows when the temperature ranges from –2.0 to –0.5 °C. 
It melts at a temperature above –0.5 °C or a humidity beneath 100%. The wind speed 
during galloping is greater when the ice accretion height is greater. Additionally, 
galloping becomes less steady when the ice accretion shape is rougher. The average 
tension correlates well with the ice accretion amount during no galloping and weak 
wind conditions. Building a method for removing the influence of wind from the 
average tension is also important for estimating the ice accretion amount of the event 
without weak wind. 

Keywords Ice accretion · Galloping · Four-bundled conductor · Field observation 

1 Background and Objective 

The galloping of transmission lines is a self-excited vibration that occurs under ice 
and snow accretion and strong wind. Galloping may lead to severe electrical faults and 
equipment fatigue. To prevent galloping, various galloping countermeasure devices 
are developed and verified [1]. However, this is costly if countermeasures are installed 
on all conductors. It is important to clarify the galloping occurrence mechanisms 
and conditions (for example, wind speed and direction; and amount and shape of ice 
accretion) to identify the conductors requiring galloping countermeasures.
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For understanding galloping characteristics, various galloping observations were 
conducted, for example, observations of various single conductors by Rawlins [2] and 
observations of various single and bundle conductors by Lilien [3]. The authors also 
have been conducting long-term galloping observations of four-bundled conductors 
that are frequently observed galloping in Japan [4, 5]. The relationship between 
the wind speed and tension fluctuation caused by galloping determined through 
observations showed that galloping occurred when the wind speed exceeded a specific 
value during ice accretion. In addition, the tension fluctuation reached the maximum 
value at a particular wind speed. However, galloping did not always occur, even under 
the above conditions. Galloping seems to be influenced not only by the wind speed 
and existence of ice accretion but also by the ice amount and shape. 

This study investigated the relationship between the ice accretion conditions and 
tension fluctuations caused by galloping based on ice accretion events observed in 
two winter seasons. The observation was conducted in the “Tsuruga test line” in 
Japan, which was the same test line used in [4] and [5]. 

2 Observation Method 

Figure 1 shows the location and an overview of the Tsuruga test line. It is located in 
central Japan, approximately 10 km from the Sea of Japan. The towers are built on 
a mountain ridge, approximately 700–800 m above sea level. Because of this terrain 
condition, ice accretion and galloping of the conductor are frequently caused by 
strong north winds during the winter. The observation target in this study was Phase 
C in Fig.  1. It consisted of four-bundled aluminum steel-reinforced ACSR conductors 
with a nominal cross-sectional area of 410 mm2, which are normally used in Japan. 
The span length, sag, and height difference between two support points were 345, 
10.8, and 95 m, respectively. The support points are at the arm of the tower, 40 m 
from the ground. 

Fig. 1 Location and overview of Tsuruga test line
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Observations were conducted from 2018 to 2019 (fiscal years). In this period, 
normal spacers, which are always installed on bundled conductors to keep distance 
between sub-conductors, were installed in Phase C. It should be noted that galloping 
countermeasure devices were not installed in this period. 

Figure 2 shows the layout of the measurement equipment. The data presented 
in Table 1 was obtained from this equipment. From tension data measured during 
each ice accretion event, tension fluctuations were calculated as the difference of the 
maximum and minimum tension in 10 min data. Tension data averaged for the four 
conductors, that represents the tension per one sub-conductor, with a band-pass filter 
and cut-off frequencies of 0.6 and 0.8 Hz were used because this value is proven 
to be correlated with the peak-to-peak vertical amplitude caused by galloping [5]. 
Additionally, average wind speeds orthogonal to the direction of the span (orthogonal 
wind speed) were calculated from the 10 min wind speed and direction data. 

Ice accretion characteristics (for example, the time when the ice accretion starts 
and stops growing, the time when the dropping or melting of ice occurs, and ice 
accretion height to conductor diameter and shape) were estimated using photographs 
captured by a camera installed at the 1/4 position of the span. Although the ice 
accretion characteristics should be measured at various positions of the span in the 
future, the relationship between galloping and ice accretion characteristics can be 
evaluated to a certain extent by comparing the data in various icing events obtained 
through the same position. Note that the ice accretion characteristics were unavailable 
at night (from 17:36 to the next 6:36); and when the conductors were not visible due 
to poor weather conditions. Additionally, the average tension (increment from the 
no-ice condition), used as an indicator of the ice accretion amount in the author’s 
previous research [4], is calculated to evaluate the relationship with ice accretion 
characteristics.

Fig. 2 Layout of the 
measurement equipment 

Table 1 List of observation data 

Equipment Sampling frequency 

Tension Tension meters 20 Hz 

Wind direction and speed Anemometer 20 Hz 

Temperature and humidity Thermo-hygrometer Every 10 min  

Image of ice accretion Cameras Every 10 min (6:36–17:36) 
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3 Observation Result 

3.1 Overview of Observed Ice Accretion Events 

From two winter observations, 28 ice accretion events were obtained. They were 
determined based on the tension and photograph data. Only in-cloud icing occurs in 
these events. Figure 3 shows the relationship between the average orthogonal wind 
speeds and tension fluctuations in all events. Galloping starts to occur at wind speeds 
above 5 m/s. The tension fluctuation gradually increases as the wind speed increases 
and reaches a peak value when the wind speed is around 10 m/s. At wind speeds above 
10 m/s, the tension fluctuation decreases as the wind speed increases, although some 
examples show that the tension fluctuation exceeds 8 kN around the wind speed of 
15m/s. Generally, the average orthogonal wind speeds and tension fluctuations have 
the same relationship as in previous research [5]. 

Of many observed events, three typical ice accretion and galloping events are 
emphasized in Fig. 3. Table 2 shows their characteristics. The date of each event was 
determined by the time just before ice accretion started and after the ice completely 
dropped. The icing height was estimated by the photograph of the ice accretion that 
seems to be closest to the condition during galloping. The icing height was averaged 
for the two sub-conductors on the leeward side, in which the whole ice accretion was 
visible. These events have similar characteristics regarding the maximum tension 
fluctuation, approximately 8 kN. However, the ice height and wind speed at the 
maximum tension fluctuation depend on the event.

In Sect. 3.2, the details of icing and the galloping process in these events and the 
relationships between icing and galloping characteristics will be explained using the 
meteorological and tension data and photographs of ice accretion on the conductors.

Fig. 3 Relationship between 
the average orthogonal wind 
speeds and tension 
fluctuations 
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Table 2 Typical ice accretion and galloping events 

No Date Icing height 
at 1/4 span 

Max. tension 
fluctuation [kN] 

Wind speed at 
max. Tension 
fluctuation [m/s] 

1 2019/01/16 08:30 
–01/17 11:00 

0.4D 7.9 9.5 

2 2019/02/16 11:30 
–02/18 08:30 

0.7D 7.7 11.7 

3 2020/01/21 06:30 
–01/21 21:00 

0.4D 7.7 11.1 

* D: conductor diameter

3.2 Ice Accretion and Galloping Characteristics in Typical 
Three Events 

Event No. 1 (2019/01/16–17) Figures 4 and 5 show the observation data and process 
of icing of event No.1. The left side is the upwind side in the following photographs 
of ice accretion. Icing started at around 8:30 (see Fig. 4a) when the temperature and 
humidity were –0.8 °C and 100%, respectively. It continued until around 15:00 (see 
Fig. 4b), when the temperature decreased to –2.0 °C. Then, the temperature continued 
to decrease, reaching the minimum value of –2.5 °C at 21:00. In contrast, ice accretion 
stopped growing from 15:00 and remained constant until the next morning (see 
Fig. 4c). Ice accretion started to melt at 10:00 when the temperature increased to –0.5 
°C and had completely dropped by 11:00 when the temperature increased to 0 °C (see 
Fig. 4d). The humidity remained 100% until the end of the event. Additionally, the 
ice accretion angles were always diagonally downwards towards upwind directions.

Galloping started at around 13:00 when the wind speed was 9 m/s and stopped at 
around 13:30 when the wind speed decreased and the ice accretion slightly increased. 
However, galloping started again at around 15:00 and it continued until 17:00 while 
the wind speed decreased to around 7 m/s and the ice accretion increased more. 
According to the previous study, galloping occurs when the rotational angle of the 
conductor reaches a certain value due to the action of the moment of ice accretion and 
buffeting caused by wind [4]. It indicates that the rotational angle of the conductor 
reached the same angle in the above two conditions. 

The average tension was near 0 kN at 8:30 before the icing started, and it gradu-
ally increased until 20:00 although the ice accretion stopped growing at 15:00. This 
phenomenon is owing to galloping and buffeting. Galloping seems to increase the 
average tension because it is larger during galloping than a previous instance. Addi-
tionally, buffeting caused by wind decreases the average tension. This is because the 
wind blows upwards at an angle of around 10  ̊ from the horizontal direction in the 
Tsuruga test line and it lifts up the conductors. The average tension increased until 
20:00 because the wind speed decreased from 15:00 to 20:00. Although the average



138 S. Taruishi and H. Matsumiya

Fig. 4 Observation data of event No.1 (2019/01/16–17) 

Fig. 5 Process of ice accretion of event No.1 (2019/01/16–17)
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tension correlates with the ice accretion amount, it is affected not only by the ice 
accretion amount but also galloping and buffeting. 

Event No. 2 (2019/02/16–18) Figures 6 and 7 show the observation data and 
process of ice accretion of event No. 2. Icing started at 11:46 (see Fig. 7a) when 
the temperature and humidity were –0.3 °C and 100%, respectively. Ice accretion 
continued growing until at around 17:36 (see Fig. 7b) and it seems to increase a little 
at night because ice accretion height in the next morning became a little greater (see 
Fig. 7c). Ice accretion gradually melted on 2/17 (see Fig. 7d) because of solar radiation 
although the temperature was in the range of –3.0 to –2.0 °C. On 2/18, ice accretion 
melted further (see Fig. 7e) and completely dropped at 8:36 (see Fig. 7f) when the 
temperature increased to –0.2 °C. As with event No. 1, the humidity kept around 
100% and the ice accretion angles were always diagonally downwards towards an 
upwind direction. 

Galloping occurred from 2/16 17:00 to 2/17 2:00 when the wind speeds were 
11–14 m/s and it stopped by 8:50 when the wind speed decreased to 7 m/s. However, 
the correct time when galloping stopped is unclear because of missing values due to 
the battery outage of observation equipment. As far as available data, the maximum 
tension fluctuations is 7.7 kN, which is close to the value of event No.1. It indi-
cates that greater wind speed is required to reach the rotation angle that galloping is 
expected to occur when there is much ice accretion on the conductor. 

The average tension was near 0 kN at 11:30 before the icing started, and it gradually 
increased until around 17:00. While the change of the ice accretion amount during 
night is small, average tension increased and decreased significantly. Additionally, 
the average tension from 2/17 8:30 to 19:00 seems to change with increasing and

Fig. 6 Observation data of event No. 2 (2019/02/16–18)
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Fig. 7 Process of ice accretion of event No. 2 (2019/02/16–18)

decreasing wind speed. As with event No.1, average tension fluctuation is affected 
by the ice accretion amount, galloping, and wind speed. 

Event No. 3 (2020/01/21) Figures 8 and 9 show the observation data and process of 
ice accretion of event No. 3. Icing started at 6:46 (see Fig. 9a) when the temperature 
and humidity were –0.5 °C and 100%, respectively. Ice accretion gradually grew 
until 16:56 (see Fig. 9b-d) when the temperature was –1.3%. Whereas there was no 
clear photograph after 17:00, ice accretion seemed to completely melt by around
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Fig. 8 Observation data of event No. 3 (2020/01/21)

21:00 because of decreasing humidity (see Fig. 8). As with events No. 1 and 2, the 
ice accretion angles were diagonally downwards towards an upwind direction. 

Galloping occurred occasionally from 10:30 to 15:00, unlike event No. 1 where 
the galloping was relatively steady. Although the height of ice accretion in events 
No. 1 and 3 were equivalent, the shape of ice accretion in event No. 3 is rougher than 
that in event No. 1 (see Fig. 5b and Fig. 9c). It is estimated that the moment of ice 
accretion in event No. 3 was smaller than that in event No. 1 because of the rough 
ice shape, and more wind speed might be required for galloping to occur. 

The average tension was near 0 kN at around 6:30 before the icing started, grad-
ually increasing until around 17:00. Although the average tension correlates with 
the ice accretion amount, it is affected by wind speed. However, the ice accretion 
already melted when the wind speed decreased to around 5 m/s at 21:00. It is diffi-
cult to determine the average tension equivalent to the ice accretion amount of this 
event unless the influence of wind speed is appropriately removed from the average 
tension.
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Fig. 9 Process of ice accretion of event No. 3 (2020/01/21)

4 Conclusion 

Ice accretion characteristics and their relationship with tension fluctuations caused 
by galloping were investigated based on 28 icing events observed in the Tsuruga 
test line. Among these events, the data and photpgraphs regarding ice accretion were 
well available in three significant events. The details of ice accretion and galloping 
in those events were discussed, and the following characteristics were obtained:

. Icing starts when the temperature reaches approximately –0.5 °C, and ice accre-
tion stops growing at –2.0 °C. Ice accretion drops or melts when the tempera-
ture exceeds –0.5 °C or the humidity remains below 100%. Solar radiation also 
contributes to the dropping or melting of ice accretion.

. When the ice accretion height is greater, more wind speed is required for galloping 
to occur because increasing ice weight might stabilize the conductor. Additionally, 
galloping becomes less steady when the ice accretion shape is rougher.

. The average tension correlates with not only the ice accretion amount but galloping 
and buffeting as well. The average tension during no galloping and weak wind 
can be a reliable indicator of the ice accretion amount. It is also important to build 
a method for removing the influence of wind from the average tension.
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The Influence of Ice Accretion Thickness 
on the Aerodynamic Behaviour of Stay 
Cables of Bridges 

Annick D’Auteuil, Sean McTavish, Arash Raeesi, and Krzysztof Szilder 

Abstract Several cable-stayed bridges in the world are exposed to freezing rain 
conditions. Ice that accretes at the surface of the stay cable modifies the circular cross-
section of the cable sheath. Storms resulting in a few millimeters of ice accretion 
occur more frequently, but thick ice accretion on the order of 60 mm of precipitation 
can be associated with freezing rain events in Eastern Canada with a return period 
of 50 years. Both cases could affect the aerodynamics of the stay cables and could 
lead to potential cable instability. A wind tunnel study was carried out to investigate 
the influence of ice accretion thickness on the aerodynamic behaviour of stay cables. 
Two freezing rain precipitation levels were investigated: 2.5 and 60 mm. Four stay 
cable models were fabricated in SLS: a baseline cable model without ice, cable 
models with ice accretion corresponding to 2.5 mm and 60 mm of freezing rain at 
–1.5° C ambient temperature and a fourth cable model with 60 mm of freezing rain 
at –5o C ambient temperature. The ice accretion shapes were generated based on 
the National Research Council Canada (NRC) morphogenetic numerical simulation 
model of ice accretion on stay cables. Aerodynamic forces acting on the static models 
were measured for different wind speeds, cable-wind angles and cable axial rotation 
angles, for Reynolds numbers (Re) up to 5 × 105. The wind-tunnel test was done 
in smooth flow and in turbulent flow. The results indicated that the drag coefficient 
increased in magnitude with the ice thickness from 0.75 to 1.2 at high Re but the 
highest drag coefficient value of 1.38 that was observed in the study occurred at Re 
of 0.5 × 105 for the cable with thick ice accretion. The aerodynamic response of 
cables with thick ice was largely dictated by the shape of the ice and the cable-wind 
angle but a limited effect of the wind turbulence was also observed. Exposing the 
cable without ice to wind turbulence or adding thin ice accretion had a similar impact 
with a shift of the drag crisis to lower Re. Large negative values associated with the 
variation of the lift coefficient with the cable axial rotation angle suggest that cables 
with thin and thick ice accretion may show the potential for cable instability. 
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1 Introduction 

Cable-stayed bridges are exposed to weather conditions including freezing rain 
precipitations. Ice accretion can form at the surface of inclined stay cables leading to 
a modification of the circular cross-section of the cable sheath. Ice accretion affects 
the aerodynamic forces acting on the stay cables and can affect their stability leading 
to potential cable ice-wind-induced vibrations. Several cable-stayed bridges around 
the world are experiencing ice accretion on the stay cables due to their geographic 
location where lower ambient temperatures that occur for part of the year can be 
around the freezing point such as in Canada, USA, Europe and Asia. Some bridges 
had to be closed due to ice fragments detaching and falling from the cables on to 
the bridge traffic lanes including the Port Mann bridge in the Western Canada, the 
Pierre-Laporte bridge in Eastern Canada and the Russky Bridge in Russia [1–3]. Ice 
accretion on cables became an important topic of research in the last decade [4–7]. 
While a few millimeters of freezing rain precipitation can translate into a thin layer 
of ice at the surface of the cable, freezing rain storms with more than 60 mm of 
precipitation lead to thick ice accretion. 

Canada’s Changing Climate Report (CCCR) [8] has identified that significant 
parts of Canada are predicted to experience more winter precipitation and warmer 
average winter temperatures due to the effects of climate change. The change in winter 
precipitation and temperature predicted under two warming scenarios present ideal 
conditions for the occurrence of more frequent freezing rain events. Additionally, 
an ice accretion thickness of 66 mm is the value specified in the Canadian Highway 
Bridge Design Code (CHBDC) [9] for part of Eastern Canada for freezing rain events 
with a return period of 50 years. Work conducted previously by NRC identified that 
the aerodynamic drag of stay cables could increase by as much as 50% in conditions 
that were less severe, i.e. 25 mm of freezing rain, than for the design criteria for 66 mm 
of freezing rain [7]. A wind tunnel study was carried out to investigate the influence 
of ice accretion thickness on the aerodynamic behaviour of stay cables, including 
drag coefficient (CD) and lift coefficient (CL). Two freezing rain precipitation levels 
were investigated: 2.5 and 60 mm. The paper describes the experimental conditions 
and presents the results of the drag and lift force coefficients and their variation with 
Reynolds number, yaw angle and axial rotation angle of the cable. 

2 Experimental Conditions 

Experimental tests were performed in the NRC 2× 3 m Wind Tunnel. The ice shapes 
were obtained from the NRC morphogenetic numerical simulation model [10, 11] 
and printed using the Selective Laser Sintering (SLS) method. The use of the morpho-
genetic simulation model for stay cables has been validated based on digital scans of 
several cases involving physical freezing rain accretion [11]. The four cable models 
were painted to obtain a surface roughness similar to a High-Density Polyethylene
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(HDPE) cable (see Fig. 1, left image). The ice shapes were also painted, since the 
surface roughness of the painted ice more closely resembled that of ice compared 
to the surface roughness of the as-printed SLS. Each ice shape was fabricated as 
a sleeve to slide over the main core of the cable model. The outer diameter of the 
physical cable models was 96.15 mm which represents a sub-scale model size of 
approximately 30% to 60% of a full size stay cable. The physical diameter of the 
cable was used as the reference dimension for the Reynolds number. All cables were 
equipped with a double helical fillet at the surface of the cable with a helix angle of 
45° and cross-sectional dimensions of 1× 3 mm. Table 1 provides a summary of the 
characteristics of the cables and conditions used for the formation of the ice shapes. 
Figure 2 shows the three cables with simulated ice mounted in the test section of the 
wind tunnel. The right-side image in Fig. 1 illustrates a schematic of the cable orien-
tation where θ, β, and φ are respectively the inclination, yaw, and cable-wind angle 
relative to the wind vector, U. A yaw angle of 0o is defined as the condition when 
the wind is aligned with the cable main axis. A negative yaw angle corresponds to a 
counterclockwise rotation of the turntable when viewed from above. The freestream 
wind speed (U) has a component that is normal to the cable axis, but still aligned in 
the cable-wind plane (UN = U sin  φ). The angle between the vertical cable plane and 
the wind component normal to the cable axis is αN. The tests were carried out for 
a cable inclination of 60° from the horizontal, which represents well the inclination 
for many stay cables on existing bridges. Aerodynamic forces acting on the static 
cable models were measured for Reynolds numbers (Re) from 0.4 × 105 to 5.3 × 
105 in smooth flow conditions. Tests were also performed in turbulent flow with a 
longitudinal turbulence intensity, Iu, that varied between 3.3% and 5.6% for Re up to 
3.3 × 105. The details of the turbulent-flow setup are described in [7]. In the first set 
of measurements, the axial rotation angle (α) was set to 0° when β = 0 and then the 
cable response was evaluated at yaw angles of 0°, –30°, –60°, –90°, –120°, –135°, 
–150°. The corresponding αN for each cable-wind angle in the first phase of the 
measurements is shown in Fig. 3. The second set of measurements were performed 
for a cable at 0° yaw angle (φ = 60°) and for axial rotation angles (α) that ranged 
from –90° to + 90° in increments of 15°. A negative axial rotation angle of the cable 
corresponds to a clockwise rotation of the cable when viewed from above.

3 Results 

A comparison of the results for CD and CL as a function of Re for the cable 
without ice, with thin ice (cable 1), with thick ice (cable 2) and with thick ice and 
cold air temperature (cable 3) is presented in Fig. 4. Following the terminology 
used by Zdravkovich [12], it can be observed that for the cable without ice, the 
CD varies significantly with the change in yaw angle; at 0z (φ = 60z) the critical 
Re regime which is characterized by a large variation of the drag coefficient with Re 
(drag crisis) is present from a Re of 0.5 × 105 to 2.5 × 105 while at a yaw angle of 
90z (φ = 90z), the critical-Re regime is present for a Re of 2.0 × 105 to 3 × 105 with
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Fig. 1 Left: Four cables tested: one without ice and three with ice accretion. Right: schematic of 
the cable-wind relative angles θ, β, and  φ with respect to wind vector U 

Table 1 Cable characteristics 

Cable Cable surface geometry Freezing rain 
precipitation 

Freezing rain air 
temperature 

No ice Double Helical fillet, right-handed 45° helix 
angle, 1× 3 mm  

– – 

1 Double Helical fillet, right-handed 45° helix 
angle, 1 × 3 mm  

2.5 mm –1.5 °C 

2 Double Helical fillet, right-handed 45° helix 
angle, 1 × 3 mm  

60 mm –1.5 °C 

3 Double Helical fillet, right-handed 45° helix 
angle, 1× 3 mm  

60 mm –5 °C 

Fig. 2 Views of the cables with simulated ice in the NRC 2× 3 m Wind Tunnel: cable 1 (left), 
cable 2 (center) and cable 3 (right)

a small reduction of CD compared to the case at 0z yaw. The variation in CD over 
the entire Re range and the CD at high Re are consistent with values for HDPE cable 
models with helical fillet observed in literature [6].
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Fig. 3 Cross-sectional view of the cable (black) with ice (green). αN is shown for different φ (top) 
and α is shown for the case where φ = 60° (bottom). Minor gridlines represent 5.08 mm

When ice accretion is present at the surface of the cable, the critical-Re regime 
and the corresponding drag crisis for the three iced cables shifts to below a Re of 1.5 
× 105. For cable 1 and cable 2, minimal correlation between CD and Re was observed 
for all the cable-wind angles tested. However, results for cable 3 indicated a large 
variation of CD with cable-wind angle due to the ice shape that changes significantly 
from one yaw angle to another with respect to the wind direction. For thick and 
localized ice accretion at the surface of the cable, the trend of the CD curve versus Re 
and its magnitude are largely dictated by the ice shape geometry. The maximum CD 

at maximum Re increased with ice accretion thickness; 0.76 for cable without ice, 
0.8 for cable 1 with 2.5 mm of freezing rain, 0.96 for cable 2 with 60 mm of freezing 
rain and 1.2 for cable 3 with 60 mm of freezing rain and cold temperature. However, 
the highest CD value observed in the study was 1.38 at low Reynolds numbers for 
cable 3. Whether the sign of the lift coefficient for the cable without ice (Fig. 4, top) 
is negative or positive is a result of the flow asymmetry created by the direction of 
the double helical fillet right-handed. The variation of CL was within –0.6–0.7. With 
a thin layer of ice (cable 1), the variation in CL was reduced compared to the cable 
without ice and comprised between –0.4 and 0.45. The variation in CL was observed 
for low Re in the critical-Re regime followed by more-or-less constant values in 
the supercritical-Re regime. For the two thicker ice shapes, the direction of CL is 
influenced by the relative position of the un-iced portion of the cable on the cable 
circumference. The relative orientation of the un-iced portion of the cable for each 
cable-wind angle (and αN) can be seen in Fig. 3, top.
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Fig. 4 Drag and lift force coefficients as a function of Reynolds number for different cable-wind 
angles for cable without ice (top), for cable 1 (second row), for cable 2 (third row) and for cable 3 
(bottom) in smooth flow
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Measurements of the static aerodynamic forces at different cable axial rotation 
angles, α, provided insight into the aerodynamics and could be used to predict poten-
tial cable instability. Based on the Den Hartog galloping criterion [13], a cable may 
have the potential for instability when CD + δCL/δα < 0. Figure 5 shows the drag 
and lift coefficients as a function of the axial angle of rotation of the cable, along 
with their derivatives, for two different Re (in the critical and supercritical regimes, 
respectively) for cables 1, 2 and 3. The derivatives were calculated using the gradient 
function in Matlab. Results are shown for two Re, but the variation and magni-
tude of the force coefficients and their derivatives were similar at the other Re 
investigated. It can be observed that the largest magnitude of δCL/δα was greater 
than –3.5 at α = –30° to –45° for cable 3. This value is significantly larger than 
the drag coefficient value and therefore, according to the criteria, the cable could be 
subjected to wind-induced vibrations. The results for cable 1 and cable 2 also indi-
cated a CD + δCL/δα < 0 with values between 0 and –1 around α = -15° suggesting 
that even with thin ice or more evenly distributed thick ice on the circumference, 
the cable may be prone to wind-induced vibrations. The design recommendations 
for stay cables under ice-wind conditions are based on the Post-Tensioning Institute 
(PTI): Recommendations for Stay-Cable Design, Testing and Installation [14]. A 
value of the drag coefficient of 1.0 and a value of the derivative of the lift coefficient 
δCL/δα of -2.0 are suggested in the design guidelines to calculate the minimum struc-
tural damping required to mitigate the galloping due to ice-wind conditions. Based 
on the results obtained in the current study, higher values in magnitude for the δCL/ 
δα term should be considered. A value of -3.8 has been observed in this study but it is 
expected that higher values could be measured if the axial rotation angle increment 
were on the order of 5° instead of 15°.

The experimental tests were also conducted under turbulent flow conditions with 
longitudinal turbulence intensity, Iu, that varied between 3.3% and 5.6% compared 
to 0.14% in smooth flow. Results for CD and CL as a function of Re for the cable 
without ice, with thin ice (cable 1), with thick ice (cable 2) and with thick ice and 
cold temperature (cable 3) are presented in Fig. 6. For the cable without ice, the 
turbulence shifted the drag crisis to a lower Re range. For cables with ice (1, 2, 
3), the turbulence did not impact the Re range at which drag crisis occurred, but 
overall, the magnitude of CD was increased with wind turbulence. Results at high 
Re indicated an increase of the CD of 10–12% for the cable without ice and cable 1 
and 2.5–5% for cable 2 and 3. However, at low Re in the drag crisis, the increase in 
CD was up to 15% for cable 3. Adding turbulence or adding thin ice accretion on a 
cable with a helical fillet had a similar impact on the drag and lift coefficients with 
a shift of the drag crisis to lower Re. Similar results were obtained in turbulent flow 
for the variation of the drag coefficient and the derivative of the lift coefficient with 
the angle of rotation of the cable (α) compared to smooth flow conditions. Figure 7 
shows the results in turbulent flow for the drag coefficient and the derivative of the lift 
coefficient. Comparable results were obtained in turbulent flow compared to smooth 
flow conditions for cables 1, 2, 3 with the minimum δCL/δα that occurred for the
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Fig. 5 Drag and lift force coefficients (top row) and drag and lift coefficient derivatives (bottom 
row) as a function of the axial angle of rotation of the cable for two different Reynolds numbers 
and for the three cables with ice in smooth flow

same range of angles of rotation of the cable α. The magnitude was slightly different 
but it could be due to the larger increment in angle of rotation (step of 30° in turbulent 
flow versus 15° in smooth flow). Based on the Den Hartog criterion, cables 1, 2 and 
3 may be prone to wind-induced vibrations.

4 Conclusions 

This paper has described experiments conducted in the NRC 2× 3 m wind tunnel to 
evaluate the aerodynamic force coefficients for cable models without ice, with thin 
ice and with thick ice. The cable models all had a double helical fillet and were painted 
to represent a surface roughness similar to HDPE cables and tests were completed 
under smooth and turbulent flow conditions. The maximum drag coefficient (CD) 
observed under the current study revealed values up to 1.2 at high Reynolds number 
(Re) and 1.38 at low Re for cable with thick ice (cable 3) in smooth flow conditions. 
Design CD value used in common practice is 1.0 which is smaller than what has 
been measured in the current study. Based on the Den Hartog criterion, the results 
indicated that cable 3 (thick ice with low temperature) may be prone to wind-induced 
vibrations with δCL/δα smaller than –2.5 in smooth and turbulent flows for a range



The Influence of Ice Accretion Thickness on the Aerodynamic … 153

Fig. 6 Drag and lift force coefficients as a function of Reynolds for different cable-wind angles 
for cable without ice (top), for cable 1 (second row), cable 2 (third row) and cable 3 (bottom row) 
in turbulent flow
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Fig. 7 Drag force coefficient (left) and lift coefficient derivative (right) as a function of the axial 
angle of rotation of the cable for two different Reynolds numbers and for the three cables with ice 
in turbulent flow

of axial cable rotation angles. Cable 1 (thin ice) and cable 2 (thick ice) also presented 
conditions for cable instability for a narrower range of cable axial rotation angles. 
The aerodynamic response of cables with thick ice was largely dictated by the shape 
of the ice and the cable-wind angle but a limited effect from the wind turbulence was 
also observed. Exposing the cable without ice to wind turbulence or adding thin ice 
accretion had a similar impact with a shift of the drag crisis to lower Re. 
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Non-linear Dynamic Response of a 
Small-sag Cable Model of a Guy Line 
of a Guyed Tower to Stochastic Wind 
Excitation 

Hanna Weber , Anna Jabłonka , and Radosław Iwankiewicz 

Abstract A cable with small-sag is considered as a simplified model of guy line 
of a guyed tower. The strong dynamic wind action leads to the transverse vibrations 
of the guyed tower that causes the base-motion excitation of the cable and its axial 
and lateral vibrations. Because of strong gusts of wind the significant displacements 
of the tower can be observed, wherefore the geometrical non-linear effects arise. 
In the considered model the axial non-linear vibrations of the cable with small-
sag are coupled with transverse ones. The set of ordinary differential equations is 
obtained by using the Galerkin method. The single-fundamental-mode response of 
the tower to a wide-band stochastic wind excitation is considered as the narrow-
band stochastic process. Therefore the base motion excitation for the guy line is 
assumed as an idealized response of an auxiliary linear filter to a Gaussian white 
noise excitation. The obtained state vector of the system is expressed by the original 
state variables augmented by the filter state variables. The equivalent linearization 
technique is then used to convert the original non-linear system into the equivalent 
linear one with coefficients obtained from the condition of minimization of the mean 
square error between the both systems. As a result the mean values, variances and 
cross-covariances of particular random state variables are determined and verified 
by Monte Carlo simulation. 

Keywords Stochastic dynamics · Nonlinear system · Small-sag cable ·
Equivalent linearization technique · Gaussian white noise process 

H. Weber (B) · A. Jabłonka 
West Pomeranian University of Technology in Szczecin, Szczecin, Poland 
e-mail: Hanna.Weber@zut.edu.pl 

A. Jabłonka 
e-mail: Anna.Jablonka@zut.edu.pl 

R. Iwankiewicz 
Calisia University,Kalisz, Poland 
e-mail: r.iwankiewicz@uniwersytetkaliski.edu.pl 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
V. Gattulli et al. (eds.), Dynamics and Aerodynamics of Cables, Lecture Notes in Civil 
Engineering 399, https://doi.org/10.1007/978-3-031-47152-0_14 

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47152-0_14&domain=pdf
http://orcid.org/0000-0002-2876-7364
http://orcid.org/0000-0003-3489-5052
http://orcid.org/0000-0002-4773-3995
Hanna.Weber@zut.edu.pl
 854 50671 a 854 50671 a
 
mailto:Hanna.Weber@zut.edu.pl
Anna.Jablonka@zut.edu.pl
 854 53550 a 854 53550
a
 
mailto:Anna.Jablonka@zut.edu.pl
r.iwankiewicz@uniwersytetkaliski.edu.pl
 854 57535 a 854 57535 a
 
mailto:r.iwankiewicz@uniwersytetkaliski.edu.pl
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14
https://doi.org/10.1007/978-3-031-47152-0_14


158 H. Weber et al.

1 Introduction 

Nowadays, vibrations can be observed in many various structural elements and their 
correct analysis is slowly becoming an inseparable element of design process [ 1]. A 
strong dynamic wind action leads to the excitation of slender structures for example 
cable-stayed bridges, high-rise buildings, masts or guyed towers. Bending defor-
mation of the structure and its displacements cause excitation of the transportation 
systems [ 2] or the supporting cables [ 3, 4]. Due to the non-deterministic nature of 
the load these problems should be solved by using the stochastic methods [ 5]. 

In presented paper the nonlinear model of a guy line in the guyed tower, treated 
as small-sag cable is considered. The horizontal displacements of the tower under 
stochastic wind action leads to the coupled longitudinal and lateral vibrations inside 
the cable. The nonlinear set of ordinary differential equations of motion is obtained, 
where the base-motion excitation for the guy-line is modelled as a response of an 
auxiliary linear filter to the Gaussian white noise excitation. To convert the original 
system into the approximate linear one the equivalent linearization technique is used. 
This method has been implemented in many problems of stochastic dynamics e.g. [ 6, 
7]. Main advantages of this approach are easy application to numerical calculations 
and much lower time needed to perform calculations compared to other methods. 

2 Static Behaviour of a Small-sag Cable 

In the considered problem the initial tension.H in the guy line is assumed to be very 
high in the comparison to the effect of its own weight (gravity forces), therefore the 
line is considered as a small-sag cable. The cable mass per unit length is assumed 
as . μ while its axial stiffness and total length equal .E A and . L , respectively. For the 
sake of simplification the motion is executed only in the cable plane. Let us denote 
that .u(x, t) and .w(x, t) are the longitudinal and the transverse displacements of the 
cable resulting from its deformation, respectively. The initial shape of the cable in 
its plane in the direction perpendicular to the guy line caused by the gravity forces 
is denoted as .z(x) (see Fig. 1a). 

Initial, small-sag shape .z(x) of the cable is governed by the equation: 

.
d2z

dx2
= −μg

H
cos γ (1) 

where. g is the gravity acceleration. Equation (1) is satisfied when the ratio of the sag 
to the length of the cable is equal or less than 1:8 [ 8]. For the small-sag cable we 
can assume the initial shape of the guy line in the form of parabola. Therefore for 
mid span where.x = L/2 we can adopt that .dz/dx = 0. Furthermore, at the support
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Fig. 1 a Small-sag cable model of the guy line under gravity forces, b Differential element of the 
small-sag cable, c Guy line base motion excitation 

point where.x = 0 we can assume that .z(x = 0) = 0. Using these two conditions in 
the integration process leads to the following expression: 

.z = μg

2H
x(L − x) cos γ. (2) 

3 Nonlinear Equations of Motion for a Small-sag Cable 

Using the Hamilton’s principle we can write that 

.

{ t

0
δ(V − T )dt = 0, (3) 

where .V and .T are the potential and kinetic energies, respectively. If only a planar 
motion of a cable with a small sag is considered, the kinetic energy can by expressed 
by the following equation 

.T = μ

2

{ L

0

()
∂u

∂t

)2

+
)

∂w

∂t

)2
(
ds. (4) 

Considering the initial shape of the cable under the gravity forces that is presented 
in Fig. 1b, the following expression can be obtained 

.ds =
/
dx2 + dz2 =

[|||dx2

(
1 +

)
dz

dx

)2
(

=
/
1 + (z,)2dx . (5)
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Using Eqs. (4) and (5) the variation of the kinetic energy can be obtained as 

.δT = 1

2
μ

{ L

0
δ

)
2
∂u

∂t
δu̇ + 2

∂w

∂t
δẇ

)/
1 + (z,)2dx . (6) 

Taking into account that variation of the derivative equals the derivative of the vari-
ation, i.e. .δu̇ = ˙(δu) = ∂

∂t (δu), .δẇ = ˙(δw) = ∂
∂t (δw) and the fact that at the initial 

time 0 and at the final time . t the variations .δu and .δw vanish, because the states at 
these times are fixed, the final result is 

.

{ t

0
δT = −μ

{ t

0

{ L

0

)
∂2u

∂t2
δu + ∂2w

∂t2
δw

)/
1 + (z,)2dxdt. (7) 

Elastic potential energy can be expressed as 

.V =
{ L

0
N (x)ε(u,, w,)ds

, ,, ,
V (1)

+ E A

2

{ L

0
ε2(u,, w,)ds

, ,, ,
V (2)

+V (g), (8) 

where .N (x) is the initial static tension in the cable and .V (g) is the gravitational 
potential energy. The normal strain is expressed as (see Fig. 1b) 

.ε = dsa − ds

ds
, (9) 

with the term.dsa given by 

. dsa =
/

(dx + du)2 + (dz + dw)2 ∼= dx

/
1 + 2

∂u

∂x
+
)

∂u

∂x

)2

+ 2
∂z

∂x

∂w

∂x
+
)

∂w

∂x

)2

,

(10) 
where the term .

(
∂z
∂x

)2
has been neglected. For the small-sag cable, the following 

simplification is used.1/
/
1 + ( ∂z

∂x )
2 ≈ 1. Consequently, the normal strain is obtained 

as 

.ε ∼=
/
1 + 2

∂u

∂x
+
)

∂u

∂x

)2

+ 2
∂z

∂x

∂w

∂x
+
)

∂w

∂x

)2

− 1. (11) 

Using the Taylor series expansion leads to the following expression 

. ε ∼= ∂u

∂x
+ 1

2

)
∂u

∂x

)2

+ ∂z

∂x

∂w

∂x
+ 1

2

)
∂w

∂x

)2

= u, + 1

2
(u,)2 + z,w, + 1

2

(
w,)2 .

(12)
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Assuming that . N (x)√
1+(z,)2

= H(x), the variation of the first term of potential energy 

can be given by 

.δV (1)= δ

{ L

0
N (x)ε(u,, w,)ds =

{ L

0
H(x)(δu, + u,δu, + z,δw, + w,δw,)dx . (13) 

The terms of the Eq. (13) that depend on .u(x, t) and .w(x, t), respectively are given 
by 

. 

{ L

0
H(x)(δu, + u,δu,)dx =

{ L

0
H(x)((δu), + u,(δu),)dx

= H(x)(δu)

|||L
0

−
{ L

0

∂H

∂x
dxδu + Hu,δu

|||L
0

−
{ L

0

∂

∂x
(Hu,)dxδu,

{ L

0
H(x)(z,δw, + w,δw,)dx =

{ L

0
H(x)(z,(δw), + w,(δw),)dx

= H(x)z,(δw)

|||L
0

−
{ L

0

∂

∂x
(H(x)z,)dxδw + H(x)w,δw

|||L
0

−
{ L

0

∂

∂x
(H(x)w,)dxδw. (14) 

Effect of the gravity forces - gravitational potential energy can be defined as 

.V (g) = −
{ L

0
μgwds = −

{ L

0
μgw

/
1 + (z,)2dx . (15) 

The variation of the gravitational potential energy is consequently obtained by 

.δV (g) = −
{ L

0
μg
/
1 + (z,)2dxδw. (16) 

Self-satisfied equation of equilibrium 

. − ∂

∂x
(H(x)z,) − μg

/
1 + (z,)2 = 0 (17) 

is subtracted from the final form of equations of motions. Variation of the second 
term of potential energy can be written as 

. δV (2) = E A

2
δ

{ L

0
ε2(u,, w,)ds = E A

{ L

0
ε(u,, w,)δε(u,, w,)ds

∼= E A
{ L

0
(u, + 1

2
(u,)2 + z,w, + 1

2

(
w,)2) · (δu, + u,δu, + z,δw, + w,δw,)dx .

(18) 

Taking into account that .δu,=(δu),= ∂
∂x (δu) and .δw,=(δw),= ∂

∂x (δw), leads to the 
terms in equation of motion governing .u(x, t) and .w(x, t), respectively:
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. E A
{ L

0

)
u,+ 1

2
(u,)2+ z,w,+ 1

2

(
w,)2)(1+u,)δu,dx = E A

∂

∂x

[)
u,+ 1

2
(u,)2+ z,w,+ 1

2

(
w,)2)(1+u,)

]
,

E A
{ L

0

)
u,+ 1

2
(u,)2+ z,w,+ 1

2

(
w,)2)(z,+w,)δw,dx = E A

∂

∂x

[)
u,+ 1

2
(u,)2+ z,w,+ 1

2

(
w,)2)(z,+w,)

]
.(19) 

Using Hamilton’s principle for Eqs.(14) together with Eqs.(19) and simplification 
for the small-sag cable .

/
1 + (z,)2 = 1 leads to the equations of motion in the form 

as presented below 

. − ∂

∂x
(H(x)u,) − E A

∂

∂x

[
(u, + 1

2
(u,)2 + z,w, + 1

2

(
w,)2)(1 + u,)

]
+ μ

∂2u

∂t2
= 0,

− ∂

∂x
(H(x)w,) − E A

∂

∂x

[
(u, + 1

2
(u,)2 + z,w, + 1

2

(
w,)2)(z, + w,)

]
+ μ

∂2w

∂t2
= 0. (20) 

4 Vibrations of a Guy Line Due to a Base Motion Excitation 

The horizontal displacement.U (t) of the guyed tower at the point of attachment of the 
guy line (see Fig. 1c) plays the role of the base motion (kinematic) excitation for the 
guy line (cable). The components of the excitation in the longitudinal and transverse 
directions are defined as .UH (t) = U (t) cos γ and .UV (t) = U (t) sin γ, respectively. 
The absolute motions .ū(x, t) and .w̄(x, t), expressed in terms of the base motion 
due to .U (t) and the relative motions .u(x, t) and .w(x, t), which are related with the 
elastic deformations, are defined as 

. ū(x, t) = x

L
U (t) cos γ + u(x, t), w̄(x, t) = x

L
U (t) sin γ + w(x, t). (21) 

The Eq. (20) written down in terms of the absolute motions is 

. 

{ L

0

)
− ∂H(x)

∂x

∂ū

∂x
− H(x)

∂2ū

∂x2
− E A

∂

∂x

[)
∂ū

∂x
+ 3

2

)
∂ū

∂x

)2

+ ∂z

∂x

∂w̄

∂x
+ 1

2

)
∂w̄

∂x

)2

+1

2

)
∂ū

∂x

)3

+ ∂ū

∂x

∂z

∂x

∂w̄

∂x
+ 1

2

∂ū

∂x

)
∂w̄

∂x

)2 )]
+ μ

∂2ū

∂t2

)
δūdx

+
{ L

0

)
− ∂H(x)

∂x

∂w̄

∂x
− H(x)

∂2w̄

∂x2
− E A

∂

∂x

[)
∂ū

∂x

∂z

∂x
+ 1

2

)
∂ū

∂x

)2 ∂z

∂x
+
)

∂z

∂x

)2 ∂w̄

∂x

+3

2

∂z

∂x

)
∂w̄

∂x

)2

+ ∂ū

∂x

∂w̄

∂x
+ 1

2

)
∂ū

∂x

)2 ∂w̄

∂x
+ 1

2

)
∂w̄

∂x

)3 ]
+ μ

∂2w̄

∂t2

)
δw̄dx = 0, (22) 

where the following relationships are valid . δū(x, t) = δu(x, t), δw̄(x, t) =
δw(x, t). The time derivatives are given by the following expressions 

.
∂2ū

∂t2
= x

L
Ü (t) cos γ + ∂2u

∂t2
,

∂2w̄

∂t2
= x

L
Ü (t) sin γ + ∂2w

∂t2
. (23)
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In the derivatives with respect to . x the base motion term disappears. However the 

damping forces assumed as dependent on the relative velocity are included as. −ch
∂u

∂t

and .−cv

∂w

∂t
. If the Galerkin method and the single-mode approximation are used 

the particular displacements are defined by the following terms: 

.u(x, t) = p(t) sin
πx

L
, w(x, t) = q(t) sin

πx

L
, (24) 

and their variations are given by 

.δu(x, t) = δ p(t) sin
πx

L
, δw(x, t) = δq(t) sin

πx

L
. (25) 

If the initial tension is much higher than the own weight of the cable, the tension 
may be assumed as constant: .H = const. Using Eqs. (23)–(25) in Eq.  (22), after 
integrating process and multiplying the results by . 2

μL leads to the set of nonlinear 
equations 

. p̈(t) + E A

[
π2

μL2 p(t) + 3π4

8μL4 p
3(t) + 3π4

8μL4 p(t)q
2(t) + 28gπ

9HL2 cos γ p(t)q(t)

]

+ ch
μ

ṗ(t) + H
π2

μL2 p(t) = − 2

π
cos γÜ (t)

q̈(t) + E A

[
3π4

8μL4 p
2(t)q(t) + 3π4

8μL4 q
3(t) + 14gπ

9HL2 cos γ p2(t) + 14gπ

3HL2 cos γq2(t)

+
(μg

H
cos γ

)2 )6 + π2

12μ

)
q(t)

]
+ cv

μ
q̇(t) + H

π2

μL2 q(t) = − 2

π
sin γÜ (t) (26) 

5 Stochastic Model 

The response .U (t) of a guyed tower to the stochastic wind excitation is assumed 
to be dominated by the fundamental mode shape, with the corresponding natural 
frequency .Ωo. The stochastic wind excitation is a stationary wide band process, 
therefore the process.U (t) is narrow-band, with central frequency.Ωo. It is idealized 
as the Gaussian white noise of the spectral density .S0 passed through the first-order 
linear filter, yielding the process .X (t), which is subsequently passed through the 
second-order linear filter. Hence the stochastic governing equations are defined by 

. Ü + 2ζ f ΩoU̇ + Ω2
oU = X (t), Ẋ + αX = α

√
2πSoξ(t), (27) 

where .ξ(t) is a Gaussian white noise process. The stationary stochastic process 
.U (t) need to be twice differentiable, which is satisfied if .ω4SUU (ω) is integrable
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over .(−∞,∞). In the present case the spectral density .SUU (ω) of the process . U (t)
equals 

.SUU (ω) = S0α2

(ω2 + α2)[(Ω2
0 − ω2)2 + (2ζ f Ω0ω)2] . (28) 

The steady-state variance of the process .U (t) equals 

.σ2
U = απS0(2ζ f Ωo + α)

2ζ f Ω3
o(2αζ f Ωo + α2 + Ω2

o)
. (29) 

The stochastic process.U (t) is assumed to be mean-square equivalent to the harmonic 
process with amplitude .A0 and frequency .Ω0. When the equivalence condition is 
adopted as .σ2

U = A2
0/2, the parameter . α is determined as 

.α = Ωo

{
−ζ f +

/
ζ2f + ζ f Ω3

o A
2
0

πS0 − ζ f Ω3
o A

2
0

}
. (30) 

The equations of motions that are taken into further consideration are given by the 
following expressions: 

. p̈(t) = −a1 p(t)(E A + H) − a2(p
3(t) + p(t)q(t)2) + 2a3 p(t)q(t) − ch

μ
ṗ(t) − βhÜ (t),

q̈(t) = −a2(p
2(t)q(t) + q3(t)) + a3(p

2(t) + 3q2(t)) + a4q(t) − cv

μ
q̇(t) − a1Hq(t) − βvÜ (t),

Ü (t) = X (t) − 2ζ f ΩoU̇ (t) − Ω2
oU (t), (31) 

where the particular constant terms are denoted as: 

.

βh = 2
π
cos γ, βv = 2

π
sin γ, a1 = π2

μL2 ,

a2 = E A 3π4

8μL4 , a3 = −E A 14gπ
9HL2 cos γ, a4 = −E A

(μg
H cos γ

)2 ( 6+π2

12μ

)
.

(32) 

If .W (t), .c(Y(t), t) and .σ denote the standard Wiener process, the drift vector and 
the diffusion vector, respectively, the stochastic equations of motion in state space 
form are 

.dY(t) = c(Y(t))dt + σdW (t). (33) 

If the state vector is defined as .Y(t) = [ p(t) ṗ(t) q(t) q̇(t) U (t) U̇ (t) X (t) ]T, the 
particular elements of drift vector are consequently expressed as 

. c1(Y(t)) = ṗ(t);
c2(Y(t)) = −a1(E A + H)p(t) − a2(p

3(t) + p(t)q(t)2) + 2a3 p(t)q(t) − ch
μ

ṗ(t) (34) 

+βh
(
Ω2 

oU (t) + 2ζ f Ωo U̇ (t) − X (t)
); 

c3(Y(t)) = q̇(t);
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c4(Y(t)) = −a2(p
2(t)q(t) + q3(t)) + a3(p2(t) + 3q2(t)) + a4q(t) − 

cv 
μ 
q̇(t) − a1 Hq(t) 

+βv(Ω
2 
oU (t) + 2ζ f Ωo U̇ (t) − X (t)); 

c5(Y(t)) = U̇ (t); 
c6(Y(t)) = −Ω2 

oU (t) − 2ζ f Ωo U̇ (t) + X (t); 
c7(Y(t)) = −αX (t), 

and the diffusion vector is 

.σ = [ 0 0 0 0 0 0 α
√
2πSo ]T. (35) 

6 Application of the Equivalent Linearization Technique 

To convert the original nonlinear set of differential equations into the linear one, the 
augmented state vector needs to be transformed to the centralized state vector, that is 
defined as.Y0(t) = [Y 0

1 Y 0
2 Y 0

3 Y 0
4 Y 0

5 Y 0
6 Y 0

7 ]T. The particular elements of.Y0(t) are 
determined in general form as .Y 0

i (t)=Yi (t) − E[Yi (t)]. The differential equations 
for the mean values are given by 

.
d

dt
E[Y(t)] = E[c(Y0(t)]. (36) 

The centralized state vector leads to the stochastic equation of motion 

. dY0(t) = c0(Y0(t), t)dt + σ(t)dW (t), with c0(Y0(t), t) = c(Y0(t), t) − E[c(Y0(t), t)].
(37) 

In further considerations the original nonlinear system described by Eq. (33) is  
replaced by the equivalent linear one expressed by 

.dY0(t) = BY0(t)dt + σdW (t), (38) 

where the centralized drift terms are replaced by the linear function of the state 
variables and equivalent coefficients .Bim , that are obtained from the condition of 
mean-square minimizations the difference between the Eqs. (37) and (38) 

.c0i,eq(Y
0(t)) = BimY

0
m, where Bimκmj = E[Y 0

j c
0
i (Y

0)], (39) 

with .κmj being the covariance function of the state variables .m and . j . Because of 
the jointly Gaussian distribution of the centralized state variables .Y0 the following 
relationship for zero-mean Gaussian random vector . X given by [ 9] is used  

.E[X f (X)] = E[XXT]E[∇ f (X)], (40)
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where . f (X) is the non-linear function while .∇ =
[

∂
∂X1

, ∂
∂X2

, ..., ∂
∂Xn

]T
. Using  

Eqs. (40) in (39) gives  

.κ(t)BT = κ(t)E[∇c0
T
(Y0(t))], where BT = E[∇c0

T
(Y0(t))], (41) 

and.κ(t) is the covariance matrix. Equation (41) describes the components of matrix 
. B. Applying Eq. (41) to the elements of the drift vector defined by the Eqs. (34) after  
transformation to the centralized state variables leads to the matrix. B in the following 
form 

.B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
b1 − ch

μ
b2 0 βhΩ

2
o 2βhζ f Ωo −βh

0 0 0 1 0 0 0
b2 0 b3 − cv

μ
βvΩ

2
o 2βvζ f Ωo −βv

0 0 0 0 0 1 0
0 0 0 0 −Ω2

o −2ζ f Ωo 1
0 0 0 0 0 0 −α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (42) 

where the particular terms are given by: 

. b1 = −a1(E A + H) − a2(3E[(Y 0
1 )2] + 3(E[p(t)])2) + E[(Y 0

3 )2] + (E[q(t)])2) + 2a3E[q(t)],
b2 = −2a2

(
E[Y 0

1 Y
0
3 ] + E[q(t)]E[p(t)])+ 2a3

(
E[p(t)]),

b3 = −a2
(
E[(Y 0

1 )2] + (E[p(t)])2 + 3E[(Y 0
3 )2] + 3(E[q(t)])2)+ 6a3E[q(t)] + a4 − a1H.

The covariance matrix.κ(t) is governed by the following set of differential equations 

.
d

dt
κ(t) = Bκ(t) + κ(t)BT + σσT, (43) 

which should be solved together with the differential equations for the mean values 
defined by the Eq. (36). As a result the set of 35 differential equations is obtained 
that is solved numerically. 

7 Numerical Results 

In the numerical analysis the guyed tower with the single guy line is considered. 
The cable with the total length .L = 300 m is attached to the guyed tower on 
the level .254.4 m, which gives the slope of the guy-line .γ = 58◦. The mass per 
unit length of the rope is equal to .μ = 7.47 kg/m while its longitudinal stiffness 
.E A = 195 MN. The assumed initial tension is .H = 300 kN. The fundamental 
frequency and the amplitude of the structural response process .U (t) are assumed 
as .Ω0 = 8.65 rad/s and .A0 = 0.25 m, respectively. The damping coefficients are
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adopted as .ch = cv = 0.03Ns/m2. The spectral density of the Gaussian white noise 
process and the damping of the linear filter are assumed as .S0 = 1 and .ζ f = 0.005, 
respectively. 

Firstly, the numerical solution of set of 35 differential equations determined by 
Eqs. (36) and (43) was obtained during 60s of motion. Afterwards, the results of 
expected values and variances of particular random state variables were verified by 
the Monte Carlo simulation conducted for Eqs. (27) and (31), with the number of 
sample functions equal to 1000. In the Monte Carlo simulation of the white noise 
process it is important to introduce the correct value of its standard deviation, that 
should be equal to.1/

√
Δt , where.Δt is the value of the time step that is taken in the 

analysis [ 10]. This will make the obtained results independent of the value of the 
time step. Otherwise, the received results may by misinterpreted. 

Figure 2 shows a good match between the results of the expected values obtained 
from both methods. Due to the high frequency of the p(t) variable, for better visibility, 
the results are shown only for the first 10 s of the motion. However, for the rest 
of the time, the diagram course is analogous. The variances of particular random 
state variables presented on Fig. 3 show also good agreement. A better matching 
of the diagrams could be achieved by increasing the number of simulations in the 
Monte Carlo method, however, this significantly increases the time needed to obtain 
results. Calculations of the equivalent linearization technique conducted for a set 
of 35 differential equations take a few seconds, while the Monte Carlo simulation 
carried out for a set of 7 differential equations with using 1000 simulations requires 
about 7 h. This indicates a significant advantage of the proposed approach. The 
bigger differences can be observed for .Var[p(t)], where the values of the equivalent 
linearization technique show a greater vibration amplitude, but they oscillate around 
the results obtained from the Monte Carlo simulation. On the other hand, the order 
of these quantities is very small, so the course of the diagram may also be affected 
by some numerical errors. 

Fig. 2 Expected values of the particular random state variables
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Fig. 3 Variances of the particular random state variables 

8 Conclusions 

The results presented in this paper show that equivalent linearization technique allows 
to obtain expected values, variances and cross-covariances of particular random 
state variables with good accuracy. These complex results give a better view on 
the behaviour of the entire system. In the case of guy line in the guyed tower with 
significant height the small-sag cable model seems to be more appropriate than using 
the string model, because in reality it is almost impossible to apply enough initial 
tension to the steel rope, to fully compensate the sag caused by its own weight. The 
presented approach can be easily implemented in computer codes by using numerical 
techniques and results in much shorter time needed to receive the values comparable 
with the Monte Carlo simulation. 

Acknowledgements Supported by West Pomeranian University of Technology in Szczecin. 

References 

1. Hagedorn P, DasGupta A (1990) Vibrations and waves in continuous mechanical systems. 
Wiley, New York 

2. Weber H, Kaczmarczyk S, Iwankiewicz R (2020) Non-linear dynamic response of a cable 
system with a tuned mass damper to stochastic base excitation via equivalent linearization 
technique. Meccanica 55(12):2413–2422 

3. Berlioz A, Lamarque C-H (2005) A non-linear model for the dynamics of an inclined cable. J 
Sound Vib 279:619–639 

4. Giaccu GF, Caracoglia L, Barbiellini B (2017) Higher-order moments of eigenvalue and eigen-
vector distributions for the nonlinear stochastic dynamics of cable networks. Procedia Eng 
199:637–642 

5. Roberts JB, Spanos PD (1990) Random vibration and statistical linearization. Wiley, New York



Non-linear Dynamic Response of a Small-sag Cable Model … 169

6. Proppe C, Pradlwarter HJ, Schuëller GI (2003) Equivalent linearization and Monte Carlo 
simulation in stochastic dynamics. Probab Eng Mech 18:1–15 

7. Spanos PD, Zhang YF (2019) Formulation of statistical linearization for MDOF systems subject 
to combined periodic and stochastic excitations. J Appl Mech 86(10):101003 

8. Irvine HM (1981) Cable structures. The MIT Press, Cambridge, MA and London 
9. Atalik TS, Utku S (1976) Stochastic Linearization of Multi-degree-of-freedom Nonlinear Sys-

tems. Earthq Eng Struct Dyn 4:411–420 
10. Weber H, Kaczmarczyk S, Iwankiewicz R (2021) Non-linear response of cable-mass-spring 

system in high-rise buildings under stochastic seismic excitation. Materials 14(22):6858



Review Study on Nonlinear Modeling 
Issues Associated with the Dynamics of 
In-Plane Cable Networks 

Luca Caracoglia and Gian Felice Giaccu 

Abstract This study summarizes a decade-long research activity, devoted to the 
examination of the nonlinear dynamics of in-plane cable networks on cable-stayed 
bridges. Nonlinearity is triggered by amplitude-dependent, internal restoring force 
behavior of the cross-ties, connecting two adjacent stays. The work originates from 
an earlier study by the first author. The study reviews the main contributions that 
include the derivation of the Equivalent Linearization Method to solve the amplitude-
dependent eigenvalue-eigenvector problem of the network, and the use of Stochastic 
Approximation to examine stochastic dynamics, induced by random amplitudes at the 
onset of aeroelastic vibrations. A random amplitude parameter is used to characterize 
the nonlinear behavior in the restrainer, and to simulate imperfections, malfunction-
ing and modeling simplifications. A three-stay, one-restrainer network, installed on 
the Fred Hartman Bridge (Houston, Texas, USA) is employed to illustrate the main 
results. 

Keywords Cable-stayed bridges · Stays · Nonlinear vibration · Wind load 
effects · Stochastic Approximation · Monte Carlo methods 

1 Introduction 

Cross-ties are often employed as passive devices for the mitigation of stay cable 
vibrations, which have been observed in the field under the excitation of wind and 
rain/wind. 
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The “basic module” of an in-plane cable network is composed of two stays con-
nected by a transverse cross-tie [ 2]. These systems can become very complex if the 
basic module is repeated to form a large, complex cable structure. These systems 
exhibited engineering failures. Several models have been proposed by the Authors 
[ 4– 7], originating from a linear dynamic formulation of the cable network, up to the 
exploration of cases in which the use of a nonlinear cross-tie element is introduced 
to more realistically simulate the dynamic behavior under non-negligible vibration 
amplitudes in the stays [ 11]. Structural nonlinearity can be used to describe various 
phenomena, from the simplest case, in which one non-linear element anchors the 
stay to the deck, to more complicated cases in which the non-linear linkages are 
multiple and replicate a large cable network geometry. 

The nonlinearity is examined by utilizing the Equivalent Linearization Method 
(ELM), derived to compare nonlinear performance to that of the corresponding linear 
case. Either a frequency increment or a decrement can be observed in the system as a 
function of a generalized vibration amplitude parameter, at least for the fundamental 
“modes”. Subsequently, the ELM is coupled with the Stochastic Approximation 
(SA) [ 9, 12, 13] to account for the presence of parameter variability and systematic 
uncertainty during aeroelastic vibration. 

Although not summarized herein, an extended model has been presented [ 4] to  
analyze the effects of a loss in the pre-tensioning force imparted to the cross-ties; the 
model investigates the “unilateral” free-vibration response of the network, simulates 
an incipient slackening of the connector and determines an appropriate level of 
pretension force in the cross-tie. 

2 Theoretical Background 

2.1 Nonlinear Cable Network Dynamics 

The case study is a three-cable system, installed on the Fred Hartman Bridge (Houston 
Ship Channel, Texas, USA) and labeled as BSL network (Fig. 1). The system is 
composed of three stays (BS13, BS14 and BS15) and one cross-tie. The reference 
stay is BS15 with index. j = 1. The properties of the stays (. j) are: tension. Tj , length 
.L j and mass per unit length.μ j . The fundamental, native cable frequencies of the three 
stays are 1.30 Hz (BS15), 1.36 Hz (BS14) and 1.89 Hz (BS13). Description of the stay 
properties may be found in previous studies [ 1]. The ELM can be used to examine 
the free-vibration, in-plane dynamics of the system in Fig. 1. The model employs 
the wave equation to analyze the vibration of taut-cables [ 10] (with . j = 1, 2, 3 and 
.p = 1, 2 in Fig. 1), where.x j,p and.y j,p respectively represent the position and vertical 
displacement of the considered cable element (Fig. 1). 

.Tj
∂2y j,p
∂x2j,p

= μ j
∂2y j,p
∂t2

(1)
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Fig. 1 Cable network with nonlinear restrainers—F. Hartman Bridge as a case study (figure 
reproduced from [ 1]) 

Each segment of the stays is simulated as a continuous taut-string element, with 
transverse oscillation at a generic point of coordinates along the segment and time 
. t . The nonlinearity is concentrated in the internal restoring force transferred by the 
cross-ties. In the case of cable-cross-tie systems, flexural stiffness and nonlinear sag 
effects can be usually neglected in practical applications. 

In this review study, the following properties of the BSL network are consid-
ered: cross-tie position.x1,1 = 0.52L1 with.L1 = 76.5m (except for Sect. 3.2 where 
.x1,1 = 0.35L1 is used); linear stiffness properties in both cross-tie segments with 
.dk = dk,1 = dk,2 with.dk,1 = T1/(k1L1),.dk,2 = T2/(k2L2). The “dimensionless stiff-
ness parameter” .dk, j = Tj/(k j L j ), with . j = {1, 2}, compares the stiffness in a lin-
ear restrainer element with the geometric stiffening effect, which is proportional to 
.Tj/L j . The assumption used on.dk = dk,1 = dk,2 is not restrictive, since a small rel-
ative difference among stiffness parameters typically has a secondary influence on 
the cable network dynamics [ 6]. 

In the ELM, the constitutive relationship that simulates the internal restoring 
force effect in the cross-tie (Fig. 1) is linearized. For example, the internal force in 
the restrainer connecting stays . j and . j + 1 is, with .x j,1 = ξ j,1L j on stay . j : 

.Fj, j+1 = − [
k j

(
y j,1 − y j+1,1

) + eβ, j |y j,1 − y j+1,1|βsign
(
y j,1 − y j+1,1

)]
(2) 

In Eq. (2) a linear spring of stiffness .k j is used in parallel with a nonlinear element 
of generalized stiffness .eβ, j ; .eβ, j > 0 simulates a stiffening effect after initial pre-
tension of the wire connector, whereas .eβ, j < 0 corresponds to a degradation of 
cross-tie properties. Quantities.y j,1 and.y j,1+1 in Eq. (2) are the transverse vibrations 
of the stays at the anchorage points of the restrainer. Quantity. β is an integer number 
(power-law coefficient). 

The ELM allows substituting the nonlinear internal restoring force effect in Eq. (2) 
with an equivalent linearized effect. In a dimensionless formulation, a linearized
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dimensionless stiffness parameter is designated, similar to .dk, j = Tj/(k j L j ). For  
example, the inverse of the linearized parameter, pertaining to the nonlinear effect 
in the restrainer between nodes .Pj,1 and .Pj+1,1 and the . j-th cable in Fig. 1, is:  

.
1

dkELM, j
= 2νβ, jλL1(β + 1)−1|Sj,1 − δ j S j+1,1|β+1 (3) 

In Eq. (3) .dkELM, j = Tj/(kELM j L j ) and .kELM j are dimensionless and dimensional 
equivalent stiffness terms;.νβ, j = eβ, j L

β
j /Tj quantifies the nonlinear stiffness effect 

contribution in the cross-tie. Eq. (3) depends on dimensionless vibration amplitude 
parameter .λ ≥ 0, the local displacement field at nodes .Pj,1 and .Pj+1,1 designated 
by quantities .Sj,1 = sin(απ f̃ jξ j ) and .Sj+1,1 (depending on frequency ratio . f̃ j and 
generic dimensionless frequency . α) and the “modal amplitude ratio” .δ j [ 5, 6]. The 
scalar . λ measures the ratio between anticipated vibration amplitude in the reference 
stay (. j = 1 or BS15), mode by mode, and the length .L1. 

The total equivalent stiffness parameter.1/dkE j of each cross-tie segment, combin-
ing the nonlinear spring model with the linear one of stiffness.k j or.dk, j = Tj/(k j L j ), 
is: 

.dkE j = dk, j dkELM, j

dk, j + dkELM, j
(4) 

By ELM and Eq. (4), the nonlinear dynamic differential equations are transformed 
to a system of linearized homogeneous algebraic equations, similar to an equivalent 
eigenvalue/eigenvector problem. The solution is expressed using the definition of 
“equivalent frequency” .αE, referenced to .ω01 = π/L1

√
T1/μ1 first-mode pulsation 

of stay. j = 1 (BS15 in Fig. 1), and “modes”.y j,p(x j,p, t) = exp(ιαEω01t)Y j,p(x j,p), 
with . ι imaginary unit; the mode shapes .Y j,p(x j,p) are real trigonometric functions. 

The term.dkE j in Eq. (4) depends, mode by mode, on real, dimensionless frequency 
.αE (unknown), exponent . β, and the generalized scalar amplitude parameter . λ. 

2.2 Stochastic Approximation 

The variable. λ is random to account for the inadequate knowledge of the stay vibration 
mechanism, influenced by irregular wind load features and aeroelasticity. Modeling 
uncertainty can be simulated by a uniformly distributed. λ variable between. 0 and.λu ; 
.λu is inferred from the anticipated level of vibration [ 14]. The problem consequently 
becomes a random eigenvalue problem, which requires stochastic methods to obtain 
the solution. The SA [ 12, 13] is an iterative method for finding the root of a function, 
even if the function’s equation is unknown due to unavoidable errors. The SA method, 
firstly used in [ 3] to evaluate the mean value of the amplitude-dependent random 
frequency of a cable network, is briefly described in this section.
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The nature of the stochastic free vibration can be represented through the random 
sequence of . λ, which generates a corresponding sequence of equivalent frequencies 
.αE. These frequencies are found by ELM from the roots of the polynomial associ-
ated with the equivalent eigenvalue/eigenvector problem. Given that the true value of 
the expected frequency .ᾱE = E[αE] is not known, the SA determines its estimator 
(mode by mode) by a recursive search and successive iterations from an approximate 
sequence; the SA avoids expensive root finding for each realization of. λ. The approx-
imate solution is found by iterations using SA, in which a “damping parameter” and a 
“relaxation parameter” are used to facilitate the numerical convergence [ 13]. Special 
situations are possible for closely-spaced roots of the characteristic polynomial [ 3]. 

2.3 Layered SA Algorithm 

The standard SA enables estimation of expectations (i.e., average roots of the char-
acteristic polynomial or.ᾱE (ELM frequencies or eigenvalues). Extensions of the SA 
paradigm have been proposed [ 1] to allow evaluating higher statistical moments. The 
layered SA algorithm considers replacing the continuous random variable .αE, with 
a discrete equivalent random eigenvalue variable, for which the probability mass 
function can be found recursively. Since there is a nonlinear relationship between 
random . λ and random output .αE, the problem is reduced to a transformation of 
random variables [ 8]. This relationship is replaced, in the SA setting, by a stratified 
discrete equivalent (DE) variable. Quantity . λ is sampled from .m equal-probability 
independent intervals,.Λr with.r = 1, ..,m, in each of which the frequency converges 
to a representative discrete point .α(DE)

E,r . 
Each discrete point .α(DE)

E,r is evaluated as the expected value of the continuous 
variable by restricting the sampling of. λ to each sub-set. r or.α(DE)

E,r = E[αE|λ ∈ Λr ]. 
Expectation estimation is repeated. m times, by layering the sampling to.λ ∈ Λr . Mean 
and standard deviation of the frequency .αE are evaluated from the first and second 
moments of the corresponding, approximate discrete variable, with probability mass 
function .PMF = 1/m and with symbol “. ·” designating simple multiplication: 

.E[αE] ≈
mΣ

r=1

α(DE)
E,r · (PMF) (5) 

.E[α2
E] ≈

mΣ

r=1

(
α(DE)
E,r

)2 · (PMF) (6)
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3 Simulation Results 

3.1 BSL Network—Deterministic Linear Analysis 

The SA has been deployed to study the BSL network under stochastic disturbance, 
simulated through random amplitude variable uniformly distributed .0 < λ ≤ λu . 
The upper limit.λu investigates various vibration levels;.λu = 1/200 = 0.005 corre-
sponds to amplitude of 1/200th of the reference cable length. First, linear analysis is 
conducted by neglecting effects of amplitude . λ. 

Parametric investigations are carried out to study the dynamics of the BSL network 
in Ref. [ 3]. 

In Ref. [ 3] simulations considered the analysis of Mode II and Mode III of the BSL 
network (Fig. 1) since the modal dynamics has special features. Following the same 
motivation, this study mainly examines the behavior of Modes II and III. In the studies 
system, the cross-tie located at .x1,1 = 0.52L1 with.dk = dk,1 = dk,2 = 0.0018 equal 
to design values and .eβ, j = 0. 

3.2 ELM Analysis of the BSL Network with Non-linear 
Cross-Tie 

In the case of simulations with power-law-stiffness cross-tie, the main consequence 
of nonlinearity in the restoring-force mechanism is the “shift” in the equivalent 
frequencies of the entire system [ 3]. The variation of equivalent frequency, mode by 
mode, is a function of the type of nonlinearity and vibration amplitude, treated as a 
constant, deterministic parameter is this subsection .λ = λu . 

Even though both a stiffness increment (.νβ j = eβ j L
β
j /Tj > 0) and reduction 

(.νβ j < 0) can be considered, the case .νβ j > 0 with cross-tie at .x1,1 = 0.35L1 is 
exclusively analyzed in this sub-section. For comparison of the results at other . β
values, a “similarity ratio” may be introduced [ 6]. 

Stay BS15 is designated as the reference stay, i.e., “stay 1”. Nonlinear restoring 
effects are replicated in both segments of the restrainer (between BS13 and BS14, 
and between BS14 and BS15 in Fig. 1) through generalized, positive power-law 
model. The case with .β = 2 and parameter .dk ≈ dk1 = T1/(k1L1) uses both design 
values .dk = 0.008 and extends the analysis by parametric investigation to various 
.dk1. The vibration parameter .λ = 0.005 corresponds to amplitudes equal to .0.38m, 
compatible with the diameter of BS15 (140 mm). 

Figure 2 illustrates the normalized frequency .αE vs. .dk = dk1 = T1/(k1L1) and 
a stiffening effect exerted by the quadratic power-law restoring mechanism in the 
cross-tie segments. Figure 2a also considers numerical results for the first and second 
in-plane network modes, whereas Fig. 2b shows the frequency evolution for Mode 
III. The cross-tie induces a beneficial frequency increment .αE > 1.0 (Mode I) in 
comparison with the fundamental native-cable frequency of the longest stay, BS15.
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Fig. 2 Normalized frequency as a function of .dk = dk1 = T1/(k1L1) for the nonlinear BSL net-
work with quadratic-stiffness cross-tie,.νβ1 = νβ2 = 102, cross-tie at.x1,1 = 0.35L1, and constant 
deterministic amplitude parameter.λ = 0.005: a First and second “equivalent modes”; b third mode. 
Comparison between ELM, LMM and linear case (reproduced from [ 6]) 

The graph also exhibits a drastic diminution of frequency for weak linear restrainer 
and .dk > 0.5. The nonlinear resorting effect is more pronounced for Mode II with 
a relative frequency increment approximately equal to .+10% at .dk > 0.5. We note 
that Mode I is a global network mode. 

By contrast, when the three stays tend to vibrate with opposite phase (e.g., Mode 
II), the force transmitted through the cross-tie increases and the presence of a non-
linear restoring effect is important, especially for relatively weak restrainers with 
.dk > 0.1, but also in the design case (.dk = 0.008). 

In Fig. 2b the numerical results indicate no significant variation of .αE between 
linear-restrainer and nonlinear-restrainer case for Mode III at low .dk = dk1. A dis-
crepancy between ELM and LMM (lumped-mass or finite-element model) solutions 
can be observed for .dk = dk1 > 0.1. In this range of values, the finite-difference 
scheme tends to follow the linear solution with a progressive diminution of .αE, 
while the ELM predicts an increment of frequency compared to the linear case, and 
a horizontal asymptotic frequency at large . dk , coincident with the solution for a 
rigid cross-tie. Since the proposed linearization is based on the dimensional vibra-
tion amplitude .λL1 of the BS15 stay, which marginally contributes to Mode III, the 
ELM is less efficient at assessing the nonlinear dynamics for moderately nonlinear, 
flexible cross-tie. 

Figure 3 shows the “equivalent” shapes of Modes II and III, computed via ELM 
for a positive increment of equivalent stiffness, and corresponding to the frequency 
results depicted in Fig. 2 for .dk = dk1 = 0.8. 

The “scale” of .Yr is normalized so that the modal amplitude is the same for all 
modes, both linear and nonlinear. The figure confirms that, nonlinear effects are 
particularly important for Mode III. A drastic change in the mode shapes is noted: 
the equivalent mode denotes contributions from all the stays.
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Fig. 3 Normalized eigen-functions (mode shapes) of the BSL network - comparison between linear 
solution.dk = dk1 = 0.8 and ELM “equivalent modes”, derived for quadratic-stiffness cross-tie at 
.x1,1 = 0.35L1 with .νβ1 = νβ2 = 102 and .λ = 0.005; a second mode, b third mode (reproduced 
from [ 6]) 

4 BSL Network—Stochastic Approximation 

In this section, the location of the cross-tie is.x1,1 = 0.52L1, i.e., the full-scale design 
configuration. Results are plotted as a function of the cross-tie normalized stiffness 
.dk = dk1 , with.dk = 0.0018 corresponding to the design configuration. For Mode III 
ELM mode and ELM frequency are particularly sensitive to random. λ. The case with 
moderate positive nonlinearity is studied. The amplitude parameter is random, uni-
formly distributed in the interval .0 ≤ λ ≤ (1/400), simulating aeroelastic vibration 
of one or two cable diameters (140 mm for BS15). 

Even though the mean value can be found by standard SA algorithm, a better 
approximation of the mean values can be achieved through the layered SA algorithm 
in Eq. (5). The standard deviation is determined from Eq. (6). 

Verification of the layered SA algorithm is presented in Fig. 4, illustrating mean 
and standard deviation of the random frequency of Mode III. 

The approximate numerical results are compared with “exact” values, obtained 
by Monte Carlo sampling with 500 realizations (graphs labeled as BFM or “Brute 
Force Method”). In Fig. 4b the standard deviation of .αE tends to increase with the 
decrement of linear stiffness in the cross-tie. In fact, flexible restrainers not only 
reduce the beneficial effect of a frequency increment but also drastically enhance the 
sensitivity to randomness. Further examination suggests that the order of magnitude 
of the standard deviation is quite different as a result of the nonlinearity. We note the 
coefficient of variation is small, about 7%. Estimation of .SD(αE) is influenced by 
the selection of equally-probable sets . m, with .m = {2, 4, 6}. The estimation error is 
large (20%) with.dk = 1.0 (unrealistically large value). In the range.0.0 < dk < 0.6, 
.m ≥ 4 is needed for accuracy. 

Further inspection also reveals that only a modest improvement effect is obtained 
by increasing the sets above .m = 6. In all the simulations a drastic reduction of 
computing time is achieved by sequential application of the SA. The approximate
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Fig. 4 Layered SA algorithm examining random.αE of the BSL network’s third mode with nonlin-
ear cross tie located at.x1,1 = 0.52L1 (.β = 3,.νβ1 = νβ2 = +250), induced by uniform stochastic 
vibration (random amplitude .0 ≤ λ ≤ (1/400)): a mean value, b standard deviation (SD); repro-
duced from [ 1] 

.SD(αE) is consistently larger than the reference value (BFM). This discrepancy can 
be influenced by the non-negligible frequency shift between linear and nonlinear 
solution in terms of mean values (Fig. 4a). This result is not unexpected since the 
continuous probability distribution of .SD(αE) is essentially replaced by a discretely 
sampled (or stratified) output random variable. 

5 BSL Network—Random Eigenvector Analysis 

It is useful to investigate the variations in the modal amplitudes due to random-
ness of amplitude . λ. A modified BSL network with cubic stiffness nonlinear cross-
tie (.νβ1 = νβ2 = +250), located at .x1,1 = 0.52L1 on the stay BS15, as in Sect. 4. 
We have used an “eigenvector cloud”, found by generating a sample population of 
.0 ≤ λ ≤ (1/400) and by computing the ELM frequency output random sample and 
the corresponding eigenvectors. If the brute force Monte Carlo method is used, this 
operation requires solving the characteristic polynomial many times and finding the 
amplitudes of the mode shapes in the six segments of the BSL network. This task 
is achieved by describing the mode shapes as .YE, j,p = AE, j,psin(αEπ f̃ j x j,p/L j ), 
where . j = 1, 2, 3 and .p = 1, 2 designate the various segments in Fig. 1. We note 
that . f̃ j = ω01/ω j and .ω j is the native cable fundamental pulsation of stay . j . 
The unknown mode shape amplitudes .AE, j,p are real and random because of the 
random. λ. 

Figure 5a illustrates the eigenvector cloud; .100 random eigenvectors, found by 
BFM, are compared to the linear solution. Figure 5a shows that the linear eigen-
vector of Mode III with deterministic .λ = 0 is not representative of the nonlinear 
behavior, resulting from stochastic variability in the system. Since calculation of the
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Fig. 5 BSL network with nonlinear cross tie (.β = 3,.νβ1 = νβ2 = +250) at.x1,1 = 0.52L1, subject 
to uniform stochastic vibration (.0 ≤ λ ≤ (1/400))—random eigenvector of Mode III : a linear 
deterministic eigenvector vs. random eigenvector “cloud” (BFM—brute force Monte Carlo), b RM 
eigenvector versis random eigenvector cloud 

eigenvector cloud requires significant computational effort, the SA is advantageously 
used to evaluate an average, nonlinear mode shape, designated as “RM eigenvector”. 
Figure 5b presents the comparison between the eigenvector cloud, previously exam-
ined in Fig. 5a, and the new RM eigenvector. The RM eigenvector reproduces the 
main features of the cloud. 

6 Conclusions 

Numerical results demonstrate that it is possible to simulate the rich dynamic behavior 
of in-plane cable networks through appropriate modeling of the internal, restoring 
force effect in the cross-ties. By contrast, other sources of geometric nonlinearity 
(e.g., shallow stay-cable configuration) can be ignored since one of the cross-tie 
functions is to eliminate cable sag in the long stays. Despite the research advance-
ments and contributions, there are still possibilities for improving the analysis through 
generalization of the methods described herein. 

Dedication This paper is dedicated to the late Professor John H. G. Macdonald and 
his numerous contributions to the field of nonlinear cable dynamics.
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Force Measurements on Flexible Sagged 
Cable Undergoing Forced Vibration 
at a Single Point 

Dániel Dorogi and László E. Kollár 

Abstract Force measurements using load cell are carried out at one suspension point 
of a horizontal sagged cable periodically excited at given amplitude and frequency at 
the position of 0.25 times the spanwise length of the structure measured from the load 
cell. The excitation amplitude is fixed at 1 mm and the steady excitation frequency 
is varied between 5 Hz and 70 Hz. Two response types have been identified. For 
excitation frequency values below approximately 50 Hz the longitudinal and vertical 
forces have frequency components at the whole number multiples of the excitation 
frequency. In contrast, at high excitation frequency values, i.e., above 50 Hz, a low-
frequency component that is significantly lower than the excitation frequency also 
occurs. For such cases a transient time domain is identified in the spectrograms 
of the force components. Within this interval the instantaneous frequency spectra 
dynamically changes. It was shown that the width of the transient domain is affected 
by the time rate change of the excitation frequency. 

Keywords Force measurement · Frequency · Horizontal sagged cable · Periodic 
excitation 

1 Introduction 

Suspended flexible cables occur in many engineering fields, such as in transmission 
lines, cable-stayed bridges, or risers. For transmission lines two basic configura-
tions are distinguished. The single-span arrangement where the flexible structure is 
stretched between two suspension points [ 1], and the multi-span configuration where 
the intermediate suspension points are mounted on elastic supports [ 7]. This study 
focuses on the investigation of single-span flexible cables. 
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When placing a flexible structure into a high-velocity fluid flow vortex shedding 
occurs which means periodic excitation on the body. For cases when the vortex shed-
ding frequency and the natural frequency of the structure are close to each other the 
cable starts to vibrate. If the vibration is caused by the wind, the phenomenon is 
referred to as wind-induced vibration (WIV). Relevant results on WIV are summa-
rized in the recent review paper of Jafari and Abdelkefi [ 2]. Wind-induced vibration 
is an extremely complex coupled fluid mechanics and structural mechanics phe-
nomenon. As a model, cable motion is often investigated without the fluid flow, i.e., 
when periodic excitation is imposed on the particular point of the structure. Sev-
eral studies focused on the theoretical investigation of cable vibrations. Irvine and 
Caughey [ 1] developed a linear model for the computation of free vibrations of a 
horizontal (the suspension points are at the same level) sagged cable. In their nonlin-
ear model N. Srinil with co-authors took the effects of geometric nonlinearities (i.e., 
the initial curvature) into account. Their approach is suitable for both horizontal [ 11] 
and inclined [ 10] cables. Based on the nonlinear structural mechanics model, Srinil 
[ 9] and Srinil and Ma [ 5] developed an approach which is able to accurately predict 
vibrations of inclined flexible sagged cables induced by external fluid flow. 

In order to further understand the vibration phenomenon and also to validate 
the theoretical models, laboratory measurements have been carried out. Very often, 
experiments are performed for the case when one support of the cable is subjected 
to harmonic motion. Perkins [ 6] and Koh and Rong [ 3] carried out such experiments 
for horizontal sagged cables. When comparing the measurement and computational 
results, they obtained good agreements. Rega et al. [ 8] performed similar laboratory 
experiments for an inclined cable. Much less attention has been paid to the effects 
of periodic forcing of the cable at a specific point. Lee and Perkins [ 4] considered 
such type of excitation whose direction was normal to the cable. 

The aim of the present study is to experimentally investigate the forces acting on 
one suspension point of a cable while the structure is periodically excited at a single 
point in the vertical direction. The excitation amplitude is fixed at 1 mm and the 
(steady) vibration frequency is varied between 5 Hz and 70 Hz. Short-time and full 
fast Fourier transformation approaches are used to analyze the data. 

2 Experimental Setup 

The experiments are carried out using the small-scale laboratory model of a trans-
mission line at the Savaria Institute of Technology. Figure 1 shows the physical 
setup of the experimental configuration. As can be seen in the figure, a horizontal 
sagged flexible cable stretched between two suspension points is considered. The 
. x , . y, and . z axes shown in Fig. 1 point in the longitudinal, vertical, and transverse 
horizontal directions, respectively. The length of the cable span is .XH = 16.62 m 
and the sag length (i.e., the distance between the lowest part of the cable and the 
line that connects the two suspension points) is . s = 0.6 m. The core of the cable is 
reinforced steel around which Aluminum wires are twisted. The cross-section area
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Fig. 1 Physical setup of the experiments 

Fig. 2 Time variation trends of the excitation frequency 

and the outer diameter of the cable are . A = 7.428 mm. 
2 and.D = 4 mm, respectively, 

the mass per unit length of the cable is .m = 0.061 kg/m, and the Young’s modulus is 
.E = 60 GPa. The horizontal component of the cable tension is 31.25 N which value 
compares fairly well with the theoretical value of .TH = mgX2

H/(8s) = 34.44 N [ 1]. 
Irvine and Caughey’s parameter .λ2 = (8s/XH )2E A/TH/

[
1 + 8(s/XH )2

]
has the 

value of 1177.3 for this experimental configuration. 
As can be seen in Fig. 1, the cable is periodically excited at the longitudinal position 

of .x/XH = 0.25 in vertical direction as .y(t) = As sin[2π f (t)t]. Here . t is the time, 
.As is the excitation amplitude, and. f (t) is the time-dependent forcing frequency. The 
time variation trends of the excitation frequency considered in this study are shown 
in Fig. 2 (see description in Sect. 3). For the periodic excitation the ESD-045 modal 
shaker is used which is connected to the cable using an Aluminum holding device 
(see Fig. 1). The maximum amplitude, velocity, and acceleration of the shaker are
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12.5 mm, 1.6 m/s, and 981 .m/s2, respectively, and the frequency range in which it 
can operate is 5–6000 Hz. Three unsteady force components .Fx (t) (longitudinal), 
.Fy(t) (vertical), and .Fz(t) (transverse horizontal) acting on the suspension point at 
.x/XH = 0 are measured by using a load cell. The sampling frequency is fixed at 
the value of 19.2 kHz which is more than two orders of magnitude greater than the 
maximum steady excitation frequency considered in this study. 

The raw experimental data are low-pass filtered in order to remove propagation 
errors due to measurement noise. For this purpose a seventh-order Butterworth filter is 
used with the cutoff frequency value of 4800 Hz. The filtered longitudinal and vertical 
force signals obtained from the experiments are analyzed by using the short-time 
Fourier Transform (SFFT) approach. The whole signals are divided into windows of 
width 0.8 s; the overlap between two neighboring windows is 50%. Spectrograms 
are created based on the SFFT spectra in order to visualize the time variation of the 
frequency spectra of forces. 

3 Results and Discussion 

In this study the effects of steady excitation frequency . fs is investigated at constant 
forcing amplitude value of .As = 1 mm on the standard deviation of longitudinal and 
vertical force components, and the frequency content of force signals. The steady 
excitation frequency is varied in the domain of . fs = 5–70 Hz. Before the systematic 
measurements, preliminary investigations are carried out to analyze the roles of the 
time variation of the forcing frequency. In these tests the spectrograms of force 
components are analyzed. 

3.1 Types of Response 

In the first preliminary tests the excitation frequency is varied from 5 Hz (the min-
imum frequency of the shaker, see Sect. 1) within the time interval .Δt at the end 
of which . f reaches . fs , i.e., the steady excitation frequency. Then, the forcing fre-
quency is kept constant at . fs for approximately .3Δt . The schematics of the time 
variation of . f (t) is shown in Fig. 2a. The time rate change of the forcing frequency 
.Δ f/Δt is used as a parameter to characterize the frequency variation trends, where 
.Δ f = fs − 5 Hz. The excitation frequency values of . fs = 20 Hz, 40 Hz, and 70 Hz 
are considered here and .Δ f/Δt is kept constant at 3 Hz/s. 

Figure 3 shows the spectrograms of the longitudinal (left-column plots) and ver-
tical (right) force components for different . fs values. On the vertical axis frequency 
normalized by the excitation frequency. f/ fs is shown; the axis is scaled logarithmi-
cally. Color represents the instantaneous amplitude of the signals. As the colorbar 
shows, the darker the color, the greater the amplitude of the signal. It can be seen in 
Fig. 3 that initially, . f/ fs corresponding to peak amplitudes; i.e., the most dominant
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Fig. 3 Spectrogram of.Fx and.Fy force components (left and right-column plots, respectively) for 
. fs = 20 Hz (a), 40 Hz (b),  and 70 Hz (c) 

frequency components (seen visually as red rising stripes) increase with time. This 
domain coincides with the range within which the excitation frequency increases. 
Beyond this interval, for. fs = 20 Hz and 40 Hz, two dominant frequency components 
both constant in time occur at . fs and.2 fs . In contrast, the spectrograms presented in 
Fig. 3c for  . fs = 70 Hz display completely different characteristics. In the range of 
.t ≈ 58–169 s (right after the point where the steady excitation frequency is reached) 
the frequency content of .Fx and .Fy display strong variations. This regime will be 
referred to as the ‘transient domain’. Above .t ≈ 169 s the frequency spectra of the 
signals are roughly constant in time. As can be seen in Fig. 3c, the highest amplitudes 
are captured at a frequency far below. fs ; i.e., at 4.9 Hz. To the best knowledge of the 
authors, such high-amplitude and low-frequency component in the force signals has 
not yet been presented when applying low-amplitude and relatively high-frequency 
excitation. In addition to the low-frequency component, much lower amplitude peaks 
are observed roughly at 55 Hz; at a value slightly lower than the steady excitation 
frequency.
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3.2 Effects of Time Rate Change of Excitation Frequency 

The transient domain identified for . fs = 70 Hz (see Fig. 3c) can cause issues when 
calculating the statistical properties of the signals (e.g. time-mean value and standard 
deviation). These quantities are obtained for the steady part of the force data; thus, 
the transient domain has to be excluded from the evaluation. For the sake of accurate 
data processing, information are needed on the parameters which influence the width 
of the transient domain. The time rate change of the excitation frequency can be such 
a parameter whose effect on the transient domain is investigated here more in depth. 
Experiments are performed for . fs = 40 Hz and 70 Hz by using .Δ f/Δt = 0.1 Hz/s, 
1 Hz/s and 3 Hz/s. Note that although the transient domain was not observed for low 
. fs values (i.e., for . fs = 20 Hz and 40 Hz, see Fig. 3a, b, respectively), considering 
different .Δ f/Δt values may result in its occurrence. Thus, the authors think it is 
important to be checked. 

Figure 4 shows the spectograms of .Fy for . fs = 40 Hz (left-column plots) and 
70 Hz (right) for different .Δ f/Δt values. It can be seen that in the range where the 
excitation frequency increases, the dominant frequency components of .Fy increase. 
As expected, for . fs = 40 Hz, independently of the value of .Δ f/Δt no transient 
domains are observed (see the left plots in Fig. 4) which finding is in agreement 

Fig. 4 Spectrogram of .Fy for . fs = 40 Hz and 70 Hz (left and right-column plots, respectively) 
using.Δ f/Δt = 0.1 Hz/s (a), 1 Hz/s (b) and 3 Hz/s (c)
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Fig. 5 Spectrogram of .Fy for . fs1 = 65 Hz (left) and 68 Hz (right) using .Δ f2/Δt1 = 0.05 Hz/s 
(a), 0.1 Hz/s (b) and 0.5 Hz/s (c) 

with that presented in Fig. 3. However, for . fs = 70 Hz the transient range occurs for 
each .Δ f/Δt value, and its time interval seems to widen with .Δ f/Δt . Similarly to 
the spectrogram shown in Fig. 3c, beyond the transient domain the signals include 
strongly repeatable cycles. 

In order to further study the effects of time rate change of excitation frequency 
on the transient domain, another measurement scenario is performed; its schematic 
is  shown in Fig.  2b. As can be seen, the excitation frequency is increased to. fs2 = 70  
Hz in two stages. First, it is increased up to . fs1 by using a time rate change of 
frequency value of .Δ f1/Δt1 = 2 Hz/s. Afterwards, the excitation frequency is kept 
constant at . fs1 for 200 s. As the second stage, the forcing frequency is increased up 
to . fs2; the time rate change of frequency in the second stage is .Δ f2/Δt2. Figure 5 
shows the spectrograms of .Fy for . fs1 = 65 Hz (left-column plots) and 68 Hz (right) 
for different .Δ f2/Δt2 values. Black dashed lines represent the onset of the second 
frequency variation stage. Similarly to previous results, the . f/ fs value belonging 
to amplitude peaks displays increasing trends at the beginning of the investigated 
time domain. Afterwards, in the time interval where the frequency of the shaker 
is . f (t) = fs1 two amplitude peaks develop at once and twice the steady excitation 
frequency. This finding holds true for both. fs1 = 65 Hz and 68 Hz and each. Δ f2/Δt2
value. It can also be observed in Fig. 5 that right after the second frequency variation
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stage (i.e., where. f (t) = fs2) the transient domain occurs independently of the value 
of .Δ f2/Δt2. Moreover, its width seems to be only slightly sensitive to .Δ f2/Δt2. 
This finding implies that the transient domain occurs independently of how much 
the excitation frequency changes. 

3.3 Effects of Steady Excitation Frequency 

The effects of steady excitation frequency is investigated in the domain of . fs .= 5– 
70 Hz with frequency step of 1 Hz at constant amplitude value .As .= 1 mm. 
Figure 2c shows the time variation schematics of . f (t). It can be seen in the figure 
that the excitation frequency is held constant at the value of. fs,i for 200 s which time 
interval is sufficiently wide for the transient domain to decay (if it is present). Then, 
. f (t) is varied by a time rate change value of 0.1 Hz/s between. fs,i and. fs,i+1, where 
. fs,i+1 = fs,i + 1 Hz. This process is repeated until . fs,i+1 reaches 70 Hz. The last 
60-s-long time interval is analyzed to result in the frequency spectra and the standard 
deviation of the longitudinal and vertical forces. 

Figure 6a, b shows the frequency spectra contour map of longitudinal and vertical 
force components, respectively. Yellow circles correspond to the most dominant 
frequency of the forces at a particular . fs values, i.e., at which the highest amplitude 

Fig. 6 (Contour outline) Frequency spectra of longitudinal (a) and vertical (b) forces against the 
excitation frequency. Yellow circles indicate the frequency values belonging to the peak force 
amplitudes
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Fig. 7 Standard deviation of longitudinal (a) and vertical (b) forces against the steady excitation 
frequency 

is identified. It can be seen in Fig. 6 that in the frequency spectra of .Fx and .Fy the 
whole number multiples of the steady excitation frequency play important roles. In 
most cases, the most dominant component in the spectra of the longitudinal force is 
.2 fs (see Fig. 6a) and that in the spectra of vertical force is. fs (see Fig. 6b). However, 
there are some cases typically above . fs = 50 Hz where the frequency component 
significantly lower than. fs has the highest amplitude. This low-frequency component 
was investigated more in details in Sect. 3.1. In case the low-frequency component 
is present at a given . fs value, many other peaks can also be observed which are not 
the whole number multiples of the steady excitation frequency. 

Figure 7a, b shows the standard deviation std of longitudinal and vertical force 
components.Fx , and.Fy, , respectively. It can be seen in the figure that .Fx , is approxi-
mately 1–8 times higher than.Fy, . Both force std curves involve thin intervals within 
which they gradually increase and after peaking they decrease. Presumably the loca-
tion of peaks correspond to the natural frequency of the cable which needs further 
measurements (with finer steps in . fs) and analyses. It can also be seen in Fig. 7 that 
at the higher end of the . fs domain .Fx , and .Fy, reach much higher values than in 
other ranges. This phenomenon is associated to the occurrence of the low-frequency 
components in the signals.
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4 Conclusions 

In this study a horizontal flexible sagged cable is considered which is periodically 
excited at prescribed amplitude and frequency at the position of 0.25 times the span-
wise cable length. The excitation amplitude is fixed at the value of 1 mm and the 
excitation frequency is chosen to be in the domain of 5–70 Hz. The three components 
of unsteady forces acting on a suspension point are measured. It was shown that in 
most cases the frequency spectra of longitudinal and vertical forces include com-
ponents at the whole number multiples of the excitation frequency. At high forcing 
frequency values (typically above 50 Hz) a component significantly lower than the 
excitation frequency is observed. For such cases, the spectrograms of forces involve 
a time interval within which the frequency content displays strong fluctuations. The 
width of this transient domain is found to be affected by the time rate change of exci-
tation frequency. The standard deviation std of longitudinal force occurs to be 1–8 
times larger than that of the vertical force. For cases when the low-frequency signal 
components are present, the std of forces are higher compared to other excitation 
frequency values. 

Acknowledgements Project no. TKP2021-NVA-29 has been implemented with the support pro-
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Wave Propagation-Based Assessment 
of Damage in Laboratory Samples 
of a Cable 

João Rodrigues , Elsa Caetano , Carlos Moutinho , 
and Raphael Mendonça 

Abstract The assessment of structural degradation from modal characteristics has 
a long tradition in engineering practice. For the specific case of bridge cables, such 
features (most notably, natural frequencies) are often employed in the identification 
of the installed axial force. However, low-order modal properties may be relatively 
insensitive to small, localised damage, and the effects of the latter are, in many 
cases, hindered by the epistemic uncertainty in the boundary conditions. As such, an 
alternative approach for evaluating the integrity of these members is being pursued 
within the CTWAVE research project based on the dispersive velocities of transverse 
waves propagating along a cable. In contrast with modal characteristics, these features 
are independent of end restraints and can be assessed along wide frequency ranges, 
thus enhancing their sensitivity to small defects. To investigate the adequacy of the 
method in detecting and quantifying damage, this study introduces the results from 
laboratory tests conducted on a 5.10 m-long cable made from a tensioned, solid bar 
with distinct levels of cross-section loss. The effect of such damage is examined in 
terms of both modal properties and the velocities of travelling waves. The results 
obtained in this particular case study demonstrate that cable degradation is indeed 
associated with a local variation in the wave velocities and that these features are of 
interest for damage quantification. 

Keywords Cable dynamics · Wave propagation · Phase velocity · Inverse 
problem · Damage identification 

1 Introduction 

The assessment of the condition of civil engineering structures is typically framed 
into four levels of increasing complexity, which correspond to the detection, local-
isation and quantification of damage, and the prognosis of the remaining service
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life [1]. Modal characteristics have long been employed in this domain, as they are 
directly related to the stiffness and mass distribution of the members under inspec-
tion. However, low-order natural frequencies and mode shapes represent the global 
behaviour of the structure and may be relatively insensitive to the presence of small, 
localised damage. Full-scale applications addressing the first three levels of damage 
assessment are scarce and generally require dense sensor networks and advanced 
data processing techniques [2]. For the specific case of bridge cables, the usual 
integrity assessment approach involves identifying the installed axial force from a 
set of measured natural frequencies and fitting some model representing the dynamic 
behaviour [3]. Nevertheless, damage-induced variations in the axial force are only 
significant when the load paths within the structure are altered [4]. In addition, espe-
cially for short cables, the accuracy of the inverse problem largely depends on the 
proper characterisation of the restraints at the member supports and the free vibration 
length [3]. 

In such a context, an alternative strategy for the condition assessment is being 
pursued within the CTWAVE research project based on the velocities of transverse 
waves travelling along a cable. These quantities are frequency-dependent, but unlike 
modal features they are exclusively determined by the stiffness characteristics of the 
propagation medium and not influenced by its boundary conditions. Moreover, they 
can be identified along wide frequency ranges, thus enhancing damage sensitivity. 
Previous studies towards the goal mentioned above focused on the analytical deriva-
tion of such velocities (by regarding cables as tensioned Timoshenko beams) and 
the development of algorithms for their automated extraction, using sparse response 
measurements to an impact hammer excitation. Therefore, it is pertinent to demon-
strate that cable degradation is associated with a local variation in the wave velocities 
and to explore if such features are also of interest for the third level of the condition 
assessment (damage quantification). 

An extensive laboratory campaign was designed within the research project to 
fulfil these purposes, considering two typologies of cable cross-section and damage 
scenarios of varying nature, location, extension and magnitude. In particular, and 
after outlining in Sect. 2 the fundamentals of the approach, this study introduces, in 
Sect. 3, the results from experimental tests performed on a 5.10 m-long solid bar with 
a diameter of 20 mm, representing a possible cable solution for short span pedestrian 
bridges. Besides the healthy condition, two levels of cross-section loss are defined 
over an extension of 1.00 m. In Sect. 4, the effect of such damage is investigated 
in terms of both the resulting modal characteristics (natural frequencies and mode 
shapes) and the velocities of transverse-propagating waves to examine the adequacy 
of the method in detecting and quantifying damage. Finally, the conclusions of the 
study are summarised in Sect. 5.
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2 Transverse Wave Propagation in Bridge Cables 

The dynamic behaviour of bridge cables is often explored from analytical models that 
may account for the influence of axial extensibility and non-negligible sag, either in 
healthy [5] or damaged conditions [6]. In this work, to include the effects of bending 
stiffness and shear rigidity in wave propagation, a cable with a given mass per unit 
length μ, area moment of inertia I and cross-sectional area A is assimilated to a 
Timoshenko beam subject to a tensile force T [7]. In the absence of external loading, 
if u represents the transverse displacement and ϕ denotes the rotation due to bending 
(both as functions of the position s and the time t), the equilibrium of a segment with 
constant properties yields the partial differential equations: 

c2 s
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∂ϕ 
∂s

)
+ c2 t 
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∂s2 
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(
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∂s 
− ϕ

)
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∂2ϕ 
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in which ct , c f and cs are defined by
√
T/μ,

√
E I  /μ and

√
GAK  /μ, while r is 

the radius of gyration
√
I /A. E and G designate the Young’s and shear moduli, 

respectively, and K symbolises the shear coefficient. 
The system of equations above evidences the physical coupling between the 

member responses along u and ϕ. By substitution in (1), these functions only 
admit nontrivial, harmonic and positive-propagating solutions of type C1ei(γ s−ωt) 

and C2ei (γ s−ωt), with wavenumber γ and angular frequency ω, at the roots of the 
characteristic equation: 
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)
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the auxiliary parameters τ1, τ2 and τ3 being expressed by: 
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(3) 
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)
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(4) 

τ3 =
(
1 + 

c2 t 
c2 s

)
c2 f (5) 

In general, phase velocities cph represent the speed of carrier waves, being defined 
by the ratio ω/γ [7]. Therefore, replacing γ for ω/cph in (2), one obtains two positive 
solutions for cph , in accordance with the modes of deformation of the Timoshenko 
theory. The root cpht associated with transverse-dominant waves is given by:
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cpht (ω) =

[|||τ2ω2 − c2 t −
/)

τ2ω2 − c2 t
)2 − 4τ3

)
τ1ω2 − 1

)
ω2 

2
)
τ1ω2 − 1

) (6) 

This expression constitutes the dispersion relation of the cable medium. It reveals 
that each frequency component travels with a specific phase velocity, controlled 
by the axial force and the stiffness properties of the member. In particular, cpht 

approaches ct as ω → 0 and
/
c2 t + c2 s when ω → ∞. The solid bar from the 

experimental tests is now used as an example to assess the sensitivity of phase 
velocities to the various cable parameters. For this type of cross-section, the diameter 
φ determines the values of μ, I and A, while the shear coefficient is approximately 
equal to 0.886, assuming a Poisson’s ratio of 0.3 [8]. As the material is isotropic and 
the Young’s and shear moduli are related, only T , E and φ subsist as independent 
parameters. In Fig. 1, such properties take the reference values of 20 kN, 200 GPa 
and 20 mm, respectively, and 10% variations in each (from 50 up to 150%) are also 
introduced. One can observe that the phase velocities are largely unresponsive to the 
axial force, except in the low-frequency range. On the contrary, these features appear 
very sensitive to both the Young’s modulus and the diameter as ω → ∞, with a 
general trend of greater cpht in stiffer media. It should be noted that when ω → 0 
the mass loss associated with the lower values of φ dominates over the reduction in 
I and A, and phase velocities increase, as can be observed in Fig. 1c. 

The procedure to assess phase velocities can be derived from the representation 
in Fig. 2. Accordingly, by applying an impact hammer excitation at a location S0 
and by measuring the cable response at two sections S1 and S2, the computed time– 
frequency distributions enable the calculation of wave velocities from the difference 
of arrival times to S1 and S2. For the sake of conciseness, the reader interested in 
such an approach should consider the works of Kishimoto et al. [9] and Park and 
Kim [10].

Fig. 1 Sensitivity of the analytical phase velocities associated with the Timoshenko model (solid 
bar) to 10% variations in the parameters: a T ; b E ; c φ 
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Fig. 2 Schematic procedure for the experimental assessment of wave velocities 

3 Laboratory Setup and Tests 

The laboratory setup designed to pursue the study’s objectives comprises two steel 
anchoring modules roughly 5 m apart, illustrated in Fig. 3a, and, for tensioning 
purposes, a hydraulic cylinder with a hand pump. Such geometry defines a free 
vibration length of 5.10 m for the cables. Due to restrictions in manufacturing the 
damaged samples and to enhance the diversity of the experimental scenarios, the 
option was made to cut the solid bar into four parts. The free lengths of 1.55 m at the 
extremities, represented in Fig. 2, possess a fixed diameter of 20 mm. The segments 
identified in this figure by P1 and P2 can be exchanged to represent different levels 
of section loss over an extension of 1.00 m each. Details of the connection between 
adjacent portions are shown in Fig. 3c and d. In the experimental tests reported in this 
work, segment P1 was kept with a diameter of 20 mm. For the P2 segment, samples 
with diameters of 18, 19 and 20 mm were considered, as indicated in Table 1.

For each configuration presented herein, both the modal characteristics and the 
velocities of propagating waves were identified. These two types of experiments 
involved a set of piezoelectric accelerometers with a sensitivity of 0.1 V g−1, depicted 
in Fig. 3b, and an impact hammer. For the modal identification tests (MIT), the 
sensors were placed with a spacing of 0.50 m from the mid-span and at the loca-
tions delimiting the free vibration length. As for wave propagation tests (WPT), the 
pair of accelerometers was alternately positioned over the P1 and the P2 segments 
to characterise the different wave propagation velocities. To control the tension 
of the samples, the installed axial force was recorded using a load cell, being the 
average values obtained during each experiment (TMIT  and TW PT  , respectively) also 
presented in Table 1. It should be noted that, although targeted to the same value, the 
manual tensioning of the cable and the non-simultaneous performance of the tests 
determined the slightly different forces.
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(a) (b) 

(c) (d) 

Fig. 3 Laboratory tests on a solid bar: a general perspective of the experimental setup and the 
sensing solution; b set of piezoelectric accelerometers fixed with magnetic bases; c transition from 
damaged to undamaged segments; d bolted connection between segments 

Table 1 Geometric definition and load characteristics of the laboratory tests on a solid bar 

Test φP1 [mm] φP2 [mm] TMIT  [kN] TW PT  [kN] 

T1 20 18 20.254 19.980 

T2 20 19 20.115 20.003 

T3 20 20 20.076 20.023

4 Results and Discussion 

4.1 Modal Properties 

The identification of natural frequencies and mode shapes was based on a conven-
tional operational modal analysis in which a reference sensor was maintained in 
a section while the remaining two were successively mounted in other locations. 
The simultaneous response to impact excitation enabled the construction of transfer 
functions relating the acceleration measured at each section and the acceleration
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Fig. 4 Natural frequencies 
identified from operational 
modal analysis of cables T1, 
T2 and T3

at the reference location. Applying the peak-picking method permitted to identify 
the natural frequencies and mode shapes displayed in Figs. 4 and 5 for the three 
cables. Taking the test T3 (intact cross-section) as a baseline, it can be observed that 
the reduction of diameter leads to observable variations of natural frequency in the 
range of 3.8–1.5% for the case of maximum reduction of cross-section (T1) and 1.9– 
1.2% for the other (T2). It should be noted that the increase of natural frequency for a 
so-called damaged cable results from the predominance of the mass loss with regard 
to the stiffness reduction in low-order modes, which agrees with the trend recorded 
in Fig. 1c. Regarding the mode shapes represented in Fig. 5, evident variations can be 
visually registered for the first mode over the P2 segment (between 1.55 and 2.55 m). 
However, quantification of the observed damage would not be straightforward. 

4.2 Transverse Wave Velocities 

Following the procedure outlined at the end of Sect. 2, the dispersive phase velocities 
were identified over the P1 and the P2 segments for the three cable tests. A total of 
36 measurements were performed in each case, being such observations employed 
to construct 95% confidence intervals for cpht . In this operation, robust estimators 
(the median and the median absolute deviation) were considered for the location 
and scale parameters to minimise the effect of outliers. Figures 6 and 7 depict the 
resulting intervals for the P1 and P2 samples, respectively. For comparison purposes, 
a dashed line with the analytical phase velocities for a diameter of 20 mm is also 
included.

As a general trend, one can observe that the experimental phase velocities found 
in undamaged conditions (P1 samples of all three tests and P2 segment of T3) are 
consistent and agree well with the analytical reference. Moreover, the reduction of 
cross-section conducts to spatial variations in cpht that are statistically significant, as 
can be recognised in Fig. 7a and b. 

The obtained phase velocities can be employed at last at the inverse problem of 
estimating a set of cable parameters, in order to quantify the observed damage. The
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Fig. 5 Mode shapes identified from operational modal analysis of cables T1, T2 and T3: a first 
mode; b second mode; c third mode; d fourth mode; e fifth mode
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Fig. 6 Experimental phase velocities (95% confidence intervals) obtained through wave propaga-
tion tests on the P1 segment of cable: a T1; b T2; c T3 

Fig. 7 Experimental phase velocities (95% confidence intervals) obtained through wave propaga-
tion tests on the P2 segment of cable: a T1; b T2; c T3

study documented in Fig. 1 advises against the simultaneous optimisation of the 
Young’s modulus and the diameter of the solid bar because the frequency ranges of 
sensitivity are similar. Therefore, in this work, the results from the P1 segments were 
first used to estimate and verify the value of E , assuming a known diameter of 20 mm. 
Then, the phase velocities found in the P2 samples enabled the identification of the 
respective φ, taking for the Young’s modulus the mean of the point estimates recorded 
at the P1 segments. In general terms, for a fixed-regressor nonlinear model built upon 

n observations
(
ωi , cexp pht i

)
, the least-squares estimate θ

/\

of θ ∗ (here interchangeably 

denoting the true value of E or φ) minimises the objective function: 

S(θ ) = 
nΣ

i=1

(
cexp phti 

− cpht (ωi , θ  )
)2 

(7) 

over θ ∈ Θ, a subset of R. Since S evaluates the closeness of the observations to the 
fitted equation, it can also be employed to build a 1 − α confidence interval for the 
cable parameters, using the upper α critical value of the F1,n−1 distribution [11].
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Table 2 Point estimates and 95% confidence intervals of the Young’s modulus and diameter 
identified on the P1 and P2 segments of cables T1, T2 and T3 

Test EP1 [GPa] φP2 [mm] 
Point estimate 95% confidence interval Point estimate 95% confidence interval 

T1 199.11 [195.70, 202.56] 17.79 [17.62, 17.97] 

T2 196.13 [192.53, 199.79] 18.66 [18.43, 18.90] 

T3 193.14 [189.75, 196.56] 20.01 [19.83, 20.19] 

The results from such methodology are presented in Table 2, including the point 
estimates and the 95% confidence intervals obtained for the Young’s modulus and 
the diameter in the segments P1 and P2, respectively. It should be noted that even 
though in only two of the six cases the true value of the parameters lies inside the 
confidence interval, the relative errors associated with the point estimates are small, 
with maximum differences of 3.4% for E and 1.8% for φ. 

5 Conclusions 

The experimental work documented in this paper has confirmed that natural frequen-
cies constitute valuable indicators of the presence of damage and that mode shapes can 
assist, to some degree, in its localisation. However, the interpretation of modal-based 
features is not straightforward for the following level of the condition assessment 
(quantification). Being controlled by the stiffness characteristics of the propagation 
medium, phase velocities can offer a relevant contribution in this domain. The results 
of this study demonstrated that a cross-section loss is associated with a local vari-
ation of such velocities and that they can be employed for damage quantification. 
One should note, in any case, that these findings are not readily generalisable, and 
further studies with more demanding cross-section typologies and other degradation 
scenarios are required. 
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Full-Size Testing of Stay Cable Damping 
for the Assessment of Viscous Damper 
Efficiency 

Max Vollmering and Werner Brand 

Abstract Full-scale stay cable tests for viscous damping assessment at the Guadiana 
International Bridge are presented and discussed in this article. The tests carried out 
involved a pull-and-release method which allowed a repeatable damping assessment. 
Based on this, stay cable damping was identified by an exponential function fit 
to acceleration data. Measured stay cable damping ratios confirmed the viscous 
damper design, achieving a minimum of 4% logarithmic decrement total damping 
in accordance with fib89. 

Keywords Full-size testing · Stay cable damping · Viscous damper · Damper 
efficiency 

1 Introduction 

Cable-stayed bridges have become a popular construction type over the last few 
decades, resulting in increased span lengths, tower heights, and cable lengths. For 
the design of cable-stayed bridges, cable vibrations must be limited to avoid structural 
damage. Therefore, the risk of excessive cable vibrations due to parametric excitation 
and various wind phenomena (such as buffeting, vortex shedding, galloping and rain-
wind induced vibrations) can be investigated. To limit the cable amplitudes, a required 
stay cable damping can be defined for each investigated case (sometimes by using 
the Scruton number). To achieve the required damping, the use of viscous dampers 
is state of the art [1]. 

For damper design, analytical solutions for the eigenvalue analysis of the partial 
differential equation of the cable provide a well-established basis for predicting the 
stay cable damping achieved by viscous dampers [2, 3]. However, based on full-
scale test results on various cable-stayed bridges, it is known that the actual damping 
provided is lower than the predictions based on the above theory, which is sometimes 
referred to as damper efficiency. This leads to two important issues: (a) how to perform
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reliable full-scale damping assessment tests and (b) what damping efficiencies can 
be considered for damper design. 

For some cable-stayed bridges, the theoretically calculated damping is just above 
the damping requirements. Therefore, further development of accurate damping 
assessment methods and full-scale damping assessment examples are needed by 
the industry. Therefore, this article presents damping assessment tests carried out 
by DYWIDAG-Systems International GmbH (in the following DYWIDAG) at the 
Guadiana International Bridge (Spain-Portugal). The tests were carried out in 2021 
after replacement of the stay cables. A pull-and-release method was used to assess 
the stay cable damping by viscous dampers. Measurements were analyzed using an 
exponential function fit of free vibrations and tests were performed three times to 
show repeatability. In conclusion, the calculated damper efficiency results are within 
the range reported in the scientific community for other cable-stayed bridges. 

2 Damping Tests at Guadiana Bridge (Spain-Portugal) 

The Guadiana International Bridge is located on the border between Spain and 
Portugal (between the towns of Ayamonte, in the district of Huelva, and Castro 
Marim, in the district of Faro). It has a total length of 666 m, a central span of 324 m, 
and the structure consists of two 100 m high pylons. The bridge deck is supported 
by 128 stay cables, made up of between 22 and 55 strands, ranging in length from 50 
to 170 m. Built between 1985 and 1991, the Guadiana International Bridge remains 
one of the most iconic cable-stayed bridges on the Iberian Peninsula (see Fig. 1). 

Fig. 1 Aerial view of Guadiana International Bridge during stay cable replacement works [4]
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Fig. 2 During inspection water leakage at deck anchorages was found (left); Deck anchorages after 
removal (middle); Installation of new stay cables with ConTen system (right) 

2.1 Inspection and Stay Cable Replacement at Guadiana 
International Bridge 

After two strands broke in recent years (a third broke in March 2019), inspections and 
non-destructive testing were carried out in 2018. The inspection results suggested a 
complete replacement of the stay cable system (originally installed by a competitor). 
The following work was therefore carried out by DYWIDAG (see Fig. 2 and [4]): 

1. Removal of the existing stay cables and anchorages. 
2. Adjustments in existing elements. 
3. Installation of new stay cables, including external viscous dampers. 
4. Installation of cable force monitoring system. 

After replacing the stay cables, the Guadiana International Bridge has been repaired 
and is safe again. 

2.2 Damping Tests 

Newly installed stay cables were also equipped, where necessary, with external 
viscous dampers based on a conducted viscous damper design. After the installa-
tion of the dampers, damping tests were carried out to check the validity of the 
damping system in order to comply with fib89 [5], which recommends 3–4% loga-
rithmic decrement total damping (0.48–0.64% damping ratio) for cables longer than 
80 m. Standard testing methods for stay cable damping are (a) rhythmic pulling (e.g. 
by hand or machine) and (b) the pull-and-release method. The latter was used on 
the Guadiana International Bridge, where the cable was pulled with a rope and then 
released (see Fig. 3). The rope was attached at a height of approximately 11 m above
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Fig. 3 Pull-and-Release method for damping assessment at Guadiana International Bridge 

Table 1 Parameters of tested stay cables 

Cable Chord 
length L 
[m] 

Chord 
angle θ 
[°] 

Strands 
[−] 

Unit mass 
m [kg/m] 

Tension 
H [kN] 

Damper 
c-value [kNs/ 
m] 

Damper position 
xc/L [−] (%)  

2N28 132.800 29.4 37 51.45 3091 65 3.13 

2N29 141.550 28.2 37 51.45 2948 65 3.03 

2N30 150.360 27.1 37 51.45 3246 65 2.93 

2N31 159.220 26.1 37 51.45 3300 65 2.87 

2N32 168.120 25.3 55 75.38 4873 95 2.79 

deck and the rope was pulled until the cable moved at least 10 mm at the damper 
position (to ensure damper activation). Once released, the free vibrations of the stay 
cable were measured using an accelerometer attached on top of the stay cable at 
approximately 10 m height. 

For cables 2N28…2N32, damping tests were carried out three times (see Table 1), 
which are analyzed in Sect. 4. The tests were carried out under similar environmental 
conditions (approximately 25 °C air temperature). 

3 Assessment of Viscous Damper Efficiency 

3.1 Viscous Damper Design 

State-of-the-art damper design theory is based on the work of Krenk et al. [2, 3] and 
is well-known for its high accuracy and applicability. This theory is based on the 
mechanical model shown in Fig. 4. The damper is modelled as a Maxwell element to
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Fig. 4 Mechanical model of 
viscous damper design 

incorporate the damper support stiffness [1]. The mechanical model “cable-damper” 
allows for the calculation of the additional damping ratio ζ (the cable itself is modelled 
without inherent damping). 

From this model, the reduction in damper efficiency due to bending stiffness, 
cable sag, and equivalent damper support stiffness are derived. For the analyzed stay 
cables of the Guadiana International Bridge, the sag has a negligible influence and 
is therefore not considered in the following. 

Based on the stay cable parameters, a curve of the achievable damping ratio ζ is 
calculated, based on the universal damping curve [1]. For a chosen viscous damping 
coefficient c, several curves separately show the damping ratio for different vibration 
modes of the stay cable. 

An example of the universal damping curve for cable 2N28 is shown in Figs. 5 and 
6. The design curves are shown using a security coefficient γζ = 0.75 (see Sect. 4). 
Importantly, there is no linear damper with an optimal damper configuration for all 
modes. Within this detailed design, it is shown that dampers with a chosen damping 
coefficient c lead to different damping ratios for each mode.

It is well known that the actual damping provided is less than the predictions 
based on the above theory, sometimes referred to as damper efficiency [1]. Therefore, 
full-scale test results are required for accurate damper design. 

3.2 Damping Assessment 

To calculate the stay cable damping, the measured data must be processed, usually 
using free vibration acceleration measurements (see Sect. 2.2). At the Guadiana Inter-
national Bridge, the mechanical system “cable-damper” acts almost linear, therefore 
the free decay of the cable w(t) due to an initial deflection is theoretically known as
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Fig. 5 Viscous damper design for stay cable 2N28: Additional design damping ratio can be seen 
at the intercepts of design curves at the chosen damper c-value of 65 kNs/m (vertical black line) 

Fig. 6 Normalized viscous damper design for stay cable 2N28: Additional design damping ratio 
can be seen at the intercepts of design curve and normalized c-values following c = 65kNs/m 
(ηn = nπ (xc/L)c/ 

√
Hm; vertical colored line for mode n); Identical calculated damping ratios as 

in Fig. 5
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w(t) = e−ω0ξ t (A · sin(ωdt) + B · cos(ωdt)), ωd = ω0 

/
1 − ζ2 (1) 

A and B indicate general factors and are not required to calculate the damping 
ratio ζ. Further, undamped and damped angular frequencies ω0/ωd are very similar 
for small damping ratios ζ. vibration “peaks” can be modelled by 

g(t) = a · e−bt + c (2)  

By identifying g(t), it is straightforward to estimate ζ. Since the stay cable vibrates 
at several frequencies (modes), it is necessary to analyse each frequency separately. 
Hence the following procedure for damping assessment has been used (see Figs. 7 
and [6]): 

1. Bandpass filtering with FIR filters (filter design by window method with 
Hamming window) to extract a single mode (modes 1–5 were analysed). 

2. Identification of half-wave maxima (“peaks”). 
3. Fitting the “peaks” with an exponential function. 
4. Damping ratio ζ follows from the exponential function fit. 

As damping assessment can lead to scattered results [6], damping tests were 
performed three times per cable and the average is used below.

Fig. 7 Principle of damping assessment by exponential function fitting 
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4 Results: Damper Efficiency at Guadiana International 
Bridge 

This section brings together the viscous damper design from Sect. 3.1 and the test 
results from Sect. 3.2 to show the measured damper efficiency. 

Viscous damper design. For the viscous damper design, a security coefficient γζ = 
0.75 has been used by ζdesign = γζ · ζcalculation following general recommendations 
[1]. Further, the stiffness of the damper support was chosen based on experience. 
For comparison with measured “total” damping ratios, the design values have been 
increased by an assumed inherent damping of 0.1%. 

Damping test results. Measured mean damping ratios are so-called “total damping 
ratios” (damper + inherent damping). For some modes, damping ratios could not be 
analyzed (and therefore are not shown), probably due to test conditions (the reasons 
could not be fully explained). 

As can be seen in Fig. 8, all measured damping ratios are above the design universal 
damping curve (to be comparable an inherent damping of 0.10% is added; security 
coefficient has been applied). Therefore, the damping tests carried out confirm that

Fig. 8 Results of damper efficiency at Guadiana International Bridge: Measured “total” damping 
ratios (colored crosses) are above the universal design curve (to be comparable an inherent damping 
of 0.10% is added; black line, see Sect. 3.1) for each tested cable (subplot)
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the viscous damper design complies with fib89 [5] (total damping larger than 4% 
logarithmic decrement).

From a theoretical point of view, it is important to note that the measured damping 
ratios follow the general shape of the universal damping curves for stay cables 2N28, 
2N29, 2N30 and 2N31, which reinforces the conducted viscous damper design. 

5 Conclusions 

This paper presents and discusses full-scale stay cable tests carried out at the 
Guadiana International Bridge to assess viscous damping. A pull-and-release method 
was used to allow repeatable damping tests. The measured data were then processed 
using exponential function fitting to identify the stay cable damping. Considering 
the test results, all measured damping ratios confirmed the viscous damper design to 
achieve a minimum of 4% logarithmic decrement according to fib89 [5]. 

The security coefficient applied is a pragmatic and simple approach to consid-
ering damper efficiency and is consistent with the damping efficiencies reported by 
Caetano [1]. The identified damping efficiency is considered specific to the Guadiana 
International Bridge and may not be general for other cable-stayed bridges. There-
fore, it is recommended that the scientific community publishes more measurement 
data (i.e., further full-scale damping assessment involving different test methods and 
other cable-stayed dampers) to allow for even more accurate damper design and 
improved cable-stayed bridge design. 
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Vibration Excitation and Damping 
of Suspension Bridge Hanger Cables 

Allan Larsen 

Abstract The paper presents full-scale observations and wind tunnel tests carried 
out to clarify the mechanisms driving the hanger vibrations observed in the final 
phases of completing the 1915 Çanakkale suspension bridge. It is found that 
high frequency low amplitude vibrations were caused by rhythmic vortex shed-
ding whereas large amplitude low frequency vibrations were caused by rain wind 
galloping. Stockbridge dampers were introduced to mitigate the hanger vibrations but 
were found to fail due to fatigue of the messenger wire. Taut string theory is reviewed 
and combined with the wind tunnel test results and damper characteristics to explain 
the likely cause for damper failure. It is concluded that Stockbridge dampers are 
well suited for mitigation of vortex induced vibrations if properly designed but are 
insufficient for mitigation of rain wind vibrations of the hanger cables. Mitigation of 
rain wind vibrations requires hydraulic dampers connecting the hanger cables to the 
bridge deck structure. 

Keywords Hanger cable vibrations · Wind tunnel tests · Taut string modal 
damping · Stockbridge dampers · Hydraulic dampers 

1 Introduction 

Hanger cables in suspension bridges are important structural elements which transfer 
the dead load of the bridge girder to the main cables. Over time various designs of 
the hangers and anchorages have been favored. The hangers of older suspension 
bridges are composed of galvanized stranded wire loops set into grooves in the 
cable bands and attached to the deck top chord by means of threaded bolts. Newer 
hanger designs feature locked coil or parallel wire strands painted or sheathed by 
high density polyethylene HPDE coating. The cable ends of the newer type hangers 
are commonly attached to the cable bands and deck anchor plates by means of fork 
socket/eye plate connections. While the older types of stranded wire hangers do not

A. Larsen (B) 
COWI AS, 2800 Lyngby, Denmark 
e-mail: Aln@COWI.com 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
V. Gattulli et al. (eds.), Dynamics and Aerodynamics of Cables, Lecture Notes in Civil 
Engineering 399, https://doi.org/10.1007/978-3-031-47152-0_19 

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47152-0_19&domain=pdf
mailto:Aln@COWI.com
https://doi.org/10.1007/978-3-031-47152-0_19


218 A. Larsen

appear to be particularly sensitive to wind effects, wind induced vibrations of the 
newer types of hangers are reported on a regular basis. A situation raising questions 
to structural fatigue and visual discomfort with the public crossing the bridges. A way 
of mitigating suspension bridge hanger vibrations is by adding mechanical damping 
in the form of mechanical resonant dampers (Stockbridge dampers) or hydraulic 
dampers [1]. 

A field measurement campaign of vortex induced vibrations (VIV) of the locked-
coil fork socket/eye plate hangers of the Hålogaland suspension bridge, Norway 
[2], identified the lower bound structural damping of the hangers to be in the range 
0.0015–0.002 log. dec. It was also found that the VIV were efficiently mitigated by 
Stockbridge dampers. 

2 1915 Çanakkale Suspension Bridge Hanger Vibrations 

The world record 1915 Çanakkale suspension bridge (2023 m main span length), 
Türkiye, features hangers having fork socket/eye plate connections similar to the 
Hålogaland suspension bridge. The 1915 Çanakkale bridge hanger cables are 
composed of parallel wire strands and are sheathed by HPDE coating similar to 
the Hålogaland bridge. The longest hangers of the 1915 Çanakkale bridge are twice 
as long (220–240 m) as the longest hangers on the Hålogaland bridge. 

In view of the similar hanger design, it was not surprising that the hangers of 
the 1915 Çanakkale bridge displayed low amplitude cross wind vibrations at high 
frequencies increasing with the wind speeds as is expected for VIV. During the final 
phases of completion of the bridge it was decided to add Stockbridge dampers to the 
hangers for mitigation of the hanger VIV. The Stockbridge dampers, which are of 
similar design to the Hålogaland dampers, were doubled in number from 2 to 4 for 
the longest hangers to match the longer hanger length. The dampers proved efficient 
for mitigation of VIV which had been observed previously mostly on days with clear 
skies. However, the longest hangers were observed to be set into large amplitude 
vibrations during weather situations with both high wind speeds and rainfall. The 
dampers on the longest hangers failed after about two months of service, Fig. 1.

Before failure of the Stockbridge dampers, it was noted that the vibrations of the 
longest hangers changed character when the weather changed from dry conditions 
to high winds and rain. The high frequency VIV largely mitigated by the Stock-
bridge dampers switched into crosswind low frequency, high amplitude vibrations 
displaying 4 to 6 half-waves along the cable length, Fig. 1 (left). Close up examina-
tion of the vibrating hangers revealed a water rivulet forming and running along the 
hanger and draining of at the lower socket. A similar phenomenon referred to as rain 
wind induced vibrations (RWIV) is well known for inclined cables of cable-stayed 
bridges [3] but has not been observed for vertical cables to the knowledge of the 
present author.
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Fig. 1 RWIV and VIV of longest hangers (left and middle) wind normal to the hanger plane. 
Overlay of two video frames at the extreme excursions of the cable. Failed stockbridge dampers 
displaying empty clamps and damper masses scattered on the bridge deck (right)

2.1 Wind Tunnel Tests 

Two types of wind tunnel tests were carried out at the FORCE Technology 2 × 2 m  
cross section climatic wind tunnel [4] to clarify the aerodynamic excitation of the 
hanger cables associated with VIV and RWIV. 

The VIV set-up involved a classical elastically suspended horizontal 1:1 scale 
section model composed of a carbon fiber shaft clad by cylindrical foam elements 
reproducing the external shape and roughness of the 0.108 m diameter hanger cable 
HPDE shroud, Fig. 3 left. The model was fitted with 0.138 m diameter end plates to 
secure two-dimensional flow. This model design allowed a minimum weight of the 
section model to allow maximum self-induced response. Different levels of mechan-
ical damping were introduced to the model by an eddy current mechanism composed 
of permanent magnets moving across an aluminum plate. This setup allowed the
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Scruton Number to be varied in the range 5.8 < Sc < 32.5. For the present discussion 
the Scruton Number is defined as: 

Sc = 
2δsm 

ρd2 
(1) 

where δs is the structural damping level (log. dec.), m is cable model mass/unit length, 
ρ is air density and d is external cable model diameter. 

The VIV experiment started by mapping the model amplitudes as function of 
wind speed. The test then proceeded by systematically increasing Sc by stepping up 
the damping level and recording the peak amplitude of the VIV response at lock-in. 
The 82 mm peak-peak amplitude of the model at Sc = 5.8 may be appreciated from 
Fig. 2, left.  

The RWIV set-up involved a vertical 0.11 m diameter cylindrical HPDE pipe 
suspended from a flexure at the roof of the wind tunnel, Fig. 2, right. The flexure 
allowed the model to oscillate with a linear mode shape in the crosswind and along 
wind direction at an eigen frequency fm = 2.2 Hz. Damping could be introduced to 
the model by adding a paddle submerged in an oil bath situated at the free end of the 
model on the wind tunnel floor. A water sprinkler system was installed upwind of the 
model to allow simulation of rainfall. This test set-up allowed the Scruton Number 
to be varied in the range 13.5 < Sc < 69.9. 

Prior to turning on the wind, the RWVI experiment started by treating the surface 
of the model by polyvinyl alcohol to simulate the full-scale surface condition caused 
by pollution and UV exposure. Then the test proceeded by turning on the wind

Fig. 2 VIV model (left) and RWIV model (right) in the wind tunnel. Overlay of two video frames 
captured at the extreme excursions of the cable models
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Fig. 3 Non-dim std. dev. of model responses as function of non-dim. VIV wind speed

and sprinkler system to identify the rainfall rate that yielded the largest crosswind 
response of the free end of the model. For this rainfall rate the standard deviation 
of the amplitude of the free end was recorded as function of wind speed. For the 
rainfall rate and wind speed setting yielding the largest model response, Sc was 
systematically increased by stepping up the damping level and recording the peak 
amplitude. The 235 mm peak-peak amplitude of the model at Sc = 13.5 can be 
seen from Fig. 2, right. It was found that the polyvinyl alcohol coating was partly 
washed off during the run of an experiment resulting in a decrease of the RWIV 
response of the model. Thus, the experiment was repeated 4 times for each Sc with 
renewed coating before each test run to allow assessment of the variability of the 
model response caused by the variability of the model surface condition. 

2.2 Wind Tunnel Test Results 

The standard deviation of the model amplitudes made non-dimensional by the model 
diameter, σa/d are plotted as function of the non-dimensional wind speed U/ f d, 
Fig. 3. The non-dimensional wind speeds for the RWIV are divided by a factor 7.4 
to align the peaks of the RWIV and VIV responses on the wind speed axis for easy 
illustration. 

From Fig. 3 it is noted that the maximum of the VIV response falls at U/ f d  = 
5.73 yielding a Strouhal Number StV I  V  = 0.175 in good agreement with Eurocode 
(St = 0.18). The maximum of the RWIV response falls at U/ f d  = 5.73 · 7.4 = 
42.4 corresponding to a Strouhal Number St RW I  V  = 0.024. In the present context 
VIV and RWIV are treated in a similar way due to the similarity of the shapes of the 
σa/d versus U/ f d  curves although fluid dynamics processes controlling VIV (von 
Kármán vortex shedding) and RWIV (flow separation caused by the water rivulet) 
are likely to be different.
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Fig. 4 Measured VIV and RWIV peak amplitude envelopes as function of Sc 

In order to investigate the effect of increasing Scruton Numbers on the VIV 
and RWIV responses on the cable models the structural damping was increased 
systematically for U/ f d  = 5.73 for VIV and U/ f d  = 42.4 for RWIV. The measured 
non-dimensional peak responses as function of Sc are shown in Fig. 4 along with 
envelope curves fitted following the EN1991-1-4 method 2 model [5]. For RWIV 
the test was repeated 4 times at each Sc as the peak responses displayed a certain 
variation possibly due to variations of the adhesion of water to the model surface in 
the individual test runs. 

It is observed that damping of VIV to low amplitudes beyond the self-excited 
response range requires a Scruton Numbers Sc > 10–15. For RWIV, Fig. 4 indicates 
that Sc > 60–70 for effective mitigation of the vibrations. 

The response curve for VIV, Fig. 4, was used for estimation of the inherent struc-
tural damping of the hangers. Video recordings of for the vibrating hangers without 
Stockbridge dampers allowed estimation of the non-dimensional peak amplitudes 
ap/d ≈ 0.04 as indicated in Fig. 1 (middle). From Fig. 4 the corresponding Sc = 
8.1 yielding δs ≈ 0.0013 in good agreement with the Hålogaland bridge damping 
estimates [2]. 

3 Hanger Cable Dynamics 

Hanger cables behave dynamically much like a taut string. The modal damping 
resulting from a viscous damper attached to the hanger at a position xc above the 
anchorage and having a damping constant C [Ns/m] is well predicted by Krenk’s 
closed form asymptotic formula [3], which is considered accurate if the number of 
modal waves n are less than 10. This approximation is often sufficient for RWIV of 
stay- and hanger cables. In the case of VIV of a 200 m long hanger cable excited at
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Fig. 5 Comparison of non-dimensional modal damping as function of non-dimensional viscous 
damping constant multiplied by mode number. C/ 
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a wind speed of 15 m/s, the theoretical number of half waves is about n ≈ 100 in 
which case the asymptotic formulation breaks down. 

A suitable formulation for the numerical solution of the exact formulation of 
the string equation by iteration is given by Krenk and reproduced as Eq. (6.21) in 
[3]. A comparison of the non-dimensional modal damping relative to critical ζ L/xc 
as function of the non-dimensional mode number and viscous damping constant 
nC/

√
Tmxc/L is shown in Fig. 5. It is noted that the asymptotic expression predicts 

the modal damping well for nC/ 
√
Tmxc/L < 0.1 but overpredicts the modal damping 

at higher values. Also, it is noted that the modal damping is zero at nC/ 
√
Tmxc/L ≈ 

0.5, 1.0, 1.5 for the exact expression. Here the damper is located at a node of the 
mode shape without displacement in which case the damper is not activated. This 
observation is important to keep in mind when considering positioning of dampers 
for mitigation of VIV of hanger cables. 

4 Stockbridge Dampers 

Stockbridge dampers are mechanical resonant devices usually composed of two 
masses or counterweights attached to a fastening clamp via a common messenger 
wire, Fig. 6 (left). The messenger wire acts as the elastic element as well as it provides 
damping through friction between the individual strands of the wire. Stockbridge 
dampers may be built symmetric yielding two distinct resonance peaks or asymmetric 
having a larger and a smaller mass to provide four resonance peaks depending on 
the application. The damping capacity of a Stockbridge damper is usually presented 
in a characteristics curve obtained from forced vibration testing. The characteristic



224 A. Larsen

0 10 20 30 40 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Fig. 6 Stockbridge damper (left). Damping constant characteristic (right) 

presents the dampers ability to dissipate power PD [W] as function of frequency f 
[Hz], [2]. 

To calculate the modal damping of a hanger cable fitted with a Stockbridge damper, 
the PD characteristic must be converted into an equivalent damping constant C as 
function of frequency. This can be done by regarding the Stockbridge damper as a 
base excited damped oscillator for which the relationship between dissipated power, 
driving force F0 and vibration velocity v is: 

PD = 
1 

2 
F0v sin(ϕ) = 

1 

2 
Cv2 sin(ϕ) 

1 

2 
C = 

2PD 

v2 
sin(ϕ) (2) 

where ϕ is the phase angle between the driving force and the damping force. As the 
Stockbridge damper is mainly working at its resonances it is fair to assume a phase 
shift ϕ ≈ 90°. 

The Stockbridge dampers for the 1915 Çanakkale bridge were tested following 
the IEEE specifications adopted by the power supply industry. This standard specifies 
that the driving velocity at the clamp is kept constant at v0 = 0.1 m/s. Application of 
(2) yields the damping constant characteristic shown in Fig. 6 (right) obtained from 
the PD supplied by the manufacturer. The damper characteristic displays four peaks. 
The two peaks at 2.8 and 5.0 Hz are associated with the first cantilever bending mode 
of the messenger wire connecting the larger and smaller mass to the clamp. These 
modes cause bending stresses in the messenger wire at the clamp. The peaks at 10.8 
and 21.2 Hz are associated with a rotary motion of the lager and smaller masses 
about their centers of gravity. These modes causes bending stresses in the messenger 
wire at the attachments to the masses.
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5 Example: Hanger 111 of the 1915 Çanakkale Bridge 

Hanger no. 111 (Fig. 1) is a double hanger composed of two individual cables set at 
a spacing of 1.5 m. The average length of the individual hanger cables is L = 221 m, 
the axial tension force due to deadload T = 2.72 MN and the cable mass/unit length 
is 46 kg/m. Each of the individual cables of hanger 111 were equipped with two pairs 
of Stockbridge dampers situated at xc1 = 4.6 m and xc2 = 5.5 m above the pin bolts 
anchoring the cable sockets to the bridge deck, Fig. 1. The frequency for n = 1 is  
0.56 Hz. 

The Scruton Number obtained by combining the modal damping obtained using 
the numerical exact solution to the string equation, the estimated inherent damping 
δs = 0.0013 and the above physical cable parameters are shown in Fig. 7 (black 
graph). The horizontal axes display the mode number n and the frequency f . 

The following observations are made from Fig. 7: 
For low mode numbers n = 1, 2, 3, the vortex shedding frequency falls below 

the first resonance of the Stockbridge dampers in which case the dampers are not 
activated. Thus, VIV may occur. 

For mode numbers 4 ≤ n < 7, 10 <  Sc < 70 in which case VIV is mitigated 
but RWIV is highly possible. 4 ≤ n < 7 corresponds to wind speeds in the range 
10–18 m/s in good agreement with the observations of RWIV shown in Fig. 1. 

For mode numbers 8 ≤ n ≤ 26, Sc > 70 in thus neither VIV nor RWIV are 
expected. 

Comparing Figs. 6 and 7 it is noted that the damping effect of the 4th resonance 
peak of the damper at about 21 Hz (rotation of the small mass) is almost completely 
lost due to the dynamics of the cable.
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Fig. 7 Scruton number as function of mode number n/frequency f [Hz] for hanger no. 111 
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6 Failure of the Stockbridge Dampers 

Figure 7 demonstrates that the Stockbridge dampers supplies insufficient damping 
to prevent RWIV of hanger 111 at mode numbers less n < 7. Mode 4–6 of hanger 
111 having frequencies between 2.2 and 3.3 Hz coincides with the first resonance 
peak of the Stockbridge damper indicating a risk for large bending stresses in the 
messenger wire. A forced vibration test of the damper was carried out to establish 
the amplification of the amplitude of the masses relative to the forced displacement 
of the clamp, Fig. 8 (left) and the risk for encountering fatigue related rupture of the 
messenger wire. 

Comparing the magnitude of the peak-peak displacement of the clamp to the 
displacement of the mass yields an amplification ≈ 2.5. Thus, a clamp movement 
of one cable diameter = 0.11 m (Fig. 1 left) will result in 0.25 m deflection of the 
attachment point of the mass causing considerable dynamic bending stresses in the 
messenger wire at the clamp, Fig. 8 (right). The test demonstrated rupture of the 
first wire strand at the clamp after 6 hours of testing and complete rupture of the 
messenger wire after 11 hours. Wire rupture at the mass end of the messenger wire 
is likely to be due to VIV resonating with the high frequency second mode of the 
smaller mass, Fig. 8 (right). 

The failure of the Stockbridge dampers on the longest hangers of the 1915 
Çanakkale bridge due to RWIV lead to the design of a hydraulic damper assembly 
composed of two individual hydraulic damper cylinders having a compound damping 
constant C = 50 kNs/m and attached to the hanger xc = 3.2 m above the anchor 
point. The Scruton Number for hanger 111 fitted with the hydraulic damper as is 
plotted in Fig. 7 (grey graph). It is noted that Sc > 70 for all mode numbers up to 
n = 19.

Fig. 8 Forced motion test of stockbridge dampers (left). Overlay of two video frames captured at 
the extreme excursions of the clamp and mass. Failed dampers displaying rupture of messenger 
wire at the clamps and at the masses (right) 
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7 Conclusions 

Field observations and wind tunnel simulation of the vibration of parallel wire 
or locked-coil suspension bridge hangers sheathed by HPDE tubes and mitiga-
tion by means of mechanical dampers is discussed. The following conclusions are 
highlighted: 

• Vertical parallel wire or locked-coil hanger cables sheathed by HPDE tubes are 
found to have very low structural damping in the range 0.001–0.002 log. dec. 

• These types of hanger cables are expected to receive high frequency excitation by 
rhythmic vortex shedding or low frequency rain wind effects. Rain wind excitation 
is considerably stronger than vortex induced vibrations. 

• The classical wave theory for a taut string fitted with a viscous damper must be 
solved numerically for accurate prediction of the resulting modal damping for 
high wave numbers. 

• Stockbridge dampers are efficient for damping of vortex induced vibrations of the 
hanger cables but are likely to fail due to fatigue of the messenger cable when 
subjected to rain/wind vibrations. 

• Hydraulic dampers are likely to present a more efficient and durable alternative 
to Stockbridge dampers as they can be designed to yield higher modal damping 
and are less vulnerable to fatigue. 
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Cable-Stayed Bridge Model Updating 
Through Analytical Formulation, Finite 
Element Model and Experimental 
Measurements 

Cecilia Rinaldi , Marco Lepidi , Francesco Potenza , 
and Vincenzo Gattulli 

Abstract The evaluation of the dynamic response of cable structures is a topic of 
relevant interest for both researchers and designers working in the civil engineer-
ing field. For the implementation of reliable numerical models able to simulate the 
actual mechanical behaviour of such structures, the cable tension is a fundamental 
variable to be assessed accurately. This contribution describes methods and proce-
dures aiming to enhance the reliability of finite element models in reproducing the 
dynamic response of a cable-stayed pedestrian bridge, through the fusion of static 
and dynamic experimental data from different technologies. First, the experimental 
evaluation of the cable static configuration has been used for identifying the cable 
tension. Indeed, by virtue of a low-order approximation of the catenary suspended 
cable model (obtained by a perturbation method), a cubic function of the cable 
static configuration under self-weight has been determined. In this formulation, the 
quadratic and cubic coefficients have been recognized as tension-sensitive quantities 
and have been used to analytically evaluate the cable tension. Then, traditional output 
only dynamic tests, under environmental noise, have been exploited to evaluate the 
reliability of the computational model of the bridge and to analyze the deck modes 
mainly involved in the dynamic behaviour. The subsequent manual model updating, 
targeted at reducing the difference between the experimental and numerical frequen-
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cies, showed higher effectiveness if the designed cable tensions are replaced by the 
identified values in the computational model. 

Keywords Suspended cable · Perturbation methods · Tension identification ·
Modal analysis 

1 Introduction 

Along the years, the cable, as structural element, constitutes one of the most useful and 
efficient solutions to guarantee high material strength, functionality, low-weight and 
aesthetic fineness of a mechanical systems. In the last decades, several researches 
have provided interesting contributions, mainly concerning the description of the 
cable mechanical behaviour [ 6, 11, 15]. Moreover, reduced analytical models have 
been also developed to explain some experimental evidences [ 3– 5]. To exemplify, the 
model proposed in [ 4] describes the free dynamics of a system composed by beam-
cable-beam. Such description aimed to classify the parameters intervals where global, 
local and hybrid modes occurred. The analysis allowed to justify some unpredictable 
dynamic interactions observed during some experimental tests conducted on the 
damaged masonry walls of the Basilica of Collemaggio, heavily damaged during the 
2009 L’Aquila Earthquake. 

The reliability of these models can be improved through an appropriate identifica-
tion of the parameters that are mainly involved in the structural dynamic behaviour. 
The procedure used to reach this objective is commonly named model updating 
that aims to increase the accuracy of a model (analytical or computational) based 
on the information coming by experimental measurements. These latter, in the last 
years, have been for the most part vibration-based [ 12] and so, in this case, the 
model updating process is oriented to a proper evaluation of the modal properties 
(especially frequencies and modal shapes). Dynamic tests are usually carried out 
measuring the structural response induced by ambient excitation (output-only, i.e. 
without direct knowledge of the input), and the structural identification procedure is 
called in this case operational modal analysis. In the last decades, have been devel-
oped consolidated procedures able to accurately identify the modal parameters, as the 
ones reported in [ 13, 14]. A lot of examples concern structural systems in which the 
cables are of primary importance as in the case of suspended or stay-cables bridges 
or walkways [ 1, 7]. Such updated models constitute a base for continuous structural 
health monitoring and quickly identifying the triggering of critical trends. 

Regarding the cable, beyond the classical mechanical damage indicators usu-
ally depending by a combination of the modal features [ 8– 10], the evaluation of its 
axial force (cable tension) is one of the most important. It can be directly measured 
through a dedicated instrumentation or assessed by indirect methods, solving inverse 
problems. In this case, the identification results depend by both the measurements 
accuracy and the refinement of the analytical model used in the inverse procedure. 
Such models can be included in the simplest class (taut-string that neglects the flex-
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ural stiffness and sag) or in ones more complicated particularly suitable for long 
cables [ 2, 16, 19]. 

The aim of this research activity is the accuracy enhancement of a finite ele-
ment model to analyze the dynamic behaviour of the cable-stayed bridge described 
in Sect. 2, exploiting both geometric (static) and vibration (dynamic) experimental 
data. First, the actual cable tensions are evaluated through a low-order polynomial 
approximation of their experimental static configuration under self-weight (Sect. 3). 
Then, a preliminary finite element model is implemented according to design values 
of cable forces and it is subsequently improved by considering the identified cable 
tensions. Computational model accuracy is evaluated in Sect. 4 by a comparison with 
operational modal analysis results and concluding remarks are reported in Sect. 5. 

2 Bridge Description and Experimental Tests 

The cable-stayed bridge under investigation is the pedestrian walkway in Beinasco 
(province of Turin, Italy) depicted in Fig. 1. The cycle-pedestrian walkway was built 
in 2004 and it was named to Albano Zuin, a partisan of Beinasco killed during the 
second world war. It is composed by three main elements: (1) deck, (2) access ramp 
and (3) pylon (Fig. 1a, b). As it can be noted in the longitudinal view in Fig. 1c, such 
three substructures interact each other by a system of 26 stay cables all connected 
to the pylon at different heights. In particular, seven cables (steel, 42 mm diameter, 
pretensioned) constitute a fan system bearing the deck that is further sustained by 
three supports two located at the ends and the third one at about one third of the total 
length. The deck is a steel truss-type beam 80 m long, 3 m wide and 1.65 m tall show-
ing a slight curvature in its horizontal plane (Fig. 1d). Moreover, such substructure is 

Fig. 1 Overview of the Albano Zuin cable-stayed bridge and experimental tests: deck (a) and access 
ramp (b) picture; lateral view of the 3D point cloud model (c); general plan view (d); measured 
accelerations of SP13 cable (e); image (f) and displacement (g) data by high-speed camera
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composed by three main elements connected together through smaller crossbeams. 
Similar to the deck, the access ramp is a truss-type beam, with an ovoid shape in 
plan, which is sustained by both supports and stays (steel, 28 mm diameter). The two 
ends of the access ramp are connected to the ground and deck, respectively. Finally, 
the pylon is a steel tubular 45 m tall showing a slight inclination. For the stabilization 
of the whole system, nine stays connect the pylon to the ground. 

Different experimental surveys have been carried out to obtain an accurate knowl-
edge of the as-built structure and to improve the numerical model describing the 
walkway structural behaviour. The specifications of the instrumentation used for 
the acquisition of experimental data are listed in Table 1. To faithfully describe the 
geometry of the whole system, a terrestrial laser scanner has been used to obtain a 3D 
point cloud model of the bridge (Fig. 1c). Due to the large dimensions of the structure, 
the geometry reconstruction needed of 26 stations and 7 h of acquisition. To inves-
tigate the dynamic behaviour of the deck and cables supporting the deck, dynamic 
tests (output-only) under environmental noise have been conducted, for which three 
vibration measurement systems (high-speed camera, uniaxial wired accelerometers, 
uni- and tri-axial wireless accelerometers) have been used. Examples of acquisitions 
carried out on the cables are showed in the Fig. 1e, f, g. It is worth to highlight that, to 
measure an appreciable amplitude level for the cable dynamic response, some man-
ual light input have been applied (see, for example, the last part of the time history in 
Fig. 1e). The camera has been installed on the concrete cantilever in the central aerea 
of the access ramp and it has been able to record the vibration of cables SP15 and 
SP16 (see Fig. 2a where the attachment points of the seven stay cables supporting 
the deck are also reported), while for SP10–SP14 cables PCB acceleremoters have 
been used. The displacement time histories of SP15 and SP16 were obtained by pro-
cessing the acquired images using the Digital Image Correlation as visual tracking 
algorithm [ 17]. The positions of uni- and tri-axial MEMS accelerometetrs installed 
on the deck are illustrated in Fig. 2b. 

Table 1 Data acquisition systems for geometry and vibration measurements 

Geometry 3D point cloud Cam2 Laser Scanner Focus Faro.× 130 

0.6–130 m Range,.± 2 mm Distance error 

Vibrations Cable disp. Camera IO Industries Flare 12M125.× CL 

4096.× 3072 Resolution, 100 fps Sampling 
frequency 

Cable accel. Wired piezoelectric accelerometers PCB393B31 

10.0 V/g Sensitivity, 200 Hz Sampling frequency 

Deck accel. Wireless Lunitek Sentinel MEMS accelerometers 

1350 mV/g Sensitivity, 250 Hz Sampling frequency
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)b()a( 

Fig. 2 Setup plan view: a position of the high-speed camera and anchorage points of the cables 
supporting the deck; b setup for the dynamic tests conducted on the deck by using uniaxial and 
triaxial accelerometers 

3 Analytical Cable Model and Tension Identification 

Let consider an inclined and inextensible cable hanging between two fixed supports. 
The nonlinear ordinary differential equation governing the static equilibrium of the 
cable under self-weight. w, constant per unit natural length, reads in nondimensional 
form 

.
d2z

dx2
= −8 δ

[
1 +

(
tan ϑ + dz

dx

)2 ]1/2

with δ = wL

8H
(1) 

and the boundary conditions read.z(0) = 0 and.z(1) = 0, where. x variable describes 
the span. L between the two supports, the coordinate function.z(x) describes the dip of 
the cable below the chord, . ϑ is inclination angle of the chord and.H is the unknown 
horizontal reaction at support. The exact solution of this equation is the catenary 
function which can be challenging to handle for cable tension identification purposes. 
Under the assumption of cable shallowness, a classic perturbation scheme can be 
pursued. The parameter. δ is considered small and, introducing the ordering.δ = Eδ1, 
where .E ≪ 1 is a nondimensional smallness parameter, the unknown variable . z(x)
can be approximated by.z[n](x) =Σn

i=1 Ei zi (x). The functions.zi (x) are independent 
unknown variables which are determined substituting the parameter ordering and 
the variable expansion.z[n] in the equilibrium equation (1), expanding and collecting 
terms of the same.E-power, and solving the obtained system of linear equations up to 
second order. The second order reconstructed solution is a cubic function reading 

.z[2](x)=4 δ secϑ
(
1+ 4

3δ sin ϑ
)
x−4 δ secϑ (1+4δ sin ϑ) x2+ 32

3 δ2 tan ϑ x3 (2) 

where . δ can be analytically assessed by solving a compatibility equation. In the 
inverse problem for tension identification, the cable tension .N = H/ cosϑ (and 
consequently the parameter . δ) is the primary unknown and the geometric static 
configuration is an experimentally known information. If the parameter. δ is unknown 
and the geometric configuration of the cable . ζ̂ is known and described as function 
of the span variable . ξ as
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.ζ̂ (ξ ) = −(κ̂1 + κ̂0)ξ + κ̂1ξ
2 + κ̂0ξ

3, (3) 

the direct comparison of Eq. (3) with the cubic function (2) allows to identify . δ̂ by 
equating the respective quadratic and cubic coefficients. As the quadratic coefficient 
.κ̂1 is larger than the cubic coefficient . κ̂0, according to the perturbation scheme, the 
identification is based on .κ̂1 which can be determined with higher accuracy. Once . δ̂

is obtained, considering the Eq. (1), .Ĥ can be identified and, consequently, .N̂ can 
be determined as 

.N̂ = wL

8δ̂ cosϑ
= −1 + /

1 − 2κ̂1 sin(2ϑ)

4κ̂1 cos2 ϑ
wL (4) 

where the overhat indicates directly measured quantities, or quantities identified from 
measures. The accuracy of this tension identification strategy has been evaluated in 
[ 18] through a comparison with the forces evaluated through the dynamic (frequency-
based) output-only identification method. 

The experimentally measured geometric configuration of the cable is a three 
dimensional point cloud model which needs to be post-processed to obtain a descrip-
tion consistent with the analytical formulation of the tension identification problem. 
These post-processing operations consist of determining the vertical mid-plane where 
cable is hanging on and roto-translating the reference system. Then, the coefficient 
.κ̂1 can be obtained and substituted in the formula (4). To reduce computational effort 
in estimating parameters for the description of geometric configuration, the point 
cloud model can be reduced by considering two suited subset of points, according a 
proper selection criterion as described in [ 18]. Identification results obtained for the 
Albano Zuin footbridge following the described strategy showed a change in relation 
to the design values of cable tensions as reported in Table 2. 

Table 2 Deck cable data and tension identification results 

Cable .Lchord [m] .ϑ .κ̂1 .κ̂0 .N̂ [kN] 
(Ident.) 

.N [kN] 
(Design) 

SP10 52.66 0.572 –3.30E–02 4.50E–04 94.82 175 

SP11 49.56 0.648 –5.21E–02 8.44E–03 58.41 122 

SP12 46.38 0.731 –1.18E–01 1.51E–04 27.00 30 

SP13 44.45 0.826 –1.74E–01 2.76E–03 18.49 30 

SP14 42.07 0.941 –6.28E–02 3.14E–03 53.05 30 

SP15 40.93 1.036 –2.47E–01 1.76E–02 16.46 33 

SP16 39.03 1.112 –1.01E–01 5.78E–04 40.96 36
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4 Bridge Models 

4.1 Computational Model 

A computational model of the cable-stayed bridge has been implemented in a finite 
element environment, based on the information available from the original structural 
design. Since the 3D point cloud model obtained through the laser scanner showed 
that the position of the monitored pylon top point (44 m above the ground) has 
1.18 m distance from its design position (probably due to limited control during 
construction phase), the FEM model has been implemented taking into account the 
scanned geometry. As showed in Fig. 3a, the deck structure has been modeled by 
beam elements, while the cables by tension-only elements defined with the pretension 
available in the design documentation. The external nodes have been fixed (in some 
cases only one rotation has been fixed) except for the node at the base of the pylon 
which is hinged. To investigate the dynamic behaviour of the structure, a modal 
analysis has been performed and, to obtain an accurate description of the local modes 
of the stays supporting the deck, each cable element has been subdivided in 30 parts. 
Modal analysis results highlighted, for low frequencies, the prevalence of local modes 
(cable dominant) of the type shown in Fig. 3b. The first global mode (deck dominant), 
reported in Fig. 3c, can be found at 0.837 Hz. The overall description of the modal 
properties is reported in Table 3 and in Fig. 4. As regards deck dominant modes, it 
can be noted that the first 5 of them (up to 5 Hz) are vertical and horizontal bending 
modes, while for frequencies higher than 6 Hz bending-torsional modes can be found. 

Fig. 3 FEM model of the Albano Zuin bridge: a 3D view of the model consisting of beam and 
cable elements and external constraints; b first local mode (0.56 Hz); c first global mode (0.837 Hz)
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Table 3 Frequencies in Hz of the first mode of cables supporting the deck 

Cable Exp. Num.—Design force Num.—Ident. force 

SP10 0.923 1.194 0.879 

SP11 0.770 1.057 0.731 

SP12 0.546 0.560 0.531 

SP13 0.495 0.582 0.457 

SP14 0.763 0.611 0.812 

SP15 0.500 0.652 0.461 

SP16 0.840 0.652 0.755 

Fig. 4 Comparison of experimental and numerical (considering both design and identified cable 
tensions) deck dominant modes 

4.2 Modal Identification and Model Updating 

To identify the main global modes of the deck, the wireless sensor nodes have been 
installed according to the setup reported in Fig. 2b and the acquired signals have 
been processed through the Frequency Domain Decomposition technique to evaluate 
natural frequencies and mode shapes. Since triaxial accelerometers have also been 
used, such layout allowed to identify different type of modal configurations, vertical
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(a) (b) 

Fig. 5 Frequency difference between experimental results and numerical results based on design 
and identified cable tensions for the first mode of cables supporting the deck (a) and  for deck  
dominant modes (b) 

bending, horizontal transversal, bending-torsional, as reported in Fig. 4 compared 
with numerical modes. FEM results have been improved considering cable forces 
identified through the static method described in Sect. 3. As it can be noted in Table 3, 
the replacement of design cable forces with identified tensions allowed to obtain an 
estimate of the local mode frequencies which is more consistent with the experimental 
frequencies evaluated through the spectral content of the acquired vibration signals. 
In the analysis of cable modes, a relevant improvement of the computational model, 
obtained through the identification of the actual cable tensions, can be noted for all 
cables. For deck mode frequencies, a significant improvement can be found mainly 
for mode 6, which is the first bending-torsional mode, and it is due to the high 
difference between design and identified cable tension encountered for cables SP10 
and SP11 which support the part of deck affected by the torsional deformation of 
mode 6. Such results can be clearly observed in Fig. 5, where the frequency difference 
of deck, .Δ f d, and cables, .Δ f c, evaluated as 

.Δ f d = f dnum − f dexp
f dexp

, Δ f c = f cnum − f cexp
f cexp

, (5) 

are reported. 

5 Conclusions 

The paper describes the procedures pursued to increase the reliability of a finite ele-
ment model in simulating the dynamic behaviour of a cable-stayed pedestrian bridge. 
The improvement of the computational model of the structure has been focused on 
an accurate assessment of the actual tensions of cables supporting the deck, based on 
an identification strategy which exploits a low-order approximation of the catenary 
solution of the suspended cable under self weight and the experimental measurement 
of its geometric static configuration. The accuracy of the finite element models has
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been evaluated through a comparison between numerical and operational modal anal-
ysis results. Considering the identified tensions allowed to obtain, for local modes 
(cable dominant), an estimate of the natural frequencies which is more consistent 
with the experimental frequencies and, for global modes (deck dominant), a sig-
nificant improvement mainly for the frequency of the first bending-torsional mode 
involving the cables which have showed the highest tension variation from design 
values. Such results highlighted the significance to accurately assess the cable forces 
in cable structure modeling, fusing static and dynamic experimental data coming 
from different technologies. 
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Bayesian Identification of the Axial 
Forces, the Bending Stiffnesses, 
and the Connecting Point in Crossed 
Cables 

D. Piciucco, F. Foti, V. Denoël, T. Auguste, S. Hoffait, and M. Geuzaine 

Abstract In this paper, an asymptotic expression is derived for the natural frequen-
cies of two interconnected cables with small but non-negligible bending stiffness. 
This simple analytical formulation serves as a starting point for solving the inverse 
problem. First, it ensures that it is possible to univocally identify five parameters: the 
axial force and the bending stiffness in each of the two cables, as well as the posi-
tion of the crossing point. A Bayesian framework based on the Metropolis-Hasting 
sampling algorithm is then used to calculate the most probable values and posterior 
distributions of these five parameters. The methodology is finally verified on a lab 
experimental setup, and applied to vibration data collected on an actual bridge. 

Keywords Cable network · Structural health monitoring · Bayesian regression ·
Vibrations · Cable force · Natural frequencies 
1 Introduction 

One of the simplest and fastest strategies to assess the health state of cable-supported 
structures is to monitor the evolution of forces in their constitutive elements over 
time. Regarding stays and hangers, vibration-based identification techniques are 
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particularly convenient and affordable. Acceleration measurements are recorded on 
each cable, then processed to extract their natural frequencies, which finally provide 
an estimate of their tensile forces. But first, their relationship needs to be estab-
lished through the formulation of explicit expressions, the solution of characteristic 
equations, or the construction of finite element models. 

In order to perform identifiability studies, it is useful to understand how the natural 
frequencies of cables are affected by their axial force, bending stiffness, or sag 
extensibility for instance. Methods based on analytical formulas are particularly 
appreciated in this context because they have a clearer domain of applicability than 
others. But except for a few specific cases [ 1], the closed-form expressions devoted 
to the dynamic analysis of two-cable networks rely on taut string models [ 2]. The 
flexural rigidity of the cables is therefore ignored although it can significantly modify 
the values of the natural frequencies and reveal the effects of rotational end restraints 
[ 3, 4]. 

Despite this lack of mathematical developments, Furukawa et al. [ 5] tried  to  
identify simultaneously the tensile forces, the bending, and the axial stiffnesses of 
two cables connected by an intersection clamp while considering their extremities 
as hinged. To do so, the governing equations were solved in a numerical way and 
the input parameters were modified to minimize the difference (in the least square 
sense) between calculated and measured natural frequencies. However, it appeared 
that the objective function was much more sensitive to changes in the tensile forces, 
which thus were the only parameters to be estimated with a sufficient accuracy. 

Section 2 of this work therefore aims at deriving analytical formulas for the in-
plane natural frequencies of any two-cable network with small but non-negligible 
bending stiffness, as represented in Fig. 1. To do so, perturbation methods are applied 
on single cables with an intermediate support. Hence, the approach is similar to what 
was done for bi-supported cables in [ 3, 4] but the application is different. Although 
approximate, the resulting expressions provide a clear understanding of the effects 
that the most influential parameters have on the natural frequencies, which is useful 
for determining their identifiability. 

In Sect. 3, a Bayesian identification strategy is developed according to the previous 
findings. This algorithm is used to estimate the axial forces and the bending stiffness 
of the cables but also for refining initial estimates of the crossing point location. 
Contrary to the classical least square method, the proposed procedure provides the 
most probable values of the cable parameters and their posterior distributions, which 
are conditioned on observed frequencies. This gives access to credible intervals and 
helps to gain confidence in the results. 

In Sect. 4, this identification method is finally verified with laboratory experiments 
and validated with on-site measurements of cable vibrations collected on an actual 
bridge.
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Complete model In-plane model of a single cable 

Fig. 1 Cable network model 

2 In-Plane Analytical Model 

This part of the paper discusses the direct analysis of a cable network constituted by 
two crossing hangers, as represented in Fig. 1a. For the sake of modeling, the end 
restraints are supposed to be transversely rigid and the connector at the crossing point 
position is assumed to enforce the continuity of the displacement. The in-plane free 
vibrations of each cable are then considered separately as shown in Fig. 1b where an  
intermediate fixed support simulates the restraining action exerted by the transversal 
cable. 

2.1 Problem Formulation 

The total length of the considered cable is . l and the distance of the intermediate 
support from the right end is denoted as . αl, .α ∈ [0; 1]. The cable is subjected to 
the tensile force .T and has a uniform mass per unit length .m and bending stiffness 
.E I . The limited length of the four cable elements makes the bending stiffness effect 
non-negligible while the shear deformability, rotational inertia, and vertical sagging 
effects are discarded on the basis that the cable elements are sufficiently slender, 
extensible, and tensioned. 

In the following, the problem is examined in its non-dimensional form. A reference 
system is considered at the intermediate support, from which two different coordi-
nates (.x1 and . x2) depart. The non-dimensional variables describing the transversal 
displacement and the position are respectively.ν1 = v1

(1−α)l , .ν2 = v2
αl , .ξ1 = x1

(1−α)l and 
.ξ2 = x2

αl . Following the same derivations as in [ 3, 4], the problem is governed by the 
system
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.
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to which the boundary conditions .ν1(0) = 0, .ν1(1) = 0, .ν2(0) = 0, .ν2(1) = 0, 
.ε21ν

,,
1 (1) = 0, .ε22ν
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1(0) = −ε1ν
,
2(0) and .ε

2
1ν

,,
1 (0) = ε1ε2ν

,,
2 (0) are asso-

ciated. 
As the symbol. , indicates differentiation in space, these boundary conditions actu-

ally correspond to zero displacements at the sub-span ends, zero bending moments at 
the cable ends, and continuity of the slope and moment at the intermediate support. 
The problem can be solved through the classical separation of variables leading to 
the following algebraic eigenvalue problem: 

.B(ω2,n; ε2;α) ϕn = 0 ∀ n ∈ N (2) 

The boundary condition matrix. B is of size.8 × 8 and the vector.ϕn contains the 8 
integration constants .ϕn = (ϕ1,n; . . . ;ϕ8,n)

T of the n-th mode shapes. The symbol 
.ω2,n represents the n-th dimensionless natural frequency obtained by dividing the 
n-th natural frequency of the system, .Ωn , by the characteristic frequency of the taut 
string model related to the shorter sub-span, .Ωb: 

.ω2,n = Ωn

Ωb
with Ωb =

/
T

mα2l2
and τ = 1

Ωb
(3) 

2.2 Solution of the Eigenvalue Problem 

Exact solutions of the eigenvalue problem (2) can be found for some simple con-
figurations only, e.g. two sub-span of equal lengths. Otherwise, the problem has to 
be solved numerically. Nevertheless, asymptotic solutions can be developed through 
a standard perturbation approach hinging on the smallness of the bending stiffness 
parameter [ 3, 4]. They are convenient to define the set of parameters that can be 
identified based on measured eigenfrequencies. The approach proposed in [ 3, 4] for  
isolated cable elements is therefore extended in this paper to get second-order accu-
rate asymptotic expressions for the eigenfrequencies of two-cable networks, which 
thus read as follows 

.ω̂a,k = kπ

a

(

1 + ε2

2a
+ 1 + 2k2π2 + kπ cot( kπa )

4a2
ε22

)

(4) 

.ω̂b,k = kπ

(

1 + ε2

2
+ 1 + 2k2π2 + kπ cot(kπa)

4
ε22

)

(5)
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Please note that these solutions are valid when .ε2 ≪ 1 and finally need to be sorted 
in ascending order to recover the set of .ω̂2,n which contains the approximate natural 
frequencies to compare with the exact numerical values. These results have been 
validated with a finite element model but this is not shown in this paper for the sake 
of conciseness. 

Overall, these in-plane eigenfrequencies appear to depend on two dimensionless 
parameters: the bending stiffness .ε2 and the crossing point position .a = 1−α

α
or 

equivalently.ε2 and. ε1. These parameters can be separately identified as no symmetric 
combination of the two can be observed in the formulation. For symmetry reasons, 
the eigenfrequencies are also insensitive to the swapping of the sub-span lengths. 
As evidence, by replacing .ε2 with .aε1 and . a with .1/a, the same set of dimensional 
frequencies is obtained. Therefore, the identification procedure can be implemented 
by limiting. α between 0 and 0.5 and estimating separately the bending stiffness, the 
cable force, and the crossing point location. 

3 Non-linear Bayesian Regression 

The mathematical model and the information provided by the closed-form solutions 
are used to implement an inverse identification strategy for determining the cable 
forces and bending stiffness, and for refining initial estimates of the crossing point 
location. This latter parameter is difficult to measure on-site and plays a major role 
in the dynamics of cable networks, as it can induce reordering of the eigenmodes 
because of the associated wavelength variation. The proposed identification algo-
rithm relies on the Bayesian non-linear regression [ 6, 7] to estimate the posterior 
distributions of the model parameters, that maximize their likelihood. The probabil-
ity distributions are computed exploiting a Metropolis-Hasting sampling algorithm 
[ 8]. This sampling technique, starting from initial values of the model parameters 
.β(0), samples from a proposed distribution of the candidate values .β(cand), that are 
accepted or rejected depending on the values of their likelihoods. The Monte Carlo 
simulations are repeated up to an established maximum number of samples and an 
initial transient phase (burn-in period) is discarded. This latter is the number of sam-
ples required for the algorithm to reach its steady state (i.e. to converge towards more 
likely values). The obtained distributions are used to compute the final estimates of 
the model parameters as the mean values (.βest = mean[βi ]) and the credible inter-
vals (CI) from the standard deviation (.C I = βest ± 2σ). The credible intervals are 
associated with the .95% probability that the true value falls within this range and 
provide confidence bounds useful for decision-making.
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The main input parameters of the identification algorithm [ 9] are:  

• the range of admissible values that should be sufficiently wide to contain the 
solution of the problem. It does not affect either the accuracy or the convergence 
rate; 

• the initial values which strongly affect the convergence rate, that is halved when 
moving from starting values set to .1% the true values to initial guesses equal to 
.85% the nominal values [ 9]; 

• the number of frequencies used for the identification. When it increases, the error in 
the final estimates reduces and the CI shrinks. The suggested number of frequencies 
is between 6 and 15; 

• the number of samples or iterations. They should be enough to get sufficient 
resolution in the final distributions, but their effect on the accuracy is not significant. 
The minimum suggested iterations are about one thousand. 

4 Application 

4.1 Small-Scale—Lab Setup 

In order to verify the identification method presented above for the axial forces, a 
two-stage experimental campaign is conducted on a scaled model. A single cable 
is first installed as shown in Fig. 2a. It is attached to a fixed support on one side. 
On the other side, a pulley and a mass are used to control the axial force. Droplet 
piezoelectric accelerometers are then placed on the cable to record the vibrations 
obtained under a hammer impact. The FFT of the signal is finally calculated to extract 

First Stage Second Stage 

Fig. 2 Setup
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Table 1 Input parameters for modeling and processing purposes 

Name Unit Value Name Unit Value 

Cable length [m] 2 Initial value (. T0) [kN] 100 

Cable diameter [mm] 2 Admissible range [kN] [10;1000] 

Lineic mass [g/m] 12.5 Initial value (.E I0) [Nm. 2] 0.1 

Elastic modulus [GPa] 185 Admissible range [Nm. 2] [0.0001;100] 

Frequency rate [Hz] 5 Iteration number [–] 2000 

Record duration [s] 12 Burn-in region [–] 500 

Table 2 Axial forces identified in [kN] for a single cable 

Mass (kg) Nominal value Estimated value Credible interval 

2 19.8 18.2 (–7.8%) [18.05, 18.45] 

4 39.3 36.6 (–6.9%) [36.35, 36.80] 

10 98.2 90.8 (–7.4%) [90.53, 91.10] 

Table 3 Cable length configurations 

Configuration .l1 in [m] .l2 in [m] . l3 in [m] .l4 in [m] 

1 0.97 1.03 0.91 0.99 

2 0.75 1.25 0.85 1.05 

the natural frequencies of the element by peak-picking. Additional information on 
the experimental setup and on the input parameters used for the processing of the 
measurements can be found in Table 1. 

From there on, it is possible to evaluate the axial force and the bending stiffness 
of the cable as explained before, provided that the lines related to the boundary 
conditions at the middle support are discarded from the matrix . B. The expected 
and obtained results are shown in Table 2. Overall, the estimated values are about 
7% lower than the weight of the masses. This difference is attributed to a torque 
resistance effect of the pulley and will consequently be taken into account in the 
sequel. It also appears that . fn over . n is approximately equal to 21.3 Hz for all mode 
numbers. n, meaning that the flexural rigidity of the cable is negligible. It is therefore 
not possible to identify this parameter. 

In the next stage, a second cable is installed and is subjected to the same masses as 
the first one via an additional pulley. These two cables are clamped to each other as 
shown in Fig. 2b and according to the configurations detailed in Table 3. Accelerom-
eters are then placed on the first and the second segment of the network to record 
vibrations due to hammer impact on each of these two sub-spans. Being of almost 
equal length in the first configuration, their natural frequencies subsequently form 
pairs. Their respective modal amplitudes however show that the hit part vibrates much 
more than the other, which indicates that the bending stiffness is still negligible.
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Fig. 3 Relative errors on the axial forces identified by the proposed procedure 

Once converged, the axial forces sampled at each iteration by the Metropolis-
Hasting algorithm are finally processed to get the probabilistic properties of the 
parameter after identification. These results are summarized for each configuration 
in Fig. 3a and b. Boxplots are used to illustrate the applicability and accuracy of the 
procedure proposed in this paper. They are indeed quite narrow as there is always less 
than a 10% difference between the first and third quartiles. Meanwhile, the relative 
errors attributed to the median values are also less than a few percent. They are all 
negative as well, which can indicate compensation from the fact that the model is a 
bit lighter or stiffer than the actual setup in some places. 

4.2 Full-Scale—Haccourt Bridge 

The identification strategy is here applied to the data collected on a real bridge 
(Haccourt Bridge, Belgium—1985) as a proof of concept. It is an arch-shaped cable-
stayed bridge of 142 m in length and 23 m in height (Fig. 4). The steel arch has a thin-
walled rectangular cross-section with a thickness of 30 and 36 mm and a size of 167 
. × 170 mm. The identification is performed on the first six in-plane eigenfrequencies 
of a cable whose sub-span lengths are respectively .l1 = 6.65 m and .l2 =≃ 2l1. The  
eigenfrequencies have been measured through accelerometers having a sensitivity 
of 10000 mV/g placed at the midspan of each sub-span. The bridge was tested in 
low traffic conditions under ambient and traffic excitations. The values of the natural 
frequencies have been extracted from the FFT of the signal by peak-picking. 

The nominal values reported in the design drawings are used as starting values 
of the procedure (.T0 = 640 kN, .E I0 = 331.4 kNm. 

2, .α0 = 0.352). The range of 
admissible values is set in between one-tenth and ten times the initial values for the 
cable force and bending stiffness while. α is limited to 0.5. The distributions obtained 
after 6000 iterations are reported in Fig. 5.
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Fig. 4 Tested bridge—Haccourt bridge 
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Fig. 5 Histograms, In-plane identification in the Haccourt bridge 

The eigenfrequencies computed before and after identification are listed in Table 5 
while the estimated parameters and their credible intervals are reported in Table 4. 
The identification provides an improvement of the fifth eigenfrequency at the price 
of a very slight worsening of the fundamental mode. Overall, the Root Mean Square 
Error (RMSE) in the eigenfrequencies reduces from 0.785 before identification to 
0.324 after identification, proving the appropriateness of the identification strategy.
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Table 4 Parameters identified in the Haccourt bridge 

Name Unit Nominal value Estimated value Credible interval 

.T [kN] 640 739.1 [455.3, 1023.8] 

.E I [kNm. 2] 331.4 315.9 [96, 595] 

.α [. −] 0.352 0.339 [0.301, 0.377] 

Table 5 In-plane natural frequencies in [Hz] 

Experimental data Before identification After identification 

. f1 5.83 5.79 (. +0.69%) 6.05 (. +3.70%) 

. f2 11.86 11.15 (. +6.17%) 12.12 (. +2.17%) 

. f3 12.63 12.39 (. +1.92%) 13.07 (. +3.42%) 

. f4 19.72 19.47 (. +1.27%) 19.98 (. +1.31%) 

. f5 27.37 25.66 (. +6.45%) 27.48 (. +0.40%) 

. f6 29.09 28.71 (. +1.31%) 29.58 (. +1.67%) 

5 Conclusions 

This study proposes a Bayesian identification strategy for the cable forces, bending 
stiffnesses, and crossing point position of cable networks. Closed-form solutions of 
the in-plane eigenfrequencies are proposed, showing that the cable parameters can be 
separately identified. The accuracy of the algorithm is assessed through experimental 
tests which prove that the identification provides very reliable results as the error in 
the predicted parameters is always less than a few percent. The identification is finally 
applied to the data collected on a real bridge, leading to an improvement of the RMSE 
on the eigenfrequencies compared to the results obtained when nominal values are 
used. 
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Abstract This article presents an experimental work developed in the context of 
the study of conductors’ fatigue due to the turbulent effect of wind on an overhead 
high-voltage transmission line. The research is centred on the laboratory study of a 
conductor segment with a 17 m length. The cable model, fitted with typical anchor-
ages adopted in transmission lines, is mounted on a specially designed anchoring 
system following the normative prescriptions of CIGRÉ. An extensive monitoring 
system is installed, including a load cell, several accelerometers, LVDTs and fibre 
optic sensors to assess the conductor’s dynamic properties and the corresponding 
dynamic response to the wind loads, here simulated by a random excitation applied 
from a shaker. Based on the conductor response measured with the different sensors, 
with and without a Stockbridge damper, the fatigue lifetime of the conductor is calcu-
lated. A comparison is made of the fatigue lifetime estimated from acceleration, strain 
or LVDT measurements, the latter simulating the procedure typically used based on 
the VIBREC measurements. Finally, the Stockbridge damper’s dissipation capacity 
in increasing the conductivity lifetime subject to aeolian vibrations is analysed as a 
function of the position of the damper. 
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1 Fatigue of Conductors 

In overhead high-voltage transmission lines, maintenance is essential to increase the 
lifetime of the conductors and save electricity distributor companies’ investments. 
However, these structures are prone to one of the most complicated mechanical 
problems related to damage and failure: fretting fatigue. Fretting results from relative 
motion between the internal conductor wires and their contact with clamps and 
dampers. This phenomenon is mainly caused by aeolian vibrations, also known 
as vortex-shedding resonance. These vibrations are caused by the development of 
alternate vortices at the top and bottom of the conductor, which induce a vertical 
cable movement that results in bending at the anchorage point near the tower for 
specific wind velocities. Combining bending and tension loads at the cable could 
lead to wire fatigue. 

Aeolian vibrations in cable conductors occur at low wind velocities between 0.5 
and 7 m/s, at a frequency range between 3 and 120 Hz, with amplitudes ranging from 
0.01 to 1 diameter [1]. 

2 S–N Curves and CIGRÉ’s Safe Border Line (CSBL) 

The fatigue performance of a material is often characterised by utilising the stress-
life approach and S–N curves, which plot the cyclic stress (S) vs the number of 
cycles until failure (N) during a laboratory test. The conditions for stopping the test 
are either the failure of 10 per cent of the cable’s wires or of the three outer layer 
wires. Due to the problematic execution and high costs associated with this type of 
test, the International Council for Large Electric Systems (CIGRÉ) developed a Safe 
Border Line curve (CSBL) to assist in determining the lifetime of conductors from 
a simplified method. The following equation expresses the Safe Border Line curve 

σa = A · N B i (1) 

The constants A and B are related to the number of fatigue cycles Ni for a specified 
level of stress and the number of aluminium wire layers in a conductor. The stress 
amplitude is denoted by the symbol σ a and is measured in MPa. According to [1], 
the values of these parameters are shown in Table 1. 

Table 1 Constant values A and B for the CSBL curve 

# of layers N < 2  × 107 N > 2  × 107 
A B A B 

1 730 −0.2 430 −0.17 

>1 450 −0.2 263 −0.17
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2.1 Poffenberger and Swart Equation 

The precise evaluation of stress and strain on conductors is a challenging undertaking. 
Poffenberger and Swart [2] found a direct correlation between the dynamic bending 
stress (σ PS) at the wires’ outer layer and the peak-to-peak vibration amplitude (Yb) 
via an analytical formulation. The Poffenberger-Swart equation is as follows 

σPS  = K · Yb (2) 

The constant K in this equation converts the vertical amplitude measured at 89 mm 
from the last point of contact (LPC) into bending stress (0-to-peak). 

In this study, the bending amplitude of vibration Yb is calculated using different 
procedures to compare the results of a standard vibration device (VIBREC) 
with the structural health monitoring calculations using accelerometers and fibre 
optical sensors. The VIBREC is simulated here using a linear variable differential 
transformer (LVDT). 

3 Stockbridge Dampers 

To mitigate aeolian vibrations on conductors of overhead high-voltage transmission 
lines, the correct position of the Stockbridge damper is crucial. The damper position 
is associated with its capacity to dissipate wind-induced energy in the structural 
system. Installing the Stockbridge dampers in improper locations might increase 
mechanical overload on the cable, resulting in a shorter lifetime. 

The Stockbridge generally consists of two rigid masses connected to both ends 
of a messenger cable. A rigid clamp ensures the connection between the conductor 
and the damper, which allows displacement transmission from the conductor to the 
Stockbridge. The vibration of the inertial masses connected to the messenger cable 
induces bending, which dissipates energy through the friction caused by the relative 
movement of the cable’s internal wires. Maximum levels of energy dissipation occur 
in a frequency band close to their natural frequency when the Stockbridge is excited 
at that frequency [3]. If the conductor and Stockbridge damper dissipate more energy 
than that imparted by the wind, the conductor will vibrate with less amplitude and 
for a shorter period. 

To guarantee the system efficiency, CIGRE recommends that the Stockbridge 
damper should be placed at a distance of 0.85λ/2 from the last point of contact, as 
shown in Fig. 1, where λ is the wavelength of the highest mode to be mitigated, and 
can be expressed as follows 

λ = 1 
fn 

·
/
T 

m 
(3)
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Fig. 1 CIGRE’s 
recommended distance of the 
Stockbridge installation from 
the cable clamp 

In Eq. (5), f n is the cable’s natural frequency in Hz, T is the tension force, expressed 
in N, and m is cable mass per unit of length, expressed in kg/m. 

Resonance occurs when the frequency of wind excitation (Strouhal frequency) 
approaches the natural frequency of the conductor. The expression for the crit-
ical wind frequency can be derived from the Strouhal number of 0.185, which is 
the recommended number for the specific case of cables in overhead high-voltage 
transmission lines. 

fn = 0.185 · U 
d 

(4) 

where U is the wind velocity in m/s, and d is the diameter of the conductor, expressed 
in m. 

4 VIBREC500 Vibration Recorder 

VIBREC (Fig. 2) is the most widely used device for measuring aeolian vibrations. The 
device records peak-to-peak relative vibration amplitudes between two sections and 
has an autonomy of approximately one year, depending on the ambient temperature 
and the acquisition time interval.

VIBREC does not continually record data due to the need to manage the battery 
life and memory. The standard acquisition consists of saving 10 s of active-time data 
within 15 min of an inactive interval, per CIGRÉ’s recommendation, establishing a 
minimum monitoring duration of three months. 

This standard device is capable of calculating the remaining lifetime of the 
conductor. The equipment analysis follows the most recent CIGRÉ [4] and IEEE 
[5] standards. The data are expressed through an S–N curve relating each block of 
stress to the number of cycles, and the damage at the conductor is determined using 
the Miner’s rule using the expression
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Fig. 2 VIBREC500-WT 
device at suspension clamp

D = 
mΣ
i=1 

ni 
N f i  

(5) 

and the procedure shown in Fig. 3. The S–N curve obtained with the recorded data is 
compared with the CIGRÉ’s Safe Border Line [1], bringing the final damage value, 
which is extrapolated to a one-year period. 

Finally, the lifetime is given by the following equation 

V = 1 
D 

(6) 

where D is the accumulated damage, and V is the lifetime in years. 
As stated before, the VIBREC device was simulated in this study using a pair of 

LVDT sensors to measure the relative vibrations at two sections, recording peak-to-
peak amplitudes.

Fig. 3 Damage calculation procedure 
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5 Laboratory Setup 

A setup was created to accommodate the conductor and the anchoring systems within 
the space of the FEUP laboratory to conduct the tests correctly and replicate the 
conductor’s behaviour on site (Fig. 4). 

The setup comprises the conductor, which is roughly 17 m in length, and two steel-
plate anchoring modules. For this experiment, the maximum tension at the supports 
is 23,3kN, which is 20% of the conductor’s RTS. 

The analysed conductor is a BEAR-325 type ACSR (Aluminum Conductor Steel 
Reinforced) cable with 30 aluminium wires, seven steel wires in the reinforcement 
core, and an external diameter of 23 mm. 

5.1 Instrumentation 

To realise the fatigue experiments and find the best position of the Stockbridge to 
mitigate aeolian vibrations, a group of sensors was installed along the conductor. 
As cable tension control is essential in this kind of dynamic experiment, a force 
transducer is positioned at the active anchorage point to measure the tension force 
applied to the conductor by a jack. Three piezoelectric accelerometers were used in 
the experiments to characterise the structural response of the conductor subjected to 
forced vibrations: one was installed near the anchorage point to permit the calculation 
of the bending amplitude of vibration using a double integration procedure to trans-
form accelerations into displacements. To simulate the VIBREC device behaviour, 
a pair of LVDTs were installed at the end of the cable (Fig. 4). The first sensor was

Fig. 4 Setup and 
instrumentation prepared for 
tests at the conductor 
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placed 42 mm from the LPC and the second sensor 89 mm from the other. Figure 5 
shows the scheme of installation. 

Finally, a group of fibre optical sensors were installed on the conductor better to 
understand the conductor’s behaviour at low frequencies. The sensors were previ-
ously tested and calibrated before the tests. They were installed in the section closest 
to the position chosen for the Stockbridge (72 cm from the last point of contact LPC), 
near the end anchorage point. Figure 6 shows the applied setup, which consists of 
a fibreglass sleeve with a “1/4 cane” shape and an interior diameter equal to the 
conductor’s diameter incorporating three FBG optical transducers. Two are strain 
gauges arranged longitudinally at the ends of the sleeve, and the other is a temperature 
transducer insulated from strain located in the middle zone. 

Fig. 5 LVDTs position relative to the Last Point of Contact (LPC) 

Fig. 6 Fiber optical sensors installed on the conductor
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6 Best Stockbridge Position Along the Cable 

6.1 Tests Description 

To determine the best position of the Stockbridge damper that minimises the vibration 
amplitudes and, consequently, the bending stresses at the anchorages, four tests were 
carried out using a shaker to simulate the wind-induced action. The tests consisted 
of 1 h measurement of the conductor response under excitation close to the midspan 
with a random force. This force was generated with a frequency content defined from 
3 to 80 Hz to simulate Aeolian vibrations. A first test was carried out without the 
presence of the damper, and the other three were conducted with the Stockbridge 
installed at three different positions. The position recommended by CIGRE was 
defined considering the maximum wind speed that produces wind vibrations, which 
is 7 m/s. Using Eq. (6), it is possible to determine the vortex-shedding frequency 
associated with such wind speed for a Strouhal number of 0.185 

fn = 0.185 · U 
d

= 0.185 · 7m/s 

0.023 m 
= 56 Hz 

The Stockbridge frequency range recommended in the literature is between 0.7 
and 1.3 f n, where f n is the previously calculated maximum. In this way, the range of 
frequencies where the damper will act is from 42 to 80 Hz, approximately. In addi-
tion, as wind-induced vibrations occur more frequently at low speeds, a frequency 
referring to the wind speed of 3 m/s was also added, corresponding to a frequency 
of 24 Hz. Table 2 presents the calculation parameters used in the tests. 

As a result of the tests, it is possible to determine the bending amplitude of 
vibrations according to the Stockbridge positions. The position which leads to a 
minimum amplitude of vibration is considered the best position to install the damper, 
which means that at this position, the Stockbridge dissipates more energy. Figure 7 
shows the amplitudes calculated using different sensors, which are also systematised 
in Table 3. “Acc” is the accelerometer, and “FBG” is the fibre optical sensor.

It is possible to observe that the minimum amplitudes are reached when the damper 
is installed at 72 cm from the last contact point, as recommended by CIGRE. Position 
0 indicates the test without the presence of the damper.

Table 2 Parameters for Stockbridge best position tests 

Wind velocity [m/s] Strouhal frequency [Hz] Wavelength λ [m] Stockbridge Pos. [m] 

3.0 24.0 5.77 2.31 

5.2 42.0 3.29 1.37 

10.0 80.0 1.73 0.72 (CIGRE) 
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Fig. 7 Bending amplitude of vibration according to the Stockbridge position 

Table 3 Amplitudes of vibration Yb according to the Stockbridge position 

Stockbridge Pos. [cm] LVDT—Yb [mm] ACC—Yb [mm] FBG—Yb [mm] 

Without damper 0.127 0.201 0.271 

72.0 (CIGRE) 0.082 0.119 0.094 

137.0 0.095 0.162 0.307 

231.0 – 0.133 0.479

7 Lifetime Estimation 

After defining the best position for the Stockbridge installation, the estimates of the 
lifetime due to fatigue of the conductor subjected to wind actions were calculated. 
Finally, the total damage was estimated using the Rainflow method for counting 
fatigue cycles and the procedure described in Sect. 5, simulating the calculation 
made by VIBREC. 

Figure 8 and Table 4 present the lifetime calculation expressed in years for each 
type of sensor according to the position of the Stockbridge. As expected, the position 
that leads to the most extended lifetime is the position 72 cm from the last point of 
contact, which is in accordance with the proposition established by CIGRE. It is also 
possible to observe that all sensors present the same result for the best position of the 
damper, indicating that structural health monitoring using several types of sensors



264 R. Mendonça et al.

is feasible and reliable compared to the standard device VIBREC. Nevertheless, it 
is observed that the calculations made using different sensors lead to very different 
fatigue life estimations, which is consistent with the different impact of the response 
frequency content in the different measured quantities, such as displacement, strain 
or acceleration. 

Fig. 8 Lifetime estimation according to the Stockbridge position 

Table 4 Lifetime estimation calculated using different sensors 

Stockbridge Pos. [cm] LVDT—V [years] ACC—V [years] FBG—V [years] 

Without damper 12.0 30.0 13.0 

72.0 (CIGRE) 121.0 245.0 183.0 

137.0 66.0 78.0 24.0 

231.0 – 154.0 22.0
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8 Conclusions 

In overhead high-voltage transmission lines, the correct damper position is an impor-
tant variable to consider in the conductor’s design. In general, the manufacturers 
design the Stockbridge positions, and the lifetime estimations are made using stan-
dard recording devices like VIBREC. This work presented an alternative using struc-
tural health monitoring with accelerometers and fibre optical sensors positioned along 
the conductor. The calculations follow the CIGRE recommendation, which defines 
that the best position for the damper is at 0.85λ/2, considering the wavelength for 
the highest frequency in the range of Aeolian vibrations. This study also indicates 
that other quantities measured with a structural health monitoring system could be 
used to determine the dampers’ best position and calculate the conductor’s estimated 
lifetime. Nevertheless, a calibration of the fatigue lifetime estimates is required. 
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On the Assessment and Mitigation 
of Vortex-Induced-Vibrations 
of Overhead Electrical Conductors 

F. Foti and L. Martinelli 

Abstract In the present work, an extension of the Energy Balance Method (EBM) 
is investigated, by considering both the dynamic interaction between a conductor 
and the support system, and the coupling in the dynamic response of two adjacent 
spans. The presence of dampers in each span to control aeolian vibrations is also 
taken into account. The modal properties of the line are studied within a rigorous 
mathematical setting and used as the input to apply the EBM. The parameters that 
control the dynamics of the structural system are clearly identified, paving the way 
to the definition of simple yet effective criteria for the design of the mechanical 
characteristics of the damping devices connected to the line. The proposed procedure 
allows also to investigate the effects of energy dissipation within flexible supports. 

Keywords Aeolian vibration · Electrical transmission lines · Energy balance 
method 

1 Introduction 

Vibrations induced by the shedding of vortices have been since long recognized 
as a major source of wear damage and fatigue failures of overhead electrical line 
conductors and of other line components [ 1, 2]. Assessment and mitigation of such 
vibrations, hence, is of paramount importance for both design of new lines and 
retrofitting of existing ones. Damping devices, such as Stockbridge [ 3, 4] or Bretelle 
dampers [ 5] are typically installed along the line to control aeolian vibrations. 
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The practical approach, commonly adopted to estimate the amplitude of aeolian 
vibrations, is based on the Energy Balance Method (EBM). In this context, for one or 
more reference sections of the line between two support towers, the conductors are 
modeled as taut cables restrained by rigid supports. Under the hypothesis of a mono-
modal steady-state oscillation, the antinodal vibration amplitude is then evaluated for 
each natural frequency of the conductor to impose the balance between the average 
energy per cycle supplied by the wind and that dissipated within the cable and in the 
added damping devices (e.g. [ 2]). 

In spite of being widely used, EBM is open to criticisms. First of all, it can be 
observed that typical aeolian vibration records clearly show that several natural modes 
of the conductors can be simultaneously excited due to space- and time-variations of 
the wind velocity along the line [ 6, 7]. To overcome this drawback, stochastic models 
based on the modeling of the vortex-induced lift force as an incompletely homo-
geneous bidimensional random field have been recently proposed by the authors’ 
research group [ 8, 9]. Since these novel approaches are at the research stage, how-
ever, there is still a considerable interest in improving the capabilities of the EBM. 
Within this context, it is worth noting that, being based on the definition of a reference 
section of the line, current implementations of the EBM available in the literature 
do not take into account the potentially relevant effects of: (a) dynamic interaction 
between the cable and the support system (suspension clamps, tower, etc.), (b) of the 
coupling in the dynamic response of two or more adjacent spans. Moreover, since 
Bretelle dampers connect adjacent spans of the conductor, their contribution cannot 
be taken into account within the EBM. 

The present work aims to extend the applicability of the EBM by removing the 
aforementioned limitations (a) and (b) of current EBM implementations, also paving 
the way for the definition of a rational methodology to include Bretelle dampers in 
the description of the line. A reference line section made of two adjacent spans with 
a flexible intermediate support and attached damping devices is considered to keep 
the presentation of the proposed methodology as simple as possible. Generalization 
to the case of a generic number of spans is, however, straightforward. The conductor 
is described according to the classic taut-string model and the dampers are described 
as single-degree-of-freedom (sdof) linear systems. The latter assumption can be 
considered as an approximate description of the behavior of real Stockbridge dampers 
(see e.g. [ 4] for a more detailed discussion on the topic). The modal properties of 
the line are studied within a rigorous mathematical setting and used as the input to 
apply the EBM. The parameters that control the dynamics of the structural system 
are clearly identified, paving the way to the definition of simple yet effective criteria 
for the design of the mechanical characteristics of the damping devices connected to 
the line.
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2 Formulation of the Problem 

2.1 Equations of Motion 

Let us consider the two span line section schematically depicted in Fig. 1. The con-
ductor is strung at the constant tension . T , the  left (.Rsl) and right (.Rsr ) support are 
assumed to be perfectly rigid and the intermediate one is modeled as a flexible support 
(. Fs), with known impedance or dynamic stiffness function. The dynamic stiffness 
function provides a synthetic description of the linear dynamic behavior of the inter-
mediate support (herein regarded as the assembly of tower, insulator string, suspen-
sion clamp, etc.) and can be in general characterized by multiple poles corresponding 
to the dominant natural modes of the support system. To keep the presentation as 
simple as possible, a single mode of the intermediate support will be herein retained, 
which amounts to model the support as a sdof system with mass.ms , stiffness.ks and 
damping ratio . νs . Dampers are assumed to be located both in the left (.Dl) and right 
(.Dr ) span, at a distance .Li1 (.i = l, r ) from the intermediate support. Each damper 
is modeled as a sdof linear system with mass .mi , stiffness .ki and damping ratio . νi
(.i = l, r ). In spite of its simplicity, the adopted modeling approach allows to capture 
fairly well the effect of the fundamental mode of Stockbridge dampers, which is 
often the most important in practical applications, as it has been shown e.g. in [ 10]. 

Fig. 1 Schematic representation of the two-span line section
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Generalization to the case of both linear and non-linear multi-degree-of-freedom 
dampers is relatively straightforward and has been presented e.g. in [ 4]. 

Aeolian vibrations of transmission line conductors may develop under light or 
moderate steady wind conditions. They occur mostly in the cross-wind direction and 
are characterized by low-amplitude (less than one cable diameter) and frequency in 
the broad range of.3−200 Hz [ 2]. Typical span length and axial force values lead to a 
fundamental frequency of transmission line conductors in the order of .0.1 Hz. It can 
be concluded, hence, that aeolian vibrations tend to excite high-order modes, which 
are not significantly affected by the static sag of the cable (see e.g. [ 11, 12]). Based on 
this observation, the conductor can be modeled as a straight flexible system. Classic 
models of the literature include the taut string model, which neglects the effects of the 
bending stiffness, and the tensioned beam model. Inclusion of bending stiffness terms 
is of crucial importance for the evaluation of stresses and strains in the neighborhood 
of supports and damping devices (i.e. in the boundary layers of the cable, see e.g. 
[ 13– 16]), but has minor effects on the global dynamics of the conductor [17]. In the 
present work, small planar vibrations of the conductor are described by neglecting 
both sag-extensibility effects and bending stiffness terms, and the following linear 
partial differential equation of motion (taut-string model) is introduced: 

.γ∂2
t vki − T∂2

xki vki + fD = f, with : k = l, r and i = 1, 2 (1) 

where .xki ∈ [0, Lki ] are the abscissae defined in Fig. 1, .vki = vki (xki , t) are the dis-
placements of the conductor centerline, . γ is the mass per unit of length, . fD is a 
distributed damping force and . f is the lift force per unit of length imparted by the 
wind to the vibrating conductor. The Eqs. of motion (1) can be integrated under 
suitable initial conditions and boundary conditions that impose compatibility and 
equilibrium both at the supports and at the interface between the conductor and the 
dampers. 

The governing equations can be re-written by introducing the following non-
dimensional variables: 

.ξki = xki
Lc

∈
[
0,αki = Lki

Lc

]
, τ = ωct, υki = vki (xki (ξki ) , t (τ ))

Lc
(2) 

where.Lc and.ωc are, respectively, a characteristic length and frequency of the prob-
lem, that can be conveniently defined as the average span length .Lc = Ll+Lr

2 and 

.ωc = 1
Lc

/
T
γ
. Substitution of Eqs. (2) in (1) yields the Eqs. of motion: 

.∂2
τ υki − ∂2

ξki
υki + f̄D = f̄ , with : k = l, r and i = 1, 2 (3) 

that can be integrated along with suitable initial and boundary conditions, whose 
full expressions are herein omitted for the sake of conciseness. In the Eq. (3) the  
symbols . f̄D and . f̄ denote the non-dimensional distributed damping and external 
forces (. f̄D = Lc fD

T and . f̄ = Lc f
T ).
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2.2 Natural Frequencies and Mode Shapes 

Application of the EBM to assess aeolian vibration severity requires preliminary 
calculation of the natural frequencies and mode shapes of the line section. The pres-
ence of concentrated sources of dissipation (i.e. the dampers and the intermedi-
ate flexible support) makes the structure non-proportionally damped. Experimental 
evidence (see e.g. [ 18]), however, suggests that, being the structure very lightly 
damped, modal coupling induced by non-proportional damping terms can be neglected. 

Undamped natural frequencies and mode shapes can be calculated by setting. f̄D =
f̄ = 0 in Eq. (3) and searching for stationary oscillatory solutions in the form:. υki =
φki (ξki ) exp ( j ω̄τ ) (.k = l, r and i = 1, 2), where . j denotes the imaginary unit and 
. ω̄ is the non-dimensional vibration frequency. The mode shape functions satisfy the 
ordinary differential equations: 

.
d2φki

dξki
+ ω̄2φki = 0, with : k = l, r and i = 1, 2 (4) 

along with the boundary conditions: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φl2 (αl2) = 0

φr2 (αr2) = 0

φl1 (0) − φr1 (0) = 0

φl1 (αl1) − φl2 (0) = 0

φr1 (αr1) − φr2 (0) = 0

φ,
l1 (0) + φ,

r1 (0) − μs H̄−1
s (ω̄; νs = 0)φl1 (0) = 0

−φ,
l1 (αl1) + φ,

l2 (0) + μdl ω̄
2
(
1 + ω̄2 H̄dl (ω; νdl = 0)

)
φl2 (0) = 0

−φ,
r1 (αr1) + φ,

r2 (0) + μdr ω̄
2
(
1 + ω̄2 H̄dr (ω; νdr = 0)

)
φr2 (0) = 0

, ∀τ

(5) 
where a prime denote differentiation with respect to the non-dimensional space 

coordinates and the following definition apply:.μq = mq

γLc
,.νq = cq

2
√

kqmq
,.ωq =

/
kq
mq

, 

.δq = ωq

πωc
, .H̄q

(
ω̄; νq

) = (−ω̄2 + j 2πνqδq ω̄ + π2δ2q
)−1

, with .q = s, dl, dr . 
The non-dimensional natural frequencies .ω̄(n) and mode shapes . φki(n) =

aki(n) sin
(
ω̄(n)ξki(n)

) + bki(n) cos
(
ω̄(n)ξki(n)

)
, with .n ∈ N

+, can be easily found by 
solving the boundary value problem defined by Eqs. (4) and (5). The natural 
frequencies of the conductor are then obtained through the re-scaling equation: 
.ω(n) = ωc ω̄(n).
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2.3 Energy Balance Equation 

The EBM relies on the assumption of steady-state mono-modal vibrations of the 
cable. For each natural vibration frequency of the conductor .ω(n), determined as in 
Sect. 2.2, the maximum expected vibration amplitude is obtained by imposing the 
balance between the average power per unit of length per vibration cycle imparted 
by the wind to the cable (expressed as.Pw = Pwl + Pwr , i.e. as the sum of the contri-
butions coming from the left and right spans) and the average dissipated power per 
unit of length and per vibration cycle within the structure. The latter term is herein 
expressed as the sum of the power per unit of length dissipated in the conductor (also 
known as cable “self-damping” and expressed as .Pc = Pcl + Pcr , i.e. as the sum of 
the contributions coming from the left and right spans), the power dissipated in the 
intermediate flexible support divided by the total length of the conductor (. Ps

Ll+Lr
) and 

the power dissipated within the dampers divided by the total length of the conductor 
(. Pdk
Ll+Lr

, with .k = l, r ). 

.λl (Pwl − Pcl) + λr (Pwr − Pcr ) − Ps
Ll + Lr

− Pdl
Ll + Lr

− Pdr
Ll + Lr

= 0 (6) 

where .λk = Lk
Ll+Lr

, .k = l, r . 
The wind input power acting on each span can be evaluated as: 

.Pwk = D4
( ω

2π

)3
F

( ymax,k

D

)
, k = l, r (7) 

where .D is the conductor diameter, . ω is the circular vibration frequency, .ymax,k is 
the maximum modal amplitude of vibration in the .k-th span and .F is a non-linear 
function of the non-dimensional vibration amplitude . ymax,k

D . Different expressions 
have been proposed in the literature for the function . F , based on the outcomes of 
wind tunnel tests. Without loss of generality, the expression recommended in [ 19] is  
adopted in the present work. 

The conductor self-damping can be expressed by means of power laws based 
on both empirical and theoretical approaches (see e.g. [ 20, 21]). Without loss of 
generality, the theoretical expression derived in [ 21] under the assumption of micro-
slip conditions on the contact surfaces between adjacent wires of the conductor is 
adopted in the present work and re-stated in a slightly modified form: 

.Pck = Kms
y3max,kω

7

T 4
, k = l, r (8) 

where .Kms is a proportionality coefficient that only depends on the mechanical 
and geometric properties of the conductor cross section (please see [ 21] for further 
details). 

It is worth noticing that, since the dampers are usually located very close to the 
supports (i.e. .Ll1 ≪ Ll and.Lr1 ≪ Lr ), the maximum modal amplitude of vibration
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entering in Eqs. (7) and (8) is herein approximately assumed to be defined in the 
longer subspans of the section (i.e. the ones with length.Ll2 and.Lr2). This simplifying 
assumption is in the spirit of the background of Eqs. (7) and (8), that make reference 
to “far-field” values of the maximum modal vibration amplitude, i.e. values defined 
in a region of the conductor far from the supports. 

The power dissipated in the flexible support can be evaluated as: 

.Ps = 1

2
ω Im [Gs (ω)] y

2
s (9) 

where the symbol .Im denotes the imaginary part of a complex quantity, while 
.Gs (ω) = msω

2
c H̄

−1
s (ω̄ (ω) ; νs) and .ys are, respectively, the dynamic stiffness and 

the modal amplitude of vibration of the support. 
The power dissipated in dampers can be evaluated as: 

.Pdk = 1

2
ω Im [Gdk (ω)] y

2
dk, k = l, r (10) 

where .Gdk (ω) = mdkω
2
c

[
1 + H̄dk (ω̄ (ω) ; νdk)

(
ω
ωc

)2
]
and .ydk are, respectively, 

the dynamic stiffness and the modal amplitude of vibration of the . kth damper. 
Preliminary knowledge of the mode shape functions (see Sect. 2.2), allows to 

express all modal displacement amplitudes entering Eqs. (7)–(10) as a function of  
a single modal amplitude parameter . A. Substitution of Eqs. (7)–(10) in (6), hence, 
yields for a given vibration frequency of the conductor (. ω) a scalar non-linear alge-
braic equation that can be numerically solved to get the unknown modal amplitude 
.A = A (ω). Once . A is known, the expected vibration amplitude of any point of the 
conductor can always be easily retrieved. Results of the EBM are often reported 
by plotting the maximum expected modal vibration amplitude of a span as a func-
tion of the vibration frequency, i.e. with the notation adopted in the present paper 
.ymax,k = ymax,k (ω). 

3 Application Example 

The proposed formulation is applied to a Aluminum Conductor Steel Reinforced 
(ACSR) Bersfort (diameter .D = 35.6 mm, mass per unit of length.γ = 2.375 kg/m, 
Rated Tensile Strength.RT S = 180 kN) strung at a tension.T = 0.2.RT S. The case 
of a single-span of length .L = 450 m has been already studied elsewhere by the 
authors [ 21] and the outcomes of the EBM have been compared to experimental data 
coming from [ 22]. 

As a first example of application, a symmetric two-span configuration with 
.Ll = Lr = 450 m is considered. Figure 2 reports the maximum value of the non-
dimensional vibration amplitude (. ymax

D ) under the assumption of “stiff” and non-
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Fig. 2 Maximum non-dimensional vibration amplitude for a symmetric two-span configuration 
with.Ll = Lr = 450 m and a “stiff” non dissipative support (.δs = 200,.νs = 0,.μs = 0.1). Notice 
that.ymax,l = ymax,r due to symmetry. a Bare cable. Experimental results for a single-span conductor 
from [ 22]. b Damped cable, with .νdl = νdr = 0.01, .μdl = μdr = 0.01, .αdl = αdr = 1/100 and 
different values of the tuning parameter .δd = δdl = δdr . c Damped cable, with .νdl = νdr = 0.01, 
.μdl = μdr = 0.01,.δd = δdl = δdr = 10 and different values of. αd = αdl = αdr

dissipative intermediate support (i.e. .δs = 200, .νs = 0, .μs = 0.1). It is worth noting 
that, due to symmetry, the vibration amplitude of the left and right span is strictly 
equal, i.e. .ymax = ymax,l = ymax,r . The solid black line refers to the case of single-
span bare cable and is reported for comparison purposes. As Fig. 2a shows, the 
predicted amplitudes reproduce reasonably well the experimental results published 
in [ 22] for a single-span undamped conductor (“bare cable”). Figure 2b and c report 
the results for a damped conductor and a symmetric position of the dampers around 
the intermediate support. The two figures shed some light on the effect of the tuning 
of the dampers (parameter .δ = δdl = δdr ) and on the position of the dampers in the 
span (parameter .α = αl1 = αr1). As depicted in Fig. 2b, decreasing the value of . δ
shifts the curves to the left, so increasing the effectiveness of the damper in the low 
frequency range. Instead, as depicted in Fig. 2b, as . α is decreased the frequency at 
which the damper first becomes ineffective is shifted to the right. 

In Fig. 3 results for a non-symmetric two-span configuration (with .Ll = 225 m 
and .Lr = 450 m) are reported. In this case no dampers are added to the line, while 
the stiffness of the intermediate support is varied by considering different values 
of the tuning parameter . δs . A damping ratio .νs =0.01 and a mass ratio . μs = 0.1
are considered in all calculations. Figure 3a depicts the maximum non-dimensional 
vibration amplitude for the left-span, while Fig. 3b shows the same quantity for the 
right span. The broken black line reports the values computed for a single span 
of corresponding length (hence disregarding coupling between the non symmetric 
spans). As Fig. 3 depicts, disregarding this coupling leads to an underestimation of 
the extreme amplitude of motion in the short (the left) span while the extreme value 
for the long span (the right) can be correctly predicted.
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Fig. 3 Maximum non-dimensional vibration amplitude for a non-symmetric two-span configura-
tion with .Ll = 225 m and  .Lr = 450 m (.ωc = 0.3648 rad/s). No dampers added to the line. The 
intermediate support is characterized by .νs = 0.01, .μs = 0.1 and different values of the tuning 
parameter . δs . a Left-span. b Right span. The results obtained for a single-span conductor on rigid 
supports and length.L = 225m (Fig. a) and.L = 450m (Fig. b) are plotted for comparison purposes 

4 Conclusions 

In the present work, an extension to the EBM has been proposed. The formulation 
allows to take explicitly into account both the dynamic interaction between the cable 
and the support system, and the coupling in the dynamic response of two adjacent 
spans. The presence of dampers in each span to control aeolian vibrations is also con-
sidered. The modal properties of the line are studied within a rigorous mathematical 
setting and used as the input to apply the EBM. 

Application to test cases shows the potential of the proposed formulation, that 
allows to clearly identify the effect of the main geometrical and mechanical parame-
ters controlling the aeolian vibrations of the line. Reported results hint to a simple yet 
effective criteria for the design of the mechanical characteristics both of the damping 
devices and of the intermediate support in order to mitigate the severity of aeolian 
vibrations. 
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A Numerical Investigation on the 
Dynamic Response of Short Slack Cables 

S. Corazza, F. Foti, and L. Martinelli 

Abstract Short span cables subject to vary small values of axial force are encoun-
tered in several technical engineering applications such as flexible-bus electrical 
conductors and Bretelle dampers. Whenever dealing with short and slack cables, the 
bending stiffness contributions to the overall dynamic response are not negligible. 
Bending behavior of metallic cables is non-linear and non-holonomic due to the onset 
and propagation of relative sliding phenomena between the wires. As a consequence, 
the dynamic response of the envisaged applications turns out to be affected by strong 
geometrical and mechanical non-linearities. In this paper, a numerical approach is 
adopted to study the dynamics of short slack cables subject to support motion. The 
stranded cables are modeled as co-rotational beam finite elements with a non-linear 
bending moment-curvature relation based on a phenomenological model, previously 
developed by the research group. Results of both quasi-static and dynamic analyses 
are discussed. 

Keywords Slack cables · Cable dynamics · Seismic motion · Bending stiffness 

1 Introduction 

There are several technical applications in which metallic stranded cables cover 
short spans, in the order of few meters, and are subject to very small values of 
axial force compared to their Rated Tensile Strength (.RT S). This is the case, for 
example, of flexible-bus conductors used in high-voltage electrical substations to 
connect electrical equipment and Bretelle dampers, that in their most simple design 
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are made of a short stretch of conductor connecting two adjacent spans of an overhead 
transmission line (see [ 13]). 

However, quasi-static and dynamic analyses of short slack cables have been sel-
dom addressed in the literature. Few studies on the behavior of such structures under 
dynamic loading conditions are available (see e.g. [ 3– 5, 9, 14]). Most of results high-
light a significant dynamic amplification of the conductor reaction forces, especially 
in the presence of small “slackness”, i.e. whenever the static sag is small in compari-
son to the span [ 11]. Moreover, experimental results related to parametrically-excited 
conductors show typical slackening and re-tensioning phenomena and the possible 
occurrence of dynamic instability regions [ 5]. A recent work’s findings highlight the 
tension-stiffening behavior of the conductors under quasi-static harmonic parametric 
excitation tests [ 9]. 

On the contrary, the bending behavior of metallic stranded cables has been widely 
studied in the past years, and different modeling strategies are nowadays available 
[ 6, 8]. As highlighted by extensive analytical and numerical investigations (see, e.g., 
[ 14, 17, 19]), whenever a strand is bent, an axial force gradient is generated along 
the length of the wires. Such gradient makes the wires prone to sliding with respect 
to the neighboring ones and is counteracted by the tangential friction forces acting 
on the internal contact surfaces between the wires. The possible activation of these 
sticking-sliding frictional interfaces makes the bending behavior of strands inherently 
non-linear and non-holonomic. 

The present paper presents a novel methodology for the modeling of short slack 
stranded cables subject to imposed motion of the supports, by accounting for both 
geometrical non-linearities and their inherent nonlinear bending behavior. The latter 
is considered through a smooth phenomenological Bouc-Wen hysteretic model of 
the moment-curvature relationship. The parameters of such model are calibrated 
according to experimental results of the literature and quasi-static tests are then 
performed. Preliminary results of dynamic analyses are also presented. 

2 Numerical Model 

This section describes the methodology that has been adopted in the present paper to 
carry out both quasi-static and dynamic numerical analyses of short-span stranded 
cables subject to imposed motion of the supports. A finite element user-coded pro-
gram has been developed, involving co-rotational beam finite elements ([ 7]) and fully 
accounting for both the geometrical non-linearities of the structure and the material 
non-linearity. The latter have been addressed throughout the nonlinear moment-
curvature relationship presented in Sect. 2.1.
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2.1 Moment-Curvature Law 

Material nonlinearities have been described by means of the well-known smooth 
endochronic Bouc-Wen model, which was already adopted by the research group 
to describe the hysteretic bending behavior of metallic stranded cables in [ 8]. By 
interpreting the input-output characteristic of the system as a non-holonomic relation 
between a pair of work conjugated mechanical variables, one can express the model’s 
relations in terms of a bending curvature .χ(t) and of a bending moment .M(t). The  
so-called “minimal” or “normalized” Bouc-Wen model, which was proposed by 
Ikhouane and Rodellar (see [ 15, 16]), is herein rewritten in a slightly modified form, 
which allows for a clear and direct interpretation of the parameters governing the 
hysteretic behavior of stranded cables: 

.M
(
χ(t), t

)
= E Imin χ(t) +

(
E Imax − E Imin

)
χ0z(t) (1) 

.ż(t) = 1

χo

(
χ̇(t) − σ|χ̇(t)||z(t)|n−1z(t) + (σ − 1)χ̇(t)|z(t)|n

)
(2) 

where .P = {E Imin, E Imax ,χ0,σ, n} is the set of parameters of the model and . z(t)
is a non-dimensional hysteretic variable. The parameters . σ and. n affect the shape of 
the nonlinear transition curve between the maximum (full-stick state, see [ 6]) and 
minimum (full-slip state, see [ 6]) tangent stiffness of the moment-curvature diagram, 
respectively denoted as .E Imax and .E Imin . The parameter .χ0 can be conveniently 
regarded as the first-yielding curvature value that characterizes the transition from 
the full-stick to the full-slip state. 

2.2 Model Calibration 

The non-linear moment-curvature law (see Sect. 2.1) requires calibration based on 
quasi-static bending tests on slack conductors. Results of experiments conducted by 
Chen et al. (see [ 2]) for a steel cable are used, as an example, to show the viability of 
the proposed formulation and model calibration strategy. A monotonic three-point 
bending test has been performed on a Galfan steel spiral strand with zero tension 
(see Fig. 1). The latter has an outer diameter equal to..D = 38mm and it is formed by 
37 equal steel wires. It is characterized of a mass per unit of length. γ = 6.373 kg/m
and, consequently of a weight per unit of length .w = 62.50 N/m. The rated tensile 
strength is set to .RT S = 359 kN. By considering a Young’s modulus of the steel 
wires .E = 206GPa and a Poisson’s ratio .ν = 0.3, one obtains an axial stiffness 
.E A = 167.8MN and a torsional stiffness .GJ = 1410Nm2. 

As per the parameters.E Imax ,.E Imin and.χ0, a SET (A) of values has already been 
proposed for this specific application case (see [ 10]). In the present work, a novel 
calibration of .χ0 is also proposed, basing on the values of maximum and minimum
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V 

Fig. 1 Schematic representation of the bending test 

Table 1 Set of the parameters for the Bouc-Wen hysteretic model 

Reference SET .E Imax (Nm2) .E Imin (Nm2) .χ0 (m−1) .n (−) . σ (−)

Galeazzi, 
2018 [ 10] 

A .4649 .369 .0.008 .1.00 . 1.00

Present 
work 

B .14613 .318 .0.005 .1.00 . 1.00

Fig. 2 Vertical load as a 
function of the vertical 
midspan displacement for 
the Galfan steel strand 
(..D = 38mm) tested in [  2] 
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bending stiffness obtained through analytical expression derived in [ 6]. This new set 
of values is referred to as SET B (see Table 1). 

Figure 2 compares the numerical results of the cable response obtained for the 
two sets of parameters, with the experimental measurements from [ 2]. 

The elastic stiffness (analytically computed) are also shown. As it can be clearly 
appreciated, SET B allows for a more precise characterization of the bending response 
of the Galfan conductor tested in [ 2], being the experimental results excellently 
reproduced (cf. Fig. 2).
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3 Quasi-static Analyses 

This sections collects the results of quasi-static analyses obtained for the so-called 
Galfan stranded cable. The maximum and minimum bending stiffness, as well as 
the first-yielding curvature to be adopted in the Bouc-Wen hysteretic model (see 
Eqs. 1 and 2) have been calibrated in Sect. 2.2. Since the aim of the present section 
is to show the main qualitative features of the non-linear slack cable model, and 
both the set of values previously obtained are describing with sufficient accuracy the 
experimental results (errors below 10%), the results hereafter presented have been 
obtained by considering the SET A of parameters. However, analogous results, from 
the qualitative point of view, would be obtained by using the SET B of parameters 
(see Table 1). 

3.1 Cable Slackness 

In order to investigate the effect of cable’s slackness on its behavior, two static con-
figurations of the cable have been considered, namely the slack profile (characterized 
by a significant sag-to-span ratio) and the taut profile (i.e. the static profile of the 
cable under the well-established small-sag cable theory). 

Both of them are obviously characterized by the same value of the cable span . l, 
i.e. the distance between the two supports and, hence, the difference between the two 
approaches is dictated by the initial length of the cable.L0, which remarkably differs 
between the two cases, due to the sag . d. 

3.2 Loading Conditions 

Two main cases of excitation due to the relative motion of supports can be identified, 
namely the direct support excitation (due to a relative displacement in the direction 
orthogonal to the cable’s centerline) and the parametric excitation (due to a relative 
displacement in the direction along the cable’s centerline) (see Fig. 3). The static 
scheme of the structure can be regarded to as a doubly-clamped beam with an addi-
tional displacement-controlled degree of freedom on the movable end, which was 
respectively selected as the axial displacement for the parametric excitation case and 
as the vertical in-plane displacement for the direct excitation case (see again Fig. 3).
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Fig. 3 Schematic representation of the excitation typologies 

3.3 Numerical Results 

The span . l of the cable is set equal to . 3 m, whereas the mid-span sag attained for 
the slack and taut configuration is equal to..d = 432mm and..d = 7mm, respectively. 
A quasi-static cyclic support displacement loading history of amplitude .Aqs is then 
imparted. 

Figure 4 depicts the hysteresis cycles of the cable subject to quasi-static direct 
excitation for both the slack (a) and the taut (b) configurations. Both diagrams start 
from a nonzero vertical reaction force at the movable end-section, which is induced 
by the self-weight of the cable. 

Figure 4a outlines a symmetrical hysteresis cycle (with respect to the initial static 
configuration), which is characterized by a softening behavior essentially due to 
material nonlinearities (see also the .M − χ diagram of the clamped-end section for 
the slack configuration, depicted in Fig. 6a). 

Although being symmetric with respect to the initial static configuration, the 
hysteresis cycle depicted in Fig. 4b denotes an hardening-type behavior which is due 
to the activation of the geometrical nonlinearities. 
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Fig. 4 Hysteresis cycles for the direct excitation case. Slack configuration, ..Aqs = 80mm (a) and  
taut configuration,..Aqs = 40mm (b)
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Fig. 5 Hysteresis cycles for the parametric excitation case. Slack configuration,..Aqs = 80mm (a) 
and taut configuration,..Aqs = 1mm (b) 
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Fig. 6 Moment-curvature diagram at the clamped-end for the direct excitation case. Slack (a) and  
taut (b) configurations 

In addition, material hysteretic behavior is also present, as clarified by Fig. 6b (i.e. 
the .M − χ diagram of the clamped-end section in the case of taut configuration). 

Figure 5 depicts the hysteresis cycles of the cable subject to quasi-static parametric 
excitation for both the slack (a) and the taut (b) configurations. 

Figure 5a clearly illustrates the non-linear and non-holonomic nature which affects 
the bending behavior of stranded cables. In fact, remarkable geometrical nonlinear-
ities influence the response of such structures by making the cycle non-symmetric 
and prone to the development of an hardening-type branch in the tension-side and of 
a softening-type branch in the compression side.
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These features are in excellent qualitative agreement with experimental results of 
quasi-static tests of electrical substation flexible conductors (see, e.g., [ 4, 9]). 

Figure 5b depicts the occurrence of instability phenomenon in the compression 
region, and a recovery of the linear elastic behavior in the tension one (after the post-
buckling branch). The response of the cable under this peculiar loading condition 
can be assimilated to the one experimentally observed for cyclically loaded steel 
bracings (cf. [ 1]). 

Moreover, as a general comment, very low displacements are admitted in the case 
of parametrically-excited taut cables. In fact, in such situation, the structure is not 
able to accommodate the relative displacements which can arise due to the seismic 
axial motions of the support. This behavior was also highlighted in [ 11]. 

4 Dynamic Analyses 

Similarly to the case of static analyses (see Sect. 3), dynamic analyses have been 
performed by controlling displacements, velocities and accelerations of the movable 
end-section of the cable. The discretized equation of motion in a classical finite-
element dynamic analyses procedure reads: 

.

[
m f f 0
0 mrr

] [
Ü f

Ür

]
+

[
c f f c f r

cr f crr

] [
U̇ f

U̇r

]
+

[
P f (U f ,Ur )

Pr (U f ,Ur )

]
=

[
0
R

]
(3) 

where.U f (t) and.Ur (t) denote respectively the unknown nodal generalized displace-
ments of the load-controlled degrees of freedom and the know nodal generalized dis-
placements imposed at the movable end-section of the cable. Dots denote derivation 
with respect to time . t , while the vectors .P f and .Pr denote the nonlinear restoring 
forces work-conjugated to.U f (t) and.Ur (t) , whereas. R denotes the unknown vector 
of reactions forces at the movable end-section of the cable. Both mass and damping 
matrices have been introduced in a partitioned form, with obvious meaning of the 
terms. 

The Hilbert-Hughes-Taylor (HHT) time stepping algorithm was adopted for the 
solution procedure (see [ 12]) and the parameters were chosen as is it follows: . α =
0.1,.β = 0.3025,.γ = 0.6. The unknown nodal generalized displacements.U f (t) are 
solved from the first row of Eq. 3, and then substituted in the second row, from which 
the reaction forces .R are then obtained. 

A mono-harmonic input signal at the fundamental natural frequency of the cable 
(i.e. 36.42 Hz for the slack configuration and 12.44 Hz for the taut configuration) 
has been considered. Both an initial and a final ramp have been added to the input 
signal. The amplitude of the dynamic cyclic motion will be hereafter denoted with 
the symbol .Ad . Viscous-type damping was accounted for by considering a constant 
modal damping coefficient ξ = 1‰on the first 10 modes of the cable.
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Fig. 7 Time histories of the tension for the slack configuration with ..Ad = 20mm, for the direct 
(a) and parametric (b) excitation case 

Fig. 8 Time histories of the vertical force for the slack configuration with ..Ad = 20mm, for  the  
direct (a) and parametric (b) excitation case 

The duration of dynamic analyses has been set equal to . 3 s, while the adopted 
time step was particularly demanding in terms of computational burden, i.e. .. Δt =
10−6 s, but necessary to capture with good accuracy the first significant modes of the 
structure, due to the high frequency of excitation. 

As an example, results of dynamic analyses for the case of Galfan steel cable 
in the slack configuration are hereafter reported. Figure 7 depicts the time histories 
of the cable tension for both direct (a) and parametric (b) excitation case. Figure 8 
depicts, instead, the time histories of the vertical reaction force at the movable end, 
for both direct (a) and parametric (b) excitation case.
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Strong dynamic amplification of both vertical and horizontal reaction forces is 
observed during the motion of the structure. Moreover, parametric excitation leads, as 
expected, to significantly higher maximum and minimum values of the two response 
quantities, compared to the direct excitation case. 

Application of the proposed methodology to a more rigorous characterization of 
the dynamic response of short slack cables through extensive parametric analyses is 
subject of the ongoing research. 

5 Conclusions 

In this paper, a methodology for the description of both the quasi-static and the 
dynamic response of short slack cables subject to imposed support motion has been 
presented. As an application example, the quasi-static and dynamic response of a 
short slack cable for both direct and parametric excitation cases was numerically 
investigated. The stranded cable was modeled through co-rotational beam finite ele-
ments with a non-linear bending moment-curvature relation based on the smooth 
Bouc-Wen phenomenological model. Results of quasi-static tests highlight a remark-
ably different behavior both for the two different initial static configurations (i.e. slack 
and taut) and for the two different excitation typologies (i.e. direct and parametric) 
which were considered. Highly geometrically nonlinear behavior was observed, with 
the developing of hardening-type branches. As per the dynamic analyses, two main 
sources of nonlinearities, which tend to compete, can in principle affect the response 
of the cable: the geometrical nonlinearities, which tend to produce a hardening behav-
ior in the response, and the material nonlinearities, which, on the contrary, lead to a 
softening response of the cable. Activation of each source of nonlinearity strongly 
depends on both the system parameters (geometric and material properties of the 
cable) and on the loading conditions. Ongoing research is devoted to an in-depth 
investigation of the rich nonlinear dynamics of this system. Although further numer-
ical analyses and experimental validation are still needed, the proposed methodology 
can be a viable tool for the simulation of short slack metallic cables and electrical 
apparatus such as flexible bus conductors and Bretelle dampers. 
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Comparing Different Techniques 
of Determining Cable Forces 
from Vibration Measurements 
on a Cable-Stayed Arch Bridge 

Stefan Verdenius 

Abstract As part of a reassessment of a cable-stayed arch bridge in The Nether-
lands, cable forces need to be determined. To this end vibration measurements are 
performed on each cable individually, from which the natural frequencies are derived. 
This paper describes three methods to determine cable forces from these vibration 
measurements, all using the relation between force and frequency according to the 
taut-string formula. In the first method the cable length as-is is used as vibrating 
length. A second method uses information on the mode shapes to determine the 
vibrating length and a third method uses the change in frequency due to an added 
point mass as a way to derive the vibrating length. Measurements on the shortest 
cable of the arch bridge show that using modal shapes leads to a vibrating length of 
almost one meter shorter than the full cable length (13.29 m instead of 14.32 m), 
while the third method leads to a much lower vibrating length (12.32 m) and thus to 
a different cable force. The two latter methods have as big advantage that they can be 
applied independent of the boundary condition of the cables, but the measurements 
have shown that their success is strongly related to the accuracy with which different 
parameters can be determined. 

Keywords Cable force · Natural frequency · Vibration measurements 

1 Introduction 

Finite element models play an essential role in assessing the remaining life time of 
steel bridges [1, 2]. When creating a finite element model of an arch bridge, the 
cable forces are an important measure in tuning the model [3]. Cable forces cannot 
be measured directly if no load cells are installed during construction, but many 
alternative measurement techniques are proposed in literature [4, 5]. By measuring
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vibrations, the so-called taut-string method, one of the most common ways to deter-
mine cable forces, can be used [6, 7]. When applying this method, cable forces are 
calculated based on the measured natural frequencies of the cable, in combination 
with the estimated vibration length, mass and stiffness of the cable. 

These measurements have been performed numerous times in The Netherlands 
and in other countries [8]. Although this method is straight-forward and easy to 
perform, the downside of this method is that the necessary cable parameters are 
sometimes hard to determine and that the applicability is strongly related to the 
boundary conditions of the cables, thereby leading to an uncertainty band on the 
resulting cable forces [9]. This experience is shared by the author based on earlier 
measurements performed in The Netherlands. 

In literature multiple experiments are listed to gain additional information on 
the different cable parameters. In [10] it is shown that extra information on the 
vibration length can be gathered by performing a modal analysis, leading to a more 
accurate determination of cable forces. This modal analysis can easily be applied on 
the conventional taut-string measurement set-up when paying attention to the exact 
location of the accelerometers as described in [10]. A second paper describes how 
the vibration length can be estimated by adding a point mass to the cable and by 
evaluating the change in natural frequency of the cable due to this extra mass [11]. 

During the reassessment of the ‘Brug over de Beneden Merwede’, a steel arch 
bridge of ca. 200 m with four lanes of traffic in The Netherlands, the forces in all 28 
stay-cables are determined using vibration measurements. This work elaborates on 
the determination of the force in the shortest cable (14.32 m) using three methods. 
Firstly the cable force is determined using the conventional taut-string method, with 
an estimate of some cable parameters and by using the full cable length as vibrating 
length. Hereafter, the cable force is recalculated by adding the data from the modal 
analysis. As a third step the cable force is determined by using the change in natural 
frequency due to additional tests with an added point mass. 

This paper describes how the tests are performed and how the three evaluation 
techniques lead to different cable forces. 

2 Assessment of Cable Forces 

2.1 Taut-String Method 

Different studies describe how the force in a cable can be determined from the 
measured natural frequency depending on the boundary conditions of the cable [12]. 
The formulas that describe this relation for a clamped and hinged connection between 
cable and bridge are given in Eqs. (1) and (2) respectively. 

fk = k 
2L 

|
F 

μ

(
1 + 2 

/
E I  

F L2 
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E I  

F L2
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fk = k 
2L 

|
F 

μ 

/
1 + k

2π 2 
L2 

E I  

F 
(2) 

In these equations fk is the natural frequency [Hz] of mode k, L is the vibrating 
length of the cable [m], μ is the mass of the cable per meter [kg/m], E I  is the bending 
stiffness of the cable [N/m2] and F is the force in the cable [N]. 

In previous measurements performed in The Netherlands, the natural frequencies 
of the cable are measured while all other parameters are determined using e.g. design 
drawings. The force in the cable can then be determined by solving the minimization 
problem as stated in Eq. (3) for different values of cable force F . 

argmin

(
kmaxΣ
k=1 

fk,meas − fk,calc 
fk,meas 

, F

)
(3) 

In this equation fk,meas is the measured natural frequency of mode k, fk,calc is 
the natural frequency of mode k according to Eqs. (1) or (2) and kmax is the highest 
mode measured. The length L is, when no additional information is present, taken 
equal to the length of the cable. 

2.2 Modal Analysis 

The work reported in [10] describes how the cable force can be estimated more 
accurately by including information on the mode shape ratios. When evaluating 
the mode shape ratios one can determine the vibrating length Lk by solving the 
minimization problem as stated in Eq. (4). 

argmin 
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{
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x j − dk 
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− φ jk
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]]2 

, {dk, ak , Lk} 
⎞ 
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In Eq. (4) x j is the location of accelerometer j with respect to the middle of 
the cable [m], Lk is the vibrating length of the cable for mode k and ak is the 
amplitude coefficient of mode k. The parameter dk is introduced in order to include 
asymmetry of the cable, representing an origin shift [m] and the term cosin represents 
a cosine-function for all odd modes and a sine-function for all even modes. The 
value φ jk

/\

denotes the real part of the measured mode shape value of the k-th mode at 
accelerometer j , determined by normalizing the Discrete Fourier Transform using 
the value at one of the n accelerometers. 

Minimizing the error-function stated in Eq. (4) with three unknowns (dk , ak 
and Lk) leads to a best guess of the vibrating length, which thereafter can replace 
parameter L in Eq. (2) to determine the cable force.
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2.3 Additional Point Mass 

In [11] a method is derived to determine the effective length of cables by adding a 
point mass to the cable. The first natural frequency of a cable (ω1) changes when 
adding a point mass M [kg], where the first natural frequency after addition of the 
point mass (ωm1) is described as

(
ω1 

ωm1

)2 

= 1 + 2M 

mLeq 
sin2 

π
(
2Lm − L + Leq

)
2Leq 

(5) 

In Eq. (5) m is the mass per length of the cable [kg/m], L denotes the total length 
of the cable [m], Lm the location of the added point mass [m] and Leq the equivalent 
length [m]. When the additional mass is placed exactly in the middle of the cable 
length, Eq. (5) can be simplified as

(
ω1 

ωm1

)2 

= 1 + 2M 

mLeq 
(6) 

The parameter L in Eq. (2) can then be replaced by the effective length Leq after 
which the force in the cable can be determined. 

3 Field Measurements 

3.1 Brug Over de Beneden Merwede 

Measurements are performed at the Brug over de Beneden Merwede (Fig. 1). This 
bridge has a main span of 203 m and an arch with a height of ca. 30 m above deck. 
Arch and deck are connected through 28 diagonal cables, 14 on each side of the 
bridge, with lengths varying from 14.32 m to 30.87 m. The cables are wire ropes 
with a diameter of 78 mm and a mass of 34.68 kg/m. The first ca. 2.9 m of the cables 
above deck are protected against vandalism through a cover bolted around the cable; 
however, this cover is removed prior to the measurements to prevent it influencing 
the free vibration of the cable. Cables are measured one after another; in this paper 
only the measurements of cable 1 (14.32 m) are discussed.

3.2 Measurement Set-Up 

Based on the work in [10] each cable is instrumented with four wireless accelerome-
ters (Lord Microstrain, G-Link-200), of which two are at the outer ends of the cable
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Fig. 1 Brug over de Beneden Merwede [13]

(Fig. 2, left). The position of the other two accelerometers is kept equal to the position 
used in [10]. A lashing strap is used to pretension the cable, being attached to the 
cable on one end (at an arbitrary location) and at the barrier on deck on the other 
end (Fig. 2, right). An HBM U9C load cell (range 5000 N) is used to determine the 
tension in the lashing strap. 

For the measurements described in Sect. 2.3 an additional point mass is added to 
the cable. This point mass is placed in the middle of the cable length, as depicted in 
Fig. 3. The additional point mass consisted of two aluminum ‘shields’ (5.42 kg each)

Fig. 2 Schematic depiction of the four accelerometers along the length of the cable (left). Picture 
during the measurement indicating the load cell on the lashing strap between cable and barrier 
(right). Do note that the anti-vandalism shield is removed before the measurements 
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Fig. 3 Additional point mass attached to the cable. The left figure indicates the light weight 
(46.56 kg) and the right picture the heavy weight (82.28 kg) 

that are clamped around the cable. On top of these shields additional steel plates 
(4.47 kg each) could be placed to increase the mass. The amount of mass is chosen 
such that the addition of the mass leads to a measurable change in natural frequency 
(>5%) for all hangers. The ratio between added mass and cable mass is comparable 
with the ratio in [11]. 

3.3 Measurement Procedure 

Vibration measurements are performed during a closure of the bridge (no traffic). 
Using the lashing strap, the force perpendicular to the cable is increased to 2 kN, 
after which the force is released at once, leading to vibration of the cable When the 
cable vibrations are damped, the lashing strap is tensioned again in order to repeat 
this measurement. In total 5 measurements are performed. 

After these 5 measurements the point mass is added. At first all steel plates are 
added to the aluminum shields, leading to a total point mass of 82.28 kg. Again, five 
measurements are performed as described above. After these five measurements, half 
of the plates are removed and five new measurements are performed (with a total 
added mass of 46.56 kg).
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4 Data Evaluation 

To determine the natural frequencies of the cable, the measured accelerations of the 
cable and the force in the lashing strap are evaluated. Note that for determining the 
natural frequencies either one of the four accelerometers can be used. The force in the 
lashing strap and the measured acceleration of accelerometer 1 (the lowest sensor) 
are shown synchronous in time in Fig. 4 for all five consecutive excitations (without 
additional point mass). Data was sampled with a rate of 256 Hz. In Fig. 4 the different 
stages of the step-relaxation excitation (tightening the strap, releasing the strap and 
free vibration of the cable) can clearly be distinguished. 

The five individual excitations are indicated in Fig. 4 using red lines as the start 
of the excitation (releasing the lashing strap) and black lines as the end of the cable 
vibration and the start of a new excitation (tensioning the lashing strap). Only the 
time segments between the red and black lines were used for data evaluation; the 
period of tightening the lash is thus not evaluated. 

All five segments from Fig. 4 are combined into one continuous signal and the 
transfer function of the applied force in the lashing strap and the measured accel-
eration is determined. The transfer function is determined using the built-in Matlab 
Fourier Transform function ‘tfestimate’ in combination with a Hanning window and 
zeropadding. The resulting spectral image of accelerometer 1 of cable 1 is shown in 
Fig. 5, in which the individual natural frequencies can clearly be distinguished as 
peaks in the amplitude.

To determine the mode shapes necessary for applying the method as described in 
Sect. 2.2 a Fast Fourier Transform is made, using the built-in Matlab function ‘fft’.

Fig. 4 Measurement signal from excitation of cable 1. The top figure shows the force in the lashing 
strap, the bottom figure the acceleration measured by sensor 1. The red and black lines indicate the 
sections that are used for evaluation 
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Fig. 5 Visualization of the natural frequencies found when evaluating the transfer function of the 
force and the acceleration (sensor 1) for excitation of cable 1

A similar procedure is followed to determine the natural frequencies in case of an 
added point mass, as described in Sect. 2.3. 

5 Results 

5.1 Frequencies 

Based on the analysis described in Sect. 4, the natural frequencies are determined as 
listed in Table 1. 

In order to apply the method listed in Sect. 2.2, the mode shapes for all 
accelerometers are determined for the first natural frequency as listed in Table 2.

Table 1 Natural frequencies 
for cable 1 per added mass Added mass Natural frequency (1st mode) 

No mass 6.50 Hz 

46.56 kg 5.89 Hz 

82.28 kg 5.53 Hz 
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Table 2 (Normalized) mode shape parameters for the first natural frequency per sensor 

Accelerometer Mode shape Normalized mode shapes 

1 12.2016 1.0000 

2 13.4537 1.1026 

3 13.6381 1.1177 

4 3.91129 0.3206 

Table 3 Resulting vibration lengths and cable forces 

Method Vibrating length [m] Cable force [kN] 

‘Basic’ taut-string 14.32 1202 

Mode shape analysis 13.29 1035 

Added point mass (ω0/ω46) 12.34 892 

Added point mass (ω0/ω82) 12.34 892 

Added point mass (ω46/ω82) 12.32 890 

5.2 Vibration Length and Cable Force 

When applying the procedure as described in Sect. 2.2 and using the data from 
Table 2, a vibrating length of 13.29 m results. Hereto the results of accelerometer 3 
had to be omitted, since it turned out that this accelerometer was placed too far in 
the middle of the cable, thereby preventing convergence of Eq. (4). In applying the 
method from Sect. 2.3, distinction is made between three different analyses since 
two different masses were added. These analyses all use a different relation between 
frequencies, namely ω0/ω46, ω0/ω82 and ω46/ω82, where the number in the subscript 
indicates the added mass. With these three analyses equivalent lengths of 12.34 m, 
12.34 m and 12.32 m are found. 

Using Eq. (2) the corresponding cable force can be determined. For now this 
equation is applied neglecting the bending stiffness and only evaluating the first 
natural frequency. 

All results are summarized in Table 3. 

5.3 Evaluation of the Results 

When reviewing the numbers from Table 3 it can be seen that all methods lead to 
a different result. The vibrating length resulting from Sect. 2.2 is about 1 m shorter 
than the full cable length, which might be explained due to the part of the cable that 
is clamped within the arch and below the deck. However, the length found when 
applying an additional point mass (Sect. 2.3) is about 2 m shorter than the full cable
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length, which is hard to explain when looking at the bridge structure. However, it 
cannot be said which length from Table 3 is the correct vibration length. 

A possible explanation for the large difference between the length found using 
the added mass and the full cable length, is the limited accuracy in the measured 
natural frequencies. A sensitivity study is performed investigating the effect of a 
measurement error in the natural frequency on the resulting equivalent lengths (not 
reported in this paper). This study has shown that in case a measurement error of 
only 0.5% was made in only the natural frequency measured with an added mass 
of 46.56 kg (e.g. 5.92 Hz instead of 5.89 Hz), the three analyses lead to completely 
different lengths (13.21 m, 12.54 m and 11.42 m). This shows that the procedure 
based on added masses is extremely sensitive to the determined natural frequencies. 

6 Conclusion 

This paper describes the determination of cable forces of an arch bridge in the Nether-
lands based on vibration measurements. Results of the shortest cable are given when 
using three different evaluation technique. The first technique assumes the vibration 
length is equal to the full cable length, leading to a cable force of 1202 kN when 
assuming a hinged connection with the bridge and when neglecting the bending stiff-
ness of the cable. The other two evaluation techniques base the vibration length on 
the mode shape ratio or the change in natural frequency due to an added point mass 
respectively. This first technique leads to a cable force of 1035 kN, the latter results 
in a cable force of circa 890 kN. 

Differing results between methods can be possibly caused by inaccuracy of deter-
mining the natural frequency, or by inaccuracy in measuring locations of sensors 
and added masses. The method using modal shapes seems to give accurate results 
in this measurement, although more measurements should be performed in order 
to conclude on its accuracy. At first sight the proposed method of adding a point 
mass seems too sensitive to be applied during field measurements. It is suggested to 
perform a sensitivity study on the exact positions of the added point mass and the 
accelerometers on the resulting vibrating length. On top of this, it would be benefi-
cial to invest in signal processing techniques in order to increase the quality of the 
measurement signal. 
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On the Seismic Response of Anchoring 
Elements for Submerged Floating 
Tunnels 

S. Corazza, M. Geuzaine, F. Foti, V. Denoël, and L. Martinelli 

Abstract Submerged Floating Tunnels (SFTs) are interesting modular structures 
that lend themselves well to the crossing of water bodies. In a widespread design 
configuration the SFTs retain positive buoyancy and are kept at a fixed depth under the 
water surface by anchoring devices connected to the seabed. Different technological 
solutions have been proposed for the anchoring devices. They all share the properties 
of being slender, axially stiff and very flexible in transverse direction. The positive 
buoyancy of the SFT is typically tailored such to avoid detensioning (slackening) of 
the anchoring elements under design loading conditions, e.g. wave and earthquake 
loading. Whenever the tunnel is located in seismic prone areas, the seismic loading 
can be the dominant one. The present paper focuses on the local dynamic response of 
anchoring elements of a proposal for the Messina Strait crossing. The seismic input 
is modeled according to a suitable power spectral density of the ground acceleration 
and a reduced-order model of anchoring element is set up according to the classic 
theory of small-sag cables. The seismic working conditions are assessed with respect 
to slackening requirements. 
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1 Introduction 

Since the last decades of the past century, Submerged Floating Tunnels (SFTs) have 
been considered as a viable alternative to bridges and immersed tunnels for crossing 
waterways [ 1]. Although a first realization is still missing, many preliminary design 
proposals have been drafted and reported in the literature for sea strait, fjord and lake 
crossing (see e.g. [ 2, 15, 18]). The main design parameter of SFTs is the Buoyancy 
to Weight Ratio (BWR), i.e. the ratio between the buoyancy force and weight per 
unit of length of the tunnel. Seabed anchored SFTs, on which the present paper 
focuses, are always characterized by values of the BWR greater than one and the 
net buoyancy force is transferred to the foundations by means of a spread system 
of anchoring elements (mooring system), that are typically realized with structural 
cables or tubular steel profiles closely spaced along the tunnel length. The BWR of 
the tunnel controls the tensile load acting in the tethers under static loading conditions 
and can be taylored such to avoid detensioning (slackening) under design dynamic 
loading conditions, e.g. wave and earthquake loading [ 19]. Increasing the BWR, 
however, leads to an increase of the tensile loads that must be counteracted by the 
foundations. Optimal design of the BWR, hence, implies searching for a trade-off 
between these competing design objectives. 

Within this context, an accurate prediction of the dynamic response of the SFTs 
anchoring elements is of paramount importance. 

Dynamics of SFTs has been studied in the literature mostly by means of numerical 
simulations based on applications of the Finite Element (FE) method, e.g. [ 9, 10, 16, 
17]. However, computationally efficient FE models able to simultaneously capture 
the main features of both global and local vibration modes with the same degree 
of accuracy, are inherently hard to set up. As a consequence, anchoring elements 
are often modeled as mass-less tendons and their local dynamics is disregarded or 
considered on a separate note under simplified loading conditions (see, e.g. [ 4]). 

Global-local mode interaction has been extensively studied with reference to 
cable-supported bridges, such as stayed bridges, and different ad-hoc modeling strate-
gies have been proposed [ 8, 13, 21]. Although potentially promising, application of 
such formulations to the analysis of SFTs requires addressing the following issues 
that specifically distinguish SFTs anchoring elements from stay cables: (1) SFT 
anchoring elements are immersed in water, and (2) they are directly connected to the 
foundations. 

The aim of the present paper is to make a first step in this direction. A reduced-order 
geometrically nonlinear dynamic model for the anchoring elements of a SFT is first 
formulated by generalizing the stay cable model originally proposed by Warnitchai 
et al. [ 21]. The model relies on the small-sag cable theory and allows for a generic 
motion of the end sections. The cable model is then applied to investigate the seismic 
response of the tethers of a SFT designed to cross the Messina strait, in Italy [ 10]. To 
this aim, a simplified two-step procedure that neglect coupling between global and 
local vibration modes of the structure is herein adopted. Results are then discussed 
with respect to the possible occurrence of slackening phenomena.
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2 Local Dynamics of the Anchoring Element 

In the present section, a reduced-order model for the dynamic response of inclined 
anchoring elements is presented. The latter accounts for both geometrical nonlineari-
ties and a generic form of support motion, basing on the formulation firstly presented 
in [ 21] for inclined cables. The main hypothesis of the model is that the total motion 
of the element can be decomposed into the sum of a quasi-static component and 
of the modal motions of the cable. The former are the displacements of the cable 
which moves as an elastic tendon due to the support motion, while the latter are 
expressed as a combination of the linear undamped modes of a cable with fixed 
ends. The model developed in [ 21] for the local analysis of the cable response, with 
applications related to cable-stayed bridges, is here extended to the case of a water 
immersed tether. 

Due to space constraints, the reduced-order model formulation is here pre-
sented focusing only on the in-plane vibrations. Generalization to the case of three-
dimensional motion is, however, straightforward. 

2.1 Preliminaries 

Let us consider a tether inclined with an angle. θ with respect to the horizontal plane, 
having initial chord length .L0, mass per unit of length . γs , axial stiffness .E A0 and 
subject to a static tension .T0 > 0 (leading to a static stress .σs = T0/A0). The self-
weight per unit of length of the tether is denoted by .ws (i.e. .ws = γsg), while the 
symbol .br indicates its buoyancy ratio, namely the ratio of the hydrostatic forces 
and the self-weight per unit of length. Furthermore, as usual in the context of small-
sag cable theory [ 14], let us denote by .λ2 the well-known elasto-geometric Irvine’s 
parameter, defined according to the following equation: 

.λ2 = Γ2 cos2(θ)
1

ε0
(1) 

where.Γ = ws(1 − br)L0/T0 and.ε0 = T0/E A0. The maximum sag (. d) of the tether 
can be computed, according to the classic parabolic approximation, as: 

.d = ws(1 − br) L2
0

8 T0
(2) 

It is also convenient for the following developments to introduce the non-dimensional 
load parameter as .η0 = T0/Ty , where .Ty = fy A0 is the yielding tensile force and 
. fy is the yielding stress of the steel. The non-dimensional load parameter is directly 
proportional to the BWR of the tunnel.
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Moreover, in the case of submerged tethers, the so-called virtual mass per unit of 
length enters into play: 

.γv = γs + CA γw (3) 

where.γw represents the weight per unit of length of the fluid which is moved due to 
the presence of the anchoring element. In fact, .γv takes into account the presence of 
the fluid around the cable that acts as an added mass when dealing with its dynamic 
response. The added-mass coefficient .CA depends on the cable cross-section and, 
in the case of a circular cross-section, the unit value is usually adopted (see e.g. 
[ 5, 22]). 

2.2 Equations of Motion 

Let us consider the reference system depicted in Fig. 1, in which the. x axis spans the 
whole chord length, i.e. .0 < x < L0, and the dynamic displacements along. x , and. z
directions are denoted by . u and . w, respectively. Let us also consider a generic form 
of support motion, by expressing the in-plane displacements at support . a and . b as 
. ua , . ub, .wa and .wb. The total time-dependent displacements are separated into two 
parts: quasi-static displacements (denoted by the subscript . q), which are depending 
only on the support displacements (see [ 21]), and modal displacements (denoted by 
subscript. m). By employing the usual separation of variables and neglecting the axial 
modal motion (i.e. .um(x, t) ≪ wm(x, t)), one has: 

.wm(x, t) =
MΣ

m=1

ψm(x)zm(t) (4) 

where.M denotes the total number of in-plane modes retained in the reduced model. 
The time functions .zm can be interpreted as a generalized modal coordinate for the 

Fig. 1 Schematic 
representation of the inclined 
anchoring element
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in-plane motion, whereas .ψm is the associated shape function, herein defined as the 
.mth mode of the tether under the assumption of fixed end sections. The derivation of 
the reduced-order model relies on a standard application of the Lagrange’s equation 
of motion. Both potential (.Uc) and kinetic (. Tc) energies are written as a function 
of the quasi-static and modal components of displacements and the same procedure 
developed in [ 21] is adopted. A non-dimensional form of the equations of motion 
can be obtained by introducing the following non-dimensional variables: 

.z̄m = zm
Lc

t̄ = t

tc
= ωct ūi = ui

Lc
w̄i = wi

Lc
i = a, b (5) 

where .Lc is a characteristic length, hereafter set equal to the maximum sag . d (see 
Eq. 2), while .ωc is a characteristic circular frequency, hereafter set equal to the 
fundamental natural circular frequency of the tether calculated according to a taut-
string model, i.e.: 

.ωc = π

L0

/
T0
γv

(6) 

The sought final non-dimensional expression is then readily obtained: 

. ¨̄zm + 2ξzmω̄zm ˙̄zm + ω̄2
zm z̄m +

MΣ

k=1

ν̄mk z̄m z̄
2
k +

MΣ

k=1

2β̄mk z̄m z̄k+

−
MΣ

k=1

2 ˜̄βmk z̄m z̄k (ūb − ūa) +
MΣ

k=1

β̄km z̄2k −
MΣ

k=1

˜̄βkm z̄2k (ūb − ūa)+

+2 (η̄m − μ̄m) (ūb − ūa) z̄m + ζ̄m
[ ¨̄wa + (−1)m+1 ¨̄wb

]+
−ᾱm

( ¨̄ub − ¨̄ua
) = F̄zm (7) 

which holds for .m = 1, 2, . . . , M . 
The expressions of the non-dimensional coefficients that appear in Eq. 7 are 

reported in Appendix 5. Such coefficients are slightly different with respect to the 
ones presented in [ 21], because the hypothesis related to the small magnitude of the 
quasi-static axial stress .σq with respect to the static stress .σs (i.e. .σq ≪ σs), which 
was enforced by Warnitchai et al., is here removed, since its validity to the case of 
SFT anchoring elements needs to be preliminary assessed. Once the non-dimensional 
modal coordinates have been solved from Eq. 7, the total stress .σtot (t) acting on the  
tether is computed by linear superposition between the static component .σs and the 
dynamic one.σd(t) (which is straightforwardly retrieved by direct application of the 
constitutive law), i.e. .σtot (t) = σs + σd(t) = σs + EE(t), where .E and .E(t) denote 
the Young’s modulus of the tether and the dynamic axial strain, respectively.
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Fig. 2 Schematic representation of the SFT example. Side view and cross-section 

3 Application Example 

In this section, the applicability of the reduced-order model previously presented is 
investigated by considering the dynamic behavior of an inclined anchoring element 
of a SFT proposed for the crossing of the Messina Strait, in Italy [ 10]. 

The considered SFT is designed to connect Sicily to the mainland, crossing a 
strait characterized by a maximum seabed depth of .325 m. The total length of the 
SFT is .4680 m and the tunnel axis is placed .40 m below the water table. The tunnel 
is anchored to the seabed (having variable depth) through a mooring system made of 
inclined hollow core circular cross-section tethers (see Fig. 2). In the original proposal 
three types of cross-sections (types A, B and C) are considered for the tethers along 
the length of tunnel, while their spacing is assumed to be constant and equal to 
.72 m. In the present work, simplified analyses have been carried by assuming that 
all anchoring elements are characterized by the same cross-section type B, defined 
by the following parameters: ..Do = 1.950m, ..s = 0.065m, .A0 = 0.3849m2, .. γv =
6005 kg/m, .br = 0.986, where the symbols .Do and . s denote respectively the outer 
diameter and the thickness of the circular cross-section. The meaning of the other 
parameters has been introduced in Sect. 2.1. Due to space constraints, results will 
be shown for a single anchoring element, located at a distance ..2772m from the left 
shore (see Fig. 2) and characterized by the parameters:..L0 = 403.05m,.θ = 45◦ and 
.λ2 = 0.0259, the latter being computed for a value .η0 = 20%. 

3.1 Modeling of the Seismic Motion 

For illustrative purposes, the case of horizontal seismic loading is herein considered. 
The procedure can be applied also to the case of vertical seismic motion. In the latter 
case, however, seaquake effects should be properly considered being, in principle, 
not negligible (see [ 16]). 

The ground acceleration is modeled as a stationary zero-mean Gaussian random 
process described by a real symmetric Power Spectral Density (PSD) function defined 
according to the Modified Kanai-Tajimi (MKT) model [ 6]. 

The parameters of the MKT model were selected to give a response spectrum 
satisfying on average the horizontal acceleration response spectrum in Eurocode 8
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for far field earthquakes and a soil type C for a Peak Ground Acceleration (PGA) 
of .1 m/s2 (see [ 16]). Two additional values of PGA were also considered in the 
analyses, namely:.4 m/s2 and.7 m/s2 (the latter value being representative of design 
values of PGA at the considered site) and the PSD of the seismic input was re-scaled 
according to the criteria presented in [ 3]. 

3.2 Global Response of the SFT 

The global response of the SFT is evaluated by neglecting the local vibration modes 
of the anchoring elements, through an application of the semi-analytical continuous 
model previously developed and described in [ 11, 12]. The SFT is modeled as a 
Euler-Bernoulli beam with constant cross section continuously supported by dis-
tribution of mass-less linear elastic springs (non-homogeneous Winkler-type soil), 
which represents the mooring system. The seismic motion is assumed acting in the 
horizontal direction, perfectly correlated along the tunnel and described according to 
the criteria presented in Sect. 3.1. Hydrodynamic effects are modeled in an equiva-
lent linearized form and neglecting seaquake effects. An ad-hoc numerical simulation 
code was developed to perform both the global tunnel analyses and the local anal-
yses of the anchoring elements through the application of the reduced-order model 
presented in Sect. 2. 

3.3 Local Response of the Cable 

Starting from knowledge of the PSD of the seismic acceleration and the transfer 
functions from the ground motion to tunnel displacements and accelerations, a set 
of .Ns = 100 realizations of displacement and acceleration time histories of the end 
sections of the tether have been generated through a standard approach (see [ 20]). 
These realizations have been used as an input (. ūi , . ¨̄ui , . ¨̄wi , for  .i = a, b and with 
.F̄zm = 0; see  Eq.  7) to analyze the local dynamic response of the anchoring elements. 
The non-linear equations of motion (7) have been numerically integrated by using 
a standard implicit Runge-Kutta time stepping algorithm (ode45 solver in Matlab). 
The results reported in the following were obtained by considering the first ten modes 
in the reduced-order model (i.e. .M = 10). 

Figure 3 depicts the Root Mean Square (RMS) value of the total stress .σtot nor-
malized with respect to the static stress .σs as a function of the non-dimensional 
loading parameter .η0 (i.e. the ratio between the static stress of the tether and the 
yielding strength of the material). A box plot representation is adopted. Values in 
the box are comprised between the .25th and .75th percentile, whiskers refer to the 
.9th and .91th, while a “x” marker and circles identify respectively the mean and the 
outliers. Figure 3a refers to a PGA of .7 m/s2, while Fig. 3b shows a comparison 
among results calculated for three increasing PGA values, namely: .1 m/s2, .4 m/s2
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Fig. 3 RMS of the non-dimensional total stress. σtot/σs
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Fig. 4 Max. (a) and min. (b) values of the non-dimensional total stress. σtot/σs

and.7m/s2. As it can be appreciated from the figures, by increasing the value of the 
non-dimensional loading parameter the mean value of the RMS tends, as expected, 
to the unit and the dispersion of the results decreases. The dependence of the axial 
stress on the input intensity, schematically depicted in Fig. 3b, turns out to be almost 
linear for this specific application. 

Figures 4a and b depict, respectively, the maximum and minimum values of the 
total stress .σtot normalized with respect to the static stress .σs as a function of the 
non-dimensional loading parameter.η0 and for a PGA of .7m/s2. As expected, at the 
increase of . η0, the maximum (minimum) values of .σtot/σs approach the unit from 
above (below). Lower values of .η0 make the tether more prone to slackening phe-
nomena, as the increase in dispersion and number of outliers point out (see Fig. 4b).
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Fig. 5 a RMS of the ratio between the quasi-static and total dynamic stress. b RMS of the ratio 
between the quasi-static and static stress 

This result highlights the importance of controlling the static tension in the tethers 
through selection of an appropriate value of the BWR, as already reported in the 
literature [ 19]. 

Figure 5a depicts, as a function of the non-dimensional loading parameter.η0 and 
for a PGA of .7m/s2, the RMS of the ratio between the quasi-static component of 
the stress (.σq ) and the total dynamic stress (.σd = .σq + .σm , where .σm denotes the 
contribution of the local vibration modes of the tether—cf. [ 21]). Values close to 
one denote that the total dynamic stress is contributed mostly by the quasi-static 
component. For the application herein considered, this happens almost for the whole 
range of non-dimensional loading parameter . η0. 

Figure 5b reports the RMS of the ratio between the quasi-static component of 
the stress (.σq ) and the static stress (. σs). In the original formulation, developed with 
reference to inclined stay cables in air, this ratio is assumed much smaller than one, 
and hence disregarded, while it has been fully included with its value in the herein 
proposed formulation. In fact, depending on the value of the loading parameter, the 
original assumption (.σq/σs ≪ 1) is not always justified. 

4 Conclusions 

In this paper, a reduced order model for inclined mooring cables has been developed 
and applied to study the local dynamic response of a SFT anchoring element through 
a simplified two-step procedure. The proposed formulation extends to the case of 
tethers immersed in water a model of the literature originally developed for inclined 
stay cables in air. Most notably, the proposed reduced-order model fully accounts 
for the contribution of the quasi-static stress, that, differently than for stay cables in



312 S. Corazza et al.

air, is shown to be in general not negligible compared to the static stress (i.e. the one 
due to the cable static tension). 

The preliminary results reported in the paper highlight once more the importance 
of selecting an appropriate value of the tunnel BWR already stated in the literature. 
The BWR indeed controls the static tension in the elements and, hence, permits 
to limit the occurrence of slackening phenomena under design dynamic loading 
conditions. The proposed formulation can be regarded to as a simple yet accurate 
tool to investigate the local dynamics of the anchoring elements without resorting 
to complex and computationally expensive finite element models. Further research, 
however, is still needed and is currently ongoing to extend the proposed formulation 
to deal with different dynamic loading conditions, such as current-induced loads and 
seaquake effects, which may cause a more severe nonlinear response. 

5 Coefficients of the Equation of Motion 

. ᾱm = 24ws(1 − br)L0 cos θ

(12 + λ2)T0ε0 m3π3

[
1 + (−1)m+1] k̄m = 2λ2

π4m4

[
1 + (−1)m+1]2

. β̄mk = ws(1 − br) cos θm2d

2πT0ε0

[
1 + (−1)k+1

k

]
ω̄zm = m

/
1 + k̄m

. β̄km = ws(1 − br) cos θ k2d

2π T0ε0

[
1 + (−1)m+1

m

]
ζ̄m = 2

mπ

. 
˜̄βmk = 6ws(1 − br) cos θm2d2

(12 + λ2)πL0T0ε20

[
1 + (−1)k+1

k

]
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(12 + λ2)L0ε0
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[
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Abstract Recent advances in numerical modelling now allow 3D analysis of 
complete conductor-clamp assemblies under multiaxial loading, while considering 
all wire interactions. In-depth studies simulating complex problems, such as wind-
induced overhead conductor fatigue, are now possible. Providing detailed wire 
stresses and contact load distributions in the vicinity of suspension clamps, these 
models lead to refined conductor service life estimations. However, owing to its 
stranded configuration and multiple wire interactions, conductor kinematics is intri-
cate and depends on material tribological properties. On the other hand, applications 
of conductor-clamp models commonly assume a uniform and constant adhesion coef-
ficient of friction (μa). In reality, μa may vary over time with surface degradation. 
Therefore, numerical solutions that use a single μa value could provide incomplete 
information and thus, lead to inaccurate conclusions. Using an efficient and proven 
multilayered strand modelling strategy based on 3D beam-to-beam contacts, this 
study investigates the influence of the coefficient of friction (μa) on full conductor-
clamp model solutions. Mapped distributions of wire stresses and local contact condi-
tions are used to characterize the overall influence of the coefficient of friction on 
the model solution. Exploiting a factorial design approach, the analyses also high-
light the cross-influence between the μa level and conductor axial tension and cyclic 
bending amplitude. 
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1 Introduction 

Overhead conductors are highly vulnerable to wind-induced vibrations, especially 
near restraining fixtures such as the suspension clamps [1]. At these critical loca-
tions, vibrations produce cyclic bending loads promoting fretting fatigue and wear 
at inter-wire contact interfaces (Fig. 1). These degradation mechanisms can compro-
mise conductor integrity and progressively lead to wire failures. Predicting and 
preventing conductor damage is therefore crucial to ensure the reliability of electrical 
transmission lines. 

The stranded conductor geometry combined to its loading conditions in the 
clamped region is intricate to analyze, but recent progress in computer-assisted engi-
neering now offers the capabilities to simulate such complex systems [2, 3]. Usually 
developed with the Finite Element (FE) method, conductor-clamp models account 
for all wire-to-wire and wire-to-clamp contact interactions. The FE modelling of the 
clamp is generally similar in all models, whereas the conductor geometry can be 
modelled using 3D solid elements [2] or beam elements [3]. In both cases, each indi-
vidual wire is discretized and all inter-wire contacts are included by means of contact 
elements. Conductor loading usually considers first, an axial tension (T ) applied at 
the conductor extremities with a static sag angle (β0). The wind-induced dynamic 
loading is then added through a cyclic variation of T application angle (±Δβ), usually 
targeting a specified deflection amplitude, computed at 89 mm from the clamp exit 
(Yb) [3]. From the simulation results, wire stresses and contact forces are obtained 
and can therefore be used for detailed fretting analysis [4, 5] or to estimate conductor 
fatigue damage [6]. 

However, conductor-clamp FE models involve many geometric, load and material 
parameters that may influence the precision of the obtained numerical solutions. 
With the conductor kinematics being directly related to frictional interactions at 
wire contacts, the adhesion coefficient of friction (μa) used in conductor-clamp FE 
models is particularly important. On the other hand, most conductor-clamp FE model
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applications assume a constant μa value at all contact points [2, 3, 6]. This modelling 
assumption does not account for the effects of contact loading, surface degradation 
and other environmental factors that may result in fluctuation of μa over time [7]. 

A preliminary investigation on the influence of μa on the conductor FE model 
results is proposed in [8]. The study revealed an increasing effect on local wire stress 
amplitude (σ a) for higher μa values, especially at the outer layer wires and for high 
deflection amplitudes (i.e., Yb > 0.5 mm). Although the work presented in [8] is  
based on a 3D conductor FE model using beam elements, it does not include the 
clamp effect and the study was limited to a single conductor tension (T ) level.  

Therefore, the sensitivity of conductor-clamp FE models to the coefficient of 
friction parameter (μa) needs to be assessed, to ensure cautious interpretations of 
simulation results. This work thus extends the numerical characterization proposed 
by the authors in the present proceedings [9] with the integration of the coefficient of 
friction (μa) effect on the conductor-clamp FE model response. The study focuses 
on the μa influence regarding the local wire solicitation at the contact points. 

2 Numerical Modelling and Analysis Approach 

As with the previous numerical characterization performed in [9], the ACSR Bers-
fort case study is considered in this analysis. Therefore, both the conductor and 
the short-radius metallic suspension clamp have the same geometric and material 
configurations presented in [9]. 

2.1 Conductor-Clamp Finite Element Model 

General FE modelling approach. The beam element-based modelling strategy [3] 
is also exploited in this study to model the conductor-clamp assembly. Since the 
methodology has been thoroughly demonstrated in [3] and also briefly covered in 
[9], details of the FE modelling are omitted here. 

Inter-wire contact modelling. The applied conductor-clamp model uses a line-to-
line contact algorithm to account for all wire-to-wire and wire-to-clamp interactions. 
Contact friction is considered with the Coulomb frictional law, relating the computed 
normal (P) and tangential (Q) contact forces to the adhesion coefficient of friction 
(μa). Wires are thus in stick condition for |Q| ≤ μaP and start sliding when |Q| reaches 
μaP. 

Boundary conditions and load applications. The applied conductor loads and 
constraints are presented in Fig. 2. Details of their application process are also given in 
[9], simply recalling here that the static sag angle (β0) is set to 5° and the clamping 
force (Fc) to 74.5 kN. Specifications on the conductor tension (T ) and deflection
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Fig. 2 ACSR Bersfort loading configuration 
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Fig. 3 Wire stresses and contact loads post-processing at inter-wire contact points 

amplitude (Yb) at 89 mm from the Last Point of Contact (LPC) are discussed in 
Sect. 2.2. 

Simulation results post-processing. In this work, the influence of μa is charac-
terized with respect to the local loading conditions at inter-wire contact points. 
Figure 3 illustrates the inter-wire contact locations where local loads and stresses are 
extracted from the simulations results. The retrieved information includes the normal 
(P) and tangential (Q) contact forces, along with the relative contact displacement 
(δ). The wire stress amplitude (σ a) and mean stress (σ m) at inter-wire contacts are 
also extracted. 

2.2 Factorial Design Approach 

This study builds upon the characterization results obtained in [9], which employed 
a two-factor and three-level full factorial design, considering the conductor axial 
tension (T ) and the bending amplitude (Yb) as factors. To analyze the influence of 
the coefficient of friction, this design of experiments (DOE) used in [9] is extended
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Table 1 DOE factors and 
levels Levels Factors 

T (% RTS) Yb (mm) μa 

1 15 0.3 0.7 

2 25 0.5 0.9 

3 35 0.7 1.1 

*ACSR Bersfort Rated Tensile Strength (RTS) = 180.1 kN 

with the introduction of μa as a third factor, including also 3 levels. The new full 
factorial design thus requires 33 simulations to cover all factor combinations. 

Table 1 presents the factor values for each level, with tensions (T ) and Yb ampli-
tudes remaining unchanged from the initial DOE. It is to be reminded that Yb ampli-
tudes are indirectly induced through the variation of T application angle (±Δβ). 
Levels for μa were defined to encompass the range of the coefficient of friction 
values observed experimentally and reported in published fretting tests on conductor 
wires [2, 10]. 

3 Coefficient of Friction Analysis 

3.1 Relation Between Δβ and Yb 

The influence of the coefficient of friction is first examined macroscopically through 
global conductor dynamics. Thus, Fig. 4 shows the evolution of the Δβ angle required 
to achieve each Yb level at the three tensions (T ). 

From the results in Fig. 4, a smaller impact of μa can be observed at low Yb and 
high T values. This is explained with the low deflection amplitudes being insufficient 
to initiate wire sliding and the high tensions increasing the inter-wire normal contact
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Fig. 4 Δβ variation with tension T at a Yb = 0.3 mm, b Yb = 0.5 mm and c Yb = 0.7 mm 
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forces (P), also preventing sliding. Conversely, μa has a greater effect at low-tension 
values. Overall, the impact of the coefficient of friction on conductor dynamics 
appears to be moderate at a macroscopic level, though it seems to amplify as μa 

decreases. 

3.2 Coefficient of Friction Influence on Local Loading 
Distribution 

The effect of the coefficient of friction on the local loading distribution of the wires 
is investigated using the same inter-wire contact mapping representation developed 
in [9]. Figures 5 and 6 present the wire stress amplitudes (σ a) computed at Yb = 0.3 
and 0.7 mm respectively, for mid-level tension (T ) at 25% RTS and μa levels at 0.7 
and 1.1. Stress mappings are given for layers 3 and 4 inter-wire contacts, which are 
located between 0 and 100 mm from the clamp center.

The mappings include the contact statuses established from the prevailing local 
contact forces (i.e. P and Q) at each contact point. As explained in [9], four contact 
state conditions are possible: sticking, sliding, slipping and no contact. The contact 
point marker shape indicates the contact status in Figs. 5 and 6. This combined 
representation enables refined wire stresses interpretations in conjunction with the 
contact conditions, making it an effective way to identify critical contact locations 
susceptible to fatigue damage. 

Consequently, the Smith–Watson–Topper criterion (σ SWT —Eq. 1) is used in this  
work to locate the most critical contacts. The ten most critical points are circled in 
red and ranked in order of criticality in Figs. 5 and 6. 

σSW T  =
/[σmax ] ·  σa =

/[σm + σa] ·  σa (1) 

As noted in [9], the SWT criterion predicts no damage for compressive maximum 
stress (i.e. σ max < 0), which does not concur with observations during conductor 
fatigue tests [11]. Therefore, the SWT evaluation is adapted in this study to neglect 
the effect of compressive mean stresses (i.e. σ m is set to 0 for σ m < 0), but to always 
account for the σ a effect. The implemented critical contact point detection is also 
limited to a single critical point per wire, assuming the wires can only fail at a single 
point. 

A first examination of the results in Figs. 5 and 6 indicates slightly higher 
maximum stress amplitudes (σ a) for  μa = 0.7. Conversely, the high stress region is 
dispersed over a larger number of contact points with μa = 1.1, resulting in a slightly 
reduced stress amplitude (σ a). 

At lower bending amplitudes (Yb = 0.3 mm), the μa effect on the contact statuses 
is minimal, whereas it becomes more significant as Yb increases, resulting in a higher 
number of inter-wire contacts in sliding and slipping mode at μa = 0.7.
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Fig. 5 Wire stress amplitude (σa) at  a layer 4 outer contacts with clamp surface, b layer 4 inner 
contacts with layer 3, c layer 3 outer contacts with layer 4 and d layer 3 inner contacts with layer 
2, for T = 25% RTS and Yb = 0.3 mm (μa = 0.7—left charts, μa = 1.1—right charts)

The distributions of critical points are similar for μa = 0.7 and 1.1, but lower 
values of μa lead to more critical points at wire-to-clamp contacts on the conductor’s 
bottom side. 

As pointed out in [9], the SWT criterion always predicts the first critical point to 
be at a wire-to-clamp contact on the conductor top side, which is mainly due to the 
high mean stresses in this region. 

To provide a comprehensive overview of the wire stress distribution across the 
entire DOE, Fig. 7 presents the variation of σ SWT and σ a with respect to μa, for all
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Fig. 6 Wire stress amplitude (σa) at  a layer 4 outer contacts with clamp surface, b layer 4 inner 
contacts with layer 3, c layer 3 outer contacts with layer 4 and d layer 3 inner contacts with layer 
2, for T = 25% RTS and Yb = 0.7 mm (μa = 0.7—left charts, μa = 1.1—right charts)

Yb-T combinations. The curves that correspond to the top five σ SWT and σ a values 
are plotted in Fig. 7 and identified as ranked critical contact points.

The curves associated with σ SWT in Fig. 7 demonstrate an increasing effect of μa 

on the criterion, but only for the most critical point (1st), while the other four points 
have much lower σ SWT values. The situation is quite different for critical contact 
points based solely on σ a values. Globally, the μa effect is less important for σ a and 
leads to a more uniformed variation of the criterion from the 1st to the 5th critical 
contact points. These observations suggest that the influence of μa on fatigue damage
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Fig. 7 Influence of μa on the SWT criterion (σSWT—left charts) and the wire stress amplitude 
(σa—right charts) variation for all Yb-T combinations at the five most critical contact points

prediction may be greater for a fatigue criterion that accounts for the mean stress 
(σ m). 

3.3 Coefficient of Friction Interrelations with Loading 
Parameters 

This section examines the interrelations between the DOE factors. As highlighted 
in the previous characterization study [9], factor cross-influence analysis is more 
informative when considering the local loading at the critical contact points. Thus, 
first-order interrelation plots between μa and Yb are given at Fig. 8 for all T levels, 
with respect to the local loading conditions of the same critical wire-to-clamp contact 
point investigated in [9].

Figure 8 demonstrates a significant interactions between Yb and μa, for tangential 
contact loading (ΔQ) and slip (Δδ) variations. Similar interaction levels are also 
observed between factors T and μa, but in this case, for all local loading parameters. 
From Fig. 8 results, it can also be concluded that μa has a general influence on all 
local contact load and stress parameters, for most Yb-T combinations.
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a) 

b) 

c) 

x10-3 

x10-3 

x10-3 

Fig. 8 Two-Factor interrelations between Yb and μa for local loads and stresses at a critical contact 
point for a T = 15% RTS, b 25% RTS and c 35% RTS

3.4 Coefficient of Friction Influence on Local Loading 
Variation 

Local loading conditions of the critical contact point depicted in Fig. 8 is examined 
over a full bending cycle (i.e., ± Δβ). Figure 9 plots the variation of P, Q and σ 
obtained with μa = 0.7 and 1.1 at the mid-level tension T = 25% RTS.

From Fig. 9 a constant normal force (P) is noticed with μa = 0.7, while it varies 
moderately at higher μa level. The tangential force (Q) variation profile is more 
affected by μa, particularly as Yb increases. Meanwhile, the wire stress variation is 
essentially influenced in terms of the magnitudes of σ a and σ m, as shown in Fig. 8.
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b) 

Fig. 9 Critical point cyclic loading variation at T = 25% RTS with a μa = 0.7 and b μa = 1.1

4 Conclusion 

This study investigated the effect of the coefficient of friction (μa) on the conductor 
local loading conditions near the suspension clamp, based on FE models and a 
three-factor DOE including factors Yb, T and μa. Using wire stress and contact 
load mappings, along with detailed load variation analysis at a critical location, 
the study revealed the general influence of μa on all local solicitation parameters. 
Therefore, it appears crucial to carefully consider the chosen value of μa when 
modelling conductor-clamp assemblies, as it can directly affect conductor fatigue 
life estimations. 
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Numerical Characterization of Overhead 
Conductor Local Loading Conditions 
at Wire Contact Points in the Vicinity 
of Suspension Clamps 
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Abstract Wind-induced vibration is one of the main causes of overhead conductor 
fatigue, especially at the suspension points. These critical locations involve several 
inter-wire contact points prone to fretting damage due to conductor cyclic bending. 
Assessing the severity of these local loading conditions is therefore essential to better 
understand, predict, and prevent conductor failures. Available numerical models 
allow full 3D representations of conductor-clamp systems under cyclic bending, 
while considering all local contact interactions. Exploiting a recent finite element 
model based on an efficient beam-to-beam contact modelling strategy, this paper 
proposes a complete numerical characterization of conductor local loading condi-
tions in the vicinity of suspension clamp. The study considers an ACSR Bersfort 
conductor installed in a short-radius metallic suspension clamp and subjected to 
cyclic bending loads associated to Aeolian vibrations. Using a factorial design of 
experiments (DOE), the characterization considers two key factors: the bending 
amplitude (Yb) and the conductor axial tension (T ), each at three levels. From the 
DOE simulation results, the analyses highlight the parameter interactions with respect 
to the local loading conditions: wire mean (σ m) and alternating (σ a) bulk stresses, 
normal (P) and tangential (Q) inter-wire contact forces and the contact slip (δ). 
Results from the DOE thus provide a global and detailed description of the relation-
ships between the external loads and local loading conditions being at the origin of 
conductor fretting fatigue damage. Under given Yb and T conditions, the proposed 
characterization therefore allows the identification of the critical contact points and 
their associated local solicitation for further in-depth and targeted investigations. 
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1 Introduction 

Overhead power lines are aging in many countries and this is becoming a major 
concern for Transmission System Operators (TSO). Assessing conductor residual 
strength and life is therefore crucial for in order to prioritize maintenance and 
replacement operations on electrical transmission networks. 

Exposed to wind-induced vibrations, overhead conductor degradation mostly 
originates from cyclic bending loads, producing fretting fatigue damage at inter-wire 
contacts near the suspension clamps (Fig. 1) [1]. These mechanisms are complex 
and difficult to quantify, especially considering the stranded geometry involving 
hundreds of inter-wire contacts in the clamped region. Therefore, conductor fatigue 
is commonly assessed indirectly from the axial tension (T ) and the double-bending 
amplitude Yb, measured at 89 mm from Last Point of Contact (LPC) at the clamp 
exit. Interpreted with the well-known Poffenberger-Swart (P-S) relation (Eq. 1), an 
idealized stress amplitude (σ a) can be estimated. 

σa = dc Ec(T/4E I  ) 
e− 

√
T/E I  z  − 1 + √

T/E I  z  
Yb (1) 

In Eq. 1, dc, Ec, EI and z refer to the wire diameter and its elastic modulus, the 
conductor minimum bending stiffness and the axial position from the LPC (i.e. 89 
mm), respectively. Despite the P-S simplifications, it correlates well with experi-
mental fatigue test data and thus, represents a useful indicator to assess the vibration 
severity. However, it does not provide any direct and detailed information related to 
the inter-wire local loadings leading to conductor fatigue damage. Indeed, depending 
on the wire normal (P) and tangential (Q) contact loads, combined to bulk static (σ m) 
and dynamic (σ a) stresses, fretting-induced damage may vary from fatigue cracking 
to surface wear. 

Thus, to better describe and quantify conductor fretting, detailed Finite Element 
(FE) models of wire-to-wire [2] and wire-to-clamp [3] contacts are proposed in the 
literature. These models provide complete stress field descriptions at the contact 
interfaces from local loading inputs (e.g. P, Q, σ m and σ a), allowing then refined 
interpretations of the damaging mechanisms. However, the prediction quality of these
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LOCAL LOADING AT 
INTERWIRE CONTACTS 

CYCLIC BENDING 
LOADS 

FRETTING DAMAGE AT 
INTERWIRE CONTACTS 

σa , σm 

Fig. 1 Overhead conductor wind-induced fretting damage at suspension clamps 
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models highly depends on the representativeness of the considered local loading 
conditions, for a given conductor-clamp geometry and load configuration. 

Precise estimations of local loading conditions are usually limited with available 
analytical and semi-analytical approaches. Due to the advances in numerical analysis, 
recent studies are now proposing full 3D conductor-clamp FE models simulating the 
effects of wind-induced cyclic bending, while including all wire contact interactions 
[4–6]. The local loading conditions (i.e. σ a, σ m, P, Q and δ) can therefore be extracted 
from simulation results at any of the inter-wire interfaces. 

Towards a better understanding of the relations between the contact points condi-
tions under given conductor static (T ) and dynamic (Yb) solicitations, this work 
proposes a numerical characterization of wire local loading in the vicinity of suspen-
sion clamp. The study is based on the application of a conductor-clamp FE model 
developed by Lalonde et al. [5] and considering the ACSR Bersfort conductor case 
study. The correlations between conductor local loading distributions and external 
loads (i.e. Yb, T ) are analyzed through a factorial DOE. 

2 Numerical Design of Experiments 

2.1 Conductor-Clamp Configuration 

The characterization study is conducted on an ACSR Bersfort mounted in a short-
radius metallic suspension clamp, schematically represented in Fig. 2. Additional 
geometric information on this conductor-clamp configuration can be found in [7]. 

Figure 2 also indicates the LPC reference location as per observations in [8]. The 
ACSR Bersfort stranding configuration is given in Table 1 with ni, di, αi, Ei and
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LAYER 3 INNER CONTACTS 
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Fig. 2 ACSR Bersfort conductor-clamp configuration and inter-wire contacts identification 
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Table 1 ACSR* Bersfort stranding configuration 

Layer ni di (mm) αi (°) Ei (GPa) νi 

Core 1 3.32 – 207 (steel) 0.3 

1 6 3.32 6.2 207 (steel) 0.3 

2 10 4.27 9.7 69 (alu.) 0.33 

3 16 4.27 10.7 69 (alu.) 0.33 

4 22 4.27 11.7 69 (alu.) 0.33 

*ACSR: Aluminium Conductor Steel Reinforced 

Table 2 DOE factors and 
levels Levels Factors 

T (% RTS) Yb (mm) 

1 15 0.3 

2 25 0.5 

3 35 0.7 

ν i referring to the layer i wire number, the wire diameter, the lay angle, the elastic 
modulus and the Poisson ratio. This conductor has a Rated Tensile Strength (RTS) 
of 180.1 kN. 

2.2 DOE Factors and Levels 

The proposed factorial design includes two important factors related to conductor 
fatigue: 1—the conductor axial tension T and 2—the double-bending amplitude Yb. 
Each factor is considered at 3 levels, whose values are presented in Table 2. 

Axial tensions are expressed in percentage of the conductor RTS and covers the 
usual range of tensions seen in overhead power lines [7]. On the other hand, the 
Yb levels were defined to ensure they correspond to a vibration intensity sufficient 
to produce fatigue damage. Thus, Yb level 1 was set just above the ACSR Bersfort 
endurance limit estimated between 0.20 and 0.25 mm, using the P.S. formulation 
(Eq. 1) as per the methodology defined in [7]. The other two Yb levels correspond to 
the amplitudes used in fatigue tests published on the same conductor [9]. Therefore, 
the factorial design needs 32 simulations to cover all factor combinations. 

2.3 Conductor-Clamp Finite Element Model 

FE modelling approach. Numerical simulations are performed using a 3D 
conductor-clamp FE modelling strategy developed by Lalonde et al. [5, 10]. The
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formulation and validation of the approach are fully detailed in these references. 
Therefore, only basic principles are recalled here. 

Implemented within the commercial FE software Ansys®, the approach is based 
on an effective use of 3-nodes beam elements to model each conductor wire, while 
the clamp geometry is represented with rigid quadratic surface elements (Fig. 3). 
Beam elements are 10 mm long and surface elements have an average size of 2.5 
mm. 

Wire lateral and radial contact interactions are handled with a 3D line-to-line 
algorithm using master–slave contact pairs. Similarly, a 3D line-to-surface algorithm 
handles wire-to-clamp contacts. In all cases, frictional effects are considered with 
the Coulomb law and an adhesion friction coefficient (μa) [10]. In the present model, 
μa = 0.9 for aluminium-aluminium contacts [4], whereas values of 0.3 and 0.5 are 
used for steel-steel and aluminium-steel contacts [5], respectively. 

Boundary conditions and load application. Conductor loads and constraints are 
induced at both of its extremities, modelled as rigid surfaces through node DOF 
coupling [5]. Using a pilot node on each rigid clamp surface, the clamp body is fully 
constraint, while the keeper has only its vertical translation allowed. 

Conductor static and dynamic loads, shown in Fig. 4, are induced within a 
multiple-step process in quasi-static mode. First, the axial tension T is applied at 
both conductor ends with a static sag angle (β0), set to 5° in the present study. 
Once force T is fully applied at β0, the conductor passive end is fixed in place and 
a clamping force Fc of 74.8 kN is induced to the keeper, reproducing a clamping 
torque of 47.5 Nm. When Fc is reached, the keeper surface is locked in place.

The next load steps are related to the dynamic loading induced through a ± Δβ 
variation of T application angle, from its static position β0. The angle variation Δβ 
is determined iteratively to produce the desired Yb bending amplitude. In order to

RIGID SURFACE 
ELEMENTS 

di 

3 NODES BEAM 
ELEMENT 

Fig. 3 Conductor-clamp FE model 
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Fig. 4 Conductor-clamp external load configuration

fully capture the local loading evolution during cyclic bending, each angle variation 
(Δβ) is applied within 20 load increments. 

3 DOE Response Analysis 

From DOE simulation results, the wire local loading conditions are analyzed through 
all inter-wire contacts. The analysis focuses on the clamped region, including contact 
points located between 0 and 100 mm from the clamp center, along the conductor 
axis. 

3.1 Local Loading Distribution 

To provide a global perspective on the local loading severity, the wires stress ampli-
tude (σ a) distributions are analyzed first. Stress amplitudes values (σ a) are thus 
retrieved from FE results at each wire contact points and mapped onto each interlayer 
interfaces (see contact identifications in Fig. 1), using a layout similar to [5, 11]. 

The maps also include the contact points statuses according to four state condi-
tions: sticking, sliding, slipping (i.e. partial relative displacement) and no contact. 
Contact statuses are established based on the computed normal (P) and tangential (Q) 
forces. Sticking condition is detected for |Q| ≤ μaP, sliding when |Q| >  μaP and no 
contact for P = 0. Slipping is indirectly determined for contact points experiencing 
a status change from sticking to sliding over a full bending load cycle (i.e., ± Δβ). 

Figures 5 and 6 present mappings obtained for Yb = 0.3 and 0.7 mm, at T = 
15% RTS and T = 35% respectively. To identify the critical contact points, stress 
distributions are also interpreted with the stress-based Smith–Watson–Topper (σ SWT ) 
criterion (Eq. 2), recently applied in conductor fatigue analyses [12].

σSW T  =
/[σmax ] ·  σa =

/[σm + σa] ·  σa (2) 

In Eq. 2, the Macauley brackets [] are defined as [x] =  (x + |x |)/2. SWT is thus 
accounting for the mean stress effect, but also predicts no damage when σ max is
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Fig. 5 Wire stress amplitude (σa) at (a) layer 4 outer contacts with clamp surface, (b) layer 4 inner 
contacts with layer 3, (c) layer 3 outer contacts with layer 4 and (d) layer 3 inner contacts with layer 
2, for T = 15% RTS with Yb = 0.3 mm (left charts) and 0.7 mm (right charts)

negative. The latter is not reflecting the observations from [13] revealing a majority of 
wire failures underneath the conductor, where mean stresses are mainly compressive. 

Therefore, to account for the damage on the bottom side, σ m is set to 0 in Eq.  2 for 
σ m ≤ 0, thus assuming no damage contribution for compressive mean stresses. Based 
on this adapted SWT evaluation, the ten (10) most critical contact points having the 
highest σ SWT values are ranked and circled in red in Figs. 5 and 6. 

The mappings first reveal maximum stress amplitudes (σ a) always located at outer 
contact points of the external layer, on the bottom side near the LPC. It should be 
noted the obtained LPCs in Figs. 5, 6 are not matching exactly the reference value due
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Fig. 6 Wire stress amplitude (σa) at  a layer 4 outer contacts with clamp surface, b layer 4 inner 
contacts with layer 3, c layer 3 outer contacts with layer 4 and d layer 3 inner contacts with layer 
2, for T = 35% RTS with Yb = 0.3 mm (left charts) and 0.7 mm (right charts)

to slight load differences with [8] and probable imprecisions on LPC measurements 
[5]. The vibration amplitude (Yb) also contributes to important σ a increases in the 
high stress region, but also to contact status change from sticking to slipping near 
the KE and LPC. The Yb effect on contact statuses is also seen at contact points 
inward, with more slipping and sliding contact points on layer 3 as Yb increases. 
This observation is amplified for lower tensions (T ) levels. The axial tension (T ) 
also influences the wire-to-clamp contact distribution. Contact points with the clamp 
body are extending further away from the clamp center at T = 35% RTS, while it is 
the opposite for contact points with the clamp keeper.
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Regarding the σ SWT evaluation, critical points are essentially located near the 
conductor top and bottom region. Load configurations at T = 15% RTS led to critical 
point distributions more dispersed through layer interfaces, either for outer and inner 
contact points. While at T = 35%, critical points are concentrated on the outer 
contacts near the KE and LPC. These predictions are in general agreement with 
the experimental wire failure observations [13]. However, the most critical point is 
always predicted at near the KE at the conductor top, which differs from the 1st 
wire break locations observed at the bottom during fatigue tests in [13]. The SWT 
criterion not accounting directly for the contact stresses induced by loads P and ΔQ, 
may explains this difference. 

3.2 Factor Interrelations 

DOE factors interrelations are studied in this section to better understand their 
combined influence on local loading conditions. 

Interrelations based on averaged local loading. To first interpret Yb and T global 
effects, Fig. 7 presents the first-order interactions using averaged local loads values, 
computed over all contact points within the aforementioned 0–100 mm zone. 

Pmax is the maximum normal contact force, ΔQ the tangential contact force varia-
tion and Δδ the contact relative displacement variation. Figure 7 reveals practically no 
influence of Yb on normal contact forces (P), being essentially driven by T. However, 
Yb has a direct effect on the tangential contact force (ΔQ), while the influence is 
lower for T, although it slightly increases at higher deflection amplitudes. The more 
significant Yb-T interaction is observed with the relative displacement (Δδ). 

Interrelations based on critical point local loading. As factors interrelations may 
be attenuated from averaged values, Fig. 8 repeats the same interaction analysis, but

x10-3 

Fig. 7 Factor interrelations for averaged local loads 
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for local loads and stresses at critical contact point #7 in Fig. 5, for  Yb = 0.7 mm. 
Wire stress amplitude (σ a) and mean stress (σ m) are also included in the analysis. 
At the critical contact point level, Fig. 8 shows an influence of both factors on all 
local loads and stresses. Also, Yb-T interactions is noticed for all loading parameters, 
although it is more pronounced for ΔQ and Δδ. 

Local loading variation at critical contact point. The conductor-clamp FE model 
also allowed full descriptions of contact point loading history, useful for in-depth 
analysis of fretting damage analysis. Figure 9 thus presents the local loading variation 
at the contact point illustrated in Fig. 8, for all DOE combinations. 

Figure 9 first reveals an almost constant normal contact force (P) through all 
the load cycle, especially at higher tensions (T ). On the other hand, the tangential

x10-3 

Fig. 8 Factor interrelations for local loads and stresses at a critical contact point #7 
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Fig. 9 Local loading variation at critical point for one bending cycle at a T = 15% RTS, b 25% 
RTS and c 35% RTS 



Numerical Characterization of Overhead Conductor Local Loading … 337

load spectrum varies considerably from one factor combination to another. Finally, 
the wire stress variation at this contact point appears to stay in phase with the T 
application angle cycle ± Δβ. This detailed local loading description, available for 
all contacts, could therefore be very useful for in-depth contact stress analysis with 
refined FE wire models [2, 3]. 

4 Conclusion 

This study proposed a numerical characterization of the local loading conditions 
at contact points, responsible for conductor damage. Using a factorial design, the 
investigation depicted the influence of two major parameters in conductor fatigue: 
Yb and T. 

Distribution mappings first exposed the combined wire stresses and contact 
statuses distribution in an effective representation of the local loading conditions. 
With an adapted SWT criterion, the mappings allow a precise identification and 
tracking of the critical contacts points locations. Globally in-line with experimental 
observations, the prediction could be refined by including the contact stress effects. 

The two-factor interaction plots also showed the interrelations between Yb and T 
with respect to the local loading, which is especially significant at critical contacts 
points. Being limited to only two factors, the local loading characterization could be 
enriched from sensitivity analysis to other conductor-clamp design, load or material 
parameters. 
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General Modelling of Cable Vibrations 
Using Data Extracted from Physical 
Simulation 
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Abstract A methodology has been put in place to allow simulation data to be corre-
lated and used to model cable vibrations. Computational Fluid Dynamics (CFD) was 
used to create a database of lift force data on cylinders subjected to forced vibrations 
at a range of amplitudes and frequencies. Linear regression was found to be suitable 
for the correlation of the lift force with respect to the local cylinder displacement and 
velocity when lock-in occurs. The approach has been tested on a cylinder attached 
to a mass-spring-damper system and compared to fluid-structure interaction simula-
tions that use CFD. After this, the correlated data was used to demonstrate lock-in of 
a cable vibration, where the classical sinusoidal lift did not lock-in. This approach 
will allow for a more realistic simulation tool for cable vibrations to be developed, 
while maintaining a low computational cost relative to the use of CFD. Having such 
a tool will make study of cable vibrations under a wide range of conditions simpler, 
which would include the role of multi-mode vibrations and the transient growth of 
vibrations. 
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1 Introduction 

Overhead lines are subject to vibrations that are caused by an interaction with the 
wind [ 4]. The case of a vibrating string in a constant wind flow is well understood, 
however, the real case is not like this as the wind varies in time and space due 
to turbulence and the topography of the surrounding environment. Real cables are 
also more complicated with non-constant rigidity and difficulties in quantifying the 
damping. A step in the right direction would therefore be to experiment with various 
wind profiles and structure models to try and improve understanding of the effect on 
the cable vibrations. The problem is that using Computational Fluid Dynamics (CFD) 
tools make this a costly task due to the long running time and the potential number of 
different configurations [ 2, 13]. Previous attempts to replace the CFD models with 
wake oscillators have not been fruitful in the sense that the cable vibrations did not 
grow realistically [ 5], so it would be good to search for an alternative that sufficiently 
captures the fluid-structure interaction. 

In order to model the interaction, the hypothesis could be made that the lift force 
can be correlated with a certain number of local characteristics at a given point along 
the span, for example, the local cable displacement, speed and acceleration. The data 
required to make this empirical correlation comes from simulations of cylinders that 
are forced to oscillate in a wind flow at a range of frequencies and amplitudes [ 7], 
where the relationship between the fluid forces and the structure movement is learnt 
from these simulations. 

This work forms part of the efforts by Rte (Réseau de transport d’électricité) to 
develop prediction tools for the ageing of conductor cables. It is thought that the 
ageing is largely due to the vibrations induced by the wind, but the variability of 
the weather conditions makes it difficult to quantify the likely full history of cable 
vibrations. The ultimate goal of this work is to make this possible. 

In this article, first the methodology for the generation of the data using forced 
vibration CFD simulations is described. Then a linear regression that allows the lift 
force to be found from the cable displacement history is put in place. Finally, the 
approach is tested in the context of a mass-spring-damper and cable vibrations. 

2 Methodology 

It is proposed that the fluid part of the fluid structure interaction is replaced by the 
linear regression of forced cylinder vibration data. An overview of the process is 
shown in Fig. 1. First, CFD analysis of forced cylinder vibrations yields lift and 
displacement data over a converged vibration cycle for a given vibration amplitude 
and frequency. Linear regression of this data is used to create a function that relates 
lift force to displacement which can then be used to replace the CFD simulation for 
modelling of a fluid structure interaction.
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Fig. 1 Methodology overview 

For the fluid flow, the incompressible Navier-Stokes equations are solved. The 
displacement of the cable is applied to the fluid flow using a moving reference frame 
attached to the rigid body [ 8, 13]. 

.∇ · u = 0 , (1) 

.
∂u
∂t

+ u · ∇u = −∇P + ∇ · σ + duS

dt
, (2) 

where . u is the velocity vector and .P is the pressure. For the moving frame, rotation 
is neglected and only translation with velocity .uS is considered. 

It has been shown that forced vibrations can be used to better understand the 
nature of free vibrations. This includes being able to find the free vibration amplitude 
[ 6, 7]. Here the cylinder displacement . ξ is vibrated in time . t following 

.ξ(t) = A sin (2π f t) , (3) 

where .A is the vibration amplitude and . f is the forcing frequency. Forced and 
free vibrations at .Re = 100 have already been investigated by [ 6], where the same 
Reynolds number is used here to simplify the generation of the data, and their results 
correspond well with those found here. 

A mass-spring-damper model will be used for comparison of the linear regression 
and the CFD. The mass-spring-damper is defined as 

.ml
d2ξ

dt2
+ c

dξ

dt
+ kξ = Fy(t) , (4) 

where .ml is the mass per unit length of the cylinder, . c is the damping coefficient 
and . k is the spring stiffness. The natural frequency of (4) is . fN = 1

2

√
k/ml and the 

damping ratio is .ζ = c/2
√
mlk. In this respect, the non-dimensional groups that are 

important are, respectively, the normalised amplitude, the normalised velocity and 
the normalised wavelength
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.A∗ = A

d
, U ∗ = U

fNd
, λ∗ = U

f d
, (5) 

where. d is the cylinder diameter,.U is the free stream velocity and. f is the oscillation 
frequency. 

A laminar cylinder flow does not depend on the use of turbulence modelling 
and two-dimensional flow can be assumed. Hence, all simulations are made on a 
two-dimensional mesh with 10,359 cells, where a smooth cylinder of diameter . d is 
placed at the centre of a domain .26d in length and .22d in width. The inlet velocity 
is .U while symmetry conditions are used on the lateral boundaries and a Neumann 
boundary condition is applied at the exit. Grading is used to place more cells near the 
cylinder surface in a circular refined zone of radius.

√
9.68d, where the maximum wall 

coordinate.y+
max = 1.6 at the first grid point. More cells are placed in the wake region 

to capture the re-circulation zone that can influence the flow around the cylinder 
itself [ 12]. The Strouhal number was measured to be 0.167, which corresponds to the 
value found in the literature. The peak skin-friction coefficient is .0.41 at .49◦, which 
is about 3% less than that found by [ 10], the stagnation pressure coefficient is . Cp =
(p − p∞)/( 12ρU

2) = 1.05 and the base pressure coefficient is 8% less than [ 10] at  
.Cp = −0.681. 

The fluid exerts a drag and lift force on the cylinder which here will be presented in 
the form of drag.Cd = 2Fx/

1
2ρU

2Ac and lift.Cl = 2Fy/
1
2ρU

2Ac coefficients, where 
.Ac is the frontal area of the cylinder. For the fixed cylinder test at .Re = 100, mean 
.Cd = 1.39 and max.Cl = 0.34 ([ 9] found respectively 1.37 and 0.34 for.Cd and. Cl). 

In future, Large Eddy Simulation (LES) could be used if the approach is to be 
applied to more realistic Reynolds numbers [ 3]. 

3 Linear Regression 

A linear regression of .Cl = f (ξ, ξ̇), where a dot denotes a derivative with respect to 
time, could be used to replace the CFD calculation, with the benefit that calculation 
time will be significantly reduced. 

The simulation code that used the Navier-Stokes equations to resolve the fluid 
flow for forced oscillations (3) was run for fixed values of .A∗ and . λ∗. Suffi-
cient time was given to allow the flow to fully develop and then a sample over a 
complete vibration cycle was taken, where the position and velocity of the body 
.ξ(ti ), ξ̇(ti ) were extracted, as well as the lift coefficient .Cl(ti ). Passing this data to 
the scikit-learn library, we looked for a linear relation that is able to predict 
the lift coefficient from the position and velocity of the body: 

.aopt, bopt = argmina,b

NΣ

i=1

||Cl(ti ) − aξ(ti ) − bξ̇(ti )||2.
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Fig. 2 Example linear regression of lift coefficient for range of .A∗ at .λ∗ = 6. Left plot show  
.Cl = f (ξ) and right plot shows.Cl = f (ξ̇). Solid lines are selected forced CFD results and dashed 
lines are the corresponding linear regressions 

Afterwards, the .C̃l(t) = aoptξ(t) + boptξ̇(t) relationship has been used in the mass-
damper-spring model (4) and a cable model [ 4] to predict the actual motion of the 
body. 

The forced vibration simulations provide a database that can be used to find regres-
sions over the .(A∗,λ∗) space. A range of example linear regressions are shown in 
Fig. 2, which demonstrates how a close match with the simulation data was obtained 
for low .A∗ values. At higher values of .A∗, the lift-displacement paths deviate from 
the elliptic form observed at low vibration amplitude, meaning that the chosen linear 
regression is less accurate. 

The example given in Fig. 2 is only for a single .λ∗ value. As with .A∗, the phase 
angle difference between the cylinder movement and the lift force also alters with 
. λ∗, which makes collapse over the whole space using linear regression difficult. 
Instead, to prove the concept behind this approach, the regression coefficients for 
all discrete values in the .(A∗,λ∗) space were stored, where the nearest point can be 
found and applied to the simulation. In future work, it would be good to investigate the 
possibility of a global correlation, where the increased flexibility in the application 
of the approach would be the principal advantage of such a development. 

The linear regression does not work when lock-in does not occur. This is because 
the vortex shedding frequency does not correspond to the vibration frequency and the 
loops shown in Fig. 2 are not closed. The decision over whether lock-in has occurred 
was made using the mean squared error (MSE) of the linear regression. This can 
be done because the MSE is high when the lift force and the cylinder motion are 
decorrelated, as shown in Fig. 3. The threshold of .MSE < 0.03 was chosen. If there 
is no lock-in, it is assumed that the overall effect is that no time mean energy passes
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Fig. 3 Mean squared error 
for all .(A∗,λ∗). Black line 
marks.MSE < 0.03, where  
lock-in threshold is applied 

between the wind and the cable, so the lift force is set to zero. More work needs to be 
done here because there will be lift forces due to the vortex shedding, which could 
be modelled using a fixed cylinder function [ 1]. 

The power input is important because this is what is responsible for the growth of 
the vibrations, but at certain.λ∗,U ∗ power input can also be negative. The structural 
dissipation will also remove energy. The power input can be found by multiplying 
the lift force .Fy by the velocity .∂ξ/∂t . Integrating over the cable length and finding 
the mean over a complete vibration cycle gives the mean power per cycle. The mean 
power from the forcing over a cycle is thus found from 

.Pforce = 1

t2 − t1

{ t2

t1

{ Lz

0
Fy

∂ξ

∂t
dzdt , (6) 

where. t1 and. t2 are. t at the beginning and end of a vibration cycle. The powers in the 
other terms of (4) can be calculated in a similar way and the sum total can be used 
to check that the calculated energy is well conserved. In Fig. 4, it can be seen that 
the power input is roughly the same for the forced CFD and the linear regression 
within the region of low MSE seen in Fig. 3. Outside, where there is no lock-in, 
the comparison between the CFD and linear regression breaks down because the 
relationship between the lift force and displacement is no longer cyclic. Hence, the 
differences between the linear regression and the forced simulations seen at high. A∗
are not seen in this statistic, meaning that vibration growth for the linear regression 
may be reasonably correct at high amplitudes.
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Fig. 4 Power input from the 
forced CFD simulations (top) 
and the linear regression 
(bottom). Only positive 
power inputs are retained 

4 Cylinder Flow Vibrations Using Linear Regression 

To demonstrate the feasibility of this approach, example simulations have been run 
for a mass-spring-damper (MSD) and a comparison is made with results under the 
same conditions for CFD of a cylinder coupled to a MSD system (4). Secondly, 
the linear regression has been implemented into existing cable vibration software to 
demonstrate the improvement with respect to the classical fixed-cylinder lift coeffi-
cient [ 1]. 

In Fig. 5, a comparison is made between CFD and the linear regression. The 
Reynolds number is 100, mass ratio .m∗ = ml/ρd2 = 2000, which is typical for 
overhead lines, and the structural damping .ζ = 0.01%. Simulations are run for a 
range of .λ∗ because it is known that the classical approach does not work when the 
frequencies of the structure and the fixed cylinder vortex shedding are different. In 
this case, where.Re = 100,.U ∗ = 6 is where the resonance would occur without lock-
in. Depending on the vibration amplitude, the vortex shedding frequency is adjusted 
at higher values of .U ∗ to widen the possibility of resonance. This is what is seen 
in Fig. 5, where growth is observed in all cases but the CFD at .U ∗ = 7. The power 
input at .U ∗ = 7 is positive, but the structural damping will have a greater effect. 

There is growth in all the linear regression simulations, demonstrating that this 
approach tends to overestimate the vibration amplitude, and that some effect may be 
missing. This may be a result of finite time to make changes in the vortex shedding 
as the vibration amplitude increases, which is not captured by the linear regression. 
However, the growth trend observed for the linear regression is roughly the same as 
for the CFD. Note that, the fixed cylinder lift coefficient would have given no growth 
in the .U ∗ = 6.5 and .7.0 cases. 

To demonstrate this approach in the context of overhead line cable vibrations, 
the linear regression has been implemented into software developed to solve cable



346 J. A. Redford et al.

Fig. 5 Comparison of CFD (left) with linear regression (right) when applied to cylinder attached 
to a mass-spring-damper
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Fig. 6 Cable displacement at the mid-span location. Fixed cylinder law (left) and linear regression 
(right) applied to cable vibrations, strip theory for string vibrations with 7 strips (bottom) 

vibrations [ 4]. The results shown in Fig. 6 are both for a short cable that should allow 
for the mode 1 vibration to be excited. The cable parameters are mass per unit length 
.m = 1.57 kg/m, diameter .d = 31 mm, stiffness .E A = 37.6MN, length .L = 5m2, 
tension.H = 37 kN, while the wind is at .3m/s. The Bishop & Hassan model [ 1] has 
a Strouhal number of 0.166 and and a lift coefficient vibration amplitude.Cl0 = 0.6. 

An initial vibration amplitude of .A∗ = 0.1 is imposed. The resulting frequency 
is about 15.3 Hz, which gives .U ∗ = 6.33 where a lock-in would be expected at 
most amplitudes for the real flow. However, this does not correspond to the Strouhal 
frequency where .U ∗ = 6 meaning that in Fig. 6 Bishop & Hassan does not have 
a growing vibration amplitude that would result from the lock-in effect. There is 
some beating, that suggests the resonance is at a frequency that is not too far away. 
However, the linear regression vibrations are growing, which suggests that lock-in 
has occurred. Also, Fig. 6 bottom shows a strip theory simulation of a simple string 
(i.e. .E A = 0) which has growth that compares well with the linear regression. In 
future, the stiffness term will be added to allow direct comparisons with the linear 
regression model.



348 J. A. Redford et al.

5 Conclusion 

It has been demonstrated that linear regression of fluid simulation data can be used 
to replace the fluid simulation itself when simulating a fluid-structure interaction. 
This will reduce the time to run these problems from hours to minutes and the 
advantages of this are clear for the creation of a simulator that allows for a wide 
range of parameters and configurations to be investigated. 

The results shown here are from a preliminary implementation of the approach 
and more work is required. Improvement may be possible for the linear regression 
itself, where it may be possible to capture the effect of the amplitude and frequency 
in the regression, instead of having a discrete range of regressions. 

The use of converged cycles means that the details of how the system changes 
when the amplitude or frequency varies are not included, however, the vibrations 
grow in time due to the potential energy input. The effect of an evolving amplitude 
should be investigated, as it may be possible that there is a delay in the changing 
dynamics of the vortex shedding, which could be responsible for the over-prediction 
of the vibration amplitude by the linear regression. 

When no lock-in occurs, there will still be a lift force that will correspond to the 
fixed cylinder case. At the moment, the lift is treated as zero in this case, but adding 
this effect consistently will improve the realism of the approach. It is also important 
to consider small and zero amplitude vibrations, as these would return a zero force 
in the current approach. 

Acknowledgements The computations for this work were run on the Simlab Cluster at the Uni-
versity Mohammed VI Polytechnique (UM6P) in Morocco. 
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Parametric Dynamic Modeling 
of Cable-Driven Parallel Manipulators 

Andrea Arena , Erika Ottaviano , and Vincenzo Gattulli 

Abstract A two-dimensional parametric model for the study of the nonlinear 
dynamic response of cable-driven parallel manipulators is presented in this work. 
The model considers the distributed dynamical properties a generic number . n of 
cables undergoing time-varying length. The cable equations of motion are obtained 
via a lagrangian formulation and the equations providing the connectivity between 
the end-effector and the cables are derived analytically; finally, the balance of the 
linear and angular momentum of the end-effector is enforced. The partial differential 
equations of motion of the system are reduced to a set of ordinary differential equa-
tions through a discretization procedure based on admissible trial functions, so as to 
couple the latter equations with the equations of motion of the end-effector. Finally. 
the direct dynamic problem is formulated and solved numerically for a selected 
case-study manipulator. 

Keywords Cable-driven manipulator · Distributed mass cable · Direct dynamics 

1 Introduction 

Cable-Driven Parallel Manipulators (CDPMs) can be defined as parallel robots in 
which legs are replaced with extensible cables that allow to cover larger workspaces 
(WS) if compared to classical parallel robots. Cables are wound in actuated drums 
(i.e., the winches) that can be placed at a fixed frame, and the end-effector EE can be 
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operated by controlling the cable lengths [ 13]. In the analysis and design of CDPMs, 
an aspect of great importance to be considered is related to the number of active 
cables and their arrangement. For this reason, CDPMs were classified into two main 
categories, namely, over-constrained and under-constrained robots, respectively. 

Since CDPMs have shown inherent advantages over conventional parallel robots, 
many applications were developed in the past and their use is continuously increasing. 
Cables are the main components of CDPMs; therefore, a deep understanding of 
their static and dynamic behaviors is fundamental to properly design these devices. 
However, the mechanical modeling of cables can be very challenging if considering 
both their distributed mass, elasticity, and damping properties [ 8, 12]. Within this 
context, richest dynamical models of elastic cables, including the bending and the 
torsional stiffness, were proposed in [ 2, 6] and the identification of the axial and 
bending stiffness in stay cables was also performed in [ 5], while the effects of the 
temperature in the elastic response of cable were investigated in [ 11]. Those models 
have found suitable applications in the study and the characterization of the static 
and the dynamic behavior of CDPMs. In particular, the Irvine cable model [ 8] was  
adopted, as first, to formulate and solve the kinetostatic problem of CDPMs for 
studying the effect of the cables sag [ 14, 18], while more sophisticated nonlinear 
models, including the three-dimensional description of the finite kinematics and the 
large deformation of elastic cables, were proposed in [ 10, 16, 17] to solve the direct 
and the inverse kinematic problems of CDPMs working in a 3D space. 

For what concerns the dynamics of CDPMs, in early studies, the distributed inertia 
and stiffness of cables were typically neglected since those were modeled via mass-
less, rigid, links able at moving the EE in space [ 15]. The vibrations of the moving 
platform of CDPMs with large workspaces were studied in [ 3, 4], where cables were 
modeled by including their distributed mass and axial stiffness and the equations 
of motion were solved by using different numerical techniques, i.e., by using finite 
element method and by means of the assumed-mode method, respectively. Within 
this context, the correct modeling of the cable stiffness and inertia plays a funda-
mental role and has significant effects both in the static and in the dynamic response 
of CDPMs, such as in the correct kinematic description of the motion, the EE posi-
tioning accuracy, the forces distribution in the cables, and in the vibration and the 
control of the robot [ 7, 9] .  

In the present paper, a parametric nonlinear dynamic model of CDPMs undergoing 
two-dimensional motion is presented and discussed. The equations governing the in-
plane dynamics of the CDPM are derived from a more general, three-dimensional, 
dynamic model formulated by the authors of this work and proposed in [ 1]. Finally. 
the solution of the direct dynamic problem is provided my means of a discretization 
procedure based on admissible trial functions.
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2 Parametric Modeling 

The model is formulated by considering a generic number . n of cables whose length 
is varied in time to move and to change the orientation of an end-effector (EE) 
mass in a two-dimensional (2D) space by means of prescribed trajectories. Finite 
displacements and rotations of the end-effector are accounted for to provide an exact 
geometric formulation of the cable dynamics, and the equations of motion are then 
derived via a Lagrangian formulation. 

2.1 Kinematics 

The variable. t and the cable arclength.si ∈ [0, Li (t)] (.i = 1, . . . , n) of the unstretched 
configuration are used to parametrize in time and space, respectively, the.i-th elastic 
cable. Here,.Li (t) represents the time-varying total unstretched length of the. i th cable. 
Moreover, at time . t , the minimum distance between the boundaries of the . i th cable 
is given by .li (t). The geometry and the kinematics of the system are described by 
considering. n fixed Cartesian frames having origin positioned at the boundary. si = 0
of the corresponding cable. The origins of the . n fixed frames are positioned in the 
frame.

(
ey, ez

)
, being.ez the gravity direction (positive upwards), and centered in the 

point.O1 of the first cable (i.e., at.s1 = 0), by the.2-by-. 1 position vector. xi = [yi zi ]T
(.i = 1, . . . , n); therefore, it turns out that .x1 ≡ 0, where . 0 is the null vector. The 
vector describing, in the fixed frame .

(
ey, ez

)
, the position of the point belonging to 

the end-effector and connected to the .i-th cable is 

.ri (t) = [(
r0i,y cos θ(t) − r0i,z sin θ(t)

) (
r0i,y sin θ(t) + r0i,z cos θ(t)

)]T
, (1) 

where .r0i,y and .r0i,z are the components of the position vector in the mass-fixed local 
axes .by(t) and.bz(t), respectively, centered in the EE center of mass .OM, while . θ(t)
is the EE rotation angle about the axis.ex ≡ bx orthogonal to the working plane. The 
vector .pi (si , t) = [

py,i (si , t) pz,i (si , t)
]T

is introduced to describe the position of 
the material point on the .i-th cable, and its components are defined in the .i-th fixed 
frame. The parameter . si represents the unstretched arclength of the .i-th cable. The 
stretch vector.ν i (si , t) = d

dsi
pi (si , t), is defined to describe the strain state of the.i-th 

cable and its norm can be calculated as:.νi (si , t) =
/(

dpy,i
dsi

)2 +
(
dpz,i
dsi

)2
. Finally, the 

axial direction tangent to the dynamic configuration of the .i-th cable is given by the 
unit vector as .ai (si , t) = ν i (si , t)/νi (si , t).
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2.2 Equations of Motion 

The equation of motion of the .i-th cable can be derived according to the first Euler 
law of motion by enforcing the balance of linear momentum and can be written, in 
vector-valued form, as 

.
d

dsi
ni (si , t) + fi (si , t) = ρAi

d2

dt2
pi (si , t) + ci

d

dt
pi (si , t), (i = 1, . . . , n), (2) 

where .fi (si , t) is the vector collecting the forces per unit length acting on the cable, 
.ni (si , t) is the axial force acting in the cable, while.ρAi is the mass per unit length of the 
.i-th cable, respectively. Moreover, the Rayleigh dissipation function is considered 
to model the damping and the damping coefficient .ci is  here assumed to be  . ci =
2 ζ

/
EAi ρAi/l20,1, where. ζ is the damping factor, . E is the Young’s modulus, and. l0,1

is the distance at time.t = 0 between the boundary points of the first cable. Equation 
(2) must satisfy the kinematic boundary conditions .pi (0, t) = 0, (i = 1, . . . , n) at 
.si = 0 for assigned initial conditions. Moreover, the following relationship 

.xi + pi (Li , t) − ri (t) = p1(L1, t) − r1(t), (i = 2, . . . , n), (3) 

which provides the compatibility condition ensuring that the material point at . si =
Li (t) of each cable is connected to the end-effector at the position .ri (t), must also  
hold. The balance of the linear and angular momentum of the end-effector mass . M
is provided by 

. −
nΣ

i=1

ni (Li , t) − Mg ez = M

[
d2

dt2
(
p1 − r1

)]

(s1=L1,t)

, (4) 

.

nΣ

i=1

[(
ni,y(Li , t)ri,y + ni,z(Li , t)ri,z

)
sin θ (5) 

−(
ni,z(Li , t)ri,y − ni,y(Li , t)ri,z

)
cos θ

]
= JM 

d2 

dt2 
θ(t), 

where .ni,y(Li , t) and .ni,z(Li , t) are the components of the axial force vector along 
.ey and . ez , respectively, calculated at .si = Li , while .JM is the EE mass moment of 
inertia with respect to the local axis . bx . 

Trajectory of the EE. The trajectory of the end-effector, including its orientation, 
can be described through the position of the center of mass, given by the vector.pM(t), 
and the rotation about the axis .bx given by the angle .θM(t). Therefore, the position 
of each connected point of the end-effector is given, in the fixed frame .

(
ey, ez

)
, by  

the vector .pM,i (t) whose expression can be calculated as: 

.pM,i (t) = pM(t) + ri (t) − xi , (i = 1, . . . , n), (6)
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where . ri (t) =
[(
r0i,y cos θM(t) − r0i,z sin θM(t)

) (
r0i,y sin θM(t) + r0i,z cos θM(t)

)]T

in Eq. (6). Hence, at time . t , the distance between the boundary points of the .i-th 
cable can be calculated as .li (t) = /

pM,i (t)TpM,i (t), (i = 1, . . . , n), whose norm 
.l0,i represents the distance between the boundaries of the . i th cable at time .t = 0. 

2.3 Nondimensional Form 

The distance.l0,1 is adopted as characteristic length while the characteristic frequency 

.ωc =
/
EA1/

(
ρA1 l20,1

)
is adopted to nondimensionalize the time, where .EA1 and 

.ρA1 are the axial stiffness and the mass per unit length of the first cable, respectively. 
Therefore, the following scalar and vector-valued nondimensional parameters can 
be introduced 

.

λ0,i = l0,i
l0,1

, x̄i = xi
l0,1

, r̄0i = r0i
l0,1

, r̄i = ri
l0,1

,

p̄M = pM
l0,1

, p̄i = pi
l0,1

, n̄i = ni
ρA1 ω2

c l
2
0,1

, (i = 1 . . . n).

(7) 

On the other hand, the nondimensional time .τ can be calculated as .τ = ωc t . 
Finally, the following nondimensional time-varying parameters are defined:. λi (τ ) =
li (τ )

l0,i
, Λi (τ ) = Li (τ )

li (τ )
. It is then suitable to introduce the nondimensional arclength 

.σ = si/Li (t), which varies into the nondimensional domain .[0, 1] for any time . τ ; 
therefore,.Li (τ ) = Λi (τ )λi (τ )l0,i . Due to the definition of. ωc, it turns out that the.i-th 
axial force is given in nondimensional form as .N̄i (σ, τ ) = κi

(
νi (σ, τ ) − 1

)
, where 

.κi = (EAi/EA1) is the nondimensional axial stiffness of the.i-th cable, defined as the 
ratio between the stiffness of the.i-th cable and the first cable. Further nondimensional 
parameters governing the dynamics of the system are: the ratio between the mass per 
unit length of the.i-th and the first cable.∂i = ρAi/ρA1, and the nondimensional damp-
ing coefficient.c̄i = ci/ (ρA1ωc). Moreover, the nondimensional distributed load, cal-
culated as.f̄i = −∂i γ ez , is here considered to be the only cable self-weight.−ρAi g ez , 
where .g = 9.81 m/s. 2 is the gravity acceleration and .γ = g/

(
ω2
c l0,1

)
. Furthermore, 

after casting in nondimensional form the kinematic constraint equations, also the 
nondimensional form of the vector-valued balance equations of the end-effector lin-
ear and angular momentum is derived, in which .μ = M/

(
ρA1 l0,1

)
represents the 

nondimensional EE mass and . J̄μ = JM
[
1/

(
ρA1 l30,1

)]
. Finally, in the present work, 

the inertial and the elastic characteristics (i.e.,.ρAi and.EAi , respectively) are assumed 
to be the same for all . n cables, therefore .κi = 1 and .∂i = 1, (.i = 1, . . . , n).
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2.4 Approximate Solution of the Equations of Motion 

The discretization technique based on the Galerkin method is adopted to reduce the 
space-dependence of the cable equations of motion so as to reduce them into a set 
of ordinary differential equations, in the nondimensional time variable . τ , coupled 
with the boundary equations of the balance of the end-effector linear and angular 
momentum. To this end,.m + 1 trial functions are chosen so as to satisfy the kinematic 
boundary conditions; therefore, the approximate solution of the equations of motion 
is given by the .2-by-. 1 vector .p̃i (σ, τ ) (.i = 1, . . . , n) expressed as the linear combi-
nation of the .m + 1 trial functions as . p̃i (σ, τ ) = qi,0(τ )σ + Σm

j=1 φi, j (σ)qi, j (τ ),

where.φi, j (σ) = diag
(
ϕ

(y)
i, j (σ),ϕ(z)

i, j (σ)
)
is the.i j-th.2-by-. 2 diagonal matrix collect-

ing the . j-th trial functions used to discretize the components of the .i-th solution 
vector along the directions . ey , and . ez , respectively. In particular, it is assumed that 
.ϕ

(y)
i, j (σ) = ϕ(z)

i, j (σ) = sin( j π σ). Finally, .qi,0 and .qi, j are the vectors collecting the 
unknown generalized coordinates. 

Due to the trial functions adopted in the discretization, the approximate solution 
satisfies the kinematic constraint at .σ = 0 (i.e., .pi (0, τ ) = 0), whereas, to satisfy 
the compatibility equation at .σ = 1, i.e., the nondimensional form of Eq. (3), the 
following relationship must hold:. qi,0(τ ) = q1,0(τ ) − r̄1 + r̄i − x̄i , (i = 2, . . . , n),

since .sin( j π σ) = 0 at .σ = 1 for all . j . Therefore, only one out of . n vectors . qi,0(τ )

is an effective set of unknown coordinates. 
By now substituting the approximate solution into the equations of motion one 

obtains the vector of the unbalanced residual of the.i-th equation of motion. By then 
collecting the . n residual vectors into the .2n-by-.2n diagonal matrix .H̃(σ, τ ), and 
by introducing the .2n-by-.m matrix .Φ(σ) collecting the sine functions, the matrix 
.H̃(σ, τ ) of unbalanced residual can be minimized by ensuring that it is orthogonal in 
the nondimensional domain.[0, 1], to the trial functions adopted in the discretization. 

3 Direct Approach to the Dynamic Problem 

The system dynamics are governed by .2(nm + 1) + 1 nonlinear balance equations 
of linear and angular momentum. On the other hand, the dynamic unknowns of the 
system are the .2(nm + 1) generalized coordinates collected in the .2-by-. 1 vectors 
.q1,0(τ ) and .qi, j (τ ) (.i = 1, . . . , n, and . j = 1, . . . ,m), and the angle .θ(τ ), respec-
tively. Nevertheless, the system is characterized by further . n unknown functions 
.Λi (τ ), providing the ratio, at time . τ , between the unstretched length .Li (τ ) and the 
distance.li (τ ) between the boundaries of the.i-th cable. These time-dependent param-
eters play a crucial role in the calculation of the solution of the equations of motion 
of the system. Depending on the solution approach, those can be treated as known, 
pre-assigned, system parameters, or, conversely, as unknown functions to be calcu-
lated as part of the solution of the dynamic problem, in the direct and in the inverse
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dynamic approach, respectively. Moreover, due to the generic number of cables that 
can be considered in the CDPM model, the latter may result to be under-, over-, or 
minimally-actuated, respectively. To classify the dynamic system, it is therefore con-
venient to introduce an additional parameter, namely, the degree of over-actuation. o
of the CDPM, defined as.o = n − d where. d is the number of degrees of freedom. In 
this work the interest is not devoted to the study of the dynamics of under-actuated 
CDPM; therefore, by neglecting any possible under-actuated and minimally-actuated 
configuration, one scenario of interest is considered: namely, the over-actuated case, 
when .o > 0. Moreover, only the direct approach will be investigated next. 

The direct approach consists in assigning a priori the values of the . n func-
tions .Λi (τ ) and solving the system balance equations in terms of the . 2(nm +
1) + 1 unknown generalized coordinates and rotations. Unfortunately, this solution 
approach can not ensure that the effective motion of the end-effector, together with 
its orientation, matches exactly the expected trajectory. In fact, within the direct 
dynamic approach, only the balance equations of linear and angular momentum are 
verified and no kinematic relationship, providing the exact positioning in space and 
time of the EE, is satisfied. In particular, the target trajectory of the. n connected points 
of the end-effector given by Eq. (6), is sought by assigning the. n functions.λi (τ ) and 
solving the equations deriving from the minimization of the unbalanced residual and 
the balance equations of the linear and angular momentum of the EE mass, together 
with the initial conditions.q1,0(0) = q0

1,0,.qi, j (0) = q0
i, j ,.θ(0) = θ0, and,.q̇1,0(0) = 0, 

.q̇i, j (0) = 0, .θ̇(0) = 0, which can be calculated by solving the nonlinear equilib-
rium at time .τ = 0. Moreover, at the initial time step the . n functions . λ0,i = λi (0)
(.i = 1, . . . , n) can be calculated through the assigned trajectory, while an appropriate 
strategy must be used to calculate the ratios.Λ0,i = Λi (0) (.i = 1, . . . , n). To this end, 
.Λ0,i can be determined by assuming the cables as massless linear springs and so as to 
satisfy the equilibrium equations of the end-effector mass as .

Σn
i=1{ni + μγ ez = 0, 

and.
Σn

i=1

(
r̄i ×{ni

)
= 0, where .{ni = κi

(
1 − Λ0,i

)
{a is the vector of the axial force 

of the.i-th massless spring directed as the unit vector.{a = p̄M,i (0)/λ0,i tangent to the 
distance between the.i-th cable boundary points at .τ = 0. Thus, to seek the solution 
of the direct dynamic problem, the. n functions.Λi (τ ) can be assumed constant to the 
value attained at .τ = 0, that is .Λi (τ ) = Λ0,i . Although, it should be mentioned that 
the latter equations may provide values of .Λ0,i ≥ 1 which imply that the. i th cable is 
pre-compressed or stress-free; such conditions are unrealistic and, in that case, values 
of .Λ0,i < 1 must be assigned. Moreover, when the system is over-actuated (that is, 
when .o > 0) the number of parameters .Λ0,i is larger than the number of DoF (i.e., 
.n > d); therefore, the solution depends on further . o parameters .Λ0,k (.k = 1, . . . , o) 
which can be assigned ranging in the positive real number space.IR+ considering any 
value lower than . 1. Finally, it is worth noting that, within the assumptions made to 
solve the direct problem, the parameters.Λi (τ ) (.i = 1, . . . , n) do not represent, any-
more, the effective cable aspect ratios, since the . i th effective distance .li (τ ) does not 
coincide with that prescribed through the . i th ratio .λi (τ ) and this is the consequence 
to the non-compatible solution calculated via direct approach.
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3.1 Numerical Simulations on a Case-Study CDPM 

The feasibility of the analytical model here developed is shown by performing numer-
ical simulations on a selected CDPM configuration. By referring to [ 3], an EE having 
mass .M = 20 kg and connected through a selected number . n of elastic cables is 
considered in the simulations, together with the mechanical parameters reported in 
the above-mentioned work. In particular, all cables are characterized by the mass 
per unit length .ρAi = 4.19 × 10−2 kg/m, the axial stiffness . E Ai = 150.36 × 103

N, (.i = 1, . . . , n). A case-study simulation is performed by considering a selected 
CDPM configuration so as to discuss the case of over-actuated CDPM by considering 
.n = 4 cables. Moreover, simulations are performed by assuming a weak dissipation 
function corresponding to a damping factor.ζ = 0.5%. The coordinates of the cables 
boundaries at .si = 0 are introduced in the model through the dimensional vector 
.xi (.i = 1, . . . , n). In particular: .x1 = [0 0]T, .x2 = [30 0]T, .x3 = [30 − 10]T, and 
.x4 = [0 − 10]T, where the components of the vectors are in meter (m). Finally, in 
the present case-study a square, having height of 1 m and the depth of 0.5 m, is 
considered. Therefore, the dimensional vectors describing the geometry of the end-
effector mass are (dimensions are in meters): .r01 = [−0.25 0.5]T, .r02 = [0.25 0.5]T, 
.r03 = [0.25 − 0.5]T, .r04 = [−0.25 − 0.5]T, respectively. Finally, the EE principal 
mass moment of inertia with respect to the axis .bx (t) is .JM = 2.08 kgm2. The end-
effector is demanded to track a circular trajectory in the vertical plane.(ey, ez) given 

by the vector .pM(t) = [(
20 + Δp cosΩ t

) (−5 + Δp sinΩ t
)]T

(components are 
in meters), where .Δp = 1.5 m and the angular velocity of the prescribed motion is 
assumed to be .Ω = 0.314 rad/s; therefore, the overall motion lasts 20 s. The orien-
tation of the end-effector is demanded to vary according to the following time-law 
.θM(t) = π

18 sinΩ t . Finally, at time.t = 0 the position in space of the end-effector is 
given by the vector .pM(0) = [21.5 − 5]T and its orientation by .θM(0) = 0. Simu-
lations were performed by considering 5 trial functions (i.e., .m = 4) to approximate 
the solution vector of each cable and the numerical computations were carried by 
implementing an in-house made code in the software Mathematica.© [ 19]. 

In Fig. 1a and b is shown the motion of the EE mass simulated via direct approach 
in terms of the component along .ey and .ez of the position vector of cable 1 at 
.s1 = L1(t), Fig.  1a, and its orientation .θ(t), Fig.  1 (. b). The effective motion (black 
solid lines) was compared with the ideal trajectory represented by the black dashed 
lines. As expected, the motion of the end-effector shows oscillations near the ideal 
trajectory and this is due to the choice to keep constant in time the ratios . Λi (t)
(.i = 1, . . . , 4) by assuming those equal to the corresponding values.Λ0,i , calculated 
as discussed in the previous paragraph. The consequent error in the positioning of 
the EE along the directions .ex and . ez , is reported in Fig. 1c and d, respectively. The 
parametric model developed in this work allowed also to recover the time histories 
of the axial forces along the cable arclength and to monitor the change in time of 
the cable lengths. Such results are shown in Fig. 2a and b where are reported, at 
time . t , the axial forces at .si = Li (t) and the time histories of the total stretched and 
unstretched lengths of the four cables, respectively.
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Fig. 1 Time history of the EE motion for a selected trajectory: a position vector . pM(t) and b 
orientation .θ(t). The dashed lines indicate the prescribed trajectory, while the solid black lines 
indicate the effective trajectory. Error in the positioning of the EE: component of . pi along .ex (c) 
and along.ez (d). Red, blue, green, orange, and black lines indicate the connection points of cables 
1, 2, 3, 4, and of the EE center of mass, respectively 

Fig. 2 Time history of the cable axial forces at.si = Li (t) (a), and of the unstretched length. Li (t)
(solid lines) versus the stretched length.Ls,i (t) (dashed lines) (b) for.i = 1, . . . , 4. Red, blue, green, 
orange, and black lines indicate the connection points of cables 1, 2, 3, 4, and of the EE center of 
mass, respectively
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4 Conclusions 

A parametric nonlinear dynamic model of CDPM undergoing two-dimensional 
motions was presented and discussed in this paper. Cables were modeled as elastic 
one-dimensional continua possessing distributed inertia and damping and charac-
terized by time-varying lengths for the exact positioning (and orientation) in time 
of a two-dimensional end-effector mass. Simulations were carried out on a selected 
case-study to show the feasibility of the analytical model to investigate the dynamic 
response of over-actuated CDPMs endowed with an oriented mass, via the direct 
approach. It was shown that is possible to appropriately describe the dynamics of 
CDPM by a low-order dynamical model which, thus, can be suitably adopted for 
designing optimal control strategies. 
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Catenary Solutions for Inextensible 
Cables: A Perturbation-Based 
High-Order Approximation 

Marco Lepidi 

Abstract Cable structures are structurally efficient and architecturally elegant solu-
tions for bearing and transferring loads across medium and large spans. The shape-
finding problem related to the equilibrium configuration of suspended cables may 
present some algorithmic hurdles, related to the coexistence of analytical catenary 
solutions with nonlinear compatibility equations that need to be solved numer-
ically. The catenary function describing the static equilibrium configuration for 
an inextensible cable suspended between displaceable supports is asymptotically 
expressed, using a proper perturbation method. The asymptotic configuration solu-
tion is described by an explicit polynomial function of the mechanical parameters 
and support displacements, automatically satisfying the compatibility condition. Fine 
approximation accuracy is achieved by extending the perturbation solution to high 
orders. 

Keywords Cable structures · Catenary · Taut string · Inclined shallow cable ·
Perturbation methods 

1 Introduction 

Owing to a successful combination of extreme lightness, high strength and fine 
parametric designability, cable structures are considered unparalleled mechanical 
solutions for covering medium and large spans. By exploiting the limitless possi-
bilities of combination with other structural elements (beams, arches, rings), cables 
are profitably used in a wide range of traditional and emerging engineering appli-
cations, including–among the others–suspension bridges, cable-stayed roofs, trans-
mission lines, guyed masts, rigging systems, tethered vehicles, parallel manipulators. 
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Over the past decades, numerous scientific publications and monographs have been 
focused on the topic, dealing with both the static and dynamic responses of horizontal 
or inclined cables [ 1– 4]. 

Searching for the equilibrium configuration assumed by a suspended cable hang-
ing between fixed supports at different levels can be regarded as a statically indetermi-
nate shape-finding problem. Starting in the seventeenth century, the topic attracted 
the interest of many outstanding scientists, including Galileo, d’Alembert, Euler, 
Huygens, Bernoulli and many others. Specifically, if the ideal hypothesis of axial 
indeformability is introduced, the curved configuration assumed by a perfectly flex-
ible cable under self-weight is mathematically described by a transcendental (non-
polynomial) function, whose map in the vertical (gravitational) plane is known as 
catenary curve [ 1]. Admitting elastic axial deformability determines a slightly dif-
ferent configurational curve, mathematically described by a distinct transcendental 
function, analytically expressible in cartesian parametric form, whose map is known 
as elastic catenary curve. Both configurational functions depend on the horizontal 
reaction at the supports, playing the role of hyperstatic unknown, to be numerically 
determined by solving nonlinear equations expressing the indeformability constraint 
(for the catenary), or a pair of coupled compatibility boundary conditions (for the 
elastic catenary). 

Within this well-established framework, mathematical difficulties in the analyti-
cal treatment of transcendental functions have inevitably led to the proliferation of 
approximate static solutions, mainly of the polynomial type (quadratic and cubic), 
which are more suitable for algebraic and differential manipulations. On the other 
hand, numerous studies have shown that the highest possible accuracy in the descrip-
tion of the static cable configuration, even if approximate, is a crucial aspect in direct 
and inverse mechanical problems, including–for instance–the assessment of the lin-
earized modal properties [ 5– 7], the description of nonlinear dynamic and aerody-
namic phenomena [ 8– 11], the evaluation of damage and temperature effects [ 12, 13], 
the performance of active control strategies [ 14, 15] and the reliability of identifi-
cation procedures [ 16, 17]. Based to these considerations, the present contribution 
proposes a perturbation-based high-order solution for the asymptotic approximation 
of the catenary function that characterizes the static response of an inextensible cable 
to self-weight. 

2 Static Equilibrium Problem 

The quasi-static equilibrium of a suspended cable can be governed by formulating the 
mechanical model of a one-dimensional non-polar continuum, embedded in a three-
dimensional space. The continuum is assumed homogeneous and linearly elastic, 
with natural length .L0 in the initial (undeformed and unstressed) configuration . C0. 
The kinematic hypotheses of perfectly flexibility in the transversal directions and 
axial indeformability are adopted. The latter can be introduced by ideally assuming 
infinite axial rigidity .(E A → ∞) in the elastic law .N = E A ε, so that identically



Catenary Solutions for Inextensible Cables … 365

null axial strain. ε may correspond to finite-valued axial tensions. N . In the absence of 
transversal (flexural and shear) rigidities, the axial tension is systematically required 
to be locally collinear to the equilibrium configuration. Therefore, searching the cable 
response under gravity loads consists in solving a geometric shape-finding problem, 
pursuing the unknown curvilinear configuration .CS satisfying the equilibrium in the 
vertical (gravitational) plane. 

2.1 Governing Equations and Catenary Solutions 

The suspended cable is supposed hanging between two distinct supports .SA and 
.SB , under the sole effect of uniform self-weight .w per unit natural length (Fig. 1). 
Cables hanging between supports at different levels are referred to as inclined cables. 
Inclined cables are characterized by a span length . L (horizontal inter-support dis-
tance) that differs from the chord length .Lc (inter-support distance) according to 
the relation .Lc = L secϑ , where . ϑ expresses the inclination angle. Assuming the 
horizontal abscissa .X as independent variable, the configurational function . Y (X)

has to be determined to locate the cartesian position of each cable point .P(X) in 
the vertical plane. The horizontal and vertical reactions .H and .V at the support .SA, 
together with the axial tension .N (X), are also unknown. 

The nonlinear coupled system of partial differential equations governing (i) the 
static equilibrium, (ii) the exact kinematics and (iii) the linear elastic law of the 
extensible cable can be manipulated to obtain–without approximations–the nonlin-
ear ordinary differential equation governing the static vertical equilibrium of the 
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Fig. 1 Static equilibrium configuration.CS of a suspended cable under self-weight
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infinitesimal cable element (see for instance [ 25]). Therefore, imposing the axial 
indeformability, the governing equation reads 

d2Y 

dX2 
= −  

w 
H

|
1 +

(
dY 

dX

02
|1/2 

(1) 

and is completely characterized by the constant coefficient .w/H affecting the right-
hand term. It is fundamental to remark that the horizontal reaction .H plays the role 
of hyperstatic unknown, to be determined a posteriori by imposing a compatibility 
condition, according to a solution strategy resembling the force method used to solve 
statically indeterminate elastic problems. 

The compatibility condition is imposed by requiring that the .H -dependent arc-
length .Le in the equilibrium configuration .CS equates the natural length .L0, to  
respect the cable inextensibility. Therefore, the compatibility equation is expressed 
as .Le = L0. An admissible solution can exist only if the natural length exceeds 
the inter-support distance .Lc. Thus, the admissibility (inextensibility) inequality 
.L0 > Lc holds for fixed supports. If the supports undergo differential settlements 
.ΔX = XB − XA and.ΔY = YB − YA (where.XA, YA and.XB, YB are displacements 
at supports.SA and.SB , respectively), the admissibility inequality becomes.L0 > Ld , 
where .Ld is the distance between the displaced supports. 

The governing equation can be expressed in a suited nondimensional form by 
introducing dimensionless independent and dependent variables, together with a 
minimal set of independent dimensionless parameters. To this purpose, by select-
ing the cable span . L as (known) reference length and the horizontal reaction .H as 
(unknown) reference force, the dimensionless quantities 

x = 
X 

L 
, y = 

Y 

L 
, xJ = 

X J 
L 

, yJ = 
YJ 

L 
, δ  = 

wL0 

8H 
, Λ  = 

L0 

L 
cos ϑ (2) 

are defined, where the subscript .J = A, B refers to the left and right support. The 
geometric parameter.Λ is known as aspect ratio and represents the ratio between the 
natural cable length and the inter-support distance.Lc. The fundamental parameter. δ
expresses (one eighth of) the ratio between the approximate cable weight . wL secϑ

and the approximate chord-aligned reaction .H secϑ . The nondimensional form of 
the governing equation reads 

y,, = −δ
|
1 + (

y,)2 |1/2 
(3) 

where the apex indicates differentiation with respect to the dimensionless coordinate 
. x , spanning the domain .D = [xA, 1 + xB]. The role of dimensionless hyperstatic 
unknown is assumed by the parameter. δ. The equation is complemented by boundary 
conditions .y(xA) = yA and .y(1 + xB) = tan ϑ + yB . 

The analytical solution of the nonlinear equation (3) is the well known catenary 
function.yb(x) = yA + sinh

(
4δ(x − xA)

)
sinh

(
Ψb − 4δ(x + xA)

)
/(4δ), where.Ψb is
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a constant depending on the boundary conditions. Among all the statically deter-
minable.δ-dependent catenary functions satisfying the static equilibrium, the unique 
geometrically compatible solution.ye(x)must be determined by assessing the hyper-
static unknown . δ a posteriori. To this aim, the compatibility condition .Λe = Λ0 is 
imposed, where .Λe = Le/Lc secϑ is the dimensionless .δ-dependent arc-length of 
the catenary curve described by the function .y(x), reading 

Λe = cos ϑ
{
D 

[1 + (y,)2 ]1/2 dx (4) 

which depends on .xB − xA and .yB − yA only. In synthesis, the catenary func-
tion .ye(x) must be regarded as a quasi-analytical solution, because the hyperstatic 
unknown . δ has to be determined a posteriori, by solving numerically the transcen-
dental compatibility condition. In the context of cable structures, the lack of fully 
analytical catenary solutions is an algorithmic hurdle that tends to slow down the 
development of parametric design tools–on the one hand–and often requires signifi-
cant computational resources–on the other hand. 

3 Perturbation Strategy for Fully-Analytical Solutions 

A proper mathematical alternative to exact (but quasi-analytical) catenary solu-
tions can be represented by fully analytical–although asymptotically approximate– 
polynomial solutions achievable by means of perturbation techniques. Perturbation 
methods are powerful asymptotic techniques that are widely used in a large vari-
ety of scientific research fields, ranging from direct problems concerning linear and 
nonlinear dynamics, stability and bifurcation [ 18– 20] to inverse problems dealing 
with modal identification, optimal spectral design, damping and damage detection 
[ 21– 23]. Perturbation methods are also classical and well-established strategies to 
study different problems in cable mechanics, including static behaviours [ 24, 25], 
linear and nonlinear dynamic phenomena [ 2, 26], aerodynamic instabilities [ 11, 27], 
active vibration control [ 28, 29]. 

Due to their typical lightness (small . w) and high tensioning (large . H ), structural 
cables tend to be characterized by geometric closeness between the static equilibrium 
configuration and the inter-support chord. This geometric property is commonly 
referred to as cable shallowness. Consequently, the static problem for shallow cables 
can be reformulated by introducing the change of variables 

y(x) = z(x) + yd (x) = z(x) + a0x + a1 (5) 

where the linear function .yd(x) = a0x + a1 describes the chord between the dis-
placed supports (Fig. 1). The coefficients of the function .yd(x) depend on the set of 
boundary displacements .x = (xA, yA, xB, yB) according to the relations
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a0 = 
yB − yA + tan ϑ 
1 − xA + xB 

, a1 = 
yA(1 + xB ) − xA(yB + tan ϑ)  

1 − xA + xB 
(6) 

where .a0 = tan ϑ and .a1 = 0 for fixed supports .(x = 0). From the physical view-
point, the configuration variable .z(x) describes the small dip of the static cable 
profile below the extended chord. The dimensionless length of the extended chord 
between the displaced supports is .Λd = (Ld/L) cosϑ and can be determined as 
.Λd = cosϑ [(1 + Δx )

2 + (tan ϑ + Δy)
2]1/2, where.Δx = xB − xA and. Δy = yB −

yA. Applying the change of variable, Eq. (3) becomes 

z,, = −δ
|
1 + a2 0 + 2a0z, + (

z,)2 |1/2 
(7) 

while the boundary conditions read .z(xA) = 0 and .z(1 + xB) = 0. An asymptotic 
form of the analytical solution is pursued for a cable with given aspect ratio . Λ. 

According to a standard perturbation strategy, the unknown solution.z(x) is postu-
lated to be expressible as a finite series of. n terms.zi (x), scaled by increasing integer 
powers of a small nondimensional bookkeeping parameter .E ≪ 1, yielding 

z[n](x) = 
nE

i=1

Ei zi (x) = E z1(x) + E2 z2(x) +  · · ·  + Ei zi (x) +  · · ·  + En zn(x) (8) 

where the functions .zi (x) work as independent unknown variables. 
Once all the functions.zi (x) are determined for.i = 1, ..., n, the.n-th approximate 

solution.z[n](x) is expected to asymptotically tend to the exact solution for growing.n-
values (increasing approximation orders). Although unknown a priori, the parameter 
. δ can be considered small by hypothesis, coherently with the assumption of cable 
shallowness. Therefore, the parameter ordering 

δ[n] = Eδ1 + E2 δ2 + E3 δ3 + ... + En δn (9) 

can be postulated. As a minor difference from other perturbation approaches for the 
statics of inclined shallow cables, it can be noted that the a priori postulated ordering 
only concerns unknown variables and parameters. 

Substituting the parameter ordering (9) and the variable expansion (8) in the  
nonlinear equation (7), expanding and collecting terms of the same .E-power, an 
ordered hierarchical system of linear perturbation equilibrium equations is obtained. 
Neglecting orders higher than the sixth (.n = 6), the system reads

E1 : z,,
1 = −8c0δ1 (10) 

.E2 : z,,
2 = −8c0δ2 − 8a0b0δ1z

,
1 (11) 

.E3 : z,,
3 = −8c0δ3 − 8a0b0

|
δ2z

,
1 + δ1z

,
2

| − 4b30δ1(z
,
1)

2 (12) 

.E4 : z,,
4 = −8c0δ4 − 8a0b0

|
δ3z

,
1 + δ2z

,
2 + δ1z

,
3

|
(13) 

. − 4b30z
,
1

|
δ2z

,
1 + 2δ1z

,
2

| + 4a0b
5
0δ1(z

,
1)

3
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E5 : z,,
5 = −8c0δ5 − 8a0b0

|
δ4z

,
1 + δ3z,

2 + δ2z,
3 + δ1z,

4

|
(14) 

. − 4b30
|
δ3(z

,
1)

2 + 2δ2z
,
1z

,
2 + 2δ1z

,
1z

,
3 + δ1(z

,
2)

2|
+ 4b50(z

,
1)

2
|
c0δ2z

,
1 + 3a0δ1z

,
2 − δ1(z

,
1)

2
| + 5b70δ1(z

,
1)

4

E6 : z,,
6 = −8c0δ6 − 8a0b0

|
δ5z

,
1 + δ4z

,
2 + δ3z

,
3 + δ2z

,
4 + δ1z

,
5

|+ (15) 

− 4b3 0
|
δ4(z

,
1)

2 + 2δ3z,
1z

,
2 + 2δ2z,

1z
,
3 + 2δ1z,

1z
,
4 + δ2(z,

2)
2 + 2δ1z,

2z
,
3

|+ 
+ 4b5 0z

,
1

|
(z,

1)
2 (c0δ3− 4δ1z,

2− δ2(z,
1)) + 3a0(δ1z,

1z
,
3+δ2z

,
1z

,
2+δ1(z

,
2)

2 )
|+ 

+ b7 0(z
,
1)

3|4a0δ1(z,
1)

2 + 5δ2z,
1 + 20δ1z,

2

| − 7a0b9 0δ1(z
,
1)

5 

where the auxiliary parameters .c20 = 1 + a20 and.b20 = c−2
0 . Homogeneous boundary 

conditions .zi (xA) = 0 and .zi (1 + xB) = 0 must be imposed at each order. Clearly, 
the hierarchy of perturbation equations can be extended to higher orders (.n > 6), 
whenever a finer approximation accuracy in necessary. 

The system solutions can be obtained straightforwardly by attacking the equations 
in cascade, starting from the lowest order, returning the generating solution .z1(x). 
Thereafter (for .i > 1), the .i-th order systematically states an ordinary differential 
non-homogeneous linear equation involving only the second derivative of the .i-th 
unknown variables .zi (x)–at the left hand–and a known polynomial term, involving 
the first derivatives of all the lower-order variables–at the right hand. Since the gener-
ating solution is a second.x-degree (quadratic) function, the higher.E-order solutions 
are polynomials of increasing.x-degrees (cubic, quartic, quintic, ...). Specifically, the 
solution of the .i-th order (power of the perturbation parameter . E) is a polynomial 
function including terms up to the.(i + 1)-th degree (power of the variable. x), reading

Ei : zi (x) = 
i+1E
j=0 

ci j  x 
j (16) 

where .ci j are auxiliary coefficients depending on the displacement set . x and the 
hyperstatic unknown coefficients . δi (with .i = 1, ..., n). 

After reconstruction, the hyperstatic unknown.δ[n] must be univocally assessed to 
identify the unique geometrically compatible solution . y[n](x) = z[n](x) + a0x + a1
among all the statically determinable polynomial functions satisfying the perturba-
tion equilibrium Eqs. (10)–(15). To this purpose, the compatibility equation can be 
imposed in the form.Λp = Λ0, where.Λp is the dimensionless arc-length of the poly-
nomial curve described by the function .y[n](x). According to differential geometry, 
the nondimensional arc-length is 

Λp = cos ϑ
{
D

|
1 + (

y,
[n]

)2 | 1 
2 dx = cos ϑ

{
D

|
1 + a2 0 + 2a0z, + (

z,
[n]

)2 | 1 
2 dx (17) 

which tends to the catenary length .Λe for growing .n-values. By operating accord-
ingly to the perturbation scheme ruled by Eqs. (8) and (9), the asymptotic arc-length 
takes the form .Λp[n] = Λp0 + E Λp1 + E2Λp2 + ... + EiΛpi + ... + EnΛpn , where
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the lowest order series coefficients are .Λp0 = Λd and .Λp1 = 0, while the higher 
order series coefficients read 

Λp2 = 8 3 b0δ
2 
1Σ

3 
x cos ϑ (18) 

.Λp3 = 16
3 b0δ1δ2Σ

3
x cosϑ (19) 
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8
45b0Σ

3
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(
32δ41Σ

2
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9 b

3
0δ

4
1Σ

5
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|
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16
45b0Σ

3
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2
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9 b30δ

3
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x S4 + 105S6

) − 64
135b

3
0Σ

5
x δ
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7
x
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where the auxiliary quantities .S4 = 4δ41Σ
2
x + 7Δ4, .R4 = 32δ41Σ

2
x + 15Δ4, . S6 =

2δ1δ5 + 2δ2δ4 + δ23 , and.Δ4 = 2δ1δ3 + 3δ22 . It can be noted that the arc-length. Λp[n]
is a function of the displacement differences .Σx = 1 + Δx and .Δy only, and also 
depends on the hyperstatic coefficients . δi (up to .i = n − 1). 

In summary, determining the static equilibrium configuration requires (i) to assign 
the inclination angle. ϑ and the aspect ratio. Λ, (ii) to assign the support displacements 
. x, defining the extended chord length .Λd , and (iii) to enforce the compatibility 
equation .Λp = Λ, to be solved in the hyperstatic unknown . δ. The assigned aspect 
ratio must satisfy the inextensibility condition .Λ > Λd . Furthermore, the postulate 
of cable shallowness (expressed by the smallness.δ = O(E)) is respected if and only 
if the assigned aspect ratio .Λ satisfies the same ordering .Λ = Λd + O(E2) of the 
arc-length .Λp = Λd + O(E2). This fundamental requirement is referred to as the 
consistency condition in the following. The consistency is automatically verified 
if the aspect ratio is ordered as .Λ = Λd + E2Λ2, where .Λ2 represents the natural 
extra-length. Physically, these mathematical requirements reflect the intuitive idea 
that the natural length of inextensible shallow cables must be greater (inextensibility 
condition), but not much greater (shallowness postulate) than the distance between 
the displaced supports. 

According to the above considerations, the compatibility condition .Λp = Λ can 
be imposed in the asymptotic form.Λp[n] = Λd + E2Λ2. The resulting ordered hier-
archy of algebraic perturbation compatibility equations returns the coefficients. δi of 
the asymptotic hyperstatic unknown.δ[n], reading 

δ1 = 1 4 Λ1 sec ϑ (23) 

.δ3 = − |
3
80 + 1

10a
2
0

|
b0Λ1Λ2Σ

−1
x sec2 ϑ (24) 

.δ5 = |
321

22400 + 167
1400a

2
0 + 17

175a
4
0

|
b20Λ1Λ

2
2Σ

−2
x sec3 ϑ (25) 

while .δ2 = δ4 = δ6 = 0 and .Λ1 = (6c0Λ2 cosϑ)1/2Σ
−3/2
x . As major result, after 

reconstruction the hyperstatic unknown.δ[n] and the configuration function.y[n](x) are 
known analytical functions of the mechanical parameters and the support displace-
ments. The high accuracy achievable in the asymptotic approximation is successfully 
verified in Figs. 2 and 3, in which the exact quasi-analytical (catenary-based) solu-
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Fig. 2 Exact hyperstatic unknown . δ (black dots) versus asymptotic approximations .δ[n] in the 
parameter ranges .Λ ∈ [100/100, 105/100] and.ϑ ∈ [0, π/4] for boundary displacements . Δx = 0
and .Δy = 0: a .n = 2 (yellow surface); b .n = 4 (blue surface); c .n = 6 (green surface). Relative 
errors are defined. en = (δ[n] − δ)/δ

tions are compared with their fully analytical (perturbation-based) approximations 
within the technically significant range of mechanical parameters (with the exclusion 
of vertical or quasi-vertical cables). 

4 Concluding Remarks 

The catenary function representing the exact analytical solution of the static equi-
librium problem for an inextensible cable suspended between displaceable supports 
has been asymptotically expressed by means of perturbation methods. The asymp-
totically approximate configuration function is an explicit function of the mechan-
ical parameters and support displacements. Fine approximation accuracy has been 
achieved by extending the perturbation solution to high orders.
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Fig. 3 Exact hyperstatic unknown . δ (black dots) versus asymptotic approximations .δ[n] in the 
boundary displacement ranges.Δx ∈[−0.016, 0.016] and.Δy ∈[−0.016, 0.016] for parameters. Λ =
102/100 and .ϑ = π/8: a .n=2 (yellow surface); b .n=4 (blue surface); c .n=6 (green surface). 
Relative errors are defined. en = (δ[n] − δ)/δ
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