
Carla Ferreira
Tim A. C. Willemse (Eds.)

21st International Conference, SEFM 2023
Eindhoven, The Netherlands, November 6–10, 2023
Proceedings

Software Engineering
and Formal MethodsLN

CS
 1

43
23

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 14323

Formal Methods
Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Carla Ferreira • Tim A. C. Willemse
Editors

Software Engineering
and Formal Methods
21st International Conference, SEFM 2023
Eindhoven, The Netherlands, November 6–10, 2023
Proceedings

123

Editors
Carla Ferreira
NOVA University Lisbon
Caparica, Portugal

Tim A. C. Willemse
Eindhoven University of Technology
Eindhoven, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-47114-8 ISBN 978-3-031-47115-5 (eBook)
https://doi.org/10.1007/978-3-031-47115-5

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Chapter “PMC-VIS: An Interactive Visualization Tool for Probabilistic Model Checking” is licensed under
the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/). For further details see license information in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-3680-7634
https://orcid.org/0000-0003-3049-7962
https://doi.org/10.1007/978-3-031-47115-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers presented at SEFM 2023, the 21st International
Conference on Software Engineering and Formal Methods, held on November 6–10,
2023 in Eindhoven, The Netherlands.

The SEFM conference series aims to bring together researchers and practitioners
from academia, industry and government, to advance the state of the art in formal
methods, to facilitate their uptake in the software industry, and to encourage their
integration within practical software engineering methods and tools.

Following the call for papers, there were 53 announced submissions of which 12
were retracted or not submitted in time. The 41 submissions that remained were each
Single blind reviewed independently by at least three reviewers, and this was followed
by a lively online discussion amongst the reviewers. The SEFM submissions were
judged on their originality and quality. Only submissions that were unpublished, and
not submitted concurrently for publication elsewhere were considered. Based on the
reviewing results, the Programme Committee decided to accept 18 regular research
papers and one tool paper for presentation at the conference and publication in this
volume. The editors thank the members of the Programme Committee and the addi-
tional reviewers for their reviews and discussions. We also thank all authors for their
submissions, whether accepted or not, and hope that they will keep contributing to
future editions of this conference series.

This year, for the first time, SEFM invited the authors of accepted papers to submit
their associated artefacts for evaluation against the EAPLS badging scheme. The
artefact evaluation serves to enable future researchers to effectively build on and
compare with previous work. The Artefact Evaluation Committee awarded the Avail-
able badge to eleven artefacts, the Reusable badge to six artefacts, and the Functional
badge to five artefacts. We thank the members of the Artefact Evaluation Committee,
chaired by Mário Pereira and Flip van Spaendonck, for their work.

The programme also includes the following three invited talks: Mira Mezzini
(Technische Universität Darmstadt) reported on “Safe and Secure Programming
Abstractions for Decentralized Software”; Reiner Hähnle (Technische Universität
Darmstadt) spoke on “Context-aware Trace Contracts”; and Burcu Ozkan (Delft
University of Technology) gave a talk titled “Randomized Testing of Distributed
Systems”. We thank the three invited speakers for their insights.

Associated with the main SEFM 2023 conference there were three workshops:
OpenCERT 2023, CIFMA 2023, and DataMod 2023. We thank all organisers of these
associated events for contributing to the success of SEFM. The proceedings of these
events will appear in a separate LNCS volume.

We would like to thank the Steering Committee and their chair Antonio Cerone for
their guidance and support. The event was only possible thanks to the SEFM Organ-
ising Committee members Jeroen Keiren and Thomas Neele, and the webmaster,
Thomas Neele, for all their help with planning and organising the conference. Finally,

we would like to thank NWO (the Dutch Research Council) for sponsoring this event,
Springer’s Lecture Notes in Computer Science team for their support and sponsorship,
and EasyChair for providing the reviewing infrastructure.

November 2023 Carla Ferreira
Tim A. C. Willemse

vi Preface

Organization

Programme Chairs

Carla Ferreira NOVA University Lisbon, Portugal
Tim A. C. Willemse Eindhoven University of Technology, The Netherlands

Programme Committee

Mario Bravetti University of Bologna, Italy
Julien Brunel ONERA, France
Radu Calinescu University of York, UK
Taolue Chen Birkbeck, University of London, UK
Rance Cleaveland University of Maryland, USA
Loek Cleophas TU Eindhoven, The Netherlands
Alcino Cunha University of Minho, Portugal
Rocco De Nicola IMT - School for Advanced Studies Lucca, Italy
Adrian Francalanza University of Malta, Malta
Hubert Garavel Inria, France
Silvia Ghilezan University of Novi Sad, Mathematical Institute SASA,

Serbia
Mario Gleirscher University of Bremen, Germany
Christian Johansen Norwegian University of Science and Technology,

Norway
Daniela Kaufmann TU Wien, Austria
Burcu Kulahcioglu Ozkan Delft University of Technology, The Netherlands
Zhiming Liu Southwest University, China
Marjan Mernik University of Maribor, Slovenia
Stephan Merz Inria Nancy, France
Charles Morisset Newcastle University, UK
Jovanka Pantovic University of Novi Sad, Serbia
Gwen Salaün University of Grenoble Alpes, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Pierre-Yves Schobbens University of Namur, Belgium
Marjan Sirjani Mälardalen University, Sweden
Ana Sokolova University of Salzburg, Austria
Bernardo Toninho Universidade Nova de Lisboa and NOVA-LINCS,

Portugal
Rolando Trujillo Universitat Rovira i Virgili, Spain
Peter Ölveczky University of Oslo, Norway

Organizing Committee

Jeroen J. A. Keiren Eindhoven University of Technology, The Netherlands
Thomas Neele Eindhoven University of Technology, The Netherlands

Artefact Evaluation Committee

Mário Pereira NOVA University of Lisbon, Portugal
Flip van Spaendonck Eindhoven University of Technology, The Netherlands
Guillaume Bertholon Université de Strasbourg, France
Jan Haltermann University of Oldenburg, Germany
Manish Goyal The University of North Carolina at Chapel Hill, USA
Daniel Pelsmaker Delft University of Technology, The Netherlands
Maya Setyautami Fakultas Ilmu Komputer Universitas Indonesia,

Indonesia
Mohammad Rezaalipout Università della Svizzera Italiana, Switzerland
Tiago Soares NOVA School of Science and Technology, Portugal

Steering Committee

Radu Calinescu University of York, UK
Antonio Cerone (Chair) Nazarbayev University, Kazakhstan
Ming Chai Beijing Jiaotong University, China
Rocco De Nicola IMT - School for Advanced Studies Lucca, Italy
Gwen Salaün University of Grenoble Alpes, France
Bernd-Holger Schlingloff Fraunhofer FOKUS and Humboldt University of

Berlin, Germany
Marjan Sirjani Mälardalen University, Sweden

List of Additional Reviewers

Sara Abbaspour Asadollah
Filipe Arruda
Duncan Paul Attard
Lorenzo Bacchiani
Buda Bajic
Rodrigo Bonifacio
Pierre Bouvier
David Chemouil
Zhenbang Chen
João Costa Seco
Jovana Dedeic
Brendan Devlin-Hill
Xinwei Fang
Ross Horne
Jeroen J. A. Keiren
Frédéric Lang

Bjørnar Luteberget
Radu Mateescu
Zahra Moezkarimi
Thomas Neele
Vivek Nigam
Quentin Nivon
Jiajie Peng
Martin Rosso
Maghsood Salimi
Wendelin Serwe
Jacopo Soldani
Clay Stevens
Milan Todorovic
Yedi Zhang
Yuanrui Zhang
Liang Zhao

viii Organization

Randomized Testing of Distributed Systems
(Abstract)

Burcu Kulahcioglu Ozkan

Delft University of Technology, Delft, The Netherlands
b.ozkan@tudelft.nl

Abstract. Distributed systems are prone to concurrency bugs due to the non-
determinism in the interleavings of concurrent events. Detecting and diagnosing
concurrency bugs in distributed systems is critical since unforeseen interleavings
of concurrent messages, network, or process faults can result in unexpected,
erroneous system behavior. However, concurrency bugs are hard to detect as
they are triggered only in some subtle interleavings of the events.
Random testing offers a practical way of searching for bugs in large dis-

tributed systems. While naïve random stress testing is unlikely to discover rare
bugs, our recent randomized testing methods present effective testing algo-
rithms. The effectiveness of our methods lies in the mathematical characteri-
zation of concurrency bugs and sampling test cases from the set of executions
that are likely to produce a buggy execution.
A significant advantage of our testing techniques is that they provide theo-

retical guarantees on the probability of detecting a bug.
Transferring the theoretical insight of formal methods and verification into the

design of testing methods further improves the bug detection guarantees of
randomized testing. Incorporating state space reduction strategies from model
checking reduces the sample set of executions to explore, resulting in a higher
probability of detecting bugs. Besides generic strategies, exploiting ideas from
the verification of specific systems can lead to efficient testing of these systems.
Our recent works exploit theoretical insights from the verification of distributed
consensus algorithms, which are at the core of distributed databases and
blockchain systems, to develop efficient methods for testing their implementa-
tions.
This talk overviews the key ideas in our randomized testing techniques for

detecting concurrency bugs in distributed systems.

Keywords: Software testing � Concurrency � Distributed systems

https://orcid.org/0000-0002-7038-165X

Contents

Invited Contribution

Herding CATs . 3
Reiner Hähnle, Marco Scaletta, and Eduard Kamburjan

Regular Papers

Refinements for Open Automata . 11
Rabéa Ameur-Boulifa, Quentin Corradi, Ludovic Henrio,
and Eric Madelaine

The Cubicle Fuzzy Loop: A Fuzzing-Based Extension for the Cubicle
Model Checker . 30

Sylvain Conchon and Alexandrina Korneva

Guiding Symbolic Execution with A-Star . 47
Theo De Castro Pinto, Antoine Rollet, Grégoire Sutre,
and Ireneusz Tobor

Robustness Testing of Software Verifiers . 66
Florian Dyck, Cedric Richter, and Heike Wehrheim

Decoupled Fitness Criteria for Reactive Systems . 85
Derek Egolf and Stavros Tripakis

Capturing Smart Contract Design with DCR Graphs 106
Mojtaba Eshghie, Wolfgang Ahrendt, Cyrille Artho,
Thomas Troels Hildebrandt, and Gerardo Schneider

An Active Learning Approach to Synthesizing Program Contracts. 126
Sandip Ghosal, Bengt Jonsson, and Philipp Rümmer

Ranged Program Analysis via Instrumentation . 145
Jan Haltermann, Marie-Christine Jakobs, Cedric Richter,
and Heike Wehrheim

Attack Time Analysis in Dynamic Attack Trees via Integer Linear
Programming . 165

Milan Lopuhaä-Zwakenberg and Mariëlle Stoelinga

SSCalc: A Calculus for Solidity Smart Contracts. 184
Diego Marmsoler and Billy Thornton

ATM: A Logic for Quantitative Security Properties on Attack Trees 205
Stefano M. Nicoletti, Milan Lopuhaä-Zwakenberg,
Ernst Moritz Hahn, and Mariëlle Stoelinga

Refactoring of Multi-instance BPMN Processes with Time and Resources 226
Quentin Nivon and Gwen Salaün

Verified Scalable Parallel Computing with Why3 . 246
Olivia Proust and Frédéric Loulergue

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 263
Rasmus C. Rønneberg, Raúl Pardo, and Andrzej Wąsowski

A Formalization of Heisenbugs and Their Causes . 282
Sarah Sallinger, Georg Weissenbacher, and Florian Zuleger

Verifying Read-Copy Update Under RC11. 301
Mikhail Semenyuk, Mark Batty, and Brijesh Dongol

QNNREPAIR: Quantized Neural Network Repair . 320
Xidan Song, Youcheng Sun, Mustafa A. Mustafa, and Lucas C. Cordeiro

Timeout Prediction for Software Analyses . 340
Nicola Thoben, Jan Haltermann, and Heike Wehrheim

Tool Papers

PMC-VIS: An Interactive Visualization Tool for Probabilistic Model
Checking . 361

Max Korn, Julián Méndez, Sascha Klüppelholz, Ricardo Langner,
Christel Baier, and Raimund Dachselt

Author Index . 377

xii Contents

Invited Contribution

Herding CATs

Reiner Hähnle1, Marco Scaletta1(B), and Eduard Kamburjan2

1 Technical University of Darmstadt, Darmstadt, Germany
{reiner.hahnle,marco.scaletta}@tu-darmstadt.de

2 University of Oslo, Oslo, Norway
eduard@ifi.uio.no

Abstract. We illustrate the usage of context-aware trace contracts (for
short: CATs) by way of an example. CATs are a systematic approach to
specify non-procedure local behavior. Technically, they consist of sym-
bolic expressions specifying the assumed behavior of the callers before a
procedure enters its contract, the behavior a procedure guarantees, and
the behavior expected to happen in the continuation after termination.
This generalizes state-based, Hoare-style specification triples.

1 Introduction

Specification contracts are pivotal for deductive verification to scale [5], because
they permit to verify a large program by tackling one procedure at a time.
Given a procedure m, a state contract [7,8] is a pair 〈Pre,Post〉, where Pre is
an expression specifying the execution states under which m enters the contract
and Post specifies the execution states m must guarantee upon termination.

In many scenarios, however, notably in concurrent execution, state contracts
are insufficient. For example, how to specify that at some point in time before m
was called a certain action took place? Often, this is achieved with ad hoc ghost
variables, leading to bloated and hard-to-read contracts. It is even more difficult
to specify that after a call to m the callers must take some action, for example, a
cleanup. To enable systematic specification of such non-procedure local properties
it is desirable to have a generalized notion of contract that permits to specify
the context wherein a procedure enters into a contract.

The technical basis for context-aware contracts is a recent generalization of
state contracts to trace contracts [2]. Trace contracts generalize a pre-/post-
condition pair 〈Pre,Post〉 to a symbolic trace θ, permitting to specify a set of
execution traces a procedure m is expected to adhere to. This makes it possible
to specify events taking place during execution of some code, hence, specification
elements are not limited to the start or finish, as state contracts are.

Context-aware trace contracts (CATs, for short) [6] build upon trace con-
tracts and specify the non-local behavior of a procedure m as a triple consisting
of (i) a symbolic trace θam

specifying the assumptions on the context, before
m enters into its contract, (ii) a symbolic trace θsm specifying the guarantee m
gives about its internal behavior, and (iii) a symbolic trace θcm specifying the
expected continuation of the call context after m terminates.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 3–8, 2023.
https://doi.org/10.1007/978-3-031-47115-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_1

4 R. Hähnle et al.

We illustrate the usage of CATs informally by way of an example taken from
the well-known Casino Case Study1 used, for example, in [1,4]. We refer to [6] for
the formal definition of CATs, the deduction system, and the soundness proofs.

2 CATs by Example

We introduce the general structure of a CAT, then we present a running example
extracted from the Casino Case Study. We first define informal requirements on
the behavior of procedures and their context. Then we illustrate how a formal
specification with CATs can be done.

2.1 General Structure of a CAT

A context-aware trace contract [6] Cm for a procedure m consists of a triple of
symbolic trace formulas [2]:

Cm =<<θam
| θsm | θcm >>

Here, θsm is the internal behavior that m guarantees, while θam
and θcm

specify the call context, wherein m enters into the contract: The pre-trace θam

specifies the assumptions on what must have happened before executing m,
and the post-trace θcm specifies the requirements on how the computation must
continue after the termination of m. We assume that the final state specified in
θam

is the state where θsm starts, and similarly for θsm and θcm .
Trace formulas θ contain state formulas ψ as building blocks of the form �ψ�,

denoting all singleton traces consisting of an execution state that satisfies ψ.
Moreover, trace formulas can be composed by concatenation ·, conjunction ∧
and disjunction ∨. We use the notation “··” to denote an arbitrary finite trace2,
hence a traditional state contract 〈Pre,Post〉 corresponds to the trace formula

�Pre� ·· �Post�. Expression
m·· further restricts traces to those not containing

any procedure call to an m ∈ m.

2.2 Accessing the Program State: Observation Quantifiers

To restrict possible execution states of a specified program it is necessary to
access the value of program variables at some point during execution. In state
contracts it is obvious when a variable is observed in the pre- and postcondition:
at the start and at the finish of a procedure, respectively. In a trace formula,
however, such as θ · �i ≥ 0� · θ′ · �i ≥ 0� · θ′′, two observations of program variable
i refer to arbitrary different time points during execution.

To be able to compare the value of program variables at different states in
a trace formula, it is necessary to capture the value and define a scope. This
1 https://verifythis.github.io/02casino/.
2 This constitutes a special case of a general smallest fixed point operator that is part

of the definition of trace formulas, see [2] for details.

https://verifythis.github.io/02casino/

Herding CATs 5

is done with an observation quantifier. An observation quantifier has the form
� x as y.θ(y), where x is a program variable whose current value is bound to the
logical (first-order) variable y, which then can be accessed from the scope of the
quantifier, the trace formula θ. For example, � x as y. (�y > 0� ··) specifies the set
of finite traces starting in a state, where x has positive value. We say y observes x

at such a position. Logic variables are rigid, meaning their values are immutable:
when y observes x at a certain instant of the computation it is immutably bound
to the value x has at that instant. Therefore, � x as y. (�y > 0� ··) is equivalent
to � x as y. (·· �y > 0�), the only difference being that the check whether x is
positive in the beginning is now syntactically located at the end of the trace
formula. The same programs are conforming to these two trace formulas.

Specifying Pre- and Postconditions. With observation quantifiers it easily possi-
ble to specify state preconditions, simply by placing the quantifier at the border
between θam

and θsm , as for example in

<<θ′
am

· � x as y.�y > 0� | θsm | θcm >> .

It is important to observe that the scope of an observation quantifier occur-
ring in a contract always includes all subsequent contract elements, here θsm and
θcm . Postconditions are analogous. It is possible to observe the same program
variable at different execution states and compare the values. For example, if we
want to specify that m increases the value of x by one we can write

<<θ′
am

· � x as y.�true� | θ′
sm · � x as y′.�y′ .= y + 1� | θcm >> .

2.3 Running Example

To illustrate our approach we use an excerpt of the Casino Case Study men-
tioned in Sect. 1, where a player can place bets and, depending on the outcome,
collect a win. Procedures placeBet and decideBet are shown in Fig. 1. We look
at the following properties: (i) a game is either available and can be started with
placeBet, or it is ongoing and can be terminated with decideBet (there is no idle
state, i.e. no creation of the game is needed); (ii) we focus on the constraints on
the player’s wallet, ignoring the amount of money in the pot (infinite amount).

Fig. 1. Code for placeBet and decideBet

6 R. Hähnle et al.

2.4 Goal of Specification

We give an informal description of the requirements for the execution of placeBet
and decideBet:

Requirements for placeBet. (Pre-trace): Before executing placeBet there cannot
be any pending bet still to be decided. (Precondition): The amount the player
bets must be positive and cannot exceed the amount of money in the wallet.
(Internal behavior): Procedure placeBet does not call any other procedure.3

(Postcondition): By betting, the wallet of the player is reduced by the amount
of the bet. (Post-trace): After a bet is placed it must be decided upon.

Requirements for decideBet. (Pre-trace): Before executing decideBet, any pend-
ing bet still to be decided must have been placed. (Precondition): None. (Internal
behavior): Procedure decideBet does not call any other procedure. (Postcondi-
tion): The wallet of the player is credited twice the amount of money only if
the guess of the player was correct and the amount of the bet is reset to 0.
(Post-trace): None.

2.5 CATs

We formalize the requirements stated in Sect. 2.4 in the CAT framework.

CAT forplaceBet . We define the components for the CAT for placeBet:

CplaceBet =<<θaplaceBet
| θsplaceBet

| θcplaceBet
>>

(Pre-trace): The case that no pending bet is still being decided can occur in two
situations: Either no bet has ever been placed, or the most recently placed bet
was decided, i.e. no bet is placed after the most recent occurrence of decideBet.
This can be specified with the trace formula:4

θ′
aplaceBet

=
placeBet·· ∨ ·· pop(decideBet,)

placeBet
decideBet·· .

(Precondition): The trace formula for the precondition is straightforward, but
we must observe the values of amountToBet and playerWallet:

φpreplaceBet
= � amountToBet as toBet.

� playerWallet as wallet.�toBet > 0 ∧ toBet ≤ wallet�

Therefore the pre-trace for placeBet is θaplaceBet
= θ′

aplaceBet
· φpreplaceBet

.

3 This is a simplified form of a typical secure information flow property.
4 An event of the form pop(m, k) signifies that a call of procedure m with call identifier
k has terminated, see [2] for details. There is also a dual event start(m, k) used below.

Herding CATs 7

(Internal Behavior): No procedure calls are allowed in the internal behavior of
placeBet:

θ′
splaceBet

=
placeBet
decideBet··

(Postcondition): To specify requirements on the value of playerWallet at the
end of the execution of placeBet we use another observation quantifier and refer
to the observed variables in φpreplaceBet

:

φpostplaceBet
= � playerWallet as wallet′.�wallet′ = wallet − toBet�

So the internal behavior for placeBet is θsplaceBet
= θ′

splaceBet
· φpostplaceBet

.

(Post-trace): The requirement that the continuation of execution must include
a matching occurrence of decideBet can be specified by the trace formula:

θcplaceBet
=

placeBet
decideBet·· start(decideBet,) ··

CAT for decideBet . We define the components for the CAT for decideBet:

CdecideBet =<<θadecideBet
| θsdecideBet

| θcdecideBet
>>

(Pre-trace): A bet can be decided only if it has been placed and it has not been
decided yet:

θ′
adecideBet

=
placeBet·· ∧ ·· pop(placeBet,)

placeBet
decideBet··

(Precondition): Even though the precondition is trivial, we still need to observe
the values of coinSide, guess, playerWallet, and bet in the beginning of the
execution of decideBet, because the observed values are referred to in the post-
condition:

φpredecideBet
= � coinSide as c, guess as g,

playerWallet as wallet, bet as b.�true�

(Internal Behavior): No procedure calls are allowed in the internal behavior of
decideBet: θ′

sdecideBet
is specified analogous to θ′

splaceBet
.

(Postcondition): To specify the postcondition we need an additional observation
quantifier, to observe playerWallet and bet at the end of the computation:

φpostdecideBet
= � playerWallet as wallet′, bet as b′.

�b′ .= 0 ∧ (c .= g → wallet′ .= wallet + b)�
So the internal behavior for decideBet is θsdecideBet

= θ′
sdecideBet

· φpostdecideBet
.

8 R. Hähnle et al.

Post-trace. There is no requirement on how the execution must continue after
the execution of decideBet, therefore, θcdecideBet

= ··.

3 Wrapping Up

The paper [6] contains a sound calculus that can prove the contracts specified
in Sect. 2.5 separately. Moreover, it is proven that validity of a set of contracts
implies the validity of any proven program specified with those contracts. In
consequence, the principle of procedure-modular verification carries over from
state contracts to CATs.

What remains to be shown is how to incorporate concurrent execution—our
case study is sequential. The above mentioned paper shows how CATs can be
applied to asynchronous procedure calls in the style of cooperative scheduling [3].
More general programming models are future work.

References

1. Bliudze, S., van den Bos, P., Huisman, M., Rubbens, R., Safina, L.: JavaBIP meets
VerCors: towards the safety of concurrent software systems in Java. In: Lambers, L.,
Uchitel, S. (eds.) Fundamental Approaches to Software Engineering, 26th Interna-
tional Conference, FASE, Paris, France, vol. 13991 of LNCS, pp. 143–150. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30826-0 8

2. Bubel, R., Gurov, D., Hähnle, R., Scaletta, M.: Trace-based deductive verification.
In: Piskac, R., Voronkov, A. (eds.) Proceedings 20th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR), Manizales
Colombia, EPiC Series in Computing. EasyChair (2023)

3. de Boer, F., et al. A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

4. Ernst, G., Knapp, A., Murray, T.: A Hoare logic with regular behavioral specifica-
tions. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Meth-
ods, Verification and Validation, 11th International Symposium, ISoLA, Rhodes,
Greece, Proceedings Part I, vol. 13701 of LNCS, pp. 45–64. Springer, Heidelberg
(2022)

5. Hähnle, R., Huisman, M.: Deductive verification: from pen-and-paper proofs to
industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Sci-
ence: State of the Art and Perspectives. LNCS, vol. 10000, pp. 345–373. Springer,
Cham (2019)

6. Hähnle, R., Kamburjan, E., Scaletta, M.: Context-aware trace contracts. In: De
Boer, F., Damiani, F., Hähnle, R., Johnsen, E.B., Kamburjan, E. (eds.) Active
Object Languages: Current Research Trends, vol. 14360 of LNCS. Springer, Cham
(2023)

7. Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Engeler,
E. (ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp.
102–116. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059696

8. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)

https://doi.org/10.1007/978-3-031-30826-0_8
https://doi.org/10.1007/BFb0059696

Regular Papers

Refinements for Open Automata

Rabéa Ameur-Boulifa1(B) , Quentin Corradi2 , Ludovic Henrio2 ,
and Eric Madelaine3

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
rabea.ameur-boulifa@telecom-paris.fr

2 Université Lyon, EnsL, UCBL, CNRS, Inria, LIP, Lyon, France
{quentin.corradi,ludovic.henrio}@ens-lyon.fr

3 INRIA Sophia Antipolis Méditérannée, UCA, Sophia Antipolis, France
eric.madelaine@inria.fr

Abstract. Establishing equivalence and refinement relations between
programs is an important mean for verifying their correctness. By estab-
lishing that the behaviours of a modified program simulate those of
the source one, simulation relations formalise the desired relationship
between a specification and an implementation, two equivalent imple-
mentations, or a program and its optimised implementation. This article
discusses a notion of simulation between open automata, which are sym-
bolic behavioural models for communicating systems. Open automata
may have holes modelling elements of their context, and can be com-
posed by instantiation of the holes. This allows for a compositional app-
roach for verification of their behaviour.

We define a simulation between open automata that may or may not
have the same holes, and show under which conditions these refinements
are preserved by composition of open automata.

Keywords: Labelled transition systems · Simulation · Composition

1 Introduction

Compositional design is a highly convenient approach for specifying and veri-
fying large systems. Automata are often used as the basic formalism for this
approach, but most automata definitions allow only the specifications of finite
closed systems. These systems can be verified efficiently, but programming often
consists in writing systems that should be interfaced with others, and with poten-
tially unbound behaviours. We investigate in our works the reasoning on open
symbolic systems, with a strong focus on compositionality of properties. More
precisely, we say that a system is open if it contains a “hole” to be filled by
another system. Open systems are typically composition operators [17] or com-
ponentised systems where some of the components are yet to be provided [6].
This form of composition is more complex to handle than top-level interaction
usually found in process algebra, as the behaviour of each entity in the system
is parameterised both by classical symbolic variables and by process variables.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 11–29, 2023.
https://doi.org/10.1007/978-3-031-47115-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_2&domain=pdf
http://orcid.org/0000-0002-2471-8012
http://orcid.org/0000-0003-4218-3987
http://orcid.org/0000-0001-7137-3523
http://orcid.org/0000-0002-5552-5993
https://doi.org/10.1007/978-3-031-47115-5_2

12 R. Ameur-Boulifa et al.

Symbolic systems and their bisimulation raises additional challenges [15,17].
Reasoning on a symbolic automaton allows one to represent an infinite system
in a finite manner, but then the state of the system is not only characterised by
an automaton state but also by the value of the different variables representing
the system. In parameterised systems, it is necessary to guard state transitions
depending on the system state and on the input values. This is why in previous
works and in this article, it we extend the classical form of bisimulation relation:
in a symbolic setting a bisimulation relation relates classically states of two
systems but it is additionally parameterised by a formula that must be verified by
the state variables. This has been introduced in details in previous works [6] and
will be recalled briefly in Sect. 2.2. We have shown in previous works that open
symbolic systems are particularly convenient to model process algebra operators
and open component systems with infinite behaviour [6,17].

The refinement concept plays an important role in software engineering. In
addition to helping to cope with the complexity of requirements and design,
refinement provides a foundation for ensuring system correctness. The correct-
ness of a system can be established by proving, that a system refines its specifi-
cation with the idea that some properties of the specification are preserved in the
refined system. Refinement entails that one system can be considered as a more
precise version of another one that is considered to be the specification. The
refined model features all the specified behaviours with more concrete details.
From a formal point of view, refinement is a mathematical relations between a
specification and its implementation, with trace inclusion or simulation being
frequently used relations [20,22].

In this article, we design a simulation theory for open symbolic systems.
We build a very generic theory that should allow us to reason on simulation-
based verification for most concurrent systems, as our base theory merely relies
on automata parameterised by both variables and processes. As we shall see,
our composition of automata is also very generic to account for any interaction
mechanism found in concurrent systems. While our contribution is theoretical, it
establishes the foundations for to the verification of any compositionally designed
system, like component systems, algorithmic skeletons.

Open automata (that we abbreviate OA) were defined as a way to provide a
semantics for open parameterised hierarchical labelled transition systems (abbre-
viated LTS). They were proposed as a theoretical foundation for parametrised
automata used in verification tools and called pNets. An OA [17] is similar to
a classical automaton but with variables and holes. Variables make automata
symbolic and allow them to encode infinite-state systems. Holes enable the
composition of automata: an automaton with a hole is an operator that takes
another automaton as parameter and reacts to the actions it emits; the composed
automaton is an automaton where the behaviour of one “process parameter” of
the main automaton has been provided. Due to their generic nature, the notion
of OA model is quite abstract but we already illustrated previously how to derive
OAs for process algebra operators [17] or for component systems [5,6].

Refinements for Open Automata 13

In previous works [6,24] a bisimulation relation was defined for OA and open
parameterised hierarchical LTSs. It exhibited good properties concerning bisim-
ulation, but refinement relations were not studied. In this article we go further
to define a theory of simulation for OA. The simulation relation we introduce in
the paper is based on the notion of simulation, in a similar way to that defined in
classical automata theory [8,21]. It possesses the common behaviour-preserving
property: all the behaviour of the abstract specification must be followed by its
(complex) implementation but additional behaviours may exist. However we also
ensure that a whole scenario, made of several steps, of the specification can also
be simulated by the refined system, which is slightly richer than the traditional
simulation relation and allows us to obtain a compositionality result.

Our contribution in this paper is the definition of a simulation relation for
OA that has the following characteristics:

– Classical simulation characterisation but also an additional criteria ensuring
that simulation does not introduce deadlocks when following a trace from the
simulated automaton.

– Good properties relatively to composition: we prove that composition pre-
serves the simulation relation.

– Ability to take into account both composition and transitivity: this is a chal-
lenge because composition changes the set of holes of the OA and simulation
takes into account the actions of the holes.

The simulation relation is introduced in two steps. First we define a simulation
that relates two automata with the same holes, which allows us to focus on the
automaton aspect. Second we introduce a relation that relates two automata
with different sets of holes, which allows us to take into account the open nature
of OA, and to deal with composition. Properties of the simulation are stated and
proven on the second, more general version of the relation, thus also being valid
for the first simpler simulation relation.

This paper is organized as follows. Section 2 recalls the definition of OA and
defines their composition. We then define a simulation relation for OA, first only
considering two automata with the same set of holes in Sect. 3 and generalize
it to automata with a different set of holes in Sect. 4. Section 5 is dedicated to
formalize and prove basic properties of the simulation defined, including the
proof that simulation is a preorder and has nice composability properties. In
Sect. 6 we review related works, and Sect. 7 concludes the paper.

2 Open Automata and Their Composition

This section presents our notations and the principles of automata. Except for
minor changes in the notations, compared to previous works [6] the only new
contribution is the definition of a composition operator for OA.

14 R. Ameur-Boulifa et al.

2.1 Preliminaries and Notations

Countable families of values (equivalent to maps) will be noted xiPI
i ,

{i�Ñxi | i P I}, or {i ← xi | i P I}, depending on what is more convenient (e.g.
i ← xi is used for maps that are used as substitution). Statements like DcjPJ

j

defines both J and the mapping j �Ñcj . The disjoint union on sets is noted Z.
Disjoint union is also used on maps. There are several ways of ensuring a union
is disjoint, we will indifferently either suppose sets are disjoint or rename con-
flicting objects (useful for variables). In a formula, a quantifier followed by a
finite set will be used as a shorthand for the quantification on every variable in
the set: @{a1, . . . , an}, D{b1, . . . , bm}, P means @a1, . . . , @an, Db1, . . . , Dbm, P .

Our expression algebra E is the disjoint union of terms, actions, and formulas
E “ T Z A Z F . T and A are term algebras. The set of formulas F contain at
least first order formulas and equality1 over T and A. For e P E, vars(e) is the
set of variables in e that are not bound by a binder. An expression is closed if
vars(e) “ H. The set P denotes values which is a subset of closed terms. FV is
the set of formulas f that only uses variables in V , i.e., the formulas such that
vars(f) Ď V . The parallel substitution of variables in e by a map ψ : V → T is
denoted e{{ψ}}.

We suppose given a satisfiability relation on closed formulas, denoted |“f .
We will use two variants of the satisfiability relation:

– The satisfiability of a formula f P F under some valuation σ : V → P is
defined as follows: σ |“ f ⇐⇒ |“ Dvars(f{{σ}}), f{{σ}}

– The satisfiability of a formula f P F with some variable set V as context is
defined as follows: V |“ f ⇐⇒ |“ @V, D(vars(f) \ V), f

2.2 Open Automata (OA)

OA are labelled transition systems with variables that can be used to compose
other automata: they are made of transitions that are dependent on the actions of
“holes”, a composition operation consists in filling a hole with another automaton
to obtain a more complex automaton. The variables makes the OA symbolic, and
the holes allow for a partial definition of the behaviour.

Definition 1 (Open transition, Open automaton). An open automaton is
a tuple 〈S, s0, V, σ0, J, T〉 with S a set of states, s0 P S the initial state, V the
finite set of variable names, σ0 : V → P the initial valuation of variables, J the
set of hole names and T the set of open transitions.

An open transition is a structure made of several composing enti-

ties, equivalent to a tuple. In an open transition s, s′ P S are the source and
target states, α P A is the resulting action that can be observed from the outside,
J ′ Ď J are the holes involved in the transition, g P F is the guard that may
constraint the transition, and ψ : V → T are the variable assignments that have
1 Equality does not need to be only syntactic.

Refinements for Open Automata 15

an effect on the state of the automaton. Each βj P A is an action of the holes j,
To be well-formed, an open transition should use only variables of the automaton
and variables appearing in the involved actions, formally:

vars(g) Ď vars(α) Y
⋃

jPJ ′
vars(βj) Y V

@v P V. vars(ψ(v)) Ď vars(α) Y
⋃

jPJ ′
vars(βj) Y V

A pair consisting of a state and a valuation is called a configuration (of the
automaton). We use two operators to access pieces of information of the OA.

Definition 2 (Out-transition, Transition variables). Let 〈S, s0, V, σ0, J, T〉
be an automaton and let r be a state in S. OTT (r) ⊂ T are the transition out-
going from state r2. The local variables of a transition vars(t) are all variables
appearing in transition t except the variables of the automaton. Outgoing tran-
sitions and variables are formally defined as follows.

Example 1 (prod-cons). As a running example, we consider a classical
producer-consumer pair interacting through FIFO buffer, named prod-cons.
Figure 1 reflects the overall structure of the system involving a producer pro-
cess, a consumer process and an orchestrator that coordinates their activities.

Fig. 1. Structure of the example. Each box corresponds to a process whose ports are
the actions it can perform. The actions observable by the environment are push, which
indicates the enqueuing of an element, pop which indicates the dequeuing, and print

which indicates the production of results.

2 When the set T is clear from the context, it will be omitted and we will use OT(r).

16 R. Ameur-Boulifa et al.

Fig. 2. OA for the prod-cons system using FIFO circular buffer.

The OA modelling the behaviour of such a system using an unbounded cir-
cular/ring buffer is depicted in Fig. 2. The automaton has a single state with
two holes: P and Q that are the two interacting processes. l (as last) indicates
the next available position for enqueuing an element and f (as first) is the posi-
tion that contains the next element to be dequeued. The buffer reacts to a push
from P and enqueues it. Similarly, whenever Q pops an element, it dequeues it.
Additionally, whenever Q produces an item, it is exposed as an external observ-
able print action. When any process do its internal computation, it is exposed
externally as unobservable action τ .

The example uses several kinds of data. Variable m holds a message (we
can leave the message type abstract here). We additionally use arrays of mes-
sages with a syntax of the form M[l] for array accesses; M is an array of N
elements, from 0 to N´ 1. Finally we use addition and modulo operation (%) on
integers. 	

Open Automata Composition. OA are partially specified automata, the partiality
arises from the holes. A hole can be seen as a port in which we can plug an
OA. The plugging operation is called composition. The composition of OA was
already implicitly defined by the means of composition on pNets in previous
work [17]. We provide here a (new) direct definition of composition for OA.

Definition 3 (Composition of OA). Let Ac “ 〈Sc, s0c, Vc, σ0c, Jc, Tc〉 be an
OA and k one of its holes, k P Jc. Let Ap “ 〈Sp, s0p, Vp, σ0p, Jp, Tp〉 be another
OA, the composition Ac[Ap/k] that fills the hole k of the context OA Ac with the
parameter OA Ap is defined as follows:

Ac[Ap/k] ::“ 〈Sc × Sp, (s0c, s0p), Vc Z Vp, σ0c Z σ0p, Jp Z Jc \ {k}, T 〉

with

Refinements for Open Automata 17

Fig. 3. (Left) A producer. It produces one item at a time and pushes it. (Right) A
consumer. It pops an item, does some work and pushes the result.

Fig. 4. OA for filling the hole P in prod-cons: prod-cons[P/producer].

The first OA decides when the second can evolve by involving its hole in a
transition: the action emitted when Ap makes a transition is synchronised with
the action of the hole k in transitions of Ac. The condition αp “ βk ensures that
the action emitted by the automaton Ap filling the hole is the one expected in
the hole k of the open automaton Ac.

Example 2. Figure 3 shows a producer automaton and a consumer automaton
that can be used to fill the holes P and Q of prod-cons defined in Example 1.

The OA on Fig. 4 is the composition of the system in Fig. 2 and the producer
in Fig. 3 (left). The composition consists of two states (the product of the states
of both automata). The transitions from one state to another come from the
synchronisation of the transitions of the encompassing automaton with those of
the producer filling the hole P, this is why there is no more action from hole P in
the composed automaton. Only elements related to the hole P are changed and
in particular, transitions involving Q remain unchanged. 	

2.3 Relations Between Open Automata

Establishing semantic equivalences and simulation relations between different
OA requires to compare their states. For this purpose, we suppose that the
variables of the two OA are disjoint (a renaming of variables may have to be
applied before comparing OA states).

Definition 4 (Relation on open automata configurations). Suppose V1 and
V2 are disjoint. A relation on configurations of two OA 〈S1, s01, V1, σ01, J1, T1〉 and
〈S2, s02, V2, σ02, J2, T2〉 is a function R : S1 × S2 → FV1ZV2 .

18 R. Ameur-Boulifa et al.

The idea is that two states are related depending on the satisfiability of the
expression relying their variables, i.e., if the variables of the OA verify a certain
formula. In other words, to each pair of states is attached a boolean formula that
may refer to the variables of each of the two OA, stating whether the two states
are related or not. Additionally, we say that the relation R relates the initial
states of the automata if: σ01 Z σ02 |“ R(s01, s02). We illustrate such a relation
over automata with bisimulation relation below.

2.4 A Bisimulation for Open Automata

Bisimulation between OA was defined in [6]. We show below the principles of this
bisimulation. We first recall the usual definition of bisimulation. Bisimulation can
be defined as follows for standard transition systems:

Definition 5 (Classical Bisimulation). A bisimulation is a relation R such
that if s R t then:

@l s′, s
lÑ́ s′ “⇒ Dt′. s′ R t′ ∧ t

lÑ́ t′

and conversely

@l t′, t
lÑ́ t′ “⇒ Ds′. s′ R t′ ∧ s

lÑ́ s′
i.e.

s R t

s′
l

R t′
l

s and t are bisimilar, written s ∼ t iff there is a bisimulation relation R such
that s R t. If only the first one of the two implications above is verified, we say
that s simulates t and denote it s ď t.

A bisimulation relation relates pair of states and ensures that any behaviour
of one automaton can be performed by the other one while staying in relation.
We informally explain here the symbolic nature of the bisimulation for OA and
the related complexity of its definition. The notion of symbolic bisimulation, as
it was introduced in [15], is aimed at computing bisimulation of value-passing
systems, i.e. systems made of processes exchanging data with their environment
and between processes, where data are values from a possibly infinite domain.
The presence of holes in fact raises no strong difficulty but the variables must
be handled carefully. Consider the two following simple OA:

We should be able to consider these two OA as bisimilar. Both can input
any β(x) input on their hole and stores the value of x, emitting α(x) along the
transition. The difference is the way x is stored. We can then define a configu-
ration relation R such that R(s, s2) is true and R(t, t2) holds when z ě 0 and

Refinements for Open Automata 19

y “ z, while R(t′, t2) holds when z ă 0 and y “ ´z. This illustrates relation on
configurations, but also shows that bisimulation on OA is more complex than
in the classical case. Indeed, we need two transitions on the left OA to simulate
a single one on the right OA. We should check that these two transitions cover
all the cases accepted by the right hand side OA, and of course that destination
states are in relation. Formally, FH-bisimulation is defined as follows [6]:

Definition 6 (Strong FH-bisimulation).
Suppose 〈S1, s01, V1, σ01, J1, T1〉 and 〈S2, s02, V2, σ02, J2, T2〉 are OA with identi-
cal holes of the same sort, with disjoint sets of variables (V1 ∩ V2 “ H).

Then R, a relation on configurations of OA, is an FH-bisimulation if and
only if for any states s P S1 and t P S2, we have the following:

– For any open transition OT in T1: there exists an indexed set

of open transitions OT xPX
x Ď T2: such that the following

holds

R(s, t) ∧ gOT “⇒
ł

xPX
(@j.βj “ βjx ∧ gOTx

∧ α“αx ∧ R (s′, tx) {{ψOT ZψOTx
}})

– and symmetrically any open transition from t in T2 can be covered by a set
of transitions from s in T1.

Two automata are bisimilar if there exists a strong FH-bisimulation R that
relates their initial states.

Note that this definition matches an open transition t1 to a family of covering
open transitions txPX

2x . Intuitively, this means that for every pair of related states
(s1, s2) of the two automata, and for every transition of the first automaton
from s1, there is a set of matching transitions of the second automaton from
s2 such that the produced action match, the actions of the same holes and the
successors are related after variable update. Technically, the following sections
do not rely on the definition of strong bisimulation on OA, but they follow the
same principles and in particular the same way to faithfully simulate an open
transition by a set of other open transitions.

2.5 Reachability

We finally define a new predicate abstracting state reachability for OA, it allows
us to reason on reachable states in an automaton. It can be seen as an abstraction
of the reachable states under the form of a predicate that must stay verified along
the execution of the OA.

20 R. Ameur-Boulifa et al.

Definition 7 (Reachability). For any OA A “ 〈S, s0, V, σ0, J, T〉, a reacha-
bility predicate �A : S → FV is any predicate on states that is valid on initial
state, and preserved across transitions:

Reachability takes into account all paths, and can over-approximate the
reachable configurations. From an automation point of view, finding the most
precise reachability predicate for a given automaton is not decidable because of
the symbolic nature of OA, but only an over-approximation is necessary.

3 Simulation for Automata with the Same Holes

Similarly to FH-bisimulation [6] we are interested in finding simulation rela-
tions between configurations of two OA that contain variables and holes. When
dealing with open systems it is common to define simulation in terms of a sim-
ulation relation. We rely on a classical notion of simulation and perform the
same extension as in [6], i.e., we start from a simulation relation and add holes
and symbolic. The idea is to consider two configurations related by a relation; if
one state can do a transition, then the other can also make this transition. Like
for bisimulation, a simulation relation characterises when two states are related,
and this characterisation is expressed as a predicate on the variables of the two
automata. Simulation defines conditions on a relation R such that R(s1, s2) is
a predicate (possibly involving variables of the automata) that is true when the
state s1 of A1 simulates the state s2 of A2.

However here we want to build a simulation relation that also guarantees that
no deadlock is introduced when refining the automaton. This property is quite
frequent in simulation relation, and referred to as lack of new deadlocks [20] or
complete simulation [23]. The notion of deadlock should however be specialised
to our OA. Indeed, it is not very useful to check the existence of a transition,
instead it makes more sense to use the guards to check if a transition can be
taken. We thus define a deadlock reduction criterion based on how the outgoing
transitions are guarded. As such, a simulation does not introduce deadlocks if
in the conditions where no transition is possible in the refined automaton, no
transition were already possible in the more general one. More formally, for any
pair of states s1 and s2 we introduce a criterion of the form:

@(s1, s2) P S1 × S2,

V1 Z V2 |“
(

R(s1, s2) ∧ ¬
(ł

t1POT(s1)

guard(t1)
)

“⇒ ¬
(ł

t2POT(s2)

guard(t2)
))

Which can be rewritten as:

@(s1, s2)PS1×S2, V1 ZV2 |“
(
R(s1, s2) “⇒

(ł

t1POT(s1)

guard(t1)
)

∨¬
(ł

t2POT(s2)

guard(t2)
))

Refinements for Open Automata 21

Both statements being equivalent, as each of them may reveal more intuitive
than the other in different situations, we use them interchangeably. We can now
state the definition of simulation between OA that have the same set of holes.

Definition 8 (Hole-equal simulation). Consider two OA with identical set
of holes: A1 “ 〈S1, s01, V1, σ01, J, T1〉 and A2 “ 〈S2, s02, V2, σ02, J, T2〉, the rela-
tion on configurations R : S1 × S2 → FV1ZV2 is a hole-equal simulation from A1

to A2 if the following conditions hold :

(1) σ01 Z σ02 |“ R(s01, s02)
(2) @(s1, s2) P S1 × S2,

(3) Deadlock reduction:

@(s1, s2)PS1×S2, V1ZV2 |“
(
R(s1, s2) “⇒

(ł

t1POT(s1)

guard(t1)
)
∨¬

(ł

t2POT(s2)

guard(t2)
))

If there is a hole-equal simulation from A1 to A2, then we say that A2

simulates A1; we denote it A2 ď A1.

The first and second conditions coincide with the natural way to prove induc-
tively that an automaton simulates another by starting with the initial state. The
third condition ensures that simulation prevents the introduction of deadlocks.
Similarly to bisimulation, the second condition states that, for any transition of
the simulating automaton A1, it corresponds to a transition of the automaton
A2 that does the same thing and ends up in a similar state. However a family is
needed in A2 because of the symbolic nature of transitions, and because depend-
ing on the values of the variables, t1 may correspond to different transitions in
A2. Our definition captures a simple simulation for OA with the same holes
that is more expressive than a strict simulation since it matches a transition
with a family of transitions. For example, with such a relation we are able to
check the simulation between two OA that differ by duplicated states, removed
duplicated transitions, reinforced guards, different variables, etc. We will show in
Sect. 5 that this simulation relation has good properties in terms of transitivity,
compositionality, and reflexivity.

Example 3. To illustrate the simulation of OA, we consider a variation on
the prod-cons example. Namely, we suppose that the two processes P and Q
communicate through a one-place buffer. Figure 5 shows the OA modelling this

22 R. Ameur-Boulifa et al.

simpler version of the system, that we refer to as simprod-cons. We can easily
check that this automaton simulates the one of Fig. 2. Indeed, one can see that
R “ {(r0, s0)�Ñl “ f, (r0, s1)�Ñf “ l ` 1%N} is a simulation relation. It follows
that simprod-cons ď prod-cons. 	

The simulation relation defined above is insufficient in the setting of compo-
sition which is the main advantage of the OA-based approach. Indeed, it should
be possible to refine an automaton by filling its hole, providing a concrete view
of a part of the application that was not specified originally. More generally, it
should be possible to relate automata that do not have the same holes because
composition is a crucial part of system specification. However, filling holes can
result in a system with more or less holes than the original system because the
plugged subsystem can contain itself many holes. Next section defines a more
powerful simulation relation able to reason on automata with different sets of
holes.

4 A Simulation Relation that Takes Holes into Account

This section extends the preceding relation to automata where the set of holes
is not the same. This is particularly useful to state whether the automaton
after composition is a simulation of the original automaton or not. Indeed, when
composing the set of holes changes. Being able to compare automata with only
some of their holes in common seems useful in general.

One major challenge in the extension of simulation to different sets of holes
is to maintain a form of transitivity while being able to take into account the
actions of some of the holes. A naive definition of simulation would ensure that
only the holes that are identical in the two OA are taken into account in the
simulation. Unfortunately, considering all the common holes does not ensure
transitivity of the simulation for the following reason. If A1 simulates A2 and A2

simulates A3, and one hole j appears in A3 and in A1 but not in A2 then we have
no guarantee on the way A1 and A3 take the actions of this hole into account,
thus a simulation between and A1 and A3 would require conditions involving
actions of the hole j which cannot be ensured. The way we solve this issue is
to remember in the simulation relation which holes have been compared. This
makes the relation parameterised by a subset of the set of holes that belong to

Fig. 5. The simprod-cons OA: the system using one-place buffer.

Refinements for Open Automata 23

the two automata that we want to take into account. This way, in the example
above, we would have no guarantee on actions the hole j by transitivity but can
state a simulation relation with guarantees on the actions of the other holes.

In the following definition we add a parameter H which is the set of holes
tracked by the simulation relation and adapt the definition by ignoring actions
of the holes that are not in H.

Consequently, there is no guarantee related to the actions of the holes outside
H. We provide compositionality properties when plugging an automaton inside
a hole in H but cannot state anything when plugging an automaton outside H.
The principle is that any property concerning holes that are not in H should be
proven specifically for the considered automaton or the considered composition
of automata.

Definition 9 (Hole-tracking simulation). For two OA
A1 “ 〈S1, s01, V1, σ01, J1, T1〉 and A2 “ 〈S2, s02, V2, σ02, J2, T2〉, A1 is a simula-
tion of A2 tracking holes H, noted A1 ďH A2, with H Ď J1 ∩ J2, if there is a
relation on configurations R : (S1 × S2) → FV1ZV2 such that3:

(1) σ01 Z σ02 |“ R(s01, s02)
(2) @(s1, s2) P S1 × S2,

(3) Deadlock reduction:

@(s1, s2)PS1×S2, V1ZV2 |“
(
R(s1, s2) “⇒

(ł

t1POT(s1)

guard(t1)
)
∨¬

(ł

t2POT(s2)

guard(t2)
))

Note that every action of the holes outside H is unconstrained according to the
simulation relation.

Property 1 (Relating simulations). Hole-equal simulation is a particular case of
hole-tracking simulation when J1 “ J2 “ H.

In particular, if an OA has no hole, the two definitions are equivalent and
result in a “symbolic simulation”, if additionally there is no variable in the OA,
this corresponds to classical simulation.

3 Note that the definition below is identical to the hole equal simulation except ∩H is
added in a few places.

24 R. Ameur-Boulifa et al.

Example 4. Consider the automata of Examples 1 and 3. As we saw above,
simprod-cons ď prod-cons, therefore prod-cons ď{P,Q} simprod-cons.

Property 2 (Tracked holes). By construction, if an automaton is the simulation
of another one, it is also a simulation by tracking less holes.

A1 ďH A2 ∧ H ′ Ď H “⇒ A1 ďH′ A2

Now that we have a simulation relation that takes both variable parame-
ters and process parameters into account, we would like to ensure that it has
properties one would expect for a simulation relation.

5 Properties of Our Simulation Relations

Before reasoning on the properties of simulation, we need to introduce one addi-
tional notion that characterises when the composition of two automata does not
introduce new blocked transitions.

5.1 Non-blocking Composition

Unfortunately, the deadlock reduction property in the definition of simulation is
not compositional: the composition operator can itself introduce a deadlock. In
other words, when filling the hole of two related automata with a third one, even
if there is a deadlock reduction between the two original automata, there might
not be a deadlock reduction in the composed ones. The same problem may arise
when two related automata are composed in the same hole of a third one.

This creates a conflict between deadlock reduction and the properties involv-
ing composition. We call non-blocking composition a composition that can safely
be used to compose OA that are involved in a deadlock reducing relation.

Definition 10 (Non-blocking composition). Consider two OA:
A1 “ 〈S1, s01, V1, σ01, J1, T1〉 and A2 “ 〈S2, s02, V2, σ02, J2, T2〉. Let A be the OA
resulting from the composition A “ A1[A2/k] “ 〈S, s0, V, σ0, J, T〉. The compo-
sition A1[A2/k] is non-blocking if A has a reachability predicate such that, for
each reachable configuration, if there is a possible transition in A1 then there is
a possible transition in A:

@s “ (s1, s2) P S, V Z
⊎

tPOT(s1)

vars(t) |“
(

�A(s) ∧
ł

tPOT(s1)

guard(t) “⇒
ł

tPOT(s)

guard(t)
)

Like in the definition of simulation (Definition 8) we use guards to ensure that
the transition can occur. In general, one would not want to only consider non-
blocking composition as it may reveal a bit restrictive, but it is the best necessary
condition that we could identify for compositionality of simulation. It will be
used to prove composition theorems given below. In absence of non-blocking
composition, simulation may also be checked specifically for a given composed
automaton.

Refinements for Open Automata 25

5.2 Properties

We now state the properties of our simulation, their formal proofs can be found
in the extended version of this paper [16]. We express these properties in terms
of hole-tracking simulation because, thanks to Property 1 all the properties of
hole-tracking simulation are also valid for hole-equal simulation. The first crucial
theorem of simulation is that it is a preorder on the set of OA. This latter enables
stepwise refinement.

Theorem 1 (Simulation is a preorder). Hole-tracking simulation is reflex-
ive and transitive: it is a preorder on the set of OA.

Proof sketch. The relation ďH is reflexive, A ďH A. This is shown by consider-
ing the relation R such that R(s1, s2) � s1 “ s2 ∧

∧

vPvars(s1)
v “ v we can prove the

conditions for Definition 9. In [16], we give proof of transitivity. It is done classi-
cally by identifying the relation between A1 and A3 that is a simulation. What
is less classical is the definition of this relation because it is a boolean formula.
For each couple of states s1 and s3 of A1 and A3 we build a formula that defines
the simulation. To do this, we take the disjunction of formulas relating s1 and
s3, and passing by all states s2 of A2. More precisely, we define a relation of the
following form:

R13(s1, s3) “
ł

s2PS2

(R12(s1, s2) ∧ R23(s2, s3))

We then prove that this relation is a simulation, according to Definition 9. 	

The next theorem states that if two automata are in simulation relation and

the same automaton is placed in the same hole of the two automata, then the
simulation is preserved. This is the first step toward proving that simulation
is compositional in the sense that it is sufficient to prove simulation for the
composed automata separately to obtain a simulation relation.

Theorem 2 (Context refinement). Let A1, A2 and A3 be three OA with
A1 ďH A2. Let J3 be the set of holes of A3 and suppose that k P H. Suppose
additionally that A1[A3/k] is non-blocking. We have:

A1[A3/k] ďJ3ZH\{k} A2[A3/k]

Proof sketch. The proof relies on a simulation relation that we consider is the
one that makes A1 and A2 similar, complemented with identity of configura-
tions for A3. Then, by construction, all transitions of the composed automaton
A1[A3/k] are specified by open transitions of A1. For the transitions that do not
involve hole k, the transition of A1[A3/k] is the same and simulation between
A1 and A2 allows us to conclude directly. If the hole k is involved the considered
relation implies that valuations in A3 are equal (i.e., the value for each variable
are the same in both valuations), after a transition we should obtain “equal” val-
uations because post-conditions are deterministic. The requirement “A1[A3/k]
is non-blocking” ensures the deadlock reduction property holds. More precisely,
if A1[A3/k] is stuck, then A1 is stuck, and thus A1[A2/k] is also stuck. 	

26 R. Ameur-Boulifa et al.

Example 5. Consider again the prod-cons and simprod-cons automata given
in the examples above. Since prod-cons ď{P,Q} simprod-cons, then accord-
ing to Theorem 2, prod-cons[producer/P] ď{Q} simprod-cons[producer/P].
The automaton of prod-cons[producer/P] is shown in Fig. 4. The automaton
resulting from the composition of simprod-cons and producer is bigger and
not shown here. 	

Theorem 3 (Congruence). Let A1, A2 and A3 be three OA with A2 ďH A3.
Let J1 be the set of holes of A1 and suppose that k P J1. Suppose additionally
that the composition A1[A2/k] is non-blocking. We have:

A1[A2/k] ďJ1ZH\{k} A1[A3/k]

Consequently, as the simulation is transitive we can compose the previous
theorems and state the following:

Theorem 4 (Composability). Let A1, A2, A3 and A4 be four OA with
A1 ďH A2 and A3 ďH′ A4. Suppose that k P H. We have:

A1[A3/k] ďHZH′\{k} A2[A4/k]

Example 6. As an example of the use of this theorem, if we design a refined version
of the producer process of Example 2 called Refproducer. According to Theorem
4, we have prod-cons[producer/P] ď{Q} simprod-cons[Refproducer/P].

Note that the substitution operation can be extended to a multiple substitu-
tion that fills several holes at the same time, and the theorems can be adapted
accordingly.

6 Related Work

The origins of refinement are in the approach of programming that aims to
provide solid foundations for building correct programs [12]. Many work con-
tributed to the development of elaborated notions of refinement in various area
(e.g. [1,7,8,10]). In the context of process algebra, refinement between processes
can be defined in terms of simulations relation (e.g. ([19,22]). However, the con-
cept of simulations presented so far has focused on the refinement of systems that
are inherently closed, i.e., systems which are bounded and without environment,

The simulation ensures the preservation of safety properties as deadlock-
freeness and, more generally, all linear temporal logic properties [1,20]. The
difference between the existing refinement principles have been studied in [13],
for example the authors explain in what sense failure semantics is different from
(bi)simulation in the compared systems and properties ensured. In this paper
we particularly focus on the compositionality of simulation-based refinement.

There are not a lot of works that study refinement for open systems. Defin-
ing refinement of open systems as trace inclusion is addressed as a notion of
subtyping in type theory (e.g. [9,14]). The definition of refinement is based on

Refinements for Open Automata 27

a connection between session types and communicating automata theories –
a notion of session automata based on Communicating Finite-State Machines,
that are used for modelling processes communicating through FIFO channels.
The refinement of open systems is also defined in terms of alternating simulation
[3,4]. Alternating simulation is originating from the game theory [2], it allows
the study of relation between individual components by viewing them as alter-
nating transition systems. In particular, a refinement of game-based automata
expresses that the refined component can offer more services (input actions)
and fewer service demands (output actions). However, the composition of such
automata may lead to illegal states, where one automaton issues an output that
is not acceptable as input in the other one. The theory of alternating simulation
provides an optimistic approach to compute compatibility between automata
based on the fact that each automaton expects the other to provide legal inputs,
i.e., two components can be composed if there is an environment where they can
work together. Our approach has some commonalities with the above mentioned
simulation [3]: both are process-oriented approaches even if they are not based
on the same notion of simulation, and both include in the model how to com-
pose and interact with processes that are accepted as parameters. Nevertheless,
they differ in that our approach focuses on the compositional properties of the
simulation, and not on the fact that entities can be composed.

Previous works on OA focused on equivalence relations compatible with com-
position. In [18], a computable bisimulation is introduced, while in [6] a weak
version of the bisimulation is introduced. In this paper we tackle the refinement
relation in the form of simulation, as is the case for the corresponding relations
on labelled transition systems [8]. Unlike the standard simulation we deal with
symbolic and open models. In [25], the authors exploit transition systems to
reason about the systems that are partially specified by using variables, making
the state space potentially infinite.

Some work target component-based refinement with the concern of preserving
deadlock freedom (e.g. [11,20]). These works are not concerned with the theory
of open symbolic systems, and therefore do not focus on the same modularity as
we do, in particular we provide preservation of refinement by composition.

7 Conclusion

In this article we investigated the notion of refinement for a symbolic and open
model: open automata. OA are convenient for compositional software verifica-
tion. Indeed, OA model parallel systems that are parameterised both by the use
of variables and by the possibility to compose automata. The formalism supports
compositional specification through the simulation paradigm. In this paper, we
introduce a refinement relation between open automata. It relies on a simulation
relation between the two automata; it specifies that the refined process must fol-
low the behaviour of the simulated one. We finally showed that simulation is a
preorder that is preserved by composition, both when filling a hole and when
placing automata in comparable contexts.

28 R. Ameur-Boulifa et al.

References

1. Abrial, J.R.: The B-book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39910-0 12

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.)
Proceedings of the 8th European Software Engineering Conference held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, September 10–14, 2001, pp. 109–120. ACM
(2001). https://doi.org/10.1145/503209.503226

4. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

5. Ameur-Boulifa, R., Henrio, L., Kulankhina, O., Madelaine, E., Savu, A.:
Behavioural semantics for asynchronous components. J. Logical Algeb. Methods
Program. 89, 1–40 (2017). https://doi.org/10.1016/j.jlamp.2017.02.003, https://
www.sciencedirect.com/science/article/pii/S2352220817300287

6. Ameur-Boulifa, R., Henrio, L., Madelaine, E.: Compositional equivalences based on
Open pNets. J. Logical Algeb. Methods Program. 131, 100842 (2023). https://doi.
org/10.1016/j.jlamp.2022.100842, https://www.sciencedirect.com/science/article/
pii/S2352220822000955

7. Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Sci. Comput.
Program. 13(2), 133–180 (1990). https://doi.org/10.1016/0167-6423(90)90069-P,
https://www.sciencedirect.com/science/article/pii/016764239090069P

8. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-simulation is not ready to
express a modular refinement relation. In: Maibaum, T. (ed.) FASE 2000. LNCS,
vol. 1783, pp. 266–283. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46428-X 19

9. Bravetti, M., Zavattaro, G.: Asynchronous session subtyping as communicating
automata refinement. Softw. Syst. Model. 20(2), 311–333 (2021). https://doi.org/
10.1007/s10270-020-00838-x

10. Butler, M.J., Grundy, J., L̊angbacka, T., Ruksenas, R., von Wright, J.: The refine-
ment calculator: Proof support for program refinement. In: Groves, L., Reeves, S.
(eds.) Proceedings of the Conference on Formal Methods Pacific 1997, Springer
Series in Discrete Mathematics and Theoretical Computer Science, 01 January
1997, pp. 40–61 (1997). https://eprints.soton.ac.uk/250550/

11. Dihego, J., Sampaio, A., Oliveira, M.: A refinement checking based strategy for
component-based systems evolution. J. Syst. Softw. 167, 110598 (2020). https://
doi.org/10.1016/j.jss.2020.110598

12. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

13. Eshuis, R., Fokkinga, M.M.: Comparing refinements for failure and bisimulation
semantics. Fundam. Inf. 52(4), 297–321 (2002)

14. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2–3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

15. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science
138(2), 353–389 (1995). https://doi.org/10.1016/0304-3975(94)00172-F, https://
www.sciencedirect.com/science/article/pii/030439759400172F, meeting on the
mathematical foundation of programing semantics

https://doi.org/10.1007/978-3-540-39910-0_12
https://doi.org/10.1145/503209.503226
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1016/j.jlamp.2017.02.003
https://www.sciencedirect.com/science/article/pii/S2352220817300287
https://www.sciencedirect.com/science/article/pii/S2352220817300287
https://doi.org/10.1016/j.jlamp.2022.100842
https://doi.org/10.1016/j.jlamp.2022.100842
https://www.sciencedirect.com/science/article/pii/S2352220822000955
https://www.sciencedirect.com/science/article/pii/S2352220822000955
https://doi.org/10.1016/0167-6423(90)90069-P
https://www.sciencedirect.com/science/article/pii/016764239090069P
https://doi.org/10.1007/3-540-46428-X_19
https://doi.org/10.1007/3-540-46428-X_19
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/s10270-020-00838-x
https://eprints.soton.ac.uk/250550/
https://doi.org/10.1016/j.jss.2020.110598
https://doi.org/10.1016/j.jss.2020.110598
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/0304-3975(94)00172-F
https://www.sciencedirect.com/science/article/pii/030439759400172F
https://www.sciencedirect.com/science/article/pii/030439759400172F

Refinements for Open Automata 29

16. Henrio, L., Madelaine, E., Ameur-Boulifa, R., Corradi, Q.: Refinements for Open
Automata (Extended Version). Technical report RR-9517, Inria - Research Centre
Grenoble - Rhône-Alpes (2023), https://inria.hal.science/hal-04193421

17. Henrio, L., Madelaine, E., Zhang, M.: A theory for the composition of concurrent
processes. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
175–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 12

18. Hou, Z., Madelaine, E.: Symbolic bisimulation for open and parameterized systems.
In: Proceedings of the 2020 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, New York, NY, USA, pp. 14–26. PEPM 2020, Association
for Computing Machinery (2020). https://doi.org/10.1145/3372884.3373161

19. Jifeng, H.: Process simulation and refinement. Form. Asp. Comput. 1(1), 229–241
(1989). https://doi.org/10.1007/BF01887207

20. Kouchnarenko, O., Lanoix, A.: How to verify and exploit a refinement of
component-based systems. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS,
vol. 4378, pp. 297–309. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70881-0 26

21. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, USA (1989)
22. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer, Hei-

delberg (1980). https://doi.org/10.1007/3-540-10235-3
23. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-

sity Press, Cambridge (2012) https://hal.inria.fr/hal-00907026
24. Wang, B., Madelaine, E., Zhang, M.: Symbolic Weak Equivalences: Extension,

Algorithms, and Minimization - Extended version. Research Report RR-9389, Inria
& Université Cote d’Azur, CNRS, I3S, Sophia Antipolis, France; East China Nor-
mal University (Shanghai) (2021). https://hal.inria.fr/hal-03126313

25. Zhang, L., Meng, Q., Lo, K.: Compositional abstraction refinement for component-
based systems. J. Appl. Math. 2014, 1–12 (2014). https://doi.org/10.1155/2014/
703098

https://inria.hal.science/hal-04193421
https://doi.org/10.1007/978-3-319-39570-8_12
https://doi.org/10.1145/3372884.3373161
https://doi.org/10.1007/BF01887207
https://doi.org/10.1007/978-3-540-70881-0_26
https://doi.org/10.1007/978-3-540-70881-0_26
https://doi.org/10.1007/3-540-10235-3
https://hal.inria.fr/hal-00907026
https://hal.inria.fr/hal-03126313
https://doi.org/10.1155/2014/703098
https://doi.org/10.1155/2014/703098

The Cubicle Fuzzy Loop: A Fuzzing-Based
Extension for the Cubicle Model Checker

Sylvain Conchon(B) and Alexandrina Korneva

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-sur-Yvette, France

sylvain.conchon@universite-paris-saclay.fr

Abstract. This paper presents the Cubicle Fuzzy Loop (CFL), a
fuzzing-based extension for Cubicle, a model checker for parameterized
systems.

To prove safety, Cubicle generates invariants, making use of forward
exploration strategies like BFS or DFS on finite model instances. How-
ever, these standard algorithms are quickly faced with the state explosion
problem due to Cubicle’s purely nondeterministic semantics. This causes
them to struggle at discovering critical states, hindering invariant gener-
ation.

CFL replaces this approach with a powerful DFS-like algorithm
inspired by fuzzing. Cubicle’s purely nondeterministic execution loop is
modified to provide feedback on newly discovered states and visited tran-
sitions. This feedback is used by CFL to construct schedulers that guide
the model exploration. Not only does this provide Cubicle with a bigger
variety of states for generating invariants, it also quickly identifies unsafe
models. As a bonus, it adds testing capabilities to Cubicle, such as the
ability to detect deadlocks.

Our first experiments have yielded promising results. CFL effectively
allows Cubicle to generate crucial invariants, useful to handle hierarchi-
cal systems, while also being able to trap bad states and deadlocks in
hard-to-reach areas of such models.

Keywords: Fuzzing techniques · Model Checking · Parameterized
Systems

1 Introduction

Cubicle [3,5] is a model checker for verifying safety properties of array-based sys-
tems. This is a syntactically restricted class of parametrized transition systems
with states represented as arrays indexed by an arbitrary number of processes
(or nodes) [6]. Distributed protocols, cache coherence, and mutual exclusion
algorithms are typical examples of such systems.

Cubicle is based on the Model Checking Modulo Theory (MCMT) frame-
work [7] where states and transitions are both represented as formulas in a par-
ticular fragment of first-order logic. To verify safety, Cubicle checks that unsafe
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 30–46, 2023.
https://doi.org/10.1007/978-3-031-47115-5_3

https://zenodo.org/record/8169692
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_3

The Cubicle Fuzzy Loop 31

states are not reachable using a symbolic backward reachability analysis: start-
ing from a user-defined formula describing unsafe states, it iteratively computes
its pre-image closure (understood as unreachable states), making use of an SMT
back-end for termination and safety tests.

In order to speed up safety proofs, Cubicle supports invariant synthesis [4].
For that, it first computes a set M of reachable states using a forward explo-
ration for a finite instance of the system (with a fixed number of processes).
The current strategies implemented in Cubicle for this forward search are BFS
and DFS (users can choose which strategy to use). Then, Cubicle performs a
backward reachability analysis of the parameterized system. At each loop iter-
ation, Cubicle computes an over-approximation of pre-images and checks that
they represent states that are not in M. All these approximations, which can be
seen as candidate invariants, are model checked together with the original safety
property. Sometimes approximations can be too coarse, leading to false positives
known as spurious traces. When these occur, Cubicle is forced to backtrack in
order to ensure completeness.

The strength of this method lies in the fact that finite instances are generally
good oracles for guiding the choice of approximations, as they can be seen as
concentrated knowledge of the system. However, the method only works if the
set M is sufficiently large and contains crucial system states. If this is not the
case, Cubicle will backtrack very often during its backward analysis, which will
likely prevent it from completing its proof.

Unfortunately, the space of states M to be visited for a finite instance can
grow exponentially, even for a small number of processes. This is the case, for
example, for hierarchical systems such as cache coherence algorithms, where it
is necessary to explore execution traces deep enough to visit significant states.
For such systems, Cubicle’s current exploration strategies are either unable to
go deep enough into the system (BFS), or unable to explore subtle interleavings
of component executions (DFS). In both cases, Cubicle is forced to backtrack
often during its backward analysis.

In this paper, we describe an algorithm for a new forward exploration strat-
egy for Cubicle inspired by fuzzing techniques [8,9,11]. This strategy not only
makes it possible to explore very deep traces, but also to discover extremely
rare events in a system, such as synchronization points resulting from highly
improbable interleavings. The relevance of the states visited by this approach
is such that it enables Cubicle to deduce invariants for systems that previously
ranged from difficult to impossible to analyze. Furthermore, not only does this
new exploration technique provide Cubicle with a bigger variety of states for
inferring invariants, it also quickly identifies unsafe models. As a bonus, it adds
testing capabilities to Cubicle, such as the ability to detect deadlocks.

To summarize, we make the following contributions:

1. We define the Cubicle Fuzzy Loop (CFL), a new (forward) exploration algo-
rithm for Cubicle based on fuzzing techniques, for which we present and
discuss different heuristics.

32 S. Conchon and A. Korneva

2. We have implemented CFL in a new prototype version of Cubicle. We are
experimentally evaluating the benefits of CFL on representative examples of
highly concurrent and hierarchical systems.

3. Finally, we demonstrate experimentally that CFL can be easily extended to
detect deadlocks, which is not possible with the current version of Cubicle.

The rest of the paper is organized as follows: In Sect. 2, we recall the back-
ward reachability algorithm of Cubicle and its (candidate) invariant inference
mechanism. In Sect. 3, we illustrate how CFL works on a simple example that is
representative of systems that are difficult for Cubicle to analyze. We formalize
CFL in Sect. 4. We show and discuss experimental results in Sect. 5. We conclude
and present related works in Sect. 6.

2 Backgound on Cubicle

Cubicle is based on MCMT, a declarative framework for parameterized systems
in which (sets of) states, transitions and properties are expressed in a particular
fragment of first order logic with enumerative data types. Systems expressible
in this framework are called array-based transition systems, because their states
can be seen as a set of unbounded arrays (denoted by capital letters X,Y, . . .)
whose indexes range over elements of a parameterized domain, called proc, of
process identifiers (denoted by i, j, ...). Given an array variable X and a process
variable i, we write X[i] for an array access of X at index i. Systems may also
contain variables but, from a theoretical point of view, a variable is seen as an
array with the same value in all its cells. Arrays may contain integers or real
numbers, booleans (or constructors from an enumerative user-defined datatype),
or process identifiers.

A parameterized array-based system S is defined by a triplet (X , I, τ) where
X is a set of array symbols, I is a formula describing the initial states of the
system and τ is a set of (possibly quantified) formulas, called transitions, relating
states of S. The formula I is a universal conjunction of literals of the form
∀i.

∧
n �n which characterizes the values for some array entries. Each literal �n

is a comparison (=, �=, <, ≤) between two terms. A term can be a constant
(integer, boolean, real, constructor), a process variable (i), an array access X[i]. A
transition t ∈ τ is represented by a formula parameterized by the set of variables
before and after the transition (X and X ′) and prefixed by the existentially
quantified process variables involved in the transition:

t(X ,X ′) = ∃i.Δ(i) ∧ γ(i,X)
∧

∧

X′∈X ′
∀k.

∧
n (Cn(i, k,X) ⇒ X′[k] = vn(i, k,X))

where Δ(i) is the conjunction of all disequations between the variables in i
(to ensure that variables i denote distinct processes) the formula γ(i,X) is
a conjunction of literals that represents the transition’s guard, i.e. the condi-
tions that must be met for the transition to be triggered and the conjunction

The Cubicle Fuzzy Loop 33

∧
n (Cn(i, k,X) ⇒ X′[k] = vn(i, k,X)) represents the updated value of each array

X defined by a case-split expression, where each conjunction of literals Cn(i, k,X)
and term vn(i, k,X) may depend on i, k and X .

In Fig. 1, we give an example of an array-based system implementing a simple,
slightly modified, Dekker mutual exclusion algorithm. The system keeps track
of the status S[i] of a process i. A process can have one of three statuses:

– Idle: the process is not doing anything in particular
– Want: the process has requested access to the critical section
– Crit: the process has been granted access to the critical section

As denoted by the formula Init in Fig. 1, the status of every process i is Idle in
the initial state of the system. There is also a variable Turn, keeping track of who
among those who’ve requested access can enter the critical section (the content
of Turn is not specified in the Init formula). The three transitions Req, Enter and
Exit describe the behavior of any process i. For example, transition Enter should
be read as: if there exists a process i such that S[i] = Want and Turn = i, then
the new value of the array S, called S’, is S[i ← Crit] which succinctly denotes
an array equal to S, except for cell i, which is now equal to Crit.

Fig. 1. Modified Dekker mutual exclusion algorithm

Safety properties to be verified on array-based systems are expressed in their
negated form as formulas that represent unsafe states. Each unsafe formula ϕ(X)
must be a cube, i.e., have the form ∃k.(Δ(k)∧

∧
m �m(k,X)), where each literal

�m(k,X) may depend on k and array symbols in X . For example, the Unsafe
formula in Fig. 1 describes the bad states of the Dekker algorithm, which cor-
respond to states where two distinct processes have been granted access to the
critical section simultaneously.

For a state formula ϕ and a transition t ∈ τ , let pret(ϕ) be the formula
describing the set of states from which a ϕ-state can be reached in one t-step.
The pre-image of a formula ϕ(X) by a transition t is given by:

pret(ϕ)(X) = ∃X ′. t(X ,X ′) ∧ ϕ(X ′)

34 S. Conchon and A. Korneva

The pre-image closure of ϕ w.r.t a set of transitions τ , denoted by Pre∗
τ (ϕ), is

defined as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pre0τ (ϕ) � ϕ

Pren
τ (ϕ) �

⋃
{pret(ψ) | ψ ∈ Pren−1

τ (ϕ), t ∈ τ}

Pre∗
τ (ϕ) �

⋃
k∈N

Prek
τ (ϕ)

and the pre-image of a set of formulas V is defined by Pre∗
τ (V) =⋃

ϕ∈V Pre∗
τ (ϕ). We also write Preτ (ϕ) for Pre1τ (ϕ).

Given an array-based parameterized system S = (X , I, τ) and a set of unsafe
states represented by a cube U , we say that U is reachable if and only if
Pre∗

τ (U) ∧ I satisfiable. In order to decide if U is reachable or not, Cubicle
implements the symbolic backward reachability loop Bwd(S, U, dmax, k) given in
Algorithm 1. This function takes as input a parameterized system S, a cube
U , and two integers dmax and k. It starts by initializing a variable M with the
set FWD(dmax, k) of reachable states constructed by a forward exploration of the
reachability graph for k processes starting in a state defined by the formula
I(#1) ∧ · · · ∧ I(#k) and limited to depth dmax. FWD is not fixed and can be any
user-chosen forward exploration strategy (BFS, DFS, etc.).

Algorithm 1: Cubicle backward reachability loop
1 function Bwd(S, U, dmax, k) : begin
2 M := FWD(dmax,k);
3 V := ∅;
4 push(Q, U);
5 while not_empty(Q) do
6 ϕ := pop(Q);
7 if ϕ ∧ I satisfiable then
8 return unsafe

9 else if ϕ � V then
10 V := V ∪ {ϕ};
11 ψ := Approx(ϕ);
12 if M �|= ψ then
13 push(Q,Preτ (ψ))

14 else
15 push(Q,Preτ (ϕ))

16 return safe

Then, Bwd(S, U, dmax, k) computes the pre-image closure of U by maintaining
two collections of states:

The Cubicle Fuzzy Loop 35

– Q contains the (unsafe) states to visit (it is initialized with U)
– V is filled with the visited states (initially empty)

Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ϕ from Q
2. (safety test) check the satisfiability of ϕ ∧ I, i.e. determine if the states

described by ϕ intersect with the initial states I. If so, the system is declared
as unsafe

3. (fixpoint test) check if ϕ |= V is valid, i.e. determine if the states described
by ϕ have already been visited. If so, discard ϕ and go back to 1

4. (over-approximate) call function Approx to find an over-approximation of ϕ.
This step can be sophisticated or simple. For instance, one way to calculate
an approximation is to remove a (or multiple) literal(s) of ϕ.

5. (oracle test and pre-image) if ψ represents states not in M (M �|= ψ), then
compute the pre-image Preτ (ψ) and add these new (set of) states to Q. When
ψ appears in M (meaning it represents reachable states), then we keep ϕ, and
add the result of Preτ (ϕ) to Q.

If Q is empty at step 1, then all of the state space has been explored and the
system is declared safe. Note that the (non-trivial) fixpoint and safety tests are
discharged to an embedded SMT solver. Notice that the correctness of Bwd does
not depend on the content of M, which thus acts as an oracle and only impacts
the completeness of the algorithm.

3 Motivation

Cubicle’s current forward exploration strategies are extremely efficient, but have
their limitations. In this section we show how and where Cubicle struggles.

If we consider real-life concurrent systems and how they are built, there are
three prevailing features: (i) pipeline parallelism, (ii) synchronization barriers,
and (iii) nondeterminism. Pipeline parallelism breaks up a task into a sequence
of sub-tasks, where each one can be treated concurrently by the system. This is
done to improve performance by leveraging parallel processing. It complicates
system models, because it not only adds depth, since each sub-task becomes
an independent transition, it also introduces more interleavings to check. Syn-
chronization barriers are necessary to coordinate the multiple processes in a
concurrent system. For example processes may be required to be in a certain
configuration before gaining access to specific parts of the system. These condi-
tions can be very precise, which can lead to them appearing rarely. Last but not
least, nondeterminism is inherent to concurrent systems- processes can behave
independently or run tasks in parallel, and the order in which they do this can
differ from execution to execution, which again adds multiple branchings to a
model.

We condense these features into a specific pattern, shown in Fig. 2. There we
can see an initial node (at the top) with multiple arrows leading from it. This is

36 S. Conchon and A. Korneva

to simulate branching and nondeterminism, since a process at that stage would
be able to choose any of the arrows. After branching, we insert the pipeline -
multiple transitions to represent a task. This adds depth to our models. Note
that at any point, when a process gets finished with a sub-task, it can decide
to either continue forward to the next task, or go back. All of this culminates
with a synchronization barrier that demands processes behave a certain way to
be activated. It is important to note that while we constructed our pattern in
this order, in real life the elements can appear wherever and however often they
want. This pattern can also repeat itself, leading to hierarchical systems.

Fig. 2. Concurrent systems pattern

The problem is that this specific pattern and its repetition, so prevalent in
concurrent systems, is exactly at the root of Cubicle’s limitations. We converted
our pattern to Cubicle types and transitions, shown in Fig. 3. The branch tran-
sitions are to give a process initial choices. The transitions pipeline and task
simulate breaking up one task into multiple sub-tasks. Note that these transi-
tions can be repeated many times to complicate the system. We give an example
synchronization barrier transition sync. This transitions’s guard can easily range
from simple to more complex. When faced with this pattern, both of Cubicle’s
forward strategies face difficulties. BFS will be forced to run through every pos-
sible branching before being able to go down a level. The more branchings there
are, combined with an elevated number of processes, the longer BFS has to spend

The Cubicle Fuzzy Loop 37

Fig. 3. Pattern as Cubicle transitions

checking every one. And as we stated, this pattern can repeat itself, so the inter-
esting part of the system might be below the synchronization barrier, but BFS
will visit countless states before it even gets close to it. DFS handles this specific
problem better than BFS, as it privileges depth. But complicated interleavings
and algorithms that do not loop slow it down and lower its efficiency.

For example, we take the previous pattern and create a model for three
processes. We give a process four initial branch transitions (i.e. k = 4 in Fig. 3),
as well as four tasks decomposed into three sub-tasks each (i.e. m = 3 and
n = 4 in Fig. 3) and set a synchronization barrier that forces each of the three
process to be doing different tasks in order to be activated. We let BFS and DFS
each explore 1 000 000 states to see how often they visit the synchronization
barrier. This is important because activating the barrier means having access
to the potentially interesting transitions behind it. For 1 000 000 visited states,
both BFS and DFS visited the sync transition two times. This means that any
transitions that require sync to happen are barely ever visited.

We turn to fuzzing techniques to mitigate this problem. CFL’s goal is to
tackle this pattern by basically abandoning exhaustivity and skipping around
the system. CFL abandons exhaustivity because it does not try to methodically
explore every single path in the system - it tries to diversify the state space as
much as possible. The reason it skips around the system is that anytime a state
is visited by CFL, this state becomes an eligible initial state from which CFL can
explore. This means that CFL has a higher chance of directly accessing crucial

38 S. Conchon and A. Korneva

states and exploring from them. If we let CFL explore 1 000 000 states for the
above example, it visits the sync transition approximately 150 times.

4 Fuzzing Cubicle

In this section we discuss and formalize CFL, detailing how we draw from fuzzing
to create a new exploration strategy for Cubicle.

Fuzzing is essentially rapidly generating inputs for a program to see how it
reacts. If an input leads to new code coverage, that input is retained and later
mutated to generate new inputs that hopefully lead to more new code coverage.
We retain two key notions – new inputs and mutation – both of which we want
to incorporate into Cubicle. This is not straightforward, because Cubicle directly
contradicts both these notions.

Cubicle’s models have fixed initial states, meaning that any system explo-
ration starts from there. We cannot randomly generate these states, since we
cannot guarantee reachability. We also cannot take reachable states and mutate
them for the same reasons. To fix the input problem, CFL takes already visited
states and reuses them as the initial state. This guarantees that all initial states
are reachable. It also allows us to diversify the explored state space: any visited
state can become the initial state from which a system exploration is run.

However, setting the initial state isn’t enough. When inputs are mutated in a
fuzzer, the hope is that it will lead to new coverage and/or behavior fast. Simply
setting new initial states in Cubicle does not lead to that if the exploration itself
is not modified. The problem with the DFS and BFS strategies as they are now
in Cubicle is that they are exhaustive and provide no feedback while they run,
whereas we want something that might not provide exhaustivity, but will skip
around the system trying to visit as many interesting new states as possible.
This is why we have decided that since we cannot mutate states, we will mutate
the scheduler, i.e. change exploration tactics while CFL runs. CFL has multiple
exploration techniques, and each time an initial state is chosen, one of these
techniques is run. Before going into detail on the techniques themselves, it is
first necessary to describe how CFL treats states.

In CFL each state s is represented as a CFL node, a record containing the
following fields:

– state: the explicit representation of s where variables (or arrays) are mapped
to their values

– count: the number of times s has been visited
– exit_num: the number of exit transitions from s, i.e. the transitions with

guards evaluating to true in s
– exit_transitions: an explicit representation of the exit transitions from s

(represented by the name of the transitions and their arguments)
– exits_taken: which transitions have been taken from s
– exit_count: how many times each exit transition has been taken.

The Cubicle Fuzzy Loop 39

CFL essentially keeps track of two key pieces of information: a map V of vis-
ited explicit states mapped to their corresponding nodes, and a set P of potential
initial fuzzer nodes. Any time a new explicit state is visited its calculated fuzzer
node to is added to P and the mapping of the explicit state to the node is added
to V.

The reason we keep track of exit transitions is because they decide when a
node is no longer an interesting initial candidate. If every potential exit transition
has been taken, then that node can no longer offer any new information and can
be removed from P. The basic algorithm for CFL is given in Algorithm 2.

Algorithm 2: Basic CFL Algorithm

1 V := ∅ ;
2 P := ∅ ;
3 T := init_transitions(k);
4 U := all_unsafes(k);
5 Init := init_system(k);
6 P := P ∪ {Init};
7 while not_empty(P) do
8 n := choose_node(P);
9 explore := choose_strategy();

10 V,P := explore(n, U , T);
11 end

Initially, V and P start off empty. CFL explores the model for a given number
of processes k. It calculates all possible transitions for all processes on line 3.
For example if the model only contains a transition t(i) and CFL is run with
three processes, T with contain t(#1), t(#2), and t(#3). It does the same for
the unsafe formulas on line 4. The user-declared initial state is instantiated for
k processes on line 5 and is then added to P.

CFL then takes the form of a while loop that runs as long as there are still
potential initial nodes to process in P. During the loop, it first chooses a random
node from P, chooses a random exploration technique (described below), and
applies the technique to the node. Both V and P are modified as a result of this.
When choosing a random exploration technique, CFL has the choice between
six techniques, detailed below.

1. Random exploration: CFL chooses a number of steps and applies random
transitions to the starting node for that many steps.

2. Process sequences: CFL selects a random process, picks a number of steps,
and only moves that process forward for that amount of steps (or until it
can’t anymore)

3. Weighted decision: CFL grades potential steps using the following criteria
– this step will lead me to a never visited state

40 S. Conchon and A. Korneva

– this step means taking a transition that has never been taken by anyone
globally

– this step means taking a transition never taken from this node
These criteria are in order of importance - being able to visit a state that has
never been visited will outweigh the rest.

4. Maximizing randomness: a certain percentage of the time, CFL picks steps
that will give the most choices in the next step.

5. Limited BFS : runs a very limited depth BFS from the node
6. Unused exit : covers an exit that hasn’t been taken yet

Each technique follows the same basic algorithm, shown in Algorithm 3. It
first picks a random number s of steps (bound can be set by the user) to take
and sets the current step curr to zero. The environment env is set to the chosen
node, and all possible transitions from that node’s explicit state are kept in poss.
Then, while the current number of steps taken is less than the chosen s, each
technique does the following: on line 5, it picks a transition from all possible
transitions according to the current technique. So for example if the current
technique is Process sequences and the chosen process is #1, technique will
return a transition with #1 as an argument.

Algorithm 3: Basic exploration technique template

1 function explore(n, U , T) : begin
2 s := random_int(bound); curr := 0; env := n;
3 poss := env.exit_transitions;
4 while curr < s do
5 t := technique(poss);
6 clean_exits(env, t);
7 state := apply_transition(env, t);
8 check_unsafe(state, U);
9 try:

10 env := find(state, V);
11 env.count := env.count+ 1;
12 poss := env.exit_transitions;
13 curr := curr + 1;
14 catch NotFound :
15 poss := all_possible_transitions(state, T);
16 env := init_node(state, poss);
17 V := add(env, state, V);
18 P := P ∪ {env};
19 curr := curr + 1;
20 end
21 end
22 end

CFL cleans the aforementioned exit transitions in the fuzzer node on line 6.
For example if t is a transition that’s never been taken, the exits_taken field

The Cubicle Fuzzy Loop 41

will be modified in the node to include t. Then at line 7, the transition is applied
to the node and a new explicit state, state, is calculated. Line 8 checks state
against the unsafe formulas. How this is treated depends on how CFL is being
run. Our implementation allows CFL to be run in two different manners: (i) as
an oracle for the invariant generating algorithm and (ii) as a standalone fuzzer
to explore models. If the algorithm is running as an oracle, then encountering an
unsafe state immediately makes Cubicle return Unsafe. If CFL is running in a
standalone fashion, it only shows a warning, but does not stop. Then (lines 9–18)
the algorithm checks if a mapping from state to a node already exists in V. If
it does, then env is set to the existing node, with only its count being modified
and poss is set to the possible exits from that node. If a mapping doesn’t exist,
then poss is calculated, a fuzzer node is created, a mapping is added to V and
the node is added to P. When a node is initialized, count is set to 1, exit_num
is set to how many transitions are in poss, exit_transitions is set to poss,
exits_taken is empty, and exit_count has 0 for every possible transition.

5 Experimental Results and Discussion

CFL is implemented in Cubicle1. As mentioned in Sect. 3, there is a specific
recurring pattern in strongly concurrent and hierarchical models. We run our
benchmarks on examples that were originally used to run Cubicle’s benchmarks
(available on github1). The difference is that we have modified them to include
a layer of transitions as described in Fig. 2 and Fig. 3. All of our examples now
have 25 extra transitions to represent depth, branching, and piplining, as well
as one synchronization transition which requires that processes be in different
configurations throughout the model.

We compare several forward exploration strategies with our new CFL heuris-
tic: (i) Cubicle’s existing BFS and DFS strategies, both optimized for speed, (ii)
a random exploration strategy, i.e. one that starts at the initial state and ran-
domly chooses transitions, and (iii) CMurphi, an enumerative model checker [12]
developed on top of Murϕ, only used here to efficiently visit the state space. The
results of this comparison, excluding CMurphi, can be seen in Table 1. We discuss
CMurphi separately further down.

Each strategy is run for three processes and has the same amount of time
allocated for its forward exploration, noted in the Forward Time column. We then
compare how many states were visited (States column) and whether Cubicle was
able to prove safety before hitting the timeout criteria (Safe column). The total
time (forward + proof) is noted in the Total Time column for each strategy.
Each example was timed out after 5min. This was chosen due to the time taken
using CFL, as well as the number of proof nodes generated by Cubicle within
those 5min, compared in Table 2. The values underlined and in bold are where
Cubicle was successful in proving safety. We can see that the number of nodes
for the timed out examples is much higher than is necessary for Cubicle in the
cases where it quickly proves safety.
1 https://github.com/cubicle-model-checker/cubicle/tree/debugger.

https://github.com/cubicle-model-checker/cubicle/tree/debugger

42 S. Conchon and A. Korneva

Table 1. Comparing CFL with different forward strategies.

Model Forward Time BFS DFS Random CFL
States Safe Total Time States Safe Total Time States Safe Total Time States Safe Total Time

Dekker 10 s 466K T.O - 605K Yes 12.72 s 266K Yes 11.74 s 120K Yes 10.61 s
Germanish 10 s 424K T.O. - 593K Yes 12.91 s 261K Yes 11.94 s 120K Yes 10.78 s
Germanish2 10 s 315K T.O. - 515K Yes 12.26 s 244K Yes 11.92 s 115K Yes 10.75 s
Germanish4 10 s 287K T.O. - 547K Yes 14.54 s 186K T.O. - 110K Yes 11 s
German 10 s 312K T.O. - 547K Yes 16.25 s 207K Yes 13.55 107K Yes 12.23 s
German_Baukus 10 s 359K T.O. - 591L Yes 14.82 s 207K Yes 12.93 s 105K Yes 12 s
German_CTC 50 s 1 429K T.O. - 2 010K Yes 62.81 s 505K T.O. - 265K Yes 55.17 s
German_pfs 10 s 416K T.O. - 431K Yes 17.37 s 174K Yes 12.69 s 100K Yes 13.11 s
Szymanski_at 10 s 372K T.O. - 534K T.O. - 155K Yes 11.92 s 105K Yes 11.60 s
Szymanski_na 10 s 270K T.O. - 483K T.O. - 270K T.O. - 100K Yes 12.50 s
Bakery_lamport 40 s 1 565K T.O. - 2038K T.O. - 650K T.O. - 230K Yes 42.59 s
Flash_no_data 40 s 862K T.O. - 1 048K T.O. - 273K T.O. - 140K Yes 43.32 s

Table 2. Number of generated proof nodes for each strategy

Model BFS DFS Random CFL

Dekker 6904 4 4 4
Germanish 889 4 4 4
Germanish2 1770 4 4 4
Germanish4 2415 20 3255 20
German 2862 41 41 41
German_Baukus 2170 41 41 41
German_CTC 1500 61 1231 60
German_pfs 1121 44 44 44
Szymanski_at 2861 174 33 33
Szymanski_na 2061 210 510 43
Bakery_lamport 779 2189 230 16
Flash_no_data 1329 61 1227 37

Another problem is that, when it comes to Cubicle, models following patterns
like the one described above are a double-edged sword. When they are safe, a
proof will take a long time, and when they are unsafe, a counter-example might
also take a long time. Both of these things are impacted by the number of states
visited during the forward exploration. More visited states does not necessarily
imply a faster proof, since Cubicle will have to compare its invariant candidates
to every state. The key is visiting fewer, but more important, states. Cubicle
is designed to prove safety, and while it will give a counter-example should the
system be unsafe, this can take an arbitrarily long time in huge systems. The
forward and backward algorithm face the same problem in essence- huge safe

The Cubicle Fuzzy Loop 43

models take too much time to explore forward, and huge unsafe models take too
much time to trace backward. Running a time-and-calculation-heavy proof only
to be hit with an “Unsafe” for trivial reasons is something we want to avoid.
This problem is in the same family as trying to prove safety when the model
deadlocks. When Cubicle says that a model is safe, it is safe - there is no way
to get from the initial state to the unsafe state. However, the reason for that
could be a correctly written model, or a model that deadlocks- it is natural that
an unsafe state is unreachable if the model is incapable of taking any steps.
The inclusion of CFL in Cubicle allows us to tackle both of these problems.
We buried unsafe states deep within our test models and launched CFL against
Cubicle’s normal backward algorithm, without any additional forward strategies
to accelerate invariant finding. The results can be seen in Table 3. Once again
timeout was set to five minutes. Deadlocks were a bit harder to compare - while
it was fairly easy to deadlock our models, it wasn’t simple to pinpoint the specific
state that could be classified as a deadlock. We provide deadlock detection results
for CFL in Table 4 without comparing them to Cubicle.

Table 3. Unsafe: backward vs. CFL

Model Backward CFL

Dekker T.O. 0.3 s
Germanish T.O. 0.7 s
Germanish2 T.O. 0.2 s
Germanish4 T.O. 0.7 s
German T.O. 0.4 s
German_Baukus T.O. 0.4 s
German_CTC T.O. 0.5 s
German_pfs T.O. 0.3 s
Szymanski_at T.O. 2 s
Szymanski_na T.O. 2 s
Bakery_lamport T.O. 1.5 s
Flash_no_data T.O. 3 s

The reason CMurphi is excluded from Table 1 is due to the fact that we were
unable to find an option that would force CMurphi to run for the allocated time.
For each of our models, CMurphi raised the following error: “Internal Error: Too
many active states.” For the sake of fairness, we rerun CFL, manually setting the
limit for each model to how many states were visited by CMurphi. The results
for this are seen in Table 5.

44 S. Conchon and A. Korneva

Table 4. Deadlock detection

Model CFL

Dekker 0.1ms
Germanish 0.5 s
Germanish2 0.2 s
Germanish4 0.5 s
German 0.4 s
German_Baukus 0.4 s
German_CTC 0.4 s
German_pfs 1 s
Szymanski_at 2 s
Szymanski_na 0.6 s
Bakery_lamport 2 s
Flash_no_data 4 s

This leads us to the discussion part of this section, namely concerning CFL’s
stability. As you can see in Table 5, the results for CFL all have the form X/Y.
This is due to CFL’s innate randomness. Two executions will not necessarily
have the same results, especially if the allocated time/number of states to visit
is low and the model is large. For example, in Table 5, Dekker was run 10 times,
and all 10 times CFL managed to visit enough states to help Cubicle quickly
prove safety. However, on a model like Germanish4, which is longer and more
complex, running CFL 10 times only led to seven quick successes. This is due
to CFL containing a fair amount of randomness in how it chooses execution
strategies.

Table 5. Comparison with CMurphi

Model CMurphi CFL
States Safe States Safe

Dekker 48K T.O. 48K 10/10
Germanish 48K T.O. 48K 10/10
Germanish2 39K T.O. 39K 10/10
Germanish4 39K T.O. 39K 7/10
German 33K T.O. 33K 6/10
German_Baukus 33K T.O. 33K 7/10
German_CTC 24K T.O. 24K 0
German_pfs 33K T.O. 33K 6/10
Szymanski_at 32K T.O. 32K 3/10
Szymanski_na 26K T.O. 26K 2/10
Bakery_lamport 32K T.O. 32K 1/10
Flash_no_data 21K T.O. 21K 3/10

The Cubicle Fuzzy Loop 45

6 Conclusion and Related Work

In this paper, we presented CFL, an algorithm for a new forward exploration
strategy based on fuzzing for Cubicle. CFL not only serves as an oracle for
Cubicle’s invariant generation algorithm, but also adds new functionalities. We
show that this strategy is effective and capable of tackling a class of models that
Cubicle struggles with. We describe how CFL draws from fuzzing, but is adapted
to Cubicle’s semantics. We show how it uses multiple exploration techniques to
cover the state space as diversely as possible, leading to the discovery of crucial
states needed to terminate proofs. CFL also introduces quick debugging and
deadlock detection to Cubicle, quickly capturing both unsafe and deadlocking
states in complicated models.

There are two immediate lines of future work. The one we are currently
working on is including parameterization. The goal is for CFL to be able to
estimate how many processes it needs to efficiently explore a system. The other
is CFL’s stability. As mentioned earlier, CFL is nondeterministic by nature, and
chooses its exploration techniques randomly. Fine-tuning how these choices are
made could increase CFL’s performance. We also think it is important to extend
CFL and add more techniques, for example allowing processes to die randomly
throughout an exploration. We would also like to incorporate liveness testing into
CFL, since, like with deadlocks, this would add a new functionality to Cubicle.

Our work is inspired by fuzzing. Fuzzing is a simple technique designed to
quickly explore a program’s execution paths. The idea of mutating and gener-
ating inputs in our case was specifically inspired by AFL [14], a state-of-the-art
fuzzer. Combining model checking with fuzzing is not new. For example, the
authors in [13] use it for test case generation. In [10], it serves as the inspira-
tion to test Linear-time Temporal Logic (LTL) properties for C++ programs.
Bounded model checking (BMC) has been combined with fuzzing in multiple
instances. For example in [2], BMC is used to generate paths that the fuzzer
would not have found on its own. In [1], the authors combine BMC and Gray-
Box Fuzzing to find vulnerabilities in concurrent programs. To our knowledge,
no previous works combine fuzzing with parameterized model checking. Our end-
goal also diverges, the above examples all dealing with actual code, whereas we
want to focus on the model. We consider this to be a new line of research, per-
fectly suited for Cubicle, since Cubicle’s invariant generation needs a forward
exploration strategy that is not exhaustive (contrary to model checking) but is
capable of exploring the state space efficiently.

References

1. Aljaafari, F.K., Menezes, R., Manino, E., Shmarov, F., Mustafa, M.A., Cordeiro,
L.C.: Combining BMC and fuzzing techniques for finding software vulnerabilities
in concurrent programs. IEEE Access 10, 121365–121384 (2022)

2. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC v4: Smart
Seed Generation for Hybrid Fuzzing. In: FASE 2022. LNCS, vol. 13241, pp. 336–
340. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99429-7_19

https://doi.org/10.1007/978-3-030-99429-7_19

46 S. Conchon and A. Korneva

3. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7_55

4. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Invariants for finite
instances and beyond. In: 2013 Formal Methods in Computer-Aided Design, pp.
61–68. IEEE (2013)

5. Conchon, S., Mebsout, A., Zaïdi, F.: Vérification de systèmes paramétrés
avec Cubicle. In: JFLA. Aussois, France, February 2013. http://hal.inria.fr/hal-
00778832

6. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model check-
ing of array-based systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
Automated Reasoning. Lecture Notes in Computer Science, vol. 5195, pp. 67–82.
Springer, Heidelberg (2008)

7. Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: IJCAR, pp.
22–29 (2010)

8. Godefroid, P.: Fuzzing: hack, art, and science. Commun. ACM 63(2), 70–76 (2020)
9. Manès, V.J., et al.: The art, science, and engineering of fuzzing: a survey. IEEE

Trans. Softw. Eng. 47(11), 2312–2331 (2019)
10. Meng, R., Dong, Z., Li, J., Beschastnikh, I., Roychoudhury, A.: Linear-time tem-

poral logic guided greybox fuzzing. In: Proceedings of the 44th International Con-
ference on Software Engineering, pp. 1343–1355 (2022)

11. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. Commun. ACM 33(12), 32–44 (1990)

12. Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Exploiting transition
locality in automatic verification of finite-state concurrent systems. STTT 6(4),
320–341 (2004)

13. Yang, Y.: Improve model testing by integrating bounded model checking and cov-
erage guided fuzzing. Electronics 12(7), 1573 (2023)

14. Zalewski, M.: American fuzzy lop-whitepaper (2016)

https://doi.org/10.1007/978-3-642-31424-7_55
http://hal.inria.fr/hal-00778832
http://hal.inria.fr/hal-00778832

Guiding Symbolic Execution with A-Star

Theo De Castro Pinto1,2(B), Antoine Rollet1(B), Grégoire Sutre1,
and Ireneusz Tobor2

1 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France
{theo.de-castro-pinto,antoine.rollet,gregoire.sutre}@labri.fr

2 Serma Safety & Security, 33600 Pessac, France
{t.de-castro,i.tobor}@serma.com

Abstract. Symbolic execution is widely used to detect vulnerabilities
in software. The idea is to symbolically execute the program in order to
find an executable path to a target instruction. For the analysis to be
fully accurate, it must be performed on the binary code, which makes
the well-known issue of state explosion even more critical. In this paper,
we introduce a novel exploration strategy for symbolic execution aiming
to limit the number of explored paths. Our strategy is inspired from the
A∗ algorithm and steered towards least explored parts of the program.
We compare our approach, using the Binsec tool, to three other classi-
cal strategies: depth-first (DFS), breadth-first (BFS) and non-uniform
random (NURS). Our experiments on real-size programs show that our
approach is promising.

Keywords: Symbolic execution · Program analysis · Binary code
analysis · A∗ algorithm

1 Introduction

Context. Software verification is a crucial step during the development of pro-
grams permitting to discover potential failures. It consists not only in assessing
the correct behavior of the program but also in checking if vulnerabilities exist.
Software verification techniques include (automatic) formal proofs [15], test-
ing [5], fuzzing [16], code review and program analysis [3,6–8,14]. This paper
deals with program analysis of binary code, more precisely with the problem
of efficiently finding an executable path to a target instruction (aka the line
reachability problem). The number of inputs of a program is usually very big,
inducing a huge number of possible paths. A popular technique used to handle
this problem is symbolic execution [14]. It is an exploration technique aiming to
find inputs of a program, with the help of a constraint solver, corresponding to
a target path of the program. More precisely, considering a target path π of the
program, a corresponding path predicate formula representing the constraints
over the input variables along π is sent to a constraint solver. If the formula is
satisfiable, then the path is executable, and a solution of the constraint system
corresponds to a possible input set of the program activating π. A major problem
of this approach is that it generally does not scale well on real-size programs. The

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 47–65, 2023.
https://doi.org/10.1007/978-3-031-47115-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_4

48 T. De Castro Pinto et al.

order of exploration is crucial and decided by the exploration strategy, which can
be for instance depth-first (DFS), breadth-first (BFS) or non-uniform random
(NURS). In this work, we consider binary code. Directly analyzing the binary
code is necessary to verify that the compilation did not introduce new behaviors
or vulnerabilities, but it is challenging. This stems from the fact that a lot of
information is lost after the compilation and that binary code contains a lot
more instructions than source code.

Contributions. In this paper, we introduce two novel exploration strategies
for symbolic execution, inspired by the well-known A∗ algorithm [13]. A∗ is an
efficient single-pair shortest path algorithm, therefore using it in order to quickly
reach a target during symbolic execution makes sense. This key insight is at the
core of Blondin et al.’s efficient explicit reachability analysis tool for Petri nets [4].
We first adapt the A∗ algorithm to symbolic execution of binary code, using a
precomputed distance heuristic, which has never been done previously to our
knowledge. We then improve this basic A∗-like strategy to steer the exploration
towards least explored parts of the program. The total number of explored paths
is reduced, implying better performance.

We provide a formal description of our approach on transition systems, which
makes it generic and then applicable in various contexts. Our strategies have been
implemented in the binary code analysis tool Binsec, although dynamic jumps
are not currently handled. We present an experimental evaluation of our two
A∗-like exploration strategies on seven programs, two of them being of real-size
(Wookey’s bootloader [1] and the NetBSD leave command). Our experiments
show that our approach is promising. A replication package is available at Zen-
odo [10].

Related Work. Symbolic execution [14] is a powerful technique to analyze
programs. It is used in many program analysis tools, for instance KLEE [5],
MIASM [19], ANGR [24] and Binsec [11]. KLEE is a dynamic symbolic exe-
cution engine that is used on source code (translated to LLVM). MIASM and
ANGR are binary analysis platforms that combine both static and dynamic sym-
bolic execution. Binsec is a framework for binary code analysis based on formal
approaches such as symbolic execution, abstract interpretation [8], SMT solv-
ing [9] and fuzzing [16]. The exploration strategies provided by Binsec are BFS,
DFS and NURS. Common uses of symbolic execution include test case genera-
tion [5], input generation for fuzzing [25] or even vulnerability detection [12,23].

In 2021, Blondin et al. proposed an approach based on the A∗ algorithm [13]
to perform reachability analysis on Petri nets [4]. Their results showed that using
this approach outperforms existing state-of-the-art Petri nets tools. The idea is
to use distance oracles to guide the exploration of Petri nets. Our approach
generalizes this concept to any labeled transition system. We also propose some
enhancements in order to reach targets more efficiently in real programs. Many
strategies aiming to guide the exploration towards more promising paths have
been proposed in the literature. Some of them prioritize paths that are closer

Guiding Symbolic Execution with A-Star 49

1 #de f i n e MAX_SIZE 10000000
2 #de f i n e EXPECTED_SIZE 100
3 void va l i d (i n t y) {
4 i n t x ;
5 f o r (x = 0 ; x < MAX_SIZE; x++) {
6 i f (! c o r r e c t (y)) break ;
7 y−−;
8 }
9 i f (x != EXPECTED_SIZE) trap () ;

10 c r i t i c a l () ;
11 }

Listing 1.1. C-style running example.

Fig. 1. Illustration of different symbolic execution strategies.

to the target [2,18] while others prioritize paths that explore new parts of the
program [17,26]. In both cases, only partial aspects of the A∗ algorithm are
implemented. To our knowledge, none of them apply both strategies, and they
are applied on source code. Our proposal combines both of these concepts into
a novel exploration strategy, and applies it directly on binary code.

2 Running Example

The code given in Listing 1.1 is a simplified version of a security-critical code
inspired from a real-life application. The parameter y of the function valid is a
secret value that an attacker is not supposed to know. This value must satisfy a
certain condition, namely that correct(n) returns true for all integers n with
y−99 ≤ n ≤ y, and correct(y−100) returns false. Note that the corresponding
loop (lines 5–8) may, in fact, be traversed up to 107 times. If the above-mentioned
condition on y is satisfied then the critical function is executed, otherwise a
counter-measure, here trap, is triggered. For our discussion, the contents of these
two functions does not matter, except that the trap function is an infinite loop
whose body contains two small paths (corresponding to security measures). Our
goal is to use symbolic execution to (efficiently) find an executable path from
the start of the valid function to the target critical function.

Let us look qualitatively at the behavior of symbolic execution on this exam-
ple regarding different exploration strategies. A depth-first (DFS) strategy either

50 T. De Castro Pinto et al.

exits the loop early and ends up in the trap function, or executes the loop entirely
and still ends up in the trap function. In both cases, it is highly inefficient, as
a huge number of branches are explored in the trap function before the loop
exits with the expected value of 100 for x. This behavior is illustrated in Fig. 1a,
where the red branch is the only one leading to the target, and the gray zone
represents the branches already explored. A breadth-first (BFS) strategy is also
highly inefficient as it generates all branches of length lesser than the length of
the branch reaching the target, including the ones that are stuck in the trap
function. Its behavior is exhibited in Fig. 1b where a large part of the reachabil-
ity tree is explored. A non-uniform random (NURS) strategy chooses randomly
which branch to explore further (see Fig. 1c). Again, because of the trap func-
tion, a huge number of branches are generated on average before reaching the
target. The approach proposed in this paper is inspired from the A∗ algorithm
and aims to explore a limited amount of branches. The resulting exploration
strategy is illustrated in Fig. 1d, where only a very small portion of the whole
tree is explored. A more precise comparison of these four exploration strategies
on this example will be given at the end of the next section.

3 A∗ Guided Symbolic Execution

Many verification questions, including vulnerability detection, can be phrased as
reachability queries over a labeled transition system providing the operational
semantics of the system under analysis. We start by recalling a few prelimi-
nary notions on reachability in labeled transition systems. The remainder of the
section focuses on symbolic execution and discusses various exploration strate-
gies.

Reachability in Labeled Transition Systems. A (non-deterministic) labeled
transition system is a 5-tuple S = (C,Σ,→, I, F) where C is a possibly infinite
set of configurations, Σ is a finite set of actions, → ⊆ C ×Σ×C is a labeled tran-
sition relation, I ⊆ C is a set of initial configurations, and F ⊆ C is a set of final
configurations. A run in S is an alternating sequence ρ = (c0, a1, c1, . . . , an, cn)
of configurations ci ∈ C and actions ai ∈ Σ such that ci−1

ai−→ ci for all i. We
say that ρ is a run from c0 to cn and we write ρ = c0

a1−→ c1 · · · an−−→ cn. The word
a1 · · · an is called the trace of ρ. Given two configurations c, c′ ∈ C and a word
w ∈ Σ∗, the notation c

w−→ c′ means that there exists1 a run from c to c′ with
trace w. The length of w is denoted by |w|. We say that c′ is reachable from c,
written c

∗−→ c′, when c
w−→ c′ for some w ∈ Σ∗.

Our main objective is to determine whether there exists a run from an initial
configuration to a final configuration. Formally, the reachability problem asks,
given a LTS S = (C,Σ,→, I, F), whether there exists c ∈ I and c′ ∈ F such
that c

∗−→ c′. In theory, the reachability problem is only a decision problem.

1 Due to non-determinism, there may be several runs from c to c′ with trace w.

Guiding Symbolic Execution with A-Star 51

But, in practice, a trace w ∈ Σ∗ witnessing reachability c
w−→ c′ should also be

provided when the answer is positive.

Fig. 2. Counter machine corresponding to the inlined code given in Listing 1.1, assum-
ing that the correct function simply checks that its argument is nonzero.

Example 1. Consider the counter machine given in Fig. 2a. This machine is a
translation of our running example where the correct function simply performs
a nonzero test on its argument. All functions are inlined. The location F corre-
sponds to the call to the critical function. The trap function is modeled in
location G by two loops that are chosen non-deterministically (non-determinism
typically comes in practice from inputs to the program).

Formally, this counter machine operates on two counters, namely x and y,
that range over Z. Its locations are A, B, . . . , G and its edges are the arrows
depicted in Fig. 2a. Each edge is labeled with an action over the counters. These
actions are either guards or assignments. Let Σ denote the set of all counter
actions appearing in Fig. 2a. The semantics �a� of an action a ∈ Σ is defined, as
expected, as a binary relation �a� ⊆ Z

{x,y} ×Z
{x,y} over valuations of the coun-

ters. The operational semantics of the counter machine is given by the labeled
transition system S = (C,Σ,→, I, F) defined as follows. The set of configura-
tions C is the set of pairs (�, v) where � is a location and v ∈ Z

{x,y} is a valuation
of the counters. The sets of initial and final configurations are I = A×Z

{x,y} and
F = F×Z

{x,y}. The labeled transition relation is the set of triples (�, v) a−→ (�′, v′)
such that �

a−→ �′ is an edge depicted in Fig. 2a and (v, v′) ∈ �a�. Our goal can
now be formally phrased as the reachability question for S. �

We present an algorithm for the reachability problem that is based on sym-
bolic execution. Some additional notations are needed first. A region in a LTS
S = (C,Σ,→, I, F) is a subset ϕ ⊆ C of configurations. Regions are often called
symbolic states in the context of symbolic execution. We define the region trans-
former post : 2C × Σ → 2C as usual, by post(ϕ, a) = {c′ ∈ C | ∃c ∈ ϕ : c

a−→ c′}.

52 T. De Castro Pinto et al.

Symbolic Execution for Reachability Analysis. Symbolic execution has
originally been proposed for program testing [14], but the technique can also
be used for reachability analysis. Our main contribution concerns exploration
strategies for symbolic execution. In order to present and compare these strate-
gies, we first recall some elements about symbolic execution.

An algorithm for reachability analysis based on symbolic execution is given
in Algorithm 1. This algorithm takes as input a labeled transition system S =
(C,Σ,→, I, F) and computes a symbolic reachability tree where each node is
labeled with a region (i.e., a subset of C). The set of unprocessed nodes, called
the worklist, is maintained in the variable W . Initially, the algorithm creates the
root of the tree, labeled with the set I of initial configurations, and puts it in
the worklist. Then, as long as the worklist is non-empty, the algorithm selects
a node from the worklist (more details are given below) and processes it. If the
node’s region intersects the set F of final configurations then there exists a run
from an initial configuration to a final configuration, so the answer “Reachable”
is returned. Note that a witnessing trace w can be obtained by collecting the
actions along the branch (from the root to the node). Otherwise, the node is
expanded, meaning that for each action a ∈ Σ, a child is created and labeled
with the appropriate region according to the post transformer. This expansion
is omitted if the node’s region is empty. If the worklist becomes empty then all
configurations reachable from an initial configuration have been explored, and
none of them is final, so the algorithm returns “Unreachable”.

Algorithm 1 SymbolicExecution(S, Prio)
Input: A LTS S = (C, Σ, →, I, F), a priority function Prio : (· · ·) → R ∪ {+∞}
Output: Either “Reachable” or “Unreachable”
1: r ← createRoot()
2: (r.region, r.priority) ← (I, Prio(S, r, ∅))
3: W ← {r}
4: while W �= ∅ do
5: n ← argmin{n.priority | n ∈ W}
6: W ← W \ {n}
7: ϕ ← n.region
8: if ϕ ∩ F �= ∅ then
9: return “Reachable” � the branch provides a witnessing trace

10: else if ϕ �= ∅ then
11: for all a ∈ Σ do
12: u ← createChild(n, a)
13: (u.region, u.priority) ← (post(ϕ, a), Prio(S, u, W))
14: W ← W ∪ {u}
15: end for
16: end if
17: end while
18: return “Unreachable”

Guiding Symbolic Execution with A-Star 53

Remark 1. Algorithm 1 is correct in the sense that it either returns the correct
answer to the reachability problem for the input LTS S = (C,Σ,→, I, F), or
loops forever. The proof is pretty standard. Let post∗ : 2C → 2C be defined as
usual, by post∗(ϕ) = {c′ ∈ C | ∃c ∈ ϕ : c

∗−→ c′}. We introduce in Algorithm 1
a “ghost” variable N that maintains the set of constructed nodes. The correct-
ness of the algorithm follows from the two following properties at line 4. First,
n.region is disjoint from F for every node n ∈ (N \ W). Second, post∗(I) is the
union of the set

⋃
n∈(N\W) n.region and the set

⋃
n∈W post∗(n.region). These

two properties are routinely shown to be loop invariants at line 4.

In practice, symbolic execution implicitly assumes a maximum exploration
depth. The potentially infinite symbolic reachability tree computed by Algo-
rithm 1 is truncated at this maximum exploration depth (and the answer
“Unreachable” is replaced by “Unknown” if the tree was truncated).

The order of exploration in Algorithm 1 can be customized via the prior-
ity function Prio. This function takes three arguments, a LTS, a node and a
worklist, and returns a priority in R ∪ {+∞}. Each node is assigned a priority
upon creation (lines 2 and 13) and this priority remains unchanged afterwards.
When the algorithm picks an unprocessed node from the worklist, it picks one
of minimal priority (see line 5).

Naturally, the classical search exploration strategies DFS, BFS and NURS
can be encoded as priorities. The corresponding priority functions are given by:

PrioDFS(S, u,W) =

{
0 if W = ∅
min{n.priority | n ∈ W} − 1 otherwise

PrioBFS(S, u,W) =

{
0 if W = ∅
max{n.priority | n ∈ W} + 1 otherwise

PrioNURS(S, u,W) = random(0, 1)

The depth-first (DFS) strategy is classically implemented with a last-in-first-out
worklist. This strategy is encoded with priorities by ensuring that the last node
added to the worklist receives a smaller priority than all other nodes in the
worklist (see the PrioDFS function). Similarly, the breadth-first (BFS) strategy,
which is classically implemented with a first-in-first-out worklist, is equivalent
to using the PrioBFS function in Algorithm 1. Finally, the PrioNURS function
provides a random priority for every node added to the worklist, which does
correspond to a non-uniform random (NURS) exploration of the tree.

Remark 2. To implement Algorithm 1 in practice, regions have to be finitely
representable, emptiness of a region and emptiness of the intersection of two
regions have to be decidable, and the post transformer must be computable. In
practice, regions are often encoded as SMT formulas.

Remark 3. As in classical symbolic execution, Algorithm 1 blindly expands a
node regardless of whether its region has already been processed before. A

54 T. De Castro Pinto et al.

computationally cheap inclusion test (i.e., a relation
 on regions such that
r
 r′ =⇒ r ⊆ r′) could be used to partially truncate the exploration.

Exploration Strategy Inspired from A∗. In addition to the classical strate-
gies DFS, BFS and NURS, we provide a new exploration strategy for symbolic
execution, inspired from the A∗ algorithm.

Recall that A∗ is a single-pair shortest path algorithm for nonnegatively
weighted directed graphs. Assume that we are given such a graph together with
a source vertex and a target vertex. Let V denote the set of vertices of the graph.
The main idea of the A∗ algorithm is to guide the exploration using a heuristic
function h : V → N ∪ {+∞} that underestimates the (minimal) distance from
any vertex to the target vertex. Note that h(v) may be +∞ if there is no path
from v to the target vertex. When A∗ picks a vertex to process from its worklist,
it chooses a vertex v that minimizes the sum g(v) + h(v), where g(v) is the
weight of the shortest path seen so far from the source vertex to v. Let us see
how to adapt this exploration strategy in our symbolic execution algorithm. In
our context, edges are not weighted (they correspond to symbolic transitions
ϕ

a−→ ϕ′ where ϕ′ = post(ϕ, a)), so we assume a uniform weight of one. We first
need to extend the notion of distance underapproximation to regions.

Definition 1. A distance underapproximation for a LTS S = (C,Σ,→, I, F)
is a function hS : 2C → N ∪ {+∞} such that for every i, c, f ∈ C and w ∈ Σ∗,

i ∈ I ∧ i
∗−→ c ∧ c ∈ ϕ ∧ c

w−→ f ∧ f ∈ F =⇒ hS(ϕ) ≤ |w|

Informally, hS(ϕ) returns an underapproximation of the distance between a given
region ϕ ⊆ C and the set of final configurations F . However, to facilitate the
design of distance underapproximations, this condition on hS(ϕ) is only required
for the configurations c ∈ ϕ that are reachable from an initial configuration.

To adapt the exploration strategy of A∗ in Algorithm 1, we assume that we
are given a (computable) distance underapproximation hS for the LTS S under
analysis, and we use the priority function PrioASTAR defined as follows:

PrioASTAR(S, u,W, hS) = depth(u) + hS(u.region)

where depth(u) denotes the depth of the node u in the symbolic reachability
tree that is generated by Algorithm 1. Note that this is slightly different from
A∗ since depth(u) only upper-bounds2 the distance seen so far from the set of
initial configurations to the region of u. This is not an issue as our primary goal
is to quickly find an executable path, regardless of its length.

2 To faithfully mimic A∗, depth(u) should be compared with the depths of all pro-
cessed nodes having the same region as u. But this would require checking equality
between regions, which is computationally costly in general.

Guiding Symbolic Execution with A-Star 55

Fig. 3. Symbolic execution with PrioASTAR of the counter machine in Fig. 2.

Example 2. We illustrate this approach on our running example (see Example 1)
by applying it on the LTS giving the semantics of the counter machine of Fig. 2a.
The symbolic reachability tree generated by Algorithm 1 with the PrioASTAR
function is (partially) depicted in Fig. 3. We use the distance underapproximation
obtained by ignoring the counters, given in Fig. 2b. Each node in Fig. 3 is labeled
with its region and its priority (in parentheses). The region is given by a location
of the counter machine and a formula over its counters x, y. Recall that the
priority of a node is the sum of its depth and of the h value of its location (given
in Fig. 2b). The order of exploration is not explicitly shown but dotted/gray
nodes have not yet been explored and are still in the worklist at the end of the
exploration. Our approach explores about 600 nodes before reaching the final
location.

In comparison, with a maximum exploration depth of 10000 nodes, at least
10270 nodes are explored with PrioDFS, assuming that actions are always taken
in the same order at line 11 of Algorithm 1. About 1030 nodes are explored with
PrioBFS, most of them stuck in location G (this location corresponds to the trap
function). At least 10100 nodes are explored on average with PrioNURS. �

4 Guiding the Exploration Towards the Unknown

This section presents an improvement of the A∗-like exploration strategy pre-
sented in the previous section. We first exhibit some weaknesses of this explo-
ration strategy and we then show how to tackle these weaknesses. In short,

56 T. De Castro Pinto et al.

our improved A∗-like exploration strategy steers the exploration towards least
explored parts of the system under analysis.

Limitations of our Basic A∗-like Exploration Strategy. In the symbolic
reachability tree generated by Algorithm 1 with PrioASTAR, the priority of a node
u is the sum depth(u)+hS(u.region). When the non-infinite hS values are small
compared to the depth of the nodes, the resulting exploration roughly amounts to
a breadth-first (BFS) exploration (except that nodes u with hS(u.region) = +∞
are explored last). This is bad news as symbolic execution with BFS is known
to perform poorly in practice. Let us illustrate this issue with a small example
inspired by our experimentations on Wookey’s bootloader (see Sect. 6).

Fig. 4. Counter machine that illustrates some limitations of our basic A∗-like explo-
ration strategy induced by the priority function PrioASTAR. The distance underapprox-
imation is shown on the right-hand side.

Example 3. Consider the counter machine given in Fig. 4. The two edges B x++−−−→
C and B

x−−−−−→ C model a non-deterministic choice from the location B. Similarly,
the two edges originating from F are chosen non-deterministically. The dashed
edge from E to F stands for 20 intermediate locations between E and F. This is
reflected in the distance underapproximation values given in the table on the
right hand-side of the figure. As before, this distance underapproximation is
obtained by simply ignoring the counters.

The only run reaching the final location K takes the loop B–C–D exactly 10
times, each time choosing the B

x++−−−→ C edge so that x and y remain equal, and
exits the loop in E with x = y = 10. It then moves to F and takes the edge
F

true−−→ G since K is not reachable from J with x = 10. Finally, the loop G–H–I is
taken exactly 90 times before moving to K.

Symbolic execution with PrioASTAR first constructs all nodes obtained by
taking the loop B–C–D exactly 9 times, so we end up with 29 copies of B in the

Guiding Symbolic Execution with A-Star 57

worklist, each with the same depth 1 + 9 · 3, hence, the same priority 54. Then,
the loop B–C–D is taken once more, and exactly one branch exits the loop. This
branch reaches F, forks into G and J, and takes the loop on J twice. At this
point, the worklist contains 210 − 1 copies of B with priority 57, one copy of G
with priority 56, and one copy of J with priority 56. In order to reach the final
location K, the exploration now needs to iterate the loop G–H–I exactly 90 times.
But for each iteration of this loop, an additional iteration of the B–C–D loop is
performed from each copy of B in the worklist, leading each time to twice as
many copies of B in the worklist. This dramatically slows down the construction
of the only branch leading to the final location K. �

An Improved A∗-like Exploration Strategy. As mentioned previously, the
issue at hand arises when the sum depth(u) + hS(u.region) is dominated by
depth(u), which is very common in real-size programs. To fix this issue, we
propose to replace depth(u) by another measure that still accounts for the length
of the branch from the root of the tree to u, but prioritizes nodes corresponding
to parts of the system that have rarely been visited.

Remark 4. A tempting solution to the above-mentioned issue may be to simply
replace depth(u) by zero, i.e., to let the priority of each node u be hS(u.region).
The resulting symbolic execution of the counter machine given in Fig. 4 is similar,
at first, to the one detailed in Example 3. However, when the branch reaching F
forks into G and J, the copy of G now has priority 3 and the copy of J now has
priority 1. So the copy of G remains in the worklist and the loop on J is taken
forever (or until the maximum exploration depth is reached).

Let us now define the priority function PrioASTAR-2 inducing our improved
A∗-like exploration strategy. We first introduce the notion that we use to identify
“parts of the system”. An observable for a LTS S = (C,Σ,→, I, F) is any subset
of C. Given a finite set P of observables, we define the region observation function
obs : 2C → 2P by obs(ϕ) = {p ∈ P | (ϕ ∩ p) �= ∅}. Given a sequence of
regions r0, . . . , rn, we let obs¬∅(r0, . . . , rn) denote the sequence obtained from
obs(r0), . . . , obs(rn) by removing all occurrences of ∅.

Observables will be used to focus the exploration on specific properties of
the system under analysis. On a given branch of the symbolic reachability tree,
instead of looking at the sequence of regions r0, . . . , rn that have been visited
along the branch, we will look at the sequence of observations obs¬∅(r0, . . . , rn).
Typically, for counter machines and binary programs (see Sect. 5), we consider
observables induced by specific locations. But we could use observables express-
ing properties on counters or registers.

Example 4. In the counter machine of Fig. 4, we focus on locations that are
targets of branching instructions, i.e., locations in the set T = {B, C, E, G, J, K}.
For each location t ∈ T , we define the observable pt = {t} × Z

{x,y}. �

The PrioASTAR-2 function is defined in Algorithm 2. To simplify the pre-
sentation, we assume that the set I of initial configurations has a nonempty

58 T. De Castro Pinto et al.

Algorithm 2 PrioASTAR-2(S, u,W, hS , P, λ)
Input: A LTS S = (C, Σ, →, I, F), a node u, a worklist, a distance underapproxima-

tion hS for S, a finite set P of observables for S, a function λ : N → R≥0

1: Let u0, . . . , un denote the branch from the root r = u0 to the node u = un

2: Let obs0, . . . , obsk = obs¬∅(u0.region, . . . , un.region) � k ≥ 0
3: Let g = Card{obs0, . . . , obsm} where m = min{i ∈ [0, k] | obsi = obsk}
4: Let μ = Card{i ∈ [0, n] | obsi = obsk}
5: return g · λ(μ) + hS(u.region)

observation. This guarantees that the sequence obs0, . . . , obsk defined at line 2
is nonempty. The priority returned by PrioASTAR-2 is g · λ(μ) + hS(u.region)
where g and μ depend on the sequence obs0, . . . , obsk of nonempty observations
seen along the branch. In words, g is the “elementary” length of this sequence,
i.e., the number of distinct elements in the sequence obs0, . . . , obsm where obsm

is the first occurrence of obsk, and μ is the number of times that obsk occurs in
the sequence obs0, . . . , obsk. Intuitively, obsk indicates which part of the system
corresponds to the node u, so μ tells us how many times this part of the sys-
tem has been visited along the branch. Observe that g only depends on the first
occurrence of each observation in obs0, . . . , obsk. We call g the elementary depth
of the node u.

The function λ : N → R≥0 allows us to adjust the priority depending on the
value of μ. The choice of a good λ function is crucial to guide the exploration
properly. In order to steer the exploration towards least explored parts of the
system, λ should be non-decreasing, and λ(μ) should be small when μ is small.
According to our experiments, a λ function of the form

λθ(μ) =

{
0 if μ < θ

log10(μ − θ + 1) otherwise

performs well in practice. Here, the parameter θ ∈ N acts as a threshold (in our
experiments, we use θ = 3, see Sect. 6). The idea behind λθ is to give precedence
to nodes that are in a part of the system that has rarely been visited (less than
θ times) along the branch. Note that this function always returns zero or a small
value. As mentioned before, we do this to prevent the elementary depth g from
dominating hS . Note that this is just an example of a possible λ function that
we designed during our experimentations. Different λ functions may also work,
and even outperform this one.

Example 5. Consider again the counter machine given in Fig. 4. We take the
same set of observables as in Example 4, and we use the function λθ defined
above with θ = 3. As with PrioASTAR, symbolic execution with PrioASTAR-2
first constructs all nodes obtained by taking the loop B–C–D exactly 9 times.
When the branch that exits the loop forks into G and J, the worklist contains
210 − 1 copies of B with priority 26 + 1 · log10(8), one copy of G with priority
3, and one copy of J with priority 1. So the loop on J is iterated first, and the

Guiding Symbolic Execution with A-Star 59

priority of the J copy in the worklist slowly increases. When this priority becomes
larger than 3, the loop G–H–I is also iterated. The exploration then interleaves the
construction of the two corresponding branches. After 90 iterations of the loop G–
H–I, the worklist contains a copy of K with priority 0. This copy is then processed
immediately, and the algorithm returns “Reachable”. Let us estimate the number
of iterations of the loop on J. Just before completion of the G–H–I loop, the last
copy of G in the worklist has priority 3+4·log10(90−1) < 3+4·2 = 11. Similarly,
the last copies of H and I have priorities less than 8 and 7, respectively. After
k ≥ 3 iterations of the loop on J, the priority of the J copy is 1+4 · log10(k − 1).
Observe that (1+4 · log10(k−1) > 11) ⇔ k > 317. So the loop on J is iterated at
most 318 times. Note also that the 210 − 1 copies of B have not left the worklist
since their priority is larger than 26, hence, larger than 11. �

5 Application to Binary Programs

We show in this section how to apply our approach to binary programs. Recall
that our new A∗-like exploration strategies require a distance underapproxima-
tion for the LTS under analysis. The main purpose of this section is to provide an
efficiently computable distance underapproximation for binary programs. Before
that, we need to define3 the syntax and semantics of binary programs.

Syntax and Semantics. Consider a fixed set Reg of registers and a fixed set
Addr of addresses. To account for instructions that do not impact the control-flow
of the program, such as memory accesses and arithmetic operations on registers,
we assume an a priori given set Op of operations. Each operation op ∈ Op comes
with its semantics �op�, given as a function from Z

Reg ×Z
Addr to itself. A binary

program is a finite sequence of instructions (I1, . . . , In), where each instruction
Ik is in the following set:

Op ∪ {BR r � | r ∈ Reg ∧ � ∈ [1, n]} ∪ {CALL � | � ∈ [1, n]} ∪ {RET}
Here, BR stands for conditional branching, and CALL and RET stand for procedures
call and return. A location of the binary program is any integer in [1, n + 1].

The operational semantics of a binary program (I1, . . . , In), equipped with
a final location f ∈ [1, n + 1], is given by the labeled transition system S =
(C,Σ,→, I, F) defined as follows. The set of actions Σ is the set of instructions
of the programs, i.e., Σ = {I1, . . . , In}. The set of configurations C is the set of
quadruples (�,R,M, s) where � ∈ [1, n+1] is a location, R ∈ Z

Reg and M ∈ Z
Addr

are register and memory contents, and s ∈ [1, n + 1]∗ is a stack contents. The
sets of initial and final configurations are I = {(�,R,M, s) ∈ C | � = 1 ∧ s = ε}
and F = {(�,R,M, s) ∈ C | � = f}. The labeled transition relation → is defined
by the rules given in Fig. 5. Note that each of these rules implicitly requires that
� ∈ [1, n] since I� must be defined.
3 Similar definitions of the syntax and semantics of binary programs can be found in

the literature. Our definition is intentionally simple and tailored to our purposes.

60 T. De Castro Pinto et al.

Fig. 5. Operational semantics of binary programs.

Distance Underapproximation. Following the approach of Blondin et al. for
Petri nets [4], we propose a distance underapproximation for binary programs
that is based on an abstraction of the operational semantics defined above. This
abstraction merely consists of ignoring the register and memory contents.

Fig. 6. Abstract semantics of binary programs.

Formally, the abstract semantics of a binary program (I1, . . . , In), equipped
with a final location f ∈ [1, n + 1], is given by the labeled transition system
S� = (C�, Σ,→�, I�, F �) defined as follows. The set of actions Σ is the same as
before, i.e., Σ = {I1, . . . , In}. The set of abstract configurations C� is the set
of pairs (�, s) where � ∈ [1, n + 1] is a location and s ∈ [1, n + 1]∗ is a stack
contents. The sets of initial and final abstract configurations are I� = {(1, ε)}
and F � = {f}× [1, n+1]∗. The labeled abstract transition relation →� is defined
by the rules given in Fig. 6. Again, each of these rules implicitly requires that
� ∈ [1, n]. Obviously, every run in S can be mimicked in S� by ignoring the
register and memory contents. Formally, it holds that (�, s) w−→� (�′, s′) in S�

when (�,R,M, s) w−→ (�′, R′,M ′, s′) in S. So we can use S� to underestimate the
distance in S between two (sets of) configurations.

For efficiency reasons, our distance underapproximation is based on the pre-
computation of the distance in S� between pairs of locations �, �′ ∈ [1, n + 1].
However, if we start in � with an arbitrary stack contents, then a RET instruction
may directly lead to �′. This would yield an extremely coarse distance under-
approximation. So we restrict the stack contents to “legitimate” ones, in the
sense that the stack starts with a valid return location. Formally, we say that an

Guiding Symbolic Execution with A-Star 61

abstract configuration (�, s) is coherent if s is empty or of the form s = �′ ·s′ with
�′ ∈ [1, n+1] such that (�′′, ε) ∗−→� (�, �′) for some �′′ ∈ [1, n+1]. Note that every
abstract configuration (�, s) reachable in S� from (1, ε) is coherent. A run in S� is
called coherent when all abstract configurations visited by the run (including the
first and last ones) are coherent. We write (�, s) w−→�

co (�′, s′) when there exists a
coherent run from (�, s) to (�′, s′) with trace w. Let d� : [1, n+1]× [1, n+1] → N

be defined4 by:

d�(�, �′) = inf{|w| | ∃s, s′ ∈ [1, n + 1]∗ : (�, s) w−→�
co (�′, s′)}

The distance underapproximation hS that we propose is defined as follows:

hS(ϕ) = inf{d�(�, f) | (�,R,M, s) ∈ ϕ}

Intuitively, hS(ϕ) is the minimal distance from the locations of ϕ to f in the
abstract semantics S� restricted to coherent abstract configurations. It is readily
seen that the function hS satisfies the condition of Definition 1.

Remark 5. Our notion of coherence for abstract configurations only accounts for
the top-most return location on the stack. The remainder of the stack may be
arbitrary. However, for every coherent run (�, �1 · · · �k · s) ∗−→�

co (�′, s), the prefix
�1 · · · �k of the stack that is popped in the run is “legitimate” in the sense that
each �i is a valid return location for �i−1 (formally, the abstract configurations
(�i−1, �i) are coherent).

To compute hS(ϕ), we need to compute d�(�, f) for every location �. First,
we compute, for each instruction CALL � appearing in the binary program, the
�-summary inf{|w| | ∃�′ : (�, ε) w−→� (�′, ε) ∧ I�′ = RET}. Second, we compute
the values d�(�, f) by applying a single-source shortest path algorithm on S�

augmented with summaries, starting from f and moving backwards on edges.
The resulting algorithm is similar to the one described in [2].

Wrap Up. We now have the necessary ingredients to perform symbolic execu-
tion (see Algorithm 1) with our new A∗-like exploration strategies. Regions use
SMT formulas for register and memory contents, and an explicit representation
for locations and stack contents. The post transformer is computed by following
the operational semantics given in Fig. 6. The distance underapproximation pro-
vided to PrioASTAR and PrioASTAR-2 is the one presented in the previous sub-
section. Finally, the finite set P of observables given to PrioASTAR-2 is induced
by the locations that are targets of control-flow instructions. Let T denote these
locations, i.e., T is the set of all t ∈ [1, n+1] such that there exists �, �′ ∈ [1, n] and
r ∈ Reg verifying I� ∈ {BR r �′, CALL �′} and t ∈ {�′, �+1}. Formally, P is the set
of all subsets pt = {t} × Z

Reg × Z
Addr × [1, n + 1]∗ where t ranges over T .

62 T. De Castro Pinto et al.

Fig. 7. Experimental results obtained with Binsec: bars represent the number of
unrolled instructions in a logarithmic scale and dots represent the SSE duration in
seconds.

6 Experimental Results

We evaluate our new approach on seven programs: the two running examples
of the paper (Figs. 2 and 4), three “crackme” challenges [20–22] which are rel-
atively easy to solve and with a reasonable size (around 200 instructions), and
two “real-size” programs namely the Wookey bootloader [1] which is a popular
software designed by the ANSSI5 meant to be robust against various type of
attacks (∼10K locations), and the leave command of NetBSD (∼100K loca-
tions). The programs are cross-compiled to pure THUMB-2 with target CPU
cortex-m3 and armv7-m architectures.

We use the symbolic execution tool Binsec (version 0.6), in which we have
implemented our new strategies. The targets for the study are chosen arbitrarily
but meant to be deep in the execution flow or difficult to reach. A time limit
of 100 s is allowed for each experiment, beyond which we stop it and report
a timeout (t.o.). In the Wookey bootloader and the leave programs, we have
stubbed some parts of the code to accelerate the process. All benchmarks were
ran on a AMD64 Oracle Linux Server (release 8.8) machine with an Intel(R)
Xeon(R) Gold 6244 CPU (3.60GHz) and with 256GiB of RAM. A replication
package for our experiments (including the source code and the seven programs)
is available at Zenodo [10].

We compare the approach based on PrioASTAR-2 (named astar-2 in the
benchmarks) with the usual exploration strategies (dfs, bfs and nurs), and also

4 Recall that inf X = minX for every non-empty subset X ⊆ N and that inf ∅ = +∞.
5 French National Cybersecurity Agency.

Guiding Symbolic Execution with A-Star 63

with our basic A∗-like approach, i.e., based on PrioASTAR (named astar in the
benchmarks). In Fig. 7, we compare the number of unrolled instructions and the
symbolic execution time for each exploration strategy on the different programs.
The results of the three crackmes are summed up and displayed as one “program”
named crackmes. In the case of NURS, the experiments are ran 10 times and the
average for both metrics are displayed. The exploration strategies are on the X-
axis, the number of unrolled instructions is on the left Y-axis and represented by
the bars. Finally, the symbolic execution time is on the right Y-axis and displayed
by green dots. For readability reasons, we use a logarithmic scale for the number
of unrolled instructions. Clearly, our new exploration strategy astar-2 always
outperforms the classical strategies. Moreover, it also always outperforms the
strategy solely based on astar, as expected. The astar exploration strategy
is generally not powerful enough to reach the target on real programs (leave,
Wookey’s bootloader). Regarding the duration of the symbolic execution, the
strategy astar-2 also always outperforms the other strategies. Note that the
number of unrolled instructions is not directly correlated to the execution time
of symbolic execution. In fact, what really slows it down are satisfiability queries,
which are made at conditional branching points.

The efficiency of the exploration depends on the maximum exploration depth.
The perfect bound is not definable beforehand so we set it to 107 instructions
for all programs. Finally, the results of our exploration strategy astar-2 depend
on the function λ (see Sect. 4). The best λ function is specific to each situation,
nevertheless we chose to systematically use λθ with θ = 3 in our experiments.
Using a smaller parameter θ tends to steer the exploration towards a BFS, while
a larger parameter θ steers the exploration towards a DFS. The best in-between
value we found was θ = 3.

7 Conclusion

In this paper, we have introduced a novel exploration strategy for symbolic exe-
cution inspired from the A∗ algorithm permitting to find efficiently an executable
path to a target instruction. This approach orders the exploration of symbolic
states by using heuristics permitting to visit in priority states that have been
less explored. Consequently the number of paths to explore is smaller than in
usual approaches such as DFS, BFS and NURS, implying better performance.
Although some faulty execution may still remain difficult to catch, this approach
shows promising results. Our key insight while designing this algorithm is to cre-
ate a balanced mix between a DFS and a BFS. The strategy has been designed
on generic transition systems, making it applicable in various situations. We have
described how to apply it on binary code, and provided an experimental evalu-
ation showing that our strategy outperforms the classical exploration strategies
DFS, BFS and NURS and scales well on real-size programs. As future work, we
intend to apply this technique to the detection of hardware vulnerabilities (i.e.,
vulnerabilities to fault injection attacks).

64 T. De Castro Pinto et al.

Acknowledgements. This work was supported by the French ANRT CIFRE
2021/1673 Project. We also would like to thank Guillaume Baud-Berthier, Julien Ber-
net and Michael Grand for their helpful discussions.

References

1. ANSSI: Wookey (2018). https://wookey-project.github.io/
2. Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic

automated test generation. In: Proceedings of the 2011 International Symposium
on Software Testing and Analysis, pp. 12–22 (2011)

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Handbook of satisfiability 185(99), 457–481 (2009)

4. Blondin, M., Haase, C., Offtermatt, P.: Directed reachability for infinite-state
systems. In: TACAS 2021. LNCS, vol. 12652, pp. 3–23. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72013-1_1

5. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp.
209–224 (2008)

6. Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Privacy 2(6),
76–79 (2004)

7. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model checking.
MIT press (2018)

8. Cousot, P.: Abstract interpretation. ACM Comput. Surv. (CSUR) 28(2), 324–328
(1996)

9. David, R., et al.: Binsec/se: a dynamic symbolic execution toolkit for binary-level
analysis. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), vol. 1, pp. 653–656. IEEE (2016)

10. De Castro Pinto, T., Rollet, A., Sutre, G., Tobor, I.: Replication package for “Guid-
ing Symbolic Execution with A-star” (2023). DOI: https://doi.org/10.5281/zenodo.
8169445

11. Djoudi, A., Bardin, S.: BINSEC: binary code analysis with low-level regions. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 212–217. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_17

12. Ducousso, S., Bardin, S., Potet, M.L.: Adversarial reachability for program-level
security analysis. In: Programming Languages and Systems. LNCS, p. 59. (2023).
https://doi.org/10.1007/978-3-031-30044-8_3

13. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

15. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

16. Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1), 1–13 (2018)
17. Li, Y., Su, Z., Wang, L., Li, X.: Steering symbolic execution to less traveled paths.

ACM SigPlan Notices 48(10), 19–32 (2013)
18. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.

In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7_11

19. MIASM: Cea-sec (2015). https://github.com/cea-sec/miasm

https://wookey-project.github.io/
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.5281/zenodo.8169445
https://doi.org/10.5281/zenodo.8169445
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1007/978-3-031-30044-8_3
https://doi.org/10.1007/978-3-642-23702-7_11
https://github.com/cea-sec/miasm

Guiding Symbolic Execution with A-Star 65

20. NoraCodes: crackmes (2017). https://github.com/NoraCodes/crackmes/blob/
master/crackme03.c

21. NoraCodes: crackmes (2017). https://github.com/NoraCodes/crackmes/blob/
master/crackme05.c

22. NoraCodes: crackmes (2017). https://github.com/NoraCodes/crackmes/blob/
master/crackme09.c

23. Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: a symbolic approach for
evaluation the robustness of secured codes against control flow injections. In: 2014
IEEE Seventh International Conference on Software Testing, Verification and Val-
idation, pp. 213–222. IEEE (2014)

24. Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

25. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS, vol. 16, pp. 1–16 (2016)

26. Xie, T., Tillmann, N., De Halleux, J., Schulte, W.: Fitness-guided path exploration
in dynamic symbolic execution. In: 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pp. 359–368. IEEE (2009)

https://github.com/NoraCodes/crackmes/blob/master/crackme03.c
https://github.com/NoraCodes/crackmes/blob/master/crackme03.c
https://github.com/NoraCodes/crackmes/blob/master/crackme05.c
https://github.com/NoraCodes/crackmes/blob/master/crackme05.c
https://github.com/NoraCodes/crackmes/blob/master/crackme09.c
https://github.com/NoraCodes/crackmes/blob/master/crackme09.c

Robustness Testing of Software Verifiers

Florian Dyck, Cedric Richter(B) , and Heike Wehrheim

University of Oldenburg, Department of Computing Science, Oldenburg, Germany
{florian.dyck,cedric.richter,heike.wehrheim}@uol.de

Abstract. Software verification tools fully automatically prove the cor-
rectness of verification tasks (i.e., programs with correctness specifica-
tions). With their increasing application on safety-critical software, the
quality of such tools becomes of prime importance. This quality is typ-
ically assessed via experimental evaluation. In this paper, we present a
novel approach for robustness testing of software verifiers. We consider
tools to be robust if their output (for a given input task) does not change
under small perturbations of the input. The core idea of our technique is
to start with tasks of publicly available benchmarks and systematically
apply small program transformations on them which preserve program
semantics. As a consequence, the ground truth known from the bench-
mark (i.e., the correct outcome used as an oracle during testing) carries
over to all of its perturbed versions. We experimentally evaluate robust-
ness testing on three state-of-the-art software verifiers. To this end, we
perturbate 778 tasks from the annual Competition on Software Verifica-
tion via 8 transformations. Our evaluation shows that all three verifiers
are non-robust, however, to different extents.

Keywords: Software Verification · Robustness · Testing

1 Introduction

The past years have seen enormous progress in software verification, partially
due to novel approaches being developed and partially due to optimizations of
existing techniques. Annual challenges (e.g., the RERS challenge [20]) as well
as competitions (e.g., the Competition on Software Verification SV-COMP [1])
fuel novel developments. As automatic verification is also increasingly applied to
industrial software, the quality of software verification tools (short: verifiers) is of
prime importance. In competitions, verifiers are assessed on common benchmark
sets. A benchmark case in such a set, a verification task, is typically a program
(in some programming language) together with a specification of a property. In
addition, benchmarks often contain information on the expected correct output,
the ground truth, true or false, stating whether the property does or does not hold
for the program. This assessment via benchmarks is the main form of quality
assurance for software verifiers.

Partially funded by German Research Council DFG under grant number 418257054.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 66–84, 2023.
https://doi.org/10.1007/978-3-031-47115-5_5

https://doi.org/10.5281/zenodo.8186536
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_5&domain=pdf
http://orcid.org/0000-0003-2906-6508
http://orcid.org/0000-0002-2385-7512
https://doi.org/10.1007/978-3-031-47115-5_5

Robustness Testing of Software Verifiers 67

Fig. 1. Example program (left) and two versions obtained by transformation

In this paper, we propose an approach for robustness testing of software
verifiers (for the C programming language). In general, robustness testing checks
whether a system under test (SUT) – in our case a software verifier – is sensitive
to small perturbations of the input – in our case a verification task. The small
perturbations should be inconsequential, i.e. they should not change programs
behavior or the expected verification outcome of a given verification task.

In particular, we would expect software verifiers to be robust under pertur-
bations which preserve program semantics. Consequently, our robustness test-
ing employs simple semantics-preserving program transformations and checks
whether a software verifier computes the same results for a verification task and
its transformed version. Conceptually, our testing approach is thus an instance
of metamorphic testing [11] in which the SUT is supplied with a pair of inputs
related by some metamorphic relation R1 and the tester checks whether the cor-
responding outputs are related via a relation R2. In our setting, relation R1 is
semantic equality and R2 simply the identity. As R2 is the identity (the same
output should be computed for a verification task and its transformed version),
the ground truth for a verification task stored in public benchmarks carries over
to the transformed version and can also be used as an oracle during testing.
This ultimately allows us to not only check the robustness of a verifier, but also
provides us with further benchmarks for assessing its overall quality.

Example. As a first example, consider the program on the left of Fig. 1. The
program represents a simple verification task. The software verifier has to prove
that the function call error is not reachable, i.e., there does not exist an exe-
cution leading to the function call. The expected outcome for the task is true.
Our robustness testing would now for instance apply the semantics preserving
transformation loop deepening (giving the program in the middle) and further
function encapsulation (giving the program on the right). Our testing approach
then checks whether a software verifier computes the same outcome for the
transformed versions and the original version.

Contributions. In this paper, we introduce a number of such transformations
and employ them to systematically evaluate the robustness of three state-of-

68 F. Dyck et al.

Fig. 2. Program syntax (X program variables, PId procedure identifiers)

the-art software verifiers. In summary, we make the following contributions on
robustness testing of software verifiers.

• We propose several semantics-preserving transformations that concern the
introduction of loops, branches, recursion and functions as well as new types
of variables (pointers, arrays, structs).

• We provide a formalization of our notion of semantics preservation and prove
eight of our transformations to be sound.

• We evaluate the effectiveness of robustness testing on three state-of-the-art
software verifiers (and – to see the effect on specific verification algorithms –
three additional specific configurations of one verifier). To this end, we have
taken 778 verification tasks from the SV-COMP benchmark set and have
transformed it via 8 transformations.

• Our evaluation shows that both verification tools and verification algorithms
are not robust against semantic-preserving transformations. The degree of
robustness highly depends on the type of the employed verifier.

The implementation of all semantic-preserving transformations introduced in
this work are publicly available on Github1 and can easily be adopted for testing
of software verifiers. All experimental data and our open-source implementation
are also archived and available in our supplementary artifact [17].

2 Background

We start by shortly introducing the syntax and semantics of programs2 and
formalizing the task of software verification.

Program Syntax and Semantics. To ease representation, we consider a sim-
ple programming language (see Fig. 2). We assume a set of program variables X
and identifiers for procedures PId . Program values v ∈ V can only be numerical
constants or random values returned by a function nondet. Booleans B ∈ BExpr
are also represented by numerical values (0 for false and v �= 0 for true) and can
be negated and logically connected. Furthermore, values can be modified through

1 https://github.com/FlorianDyck/semtransforms.
2 For our formalization, we employ an artifical programming language; our implemen-

tation transforms C programs.

https://github.com/FlorianDyck/semtransforms

Robustness Testing of Software Verifiers 69

Fig. 3. Operational semantics of programs

common unary and binary operators. Statements C ∈ C consists of assignments,
branches, while loops, sequences and an error statement3. Altogether, a program
P ∈ P consists of procedure definitions followed by statements.

The semantics of a program is defined by a state transition system consisting
of an initial state (P, φ) and a transition relation → ⊆ (P × Φ) × Act × (P × Φ).
In this, a program state is a tuple (P, φ) of the current program P ∈ P and a
mapping φ : X ∪ PId → Z ∪ C4, P × Φ is the set of all such states and Act :=
{err, τ} ∪ {x := A | x ∈ X , A ∈ AExpr} is the set of actions. An execution trace
of a program P1 and an initial mapping φ1 is a (potentially infinite) sequence
of program states (P1, φ1)

α1−→ (P2, φ2)
α2−→ . . .

αn−1−−−→ (Pn, φn) αn−−→ . . . such
that (Pi, φi)

αi−→ (Pi+1, φi+1). If an execution trace ends, we denote this by
eliding the current program and just giving the final mapping φ∗. The transition
relation → is defined by the operational semantics shown in Fig. 3. Therein, �·�φ :
AExpr ∪BExpr → 2Z defines the set of interpretations of a given expression with
respect to φ. Programs are allowed to be non-deterministic represented by calling
a random function nondet, i.e., �nondet()�φ = Z. Furthermore, we define the
evaluation of the other operators as �z�φ = {z} for all z ∈ Z, �x�φ = {φ(x)}
for x ∈ X , ��A�φ = {�z | z ∈ �A�φ} and �A1 ⊕ A2�φ = {z1 ⊕ z2 | z1 ∈
�A1�φ, z2 ∈ �A2�φ}. We let the set of all execution traces with initial state (P, φ)
be traces(P, φ) and its execution results be exec(P, φ) := {φ� | (P, φ) →∗ φ�}.
Execution results can also be restricted to subsets of variables X ⊆ X with
φ|X := {x 	→ φ(x) | x ∈ X} and exec|X(P, φ) := {φ|X | φ ∈ exec(P, φ)}. Finally,
the function computed by a program P for a given mapping φ can be represented
by fP (φ) = exec(P, φ) which can be restricted to fP |X(φ) = exec|X(P, φ).

Weak Bisimilarity of Program States. The transformations which we
employ for robustness testing preserve the semantics of programs. We will prove

3 In Fig. 1 we used an error-function to make it proper C syntax.
4 To simplify the notation, the mapping φ stores both assignments to variables and

procedure definitions.

70 F. Dyck et al.

such preservations by showing weak bisimilarity [24] between program’s transi-
tion systems. Two program states (P1, φ1) and (P2, φ2) are weak bisimilar if they
share the same observable behavior with respect to their state transition systems.
For observability, we fix a set of program variables X ⊆ X that we are interested
in for the particular transformation. Formally, for a given X we define any behav-
ior as X-observable that changes the observable state φ of X (plus the error tran-
sition), i.e. any transition α ∈ ActX := {err} ∪ {x := A | x ∈ X,A ∈ AExpr}.
We consider any changes to procedure definitions and variables not defined in
X as non-observable. Based on this, a relation R ⊆ (P × Φ) × (P × Φ) is a weak
X-bisimulation, X ⊆ X , if the following holds for all ((P1, φ1), (P2, φ2)) ∈ R and
all α ∈ ActX ∪ {τ} :

1. (P1, φ1)
α−→ (P ′

1, φ
′
1) implies

∃(P ′
2, φ

′
2) : (P2, φ2)

α=⇒ (P ′
2, φ

′
2) and ((P ′

1, φ
′
1), (P

′
2, φ

′
2)) ∈ R,

2. (P2, φ2)
α−→ (P ′

2, φ
′
2) implies

∃(P ′
1, φ

′
1) : (P1, φ1)

α=⇒ (P ′
1, φ

′
1) and ((P ′

1, φ
′
1), (P

′
2, φ

′
2)) ∈ R.

where α=⇒:= τ∗ατ∗
−−−−→ if α ∈ ActX and α=⇒:= τ∗

−→ otherwise. Two states (P1, φ1)
and (P2, φ2) are weak X-bisimilar ((P1, φ1) ≈X (P2, φ2)) if there exists a weak
X-bisimulation R with ((P1, φ1), (P2, φ2)) ∈ R. Note that any two weak X-
bisimilar states (P1, φ1) ≈X (P2, φ2) share the same observable behavior [15],
i.e. ObsX(P1, φ1) = ObsX(P2, φ2) where ObsX(P, φ) := {α1α2 · · · αn ∈ Act∗

X |
(P, φ) α1=⇒ (P1, φ1)

α2=⇒ . . .
αn==⇒ φn ∈ traces(P, φ)}.

Program Verification. The goal of program verification is to show that a pro-
gram P ∈ P is safe with respect to some property ϕ (e.g., that a program is
memory safe, terminates or avoids error statements). A program verifier (or soft-
ware verifier) is a tool that proves or disproves that P satisfies ϕ. In the context
of this work, we view program verifiers as functions Vϕ : P → {true, false,unk}
which decide whether the property is satisfied (Vϕ(P) = true), unsatisfied
(Vϕ(P) = false) or it fails to make a decision (Vϕ(P) = unk). The ground truth
gt ∈ {true, false} of a verification task (P,ϕ) defines whether P truly satisfies the
property ϕ. Therefore, a verifier is said to be correct for a given verification task
(P,ϕ) if the output of the verifier matches the ground truth gt (i.e. Vϕ(P) = gt).
Finally, we will evaluate a verifier on verification benchmarks which are sets of
verification tasks (P,ϕ,gt) with a known ground truth.

The Unreachability Property. Here, we consider verification tasks with the
unreachability property. We assume that safety properties are encoded in the
program (e.g., as assertions) and the program verifier has to prove that error
locations are unreachable. Formally, an error location inside a program P is
unreachable iff there does not exist a state (P, φ) with

(P, φ) α1−→ (P1, φ1)
α2−→ . . .

αn−−→ φerror,

or alternatively the error state is not contained in the execution result (i.e.,
∀φ : φerror �∈ exec(P, φ)). In this work, we specifically focus on unreachability

Robustness Testing of Software Verifiers 71

verifiers which simplifies the notation: unreachability verifiers Vunreach : P →
{true, false,unk} are verifiers that are specialized to prove the unreachability
property and unreachability benchmarks are sets of verification tasks (P,gt).

3 Robustness Testing for Software Verification

Our goal is to evaluate the robustness of unreachability verifiers with respect to
simple semantics-preserving program transformations. In the following, we start
by defining robustness of verifiers in general and then show how the robustness of
unreachability verifiers can be tested via semantics-preserving transformations.

3.1 Robustness of Software Verifiers

We start by defining the robustness of software verifiers with respect to some
program transformation:

Definition 1. A verifier Vϕ : P → {true, false, unk} is robust with respect to a
program transformation γ : P → P iff:

∀P ∈ P : gtP = gtγ(P) ⇒ Vϕ(P) = Vϕ(γ(P)),

where gtP and gtγ(P) are the ground truths for the verification tasks (P,ϕ,gtP)
and (γ(P), ϕ,gtγ(P)) respectively.

A verifier is said to be non-robust if there exists a program transformation γ :
P → P such that the verifier is not robust with respect to γ.

Testing Robustness. Calculating the robustness of a verifier is highly chal-
lenging in practice as the verifier would have to be evaluated on all possible
verification tasks and with all possible program transformations. Therefore, a
common approach is to test for robustness. Here, the goal is to check whether
there exists a verification task P and a transformation γ for which the verifier
is non-robust:

∃P ∈ P : gtP = gtγ(P) ⇒ Vϕ(P) �= Vϕ(γ(P)) .

In practice, this is often done by taking a set S ⊆ P of seed programs and check-
ing whether the verifier is non-robust for any seed s ∈ S and any transformation
γ : P → P of a defined set of transformations. If a verifier is not robust for any
of the seed programs and their transformed variants, then the verifier can be
decided to be non-robust. Note however that checking whether the ground truth
is preserved after the transformation is non-trivial. Therefore, in practice, prop-
erty preserving program transformations are often employed, i.e., gtP = gtγ(P)

is guaranteed by design of γ.

72 F. Dyck et al.

3.2 Semantics-Preservation

To effectively test the robustness of software verifiers, we employ semantics-
preserving transformations of programs. In the following, we will formally intro-
duce semantics-preserving transformations and then show that they also preserve
the ground truth for verification tasks with the unreachability property.

Semantics-Preserving Transformations. To begin with, we define two pro-
grams P1 and P2 as semantically equivalent if they compute the same function.
Therefore, a program transformation is semantics-preserving if the resulting pro-
gram is semantically equivalent to the original program. Formally, we can define
a semantics-preserving program transformation as follows:

Definition 2. A program transformation γ : P → P is semantics-preserving
with respect to some X ⊆ X if for any program state (P, φ) the following holds:

fP |X(φ) = fγ(P)|X(φ)

In other words, the programs P and γ(P) compute the same function for all
result variables x ∈ X. Here, the error state φerror is independent of X, i.e.
φerror|X := φerror. Therefore, it is easy to show that any semantics-preserving
program transformation also preserves the unreachability of error-statements:

Lemma 1. Any semantics-preserving program transformation γ : P → P pre-
serves the ground truth for unreachability tasks, i.e.

φerror ∈ fP |X(φ) ⇔ φerror ∈ fγ(P)|X(φ)

Note that this is a direct consequence of Definition 2. Because semantics-pre-
servation is more strict than unreachability-preservation for any X �= ∅, it is often
easier to show that a transformation is semantics-preserving for certain X ⊆ X
than showing unreachability-preservation. In fact, in the remaining paper, we
assume that the set of variables can be split into two distinct sets X = XP ∪ XΓ

where XP is the set of variables modified in programs and XΓ is a unique set of
variables that can only be introduced by program transformations. Further, we
assume that the introduced variables x ∈ XΓ can never be shared between two
transformations. In other words, we assume that Var(γ1(P1)) ∩ Var(γ2(P2)) ⊆
XP for any two transformations γ1, γ2 and two programs P1, P2 where Var :
P → 2X gives the set of variables used in the program.

In the following, we introduce several program transformations that are
semantics-preserving with respect to XP if not stated otherwise. For showing
that they are semantics-preserving, we employ the following two lemmas:

Lemma 2. Any program transformation γ : P → P is semantics-preserving
with respect to X ⊆ X if all program states (P, φ) are weakly bisimilar to the
transformed variant (γ(P), φ), i.e., (P, φ) ≈X (γ(P), φ) .

Proof: Assume that (P, φ) ≈X (γ(P), φ) is weakly bisimilar but the function
γ : P → P is not semantics-preserving for P ∈ P. Then, there either exists

Robustness Testing of Software Verifiers 73

Fig. 4. Weak bisimulation for loop deepening and loop to recursion (dashed lines repre-
sent the relation, early aborts of the while loop are not depicted)

φ∗ ∈ fP (φ) such that there is no φγ ∈ fγ(P)(φ) with φ∗
|X = φγ

|X or vice versa.
W.l.o.g. we assume φ∗ ∈ fP (φ) and φγ �∈ fγ(P)(φ). Since φ∗ ∈ fP (φ) there
exists at least one observable trace (P, φ) α1=⇒ . . .

αn==⇒ φ′ with φ′
|X = φ∗

|X . Since

(P, φ) ≈X (γ(P), φ), there has to exist an observable trace (γ(P), φ) α1=⇒ . . .
αn==⇒

φγ with φγ
|X = φ′

|X = φ∗
|X and φγ ∈ fγ(P)(φ). Contradiction.

Lemma 3. Any program transformation γ : P → P that transforms a part
of a program P with a semantics-preserving transformation is also semantics-
preserving with respect to XP . In particular, the following program transforma-
tions are semantics-preserving:

• the identity id(P) := P and γseq(C1;C2) := γ1(C1); γ2(C2),
• γbranch(if B then C1 else C2 fi) := if B then γ1(C1) else γ2(C2) fi,
• γloop(while B do C od) := while B do γ1(C) od,
• γproc(proc p is C end) := proc p is γ1(C) end,

where γ1, γ2 are semantics-preserving transformations with respect to XP .

Due to lack of space we do not prove Lemma 3 here.

3.3 Transformations

In the following, we introduce eight different semantics-preserving transforma-
tions. Due to lack of space, we do not provide fully formal correctness proofs,
but partly give and explain the weak bisimulation relations employed in proofs.

Control Flow Transformations. Three of our transformations alter the con-
trol flow of the program.

74 F. Dyck et al.

Loop Deepening (C1). Most existing software verifiers employ some type of loop
abstraction [5] or some other form of loop overapproximation [7]. To test whether
these abstraction techniques are robust with respect to loop nesting, we introduce
the loop deepening transformation defined as follows:

γdeep(while B do C od) := while B do while B ∧ nondet() do C od od

Note that B ∈ BExpr and C ∈ C can be arbitrary boolean expressions and
statements, respectively. Furthermore, based on Lemma 3, it is sufficient to define
program transformations only for sub-programs containing a loop. Now, to show
that γdeep is semantics-preserving, we define the following weak bisimulation:

Rdeep :={((while B do C od , φ), (γdeep(while B do C od), φ)) | φ ∈ Φ}
∪ {((Cw, φ), (while B ∧ nondet () do C od ; γdeep(Cw), φ))

| φ ∈ Φ,Cw = while B do C od}
∪ {((C;Cw, φ), (C; while B ∧ nondet () do C od ; γdeep(Cw), φ))

| φ ∈ Φ,Cw = while B do C od}
∪ {((P, φ), (P, φ)) | P ∈ P, φ ∈ Φ} ∪ {(φ, φ) | φ ∈ Φ}

We also depict the relation Rdeep in Fig. 4a. Note that, since evaluating the loop
condition has no effect on the variables, C is the only statement or sequence
of statements that can modify the variables in φ. In addition, if the loop ever
terminates (i.e. �B�φ = 0), C either has to contain a modifying statement or
the loop body will never execute. If the loop body is never executed, both the
original program P and the transformed program γdeep(P) will end in the same
state φ ((φ, φ) ∈ Rdeep). Therefore, we focus in the following on the case that
the loop body is executed at least once. To preserve weak bisimilarity over XP ,
we hence have to guarantee that if C can be executed in P then C can also
be executed in γdeep(P) and vice versa. In Fig. 4a, we can observe that this is
possible for the program transformation γdeep. The main difference is the τ loops
that weak bisimulations abstract from. Since Rdeep is a weak bisimulation and
((while B do C od, φ), (γdeep(while B do C od), φ)) ∈ Rdeep, we know that
the program transformation γdeep is semantics-preserving.

IF-encapsulation (C2). The branching width of a program can determine the
complexity of a verification task. Therefore, we are interested in testing whether
modern software verifiers are robust against increasing the branching width. For
this, we introduce the if-encapsulation transformation:

γif-enc(C) := if 1 then C else skip fi

Dead error (C3). Unreachability verifiers are often designed to adjust their ver-
ification complexity with respect to the occurring error-statements [13]. The
dead error transformation presents a way to inject additional such statements:

γdead-err(C) := if 0 then error else C fi

Robustness Testing of Software Verifiers 75

Both (C2) and (C3) are program transformations that map to the original
program state after one execution step. In other words, for any program state
(C, φ) the transformed variant has an additional step to map to the original
program without changing any variable ((γ(C), φ) τ−→ (C, φ)). Therefore, both
program transformation in (C2) and (C3) are semantics-preserving.

Indirected Transformations (I1) and (I2). Indirected transformations are
transformations that redirect the data flow of a program without changing the
semantics of the program. We implemented two types of indirected transforma-
tions: array indirection (I1) and pointer indirection (I2). Arrays and Pointers are
often challenging for software verifiers. Introducing them with indirected trans-
formations allows us to test the ability of verifiers to handle these data types.

In general, indirected transformations can be described in our semantics as
follows:

γx(C) := px := x;C[x/px];x := px,

where px is either (I1) a[0] of a newly introduced array or (I2) a pointer reference
followed by a pointer dereference (*(& x)). Note that [x/px] in C replaces all
occurrences of some x ∈ X by px. The program transformation γx preserves the
semantics of the program as we initialize px to be x and then perform the same
operations on px as we would have done on x. Therefore, the resulting value of
px is equivalent to resulting value of x in the original program. In the end, we
map the resulting px back to x.

Function Transformations. So far, we mainly focused on local changes to the
program code. However, changes to the procedural structure of the program can
potentially have an impact on the verification process. Therefore, we are also
interested how procedure (or function) changes impact the verification process.

Function encapsulation (F1). In function encapsulation, we encapsulate a part
of the program inside a function and call this function in the previous context.
This function encapsulation transformation can be represented as follows:

γf-enc(C) := proc pnew is C end; call pnew

According to our semantics, the transformed program ends in the original pro-
gram after two non-observable execution steps. In other words, for any program
state (C, φ) we can map (γf-enc(C), φ) to (C, φ′) ((γf-enc(C), φ) τ−→ τ−→ (C, φ′))
with φ|XP = φ′

|XP . Note that for simplicity we allow that pnew is defined directly
next to its call. When applied in the context of a larger transformation, we
assume that pnew is appended to all other procedure definitions. Furthermore,
we assume in our semantics that all variables are defined globally. This is not
true in practice. In our implementation, we simulate access to ”global variables”
by providing access to all relevant local variables inside a code block via point-
ers. Since both caller and callee access and manipulate the same memory address
for all relevant local variables in the caller context, both the original and the
encapsulated code compute the same function.

76 F. Dyck et al.

Function inlining (F2). Inlining can be seen as the reverse operation to func-
tion encapsulation. Here, the function inlining transformation selects a random
function call and replace it with its implementation:

γf-in(call p) := C,

where proc p is C end is defined in the program. Note that according to the
semantics any state (call p, φ) maps to (C, φ) with φ[p] = C. If φ[p] = C
then proc p is C end must be defined in the program. Therefore, we know
that (call p, φ) τ−→ (γf-in(call p), φ). As φ is not modified, the transformation is
semantics-preserving. Again, we assume here that variables are accessed globally.
In practice, we map formal parameters to actual parameters.

Loop to recursion (R1). Most software verifiers are effective in handling loops
but fail for recursion. Therefore, to evaluate the robustness of software verifiers
against recursion, we also introduce the loop to recursion transformation. The
transformation is defined as follows:

γrec(while B do C od) := proc pnew is

if B then C; call pnew else skip fi

end; call pnew

To show that γrec is semantics-preserving, we again define a weak bisimulation
which we also depict in Fig. 4b.

Rrec :={((while B do C od , φ), (γrec(while B do C od), φ)) | φ ∈ Φ}
∪ {((while B do C od , φ), (call pnew, φ[pnew 	→ if B . . .])) | φ ∈ Φ}
∪ {((while B do C od , φ), (if B then . . . , φ[pnew 	→ . . .])) | φ ∈ Φ}
∪ {((C; while B do C od , φ), (C; call pnew, φ[pnew 	→ . . .]))) | φ ∈ Φ}
∪ {(φ, (skip , φ[pnew 	→ . . .]))) | φ ∈ Φ} ∪ {(φ, φ[pnew 	→ . . .])) | φ ∈ Φ}
∪ {((P, φ), (P, φ[pnew 	→ . . .])) | P ∈ P, φ ∈ Φ}

As soon as the function definition is handled, we can observe that the behavior
of the while loop directly maps to the behavior of the recursive function call.
In particular, the statement or statement sequence C can only be executed as
often as in the recursive function. Since C can only include observable actions,
the two state transition systems are weak bisimilar.

3.4 Robustness Testing Through Repeated Transformations

To evaluate the robustness of unreachability verifiers, we check whether there
exists a seed program P ∈ P and a semantics-preserving transformation γ :
P → P such that Vunreach(P) �= Vunreach(γ(P)). Recall that since γ is semantics-
preserving, it also preserves the ground truth of the seed program. Therefore,
if our check succeeds for a combination of program and transformation we can

Robustness Testing of Software Verifiers 77

Algorithm 1 Robustness testing algorithm
NR ← ∅ � non-robust transforms (pairs of seed and transformed seed)
for S ∈ Seeds do

P ← S
for k ← 1 . . . n do � apply n random transformations

γ ← random transformation
P ← γ(P)

if Vunreach(S) �= Vunreach(P) then
NR ← NR ∪ {(S, P)}

conclude that the verifier is non-robust. In practice, we apply Algorithm 1 and
we vary the number of transformations applied to the seed program. This is
sound since chains of semantics-preserving transformation are also semantics-
preserving.

4 Evaluation

We implemented our testing approach and all semantics-preserving program
transformations for testing unreachability software verifiers for C programs. In
the evaluation, we are interested in answering the following research questions:

–RQ1 Are software verification tools robust against semantics-preserving program
transformations?

–RQ2 Are software verification algorithms robust against semantics-preserving
program transformations?

–RQ3 Which transformations reveal non-robustness of software verification algo-
rithms?

We designed individual experiments for answering our research questions.

4.1 Benchmark Setup

During our evaluation, we evaluate the robustness of verification tools as well as
specific verification algorithms. For this, we transform existing verification tasks
by applying our semantics-preserving transformations up to 100 times. Transfor-
mations are applied randomly and for answering RQ1 and RQ2 we apply all eight
semantics-preserving transformations in addition to three helper transformations
(for2while, break2goto and add compound). The helper transformations per-
form only syntactic changes in C which will allow us to apply our technique
on a wider range of verification tasks. For RQ3, we apply transformations of
each transformation group (ControlFlow, Indirected, Functions and Recursion)
individually to evaluate their impact on the robustness of verifiers. In our experi-
ments, we measure two types of robustness: true-robustness and false-robustness.
True-robustness is the percentage of verification tasks that were decided to be
correct before and after the transformation. False-robustness is symmetrically

78 F. Dyck et al.

Table 1. Robustness results for verifiers on 778 tasks

(a) CPAchecker

after transformation

true false unk robust (%)

b
ef

o
re

true 136 43 168 39.2

false 3 95 56 61.7

unk 33 50 194 70.0

(b) ESBMC

after transformation

true false unk robust (%)

b
ef

o
re

true 139 3 148 47.9

false 0 112 50 69.1

unk 11 4 311 95.4

(c) Symbiotic

after transformation

true false unk. robust (%)

b
ef

o
re

true 318 0 87 78.5

false 0 117 36 76.5

unk. 1 5 213 97.3

defined for tasks that are verified to be incorrect (false). A value below 100%
means that the verifier is non-robust with respect to our transformations. Bench-
marks were executed via BenchExec [8]. For RQ1, we use a 24-core machine with
128GB RAM. We limit the verifiers to 15GB RAM, a timelimit of 15min and 1
physical core (2 processing units) per task. The experiments for RQ2 and RQ3
were performed on a cluster of 4-core machines with 33GB RAM.

4.2 Experimental Results

For our experiments, we selected unreachability verification tasks from the
benchmark set of the SV-COMP 2023 [1] as our seed programs. Included are
all 778 tasks from the ReachSafety-Loops category.

RQ1. To answer RQ1, we evaluate the robustness of three of the most success-
ful verifiers in the SV-COMP 2023 ReachSafety category [1]: CPAchecker [4],
Symbiotic [10] and ESBMC [19]. CPAchecker composes several verification algo-
rithms into verification strategies which are selected based on certain program
features [2] (e.g. the occurrence of loops, arrays, floating point operations). Sym-
biotic employs program slicing [10] to remove parts of the program irrelevant for
verification and then employs symbolic execution for the verification. ESBMC
is built upon the bounded model checker CBMC [14] and uses k-induction [19]
to infer loop invariants for the verification. Our results for the three verifiers are
shown in Table 1 (showing the number of tasks with specific outcomes before
and after transformation). The diagonals in the table give the number of tasks
with the same outcome (i.e., on which the verifiers are robust). We can observe
that no verification tool is robust with respect to all of our transformations,
CPAchecker in particular having difficulties with true- and false-robustness and
Symbiotic standing out with always achieving more than 70%-robustness. For
obtaining an insight why these verification tools are non-robust, we reviewed the
experiment logs for the individual verification tools. We found that CPAchecker
has significant problems with programs that contain recursive function calls.
This does not only lead to a low robustness score but also to high number of
new (partially incorrect) true and false verdicts (see the last row of Table 1a). In
the case of ESBMC and Symbiotic, the tools fail to verify a significant number
of the transformed verification tasks due to timeouts and out-of-memory errors.
It is unclear whether this is also caused by our loops to recursion-transformation.

Robustness Testing of Software Verifiers 79

Table 2. Robustness results for verification algorithms on 778 tasks

(a) Symbolic Execution

after transformation

true false unk. robust (%)

b
ef

o
re

true 5 0 254 1.9

false 0 76 66 53.5

unk. 0 2 375 99.5

(b) Predicate Analysis

after transformation

true false unk. robust (%)

b
ef

o
re

true 108 0 71 60.3

false 0 51 9 85.0

unk. 18 0 521 96.7

(c) k-Induction

after transformation

true false unk. robust (%)

b
ef

o
re

true 105 0 147 41.7

false 0 105 20 84.0

unk. 9 8 384 95.8

Therefore, to avoid that the measured effect on the tool’s robustness is dominated
by recursion, we also evaluated the tools on verification tasks transformed via
all transformations except loops to recursion. We find that CPAchecker is signif-
icantly more effective in avoiding incorrect results on verification tasks without
recursion. However, surprisingly the tool performs even worse in terms of true-
and false-robustness (with a score of 28.8% and 57.8% respectively). Interest-
ingly, avoiding recursion in the transformation process has little to no influence
on the robustness of the other tools. The only exception is the true-robustness
of ESBMC which further decreases by 9.6%. Overall, we can conclude that:

The tested verifiers are not robust against semantics-preserving transforma-
tions. The degree of robustness is highly dependent on the type of transfor-
mation applied during testing.

RQ2. As verifiers typically employ a mixture of different algorithms, we were
also interested in the effect of the transformations on standalone algorithms. For
RQ2, we thus evaluated the robustness of three verification algorithms imple-
mented in CPAchecker5: (1) Symbolic Execution [6] using symbolic values to
abstract the concrete program state, (2) Predicate Analysis [5] employing predi-
cate abstraction, and (3) k-induction [3], an extension of bounded model checking
with inductive invariants. Together all three algorithms cover a wide range of
those used in state-of-the-art tools in SV-COMP [1]. The implementations of
these algorithms however do not support programs with recursion. Therefore,
we exclude transformation loop to recursion. Our results are shown in Fig. 2.

We can observe that verification algorithms are also not robust against the
semantics-preserving transformations. Predicate analysis is the most robust algo-
rithm with a true-robustness score of 60.3% and false-robustness of 85.0%. Sym-
bolic Execution achieves the lowest robustness scores for both true-robustness
and false-robustness. Overall, we find that the transformed tasks are significantly
more challenging for the algorithms than the original tasks. In fact, for most of
the tasks that they have previously solved, the algorithms fail on the transformed
task because of a timeout or an out-of-memory error. Interestingly enough, there
5 We chose CPAchecker for this purpose as it is the only verifier configurable to one

particular algorithm.

80 F. Dyck et al.

Table 3. Robustness results for symbolic execution (SymEx), predicate analysis (Pred)
and k-induction (kInd) per category (transformations applied 1, 10 or 100 times (sub-
script); reporting true robustness (%TRob), false robustness (%FRob) and total num-
ber of unknowns (#unk)).

ControlFlow Indirected Functions Recursion

%TRob %FRob #unk %TRob %FRob #unk %TRob %FRob #unk %TRob %FRob #unk

SymEx1 97.9 95.5 352 93.8 96.2 361 54.1 66.7 496 4.5 22.0 675

SymEx10 56.6 89.1 456 3.3 60.6 627 54.1 66.7 496 0.0 14.4 696

SymEx100 56.6 84.7 462 3.3 59.8 628 54.1 66.7 496 0.0 0.0 715

Pred1 100.0 100.0 525 90.0 94.0 542 60.7 88.2 573 11.4 17.6 690

Pred10 99.3 100.0 526 82.1 86.0 600 57.9 84.3 579 0.0 5.9 712

Pred100 94.2 96.0 536 82.1 86.0 600 52.9 80.4 587 0.0 5.9 712

kInd1 94.8 99.1 401 81.2 98.2 421 91.5 98.2 399 8.5 5.3 691

kInd10 66.2 93.8 468 71.8 95.6 444 91.5 96.5 407 0.0 0.9 714

kInd100 59.6 74.3 504 70.9 95.6 446 82.6 89.5 434 0.0 0.0 715

is a significant number of unknown results where the individual algorithms stop
the verification of the transformed task without exceeding any resource limit.
This is most evident in the symbolic execution. Here, the algorithm stops after a
few seconds with an unknown result in 117 of the 320 cases. This could indicate
that our transformations introduce program constructs that are not supported
by the algorithm (see RQ3). Summarizing, we find that:

Verification algorithms are not robust against semantics-preserving transfor-
mations. The degree of robustness and how much the verification complexity
increases is highly dependent on the employed verification algorithm.

RQ3. For answering RQ3, we evaluate the robustness of the algorithms for
the different transformation categories ControlFlow, Indirected, Functions and
Recursion in isolation. We start from the same seed benchmark and apply 1, 10,
100 transformations of a category. We excluded tasks which cannot be trans-
formed in at least one of the transformation categories (excluding 63 tasks with-
out loops). The algorithms are again evaluated on the task before and after the
transformation. Results are shown in Table 3.

As expected, loop to recursion has the highest negative impact on the verifi-
cation performance. The verification algorithms usually abort and fail as soon as
they discover a recursive function call. It is however surprising that some tasks
can still be solved after the loop to recursion transformation was applied. There-
fore, there are some tasks which can be solved without the need of processing the
recursive function call. Apart from recursion, we find that the verification algo-
rithms struggle to be robust for all transformation categories (with the exception
of predicate analysis for a single application of control flow transformations).

Robustness Testing of Software Verifiers 81

In general, algorithms fail to be robust at least on a few tasks as soon as we
apply multiple transformations. This is expected as we naturally increase the
verification complexity by applying our transformation. It is however surprising
that predicate analysis is the only algorithm that is nearly robust for control
flow transformations while the other algorithms struggle in this category. The
same also holds true for the Functions category where k-induction dominates in
terms of robustness. Finally, our robustness results on individual transformation
categories also allow us to identify the cause for the robustness problems of sym-
bolic execution identified in RQ2. While symbolic execution is mostly robust for
function and control flow transformations, it fails to be robust on most tasks
after more than 10 applications of the indirected transformation. Upon closer
inspection, we find that symbolic execution fails on these tasks by reporting an
unknown or running into a timeout. From the tool’s logs it is not clear why this
happens, but we expect that symbolic execution either does not support arrays,
pointers or combinations thereof. To validate this hypothesis, we also applied the
Array indirected transformation and the Pointer indirected transformation inde-
pendently (100 times each). We found that symbolic execution is significantly
more robust against Array transformations (with a true-robustness of 90.3% and
a false-robustness of 95.8%) than against Pointer transformations (with a true-
robustness of 4.6% and a false-robustness of 62%). This indicates that symbolic
execution as implemented in CPAchecker does not fully support the introduced
pointers. Overall, this analysis demonstrate that robustness testing can be useful
for identifying the individual weaknesses of verification algorithms. For RQ3, we
thus get:

Verification algorithms have different strengths and weaknesses which can
be uncovered by robustness testing. Different transformation categories can
reveal robustness problems of individual algorithms. By using transformations
in isolation, it is possible to identify root causes for individual weaknesses of
verifiers.

5 Related Work

Assessing the quality of software verifiers in general is an important problem [9]
and many approaches have been proposed that address this problem by generat-
ing new benchmarks [16,25,26] and by transforming existing code [18,21,28].
For example, Chen and Furia [12] evaluated the robustness of intermediate
verifiers by transforming existing Boogie programs with semantics-preserving
transformations like swapping declarations or joining assertions. In contrast, we
focused on semantics-preserving transformations for C code and we showed that
complete verification tools are not robust against our transformations. Kapus
and Cadar [21] evaluated the correctness of symbolic execution engines with
semantics-preserving transformations. For this, they generated small determin-
istic C programs and then replaced constants with symbolic variables. The trans-
formations are semantics-preserving as the symbolic variables are constrained to

82 F. Dyck et al.

be equivalent to the replaced constants. While we also target C programs, our
focus is more on the robustness of C verifiers in general. In fact, we showed that
our transformations can be used to test the robustness of various unreachability
verifiers. Zhang et al. [28] evaluated the correctness of unreachability verifiers by
injecting arbitrary error locations into existing C code. As their transformations
are not semantics-preserving, they had to rely on the execution of programs
(with deterministically defined inputs) to determine the ground truth. Our app-
roach works for arbitrary C programs and our transformations guarantee that
the ground truth is preserved. Fink et al. [18] randomly generate artificial C
code to benchmark software verifiers. For this, they use a template to gener-
ate various correct programs (so that the error location is unreachable) and
employ correctness-preserving transformations on the generated code. In con-
trast, our transformations can be applied to correct and incorrect programs and
we formally proved their soundness. While we mainly focused on testing the
robustness of C software verifiers, evaluating software analyzers is also an issue
in areas other than C software verification. For example, Dolan-Gavitt et al. [16]
generate benchmarks for fuzz testing via bug injection into realistic code. Schott
and Pauck [25] recombined existing benchmarks for evaluating taint analysis
tools. Steffen et al. [26] generated benchmarks for evaluating C software veri-
fiers. While our approach is not targeted at generating new benchmarks, it can
be directly used to augment existing benchmarks with a known ground truth.

Finally, semantics-preserving transformations have also been applied for test-
ing C compilers [22,23,27]. However, these works used a relaxation of semantics-
preservation called Equivalence Modulo Input (EMI) [22]. Transformations that
are semantics-preserving under EMI guarantee that program semantics are pre-
served for a restricted set of inputs. This allowed for example Le et al. [22] to
drop certain statements which are never reached for a given set of inputs. In
contrast, our transformations guarantee semantics-preservation for all possible
inputs which is a necessity for testing software verifiers.

6 Conclusion

In this paper, we have proposed a new technique for testing the robustness of
C software verifiers. We have employed this technique to test the robustness of
entire verification tools as well as individual verification algorithms. Our evalu-
ation has shown that most of the evaluated approaches are non-robust against
the eight semantics-preserving transformations introduced in this work. In addi-
tion, it shows that the robustness against individual transformations is heavily
dependent on the type of the employed verifier. While our technique is effec-
tive in uncovering robustness problems of software verifiers, identifying the root
cause of the robustness problem is still challenging. For future work, we see the
integration of search-based techniques that search for minimal modifications of
the input that still trigger the non-robustness of the verifier. Minimal modifica-
tions – consisting of one or two types of transformations (such as the Pointer
transformation in the case of symbolic execution) – are easier to interpret, which

Robustness Testing of Software Verifiers 83

also makes it easier to isolate the cause of non-robustness. Finally, we believe
that our insights in the robustness of software verifiers can potentially guide the
development of more robust verifiers.

References

1. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: TACAS. LNCS, vol. 13994, pp. 495–522. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-30820-8 29

2. Beyer, D., Dangl, M.: Strategy selection for software verification based on Boolean
features. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp.
144–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 11

3. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 42

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proceedings of 10th International Conference on Formal Meth-
ods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20–
23, pp. 189–197. IEEE (2010). https://ieeexplore.ieee.org/document/5770949/

6. Beyer, D., Lemberger, T.: CPA-SymExec: efficient symbolic execution in
CPAchecker. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September
3–7, 2018, pp. 900–903. ACM (2018). https://doi.org/10.1145/3238147.3240478

7. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1 11

8. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

9. Cadar, C., Donaldson, A.F.: Analysing the program analyser. In: ICSE, pp. 765–
768. ACM (2016). https://doi.org/10.1145/2889160.2889206

10. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety checking
revisited. Int. J. Softw. Tools Technol. Transf. 22(2), 115–133 (2020). https://doi.
org/10.1007/s10009-019-00526-2

11. Chen, T.Y., Kuo, F., Liu, H., Poon, P., Towey, D., Tse, T.H., Zhou, Z.Q.: Meta-
morphic testing: a review of challenges and opportunities. ACM Comput. Surv.
51(1), 4:1–4:27 (2018). https://doi.org/10.1145/3143561

12. Chen, Y.T., Furia, C.A.: Robustness testing of intermediate verifiers. In: Lahiri,
S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 91–108. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 6

13. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/2889160.2889206
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1145/3143561
https://doi.org/10.1007/978-3-030-01090-4_6
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15

84 F. Dyck et al.

14. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

15. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24(2), 211–237 (1987). https://doi.org/10.1007/BF00264365

16. Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson, W.K.,
Ulrich, F., Whelan, R.: LAVA: large-scale automated vulnerability addition. In:
IEEE Symposium on Security and Privacy, SP 2016, pp. 110–121. IEEE Computer
Society (2016). https://doi.org/10.1109/SP.2016.15

17. Dyck, F., Richter, C., Wehrheim, H.: Robustness testing of software verifiers (2023).
https://doi.org/10.5281/zenodo.8186536

18. Fink, X., Berger, P., Katoen, J.: Configurable benchmarks for C model checkers.
In: NFM. LNCS, vol. 13260, pp. 338–354. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-06773-0 18

19. Gadelha, M.R., Monteiro, F., Cordeiro, L., Nicole, D.: ESBMC v6.0: verifying
C programs using k -induction and invariant inference. In: Beyer, D., Huisman,
M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 209–213.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3 15

20. Howar, F., Jasper, M., Mues, M., Schmidt, D., Steffen, B.: The RERS challenge:
towards controllable and scalable benchmark synthesis. Int. J. Softw. Tools Tech-
nol. Transf. 23(6), 917–930 (2021). https://doi.org/10.1007/s10009-021-00617-z

21. Kapus, T., Cadar, C.: Automatic testing of symbolic execution engines via program
generation and differential testing. In: ASE, pp. 590–600. IEEE Computer Society
(2017). https://doi.org/10.1109/ASE.2017.8115669

22. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
O’Boyle, M.F.P., Pingali, K. (eds.) PLDI ’14, pp. 216–226. ACM (2014). https://
doi.org/10.1145/2594291.2594334

23. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic program
mutation. In: Aldrich, J., Eugster, P. (eds.) OOPSLA 2015, pp. 386–399. ACM
(2015). https://doi.org/10.1145/2814270.2814319

24. Milner, R.: Communication and Concurrency. PHI Series in Computer Science,
Prentice Hall (1989)

25. Schott, S., Pauck, F.: Benchmark fuzzing for android taint analyses. In: SCAM,
pp. 12–23. IEEE (2022). https://doi.org/10.1109/SCAM55253.2022.00007

26. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.: Property-driven
benchmark generation: synthesizing programs of realistic structure. Int. J. Softw.
Tools Technol. Transf. 16(5), 465–479 (2014). https://doi.org/10.1007/s10009-014-
0336-z

27. Sun, C., Le, V., Su, Z.: Finding compiler bugs via live code mutation. In: Visser,
E., Smaragdakis, Y. (eds.) OOPSLA 2016, pp. 849–863. ACM (2016). https://doi.
org/10.1145/2983990.2984038

28. Zhang, C., Su, T., Yan, Y., Zhang, F., Pu, G., Su, Z.: Finding and understanding
bugs in software model checkers. In: ESEC/SIGSOFT FSE, pp. 763–773. ACM
(2019). https://doi.org/10.1145/3338906.3338932

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/BF00264365
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.5281/zenodo.8186536
https://doi.org/10.1007/978-3-031-06773-0_18
https://doi.org/10.1007/978-3-031-06773-0_18
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/s10009-021-00617-z
https://doi.org/10.1109/ASE.2017.8115669
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1109/SCAM55253.2022.00007
https://doi.org/10.1007/s10009-014-0336-z
https://doi.org/10.1007/s10009-014-0336-z
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3338906.3338932

Decoupled Fitness Criteria for Reactive
Systems

Derek Egolf(B) and Stavros Tripakis

Northeastern University, Boston, MA, USA
{egolf.d,stavros}@northeastern.edu

Abstract. The correctness problem for reactive systems has been thor-
oughly explored and is well understood. Meanwhile, the efficiency prob-
lem for reactive systems has not received the same attention. Indeed, one
correct system may be less fit than another correct system and determin-
ing this manually is challenging and often done ad hoc. We (1) propose
a novel and general framework which automatically assigns comparable
fitness scores to reactive systems using interpretable parameters that are
decoupled from the system being evaluated, (2) state the computational
problem of evaluating this fitness score and reduce this problem to a
matrix analysis problem, (3) discuss symbolic and numerical methods
for solving this matrix analysis problem, and (4) illustrate our approach
by evaluating the fitness of nine systems across three case studies, includ-
ing the Alternating Bit Protocol and Two Phase Commit.

Keywords: Formal methods · Verification · Reactive systems

1 Introduction

Correctness guarantees help us avoid irritating, costly, and, in some cases, deadly
implementation bugs. However, two systems that both satisfy a correctness spec-
ification may differ with respect to efficiency. Inefficient systems result in real
world consequences: delaying content delivery, using excess energy, and wasting
clock cycles better spent elsewhere.

Much like reasoning about correctness, reasoning about efficiency is cogni-
tively demanding, prone to errors, and requires expert insight. The framework
proposed in this paper strives to eliminate this human burden, mitigate these
errors, and capture the expert’s insight and intentions in the parameters of the
framework. The proposed framework accomplishes these goals by assigning a
comparable fitness score to every system, such that we can decide between two
systems on the basis of their score. Consider the following example.

Example 1. Consider the finite labeled transition systems (LTSs) depicted in
Fig. 1. Labels s, a, t represent send, acknowledge (ack), and timeout respectively.
The symbols !, ? (output, input) denote rendezvous communication in which a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 85–105, 2023.
https://doi.org/10.1007/978-3-031-47115-5_6

https://zenodo.org/record/8168367
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_6

86 D. Egolf and S. Tripakis

! transition can only be taken in one LTS if the corresponding ? transition is
taken in another LTS. Transitions with neither !, nor ?, can be taken freely.

LTS E represents a sender in the environment. LTSs G and B are ‘good’ and
‘bad’ receivers, respectively. B is ‘bad’ in the sense that it waits for two send
actions before replying with an acknowledgement, whereas G replies right away.
The synchronous products of the sender E with receivers G and B, denoted E||G
and E||B, are LTSs M and M ′, respectively. Both M and M ′ are correct, in the
sense that they satisfy the specification every s is eventually followed by an a
(given some fairness assumptions that prevent a from being ignored indefinitely).
Because they both satisfy this specification, M and M ′ are indistinguishable
from the perspective of traditional verification and synthesis. However, M is
intuitively preferable to M ′ because G is a better receiver than B. As we will
show in Sect. 5, our framework assigns fitness scores 0.25 and 0.14 to M and M ′,
respectively, and thus distinguishes M as a better system. ��

Fig. 1. A simple communication protocol modeled with finite LTSs.

The exact nature of the fitness score depends on the application domain. Our
framework decouples the description of the system (e.g., the LTSs of Fig. 1) from
a set of domain-specific parameters which capture user preferences.

By assigning fitness scores to systems, as in the example above, our frame-
work can be used for performance evaluation. Our framework is additionally
motivated by recent work in the synthesis of distributed protocols [5]. Unlike
humans, synthesis tools typically ignore efficiency considerations. In some cases,
these tools generate systems that are, strictly speaking, correct (i.e., they sat-
isfy their logical specification), yet clearly unorthodox or even inefficient [6]. In
such cases, we can use our framework to rank automatically generated systems
according to their fitness score. In other cases, we may want to generate all
correct systems [24], potentially with the aim of doing fitness-optimal synthesis
(c.f. page 8).

Decoupled Fitness Criteria for Reactive Systems 87

In summary, the contributions of this paper are as follows: (1) We propose
a novel and general framework for automatically assigning a comparable fitness
score to a system; this framework uses interpretable parameters that are decou-
pled from the system being evaluated. (2) We provide an automated method for
computing fitness scores; our method ultimately reduces the fitness-score com-
putation problem to a matrix analysis problem. (3) We discuss symbolic and
numerical methods for solving this matrix analysis problem. (4) We present an
implementation and evaluation of our framework: our prototype tool allows, in
a matter of seconds, to automatically compute the fitness of nine automatically
synthesized systems.

We organize the rest of the paper as follows. Section 2 formalizes prelimi-
nary concepts. Section 3 presents our framework. Section 4 presents a method to
compute fitness scores. Section 5 illustrates our approach on the communication
protocol of Example 1, Two Phase Commit, and the Alternating Bit Protocol
taken from [6]. Section 6 discusses related work. Section 7 concludes the paper.

2 Preliminaries

N, Q, R, R≥0, and B = {0, 1} denote the sets of natural, rational, real, non-
negative real numbers, and booleans, respectively. A function h : Nd → Q is a
scalar arithmetic function if h can be written in terms of basic scalar arithmetic
operations +,−,×, /, applied to its natural number arguments.

In traditional verification, we typically only consider the yes/no question:
does the system produce any violating traces. While this question allows us to
discard of the relative abundance of traces, the question of fitness is not so. All
else equal, if a system is capable of producing the same ‘unfit’ trace by executing
any one of many distinct runs, then that system is worse than a system that can
produce the unfit trace in just one particular way. Toward this end, we require
a notion of multisets.

A multiset X over domain D is a function X : D → N, where X(x) repre-
sents the multiplicity of element x, i.e., how many times x occurs in X. M(D)
denotes the class of all multisets over D, i.e., the set of all functions X : D → N.
If X(x) = m, then we write x ∈m X (possibly, m = 0). The cardinality of X,
denoted |X|, is the sum of the multiplicities of all members of the domain D.
We write multisets as {{...}} to differentiate them from sets.

Example 2. We denote by X = {{0, 0, 1, 1, 1}} the multiset where 0 ∈2 X and
1 ∈3 X. Then: |X| = 2 + 3 = 5. ��

If A ⊆ D and X : D → N is a multiset, then X restricted to A is a new
multiset, denoted X |A: D → N and defined as follows. If x /∈ A, X |A (x) = 0
and otherwise if x ∈ A, then X|A (x) = X(x). Let X : D → N be a multiset and
let f : D → D′ be a function. Then intuitively, the image of X by f is a multiset
denoted f � X obtained by applying f to the members of X. E.g. if f(x) = x2,
then f � {{2,−2, 3, 3, 3}} = {{4, 4, 9, 9, 9}}. Formally, we define f � X : D′ → N as
follows. (f�X)(y) := |(X|Dy

)|, where Dy := {x ∈ D | f(x) = y}. We may treat a

88 D. Egolf and S. Tripakis

set as a multiset with all multiplicities as 0 or 1 and take its image by f to obtain
a multiset. If X ∈ M(Nd) and 1 � i � d, then sum(X, i) =

∑
x∈cX

cxi, where xi

is the ith component of x ∈ N
d. E.g. sum({{(1, 2), (1, 2), (3, 4)}}, 2) = 2 + 2 + 4.

A finite labeled transition system (LTS) is a tuple M = 〈Σ,Q,Q0,Δ〉,
where: Σ is a finite set of labels; Q is a finite set of states; Q0 ⊆ Q is the set of
initial states; Δ ⊆ Q ×Σ ×Q is the transition relation. An n-length run of M is
a sequence t = q0

a1→ q1
a2→ q2...

an→ qn such that q0 ∈ Q0 and (qi, ai+1, qi+1) ∈ Δ
for all i = 0, ..., n − 1. The trace of t, denoted Lab(t), is the sequence of labels
a1a2...an, while Sts(t) = q0q1...qn is the sequence of states visited during t.
[[M]]n denotes the set of all n-length runs of M . Two runs t1, t2 ∈ [[M]]n may
have equivalent traces, i.e., Lab(t1) = Lab(t2). We denote the multiset of all n
length traces of M as Mn = Lab � [[M]]n. We denote the 0 length trace as ε.
Then [[M]]0 = Q0 and M0 is the multiset containing ε once for each state in Q0.

Example 3 (Two Systems). We define two LTSs M (1) and M (2) over Σ = {0, $}.
We interpret the traces of these systems as follows: $’s are money that we receive,
and 0’s are lapses in this income. Intuitively, we prefer behaviors that maximize
the rate at which we receive $’s.

Let M (1) be the LTS with one state and a self-loop with label $. So M
(1)
n con-

tains one n length trace of multiplicity 1: $n. Let M (2) be the LTS that alternates
between two states, outputting $ when leaving the initial state and 0 when leav-
ing the other. So M

(2)
n contains one trace of multiplicity 1: ($0)�n/2�$(n mod 2),

i.e., even length prefixes end in 0 and odd length prefixes end in $. ��
A distributed system is typically modeled as the product of a set of LTSs.

This product can be defined in the standard way, and is itself a monolithic LTS.
A deterministic finite automaton (DFA) is a tuple M =

〈Σ,Q, q0, Qacc, δ〉, where: Σ is a finite alphabet; Q is a finite set of states; q0 ∈ Q
is the single initial state; Qacc ⊆ Q is the set of accepting states; δ : Q × Σ → Q
is the transition function. Unlike a generic LTS, every trace w ∈ Σ∗ corresponds
to one and only one finite run of a DFA M .

3 A Formal Framework for Capturing Fitness

Our framework assigns a real number called a fitness score to every system. The
key idea of our framework is that it decouples the description of the system from
the following set of domain-specific framework parameters: (1) A finite alphabet
Σ, e.g., {0, $}. (2) A fitness function, f : Σ∗ → N

d. This function measures
some quantity of finite prefixes of infinite traces. (3) An aggregate function,
@ : M(Nd) → Q. This function takes a multiset of fitness values, X ∈ M(Nd),
and compiles the values into a single value. Examples include min, max, average,
etc. taken over arithmetic combinations of natural numbers.1 In addition, the
framework may also include: (4) A comparison relation, �, used to compare the

1 Slight generalizations to the framework, omitted here for the sake of simplicity, are
able to capture, e.g., aggregates that output tuples of rational numbers [22].

Decoupled Fitness Criteria for Reactive Systems 89

fitness scores of two different systems. We next provide examples and formal
definitions of these parameters.

Fitness Functions: The rate function is an example of a fitness function:

Definition 1 (Fitness Function: Rate of $). For Σ = {0, $} define rate$
(w) = (#$(w), |w|), where #$(w) is the number of $’s in w and |w| is the length
of w. This fitness function treats a label as a unit of time. ��
Example 4 (Rate of $ Applied). Recall the systems M

(1)
n = {{$n}} and M

(2)
n =

{{($0)�n/2�$(n mod 2)}} from Example 3. We apply f := rate$ to the n-length
partial runs of these systems. Taking the image of M (1) and M (2) by f yields:

f � M (1)
n = {{f($n)}} = {{(n, n)}}

f � M (2)
n = {{f(($0)�n/2�$(n mod 2))}} = {{(
n/2�, n)}}

��
We represent a fitness function f : Σ∗ → N

d by a d-tuple 〈f1, ..., fd〉, where
each fi = 〈Σ,Qi, q

0
i , Q

acc
i , δi〉 is a DFA. Specifically, consider an input w ∈ Σ∗.

When the DFA fi consumes w, it visits a sequence of states, q̂ = q0i , q
1
i , ..., q

m
i .

Interpreting fi as a function fi : Σ∗ → N, we define fi(w) as the number of
times an accepting state is visited in q̂. We then define the fitness function
f : Σ∗ → N

d so that f(w) = (f1(w), ..., fd(w)). For instance, Fig. 2 depicts the
DFA representation of rate$ from Definition 1 and, e.g., f($0$$0) = (3, 5).

Fig. 2. The two DFA representing the rate$ fitness function: f1 computes the number
of $’s in a word; f2 computes the length of the word.

Aggregate Functions: The average rate function is one example of an aggre-
gate function. The average rate function treats ordered pairs as fractions and
takes the average value:

Definition 2 (Aggregate Function: Average Rate). For X ∈ M(N2), let:

@avg(X) =
1

|X|
∑

(p,q)∈mX

m · p

q

��

90 D. Egolf and S. Tripakis

Example 5. This example emphasizes the role of multiplicity in aggregates. For
instance, if X := {{(1, 3), (1, 3), (2, 3)}}, then the (1,3) term is counted twice:

@avg(X) =
1

|X|
∑

(p,q)∈mX

m · p

q
=

1
3
(2 · 1

3
+

2
3
) = 4/9

��
Example 6. This example applies @avg to the running example (Example 3).
The average is moot here as there is only one partial trace of each length. Recall
from Example 4 that f � M

(1)
n = {{(n, n)}} and f � M

(2)
n = {{(
n/2�, n)}}, where

f := rate$. We can apply average rate to these images: @avg(f�M
(1)
n) = n/n = 1

and @avg(f � M
(2)
n) =
n/2�/n. ��

Another example of an aggregate function is the maximum rate function:

Definition 3 (Aggregate Function: Maximum Rate). For X ∈ M(N2):

@(X) = max{p/q | (p, q) ∈ X}
��

Example 7. For instance, if X := {{(1, 3), (1, 3), (2, 3)}}, then:

@(X) = max{1/3, 1/3, 2/3} = 2/3

��
In principle, an aggregate function can be any mathematical function with the

appropriate type (c.f. page 4). But for the sake of computation, we want an aggre-
gate function to be represented as a scalar arithmetic function h(x1, x2, ..., xd).
We say that h : Nd → Q is a faithful representation of @ : M(Nd) → Q if and
only if for all X ∈ M(Nd),@(X) = h(sum(X, 1), ..., sum(X, d)). We will see in
Sect. 4 that this form of representation and the definitions that follow are key,
as the heart of our method is computing each sum(X, i), where X = f � Mn.
The importance should be clear by the time we state our primary correctness
result, Theorem 1.

While h might not be a faithful representation of @ for all X, h may be
a faithful representation assuming that X satisfies some condition. The fitness
function may in turn guarantee that X satisfies that condition. Fortunately,
this relationship holds between @avg (Def. 2) and rate$ (Def. 1). The following
definition and lemmas capture this useful situation:

Definition 4 (Conditional Representation and Compatible). Let Ψ be
a predicate over M(Nd), i.e., a mapping Ψ : M(Nd) → B. Additionally, let
@ : M(Nd) → Q be an aggregate function and h : N

d → Q be a scalar
arithmetic function. Then h is a conditional representation of @ subject to
Ψ if and only if for all X ∈ M(Nd), if Ψ(X) holds (i.e., Ψ(X) = 1), then
@(X) = h(sum(X, 1), ..., sum(X, d)).

Decoupled Fitness Criteria for Reactive Systems 91

Let h be a conditional representation of the aggregate function @ subject to Ψ .
Let f be a fitness function. We say that h and f are compatible when Ψ(f �Mn)
holds for any LTS M and any n ∈ N. ��

Let predicate Ψrate(X) := ‘If (p, q), (p′, q′) ∈ X, then q = q′.’ Then we have
the following two lemmas.

Lemma 1. Let X ∈ M(N2) and suppose Ψrate(X) holds. Then
@avg(X) = sum(X, 1)/sum(X, 2). Therefore, @avg is conditionally represented
by h(x1, x2) = x1/x2, subject to Ψrate. ��
Lemma 2. For all n ∈ N and all LTS M , Ψrate(rate$ �Mn) holds. Hence, rate$
and h(x1, x2) = x1/x2 are compatible. ��
Lemma 1 follows from the fact that the average of a multiset of fractions is
equal to the sum of the numerators divided by the sum of the denominators
when the denominators are all equal. Lemma 2 is immediate: if w ∈ Mn and
rate$(w) = (p, q), then q = n. From Lemma 1 and 2 it follows that @avg and
rate$ are compatible. Therefore, if the fitness function is rate$ we can represent
@avg(X) with the expression sum(X, 1)/sum(X, 2).

Note that fitness functions other than rate$ might not be compatible with
@avg. For instance, let f(w) = (#$(w),#0(w)), which measures the number of
$’s per 0. f does not satisfy Ψrate, but it is a realistic fitness function. In the
case of rate$, time is measured by the observation of any label from Σ. Now for
f , time is measured using only 0. If $ denotes a local action of a server and 0
an interaction between two servers, f captures communication complexity. We
leave handling of such non-compatible fitness functions for future work.

Fitness Score: Given alphabet Σ, fitness function f , and aggregate function
@, the fitness score of an LTS M , denoted @fM , is defined to be the limit
@fM := limn→∞ @(f � Mn). This limit is a value in R≥0 ∪ {∞,⊥}. The limit
either: converges to a value v ∈ R≥0, in which case the score is v; or increases
without bound, in which case we assign the value ∞; or exhibits some other
behavior such as oscillation, in which case we assign the ill-behaved value ⊥.

Comparison Relations: A comparison relation � is a subset of (R≥0 ∪
{∞,⊥})2. If (a, b) ∈ �, we write a � b. If neither a � b nor b � a, we say
that a and b are incomparable. Ignoring ∞ and ⊥ for the moment, � could be
any one of �, <,�, or > on R. Extending this comparator to ∞ and ⊥ would be
up to the user. One choice is to have these values be incomparable to any other
value. Note that, even though the aggregate @ maps to Q, � needs to compare
real (and not just rational) numbers because the fitness score involves taking a
limit. The semantics of a � b are that a is preferrable to b.

Example 8. Concluding our analysis of Example 3, consider an instance of our
framework with fitness function rate$ (Definition 1), aggregate function @avg

92 D. Egolf and S. Tripakis

(Definition 2), and comparison operator � := � (since we prefer high rates of
income). We can then compare the two simple systems introduced in Example 3.
Building on what we have presented so far (c.f. Examples 4 and 6), we have:

@fM (1) = lim
n→∞ @(f � M (1)

n) = lim
n→∞ 1 = 1

@fM (2) = lim
n→∞ @(f � M (2)

n) = lim
n→∞

n/2�
n

= 1/2

Because @fM (1) � @fM (2), we conclude @fM (1) � @fM (2) and therefore we
prefer M (1) to M (2). This result aligns with our intuitions; we would rather
receive a dollar every day than a dollar every other day. ��

Evaluation, Comparison, and Synthesis Problems: Within our frame-
work, we can consider various types of computational problems. A basic problem
is that of evaluating the fitness score of a given system: Given a fitness function
f , an aggregate function @, and a system M , compute @fM . Another prob-
lem is that of comparing two systems: Given a fitness function f , an aggregate
function @, a comparison relation �, and two systems M1,M2, check whether
@fM1 � @fM2. We can also consider fitness-optimal synthesis problems, which
ask to find a system with the best fitness score, perhaps subject to some cor-
rectness constraint (e.g. an LTL formula). Of these problems, in the rest of this
paper we will focus on the fitness evaluation problem:

Problem 1 (Fitness Evaluation Problem). Let M = 〈Σ,Q,Q0,Δ〉 be a finite
LTS and let f = 〈f1, ..., fd〉, where each fi is represented as a DFA. Let @ :
M(Nd) → Q be an aggregate function represented by the scalar arithmetic
function h : Nd → Q. Finally, suppose that h and f are compatible. The fitness
evaluation problem is to compute the fitness score @fM of M , i.e., to compute
limn→∞ @(f � Mn). ��

4 Reducing Fitness Evaluation to Matrix Analysis

In this section we propose a method to solve Problem 1 that consists in the
following steps (assuming the same notation and setup as in Problem 1):

1. Compute the product automaton Pi = M ||fi, for each i ∈ {1, ..., d}.
2. For each Pi, compute a matrix-vector pair (ξi,vi) representing a recurrence

relation. We call the matrix ξi the recurrence matrix and the vector vi the
initial condition vector.

3. Solve the following matrix analysis problem:

Problem 2. Let gi(n) = (ξn+1
i vi)0 for fixed square matrices ξ1, ..., ξd and vec-

tors v1, ..., vd with non-negative integer entries and where (u)0 denotes the first
entry of vector u. Let h : N

d → Q be a scalar arithmetic function. Compute
limn→∞ h(g1(n), g2(n), ..., gd(n)). ��

Decoupled Fitness Criteria for Reactive Systems 93

The motivation for the above steps follows. In step 1, the product Pi repre-
sented all simultaneous paths through M and fi. I.e., a path through Pi corre-
sponds to taking a path through M and handing the transition label encountered
at each step to the automaton representing fi. As mentioned, step 2 computes a
recurrence relation, which is reasonable because the number of accepting states
visited across (n+1)-length paths is related to certain quantities computed over
the n-length paths. The exact relationship is explained in detail in Sect. 4.1.

The correctness of the reduction to Problem 2 (Corollary 1) hinges on the
fact that gi(n) = sum(f � Mn, i), i.e., computing sum(f � Mn, i) (which is then
an input to the aggregate function) reduces to computing the nth term of a
recurrence relation, which in turn reduces to taking a matrix power.

Step 1 of the method (computing automata products) is standard. Therefore,
in the rest of this section, we focus on explaining Steps 2 and 3.

4.1 Step 2: Constructing the Recurrence Relation

We will first explain the recurrence relation construction by example and then
give the general construction.

By Example: We skip the first step of the method and assume that we have a
product P1 = M ||f1. In particular, we consider the automaton of Fig. 3.

Fig. 3. A toy product P1 = M ||f1. P1 has two states named s0 and s1. s0 is the initial
state and s1 is the accepting state. The transition labels from Σ are not needed and
hence are omitted.

Fig. 4. Partial unfolding of the automaton of Fig. 3 into a tree up to depth 4. The
column labeled n denotes the number of transitions taken.

94 D. Egolf and S. Tripakis

From the automaton of Fig. 3 we extract the following recurrence relations:

βs0
n+1 = βs0

n + βs1
n , βs0

0 = 1 (1)
βs1
n+1 = βs0

n , βs1
0 = 0 (2)

αs0
n+1 = αs0

n + αs1
n , αs0

0 = 0 (3)
αs1
n+1 = αs0

n + βs0
n , αs1

0 = 0 (4)
αn = αs0

n + αs1
n , α∅ = 0 (5)

where (as visual aid we provide Fig. 4, which displays the unfolding of P1 of
Fig. 3 into a tree containing all paths up to length 4):

– βq
n is the total number of n-length paths through P1 ending in state q, e.g.,

βs0
0 = 1, βs1

0 = 0, βs0
3 = 3, βs1

4 = 3.
– αq

n is the total number of accepting states visited along all n-length paths
through P1 restricted to paths terminating in state q, e.g., αs0

1 = 0, αs1
1 = 1,

αs0
3 = 2.

– αn is the total number of accepting states visited along all n-length paths
through P1, e.g., α0 = 0, α1 = 1, α2 = 2, α3 = 5, α4 = 10.

– α∅ is a dummy variable representing the initial condition of αn. Notice that
the αn term of the recurrence is unique in that no other term depends on it.

We determine each equation of the example recurrence relation as follows:
Equations (1) capture the number of paths of a certain length ending in state

s0. The initial value βs0
0 is 1 because s0 is an initial state. Otherwise, notice that

s0 has two predecessors: s0 and s1. To walk an (n+ 1)-length path ending in s0,
it is necessary and sufficient to walk an n-length path to one of its predecessors
and then take one more step. Hence, we compute βs0

n+1 as the sum of βs0
n and

βs1
n . Analogous reasoning yields Equations (2); notice the initial value βs1

0 is 0
since s1 is not an initial state.

Equations (3) capture the number of accepting states visited along all paths
of a certain length ending in state s0. Importantly, s0 is not an accepting state.
Therefore, adding it to an n-length path will not change the number of accepting
states visited along that path. Hence, as with β, we can compute αs0

n+1 as the
sum of αs0

n and αs1
n . The initial value αs0

0 is 0 because s0 is an initial state, but
not an accepting state.

Equations (4) capture the number of accepting states visited along all paths
of a certain length ending in state s1. Unlike s0, the state s1 is an accepting
state. Therefore, the (n+1)th step contributes to the number of accepting states
visited, in particular for each path it will increase the count by one. There are
βs0
n such paths, hence the inclusion of that term in addition to the α of the

predecessor s0. The initial value αs1
0 is 0 because s1 is an accepting state, but

not an initial state.
Equations (5) capture the accepting states along all paths of a certain length.

The initial value α∅ is irrelevant; we use 0 for simplicity. Otherwise, this equation
merely captures the fact that we can partition the paths of length n based on
which state they end in and take a sum over that partition to compute a value
over all paths.

Decoupled Fitness Criteria for Reactive Systems 95

We can represent these recurrence relation as a matrix-vector pair (ξ1, v1),
where:

v1 =

⎡

⎢
⎢
⎢
⎢
⎣

α∅

αs0
0

αs1
0

βs0
0

βs1
0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0
0
1
0
0

⎤

⎥
⎥
⎥
⎥
⎦

and ξ1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 0 0
0 1 1 0 0
0 1 0 1 0
0 0 0 1 1
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

E.g. row 1 of ξ1 indicates which terms are required to compute αn.

In General: The key to generalizing the above method is the set of predecessors
for each state and how each term should be computed using the predecessor
terms. Not shown in this example is the case where a state q is both an initial
state and an accepting state. In that case αq

0 is 1. Also there is at most one
transition between two states in this example. In general, there may be multiple
transitions between two states (with different labels). In that case, the equations
will include factors in front of the α and β terms. In particular,

βq′
n+1 =

∑

q∈Q

tq,q′ · βq
n

where tq,q′ is the number of transition labels that transition from q to q′ (Note:
tq,q′ is 0 if q is not a predecessor of q′). Likewise:

αq′
n+1 =

∑

q∈Q

(tq,q′ · αq
n) + (t∗q,q′ · βq

n)

where t∗q,q′ is tq,q′ when q′ is an accepting state and 0 otherwise.
Now we explain the recurrence relation extraction algorithm in general. Let

P = M ||f be the synchronous product of some finite LTS M and some DFA f .
We explain how to extract both the recurrence matrix ξ and the initial condition
vector v from P .

In what follows, we assume that P has N states indexed by the set {1, ..., N}.
We first define a matrix that encodes the transition relation of P :

Definition 5. We define the N × N predecessor matrix, denoted D, by its
entries. We denote the entry in the ith row and jth column as Dij. Define
Dij to be the number of transitions from state j to state i in P . ��
Next, we define a matrix that encodes the accepting states of P :

Definition 6. We define the N ×N accepting matrix, denoted A, so that Aij =
Dij if state i of P is an accepting state. Otherwise, Aij = 0. ��
We are now able to define the recurrence matrix ξ:

Definition 7. The recurrence matrix of P is the (2N + 1) × (2N + 1) matrix

ξ =

⎡

⎣
0 1̂ 0̂
0̂ D A
0̂ 0 D

⎤

⎦

96 D. Egolf and S. Tripakis

where 0̂ and 1̂ are n-dimensional vectors of 0’s and 1’s respectively and where 0
is an n × n matrix of 0’s. ��

We now explain how to extract the initial condition vector v from P . We first
introduce some notation. For convenience, we vectorize the αq

n and βq
n terms. Let

α̂n := (α1
n, ..., αN

n)T and β̂n := (β1
n, ..., βN

n)T . Then, the two vectors α̂0 and β̂0

capture the initial conditions of terms αi
n and βi

n in the recurrence relation, and
we can construct the 2N +1 dimensional vector v by combining α̂0 and β̂0 along
with α∅ = 0, namely, v := (α∅, α̂0, β̂0)T .

The vectors α̂0 and β̂0 are extracted from P as follows: (1) The ith entry of
α̂0 is 1 if and only if state i of P is both an accepting state and an initial state.
Otherwise, that entry of α̂0 is 0. (2) The ith entry of β̂0 is 1 if and only if state
i of P is an initial state. Otherwise, that entry of β̂0 is 0.

The following two statements (proven in Appendix A.4 of [22]) capture the
correctness of our reduction.

Theorem 1. Let α and β be the recurrence relation terms for the product

M ||fi, as constructed above. Then for all n � 0, ξn+1
i vi =

⎡

⎣
αn

α̂n+1

β̂n+1

⎤

⎦. And hence

(ξn+1
i vi)0 = αn = sum(f � Mn, i). ��

Corollary 1. Let ξi and vi be the recurrence matrices and initial condition vec-
tors for the products M ||fi, for i = 1, ..., d, as constructed above. Then

@f (M) = lim
n→∞ h((ξn+1

1 v1)0, (ξn+1
2 v2)0, ..., (ξn+1

d vd)0)

��

4.2 Step 3: Matrix Analysis

Next we will discuss two methods for solving the matrix analysis problem. One
of these methods is symbolic and the other numerical. We illustrate them by
continuing with the example of Fig. 3. We have constructed g1(n) = (ξn+1

1 v1)0.
For sake of example, let us assume that ξ1 = ξ2 and that v2 = ξ1v1, so g2(n) =
g1(n + 1). Let us also assume that the aggregate function is represented by
h(x1, x2) = x1/x2.

Symbolic Method: The first step of the symbolic method is to compute closed-
form expressions for each gi. Tools such as Mathematica can solve for this closed-
form expression using Jordan decomposition [31]. We omit the details. The result
in the case of the example is:

g1(n) =
1

25 · 2(1+n)

(
4
√

5kn
1 − 4

√
5cn1 − 5kn

1 n + 5
√

5kn
1 n − 5cn1n − 5

√
5cn1n

)

where c1 := 1 +
√

5 and k1 := 1 − √
5. As mentioned, g2(n) = g1(n + 1).

Decoupled Fitness Criteria for Reactive Systems 97

Once we have the closed-form expressions, we can ask Mathematica to solve
the limit; it does so easily: limn→∞ g1(n)/g2(n) = 2/(1 +

√
5) (the reciprocal of

the golden ratio). Tools such as Mathematica can solve a broad class of limits
using, e.g., Gruntz’s method [29].

Computing the Jordan decomposition is currently the bottleneck for the sym-
bolic method. Our experiments with Mathematica suggest that it cannot com-
pute the Jordan decomposition for even moderately sized matrices, the run-time
being exponential in the dimension of the matrix. There have been several recent
attempts to improve the state of the art in Jordan decomposition [28] and we
are hopeful that this sub-problem will soon be feasible to compute for large
matrices.

Numerical Method: In this method, we compute h(g1(K), g2(K)) for large
K, which we call a K-approximation. Although we have not yet established
an error bound on the difference between the K-approximation and the true
value of the limit, the K-approximation appears to converge relatively quickly.
For instance, in the case of Example 3, the K-approximation for K = 15 and
K = 20 are 0.6180344 and 0.6180339 respectively, which do not differ until the
seventh decimal place. Our current approach is to compute the K-approximation
for, e.g., K = 8192 and K = 9000 and determine at which decimal place they
differ to establish the precision of the K-approximation for K = 9000. We can
also plot intermediate K-approximations against K.

A naive implementation of K-approximation does not scale. Instead, we
use the standard exponentiation by squaring technique to quickly compute K-
approximations for large K. For example, to compute ξ11 for some matrix ξ, it
suffices to compute ξ2, ξ4, and ξ8, since ξ11 = ξ · ξ2 · ξ8. Note that ξ4 = (ξ2)2 and
ξ8 = (ξ4)2, hence the name exponentiation by squaring. We need only compute
log K squares and combine them per the binary representation of K. Further-
more, in our implementation, we found that we needed large datatypes (128
bit) to represent the entries of the matrix. As matrix power for large datatypes
appears to not be implemented in the linear algebra library we used (numpy),
we implemented this operation ourselves.

Although the examples in this section used h(x1, x2) = x1/x2, our method
generalizes to any aggregate conditionally represented by a scalar arithmetic
function h(x1, x2, ..., xd). This generality holds because the gi are constructed
independently of one another and combined according to h. For instance, if we
had h(x1, x2, x3) = (x1 + x2)/x3, we construct g3(n) as we did for g1 and g2.
We then take the limit or approximation of (g1(n) + g2(n))/g3(n) rather than
g1(n)/g2(n).

Comparison: The symbolic method gives an exact, symbolic representation of
the fitness score, but unfortunately does not yet scale well, as we shall see from
the experiments in Sect. 5 that follows. The numerical approach on the other
hand can compute in seconds an approximation of the fitness score. As we shall

98 D. Egolf and S. Tripakis

show, these approximations are precise enough to distinguish between systems
of different fitness.

5 Case Studies

We evaluate our framework on three case studies, described in detail in the
subsections that follow, and summarized in Table 1. The symbolic method did
not terminate after an hour for the larger two case studies (2PC and ABP)
due to limitations imposed by the state of the art in Jordan decomposition (c.f.
Section 4.2). Therefore, Table 1 reports the results obtained by the numerical
method.

In each case study we compute the fitness score for different system variants
(column M). Column |M | represents the size (total number of states) of the
system being measured, which is the product of all distributed processes. Time
refers to the total execution time, in seconds. Column @f (M8192) refers to the
K-approximation of the fitness score with K = 8192, and likewise for K = 9000.
As can be seen, the two approximations are very close within each row (identical
up to at least the 3rd decimal point), which indicates convergence. The reason
we report the fitness score for K = 8192 instead of another number, say K =
8000 or K = 8500, is efficiency: 8192 the largest power of two less than 9000,
and in order to compute the fitness score for K = 9000 we need to compute it
anyway for K = 8192. Our results can be reproduced using a publicly available
artifact, which is structured, documented, and licensed for ease of repurposing
[23].

Let us remark that in the 2PC and ABP case studies, the systems being
measured were automatically generated by a distributed protocol synthesis tool,
which is an improved version of the tool described in [5,6]. As our goal in this
paper is fitness evaluation, we omit discussing the synthesis tool. But, as men-
tioned in the introduction, evaluation of automatically synthesized systems is a
promising application of our framework.

All case studies use the @avg aggregate function. Additionally, we use three
variations of the fitness function in Fig. 5. This parametric fitness function sug-
gests the possibility of constructing a library of general, reusable fitness func-
tions. Although it was straightforward to construct fitness functions for our
purposes, this library would further reduce that burden for users.

In the rest of this section we provide further details on each case study. Some
supporting figures and intermediate results are provided in Appendix A.5 of [22].

5.1 Case Study #1: Simple Communication Protocol

This section treats the communication protocol presented in Example 1. We
instantiate the framework to measure the average rate at which send-ack
sequences are executed and apply this instance of the framework to M and
M ′ (Fig. 1). The python representations of all simple communication protocol

Decoupled Fitness Criteria for Reactive Systems 99

Table 1. A summary of the numerical method results of the three case studies.

case study M |M | total time (sec.) @f (M8192) @f (M9000)

simple comm good 3 0.0052 0.249970 0.249972

simple comm bad 5 0.006 0.138165 0.138168

2PC H 58 0.41 0.0833 0.0832

2PC A1 30 0.25 0.07856 0.07857

2PC A2 25 0.1 0.0833 0.0832

ABP HH 144 9.1 0.016864 0.016859

ABP HA 144 8.6 0.015435 0.015430

ABP AH 144 8.7 0.015218 0.015212

ABP AA 144 8.6 0.01391 0.01390

processes and fitness functions are available in toy automata.py of the arti-
fact [23].

Recall that Σ = {s, t, a}. Let f1(w) := ‘the number of send-ack sequences
of the form st∗a in w’. For instance (brackets [and] added for emphasis),
f1(aat[sa][sta]as[stta]stt[sa]) = 4. Additionally, let f2(w) := |w| (the length of
w) and let the fitness function be f := 〈f1, f2〉. The functions f1, f2 can be
represented as the DFA shown in Fig. 5, with L = {s} and R = {a}. This fitness
function is measuring the number of send-ack sequences per unit of discrete
time, which is analogous to the traditional measure of throughput in distributed
systems.

Fig. 5. The DFA representations of f1 and f2 for the case studies, parameterized by
the set of labels Σ, as well as a set of left endpoints L ⊆ Σ and right endpoints R ⊆ Σ.
L = Σ \ L and likewise for R.

As reported in Table 1, the system that uses the good receiver has a fitness
score of about 0.25 and the system using the bad receiver a score of about 0.138.
These scores are interpretable in that they have units: send-ack sequences per
unit of discrete time. Hence, the framework deems the good receiver as more
fit and this determination aligns with our intuitions. Because this example is
relatively small, Mathematica was able to compute the exact fitness scores of
these systems. The system that uses the good receiver has a fitness score of
exactly 1/4 (obtained after 34 s) and the system that uses the bad receiver has
a score of exactly 5−√

5
20 ≈ 0.138 (obtained after 563 s).

100 D. Egolf and S. Tripakis

5.2 Case Study #2: Two Phase Commit (2PC)

Two phase commit (2PC) is a protocol for making transactional changes to
a distributed database atomically; if one sub-operation of the transaction is
aborted at one remote database, so too must the sub-operations at all other
remote databases. Although each iteration of 2PC is terminating, it is typical
to assume there will be infinitely many such iterations, and our model reflects
this. In our model of 2PC, a user initiates a transaction by synchronizing with
a transaction manager on the label x. The transaction is complete when the
transaction manager synchronizes with the user on label fail or succ. We omit
the details of the intermediate exchanges between the transaction manager and
database managers. The python representations of all 2PC processes and fitness
functions are available in 2pc automata.py of the artifact [23].

The fitness function for this case study is as depicted in Fig. 5, with L = {x},
R = {fail, succ}, and Σ has a total of 18 labels. This fitness function measures
the rate at which transactions are initiated and then completed.

We study three 2PC implementations, each using a different transaction man-
ager LTS. The system labeled H in Table 1 uses a previously manually con-
structed transaction manager that the synthesis tool was also able to discover
automatically, while the systems labeled A1 and A2 use new transaction man-
agers generated by the synthesis tool. The automatically generated transaction
managers have 12 states each and it is therefore hard to tell at a glance which
will give rise to the most efficient protocol. Our tool automatically reports, in
fractions of a second, a fitness score of about 0.083 for both systems H and A2,
and a score of about 0.079 for system A1. These fitness scores have units: trans-
actions per unit time. Hence, in the same amount of time, A1 completes about
5% fewer transactions than H or A2.

5.3 Case Study #3: Alternating Bit Protocol (ABP)

The Alternating Bit Protocol (ABP) allows reliable communication over an unre-
liable network. As with the prior two case studies, we use the fitness function
depicted in Fig. 5, except with L = {send}, R = {done}, and Σ of size 12. Sim-
ilar to case study #1 we are measuring the rate of send-done sequences. The
python representations of all ABP processes and fitness functions are available
in abp automata.py of the artifact [23].

In [6], the authors present a method to automatically synthesize (distributed)
ABP sender and receiver processes. Here, we evaluate the fitness of the ABP
variants that use these various synthesized processes. Together the synthesized
sender and receiver processes have 14 states, which again makes manual determi-
nations about the fitness very challenging—even more so due to the distributed
nature of the problem. It is no longer necessarily a question of which sender
or receiver is better than the other sender or receiver, but a question of which
combination of sender and receiver is best. Once again, our framework allows to
automatically make this determination in a matter of seconds.

Decoupled Fitness Criteria for Reactive Systems 101

The systems are ranked by fitness in the following order: HH, HA, AH, AA.
H stands for human-designed (and then also rediscovered during synthesis) and
A stands for newly discovered during synthesis. The first position is for the
sender process and the second for the receiver. In this case study, the newly
discovered processes do worse than the manually constructed processes. The
difference in fitness scores is meaningful: in the same amount of time, AA will
complete about 18% fewer sequences on average. AH and HA will both complete
about 8.5% fewer sequences than HH.

6 Related Work

Our work is broadly related to the field of performance analysis and evalua-
tion. Mathematical models typically used there include Markov Chains, Markov
Decision Processes, Markov Automata, queueing models, Petri nets, timed or
hybrid automata, etc., e.g., see [9,15–17,25,34–36]. Our approach differs as our
mathematical framework uses neither timed nor probabilistic models such as the
ones above. Because we do not use stochastic models, our work is also different
from the work on probabilistic verification, e.g., see [8–10,18,33]. Our work also
differs from performance analysis approaches that use max-plus algebra based
frameworks such as the real-time calculus, e.g., see [30,38,44,45].

Our work is also related to non-boolean interpretations of temporal seman-
tics, such as the 5-valued robust temporal logic rLTL [7,43]. However, our moti-
vation is performance comparisons rather than robustness. Our framework also
differs from that of signal temporal logic (STL) [11,12,27,39–42], which is valued
over real-time traces. Our framework is over discrete traces, although there have
been recent STL extensions which handle both real and discrete time [26]. In
addition, our framework is parameterized by generic quantitative concepts (the
fitness and aggregate functions and the comparison relation) that are present
neither in rLTL nor in STL or its variants.

Our work is closely related to the field of quantitative verification, synthesis,
and games, e.g., see [1,2,13,14,19–21,32]. Typically, these works assign values to
weighted automata. These automata blend in a single model both the description
of the system and the description of any performance or fitness functions asso-
ciated with the system. In comparison, our framework decouples the description
of the system (e.g., a plain LTS without any weights) from the description of
the fitness function (e.g., a DFA). These works support aggregates like sup while
our framework is defined for more general aggregates, including averages.

Sensing cost [4] and propositional quality [3] are two other ways to measure
the fitness of a system. Sensing cost is a specific measure of fitness, whereas our
framework is a more general setting. The work on propositional quality is quite
general, like our work, but it uses a quantitative variant of LTL to assign scores
rather than DFA. This logic induces a sort of recursive computation that can
never be captured by a DFA. The logic is limited though in that it can only char-
acterize finite chunks of a trace at one time (and no limit is taken), whereas our
characterization applies to the infinite trace after taking a limit. Hence proposi-
tional quality and our fitness evaluation are fundamentally distinct.

102 D. Egolf and S. Tripakis

7 Conclusions and Future Work

We proposed a formal framework that assigns fitness scores to systems modeled
as finite LTSs. The main novelty of our framework is that it decouples the descrip-
tion of the system from the set of domain-specific parameters such as fitness and
aggregate functions, which determine the final fitness score. Furthermore, the
user defines these fitness scores and aggregate functions over partial runs, which
are easier for the user to reason about—our framework does the heavy lifting of
extending this reasoning to infinite traces. This decoupling and finite reasoning
make our framework more useable and its results more interpretable. Indeed, in
all of our case studies the scores are not merely numbers; they have meaningful
units, e.g., send-ack sequences per unit of time.

We used our framework to evaluate the automatically synthesized ABP pro-
tocols presented in [6] as well as our own automatically synthesized 2PC proto-
cols. We showed that some of these protocols are better than others. Inspired
by this application, we plan to investigate the use of our framework in proto-
col synthesis, specifically in synthesizing protocols that not only satisfy a given
correctness specification but are also optimal with respect to a fitness score, i.e.,
fitness-optimal synthesis (c.f. page 8).

We are also actively exploring ways to improve the scalability of the symbolic
method. In particular, we may be able to feasibly compute a simplified version
of the recurrence matrix ξi without sacrificing the accuracy of the final com-
puted limit. Additionally, we would like to generalize our method to aggregates
like min /max, which do not have conditional representations, and to systems
that cannot be represented as finite labeled transition systems. We suspect that
best/worst-case analysis reduces to the minimal cost-to-time ratio problem [37],
but in general aggregates with no conditional representation may be more chal-
lenging.

Acknowledgements. Derek Egolf’s research has been initially supported by a North-
eastern University PhD fellowship. This material is based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No.
(1938052). Any opinion, findings, and conclusions or recommendations expressed in
this material are those of the authors(s) and do not necessarily reflect the views of
the National Science Foundation. We thank the anonymous reviewers for their helpful
comments and feedback.

References

1. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170
(2005)

2. Almagor, S., Alur, R., Bansal, S.: Equilibria in quantitative concurrent games.
eprint arXiv:1809.10503 (2018)

http://arxiv.org/abs/1809.10503

Decoupled Fitness Criteria for Reactive Systems 103

3. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013.
LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39212-2 3

4. Almagor, S., Kuperberg, D., Kupferman, O.: Regular sensing. In: FSTTCS. LIPIcs,
vol. 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

5. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:
Synthesizing finite-state protocols from scenarios and requirements. In: Yahav, E.
(ed.) HVC 2014. LNCS, vol. 8855, pp. 75–91. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-13338-6 7

6. Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News
48(1), 55–90 (2017)

7. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough:
efficient verification using robust linear temporal logic. ACM Trans. Comput. Log.
23(2), 8:1–8:39 (2022)

8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

9. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

11. Beg, O.A., Nguyen, L.V., Johnson, T.T., Davoudi, A.: Signal temporal logic-based
attack detection in DC microgrids. IEEE Trans. Smart Grid 10(4), 3585–3595
(2019)

12. Bortolussi, L., Gallo, G.M., Křet́ınský, J., Nenzi, L.: Learning model checking and
the kernel trick for signal temporal logic on stochastic processes. In: Learning model
checking and the kernel trick for signal temporal logic on stochastic processes.
LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9 15

13. Bouyer, P., Gardy, P., Markey, N.: Quantitative verification of weighted kripke
structures. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
64–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 6

14. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B., Pérez, G.A., Renault, G.:
Quantitative games under failures. In: FSTTCS. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 45, pp. 293–306. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2015)

15. Bucci, G., Sassoli, L., Vicario, E.: A discrete time model for performance evaluation
and correctness verification of real time systems. In: 10th International Workshop
on Petri Nets and Performance Models, 2003. Proceedings, pp. 134–143 (2003)

16. Bucci, G., Sassoli, L., Vicario, E.: Correctness verification and performance analysis
of real-time systems using stochastic preemptive time petri nets. IEEE Trans.
Softw. Eng. 31(11), 913–927 (2005)

17. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 3rd edn.
Springer (2021). https://doi.org/10.1007/978-0-387-68612-7

18. Cauchi, N., Hoque, K.A., Abate, A., Stoelinga, M.: Efficient probabilistic model
checking of smart building maintenance using fault maintenance trees. eprint
arXiv:1801.04263 (2018)

19. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantita-
tive synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)

https://doi.org/10.1007/978-3-642-39212-2_3
https://doi.org/10.1007/978-3-642-39212-2_3
https://doi.org/10.1007/978-3-319-13338-6_7
https://doi.org/10.1007/978-3-319-13338-6_7
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-030-99524-9_15
https://doi.org/10.1007/978-3-030-99524-9_15
https://doi.org/10.1007/978-3-319-11936-6_6
https://doi.org/10.1007/978-0-387-68612-7
http://arxiv.org/abs/1801.04263

104 D. Egolf and S. Tripakis

CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 20

20. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4) (2010)

21. Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga,
M.: Compositional quantitative reasoning. In: QEST, pp. 179–188. IEEE Computer
Society (2006)

22. Egolf, D., Tripakis, S.: Decoupled fitness criteria for reactive systems. eprint
arXiv: 2212.12455 (2023)

23. Egolf, D., Tripakis, S.: Decoupled Fitness Criteria for Reactive Systems (Artifact,
SEFM 2023) (2023). https://doi.org/10.5281/zenodo.8168367

24. Egolf, D., Tripakis, S.: Synthesis of distributed protocols by enumeration modulo
isomorphisms. In: ATVA. Springer (2023)

25. Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: Towards performance analysis
of SDFGs mapped to shared-bus architectures using model-checking. In: DATE,
pp. 1167–1172. EDA Consortium San Jose, CA, USA/ACM DL (2013)

26. Ferrère, T., Maler, O., Ničković, D.: Mixed-time signal temporal logic. In: André,
É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 59–75. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29662-9 4

27. Finkbeiner, B., Fränzle, M., Kohn, F., Kröger, P.: A truly robust signal tempo-
ral logic: monitoring safety properties of interacting cyber-physical systems under
uncertain observation. Algorithms 15(4) (2022)

28. Ghabbour, R.R., Abdelgaliel, I.H., Hanna, M.T.: A directed graph and MAT-
LAB generation of the Jordan canonical form for a class of zero-one matrices. In:
ICENCO, vol. 1, pp. 86–91 (2022)

29. Gruntz, D.W.: On Computing Limits in a Symbolic Manipulation System. Ph.D.
thesis (1996)

30. Guan, N., Yi, W.: Finitary real-time calculus: efficient performance analysis of
distributed embedded systems. In: RTSS, pp. 330–339 (2013)

31. Hefferon, J.: Linear Algebra, pp. 440-463 (2020). https://hefferon.net/
32. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci.

Res. Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7
33. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,

G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

34. Kempf, J.-F., Bozga, M., Maler, O.: Performance evaluation of schedulers in a prob-
abilistic setting. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS,
vol. 6919, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24310-3 1

35. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006)

36. Larsen, K.G.: Automatic verification, performance analysis, synthesis and opti-
mization of timed systems. In: TIME, pp. 1–1 (2016)

37. Lawler, E.L.: Optimal cycles in graphs and the minimal cost-to-time ratio problem.
Tech. Rep. UCB/ERL M343, EECS Department, UC, Berkeley (1972)

38. Lu, Q., Madsen, M., Milata, M., Ravn, S., Fahrenberg, U., Larsen, K.G.: Reach-
ability analysis for timed automata using max-plus algebra. J. Logic Algebraic
Program. 81(3), 298–313 (2012)

https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20
http://arxiv.org/abs/2212.12455
https://doi.org/10.5281/zenodo.8168367
https://doi.org/10.1007/978-3-030-29662-9_4
https://hefferon.net/
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-319-10696-0_31
https://doi.org/10.1007/978-3-642-24310-3_1
https://doi.org/10.1007/978-3-642-24310-3_1

Decoupled Fitness Criteria for Reactive Systems 105

39. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. Int. J. Softw.
Tools Technol. Transfer 22(6), 741–758 (2020). https://doi.org/10.1007/s10009-
020-00582-z

40. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal temporal
logic. In: RTSS, pp. 208–217 (2018)

41. Puranic, A.G., Deshmukh, J.V., Nikolaidis, S.: Learning from demonstrations using
signal temporal logic. eprint arXiv:2102.07730 (2021)

42. Salamati, A., Soudjani, S., Zamani, M.: Data-driven verification of stochastic linear
systems with signal temporal logic constraints. Automatica 131, 109781 (2021)

43. Tabuada, P., Neider, D.: Robust linear temporal logic. In: EACSL, LIPIcs, vol. 62.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

44. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: ISCAS, pp. 101–104 (2000)

45. Wandeler, E., Thiele, L.: Performance analysis of distributed embedded systems.
In: Embedded Systems Handbook. CRC Press (2005)

https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
http://arxiv.org/abs/2102.07730

Capturing Smart Contract Design
with DCR Graphs

Mojtaba Eshghie1(B) , Wolfgang Ahrendt2 , Cyrille Artho1 ,
Thomas Troels Hildebrandt3 , and Gerardo Schneider4

1 KTH Royal Institute of Technology, Stockholm, Sweden
eshghie@kth.se, artho@kth.se

2 Chalmers University of Technology, Gothenburg, Sweden
ahrendt@chalmers.se

3 University of Copenhagen, Copenhagen, Denmark
hilde@di.ku.dk

4 University of Gothenburg, Gothenburg, Sweden

gerardo.schneider@gu.se

Abstract. Smart contracts manage blockchain assets and embody busi-
ness processes. However, mainstream smart contract programming lan-
guages such as Solidity lack explicit notions of roles, action dependencies,
and time. Instead, these concepts are implemented in program code. This
makes it very hard to design and analyze smart contracts.

We argue that DCR graphs are a suitable formalization tool for smart
contracts because they explicitly and visually capture the mentioned
features. We utilize this expressiveness to show that many common high-
level design patterns representing the underlying business processes in
smart-contract applications can be naturally modeled this way. Apply-
ing these patterns shows that DCR graphs facilitate the development
and analysis of correct and reliable smart contracts by providing a clear
and easy-to-understand specification.

Keywords: Smart Contract Modelling · DCR Graphs · Design
Patterns

1 Introduction

A smart contract is implemented as immutable code executed on a blockchain
and may be seen as a special business process specifying a contractual agree-
ment on actions to be carried out by different roles. While smart contracts
offer advantages such as uncompromised (automated) execution even without
a trusted party, they can also be complex and difficult to design and understand.
This is even more problematic as they cannot be changed once deployed.

In a normal business process environment, different roles collaborate to
achieve a common business goal. In contrast, different roles in a smart con-
tract typically have adversarial interests. Therefore, smart contracts introduce
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 106–125, 2023.
https://doi.org/10.1007/978-3-031-47115-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_7&domain=pdf
http://orcid.org/0000-0002-0069-0588
http://orcid.org/0000-0002-5671-2555
http://orcid.org/0000-0002-3656-1614
http://orcid.org/0000-0002-7435-5563
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-031-47115-5_7

Capturing Smart Contract Design with DCR Graphs 107

new types of patterns of behavior, which have so far only been informally
described [19,30,50,52]. To provide an unambiguous understanding of the pat-
terns that can also provide the basis for formal specifications, we set out to
extend the study and formalization of process patterns to include these smart
contract patterns.

Solutions to adversarial-interest problems often use time- or data-related con-
straints between actions cutting across the process and the more standard use
of roles and sequential action dependencies. We find that a declarative nota-
tion involving data and time is appropriate for formalizing the new smart con-
tract process patterns. Moreover, smart contract languages exhibit a transac-
tional behavior of actions, where an action may be attempted but aborted if the
required constraints for executing it are not fulfilled. This suggests that individ-
ual actions have a life cycle, like sub-processes.

For these reasons, we use DCR graphs [38,43], which are by now a well-
established declarative business process notation that has been extended with
data [38], time [38], and sub-processes [43]. DCR graphs visually capture impor-
tant properties such as the partial ordering of events, roles of contract users,
and temporal function attributes. Using DCR graphs, it is possible to represent
a smart contract with a clear and concise model that is more expressive and
comprehensive than other types of models. As the design patterns we model
concern the high-level behavior of a smart contract under analysis, we elide tech-
nical details of the patterns’ implementation and execution. Therefore, we use
the term “high-level” design pattern for the patterns that DCR graphs capture
well, as they represent the underlying business process of the contract. Further,
DCR models are useful for analysis. We show that using DCR graphs facilitates
the development of correct and reliable smart contracts by providing a clear and
easy-to-understand specification. More concretely, our contributions are:

1. We systematically identify and distinguish high-level design patterns from
low-level (implementation-specific) patterns in smart contracts (Table 1), and
demonstrate how we model them with DCR graphs by going through four of
the most complex ones (Sect. 3, Sect. 3, Sect. 3, and Sect. 3). The DCR models
of the rest of the 19 patterns may be found in the accompanying repository
[25].

2. We demonstrate how one can capture the design of a complete contract, not
just a design pattern, with the help of DCR graphs (casino example in Sect. 4).
The modeled contract has three of the design pattern models from this paper
incorporated, which helps to demonstrate the combinability of pattern models
to shape the final design of the contract.

3. As a result of a thorough analysis of real-world contracts, including popu-
lar contract libraries, we identify (and model) two new design patterns: time
incentivization (Sect. 3) and escapability (Sect. 3). Both of these patterns are
extensively used by the Solidity developer community but are not yet intro-
duced as design patterns in research literature [30,42,50,52].

Our application of these formalized design patterns in Sect. 4 shows that using
DCR graphs can facilitate the development of correct and reliable smart con-

108 M. Eshghie et al.

tracts by providing a clear and easy-to-understand specification. Moreover, DCR
specifications can provide a basis for automated (dynamic or static) analysis of
smart contracts, which we exemplified by preliminary runtime verification infras-
tructure and experiments in our tool paper [27].

Our usage of DCR graphs to model smart contracts and our focus on high-
level rather than low-level properties allows us to capture the key semantics of
the contract succinctly. We can verify properties (and likewise lack of vulnera-
bilities pertaining to these properties) related to roles and access control [4,5],
partial ordering of actions (function calls and transaction execution) [6], as well
as time-based vulnerabilities [7,9]. Furthermore, not being concerned with low-
level patterns and properties lets our approach remain cross-platform and not
tied to the features and limitations of a certain smart contract execution envi-
ronment. We believe that these patterns provide a systematic classification of
best practices for smart contracts in a similar way that software design patterns
shaped the design of traditional software and established a nomenclature for
it [31], while capturing aspects that are unique to smart contracts.

This paper is organized as follows: Sect. 2 introduces smart contracts and
DCR graphs. Section 3 gives an overview of 19 smart contract design patterns,
which we formalize as DCR graphs. Section 4 shows a case study on a casino
smart contract. Section 5 covers related work, and Sect. 6 concludes.

2 Background

2.1 Smart Contracts: Ethereum and Solidity

Ethereum [51], with its built-in cryptocurrency Ether, is still the leading
blockchain framework supporting smart contracts. In Ethereum, not only the
users but also the contracts can receive, own, and send Ether. Ethereum min-
ers look for transaction requests on the network, which contain the contract’s
address to be called, the call data, and the amount of Ether to be sent. Miners
are paid for their efforts in (Ether priced) gas, to be paid by the initiator of the
transaction.

A transaction is not always executed successfully. It can be reverted due
to running out of gas, sending of unbacked funds, or failing runtime assertions.
If a miner attempts to execute a transaction, a revert statement within the
transaction’s execution can undo the entire transaction. All the effects so far are
undone (except for the paid gas), as if the original call had never happened.

The most popular programming language for Ethereum smart contracts is
Solidity [17]. Solidity follows largely an object-oriented paradigm, with fields
and methods, called ‘state variables’ and ‘functions’, respectively. Each external
user and each contract instance has a unique address. Each address owns Ether
(possibly 0), can receive Ether, and send Ether to other addresses. For instance,
a.transfer(v) transfers an amount v from the caller to a.

The current caller, and the amount sent with the call, are always available via
msg.sender and msg.value, respectively. Only payable functions accept payments.
Fields marked public are read-public, not write-public. Solidity also offers some

Capturing Smart Contract Design with DCR Graphs 109

Fig. 1. Solidity-code for casino (some details are omitted)

Fig. 2. Commit and reveal design pattern

cryptographic primitives, like keccak256 for computing a crypto-hash. require(b)
checks the Boolean expression b, and reverts the transaction if b is false.

Solidity further features programmable modifiers. The contract in Fig. 1 uses
the modifiers byOp, inState(s), and noActiveBet, whose implementation is omit-
ted for brevity. These three modifiers expand to require(b), where b is msg.sender
== operator, state == s, and state != BET_PLACED, respectively.

2.2 Dynamic Condition Response Graphs

A dynamic condition response (DCR) graph defines a dynamic process declara-
tively as a graph, defined formally in Definition 1 below and exemplified in Fig. 2.
DCR graphs offer an alternative to state machines; instead of using transitions
to represent events, DCR graphs represent events as nodes (boxes). Events in a
DCR graph may be restricted to certain roles. Events can be enabled or disabled
by other events, which is represented by different types of arrows.

110 M. Eshghie et al.

The nodes of the graph constitute a set E of events labeled with roles and
an action, visualized in Fig. 2 as boxes with the action label in the middle and
the role label in the top bar. Nodes can be either input actions (denoted by a
flipped paper corner in the top right of the box containing the action label; in
this example, actions commit and reveal), computation actions (denoted by an
=-sign in the top right of the box containing the action label; in this example, the
decide action) or simple actions (in this example, the fail and commit actions).
Input actions receive a value from the environment when the action is executed,
which is associated with the event. Computation actions execute a computation
expression (that may refer to the current value assigned to itself or other events)
when the action is executed, which is then associated with the event. In this
example, the computation assigned to the decide action is the Boolean expression
commit = hash(reveal) (not shown graphically in Fig. 2), which refers to the
values of the commit and the reveal actions.

The directed edges between nodes define rules for the execution of events. The
rules can be constraints or effects. An example of a constraint is the condition
rule, visualized in Fig. 2 as an orange arrow →• with a bullet at the target. It
states that the event at the source of the edge (in this example, the commit
action) must have been executed at least once (or be excluded) for the event at
the target (in this example, the reveal action) to be executable.

Examples of effects are the exclude, include and response rules, visualized in
Fig. 2 as respectively a red arrow →% with a %-sign at the target, a green arrow
→+ with a +-sign at the target, and a blue arrow •→ with a dot at the source.
The exclude (include) rule states that when the event at the source (in this case,
the decide action) is executed, the events at the target (in this case, the fail
and pass actions) are excluded (included). Excluded events cannot be executed
and are also ignored when determining constraints. The possibility for an event
to be excluded makes it easy to express defeasible rules [44]. For instance, in
Fig. 4, the bank can give a fine a month after a loan, except if the client, in the
meantime, pays the loan, in which case the event of the fine action is excluded.

In DCR graphs with data, rules may be guarded by Boolean expressions,
determining whether a rule is to be considered in the current state of the graph.
In this example, the guard decide of the exclude relation →% from decide to
fail means that fail is excluded if and only if the value of decide is true, which
is the case if the committed value provided when commit is executed is equal
to the hash of the value provided when reveal is executed. The response rule
•→ denotes that if the event at the source (e. g., the commit action in Fig. 2) is
executed, then the event at the target (e. g., the reveal action in Fig. 2) must be
executed or excluded in the future.

The execution state of a DCR graph is given by a marking, which assigns state
information to each event. In the original version of DCR graphs [37], the mark-
ing of the graph assigned three Booleans to each event, denoting respectively if
the event had been executed, if it is required to be executed (or excluded) in the
future and if it is currently excluded. In this paper, we use an extended version
of DCR graphs, allowing both data, time and nested sub-processes, which is sup-

Capturing Smart Contract Design with DCR Graphs 111

ported by the online design tool.1 This version of DCR graphs also adds two new
effect rules: A value relation →=, denoted by a grey arrow with an =-sign at the
target, with the effect of updating the value of the target event when the source
event is executed, and a cancel relation •→×, denoted by a brown arrow with a
×-sign at the target, with the effect of removing a possible pending execution
requirement (e. g., due to a previous activation of a response rule) of the target
event when the source event is executed.

For a DCR graph with data, the marking assigns the current data value (if
any) associated with each event, as exemplified above. For a DCR graph with
time, the marking additionally assigns time information to events, concretely,
how long ago an event was executed (if it has been executed) and a deadline for
when it is required to be executed (if it is required to be executed in the future).

In Definition 1, we give the formal definition of timed DCR graphs with sub-
processes and data. We combine timed DCR graphs with sub-processes [43] and
timed DCR graphs with data [38] and add a new type of edge denoting a value
effect, making it possible for one event to update the data of another event.

We assume a set of computation expressions ExpE, with BExpE ⊆ ExpE being
a subset of Boolean expressions. For every event e ∈ E, we assume an expression
e ∈ ExpE that denotes the current value of the event (as recorded in the marking).
We also assume a discrete-time model (i. e., time is represented as time steps
given as natural numbers) and let ω denote the natural numbers (including 0)
and ∞ = ω ∪ {ω}, i. e, the natural numbers and ω (infinity).2 Infinity is used
to represent a non-fixed deadline of a required event, i. e., that an event must
eventually be executed as known from classical liveness properties. This is the
default deadline of a response relation if the deadline is not given, as it is the
case for the two response relations in Fig. 2.

Definition 1. A timed DCR graph with sub-processes, data, and roles G is
given by a tuple (E, sp,D,M,→•, •→, •→×,→�,→+,→%,→=, L, l) where

1. E is a finite set of events,
2. sp ∈ E ⇁ E is an acyclic sub-process function, i. e., for all k > 1 spk(e) �=

sp(e), if sp(e) is defined.
3. D : E → ExpE 	 {?} defines an event as either a computation event with

expression d ∈ ExpE or an input event ?,
4. M = (Ex,Re, In,Va) ∈ (

(E ⇁ ω) × (E ⇁ ∞) × P(E) × (E ⇁ V)
)

is the
timed marking with data,

5. →• ⊆ E × ω × BExpE × E, is the guarded timed condition relation,
6. •→ ⊆ E × ∞ × BExpE × E, is the guarded timed response relation,
7. •→×,→�,→+,→%,→= ⊆ E × BExpE × E are the guarded cancel, milestone,

include, exclude and value relations, respectively,
8. L = P(R) × A is the set of labels, with R and A sets of roles and actions,
9. l : E → L is a labelling function between events and labels.

1 Available for free for academic use at dcrsolutions.net.
2 The ISO 8601 standard (www.iso.org/iso-8601-date-and-time-format.html) is used

in the design tool, allowing the use of years, months, days, and seconds.

www.iso.org/iso-8601-date-and-time-format.html

112 M. Eshghie et al.

The sub-process function sp(e) defines a partial containment relation of
events, which allows an event to be refined by a sub-process defined by the
events contained in it. We call such a refined event a sub-process event. A sub-
process event gets executed when an event contained in it is executed, and no
events of the sub-process in the resulting marking are required to be executed
in the future.

As already informally described above, the marking M = (Ex,Re, In,Va)
defines the state of the process. Formally, the marking consists of three par-
tial functions (Ex, Re, and Va) and a set In of events. Ex(e), if defined, yields
the time since event e was last Executed. Re(e), if defined, yields the deadline
for when the event is Required to happen (if it is included). The set In is the
currently Included events. Finally, Va(e), if defined, is the current value of an
event.

Enabledness. The condition →• and milestone →� relations constrain the
enabling of events and determine when events can be executed. As exempli-
fied above, a condition e′→•e means that e′ must have been executed at least
once or currently be excluded for e to be enabled. A milestone e′→�e means
that e′ must either be currently excluded or not be pending for e to be enabled.
In the example in Fig. 2, the milestone relations ensure that the commit action
cannot be repeated as long as required executions of reveal, decide, fail, or pass
are pending. Formally, an event e is enabled in marking M = (Ex,Re, In,Va)
and can be executed by role r ∈ R, if l(e) = (R′, a) for r ∈ R′ and (1) e is
included: e ∈ In, (2) all conditions for the event are met: ∀e′ ∈ E.(e′, k, d, e) ∈
→•.(e′ ∈ In∧ [[d]]M) =⇒ Ex(e′) ≥ k and (3) all milestones for the event are met:
∀e′ ∈ E.(e′, k, d, e) ∈ →�.(e′ ∈ In ∧ [[d]]M) =⇒ Re(e′) is undefined and (4) e is
not contained in a sub-process event, or sp(e) is enabled and can be executed by
role r.

In the DCR graph in Fig. 2, the only enabled event is the event commit. It
is enabled because it is included and the source events of the two milestone
rules are not initially required to be executed. The reveal and decide events are
blocked by condition rules, and the fail and pass events are disabled because
they are initially excluded (marked by a dashed border).

We refer the reader to [38,43] for a more detailed definition and explanation
of the execution semantics of timed DCR graphs with data and sub-processes.

3 Smart Contract Design Patterns as DCR Graphs

Due to the high stakes involved in applications, ensuring the safety and security
of smart contracts is crucial. To address this, both the Solidity documentation
and the developer and smart contract security community have put forth a range
of recommendations. A considerable number of these recommendations are now
known as design patterns [31], because they are widely adopted as a solution
to recurring design problems. These patterns promote the creation of contracts
that are designed with safety and security in mind, mitigating potential risks
and safeguarding users’ assets in the design phase.

Capturing Smart Contract Design with DCR Graphs 113

Fig. 3. Classification of smart contract high-level design patterns (upper part of
Table 1)

We collected these design patterns from academic design pattern surveys
[19,30,40,50,52], documentation of Solidity [17] and the Ethereum Foundation
[15], and recommendations by a popular contract auditing company [22]. These
design patterns are also confirmed by their occurrence in popular libraries and
contracts such as OpenZeppelin, SolidState Solidity, and Aragon OSx [10,14,16,
45,48].

First, we identify the design patterns representing high-level behavior rather
than implementation- and platform-specific patterns (Table 1). The latter con-
cerns features inside a function (the execution of which we model as an event
in DCR graphs). The analysis of low-level patterns is orthogonal to our work
and can be handled, e. g., by runtime analysis of code [32]. We then classify the
high-level patterns into the following four categories (see Fig. 3):

1. Time-based constraints: Time-based patterns impose constraints on when
activities can be performed, which typically include deadlines and delays.

2. Roles and access control: Role-based access control [46] restricts access to
given functions to predefined roles.

3. Action dependencies and contract staging: High-level design of a smart
contract may impose an ordering on any pair of activities.

4. Structural patterns: These patterns impose a certain structure on the con-
tract business process (and the implementation as a result) and are created
by combining other design patterns.

Many patterns combine aspects of several categories; Fig. 3 depicts a classifica-
tion of 19 design patterns we have identified. We elucidate these patterns further
below. Also, we describe DCR graphs for selected design patterns here; the oth-
ers are available on GitHub.3 Table 1 gives an overview of references of the design
patterns, libraries that implement them, and their respective DCR models.
3 https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs.

https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs

114 M. Eshghie et al.

Table 1. Smart contract design patterns and their respective DCR graph models.
High-level patterns (upper part of the table) are further categorized in Fig. 3.

Design Pattern Libraries DCR Model

High-level Patterns

Time constraint [19] [45] GitHub, §3
Time incentivization [3,8,11,12,14] GitHub, §3, §4
Automatic deprecation[52] — GitHub, §3
Rate limitation[50] [22] GitHub, §3
Speed bump[50] [22] GitHub, §3
Safe self-destruction[19,52] [45] GitHub, §3
Ownership / Authorization / Access Control [19,30,52] [10,45,48] GitHub, §3, §4
Commit and reveal[52] — GitHub, §3, §4
Circuit breaker / Emergency stop[50] — GitHub, §3
Escapability [1,2,33,36] GitHub, §3
Checks, effects, interactions[30,50] — GitHub, §3
Guard check[30] [29] GitHub, §3
Abstract contract states[52] [45] GitHub, §3, §4
Secure Ether transfer[30] — GitHub, §3
Oracle [19,52] — GitHub, §3
Token [19] [45] GitHub, §3
Pull over push[52] [45] GitHub, §3
Upgradability[42,52] [45] GitHub, §3
Governance[19,40] [13,21,45] GitHub, §3

Low-level Patterns

Randomness [19,30] — ✗

Safe math operations[19] [45] ✗

Variable Packing[30,42] [45] ✗

Avoiding on-chain data storage[42] [45] ✗

Mutex[50] [45] ✗

Freeing storage [42] — ✗
1 We identify these as design patterns since they have been used as a recurring
solution in several real-world smart contracts but have not yet been considered a
design pattern in the literature.

In the following subsections, we delve into each design pattern, highlighting
its utility, and, for a chosen subset, offer the visual representation of their model
and a succinct description of the associated DCR graph models. This study
provides supplementary details and examples for each pattern, along with the
DCR model semantics used, in our corresponding GitHub repository. We plan to
focus on comprehensive guidelines for smart contract modeling in future research.

3.1 Time Constraint. In multi-stage business processes, code execution must
adhere to specific stages. This can be achieved through time-based or action-
based dependencies. The former denotes stages solely based on elapsed
time [19]. This pattern prohibits calling a function until a specific time is
reached on the blockchain, represented by a delayed condition relation in
DCR graphs. The simplest form of this pattern is modeled directly using
a delayed condition DCR relation. Modeling more complex time constraints
where only part of a function should be executed or blocked based on time is

https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/time-constraint.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/time-incentivizing.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/automatic-deprecation.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/rate-limiting.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/speed-bump.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/safe-self-destruction.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/access-control.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/commit-and-reveal.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/circuit-breaker.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/escapability.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/checks-effects-interactions.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/guard-check.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/abstract-contract-states.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/secure-ether-transfer.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/oracle.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/tokens.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/pull-over-push.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/upgradability.md
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs/blob/main/design-pattern-models/governance.md

Capturing Smart Contract Design with DCR Graphs 115

Fig. 4. DCR model of time incentivization design pattern.

challenging and may require multiple guard conditions in DCR graphs. One
approach is to interpret Solidity’s require statements as guard conditions in
DCR graphs, connecting multiple activities to shape the business logic.

3.2 Time Incentivization. In Ethereum, smart contracts work as a reactive
system where specific function calls execute transactions. There are scenar-
ios where certain actions should be performed at a specific time or when a
specific condition is fulfilled. A lack of action may prevent progress, opening
up adversarial behavior (e. g., the eternal locking of assets). The purpose of
the time incentivization pattern is to motivate parties to cooperate even in
the existence of conflicting interests. The incentivization is typically done by
stipulating a deadline before which an actor shall make a move. The actor
that misses the deadline can afterward be punished by other actors, e. g., by
forfeiting the bets, as modeled in the casino contract (see Sect. 4).
To demonstrate this pattern, we use the simple example of giving a loan and
then motivating the client to pay for the loan. Giving a loan is performed only
by bank role. In Fig. 4, immediately after giving the loan, the bank includes
→+ both the pay loan and fine activities. Without any more relationships,
this would mean that the bank might increase the interest on the loan without
giving the client enough time to pay for it. This issue is resolved by using the
pre-condition arrow →• from give loan to activity fine. As this pre-condition
arrow has a deadline attribute of P1M (one month), it will suspend the avail-
ability of fine to one month later. Without this pattern, the client could refuse
to pay the loan by not participating in any further transaction.
Despite the widespread usage of this pattern in popular smart contracts such
as Augur, MakerDAO, Compound, Aragon Court, and Synthetix [3,8,11,12,
14] to incentivize taking the next step by the actor(s), the current work is
the first one classifying it as a design pattern and formalizing it using DCR
graphs.

3.3 Automatic Deprecation. Automatic deprecation is the opposite of a time
constraint, stipulating a deprecation time (block number) after which a func-
tion is not executable anymore [52]. In Solidity code, such functions are typ-
ically enabled by a require statement checking at the function entry point
against the expiration. This means that a smart contract function can be
called and reverted, which is different from DCR model semantics, where an
activity is enabled only if it will successfully execute. We model this in DCR

116 M. Eshghie et al.

Fig. 5. Rate limitation pattern modeled in DCR graphs

by checking the deprecation condition on an exclusion arrow from another
activity to the target activity subject to deprecation.

3.4 Rate Limitation. Rate limitation imposes a limit on the number of success-
ful function calls by a participating user during a specific time period [22].
The more common type of this pattern that we analyze here explicitly limits
the total amount of transfers allowed during the defined period.
To model this pattern, we assume the sensitive activity is the withdraw oper-
ation. We present the model in Fig. 5. When the model is simulated, the only
included available activity to execute is set limit. The new period activity is
initially executed (tick the on activity box). The gray arrow valuerel from
new period to rate limiter copies value 0 to rate limiter every time new period
is executed. Each execution of new period sets a deadline and delay of one day
(P1D) for the given activity. Having such relationships (response and precon-
dition) on new period and assigning an automatic agent to the system (when
simulating the model) ensures that new period is indeed executed at exactly
one-day intervals. In Fig. 5, labels P1D on the reflexive pre-condition →• and
reflexive response •→ arrows of new period impose this periodic execution.
Based on the purple milestone relation →�, if the current period amount
does not exceed the limit, role user can withdraw. Furthermore, having the
milestone relation from new period to rate limiter occur periodically with
currentamount ≥ limit ensures that if the current withdrawal of the period
exceeds the limit, withdraw will not be executable until the next execution of
new period. The new execution of new period resets the currentamount to 0
again.

3.5 Timed Temporal Constraint (Speed Bump). A speed bump is used to
slow down critical operations such as the withdrawal of assets, authorization
of significant actions, etc. [22]. It imposes a temporal barrier that gives enough
time to a monitoring system to detect a problematic activity and mitigate
it. This pattern is a specialized form of the time constraint pattern where
the participating user can only execute an action after a predefined time
period has passed (from the point the action request has been registered).
The wait time is modeled using a delay on a condition arrow from the activity
requesting the specified action to the actual action.

3.6 Safe Self-Destruction. It is possible to define a function in Solidity that
uses selfdestruct(address target) to destroy the contract intentionally and
send all Ether in the contract account to the target. Safe self-destruction
is about limiting the execution of the function to specific roles such as the

Capturing Smart Contract Design with DCR Graphs 117

administrator. [19,52]. The simplest way to achieve this is to refine the access
control pattern (Sect. 3). However, guard check and time constraint patterns
(Sect. 3 and Sect. 3) can also be used to ensure safety.

3.7 Access Control. Access control restricts access to desired functions to only a
subset of accounts calling them [19,30,52]. A common instance of this pattern
is to initialize a variable owner to the contract deployer and only allow this
account to successfully call certain functions. Here, we can nicely exploit that
access control is built into DCR graphs as a first-class citizen, in the form of
roles assigned to activities. Each activity in a DCR model can be limited to
one or more specific roles. In simpler scenarios, roles are assigned statically to
accounts when a contract is deployed on the blockchain. In general, however,
access rights can be assigned dynamically. DCR graphs support this using
activity effects from an external database source. This feature allows changing
the roles of activities as a result of an activity being executed.

3.8 Commit and Reveal. In a public permissionless blockchain platform such
as Ethereum, transaction data is public [52]. Therefore, if a secret is sent along
with a transaction request, participants in the blockchain consensus protocol
can see the secret value even before the transaction is finalized. On the other
hand, the party holding the secret should commit to it before other parties act,
so the secret cannot be changed after the fact. The commit and reveal pattern
addresses this problem and works in two phases. In Phase 1, a piece of data
is submitted that depends on the secret (which itself is not yet submitted).
Often, that data is the crypto-hash of the secret, such that the secret cannot
be reconstructed. Phase 2 is the submission (and reveal) of the secret itself. We
use a combination of condition, milestone, and response relations to enforce
the ordering of actions in the commit and reveal pattern in Fig. 2. Here,
the activity reveal is blocked initially by the condition relation from commit
to reveal , and is enabled once a user commits. The commit makes reveal
pending (by the response relation arrow). Finally, the milestone relation from
the pending reveal to commit means that unless a reveal happens, no other
commit is possible. The decision is then made using the decide activity based
on committed and revealed values.

3.9 Circuit Breaker (Emergency Stop). This pattern enables the contract
owner to temporarily halt the contract’s normal operations until a manual
or automatic investigation is performed [50]. Other contract functions, such
as those based on timed temporal constraints (Sect. 3), can also trigger the
circuit breaker. To model this design pattern, we categorize activities into two
subsets: activities that are available in the normal execution of the contract
and those that are only available when the circuit breaker is triggered. There
is a milestone relationship →� between circuit breaker grouping and all other
DCR nodes. The existence of this milestone helps to disable the execution
of all of these activities by making the circuit breaker pending. In Fig. 6, the
activity panic executed by the monitor role makes the circuit breaker pending
(panic •→ circuit breaker). This means unless revive activity in the circuit
breaker group is executed, none of the buy, sell, transfer, and panic activities

118 M. Eshghie et al.

are executable. Executing contingency instead will enable a contingency plan
(related to Sect. 3).

3.10 Escapability. There have been cases where a vulnerability in the contract
triggered by a certain transaction led to funds being locked in the contract [36].
To prevent this, a smart contract can have a function whose logic is indepen-
dent of the main contract logic; when triggered, it can withdraw all assets in
the contract to a certain address. This new address can be the upgraded ver-
sion of the contract that contains a patch for the vulnerability. Escapability is
arguably the complementary pattern for the circuit breaker pattern (Sect. 3),
as it concerns the functionality behind the contingency activity in Fig. 6 for
the circuit breaker. This functionality often consists of transferring assets to
an escape hatch. Despite being used by the community [1,2,36], the current
work is the first one promoting it as a design pattern.

3.11 Checks, Effects, Interactions. This pattern is concerned with the order
of certain activities, especially when interactions with other contracts (exter-
nal calls) happen [30,50]. External calls can be risky, as call targets cannot
necessarily be trusted. One risk is that the called contract calls back into the
calling contract before returning, purposefully abusing the calling contract’s
logic [28]. To prevent such exploits, the caller first performs checks on its
bookkeeping variables (variables keeping the balance of tokens, assets, etc.).
Then, it modifies these bookkeeping variables based on the business logic
(effects). Last, there are interactions with (i. e., calls to) other contracts. In
DCR graphs, we specify this strict ordering via inclusion/exclusion relations
among the respective activities.

3.12 Guard Check. A guard check validates user inputs and checks bookkeeping
variables and invariants before the execution of the function body (mainly as a
require statement) [29]. This pattern is often applied using function modifiers
in Solidity and represented using guard conditions on DCR relations.

3.13 Abstract Contract States. In most processes, action dependencies impose
a partial order on action executions that a smart contract has to follow, as
shown in the casino contract (Sect. 4). In Solidity, a state variable of type
enumeration can mimic a finite state automaton [52], whose state transitions
enforce the set of executable functions, encoding a partial order among action
executions.
In DCR graphs, such dependencies (partial orderings of actions) can be repre-
sented explicitly. If the ordering between activities does not matter, no arrows
are required. Therefore, DCR graphs can make contract states obsolete at the
modeling level. If there is a strong reason for modeling the abstract contract
states instead of the action dependencies they imply, it is still possible to
model them using DCR graphs. This is done by grouping activities of the
same state into the same group in DCR graphs and using arrows between
state groupings to reflect state transitions of the system.

3.14 Secure Ether Transfer. This structural design pattern imposes a design
choice between various ways of sending Ether from one contract to the other
(via send, transfer, or call) [30]. Using each of them requires a distinct way of
ensuring the target contract cannot harm the contract sending Ether. As a

Capturing Smart Contract Design with DCR Graphs 119

structural design pattern, Secure Ether Transfer imposes certain guard checks,
mutual exclusions, and ordering of actions to ensure that an external call
(especially to transfer Ether) is not exploitable by a malicious party. Therefore,
this pattern can be represented in DCR graphs as action dependency relation
in combination with the guard check (Sect. 3) and mutex (Table 1) design
patterns.

3.15 Oracle. Oracles enable smart contracts to incorporate off-chain data in their
execution and push information from a blockchain to external systems [19,52].
The oracle pattern employs an external call to another service smart contract
(data source) to register the request for off-chain data. This registration call
information should also be kept in bookkeeping variables inside the contract
itself. When the data is ready in the service contract, it will inform the main
contract about the result by calling a specific callback function. To model
this, the callback function of the smart contract is excluded by default and is
included when the smart contract calls an oracle.

3.16 Token Design Patterns. Tokens represent assets, their behavior, and man-
ageability [19]. Ethereum smart contracts and token standards (such as ERC-
20, ERC-721, and ERC-777) enable developers to use tokens according to spe-
cific requirements. DCR graphs can model both tokens and their interacting
contracts. The ERC-20 token standard model included in the accompanying
repository to this work involves inclusion/exclusion relations to model the par-
tial ordering of activities. Tokens and contracts that use this model typically
involve several other design patterns (most notably Sect. 3 and Sect. 3).

3.17 Pull Over Push. A contract might need to send a token or Ether to other
accounts. The “pull over push” pattern discourages pushing tokens or Ether
to the destination as a side-effect of calling a function. Rather, it encourages
exposing a withdraw function that users of the contract can call [52] for this
reason. This inclination towards pull is based on the fact that when sending
Ether or tokens via any external call (even when adhering to patterns such as
Sect. 3), the receiver may act unexpectedly before returning control. We model
this pattern in a DCR graph by having an extra activity for the withdraw
functionality.

3.18 Upgradability. This design pattern consists of up to five parts: (1) The
proxy keeps addresses of referred contracts. (2) The data segregation part
separates the logic and data layers by storing data in a separate smart con-
tract. (3) The satellite part outsources functional units to separate satellite
contracts and stores their addresses in a base contract, allowing the replace-
ment of their functionality. (4) The register contract tracks different versions
of a contract and points to the latest one. (5) While keeping the old con-
tract address, the relay pattern uses a proxy contract to forward calls and
data to the newest contract version [52]. Data segregation, satellite, and relay
are platform-dependent low-level patterns, which we do not capture with our
DCR graph model. Our upgradability pattern model (Table 1) instead explic-
itly includes activities for the register and proxy parts.

3.19 Governance. On-chain governance is a crucial component of decentralized
protocols, allowing for decision-making on parameter changes, upgrades, and

120 M. Eshghie et al.

management [19,40]. The governance pattern is typically used to allow token
holders or a group of privileged users to vote on proposals and make decisions
that affect the contract’s behavior. This pattern works in conjunction with
other patterns, such as guard check (Sect. 3) and role-based access control
(Sect. 3).

Fig. 6. Circuit breaker design pattern DCR model

4 Modeling and Analysis of a Casino Smart Contract

As an example of how patterns modeled in DCR graphs come into play when
modeling a concrete smart contract scenario, we present a simple casino con-
tract [26].4 It uses four design patterns identified in Table 1: time incentivization,
role-based access control, commit and reveal, and abstract contract states. This
endeavor demonstrates how utilizing and combining the DCR model of several
design patterns into one model captures the intended smart contract design.

The casino has two explicitly declared roles, operator and player. It also
contains three abstract states (see Sect. 3): IDLE, GAME AVAILABLE, and
BET PLACED. Three modifiers check the pre-conditions →• of each function
based on the roles and the state the contract is in.

Figure 7 shows the DCR model of this contract. The activities all reflect func-
tions of the same name, except subprocess casino, which everything is grouped
under. This subprocess reflects the behavior of the deployed contract, which
includes a suicidal closeCasino function that selfdestructs, shown by an exclu-
sion arrow from closeCasino to the subprocess in Fig. 7. Without a subprocess,
an exclusion arrow would go from closeCasino to all other activities, which is
visually unappealing. Furthermore, we do not model the actual states of the
contract, instead choosing to order the activities by inclusion →+ and exclusion
→% arrows.

When the casino contract is deployed, it is in the IDLE abstract state. It
is possible to create a game, add to the pot, remove from it, or self-destruct.
Creating a game will change the abstract state to GAME AVAILABLE, which
enables anyone in the Ethereum network to place a bet and take the role of the
4 The scenario was originally provided by Gordon Pace.

Capturing Smart Contract Design with DCR Graphs 121

player (as a result). The function decideBet checks if the player is the winner by
comparing the guess with the secret number. This gives both the player and the
operator a 50% chance of winning the game. In the model, a response arrow •→
from placeBet to decideBet emphasizes that decideBet has to execute at some
point and should not block the game from continuing. However, since continuing
the game at this point depends on the operator making a transaction, it is
possible for a malicious operator or buggy reverted decideBet function to lock
the funds the player puts in the game. Furthermore, after a player places the bet,
the operator should not be able to change the actual secret stored. Therefore,
three patterns are used in the model to provide the following functionality:

– A time incentivization pattern (Sect. 3) ensures that continuing the game
is the favorable option for the casino operator. Figure 7 shows the required
mechanism, where timeoutBet becomes available with a desirable delay (here
P1D, one day) to provide the player with an option when the operator is
unable or unwilling to make a transaction to decideBet. Calling this function
after the timeout guarantees the player wins the game and motivates the
operator to decide the game in time.

– A commit and reveal pattern (Sect. 3) is used to ensure when operator cre-
ateGame is called, the operator commits to a secret without sending it. The
revealing phase of this pattern is performed in decideBet, where the secret is
submitted, checked, and compared to the player’s guess.

– A role-based access control pattern (Sect. 3) to confine player and operator
roles to their respective activities.

The abstract contract states pattern (Sect. 3) used in the implementation (Fig. 1)
is not needed in the model (Fig. 7): The model’s partial ordering provides the
same semantics without the complications of abstract contract states.

Fig. 7. Casino contract model.

122 M. Eshghie et al.

As mentioned in Sect. 1, DCR specifications provide a basis for automated
analysis, to verify that the implementation of the contracts adheres to their
models.

We have implemented a runtime monitoring tool “Clawk” [27]. Clawk cap-
tures transactions from the Ethereum client and executes an instance of the
DCR graph model in tandem. For each Ethereum transaction, Clawk checks if
the DCR graph model permits a corresponding action in the model. If this is
not the case, the tool reports a violation.

By leveraging runtime information, our framework enables automated run-
time verification. While runtime verification in the blockchain domain is typically
associated with the performance overhead of contract or platform instrumenta-
tion [32,34,41], we address this concern by placing the monitor off-chain. If any
deviations from the specification are detected, Clawk generates alerts, which can
be used to enhance the contract’s implementation or enable a circuit breaker pat-
tern in the contract implementation (cf. Sect. 3).

5 Related Work

Smart contracts often involve multiple dependent transactions, a challenge that
has been addressed through various approaches. Sergey and Hobor discuss the
non-deterministic nature of transaction ordering decided by miners [47], while
other works focus on commutativity conditions to exploit interleavings [18] or
identify serializable transactions in Ethereum [23]. These issues have also been
modeled using finite state automata, which can lead to “bad states” in certain
scenarios (e. g., when most of the actions are not accessible) [24]. DCR graphs
offer a more elegant solution in such cases. Transactions and their dependen-
cies can be graphically represented, as demonstrated by Chen et al., who use
this to identify potential security issues [20]. Our work uniquely combines these
general properties [49] with specific features like access control [39] to provide a
comprehensive framework for smart contracts.

Chen et al. use graphs to analyze transactional dependencies and security in
smart contracts, but their approach is statistical and less precise than ours [20].
While general properties of smart contracts focus on transactional integrity (not
creating or destroying funds in the contract) [49], specific features can be modeled
through access control [39] or finite-state machines [35]. To our knowledge, our
work is the first to systematically apply a combination of these two aspects to
smart contracts in terms of general and reusable patterns.

6 Conclusion and Future Work

Smart contracts are critical yet complex pieces of software that encode business
processes in an executable form on a blockchain. We collected 19 smart contract
design patterns that dissect complex smart contracts into smaller reusable com-
ponents, making it easier to reason about them. DCR graphs are an ideal way to
formally model the semantics of these patterns, supporting the concepts of time,

Capturing Smart Contract Design with DCR Graphs 123

data, and sub-processes. We demonstrate their usefulness on the casino smart
contract that combines multiple patterns.

The contract DCR models serve as a repository of reusable templates for
developing more secure and efficient smart contracts across various applications
and smart contract execution platforms. This not only aids in the initial design
phase but also has uses in monitoring the contract behavior, allowing for auto-
mated verification [27], which reduces the risk of vulnerabilities. Future direc-
tions of our research include an extensive evaluation of the Clawk tool, com-
binations of static or dynamic analysis of low-level patterns [32] with runtime
monitoring against our high-level design patterns, as well as automated discovery
of the models from the contract transaction history.

References

1. A decentralized escape hatch for DAOs. https://hackingdistributed.com/2016/07/
11/decentralized-escape-hatches-for-smart-contracts/. Accessed 29 Aug 2023

2. Implement escape hatch mechanism contracts · Issue #1 ·
OpenZeppelin/openzeppelin-contracts. https://github.com/OpenZeppelin/
openzeppelin-contracts/issues/1. Accessed 29 Aug 2023

3. The Maker Protocol White Paper — Feb (2020). https://makerdao.com/en.
Accessed 29 Aug 2023

4. SWC-105 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-105/. Accessed 01 Sept 2023

5. SWC-106 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-106/. Accessed 01 Sept 2023

6. SWC-114 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-114/. Accessed 01 Sept 2023

7. SWC-116 - Smart Contract Weakness Classification (SWC). https://swcregistry.
io/docs/SWC-116/#time locksol. Accessed 01 Sept 2023

8. Synthetixio/synthetix: Synthetix Solidity smart contracts. https://github.com/
Synthetixio/synthetix. Accessed 29 Aug 2023

9. Timestamp Dependence - Ethereum Smart Contract Best Practices.
https://consensys.github.io/smart-contract-best-practices/development-
recommendations/solidity-specific/timestamp-dependence/#avoid-using-
blocknumber-as-a-timestamp. Accessed 01 Sept 2023

10. Aragon OSx Protocol (2023). https://github.com/aragon/osx. Accessed 29 Aug
2023

11. Aragon/aragon-court: Aragon (2023). Accessed 29 Aug 2023
12. Augur (2023). https://github.com/AugurProject/augur. Accessed 29 Aug 2023
13. Chainbridge-solidity (2023). https://github.com/ChainSafe/chainbridge-solidity.

Accessed 29 Aug 2023
14. Compound Protocol: Compound (2023). Accessed 29 Aug 2023
15. Ethereum development documentation (2023). https://ethereum.org/en/

developers/docs/. Accessed 29 Aug 2023
16. Smartcontractkit/chainlink (2023). https://github.com/smartcontractkit/

chainlink. Accessed 29 Aug 2023
17. Solidity documentation (2023). https://docs.soliditylang.org/en/latest/. Accessed

29 Aug 2023

https://hackingdistributed.com/2016/07/11/decentralized-escape-hatches-for-smart-contracts/
https://hackingdistributed.com/2016/07/11/decentralized-escape-hatches-for-smart-contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/1
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/1
https://makerdao.com/en
https://swcregistry.io/docs/SWC-105/
https://swcregistry.io/docs/SWC-105/
https://swcregistry.io/docs/SWC-106/
https://swcregistry.io/docs/SWC-106/
https://swcregistry.io/docs/SWC-114/
https://swcregistry.io/docs/SWC-114/
https://swcregistry.io/docs/SWC-116/#time_locksol
https://swcregistry.io/docs/SWC-116/#time_locksol
https://github.com/Synthetixio/synthetix
https://github.com/Synthetixio/synthetix
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/timestamp-dependence/#avoid-using-blocknumber-as-a-timestamp
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/timestamp-dependence/#avoid-using-blocknumber-as-a-timestamp
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/timestamp-dependence/#avoid-using-blocknumber-as-a-timestamp
https://github.com/aragon/osx
https://github.com/AugurProject/augur
https://github.com/ChainSafe/chainbridge-solidity
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://github.com/smartcontractkit/chainlink
https://github.com/smartcontractkit/chainlink
https://docs.soliditylang.org/en/latest/

124 M. Eshghie et al.

18. Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and useful
commutativity conditions. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, pp. 115–132. Lecture Notes in Com-
puter Science, Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-89960-2 7

19. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

20. Chen, T., et al.: Understanding Ethereum via graph analysis. ACM TOIT 20(2),
1–32 (2020)

21. Compound: Compound v2 Governance. https://docs.compound.finance/v2/
governance/. Accessed 29 Aug 2023

22. Consensys: ethereum smart contract best practices (2023). https://consensys.
github.io/smart-contract-best-practices/development-recommendations/
precautions/. Accessed 29 Aug 2023

23. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: PODC, pp. 303–312. ACM (2017)

24. Ellul, J., Pace, G.J.: Runtime verification of ethereum smart contracts. In: 2018
14th European Dependable Computing Conference (EDCC). IEEE (2018). https://
doi.org/10.1109/EDCC.2018.00036

25. Eshghie, M.: A comprehensive collection of DCR graph model of business process-
level (contract-level) design patterns in smart contracts (Aug 2023). https://github.
com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs. Accessed 29
Aug 2023

26. Eshghie, M.: mojtaba-eshghie/CLawK (2023). https://github.com/mojtaba-
eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/
monitor/contracts/source/Casino.sol. Accessed 29 Aug 2023

27. Eshghie, M., Ahrendt, W., Artho, C., Hildebrandt, T.T., Schneider, G.: CLawK:
Monitoring Business Processes in Smart Contracts (2023). https://doi.org/10.
48550/arXiv.2305.08254. Accessed 29 Aug 2023

28. Eshghie, M., Artho, C., Gurov, D.: Dynamic vulnerability detection on smart con-
tracts using machine learning. In: EASE 2021, pp. 305–312. ACM (2021)

29. etherscan.io: HOLDIT — Etherscan. http://etherscan.io/address/
0x24021d38DB53A938446eCB0a31B1267764d9d63D. Accessed 29 Aug 2023

30. Fravoll: Solidity Patterns (2023). https://fravoll.github.io/solidity-patterns/.
Accessed 29 Aug 2023

31. Gamma, E., Helm, R., Johnson, R., Johnson, R.E., Vlissides, J.: Design patterns:
elements of reusable object-oriented software. Pearson Deutschland GmbH (1995)

32. Gao, J., Liu, H., Liu, C., Li, Q., Guan, Z., Chen, Z.: EASYFLOW: keep ethereum
away from overflow. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), pp. 23–26 (2019).
https://doi.org/10.1109/ICSE-Companion.2019.00029, ISSN: 2574-1934

33. giveth.io: common-contract-deps (2021). https://github.com/Giveth/common-
contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/
Escapable.sol. Accessed 29 Aug 2023

34. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,
M., Zohar, Y.: Online detection of effectively callback free objects with applications
to smart contracts (2018). https://doi.org/10.48550/arXiv.1801.04032

35. Guth, F., Wüstholz, V., Christakis, M., Müller, P.: Specification mining for smart
contracts with automatic abstraction tuning. arXiv:1807.07822 (2018)

https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://docs.compound.finance/v2/governance/
https://docs.compound.finance/v2/governance/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/
https://doi.org/10.1109/EDCC.2018.00036
https://doi.org/10.1109/EDCC.2018.00036
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs
https://github.com/mojtaba-eshghie/SmartContractDesignPatternsInDCRGraphs
https://github.com/mojtaba-eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/monitor/contracts/source/Casino.sol
https://github.com/mojtaba-eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/monitor/contracts/source/Casino.sol
https://github.com/mojtaba-eshghie/CLawK/blob/925bf9c9afe344c763963e0e40098c66420d1d6a/server/monitor/contracts/source/Casino.sol
https://doi.org/10.48550/arXiv.2305.08254
https://doi.org/10.48550/arXiv.2305.08254
http://etherscan.io/address/0x24021d38DB53A938446eCB0a31B1267764d9d63D
http://etherscan.io/address/0x24021d38DB53A938446eCB0a31B1267764d9d63D
https://fravoll.github.io/solidity-patterns/
https://doi.org/10.1109/ICSE-Companion.2019.00029
https://github.com/Giveth/common-contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/Escapable.sol
https://github.com/Giveth/common-contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/Escapable.sol
https://github.com/Giveth/common-contract-deps/blob/094d36028eab30444314395016817735e57e9d77/contracts/Escapable.sol
https://doi.org/10.48550/arXiv.1801.04032
http://arxiv.org/abs/1807.07822

Capturing Smart Contract Design with DCR Graphs 125

36. Explained: The Akutars NFT Incident (2022) - Halborn Blockchain Security Firm:
Ethical Hackers, Infosec & Pen Tests. https://halborn.com/blog/post/explained-
the-akutars-nft-incident-april-2022. Accessed 29 Aug 2023

37. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Honda, K., Mycroft, A. (eds.)
Proceedings Third Workshop on Programming Language Approaches to Concur-
rency and communication-cEntric Software, PLACES 2010, Paphos, Cyprus, 21st
March 2010. EPTCS, vol. 69, pp. 59–73 (2010). https://doi.org/10.4204/EPTCS.
69.5

38. Hildebrandt, T.T., Normann, H., Marquard, M., Debois, S., Slaats, T.: Decision
modelling in timed dynamic condition response graphs with data. In: Marrella, A.,
Weber, B. (eds.) BPM 2021. LNBIP, vol. 436, pp. 362–374. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-94343-1 28

39. Liu, Y., Li, Y., Lin, S.W., Artho, C.: Finding permission bugs in smart contracts
with role mining. In: SIGSOFT ISSTA 2022, pp. 716–727. ACM (2022)

40. Liu, Y., Lu, Q., Zhu, L., Paik, H.Y., Staples, M.: A systematic literature review
on blockchain governance. J. Syst. Softw. 197 (2023)

41. Ma, F., Fu, Y., Ren, M., Wang, M., Jiang, Y., Zhang, K., Li, H., Shi, X.: EVM:
from offline detection to online reinforcement for ethereum virtual machine. In:
2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 554–558 (2019). https://doi.org/10.1109/SANER.
2019.8668038, ISSN: 1534-5351

42. Marchesi, L., Marchesi, M., Destefanis, G., Barabino, G., Tigano, D.: Design pat-
terns for gas optimization in Ethereum. In: IEEE IWBOSE, pp. 9–15 (2020)

43. Normann, H., Debois, S., Slaats, T., Hildebrandt, T.T.: Zoom and Enhance: action
refinement via subprocesses in timed declarative processes. In: Polyvyanyy, A.,
Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp.
161–178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0 12

44. Nute, D.: Handbook of logic in artificial intelligence and logic programming, vol.
3, chap. Defeasible Logic. Clarendon Press, Oxford University Press (1994)

45. OpenZeppelin: OpenZeppelin Contracts. https://github.com/OpenZeppelin/
openzeppelin-contracts. Accessed 29 Aug 2023

46. Sandhu, R.S.: Role-based access control. In: Advances in Computers, vol. 46, pp.
237–286. Elsevier (1998)

47. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts (2017). http://
arxiv.org/abs/1702.05511

48. Solidstate: SolidState Solidity (2023). https://github.com/solidstate-network/
solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/
access/access control/AccessControl.sol. Accessed 29 Aug 2023

49. Wang, H., et al.: Oracle-supported dynamic exploit generation for smart contracts.
IEEE Trans. Dependable Secure Comput. 19(03), 1795–1809 (2022)

50. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the Ethereum ecosys-
tem and solidity. In: IEEE IWBOSE, pp. 2–8 (2018)

51. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

52. Wöhrer, M., Zdun, U.: Design patterns for smart contracts in the Ethereum ecosys-
tem. In: iThings/GreenCom/CPSCom/SmartData, pp. 1513–1520 (2018)

https://halborn.com/blog/post/explained-the-akutars-nft-incident-april-2022
https://halborn.com/blog/post/explained-the-akutars-nft-incident-april-2022
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.1007/978-3-030-94343-1_28
https://doi.org/10.1109/SANER.2019.8668038
https://doi.org/10.1109/SANER.2019.8668038
https://doi.org/10.1007/978-3-030-85469-0_12
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
http://arxiv.org/abs/1702.05511
http://arxiv.org/abs/1702.05511
https://github.com/solidstate-network/solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/access/access_control/AccessControl.sol
https://github.com/solidstate-network/solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/access/access_control/AccessControl.sol
https://github.com/solidstate-network/solidstate-solidity/blob/de7c9545ac015f42a03aa3a678000ec1ec4c14a4/contracts/access/access_control/AccessControl.sol

An Active Learning Approach to
Synthesizing Program Contracts

Sandip Ghosal1(B), Bengt Jonsson1, and Philipp Rümmer1,2

1 Uppsala University, Uppsala, Sweden
sandipsmit@gmail.com

2 University of Regensburg, Regensburg, Germany

Abstract. Contracts capture assumptions (preconditions) and guaran-
tees (postconditions) of functions in a software program, and are an
important paradigm for documenting program code, for program under-
standing, and to enable modular program verification. In this paper, we
focus on contracts for stateful software modules, for instance modules
implementing data-structures like queues. Such modules offer different
kinds of functions to their environment: observers, which are pure func-
tions used to query the state of the module; and mutators, which can
change the module state. We present a novel technique to synthesize
contracts for the mutators of a module, in which pre- and postconditions
are expressed as Boolean combinations of the observers. Our method
builds on existing algorithms for active learning of register automata to
model the possible behaviours of the stateful module. We then present
techniques for synthesizing contracts from a learned register automaton.
The entire method is fully black-box and automated. Based on our pro-
posed approach, we develop a tool called CoGent that generates a set of
contracts for a mutator from a given register automaton of a module.
Finally, we evaluate our tool using the APIs for various data structures.

1 Introduction

The annotation of program functions with contracts, consisting of pre- and post-
conditions, serves several purposes. Contracts are an important form of docu-
mentation, and are as such widely used to describe the intended use of library
and API functions. Contracts give rise to the Design-by-Contract (DbC) method-
ology [18], by stating both the assumptions made about the states in which a
function may be called, and the guarantees established in return by the func-
tion. In formal verification, contracts are the main vehicle to decompose larger
programs into smaller units that can be analysed in isolation (e.g., [6,7]).

It is non-trivial, however, to come up with correct contracts for a given func-
tion. In most of today’s code bases, functions are documented only with unstruc-
tured text, or with informal contracts in which pre- and postconditions are stated
in natural language. Like any kind of formal specification, the process of writ-
ing formal contracts (with pre- and postconditions being logical formulas) is
an extremely time-consuming and error-prone process, and is in fact sometimes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 126–144, 2023.
https://doi.org/10.1007/978-3-031-47115-5_8

https://zenodo.org/record/8169860
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_8

An Active Learning Approach to Synthesizing Program Contracts 127

considered the main bottleneck preventing application of formal methods in an
industrial context.

Over the last years, researchers have therefore considered the automated
inference of formal contracts from implementations (e.g., [1,2,4,5,13,19,20,22]).
Such inferred contracts can serve as documentation of existing programs, and as
auxiliary annotations in verification. However, although various approaches to
contract inference have been proposed, methods that are (i) scalable enough to
handle real-world code bases, (ii) precise enough to generate correct and complete
contracts, (iii) refined enough to produce contracts that are human-readable so
far remain elusive.

In this paper, we present a new approach to automatically infer contracts for
software modules. Our approach starts with applying existing active black-box
learning methods [8,9] to build a behavioural model of a program in the form of a
finite-state register automaton. We then construct contracts for all mutator func-
tions of the software module in terms of the available observer functions: for this,
state transitions associated with a mutator are analysed, and the effects of the
transitions are summarized using observers. Under certain assumptions on the
shape of the automaton, the computed contracts are guaranteed to describe only
the behaviour of the module that is reachable, i.e., they implicitly take module
invariants into account. This is because the reachable states of the automaton
correspond to the module states that are reachable from some designated initial
state.

The contributions of this paper are:

– A new black-box framework for synthesizing program contracts for software
modules (Sect. 4).

– An algorithm to extract program contracts from finite-state register automata
(Sect. 4).

– An implementation of our approach in the tool CoGent (Sect. 5), and an evalu-
ation of our method using software modules taken from the Java API (Sect. 6).

Outline: The remainder of this paper is structured as follows. Section 2 illus-
trates program contracts with an example of a stateful data structure that serves
as a running example for this paper. Section 3 describes the semantics of pro-
gram contract, and introduces to basic concepts and notations for dealing with
register automata and active automata learning. Section 4 outlines the steps for
synthesizing program contracts with illustrations using the running example.
Section 5 describes the implementation details of our tool, CoGent, and Sect. 6
presents its evaluation on various data structures. Section 7 compares our app-
roach with some of the earlier attempts for synthesizing program contracts in
the literature, followed by the conclusions in Sect. 8.

2 Motivating Example

As an illustration, consider the Java class BoundedList in Fig. 1. It contains
methods BoundedList() for constructing a list object, list, of maximum size

128 S. Ghosal et al.

Fig. 1. A module for a BoundedList (in Java)

Fig. 2. Contracts for the BoundedList module in Fig. 1

defined by maxSize. The class further contains the methods push and pop, which
are mutators, and the observer methods contains, isEmpty, and isFull. The
class BoundedList internally uses the LinkedList class available in JDK v1.8.
The method push takes an integer as an input parameter and inserts the inte-
ger into the list. Method pop does not accept any parameter but removes an
element from the list and outputs the removed integer. The method contains
returns True if the argument passed in the method already exists in the list,
and False otherwise. Methods isEmpty and isFull return True if the list is
empty and full respectively, otherwise, False. The module serves as a running
example for illustrating our proposed approach.

A contract relates a method call with the module states immediately before
and after that call. Being in a black-box setting, we cannot refer directly to the
internal module state. Instead we refer to the module state indirectly via the
return values of calls to observer methods. An observer method does not modify
the state of the module, and is used to extract information about the module
state.

Let a condition be a Boolean combination of observer calls f(r1, . . . , rm),
where r1, . . . , rm are variables of the appropriate types, and constraints formu-
lated using the predicates from some background theory. In this paper, we define
a contract for a method m with parameters p1, . . . , pn in a module to be of the
form

{P} m(p1, . . . , pn) {Q}

An Active Learning Approach to Synthesizing Program Contracts 129

where P , called the precondition and Q, called the postcondition, are conditions.
The conditions P,Q can contain variables p1, . . . , pn, as well as further variables
used to relate pre- and post-states. As a simplifying assumption, and without loss
of generality, every variable in P or Q that does not occur among the p1, . . . , pn

has to occur as an argument of some observer in P or Q. Let the parameters of
the contract be p1, . . . , pn together with additional variables appearing in P,Q.

A contract {P} m(p1, . . . , pn) {Q} is valid if, for every valuation of variables
occurring in the contract, whenever m is called in a reachable state of the module
in which P is True, the method call m(p1, . . . , pn) terminates and leaves the
module in a state in which Q is True.

As illustration, for the module BoundedList in Fig. 1, we aim to synthesize
contracts for the mutators push and pop. The contracts may include the given
Boolean observer methods contains, isEmpty, and isFull, as well as relations
between the occurring parameters. To this end, we first compute a model of the
module in terms of a register automaton. While the behaviour of a software
module can in general not be described by a finite register automaton, such
a finite automaton can be derived for data structures with bounded capacity.
For BoundedList with maxSize = 2, for example, the computed automaton has
four locations and two registers, see Fig. 3. The register automaton captures the
reachable behaviour of both the mutators and the observers.

To generate contracts for a mutator m, we then consider the transitions
that are associated with m. Such transitions describe how the return values of
observer methods can change as a result of calling m: transitions can update the
values of registers, and the observers are described by location-specific guards.
We present an algorithm, which for each location generates a location-specific
contract for m from its outgoing m-transitions; as a second step, the location-
specific contracts are then combined to obtain an overall contract for m.

In general, we would like generated contracts to be both valid and maximal,
by which we mean that the precondition cannot be weakened without making
the contract invalid. Two example contracts for the push method are given
in Fig. 2. We can observe that the first contract in Fig. 2 is valid, but it is
not maximal, since the postcondition could also be established by assuming
contains(q) already in the precondition. The second contract is both valid and
maximal.

3 Background

In this section, we give background for the contract synthesis approach, described
in Sect. 4. The synthesis approach works by using active automata learning to
obtain a register automaton model of the stateful behaviour of the module. The
register automaton then forms the basis for contract synthesis. In this section,
we describe program contracts, register automata and active learning.

130 S. Ghosal et al.

3.1 Contracts

Throughout the paper, we assume a background theory, i.e., a (many-sorted)
first-order language with constant, function, and relation symbols, with fixed
interpretation over the appropriate domains. Terms and formulas are constructed
as usual from those symbols, as well as from variables taken from a set V. A
valuation μ is a mapping from variables V to their domains. Valuations are
extended to terms and assertions in the usual way. We write μ |= φ to express
that φ evaluates to True in μ.

We assume a set M of methods, each with a signature that determines the
number of input parameters, their types, and the return type of the method. We
assume a distinguished subset of M, the set of observer methods: an observer
method is special in that it does not modify any state variables. Throughout the
paper, we assume that each observer method returns a Boolean value. The other
methods are called mutators.

A method call is a term of form m(d1, . . . , dn), where m is a method action
and d1, . . . , dn are data values from the appropriate domains. A parameterized
method call is a term of form m(p1, . . . , pn), where p1, . . . , pn are variables; in
this context we sometimes call them formal parameters of the method call.

As mentioned in Sect. 2, a condition is a Boolean combination of observer
calls f(r1, . . . , rm), where r1, . . . , rm are variables of the appropriate types, and
constraints formulated using the predicates from the background theory. We say
that a condition P entails condition Q, written P ⇒ Q, if the formula P → Q is
valid when every observer method is considered as an uninterpreted first-order
predicate.

A contract is a triple {P} m(p1, . . . , pn) {Q} consisting of a precondition P ,
a mutator call m(p1, . . . , pn), and a postcondition Q.

3.2 Register Automata

We assume a set of registers x1, x2,

Definition 1 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ), where L is a finite set of locations, l0 ∈ L is the initial
location, X maps each location l ∈ L to a finite set X (l) of registers, where in
particular X (l0) = ∅, and Γ is a finite set of transitions. Each transition in Γ
is of form

〈l,m(p1, . . . , pn), g, eout, xi1 := ei1 , . . . , xim := eim , l′〉,
where l ∈ L is a source location, l′ ∈ L is a target location, m(p1, . . . , pn) is a
parameterized method call, g is a guard, i.e., a conjunction of negated and non-
negated relations over p1, . . . , pn and X (l), eout is an expression over p1, . . . , pn

and X (l), and xi1 := ei1 , . . . , xim := eim is an assignment which updates the
registers xi1 , . . . , xim in X (l′) with the values of expressions ei1 , . . . , eim . In this
work, we assume that each expression eij is either a register in X (l) or a formal
parameter in p1, . . . , pn. �	

An Active Learning Approach to Synthesizing Program Contracts 131

We write x, p, and e for tuples of registers, parameters, and expressions. Let
us formalize the semantics of RAs. A state of an RA A = (L, l0,X , Γ) is a pair
〈l, μ〉 where l ∈ L and μ is a valuation over X (l), i.e., a mapping from X (l) to the
appropriate domains. The initial state is the pair 〈l0, μ0〉 where μ0 is the empty

mapping. A step of A, denoted 〈l, μ〉 m(d)/μ(eout)−−−−−−−−→ 〈l′, μ′〉, transfers A from 〈l, μ〉
to 〈l′, μ′〉 on the method call m(d), returning μ(eout), if there is a transition
〈l,m(p), g, eout, xi1 := ei1 , . . . , xim := eim , l′〉 ∈ Γ such that

– μ |= g[d/p], i.e., d satisfies the guard g under the valuation μ, and
– μ′ is the updated valuation which maps xi to μ(ei) when xi is in xi1 , . . . , xim ,

and maps other registers xi in X (l′) to μ(xi).

A state 〈l, μ〉 is reachable if there is a sequence of steps

〈l0, μ0〉 m1(d1)/o1−−−−−−−−→ 〈l1, μ1〉 〈l1, μ1〉 m2(d2)/o2−−−−−−−−→ 〈l2, μ2〉 · · · 〈ln−1, μn−1〉 mn(dn)/on−−−−−−−−→ 〈l, μ〉

leading from the initial state 〈l0, μ0〉 to 〈l, μ〉.
We can now define validity of a contract relative to a register automaton A.

Let P be a condition, let σ be a valuation of the variables in P , and let 〈l, μ〉 be
a state of A. We say that P is true in 〈l, μ〉 under σ, denoted 〈l, μ〉 |= σ(P), if
σ(P) evaluates to true when each observer call in σ(P), of form obs(d1, . . . , dn),
is replaced by the value returned when calling obs(d1, . . . , dn) in 〈l, μ〉.
Definition 2. A contract {P} m(p1, . . . , pn) {Q} is valid for a RA A if for any
assignment σ of values to the parameters of the contract, and any reachable state
〈l, μ〉 of A with 〈l, μ〉 |= σ(P), we have that

– there is an output o and state 〈l′, μ′〉 with 〈l, μ〉 m(σ(p1,...,pn))/o−−−−−−−−−−−→ 〈l′, μ′〉, and
– for any such output o and state 〈l′, μ′〉 it holds that 〈l′, μ′〉 |= σ(Q).

Example
Figure 3 showcases such a RA that serves as a model for capturing the behaviour
of the BoundedList API (cf. Fig. 1) when the maximum capacity of the list
is set to 2. The language for the model consists of sequences of API method
calls. An execution of such a sequence may result in modifying the state of
the list, causing state transitions, thereby producing an output sequence that
adheres to the expected I/O behaviour of the methods within the sequence.
The RA is composed of nodes, each representing a specific state of the list, and
edges that signify state transitions. Each edge is labeled to denote the actions
performed by a method during execution. In the following, we illustrate the
labels corresponding to the edges for a mutator and an observer:

(i)
pop() � true → {x1 := x2}

x1
(ii)

contains(q) � (x1 = q) ∨ (x2 = q)
true

Consider a state �2 where the list has two elements stored in registers x1 and
x2, with x1 holding the most recently pushed element. In this state, a state

132 S. Ghosal et al.

Fig. 3. Register automaton modeling a list (Fig. 1) with maximum capacity 2

transition occurs when the method pop() (a mutator) is invoked, as indicated by
an edge labeled with (i). This label indicates that the method’s guard condition
is satisfied (true) and it outputs the recently pushed element stored into x1 while
moving the second element x2 into x1, thereby releases x2. In fact, a call to pop()
always outputs the last stored element unless the list is empty, in which case it
throws an exception while leading to a trap state. The mutator push, however,
in �2 does not change the state as the list has reached its maximum capacity.
We use the notation ε to denote the void return type for method push. On the
other hand, a method call contains(q) (an observer) in �2 checks if an element
passed by the parameter q is present in the list, is labeled with (ii), meaning the
method outputs true upon satisfying the condition (x1 = q) ∨ (x2 = q). Note
that the label (ii) has no register assignments since observers do not modify
register values and therefore, do not change the module state. In some cases
we represent a single label for more than one method calls, method signature
separated by comma (‘,’), those exhibit similar behaviour.

3.3 Active Learning of Register Automata

The first step of our contract generation uses active automata learning (AAL) to
automatically learn a register automaton model of the system under test (SUT).
AAL is an automated black-box technique which a priori needs know only a
module’s methods and their signatures. Classical AAL learns finite automata or

An Active Learning Approach to Synthesizing Program Contracts 133

Mealy machines from tests, using, e.g., the classic L∗ algorithm [3] or the more
recent TTT algorithm [16]. These, and other AAL algorithms are implemented
in LearnLib [15]. Finite-state models do not capture how parameter values in
method calls affect the module state and successive method calls. In order to
capture data aspects of module behaviour, finite-state models can be, and com-
monly are, equipped with variables, sometimes called registers. Variables can
store the values of data parameters; they can influence control flow by means of
guards, and the control flow can cause variable updates. Finite state machines
with variables are often called extended finite state machines (EFSMs). We will
employ a specific such model, namely register automata (RAs), in which regis-
ters are used as variables. An extension of AAL to learning of RAs is SL∗ [9],
which has been implemented in RALib, an extension of LearnLib [8].

The SL∗ algorithm must know the set of methods and their signatures. Like
other AAL algorithms, it operates in two alternating phases: hypothesis con-
struction and hypothesis validation. During hypothesis construction, sequences
of method calls are submitted on the SUT, and the corresponding return values
are observed to collect information about the module behaviour. When certain
convergence criteria are met, the AAL algorithm constructs a hypothesis, which
is a minimal deterministic RA that is consistent with the observations so far. To
validate that the hypothesis agrees with the behaviour of the SUT, learning then
moves to the validation phase, in which the SUT is subject to a conformance
testing algorithm which aims to validate that the behaviour of the SUT agrees
with the hypothesis. If conformance testing does not find any counterexample,
learning terminates and returns the current hypothesis as the inferred model
of the SUT. If a counterexample (i.e., a sequence of method calls on which the
SUT and the hypothesis disagree) is found, the hypothesis construction phase
is re-entered to build a more refined hypothesis. If the loop of hypothesis con-
struction and validation does not terminate, this indicates that the behaviour of
the SUT cannot be captured by a deterministic RA whose size and complexity
is within reach of the employed learning algorithm. Still, even in these cases, the
last constructed hypothesis can be used as an approximate model of the SUT.

4 Contract Synthesis

In this section, we describe our approach for inferring contracts for a module.

4.1 Learning a Behavioural Model

The first step of our approach is to obtain a register automaton model of the
module. Sometimes, such an automaton model is readily available and can be
supplied directly for generating contracts. Otherwise, such a register automaton
can be learned using AAL as described in Sect. 3.3. Recall that AAL is fully
automated and black-box, but may have practical limitations on the size of
the learned model. For these reasons, we may modify the module so that its
behaviour can be captured by an RA of modest size. A typical modification for

134 S. Ghosal et al.

container modules is to bound their capacity so that they become “full” for a
small number of contained items: this will not change the set of valid contracts,
as long as they do not count the number of contained items. For our running
example such an automaton is shown in Fig. 3.

4.2 Generating Contracts from a Register Automaton

Given a register automaton model of our module, we present an algorithm for
synthesizing contracts for each mutator method m. Recall that a contract is of
form {P} m(p1, . . . , pn) {Q}. Our methodology considers synthesizing contracts
for one postcondition at a time. This means, our algorithm synthesizes contracts
of the above form, given as input a postcondition Q, as well as a set Vcontr of
variables that can occur in P ; the set Vcontr should include p1, . . . , pn and the
variables in Q. In our running example, a starting postcondition Q could be
contains(q), where q is a parameter, or even ¬contains(q). In the following
description, we will use generation of preconditions P in contracts of form

{P} push(p) {contains(q)}

to illustrate the successive steps in our algorithm. The generation of contracts
proceeds through the following steps.

Step 1: Generating Weakest Preconditions: For each location l, we derive
the weakest precondition wpl(m,Q), i.e., the weakest condition on the registers
of l under which m will terminate and yield a state in which Q evaluates to
true. This can be done using standard techniques (e.g., [11]). For each location
l, let [[Q]]l be the condition on the registers of l and parameters of Q under
which Q evaluates to True. The condition [[Q]]l can be obtained from Q by
replacing each nonnegated observer call obs(p) by the disjunction of the guards
of transitions from l in which obs(p) return True, and analogously for negated
observer calls. Then, letting t1, . . . , tm be the outgoing transitions from l for
method m, wpl(m,Q) is obtained as

wpl(m,Q) =
∨

i

gi ∧
∧

i

(
gi → [[Q]]l′i [ei1/xi1 , . . . , eim/xim]

)
(1)

where gi is the guard, l′i is the target location, and xi1 := ei1 , . . . , xim := eim is
the assignment of ti.

Illustration: Let us illustrate the generation of the weakest precondition
wpl1(push(p), contains(q)) for the method push(p) relative to the postcondition
contains(q), where l1 is the location in the RA fragment depicted in Fig. 4. Here,
l1 is the location representing a bounded list containing a single element stored
in the register x1. The transition from �1 to �2 is the only transition from l1 for
the method push. It inserts a second element into the list, causing two elements
to be stored into the registers x1 and x2. We first obtain [[contains(q)]]l2 as
(q = x1 ∨ q = x2). Using Eq. (1), we then derive the weakest precondition

An Active Learning Approach to Synthesizing Program Contracts 135

Fig. 4. The single transition for the method push from location �1, together with the
transition for contains from location �2.

wpl1(push(p), contains(q)) as (q = x1∨q = x2)[x1/x2, p/x1], i.e., (p = q)∨(x1 =
q). �	
Step 2: Generating Location-Specific Preconditions: The weakest pre-
condition wpl(m,Q) is not adequate as a precondition, since in general it men-
tions registers, while a precondition can only refer to the module state through
observer calls. Therefore, in each location l, we generate location-specific pre-
conditions Prel(m,Q) such that [[Prel(m,Q)]]l implies wpl(m,Q). To this end,
define the set O as containing all possible parameterized method calls obs(p)
whose parameters p are taken from Vcontr. Next, let Cl be the set of formulas,
which are either (i) of form [[obs(p)]]l or of form [[¬obs(p)]]l for a parameterized
observer call obs(p) in O, or (ii) a (nonnegated or negated) relation between
variables in Vcontr. We generate Prel(m,Q) as a disjunction of conjunctions of
formulas in Cl, where each disjunct is obtained as a minimal conjunction of
formulas in Cl which implies wpl(m,Q). The generation of Prel(m,Q) can be
performed using a SAT/SMT-solver by observing that the validity of

(c1 ∧ · · · ∧ ck) → wpl(m,Q)

is equivalent to unsatisfiability of

(c1 ∧ · · · ∧ ck) ∧ ¬wpl(m,Q),

implying that we can obtain minimal conjunctions c1 ∧ · · · ∧ ck with the above
properties by asking a SAT/SMT-solver to produce minimal unsatisfiable sub-
sets (MUS) of formulas in Cl ∪ {(¬wpl(m,Q))}. From each of these we obtain
a conjunction of formulas in Cl by first removing ¬wpl(m,Q), and replacing
each conjunct of form [[obs(p)]]l (or [[¬obs(p)]]l) by the corresponding parameter-
ized observer method call obs(p) (or ¬obs(p)). We discard conjunctions, such as
obs(p) ∧ ¬obs(p), which are syntactical contradictions. Since the generation of
minimal unsatisfiable subsets may not explicitly generate the empty set of con-
juncts (which is equivalent to False), we finally add, for each non-parameterized
observer obs() for which [[obs()]]l is True, the disjunct ¬obs(); by symmetry we
add the disjunct ¬obs() if [[obs()]]l is False. These disjuncts are redundant in the
location-specific precondition at location l, but may be non-redundant in another
location l′ where [[obs()]]l′ is neither True nor False; in such a case they allow
to form weaker global preconditions in Step 3. The result is our sought location-
specific precondition Prel(m,Q), structured as a disjunction of conjunctions over
formulas in O.

136 S. Ghosal et al.

Fig. 5. Observers in location �1 in the automaton for BoundedList

Illustration: In Step 1, we obtained wpl1(push(p), contains(q)), the weakest
precondition in location l1, as (p = q) ∨ (x1 = q). In Fig. 5, we show a frag-
ment of the learned RA, showing calls to observers in location l1. To construct
Prel1(push(p), contains(q)), we collect in Cl the guards for contains(q) (i.e.,
(q = x1)) and for ¬contains(q) (i.e., ¬(q = x1)) together with equalities and
dis-equalities between occurring parameters. By interacting with a SAT/SMT
solver, we identify the following minimal unsatisfiable subsets:

(i) {(p = q),¬wpl1(push(p), contains(q))}
(ii) {(q = x1),¬wpl1(push(p), contains(q))}
which, after removing the negated weakest preconditions, yields the following
two minimal disjuncts to be used in the precondition: (i) (p = q), and (ii)
contains(q). Since none of these disjuncts entails the other, we use both when
forming the formula in DNF, as ((p = q) ∨ contains(q)). As the final step,
we consider unparameterized observer calls that always return True or False
in location l1. Considering that in l1, the list contains one item, these are
¬isEmpty() and ¬isFull(). Therefore, we add the two disjuncts isEmpty() and
isFull(). By making them antecedents in an implication, we can then write
Prel1(push(p), contains(q)) in the following way:

(¬isFull() ∧ ¬isEmpty()) → ((p = q) ∨ contains(q)).

�	
Step 3: Generating Global Preconditions: After obtaining location-specific
preconditions, we can finally obtain a location-agnostic precondition Pre(m,Q)
as the conjunction

Pre(m,Q) =
∧

l∈L

Prel(m,Q) (2)

over location-specific preconditions for all locations. The so obtained formula for
Pre(m,Q) is then simplified to a formula which is equivalent in each reachable
location of the RA. The simplification transforms it into disjunctive normal form
(DNF), and then pruning disjuncts that are either infeasible, i.e., evaluating to
false in each location (this can be determined by inspecting the RA for the
module), or redundant, i.e., entailed by some other disjunct.

Illustration: In Step 2, we obtained the following location-specific preconditions
for postcondition contains(q) while synthesizing contracts for method push:

An Active Learning Approach to Synthesizing Program Contracts 137

location �0 (empty list): {(¬isFull() ∧ isEmpty()) → (p = q)}
location �n (full list): {(isFull() ∧ ¬isEmpty()) → contains(q)}
other locations �i : {(¬isFull() ∧ ¬isEmpty()) → ((p = q) ∨ contains(q))}
Then, taking the conjunction of the above preconditions and applying the sim-
plification techniques described in Step 3, we obtain the global precondition as
follows:

((p = q) ∧ ¬isFull()) ∨ contains(q)

which is the sought precondition for our final contract. �	

4.3 Correctness and Optimality

In this section, we state and prove that our technique generates valid contracts
(Theorem 1) which, under some conditions, are also maximal (Theorem 2).

Theorem 1 (Contract Validity). If our method synthesizes a contract of
form {P} m(p1, . . . , pn) {Q} for an RA A, then this contract is valid for A.

Proof: The theorem follows by observing that the steps our methods produce
results with the desired properties:

Step 1: For each location l, the generated weakest precondition wpl(m,Q) has
the property to guarantee that a method call of form m(p1, . . . , pn) in location
l is guaranteed to terminate and result in a state where Q evaluates to true.
This follows by standard techniques for computing weakest preconditions.

Step 2: For each location l, the location-specific precondition Prel(m,Q) gen-
erated in Step 2 has the property that [[Prel(m,Q)]]l → wpl(m,Q). This
follows from the observation that [[Ci]]l → wpl(m,Q) for each disjunct Ci in
[[Prel(m,Q)]]l.

Step 3: Since Prel(m,Q) is a conjunct of Pre(m,Q), it follows that Pre(m,Q)
entails Prel(m,Q) for any l, hence [[Pre(m,Q)]]l → [[Prel(m,Q)]]l. Thus, if
[[Pre(m,Q)]]l is true in l, then a method call of form m(p1, . . . , pn) in l is
guaranteed to terminate and result in a state where Q evaluates to true.
Since l is arbitrary, the theorem follows. �	

We say that an RA is fully reachable if for each location l and valuation μ of
the registers X (l) of l, the state 〈l, μ〉 is reachable.

Theorem 2 (Synthesis of Maximal Contracts). Let A be a fully reachable
RA, let m be a method, let the condition Q and set of variables Vcontr be the
input to our contract generation. If the condition R is such that its parameters
are in Vcontr and the contract {R} m(p1, . . . , pn) {Q} is valid for A, then our
method synthesizes a contract of form {P} m(p1, . . . , pn) {Q} such that R ⇒ P .

138 S. Ghosal et al.

Proof: Let R be a condition as above. Put R in DNF. Assume that c1 ∧ · · · ∧ ck

is a disjunct of R. Consider a location l of A. Since {R} m(p1, . . . , pn) {Q} is
valid for A, the corresponding condition [[c1]]l ∧· · ·∧ [[ck]]l guarantees that calling
m(p1, . . . , pn) in l is guaranteed to terminate and result in a state in which Q
holds. Since wpl(m(p1, . . . , pn), Q) is the weakest formula with such a property,
it follows that [[c1]]l ∧ · · · ∧ [[ck]]l implies wpl(m(p1, . . . , pn), Q). If none of [[c1]]l,
. . . , [[ck]]l is False, our MUS generation will then find a subset of [[c1]]l, . . . , [[ck]]l
which implies wpl(m(p1, . . . , pn), Q), and generate the conjunction of the corre-
sponding subset of c1, . . . , ck as a disjunct of Prel(m,Q). If some [[ci]]l is False,
then ci will be added as a disjunct of Prel(m,Q). In both cases, the result is
that Prel(m,Q) is entailed by R. Since P is obtained as the conjunction of the
different Prel(m,Q) for l ∈ L, this implies that also P is entailed by R. �	

The condition that A be fully reachable in Theorem 2 shows that our tech-
nique may generate unnecessarily strong preconditions if some states are not
reachable in A. This deficiency can be addressed by adding a procedure for gen-
erating invariant, which for each location l generates a characterization Inv l of
the valuations μ such that 〈l, μ〉 is reachable. The formulas Inv l are then used
in Step 2, but generating minimal disjuncts c1 ∧ · · · ∧ ck such that

(c1 ∧ · · · ∧ ck ∧ Inv l) → wpl(m,Q)

is valid. We leave this extension as future work.

5 Implementation

We implement the strategies outlined in Sect. 4 in a Python tool called CoGent,
abbreviation of Contract Generator. We build CoGent in integration with z3
SAT/SMT solver [10] for checking SAT/UNSAT of logical entailments and iden-
tifying minimal unsatisfiable subsets. For this purpose, we use z3 Python library,
z3py [12], as the constraint solver. In addition, we have used the Python library
Sympy [24] for simplification of Boolean expressions to conversion to DNF.

In our work, we first learn the RA model of the target API using the tool
RAlib [8,9]. RAlib utilizes a given test harness tailored to the target API in
order to learn the automaton. The test harness maps each method from the API
to a symbol for learning the model. Next, we operate CoGent by giving inputs an
XML representation of the automaton model and the target mutator for which
we are interested in synthesizing contracts. The tool automatically identifies the
observers (following the observer semantics) present in the API and generates
pre and postconditions for the mutator. These conditions are quantifier-free first-
order logic expressed in terms of Boolean valuations of observers and relation
between input parameters. Thus the tools RAlib and CoGent in combine offer a
comprehensive solution to synthesizing contracts for the mutators from an API.

Figure 6 shows the architecture of our tool where each step described in this
paper is represented as a Python module (depicted as a box). The module Driver
runs the contract synthesis engine by operating modules for performing steps 1

An Active Learning Approach to Synthesizing Program Contracts 139

Fig. 6. Architecture of Contract Synthesis Engine

and 2 in rounds for every location in the automaton and each possible post-
condition. While in step 2, the module Solver utilizes z3py API for checking
SAT/UNSAT and eventually deriving MUSes that yield the set of precondi-
tions. Once the module Driver accumulates all location-specific preconditions
for a mutator, it delegates the task of synthesizing global contracts to a module
that merges the preconditions wrt. each postcondition. Additionally, it simplifies
the merged contract with the help of Simplifier, which inherits some of the
functions provided by Sympy.

6 Evaluation

We evaluate our contract generation tool by synthesizing contracts for some of
the modules from Java SEv8, and the Contiki-NG OS. We generate contracts for
the mutators from those modules using the supplied Boolean observers including
isFull and isEmpty methods for handling size bounds. The maximum size for
each data structure is set to 3. Table 1 outlines the details of our tool evaluation.
For each module, the number of non-whitespace, non-comment lines of code is
mentioned within brackets. The average running time (in seconds) for model
learning and synthesizing contract for a mutator are recorded in columns 4 and
5, respectively, using RAlib and CoGent tools. In RAlib, the maximum number of
attempts to find counterexamples is set to 1000 per hypothesis. Column 6 shows
the number of locations in the automaton, and column 7 indicates the total
number of contracts generated by the tool. The final column specifies maximum
number of disjuncts obtained after simplifying the preconditions for the contracts
generated by our tool for each module. Following we illustrate a few contracts
generated for two mutators from Contiki-NG list module.

Contiki-NG, a widely used open-source OS for IoT, includes a critical list
module, which has unique characteristics compared to typical list implementa-
tions. This module is designed to be highly resource-constrained, where the API
allocates a memory block by releasing it if it has been pre-allocated. Addition-
ally, the list can function as both a stack and a queue, but storing a block in
either way requires removing it first if it already exists in the list.

140 S. Ghosal et al.

Table 1. Interfaces for Evaluating Our Approach to Synthesizing Contract

Modules Mutators Observers Runtime(s) # # max.

RAlib CoGent locs. cont. disj.

Contiki-NG
List (45)

insert(e1, e2),
pop(), push(e1),
add(e),
remove(e)

contains(e),
isFull(),
isEmpty()

51.2 21.02 52 19 3

HashMap
(1916)

put(k, v),
remove(k)

containsKey(k),
containsValue(v),
isEmpty(),
isFull()

3.33 12.07 15 14 7

Stack (93) push(e),
pop()

isEmpty(),
isFull(),
contains()

1.6 0.6 21 8 3

PriorityQueue
(704)

add(e),
remove(e),
poll()

isEmpty(),
isFull(),
contains()

5.4 11.7 53 21 5

BoundedList
(43)

push(e), pop(),
insert(e1, e2)

isEmpty(),
isFull(),
contains()

15.74 0.97 21 12 3

To evaluate this module, we create a Java class that simulates the behaviour
of the Contiki-NG list module, treating memory blocks as integer elements,
and generate contracts for the mutators. In the following, we discuss the con-
tracts generated for two specific mutators: add and insert, which establish the
aforementioned behaviour. The add method takes an input element through p,
removes it if it already exists in the list, and then appends the element at the
end. On the other hand, the insert method receives two parameters: p1 and p2.
It removes p2 if it is present in the list and inserts it again after p1.

Here are two of the contracts generated for the add and insert methods:

i {isEmpty() ∨ (contains(p) ∧ ¬isFull())} add(p) {¬isFull()}
ii {isEmpty() ∨ (contains(p2) ∧ ¬isFull())} insert(p1, p2) {¬isFull()}
Contract (i) for method add demonstrates that adding an element that is already
present in the list will not result in the list becoming full. This is because the
method removes the element before adding it again. Similarly, contract (ii) shows
that the list cannot become full if the parameter p2 is already present in the list.

Contract Validation: Next, we validate the synthesized contracts for the
mutators listed in Table 1 leveraging symbolic execution [17], a program veri-
fication technique that explores different execution paths to test the validity of
the contracts. Symbolic execution treats inputs as symbols representing arbi-
trary values and systematically explores feasible code paths with symbolic input
values.

An Active Learning Approach to Synthesizing Program Contracts 141

To validate contract for a mutator, we generate an arbitrary pre-state that
can be reached after a bounded-length sequence of calls to mutators with sym-
bolic parameters. Symbolic execution is then performed on the targeted mutator,
under the assumption correspond to the precondition from synthesized contract.
The postcondition is treated as an assertion checked after symbolic execution
to identify any execution paths that fail to satisfy the postcondition for certain
parameter values. If the postcondition remains valid throughout symbolic exe-
cution, the contract is considered to be valid for all module states. We utilize
the Symbolic(Java) PathFinder tool (SPF) [21] to facilitate contract validation.
Using the above setup, we successfully validated all contracts obtained through
our proposed method, confirming that none of them are invalid. For a detailed
implementation for contract validation, we encourage to refer to [14].

7 Related Work

We give an overview of the most related areas of research. For a broader survey
of existing contract synthesis approaches, we refer the reader to [2].

Our work can be seen as an approach to precondition inference: given a
method m with a given postcondition Q, produce a precondition P which guar-
antees that Q will hold when the method returns. Data-driven approaches to this
problem (e.g., [22]) start from a set of features, i.e., predicates over m’s inputs;
they collect “good” test inputs (causing Q to be satisfied) as well as “bad” test
inputs (causing Q to be falsified), which induce feature vectors (valuations of the
features) for “good” and for “bad” inputs. A classification algorithm can then
be used to separate “good” from “bad” inputs, producing a precondition. Padhi
et al. [20] augment this technique by the ability to learn new features, when the
existing ones are not sufficient to separate “good” from “bad” inputs. Astorga et
al. [4,5] further build on this technique to be able to give guarantees relative to
a given test input generator: a precondition is safe if the test generator cannot
find a test input that satisfies the precondition and violates the postcondition;
it is maximal if it includes all inputs found by the test generator that satisfy the
postcondition. Our method is data-driven as well, as active automata learning is
a black-box method and works by executing test cases. Our method differs from
existing inference methods in the intermediate step of constructing a register
automaton, and is, thus, able to discover which states of a system are reachable.

Molina et al. [19] use an analogous technique for generating postconditions
for a given precondition, in which the method is executed with an exhaustive set
of inputs, and postconditions are generated from the observed outputs using a
genetic algorithm. Dynamic methods have also been used to infer program invari-
ants. Ernst et al. [13] developed the Daikon system, which infers likely invari-
ants by observing program executions. The obtained invariants are restricted
to conjunctive Boolean expressions. The approach has later also been extended
to generate likely program contracts. At the moment, it is not clear whether
our method can be extended to synthesise postconditions, although this is an
interesting avenue of future research.

142 S. Ghosal et al.

There are also several white-box approaches to synthesize contracts. Alpuente
et al. [1] apply a symbolic execution engine, which explores program paths reach-
able for given a precondition P . For each path, the engine produces a path
condition and symbolic values of program variables, from which correspond-
ing postconditions are synthesized. Singleton et al. [23] present an algorithm,
based on symbolic execution, to extract human-readable concise contracts from
strongest postconditions. Alshnakat et al. [2] use solvers for constrained Horn
clauses (i.e., model checkers) to generate program contracts that are sufficient to
verify given properties of a program. It remains to be investigated how our app-
roach compares, in terms of the required runtime and readability of contracts,
to white-box approaches.

8 Conclusion

We have presented a novel approach to synthesizing method contracts for state-
ful software modules, specifically those implementing data structures like stacks,
queues, etc. Assuming that the modules are equipped with observer methods for
querying the module state, and mutators for modifying it, our technique synthe-
sizes contracts for the mutators, where pre- and postconditions are expressed as
Boolean combinations of observer calls together with equalities between param-
eters to observers and mutators. Our proposed technique first learns a model
of the module’s behaviour, utilizing existing algorithms for active learning of
register automata. On the basis of the learned model, our technique automati-
cally synthesizes preconditions for any given postcondition. We prove that, under
some assumptions, the obtained preconditions are the weakest possible. We have
developed a tool called CoGent based on our approach, which generates contracts
for mutators from a given register automaton where the contracts cover reachable
behaviours (module locations). Our implementation provides evidence that this
approach can successfully synthesize contracts for various stateful Java modules.
As additional evidence, we validate obtained contracts using symbolic execution.

In future work, we plan to extend our approach to handle non-Boolean
observers and inequalities between input parameters and registers during the
model learning phase. This extension will enable the inference of preconditions
in a more expressive language. In addition, we will enhance contract synthesis
with location-specific invariant generation, to handle some cases in which invari-
ants about registers are needed to prevent the synthesis of unnecessarily strong
preconditions (see Sect. 4.3).

Acknowledgments. This research was partially funded by the Swedish Foundation
for Strategic Research through projects aSSIsT and WebSec, the Swedish Research
Council (Vetenskapsr̊adet), and the Knut and Alice Wallenberg Foundation through
project UPDATE. We also thank the SEFM 2023 reviewers for comments and questions
that have improved the presentation of our work.

An Active Learning Approach to Synthesizing Program Contracts 143

References

1. Alpuente, M., Pardo, D., Villanueva, A.: Abstract contract synthesis and verifi-
cation in the symbolic K framework. Fundam. Informaticae 177(3–4), 235–273
(2020). https://doi.org/10.3233/FI-2020-1989

2. Alshnakat, A., Gurov, D., Lidström, C., Rümmer, P.: Constraint-based contract
inference for deductive verification. In: Ahrendt, W., Beckert, B., Bubel, R.,
Hähnle, R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspec-
tives. LNCS, vol. 12345, pp. 149–176. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64354-6 6

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Astorga, A., Madhusudan, P., Saha, S., Wang, S., Xie, T.: Learning stateful precon-
ditions modulo a test generator. In: McKinley, K.S., Fisher, K. (eds.) Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, 22–26 June 2019, pp. 775–787.
ACM (2019). https://doi.org/10.1145/3314221.3314641

5. Astorga, A., Saha, S., Dinkins, A., Wang, F., Madhusudan, P., Xie, T.: Synthesizing
contracts correct modulo a test generator. In: Proceedings of ACM Programming
Languages, vol. 5, no. OOPSLA, pp. 1–27 (2021). https://doi.org/10.1145/3485481

6. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

7. Burdy, L., et al.: An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transfer 7(3), 212–232 (2004). https://doi.org/10.1007/s10009-004-0167-
4

8. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for infer-
ring EFSMs. In: DIFTS 2015 (2015). https://www.faculty.ece.vt.edu/chaowang/
difts2015/papers/paper 5.pdf

9. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016). https://doi.org/
10.1007/s00165-016-0355-5

10. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Proceedings of 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), ser. LNCS, vol.
4963, pp. 337–340. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-
78800-3 24

11. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968). https://doi.org/10.1007/BF01933419

12. Dutcher, A., Bjorner, N.: z3-solver 4.12.2.0 (2023). https://pypi.org/project/z3-
solver/

13. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1–3), 35–45 (2007)

14. Ghosal, S., Jonsson, B., Rümmer, P.: An active learning approach to synthesizing
program contracts, July 2023. https://doi.org/10.5281/zenodo.8169860

15. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

16. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

https://doi.org/10.3233/FI-2020-1989
https://doi.org/10.1007/978-3-030-64354-6_6
https://doi.org/10.1007/978-3-030-64354-6_6
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/3485481
http://frama-c.com/acsl.html
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/s10009-004-0167-4
https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/BF01933419
https://pypi.org/project/z3-solver/
https://pypi.org/project/z3-solver/
https://doi.org/10.5281/zenodo.8169860
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26

144 S. Ghosal et al.

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

18. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

19. Molina, F., Ponzio, P., Aguirre, N., Frias, M.F.: EvoSpex: an evolutionary algo-
rithm for learning postconditions. In: 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22–30 May 2021, pp. 1223–
1235. IEEE (2021). https://doi.org/10.1109/ICSE43902.2021.00112

20. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: Krintz, C., Berger, E.D. (eds.) Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, 13–17 June 2016, pp. 42–56. ACM (2016).
https://doi.org/10.1145/2908080.2908099

21. Pǎsǎreanu, C.S., et al.: Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In: Proceedings of the 2008 Inter-
national Symposium on Software Testing and Analysis ISSTA, pp. 15–26 (2008).
https://doi.org/10.1145/1390630.1390635

22. Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of
likely data preconditions over predicates by tree learning. In: Ryder, B.G., Zeller, A.
(eds.) Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2008, Seattle, WA, USA, 20–24 July 2008, pp. 295–
306. ACM (2008). https://doi.org/10.1145/1390630.1390666

23. Singleton, J.L., Leavens, G.T., Rajan, H., Cok, D.R.: Inferring concise specifica-
tions of APIs. CoRR, abs/1905.06847 (2019). http://arxiv.org/abs/1905.06847

24. S. D. Team: Sympy 1.12 (2023). https://www.sympy.org/en/index.html

https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/ICSE43902.2021.00112
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1145/1390630.1390666
http://arxiv.org/abs/1905.06847
https://www.sympy.org/en/index.html

Ranged Program Analysis via
Instrumentation

Jan Haltermann1(B) , Marie-Christine Jakobs2 , Cedric Richter1 ,
and Heike Wehrheim1

1 Department of Computing Science, University of Oldenburg, Oldenburg, Germany
{jan.haltermann,cedric.richter,heike.wehrheim}@uol.de

2 LMU Munich, Munich, Germany
m.jakobs@lmu.de

Abstract. Ranged program analysis has recently been proposed as a
means to scale a single analysis and to define parallel cooperation of dif-
ferent analyses.

To this end, ranged program analysis first splits a program’s paths
into different parts. Then, it runs one analysis instance per part, thereby
restricting the instance to analyze only the paths of the respective part.
To achieve the restriction, the analysis is combined with a so-called range
reduction component responsible for excluding the paths outside of the
part.

So far, ranged program analysis and in particular the range reduction
component have been defined in the framework of configurable program
analysis (CPA). In this paper, we suggest program instrumentation as
an alternative for achieving the analysis restriction, which allows us to
use arbitrary analyzers in ranged program analysis. Our evaluation on
programs from the SV-COMP benchmark shows that ranged program
analysis with instrumentation performs comparably to the CPA-based
version and that the evaluation results for the CPA-based ranged pro-
gram analysis carry over to the instrumentation-based version.

Keywords: Software verification · ranged program analysis · program
instrumentation

1 Introduction

Assessing whether developed software meets given quality criteria is an inte-
gral part of the development process. Software verification, which aims to prove
whether software satisfies user-specified correctness properties like assertions, is
one means to assess the quality. Today, many different automatic software verifi-
cation tools exist, which employ different verification approaches and, thus, have
different strengths and weaknesses. Instead of enhancing existing or developing
new verification approaches, another option for improving on state-of-the-art
verification technology is to combine the strengths of existing approaches. One

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 145–164, 2023.
https://doi.org/10.1007/978-3-031-47115-5_9

https://zenodo.org/record/8169692
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_9&domain=pdf
http://orcid.org/0000-0002-5098-0495
http://orcid.org/0000-0002-5890-4673
http://orcid.org/0000-0003-2906-6508
http://orcid.org/0000-0002-2385-7512
https://doi.org/10.1007/978-3-031-47115-5_9

146 J. Haltermann et al.

strategy is to apply the idea of the divide-and-conquer principle and let different
verification approaches or tools jointly solve a verification task.

This principle has already been put into practice in several combina-
tions [3,14,19,24] including combinations of testing and verification tools [2,17].
However, the combinations studied therein mostly work in a sequential manner:
tools alternate in working on the task, either cyclically or in sequence. Thereby,
the task to be solved is successively getting smaller with every run of a verifier
until solved. Splitting the verification task into different parts and then jointly
working on these parts in parallel may reduce the overall time after which the
result becomes available. Although this type of parallel approach can also be
used for scaling verification, it has mostly been used to scale symbolic execu-
tion [28,30,32,33,36].

Recently, Haltermann et al. [20] proposed ranged program analysis to gen-
eralize the idea of ranged symbolic execution [30], one of the techniques used
to scale symbolic execution. Like ranged symbolic execution, ranged program
analysis splits the program paths to be analyzed into different parts (so-called
ranges). To this end, an ordering ≤ on program paths is defined and a range
[π1, π2] fixed to be the set of paths such that π1 ≤ π ≤ π2 holds for each path
π in the set. In contrast to ranged symbolic execution, ranged program analysis
allows using analyses other than symbolic execution to inspect a range and in
particular also permits using different analysis approaches for different ranges.
To restrict an analysis to inspect the paths of its range only, ranged program
analysis combines the analysis with a so-called range reduction component. It is
synchronously executed with the “real” analysis and is responsible for excluding
the paths outside the range.

So far, ranged program analysis and in particular the range reduction com-
ponent have been defined in the framework of configurable program analy-
sis (CPA) [7], which limits the applicability of the approach. In this paper, we
further generalize the concept of ranged program analysis and make it appli-
cable to arbitrary, off-the-shelf verification tools running arbitrary analyses. To
this end, we propose range instrumentation as an alternative to restricting an
analysis to a range and implement it as a standalone tool. The idea of our range
instrumentation is to encode the input range into the program by adding addi-
tional statements to the program. Afterward, the resulting range program only
contains the paths specified in the input range given to the range instrumenta-
tion. As a range program is syntactically just a normal program, we can give it
to any verification tool for analysis.

We experimentally evaluate our instrumentation-based ranged program anal-
ysis on tasks from SV-COMP using the off-the-shelf verifiers Klee [11], Sym-
biotic [12] and Ultimate Automizer [22] as well as the CPA-based symbolic
execution CPAse implemented in CPAchecker [8], which we require to com-
pare instrumentation-based ranged program analysis with the CPA-based one
from [20]. Our evaluation reveals that instrumentation-based ranged program
analysis performs comparably to CPA-based ranged program analysis and that
the results for instrumentation-based ranged program analysis are in line with

Ranged Program Analysis via Instrumentation 147

Fig. 1. Example program pow2, the corresponding CFA and execution tree. (Color
figure online)

the previous observations for CPA-based ranged analysis. In addition, we show
that our instrumentation-based approach outperforms the approach based on
residual program generation [3], which Haltermann et al. [20] originally men-
tioned as a way to generalize ranged program analysis to an arbitrary verifier.

2 Background

In this work, we aim to verify programs written in C. To explain the employed
concepts of ranged program analysis, we start by introducing notations on pro-
grams and by defining (path) ranges.

2.1 Program Syntax and Semantics

To ease representation, we consider in this paper C-programs with numeric vari-
ables only1. Formally, we use a control flow automaton (CFA) P = (L, �0, G) to
model a program, where L is a set of program locations, with initial location
�0 ∈ L, and G ⊆ L × Ops × L are the control flow edges. A control-flow edge
g = (�i, g, �j) describes the statement g ∈ Ops that is executed at location �i

thereby leading to location �j . The set Ops contains all possible operations (on
integer variables from a set Var), like assume-statements (boolean operations
over the integer variables, denoted BExpr) or assignments. We assume that pro-
grams are deterministic except for the input values and that branches only occur
at assume-statements. To be able to later define an ordering on paths, we employ
an indicator function BP : G → {T, F,N} on control-flow edges indicating for
each g ∈ G whether g is an assume-statement representing the T (rue) branch,
the F (alse) branch or N(o) branch (in case g is not an assume statement).

Figure 1a shows our running example program pow2, which calculates the
square (x2) of the input x using addition. It contains an error (i.e., the assertion
at line 8 is not always fulfilled) as the result for every negative number x is 0.
1 The implementation covers the GNU C-standard.

148 J. Haltermann et al.

Fig. 2. Conceptual overview of ranged program analysis for two ranged analyses (Color
figure online)

Figure 1b contains the corresponding CFA, where we draw assume-statements g
with BP (g) = F dashed and all other edges solid.

In this work, we focus only on the syntactic paths of the program: A syn-
tactical program path π = �0 −g1−→ �1 −g2−→ . . . −gn−→ �n is a sequence of program
statements, such that (1) it starts at the beginning of P in �0 and (2) adheres to
the control-flow (i.e., �i−1 −gi−→ �i ∈ G). We denote the set of all program paths
of a CFA P by Paths(P).

2.2 Program Ranges

The goal of ranged program analysis is to divide the program into so-called path
ranges, such that each range can be analyzed individually and in particular also
in parallel. Ranges are intervals of paths. To fix the paths inside a range, we
first need an ordering ≤ on execution paths. Intuitively, we order paths with
respect to their branch decisions, where an edge representing the true branch
(of an assume statement) is smaller than the edge representing the false branch.
Formally, for two paths π = �0 −g1−→ �1 −g2−→ . . . −gn−→ �n and π′ = �′

0 −g′
1−→ �′

1 −g′
2−→

. . . −g′
m−→ �′

m ∈ Paths(P), we define π ≤ π′, if ∃0 ≤ k ≤ n : ∀ 1 ≤ i ≤ k : gi =
g′

i ∧
(
(n = k∧m ≥ n)∨(m > k∧n > k ∧BP (gk+1) = T ∧BP (g′

k+1) = F)
)
. Using

this ordering, we can also represent the program paths as an execution tree. An
execution tree is a tree where nodes are labeled with the assume operations of
the program and the paths in the tree are ordered w.r.t. ≤. We depict a part of
the execution tree of the example program in Fig. 1c.

Using the ordering on paths, we define a range [πl, πu] as the set of paths
s.t. ∀π∈ [πl, πu] :πl ≤ π≤πu holds. To be able to describe (partially) unbounded
ranges, we use the two additional paths π⊥ ,π� /∈Paths(P), s.t. ∀π ∈Paths(P) :
π⊥ ≤ π ≤ π� holds. Consequently, [π⊥ , π�] = Paths(P). As previously stated,
programs are expected to be deterministic except for the input. Hence, a test
case τ , τ : Var → Val mapping all (input) variables to concrete values of Val ,
induces a path πτ ∈ Paths(P), obtained by executing the program using the
test inputs. Now, we can define a range by two test cases τ1 and τ2, using the
induced paths πτ1 and πτ2 . Therefore, we may write [τ1, τ2] instead of [πτ1 , πτ2].
In Fig. 1c, we highlight the path πτ1 induced by τ1={x �→3} in green and πτ2

Ranged Program Analysis via Instrumentation 149

induced by τ2 = {x �→ 0} in blue. The range [πτ1 , πτ2] contains the paths to the
blue, green, and black leaves. Note that [πτ1 , πτ2]=[πτ1 , π

�].

2.3 Ranged Program Analysis

The idea of ranged program analysis, first proposed for symbolic execution [30]
and then generalized in [20], is to split the program to be verified in ranges and
analyze each range in parallel. A conceptual overview of the ranged program
analysis, which considers two ranges, is given in Fig. 2. First, a set of ranges is
generated by the Splitter. In the example, a path that can be generated by a
Splitter is πτ1 , highlighted in green in Fig. 1c. Using this test case, we can divide
the program into two ranges [π⊥ , πτ1] and [πτ1 , π

�]. Next, two ranged analyses
verify both ranges of the program in parallel. Finally, when both analyses com-
pleted their tasks, the partial verification results are joined by a Joiner to a final
answer. In case one analysis reports a property violation, the other is stopped,
and the violation is reported as the final answer. As the program from Fig. 1a
violates the assertion for any negative number, Ranged Analysis 2, which analyzes
the range containing the error, reports a counter-example.

3 Ranged Program Analysis via Instrumentation

The concept of a parallel composition of different ranged analyses (as proposed
in [20]) currently has the following major limitation: The range reduction, used to
restrict a program analysis to a certain range, is defined for configurable program
analyses only. Hence, using off-the-shelf tools for a ranged program analysis is
currently not possible. To address this shortcoming, we propose using program
instrumentation to encode the ranges directly into the program.

3.1 Instrumenting Programs with Ranges

For instrumentation, we semantically encode range constraints into the program.
For this, we add additional constraints to the program execution to exclude exe-
cution paths that are out of range. However, execution paths cannot be excluded
in hindsight (i.e. we cannot decide not to take a branch after we have taken it).
Thus, our instrumentation has to exclude out-of-range paths before the branch is
taken. To be able to exclude execution paths early, we make the following three
observations for a given range [πτ1 , πτ2] and a finite prefix π̂ of π ∈ Paths(P):

1. It is necessary to track whether π̂ is a prefix of πτ1 or πτ2 . If there exists a
finite prefix π̂τ1 of πτ1 (or a prefix π̂τ2 of πτ2), such that π̂= π̂τ1 (or π̂= π̂τ2),
then π is potentially included in [πτ1 , πτ2].

2. Only local branching decisions matter. Let π̂ = �0 −g1−→ . . .−gn−1−−−→ �n−1 −gn−→ �n

and let π̂τ = �0 −g1−→ . . . −gn−1−−−→ �n−1 −gτ,n−−→ �τ,n be a finite prefix of an arbitrary
bound πτ . If BP (gτ,n) = T and BP (gn) = F , then for all continuations π
of π̂ we have πτ ≤ π. If BP (gn) = T and BP (gτ,n) = F , then π ≤ πτ .
Symmetrically, if πτ �≤ π̂ (or π̂ �≤ πτ , resp.) then πτ �≤ π (or π �≤ πτ resp.).

150 J. Haltermann et al.

Fig. 3. Construction of a ranged analysis from an off-the-shelf program analysis for a
range [πτ1 , πτ2] defined by two test cases τ1, τ2

3. Inclusion is early decidable. If πτ1 �≤ π̂ or π̂ �≤πτ2 , then π cannot be included
in [πτ1 , πτ2] (as there exists no continuation of π̂ included in the range).

Note that as soon as πτ1 �≤ π̂ or π̂ �≤ πτ2 for a prefix π̂ we can safely abort the
execution of the complete path π since the path cannot be in the range (obser-
vation 3). In addition, as soon as we can decide that πτ1 ≤ π and π ≤ πτ2 (obser-
vation 2) we do not have to restrict the execution any further. In the following,
we exploit these observations to instrument relevant branching points (such as
loops and branches) in the program by adding additional range constraints.

3.2 From Test Cases to Branching Decisions

Computing πτ for a given test case τ requires an execution of the program or
a semantical analysis of P . However, as soon as we derived πτ , the decision of
whether a path is in a given range is purely syntactical. In fact, based on our
observations in Sect. 3.1, it is sufficient to decide whether the current execution
path performs the same branching decisions as the path induced by the test
case for the lower or upper bound. To simplify the instrumentation process, we,
therefore, transform test cases τ into sequences of branching decisions sτ taken
when following πτ and describing the same syntactic path πτ . Now, to compute
the sequence sτ of branching decisions, we start by computing πτ for a given test
case τ provided by the splitter. Then, we generate the sequence sτ by applying
the recursively defined function TP :Paths(P)→{T, F}∗:

TP (�i −gi−→ �j −gj−→ · · ·) =
{

x ◦ TP (�j −gj−→ · · ·) if x = BP (gi) ∈ {T, F}
TP (�j −gj−→ · · ·) otherwise

For a given range [τ1, τ2], we apply the sequence generator to the test case for
the upper and lower bound to generate the sequences sτ1 and sτ2 . The generated
sequences are then used for instrumentation.

Example. Let us consider our example program in Fig. 1 with the given range
[τ1, τ2] (τ1 = {x �→ 3} and τ2 = {x �→ 0}). Based on the induced paths shown
in Fig. 1c, the sequence generator generates two sequences TP (πτ1) = sτ1 =
(T, T, T, F) and TP (πτ2) = sτ2 = (F) for the lower and upper bound respectively.

Ranged Program Analysis via Instrumentation 151

3.3 Instrumentation-Based Ranged Analysis

Using the observations of Sect. 3.1 and our sequence generator, we now instru-
ment the program for a given range [τ1, τ2] as shown in Fig. 3: We start by
transforming the range bounds τ1, τ2 into sequences of branching decisions sτ1

and sτ2 respectively. Then, we instrument the program independently for both
the lower and upper bound explained next.

Readout. Based on the given sequences of branching decisions sτ =(b0, b1, . . . , bn)
with bi ∈ {T, F}, we define a readout function Rsτ

: N → {T, F} as follows:

Rsτ
(x) =

∨

bi=T

(x = i) ∨ x > n,

which is T if the predicate in the function evaluates to true and F otherwise.
During instrumentation, we use function Rsτ

to read out the branching decision
of the bound at the current branching point (e.g., a loop head or an if statement).
To keep track of the branching decisions taken by the path induced by the lower
(upper) bound at the current branching point, we introduce new counter variable
lcounter (ucounter) for the lower (upper) bound. The counters are incremented
for each branching decision taken in the program.

Keeping Track of Branching Decision. To keep track of whether the execution
path is on the lower path πτ1 or upper path πτ2 , we introduce two new Boolean
variables on_lpath and on_upath for the lower and upper path, respectively.
Now, as soon as the execution path leaves the lower or upper path at a branching
point, the execution is either aborted (since the path can never be in range) or
we disable all instrumentations for the lower or upper path, respectively. For
this, we guard our instrumentation using the two variables. This allows us to
disable the instrumentation by setting on_lpath (or on_upath) to false. We
abort the execution with a special abort function.

We instrument the code independently for both the upper and lower bound.
During instrumentation, we instrument all branching points2 represented by two
edges �i−1

gi−→ �i and �i−1 −gj−→ �j with BP (gi) = T and BP (gj) = F .

Leaving the Lower Bound sτ1 . For the lower bound, we handle the following
two cases: (1) the execution path leaves the lower path with BP (gi) = T and
Rsτ

(lcounter) = F and (2) the execution leaves the lower path with BP (gj) =
F and Rsτ

(lcounter) = T . For handling the former case, we add the following
instrumentation directly after the branching decision gi:

if(on_lpath) { if([[Rsτ1
(lcounter) = F]]) abort(); lcounter++; }

In other words, if the execution path branches to the true side with BP (gi) = T
and the lower path follows the false side (i.e. Rsτ1

(lcounter) = F) then any
continuation of the execution path is smaller than the lower path and we abort
the execution. Now, if the execution path leaves the lower path with BP (gj) = F

2 In our implementation, we only instrument branching points that occur on the paths
induced by the lower bound or upper bound.

152 J. Haltermann et al.

Fig. 4. Range programs generated using instrumentation for pow2

and Rsτ1
(lcounter) = T , all continuations of the execution path will be greater

than the lower path and, therefore, we can safely disable the instrumentation
for the lower bound by setting on_lpath = 0. We instrument the false branch
after gj accordingly. Finally, as a result of our lower bound instrumentation, all
execution paths are aborted that are not in [πτ1 , π

�].

Leaving the Upper Bound sτ2 . For the upper bound, we abort the execution if the
execution path leaves the upper path with Rsτ2

(ucounter) = T and BP (gj) = F .
For this, we add the following instrumentation after gj :

if(on_upath) { if([[Rsτ2
(ucounter) = T]]) abort(); ucounter++; }

If the execution path leaves the upper path with Rsτ2
(ucounter) = F and

BP (gi) = T , all continuations of the execution path will be smaller than the
upper path and, therefore, we can disable the upper bound instrumentation by
setting on_upath = 0. Now, by instrumenting a program with our upper bound
instrumentation, all execution paths are aborted that are not in [π⊥ , πτ2].

To restrict the set of execution paths to [πτ1 , πτ2] = [πτ1 , π
�] ∩ [π⊥ , πτ2] and

therefore create a range program with the range [τ1, τ2], we apply both the lower
and upper bound instrumentation one after another.

Example. Let us again consider the example in Fig. 1 with the given range
[τ1, τ2] and corresponding sequences sτ1 = (T, T, T, F) and sτ2 = (F). For obtain-
ing the range program, we apply both the lower bound and upper bound instru-
mentation. For brevity, we only show the program P instrumented independently
for the lower bound [πτ1 , π

�] (using the sequence sτ1) in Fig. 4a and the upper
bound [π⊥ , πτ2] (using sτ2) in Fig. 4b. Note that we perform some optimizations
on the code. For example, lcounter==3 is equivalent to Rsτ1

(lcounter) = F
and ucounter!=0 is equivalent to Rsτ2

(ucounter) = T .

Ranged Program Analysis via Instrumentation 153

3.4 Handling Underspecified Bounds

In practice, C programs can contain other sources of non-determinism besides
inputs, e.g. user inputs via scanf() or other functions like srand(). We handle
them analogously to inputs, as the (random) values returned by these external
functions can also be contained in a test case. We call a test case τ underspecified
if it does not provide concrete values for all sources of randomness or inputs,
and thus, τ induces a set Pτ of paths. In [20], underspecified test cases repre-
senting a range bound are handled by splitting at the smallest path min(Pτ).
To accommodate for this splitting behavior, we adapt our instrumentation to
handle underspecified bounds: T generates a sequence sτ for the common pre-
fix of all paths in Pτ for an underspecified bound represented by a test case τ .
During instrumentation, if we are still on the common prefix path of P(τ), we
check whether the next branching decision is specified in sτ . If not, we abort if
it is an upper bound or deactivate all checks by setting on_lpath=0 for a lower
bound.

4 Implementation

To show that we can use off-the-shelf tools in ranged program analysis, we realize
the instrumentation described in Sect. 3. We also extend the existing implemen-
tation from [20] to support the use of range programs as exchange format instead
of ranges. For the evaluation, we employ the best-performing splitter from [20],
namely Lb3. We implemented the transformation from test cases to sequences
explained in Sect. 3.2 within the splitter to generate the correct input format
needed for the instrumentation.

Instrumentation. We implement the instrumentation as a standalone compo-
nent in Python. First, we use an AST parser3 to identify all branching points
in the program. Then, we instrument the program as defined in Sect. 3.3, using
the sequences generated for the test cases. Our implementation supports the
instrumentation of (GNU) C programs except for switch-statements.

Reduction for Generating Range Programs. Instead of instrumentation,
Haltermann et al. proposed to use residual program generation [3] for generating
a range program [20]. To compare the proposed idea with the instrumentation, we
build a standalone component called Reducer. We realized this idea by modifying
the range reduction from [20] to take a range described by two sequences as input
and used the existing residual program generator [3] to generate a range program,
containing all paths within the given range.

Verifiers. For the evaluation of our instrumentation-based ranged analysis tech-
nique, we need off-the-shelf verifiers for the analysis of the instrumented pro-
grams. As off-the-shelf verifiers, we selected the last two winners of the soft-
ware verification competition [5,6]: Symbiotic and UltimateAutomizer. Sym-
biotic [12] combines slicing [34] with a sequential portfolio of three symbolic
3 https://tree-sitter.github.io/tree-sitter/.

https://tree-sitter.github.io/tree-sitter/

154 J. Haltermann et al.

executions performed by Klee [11], Slowbeast’s [13] backward symbolic exe-
cution with loop folding, and Slowbeast’s forward symbolic execution. Ulti-
mateAutomizer (UAutomizer) [22,23] applies counterexample guided abstrac-
tion refinement to iteratively refine an overapproximation of a program’s error
paths, which is represented by an automaton. In each iteration, the approach
picks an error path from the current overapproximation. If the path is infea-
sible, UAutomizer constructs a Floyd-Hoare automaton [23] explaining the
infeasibility of that and similar paths and then removes all paths accepted by
the Floyd-Hoare automaton from the current overapproximation. The approach
stops if a feasible counterexample is found or the overapproximation becomes
empty.

Besides the two verification approaches that make use of abstraction tech-
niques, we also use two different tools employing symbolic execution: We employ
Klee [11] as a standalone tool and use the symbolic execution from CPA-
checker [8] (already used in [20]) to be able to compare the CPA-based and
the instrumentation-based ranged program analyses.

5 Evaluation

The evaluation presented in [20] shows that CPA-based analyses can benefit
from being used within ranged program analysis. With range instrumentation
and range reduction, we can now employ off-the-shelf verifiers in ranged program
analysis. We thus want to investigate whether CPAse, Klee, Symbiotic, and
UAutomizer also benefit from an application within a ranged program analysis.
To this end, we study the following three research questions:

RQ1 How does instrumentation-based ranged program analysis compare to the
CPA-based version?

RQ2 How does range instrumentation compare to range reduction?
RQ3 Do off-the-shelf analyses benefit from using instrumentation-based ranged

analyses?

5.1 Evaluation Setup

All experiments were run on machines with an Intel Xeon E3-1230 v5 @ 3.40GHz
(8 cores), 33GB of memory, and Ubuntu 22.04 LTS with Linux kernel 5.15.0.
To increase the reproducibility of our results, we employ BenchExec [9] for
the execution of our experiments. Each tool is given a task (a program plus
specification) per verification run. It either computes a proof (program fulfills
specification) or raises an alarm (program violates specification). Each run is
limited to 15GB of memory, 4 CPU cores, and 15min of CPU time, which yields
a setup comparable to the one used in SV-Comp. We used all tasks from the
SV-Benchmarks for the specification reach-safety used in the SV-Comp [15],
in total 10 229 tasks. The specification reach-safety is fulfilled by a program,
if all calls to the function reach_error are unreachable4.
4 In the benchmark, reach_error is called whenever an assert is violated, cf. Fig. 1.

Ranged Program Analysis via Instrumentation 155

Table 1. Results of CPAchecker’s symbolic execution used in CPA-based and
instrumentation-based ranged program analysis.

correct incorrect
overall proof alarm proof alarm

CPAse(CPA) 1 648 584 1 064 5 57
CPAse(Instrument) 1 612 583 1 029 5 58

5.2 RQ1: Comparison of the CPA-Based and Instrumentation-Based
Ranged Program Analysis

Evaluation Plan. To analyze the performance of the instrumentation- and the
CPA-based approach, we compare the effectiveness (number of correctly solved
tasks) and efficiency (time taken to compute an answer), of the CPA-based
ranged program analysis for symbolic execution (CPAse(CPA)) from [20] with
CPAse(Instrument). CPAse(Instrument) uses the instrumentation to generate
range programs given to CPAchecker’s symbolic execution employed as an off-
the-shelf tool. For efficiency, we are interested in the time consumed overall (wall
time), as the consumed CPU time is not that meaningful in our setting, where
several analyses run in parallel.

Effectiveness. Table 1 shows the number of correct answers given overall, also
splits it into the number of correct proofs and alarms. In addition, it provides the
number of incorrect proofs and alarms. We first observe that employing CPA-
checker’s symbolic execution as an off-the-shelf tool on a range program does
not decrease the overall effectiveness drastically. Compared to CPAse(CPA), it
computes in total only 36 fewer correct answers. There are 73 tasks correctly
solved by CPAse(CPA), for which CPAse(Instrument) exhausts the resource
limits. We also observe that there are 37 tasks, where CPAse(Instrument) can
compute the correct answer, but CPAse(CPA) runs into a timeout. Nearly all
of these tasks contain a specification violation. Intuitively, there exist some tasks
for which the instrumentation impedes the exploration of the violating path, but
also other cases where it eases their exploration.

Fig. 5. Wall time of CPAse(CPA) and
CPAse(Instrument)

Efficiency. To analyze the efficiency
of instrumentation-based ranged analysis
compared to CPA-based, we compare the
wall time taken by both to compute a cor-
rect answer, in case a range is generated.
For each of these tasks, the log-scale scat-
ter plot in Fig. 5 contains a data point that
compares the time taken by CPAse(CPA)
(x-axis) and the time taken by CPAse-
(Instrument) (y-axis). The solid, diagonal
line means that both analyses take the
same time, while the dashed lines below
and above indicate that one analysis takes twice as long as the other. The most

156 J. Haltermann et al.

Table 2. Results of CPAse, Klee, Symbiotic, and UAutomizer used in
instrumentation- and reduction-based ranged program analysis.

correct incorrect
overall proof alarm unique proof alarm

CPAse(Instrument) 1612 583 1 029 185 5 58
CPAse(Reduce) 1 515 566 949 88 5 60
Klee(Instrument) 2968 1 293 1 675 192 77 2
Klee(Reduce) 2 783 1 283 1 500 7 77 3
Symbiotic(Instrument) 3881 2 185 1 696 235 95 1
Symbiotic(Reduce) 3 765 2 217 1 548 119 80 5
UAutomizer(Instrument) 3964 2 925 1 039 562 22 0
UAutomizer(Reduce) 3 483 2 557 926 81 20 1

important observation is that CPAse(Instrument) has a comparable overall exe-
cution time to the CPA-based approach for the vast majority of all tasks.

Having a closer look, we realize that for complex tasks, where CPAse(CPA)
takes more than 100 s, CPAse(Instrument) is slightly faster, as it takes in the
median only the 0.92-times of the runtime. The runtime decrease is based on
the fact that we do not need to run the range reduction analysis in parallel
when using the instrumentation for generating a range program. The additional
overhead caused by generating the ranged programs is negligible, as the instru-
mentation takes in most cases less than a second.

Based on the experimental results, we conclude that using instrumentation-
based ranged program analysis instead of the CPA-based approach causes
only a little overhead.

5.3 RQ2: Comparing Range Instrumentation and Range Reduction

Evaluation Plan. To analyze the performance of both approaches for generat-
ing range programs, we compare the effectiveness and efficiency of range instru-
mentation and range reduction of CPAchecker’s symbolic execution, Klee,
Symbiotic, and UAutomizer in combination as ranged program analyses.

Effectiveness. Table 2 contains the computed answers of the four tools, once
using the instrumentation and once the reduction to generate the reduced pro-
gram. We report the number of overall correct answers, of correct proofs and
alarms, and additionally the number of tasks solved uniquely by using range
instrumentation or range reduction. It also contains the number of incorrect
proofs and alarms. First and foremost, we observe that using instrumentation
to generate the range program increases the number of overall correctly solved
tasks for all four tools. The increase ranges from 6.4% for CPAse to 13.8%

Ranged Program Analysis via Instrumentation 157

(a) CPAse (b) Klee

(c) Symbiotic (d) UAutomizer

Fig. 6. Scatter Plots comparing the wall time of instrumentation- and reduction-based
ranged analysis

for UAutomizer. The number of incorrect answers does not change for Klee
and CPAse, but decreases when using Symbiotic(Reduce) or UAutomizer-
(Reduce). For Symbiotic(Reduce) and most cases of UAutomizer(Reduce),
the decrease lies in the fact that the tools do not compute an answer.

We observe the largest difference in the effectiveness of reduction and instru-
mentation for UAutomizer. The majority of tasks solvable by UAutomizer-
(Instrument) but not by UAutomizer(Reduce) belong to the category called
eca (383/562). Due to the task’s artificial structure in that category, the size
of the range program generated using the reducer increases by several orders
of magnitude. The version of UAutomizer employed in the experiments fails
to process those large range programs and does not compute a result. Here, we
observe one major advantage of instrumentation compared to reduction: The
size of the range program generated is bounded by a constant factor and does
not depend on the range.

Efficiency. To compare the efficiency of instrumentation- and reduction-based
ranged analyses, we depict in Fig. 6 the scatter plots comparing the overall
time taken to compute the solution for the four tools. For CPAse, Symbiotic,
and Klee, we notice that versions using instrumentation are faster than the

158 J. Haltermann et al.

reduction-based ones, more precisely, the reduction-based analysis takes in the
median 1.2-times as long for CPAse, 1.4-times for Symbiotic and 1.3-times for
Klee. For UAutomizer, the reduction-based instance is slightly faster than
the instrumentation-based instance, in the median it takes 0.94-times the wall
time of it.

Range programs generated using instrumentation are generally easier and
faster to solve for ranged analyses than those generated using reduction.

5.4 RQ3: Comparison of Instrumentation-Based Ranged Analysis
with Standalone Execution

Evaluation Plan. To investigate, if the standalone analyses benefit from being
used within ranged program analysis, we compare the performance of each of
the four tools with the instrumentation-based ranged program analysis. For the
performance, we again focus on effectiveness and efficiency.

Table 3. Results of standalone execution and instrumentation-based ranged program
analysis for CPAse, Klee, Symbiotic and UAutomizer.

correct incorrect
overall proof alarm unique proof alarm

CPAse 1 597 585 1 012 – 5 27
CPAse(Instrument) 1 612 583 1 029 86 5 58
Klee 2 982 1 294 1 688 – 77 3
Klee(Instrument) 2 968 1 293 1 675 7 77 2
Symbiotic 3 917 2 232 1 685 – 77 1
Symbiotic(Instrument) 3 881 2 185 1 696 79 95 1
UAutomizer 4 240 3 096 1 144 – 23 0
UAutomizer(Instrument) 3 964 2 925 1 039 24 22 0

Effectiveness. In Table 3, we summarize the results for the standalone analyses
and the ranged program analyses using instrumentation. Again, we report correct
and incorrect proofs and alarms. In addition, Table 3 contains for each of the
ranged analyses the number of uniquely solved tasks, i.e. the number of tasks
only solved by the ranged analysis and not by the standalone analysis.

Taking a look at CPAse, we observe that it benefits from being used as
a ranged analysis, as the number of overall solved tasks increases by 15 tasks.
Moreover, CPAse(Instrument) can solve 86 tasks that are not solved by CPAse
standalone. The incorrect alarms additionally raised by CPAse(Instrument) are
most likely not caused by an error in the instrumentation, as we can also observe

Ranged Program Analysis via Instrumentation 159

(a) CPAse (b) Klee

(c) Symbiotic (d) UAutomizer

Fig. 7. Scatter Plots comparing the wall time of instrumentation-based ranged analysis
and the standalone analysis for different tools

additionally raised incorrect alarms for the same tasks for the CPA-based and
reduction-based ranged analysis (c.f. Table 1 and Table 2).

For Klee, the second symbolic execution, we observe a comparable effective-
ness. The tasks that are only solved by Klee standalone could not be solved by
Klee(Instrument) within the given resource limits. If we double these limits, all
of them could be solved. There are 7 tasks uniquely solved by Klee(Instrument).
In all cases, Klee(Instrument) detects the property violation within the given
resource limits, as using a ranged program analysis allows it to search in different
parts of the program in parallel.

Symbiotic and UAutomizer, the two techniques that aim for finding
abstractions, perform not as well as the tools employing symbolic execution.
In total, they compute 36 resp. 276 fewer correct answers. Again, we observe
that the instrumentation-based ranged program analysis can compute 79 correct
proofs and alarms for Symbiotic and 24 for UAutomizer that are not reported
by the tools standalone. We thus confirm the findings from the previous work.

Efficiency. In Fig. 7, we compare the wall time of the four tools running stan-
dalone on the x-axis to the ranged analyses using instrumentation on the y-axis.
The overhead of generating the sequences and the range program, completed

160 J. Haltermann et al.

within a few seconds, has a huge effect on tasks that are solved by the stan-
dalone analysis in less than ten seconds. Hence, the ranged analyses need in the
median between 2.3-times (for UAutomizer) and 3.0-times (for Symbiotic)
as long as the standalone analysis. For more complex tasks, the advantages of
sharing the work between two instances running in parallel are observable, as
all four instances of the ranged analysis can solve tasks faster than the stan-
dalone analysis. Unfortunately, encoding the ranges directly into the program
using instrumentation and thereby introducing new variables that need to be
tracked, shows that the instrumentation-based ranged program analysis is as
fast as Symbiotic for complex tasks taking more than 100 s to solve and slightly
slower (1.1-times increase) for Klee and CPAse.

The evaluation confirms the findings from [20]: All analyses can benefit from
being used within ranged program analysis, as each solves tasks not solved
by the respective standalone analysis. Again, analyses employing symbolic
execution benefit the most. The overhead of ranged analysis reduces for more
complex tasks.

5.5 Threats to Validity

We have conducted the experiments on the SV-Benchmarks, the largest avail-
able dataset for C program verification. Although it is widely used, especially in
the SV-Comp, our findings may not completely carry over to other real-world C
programs. Currently, the instrumentation does not cover concurrent programs.
Moreover, we do not support external functions, as the source code is needed for
instrumentation.

It is unlikely that the implementation suffers from bugs, as the findings
from [20] carry over to our evaluation. The additional incorrect answers for
CPAse(Instrument) are also observable for CPAse(CPA), and we randomly
selected and analyzed tasks where Symbiotic(Instrument) computes additional
incorrect proofs manually, validated that the range program contains a property
violation, and cross-verified them using UAutomizer and Klee.

The fact that the performance of CPAse(CPA) and CPAse(Instrument)
are comparable may be caused by using different formats for defining ranges. To
account for this, we also have analyzed if there is a performance difference caused
by the use of different formats. As the instrumentation requires a sequence as
input, we updated CPAse(CPA) to also be able to process sequences as input
and compared it with CPAse(CPA), observing no significant difference (cf. [21]).

The data collected may deviate in a reproduction study due to a different
experimental setup or environment. To account for small, expected measurement
errors, we restrict the presentation of our data to two significant digits.

Ranged Program Analysis via Instrumentation 161

6 Related Work

While there are several strategies for combining different verification approaches,
we focus on combinations that like us divide the search space and let different
verification approaches check different parts of the search space. Combinations
like CoDiDroid [27], distributed assertion checking [35], or the compositional
tester sketched in conditional testing [4] statically decompose the verification
task into separate subtasks, which can be executed in parallel. Furthermore,
several sequential or interleaved cooperation approaches restrict the subsequent
verifiers to the yet uncovered search space, e.g., not yet covered test goals [4],
open proof obligations [24], or yet unexplored program paths [1–3,14,16,17,19].
Like us, several of those approaches [3,4,14,16,19] encode the restriction within
the program. Instead of forwarding the not yet explored state space, some tech-
niques split the program paths in advance and then run different instances of
the same analysis in parallel on different parts of the state space. For example,
conditional static analysis [29] considers program branches to realize the split
of program paths while concurrent bounded model checking techniques [25,26]
rely on thread interleavings, but only Nguyen et al. [26] encode the split result
as programs. In contrast, Yin et al. [37] dynamically split the input space if
the abstract interpreter returns an inconclusive result and parallelly analyzes
the different input partitions with the abstract interpreter. Meanwhile, parallel
symbolic execution approaches [28,30,32,33,36] and ranged model checking [18]
split execution paths. Often, they partition the execution tree, thereby relying
on input constraints [32], path prefixes [31], or ranges [18,28,30,36] to describe
the partitions. In contrast, GenSym [33] divides the execution tree into linear
path segments, i.e., it splits at every branching point. The partitions them-
selves are generated dynamically based on the already explored symbolic exe-
cution tree [10,28,30,33,38] or statically from an initial shallow symbolic exe-
cution [31,32] or tests [28,30,36]. While most symbolic execution approaches
symbolically interpret the program, GenSym [33] compiles the symbolic execu-
tion of a program P into a new program. Recently, Haltermann et al. [20] took
on the idea to split program paths into ranges and analyzing those ranges in
parallel. Instead of only supporting symbolic execution, their approach supports
arbitrary configurable program analyses during the parallel analysis. To restrict
a configurable analysis to the paths in a range, they suggest combining that
configurable program analysis with a range reduction component. In this paper,
we propose an even more general solution that can be applied to arbitrary off-
the-shelf analysis tools. To this end, we encode the restriction to ranges into the
program code, the language understood by analysis tools.

7 Conclusion

Ranged program analysis is a technique for analyzing different program parts
(so-called ranges) with different verifiers or verifier instances in parallel. The
original, CPA-based approach is limited to verifiers specified in the framework

162 J. Haltermann et al.

of configurable program analysis [7]. This paper lifts ranged program analysis
to support arbitrary verifiers. Instead of restricting a verifier to its range dur-
ing its execution, we instrument the restriction into the program code before
running the verifier. Our evaluation demonstrates that instrumentation indeed
allows us to plug existing verifiers into ranged program analysis. Furthermore, it
shows that ranged program analysis with instrumentation performs comparably
to the CPA-based approach and that the findings for CPA-based ranged program
analysis also apply to ranged program analysis with instrumentation. In addi-
tion, it reveals that ranged program analysis with instrumentation is superior to
reducer-based ranged program analysis, which Haltermann et al. [20] mention
for lifting ranged program analysis to arbitrary verifiers.

Data Availability Statement. All experimental data and our open-source imple-
mentation are archived and available in our supplementary artifact [21].

References

1. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Proceedings of
FSE. ACM (2012)

2. Beyer, D., Jakobs, M.-C.: CoVeriTest: cooperative verifier-based testing. In:
Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 389–408.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_23

3. Beyer, D., Jakobs, M.-C., Lemberger, T., Wehrheim, H.: Reducer-based construc-
tion of conditional verifiers. In: Proceedings of ICSE, pp. 1182–1193. ACM (2018)

4. Beyer, D., Lemberger, T.: Conditional testing. In: Chen, Y.-F., Cheng, C.-H.,
Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 189–208. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31784-3_11

5. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Fisman, D., Rosu,
G. (eds.) TACAS 2022. LNCS, vol. 13244, pp. 375–402. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99527-0_20

6. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol.
13994, pp. 495–522. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30820-8_29

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3_51

8. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

9. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. STTT 21(1), 1–29 (2019)

10. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: Proceedings of EuroSys, pp. 183–198.
ACM (2011)

https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16

Ranged Program Analysis via Instrumentation 163

11. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of OSDI, pp.
209–224. USENIX Association (2008)

12. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Symbiotic
9: string analysis and backward symbolic execution with loop folding. In: Fisman,
D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13244, pp. 462–467. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99527-0_32

13. Chalupa, M., Strejček, J.: Backward symbolic execution with loop folding. In:
Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS, vol. 12913, pp.
49–76. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88806-0_3

14. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9_13

15. SV-Benchmarks Community: SV-Benchmarks (2023). https://gitlab.com/sosy-
lab/benchmarking/sv-benchmarks/-/tree/svcomp23

16. Czech, M., Jakobs, M.-C., Wehrheim, H.: Just test what you cannot verify! In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 100–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9_7

17. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Job-
stmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 328–347.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_16

18. Funes, D., Siddiqui, J.H., Khurshid, S.: Ranged model checking. ACM SIGSOFT
Softw. Eng. Notes 37(6), 1–5 (2012)

19. Gerrard, M.J., Dwyer, M.B.: ALPACA: a large portfolio-based alternating condi-
tional analysis. In: Proceedings of ICSE, pp. 35–38. IEEE/ACM (2019)

20. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Parallel program analysis
via range splitting. In: Lambers, L., Uchitel, S. (eds.) FASE 2023. LNCS, vol.
13991, pp. 195–219. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30826-0_11

21. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Replication package for
article ‘Ranged Program Analysis via Instrumentation’, June 2023. https://doi.
org/10.5281/zenodo.8065229

22. Heizmann, M., et al.: Ultimate automizer and the CommuHash normal form - (com-
petition contribution). In: Sankaranarayanan, S., Sharygina, N. (eds.) Proceedings
of TACAS. LNCS, vol. 13994, pp. 577–581. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30820-8_39

23. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_2

24. Huster, S., Ströbele, J., Ruf, J., Kropf, T., Rosenstiel, W.: Using robustness testing
to handle incomplete verification results when combining verification and testing
techniques. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017.
LNCS, vol. 10533, pp. 54–70. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67549-7_4

25. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: Proceedings of PPoPP, pp. 202–216. ACM (2020)

26. Nguyen, T.L., Schrammel, P., Fischer, B., La Torre, S., Parlato, G.: Parallel bug-
finding in concurrent programs via reduced interleaving instances. In: Proceedings
of ASE, pp. 753–764. IEEE (2017)

https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-32759-9_13
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.5281/zenodo.8065229
https://doi.org/10.5281/zenodo.8065229
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-67549-7_4
https://doi.org/10.1007/978-3-319-67549-7_4

164 J. Haltermann et al.

27. Pauck, F., Wehrheim, H.: Together strong: cooperative android app analysis. In:
Proceedings of ESEC/FSE, pp. 374–384. ACM (2019)

28. Qiu, R., Khurshid, S., Păsăreanu, C.S., Wen, J., Yang, G.: Using test ranges to
improve symbolic execution. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM
2018. LNCS, vol. 10811, pp. 416–434. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77935-5_28

29. Sherman, E., Dwyer, M.B.: Structurally defined conditional data-flow static analy-
sis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 249–265.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_15

30. Siddiqui, J.H., Khurshid, S.: Scaling symbolic execution using ranged analysis. In:
Proceedings of SPLASH, pp. 523–536. ACM (2012)

31. Singh, S., Khurshid, S.: Parallel chopped symbolic execution. In: Lin, S.-W., Hou,
Z., Mahony, B. (eds.) ICFEM 2020. LNCS, vol. 12531, pp. 107–125. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63406-3_7

32. Staats, M., Pasareanu, S.S.: Parallel symbolic execution for structural test gener-
ation. In: Proceedings of ISSTA, pp. 183–194. ACM (2010)

33. Wei, G., et al.: Compiling parallel symbolic execution with continuations. In: ICSE,
pp. 1316–1328. IEEE (2023)

34. Weiser, M.D.: Program slicing. IEEE TSE 10(4), 352–357 (1984)
35. Yang, G., Do, Q.C.D., Wen, J.: Distributed assertion checking using symbolic exe-

cution. ACM SIGSOFT Softw. Eng. Notes 40(6), 1–5 (2015)
36. Yang, G., Qiu, R., Khurshid, S., Pasareanu, C.S., Wen, J.: A synergistic approach

to improving symbolic execution using test ranges. Innov. Syst. Softw. Eng. 15(3-
4), 325–342 (2019)

37. Yin, B., Chen, L., Liu, J., Wang, J., Cousot, P.: Verifying numerical programs via
iterative abstract testing. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp.
247–267. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_13

38. Zhou, L., Gan, S., Qin, X., Han, W.: SECloud: binary analyzing using symbolic
execution in the cloud. In: Proceedings of CBD, pp. 58–63. IEEE (2013)

https://doi.org/10.1007/978-3-319-77935-5_28
https://doi.org/10.1007/978-3-319-77935-5_28
https://doi.org/10.1007/978-3-319-89963-3_15
https://doi.org/10.1007/978-3-030-63406-3_7
https://doi.org/10.1007/978-3-030-32304-2_13

Attack Time Analysis in Dynamic Attack
Trees via Integer Linear Programming

Milan Lopuhaä-Zwakenberg1(B) and Mariëlle Stoelinga1,2

1 University of Twente, Enschede, the Netherlands
{m.a.lopuhaa,m.i.a.stoelinga}@utwente.nl

2 Radboud University, Nijmegen, the Netherlands

Abstract. Attack trees (ATs) are an important tool in security analy-
sis, and an important part of AT analysis is computing metrics. However,
metric computation is NP-complete in general. In this paper, we showcase
the use of mixed integer linear programming (MILP) as a tool for quan-
titative analysis. Specifically, we use MILP to solve the open problem of
calculating the min time metric of dynamic ATs, i.e., the minimal time to
attack a system. We also present two other tools to further improve our
MILP method: First, we show how the computation can be sped up by
identifying the modules of an AT, i.e. subtrees connected to the rest of the
AT via only one node. Second, we define a general semantics for dynamic
ATs that significantly relaxes the restrictions on attack trees compared to
earlier work, allowing us to apply our methods to a wide variety of ATs.
Experiments on a synthetic testing set of large ATs verify that both the
integer linear programming approach and modular analysis considerably
decrease the computation time of attack time analysis.

Keywords: Attack trees · Quantitative analysis · Optimization ·
Mixed integer linear programming

1 Introduction

↓

OR AND

SAND BAS

(Dynamic) Attack Trees. Attack trees (ATs) are a promi-
nent methodology in security analysis. They facilitate secu-
rity specialists in identifying, documenting, analyzing and
prioritizing (cyber) risks. An AT is a hierarchical diagram
that describes a system’s vulnerabilities to an adversary’s
attacks. Despite their name, ATs are rooted directed acyclic
graphs. Roots of ATs represent the adversary’s goal, while the
leaves represent basic attack steps (BAS) undertaken by the adversary. Each inter-
nal root is labeled with a gate, determining how its activation depends on that of
its children. Standard ATs (SATs) feature only OR and AND gates, but many exten-
sions have been introduced to describe more elaborate attack scenarios [16]. One

This research has been partially funded by ERC Consolidator grant 864075 CAESAR
and the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk�lodowska-Curie grant agreement No. 101008233.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 165–183, 2023.
https://doi.org/10.1007/978-3-031-47115-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_10&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_10

166 M. Lopuhaä-Zwakenberg and M. Stoelinga

of the most prominent extensions are dynamic ATs (DATs) [14]. DATs introduce
a SAND (sequential AND) gate, which is activated only when its children are acti-
vated sequentially in the correct order. By contrast, an AND-node’s children can
be activated in parallel. An example is given in Fig. 1.

Fig. 1. A DAT for a bank rob-
bery [4]. To rob a bank, attack-
ers must break in, open the safe,
and escape (in that order). The
safe is opened by cutting it open,
or by unlocking via obtaining the
key and combination.

Quantitative Analysis. Quantitative analy-
sis aims at computing AT metrics. Such met-
rics formalize how well a system performs in
terms of security, and are essential when com-
paring alternatives or making trade-offs. Many
such metrics exist, such as the minimal cost,
minimal required skill, or maximal damage
of a successful attack. This paper focuses on
min time: the minimal time the adversary
needs to perform a successful attack, given
the duration of each BAS. This is impor-
tant, since attack success crucially depends on
time: attacks that take too long are not viable.
Insight in timing behaviors of attacks is there-
fore a key to devising effective countermea-
sures. For instance, a security operations centre
is interested in the time difference between the
fastest viable attack and its average response
time [1]. Min time is especially relevant in
the context of DATs: On many metrics, such
as cost/probability/skill, SAND and AND gates
behave identically. Thus, to compute those metrics, algorithms for SATs immedi-
ately generalize to DATs. It is in the timing behavior that the difference between
SAND and AND manifests itself, so that novel computation algorithms are needed.

↓ ↓

32 4

Existing Algorithms for min time. The naive approach
to calculating min time is to list all attacks that reach the
root, and to find the one that takes the least time; clearly
this is computationally prohibitive for larger ATs. A tree-
shaped DAT can be computed via a bottom-up (BU) algo-
rithm [14,23]. This algorithm works for general attributes
(e.g. cost, probability, time), by using appropriate operators
at each gate. For DAG-shaped ATs, the BU algorithm does not always work,
because the values in different branches are no longer independent. For SATs
this is not a problem because the relevant operators are idempotent [17]. In
the DAT above, however, the BU algorithm of [14] calculates min time as
max(2 + 3, 3 + 4) = 7. However, the only successful attack is the one that acti-
vates the three BAS sequentially, and so min time equals 2 + 3 + 4 = 9. Thus to
find min time for DAG-shaped DATs new approaches are needed; in [5], efficient
computation for DAG-shaped DATs is left as an open problem.

Attack Time Analysis in Dynamic Attack Trees 167

Integer Linear Programming. In this paper, we present a novel method to
calculate min time for general DATs based on MILP. We translate calculating
min time into a real-valued optimization problem, with a set of nonlinear con-
straints. We rewrite these into linear constraints by introducing auxiliary integer
variables at each gate; for SAND-gates this is nontrivial and requires a careful
analysis of the semantics, beyond the current literature (see below). Since dedi-
cated solvers exist for MILP, translating attack time analysis into MILP speeds
up computation time considerably.

Modular Analysis. To improve performance, we combine MILP with modular
analysis [9]: we identify modules in a DAT, i.e., subDATs whose only connections
to the rest of the DAT go via their root. We prove that min time can be computed
by analyzing the modules separately; this requires a detailed comparison of the
attacks on the larger DAT to the attacks on its modules. If a module is tree-
shaped or static, then we can deploy the bottom-up algorithm to further decrease
computation time. We integrate these modifications into our MILP algorithm.

Generalized Semantics. Another point we settle in this paper are general-
ized semantics for DATs. As SAND-gates require their children to be executed
consecutively, different branches in the DAT may impose conflicting restrictions
on the execution orders. To rule out these conflicts, [5] imposed well-formedness
criteria at the cost of ruling out some satisfiable DATs. Furthermore, the corre-
sponding attack definition was overly restrictive, with some fastest attacks not
being recognized. This leads to an overestimation of min time. In this work we
extend the definition of a (successful) attack so min time is correctly defined.
This new definition applies to all DATs, not just the well-formed ones.

Experimental Validation. For confidentiality reasons industrial DATs are
typically not disclosed to the general public [7,26]. Therefore, we create a test-
ing suite of 2400 synthetic DATs, obtained by combining smaller DATs from
the literature via standard DAT composition methods, and we compare the per-
formance of four methods (modular versus nonmodular and enumerative versus
MILP). The experiments show that on larger DATs MILP outperforms enumer-
ative, and modular outperforms nonmodular. The code for the experiments, the
generated DATs and the experimental results are available in [22], and a version
with proofs is available at [21].

Contributions. Summarized our main contributions are:

1. A generalization of the poset semantics of [5] that significantly relaxes the
syntactic constraints on the use of SAND-gates.

2. A novel algorithm to calculate min time for general DATs based on Mixed
Integer Linear Programming.

3. A modularization approach that yields significant speed ups by separately
handling fragments of the DAT that are static or tree-shaped.

4. Extensive experimental validation to evaluate the performance of the algo-
rithms.

168 M. Lopuhaä-Zwakenberg and M. Stoelinga

2 Related Work

Dynamic ATs were first formally defined in [14], with series-parallel graphs
semantics. These assume that each node must be activated separately for each of
its parents. Effectively, this makes any DAT tree-shaped, which limits the range
of scenarios that can be modeled.

Poset-semantics for DATs are used in [5]; here each node can be activated
only once, allowing more scenarios to be modeled. The calculation of time-related
metrics such as min time on DAG-shaped DATs is left as an open problem.

In [2,3,18,19,31] DATs are modeled as priced-timed automata. This allows
for a detailed analysis, including min time calculation, by activating nodes from
the root either in parallel or sequentially, depending on gate type. However,
this approach does not consider satisfiability; hence the min time found via
this method can correspond to a non-existing attack. As such, this method only
calculates a lower bound to the actual min time.

Cyber security risks are also analyzed via time-to-compromise [24]. This
assigns an (exponential) probability distribution to the failure time of each
component, from which one finds the system failure pdf. This approach can
be extended to consider different attack scenarios [28]. The current paper’s DAT
approach allows for a more systematic way of studying different attack scenarios,
but we do not consider probabilistic data. Another way to incorporate stochas-
tics is to consider Bayesian fault trees [12,25], in which a node’s activation
depends probabilistically on that of its children. This allows for more detailed
modelling, but analysis is considerably more complicated: instead of a single min
time metric, there is a Pareto front of attack time and attack success probability.
Incorporating probability in these manners would be interesting for future work.

Time analysis of DATs falls into the wider framework of quantitative anal-
ysis on ATs. Existing approaches either focus on a single metric [4,6,7] or they
develop methods that apply to general classes of metrics [5,17,23]. The latter
case typically use algebraic structures like semirings, defining the metric in terms
of operators which are assumed to have certain properties.

3 Dynamic Attack Trees

This section reviews the definition of DATs, and develops their semantics and the
min time metric. The notation introduced throughout the paper is summarized
in Table 1. The following definition of a DAT is from [5].

Definition 1. A dynamic attack tree (DAT) is a rooted directed acyclic graph
T = (N,E) where each node v ∈ N has a type γ(v) ∈ {BAS, OR, AND, SAND} such
that γ(v) = BAS if and only if v is a leaf, and every node v with γ(v) = SAND has
an ordering of its set of children.

Note that a DAT is not necessarily a tree. If it is, we call it tree-shaped. The
root is denoted RT . For γ ∈ {BAS, OR, AND, SAND}, we write Nγ for the set of
nodes v with γ(v) = γ. The (po)set of children of v is denoted ch(v). If γ(v) =
SAND and v has (ordered) children v1, . . . , vn, we write v = SAND(v1, . . . , vn) for

Attack Time Analysis in Dynamic Attack Trees 169

Table 1. Notation used in this paper.

Notation Meaning Section Notation Meaning Section

T = (N, E) Dynamic attack tree Sect. 3 mt(T, d), mt(T) min time of DAT T Sect. 3.2

γ(v) Type of v Sect. 3 FT Time assignments of T Sect. 4

RT Root of T Sect. 3 M min time upper bound Sect. 4

NBAS {v ∈ N | γ(v) = BAS} Sect. 3 Zv
i Consecutive BAS pairs Sect. 4

Tv subDAT with root v Sect. 3 xv
i , yv, zv

i,a,a′ Auxiliary MILP variables Sect. 4

Bv Set of BAS of Tv Sect. 3 nv Number of children of v Sect. 4

(AT , ≤) Poset of attacks on T Sect. 3.1 Tv Sub-DAT with root v Sect. 5

ST Successful attacks Sect. 3.1 ṽ BAS replacement for Tv Sect. 5

t(O, d), t(O) Time of attack O Sect. 3.2 Tv T with Tv replaced by ṽ Sect. 5

convenience. We do the same for OR and AND, where the ordering of the children
does not matter. We write Tv for the subDAG consisting of all descendants of v,
i.e. all v′ for which there is a path from v to v′, including v itself. Furthermore,
we let Bv be the set of descendants of v in NBAS. DATs can be represented
graphically as in Fig. 1.

A dynamic attack tree codifies the ways an attacker can make a system fail
by executing the basic attack steps, i.e., the nodes in NBAS. A non-BAS node is
reached depending on its children, where OR and AND have the expected meaning,
and a SAND-node is reached if all children are reached in their given order. The
adversary’s goal is to reach RT . These semantics are defined in Sect. 3.1.

In the literature, two interpretations of nodes with multiple parent nodes
exist, affecting both semantics and metrics. In the first interpretation, multi-
ple activation (MA), [14,23,32] each BAS can be activated multiple times, and
every parent of a node requires its own activation of that node. Thus SAND(a, a)
succeeds only if a is activated twice consecutively. By adding a copy of each node
for each of its parents, any DAT can be transformed into a tree-shaped one with
equivalent semantics and metrics. As a result, metrics can be calculated quickly
via a bottom-up algorithm [10], but MA cannot adequately model systems in
which one action has multiple independent consequences.

In single activation (SA) [5,15] each BAS is executed at most once, and a
node only needs to be activated once to count as an input for all its parents. In
SA SAND(a, a) cannot be satisfied, because a cannot be activated before itself. SA
is able to describe a much wider range of systems; although every SA represen-
tation can be turned into an equivalent MA representation, this process is both
computationally expensive as it is done by writing the corresponding boolean
function in disjunctive normal form. This rewriting also loses the meaning of the
intermediate nodes in the DAT, which typically represent intermediate attacker
goals. We therefore choose to analyze DATs under the SA interpretation; since
every DAT is equivalent to a tree-shaped one under MA and MA and SA coincide
on trees, SA can model every scenario that MA can.

3.1 Semantics

We discuss DAT semantics, extending [5]. An attack consists of a set A of
attacker-activated BAS, and a strict partial order ≺, where a ≺ a′ means a
is executed before a′.

170 M. Lopuhaä-Zwakenberg and M. Stoelinga

Definition 2. The set AT of attacks on T is the set of strictly partially ordered
sets O = (A,≺), where A ⊆ NBAS. This set has a partial order ≤ given by O ≤ O′,
for O = (A,≺) and O′ = (A′,≺′), if and only if A ⊆ A′ and ≺ ⊆ ≺′.

We are interested in successful attacks, i.e., attacks that manage to reach the
root. Successful attacks, and the semantics of T , are defined as follows:

Definition 3. Let v be a node. We say that an attack O = (A,≺) reaches v if:

1. v ∈ NBAS and v ∈ A;
2. v = OR(v1, . . . , vn) and O reaches at least one of the vi;
3. v = AND(v1, . . . , vn) and O reaches all of the vi;
4. v = SAND(v1, . . . , vn) and O reaches all of the vi, and for all a ∈ A ∩ Bvi

,
a′ ∈ A ∩ Bvi+1 one has a ≺ a′.

A is successful if it reaches RT . The semantics of T is the set ST of successful
attacks on T .

↓

ba c

A SAND-gate v = SAND(v1, . . . , vn) is only reached if all
of the BAS of vi have been (successfully) executed before
any of the BAS of vi+1 has started. By contrast, an AND-gate
allows its children to be executed in parallel. Contrary to the
static case (without SAND-gates), it is possible that ST = ∅.
For example, SSAND(a,a) = ∅. Also, being successful is not
monotonous on the set of attacks, i.e., it is possible that O
is successful while O′ is not, even if O ≤ O′. For instance, in the DAT above
({a, c}, {(a, c)}) is a successful attack, but ({a, b, c}, {(a, c)}) is not. Note that
unlike the situation for SATs, a gate’s activation does not simply depend on the
activation of its children, but also on the relative order on the BAS associated
to these children; this encodes the timing information essential to DATs.

a b

↓

Definition 3 is not the only way one might define the semantics
of DATs. In fact, our semantics are based on those of [5], but
differ on certain DATs; see Sect. 3.3. We have chosen to interpret
the SAND-gate in a strict matter, so that it is activated only if
the entirety of the attack on vi has finished before the attack on
vi+1 is started; in particular, vi and vi+1 cannot share activated
BAS, which may be considered unwanted behaviour. There are
also other approaches, which unfortunately have other problems.
For instance, one could define succesful attacks bottom-up in a compositional
fashion, defining O to reach SAND(v1, v2) if there exists attacks O1,O2 such that
O is the parallel composition of O1 and O2. However, under such a definition the
AT above ({a, b}, {(a, b)}) is a succesful attack, whereas in our opinion this AT
should not be considered satisfiable. Yet another approach would be to assign a
starting and finishing time to each node, similar to what we do in Definition 5,
but this has the disadvantage of being more convoluted as an attack is now a
function N → R.

Attack Time Analysis in Dynamic Attack Trees 171

3.2 The Min Time Metric

Min time is the minimal time it takes to perform a successful attack on a given
DAT. While other metrics exist for DATs, min time is a fundamental time metric,
and calculating it efficiently for non-tree-shaped DATs is an open problem [5].

Min time is defined as follows: There is a duration function d : NBAS → R≥0,
with d(a) denoting the time it takes to execute a. If a ≺ a′, then the BAS a′

can only be started once a has been completed, while a and a′ can be activated
in parallel if such a relation does not exist. As such, we can define the total
duration of an attack t(O, d) and min time mt(T, d) as

t(O, d) = max
C max. chain

in O

∑

a∈C

d(a), mt(T, d) = min
O∈ST

t(O, d)

where the maximum is taken over the maximal chains (i.e., maximal linearly
ordered subsets) of the strict poset O. We will often omit d from the notation
and write t(O) if there is no confusion. Note that t is monotonous: if O ≤ O′

one has t(O) ≤ t(O′). Furthermore, mt(T) = ∞ if ST = ∅.

Example 1. Figure 2 depicts the bank robbery DAT of Fig. 1 augmented with
durations for the BAS (we take the expected durations from the distributions
given in [4]). To calculate mt(T) one would first need to find ST . While this
set is quite large, because of the monotonicity of t, the minimum is attained
at one of the minimal elements of the poset (ST ,≤). There are two minimal
attacks, depending on whether the attackers choose to cut open the safe, or
unlock it. Abbreviating BAS names, we can represent these minimal attacks
as sets of chains as O1 = {bi ≺ cos ≺ e} and O2 = {bi ≺ fk ≺ e, bi ≺
gc ≺ e}. These have duration t(O1) = 1.00 + 0.67 + 0.20 = 1.87 and t(O2) =
max(1.00 + 0.50 + 0.20, 1.00 + 1.00 + 0.20) = max(1.70, 2.20) = 2.20. It follows
that mt(T) = min(1.87, 2.20) = 1.87.

Fig. 2. The bank robbery DAT of
Fig. 1 augmented with durations.

In the multiple activation scenario, min
time can be calculated by reshaping a DAT
into its canonical form [14], from which min
time is easily calculated. However, this tech-
nique does not carry over to our formalism,
as in the single activation scenario a canonical
form does not exist.

3.3 Relation to Semantics of [5]

In [5] attacks are called attacks only if they
satisfy the ordering constraints imposed by all
SAND-gates. This is defined only for well-formed
DATs, i.e., all these constraints are simultane-
ously satisfiable. More formally, that work only
considers attacks that we call full in the follow-
ing definition.

172 M. Lopuhaä-Zwakenberg and M. Stoelinga

Definition 4. Let T be a DAT. Define a relation 	′ on NBAS by a 	′ a′ iff
there exists a node v = SAND(v1, . . . , vn) and an i < n such that a ∈ Bvi

and
a′ ∈ Bvi+1 . Let 	 be the transitive closure of 	′. Then T is well-formed if 	 is a
strict partial order. An attack (A,≺) on a well-formed DAT is full if ≺ = 	|A,
the restriction of 	 to A.

↓

a b

However, not all attacks will be full, because an attack may
not need to reach all SAND-nodes in order to reach the root, and
non-reached nodes should not put restrictions on attacks. Con-
sider the well-formed DAT on the right. Only ({a, b}, {(a, b)}) is
a full successful attack. However, ({a, b}, ∅) is a successful attack
as well. Hence non-full attacks are needed to fully describe the
semantics of well-formed DATs, which motivates Definition 2.
Furthermore, our definition defines the semantics of general DATs, not just the
well-formed ones.

4 An MILP Approach to Min Time

This section describes a novel method to compute mt(T) based on mixed-integer
linear programming (MILP). Although MILP is NP-complete, a number of good
heuristics and solvers exist specifically for MILP, which can result in a low com-
putation time. We first show that min time can be found by solving an opti-
mization problem in Theorem 1, and then we describe how that optimization
problem can be rewritten into the MILP framework.

The building block of the new approach is the notion of time assignment,
which assigns to each node a completion time fv that respects all timing con-
straints in the DAT. If fv = ∞ then v is not reached at all. The formal definition
is stated below; recall that Bv is the set of BAS-descendants of v, and N the set
of nodes in the attack tree.

Definition 5. Let T be a DAT. For a node v with children v1, . . . , vn and i < n,
define Zv

i := Bvi
× Bvi+1 . A time assignment is a vector f ∈ [0,∞]N satisfying:

1. For each a ∈ NBAS one has fa ≥ d(a);
2. For each v = OR(v1, . . . , vn) one has fv ≥ mini fvi

;
3. For each v = AND(v1, . . . , vn) one has fv ≥ maxi fvi

;
4. For each v = SAND(v1, . . . , vn), the following must hold:

(a) it holds that fv ≥ fvn
;

(b) If there is a i ≤ n such that fvi
= ∞, then fv = ∞;

(c) If there exist i < n and (a, a′) ∈ Zv
i such that fa′ − d(a′) < fa < ∞, then

fv = ∞.

The set of all time assignments for T is denoted FT .

The SAND-conditions can be understood as follows. 4a) tells us that v cannot
be reached before vn, and 4b) tells us that v cannot be reached if any of its
children is not reached. 4c) conveys that whenever there is an a ∈ Bvi

that is

Attack Time Analysis in Dynamic Attack Trees 173

activated (i.e., fa < ∞), then in order for v to be activated, one must have
fa′ −d(a′) ≥ fa for all a′ ∈ Bvi+1 . Since fa′ −d(a′) is the starting time of a′, this
means that a′ must be started after a is finished activating. It is more subtle
than simply requiring fa′ −d(a′) ≥ fa for all (a, a′) ∈ Zv

i ; that would ensure that
all SAND-gates impose ordering restrictions, not just those that are activated.

Note that fa′ − d(a′) is the starting time of a BAS a′, so 4c) tells us that v
is only reached if the BAS-descendants of vi+1 are started once those of vi have
been completed. We allow for a delay in completing node v, even when enough
of its children have been completed. Time assignments relate to min time:

Theorem 1. mt(T) = minf∈FT
fRT

.

This result allows us to calculate mt(T) by solving the following optimization
problem.

minimizef∈[0,∞]N &fRT
s.t. f ∈ FT . (1)

This is not a linear problem, due to the nonlinear constraints of Definition 5.
We use auxiliary integer variables to linearize these constraints. First, we need
to get rid of the ∞ in Definition 5, which we do by replacing it with a suitably
large real number. Define the constant M = 1 +

∑
a∈NBAS

d(a). The following
lemma shows that if T is satisfiable, then to minimize (1) one can focus on the
f with fv ∈ [0,M − 1] ∪ ∞.

Lemma 1. There is an f minimizing (1) for which ∀v : fv ∈ [0,M − 1] ∪ ∞.

This shows that we can use M to play the role of ∞ where necessary. We
enforce this by demanding fv ∈ [0,M], and we interpret fv = M to mean that v
is not reached. For a node v, let nv be its number of children, which are denoted
v1, . . . , vnv

. We then use standard MILP techniques [8] to rewrite Definition 5.
To rewrite the OR-condition, we introduce an auxiliary binary variable xv

i for
each v ∈ NOR and each i ≤ nv. The purpose of xv

i is to represent the truthfulness
of the statement “i = arg mini′ fvi′ ”. We can then represent fv ≥ mini fvi

by

∑

i≤nv

xv
i ≥ 1, ∀i ≤ nv : fv ≥ fvi

+ M(xv
i − 1).

The latter is automatically satisfied if xv
i = 0, and reduces to fv ≥ fvi

if xv
i = 1.

The former ensures that the latter must happen for at least one i, so together
these encode fv ≥ mini fvi

. The condition for AND-gates can be rewritten as
∀i ≤ nv : fv ≥ fvi

.
Finally, we consider SAND-gates. For v ∈ NSAND, we introduce an auxiliary

binary variable yv that encodes “∃i < n : fvi
= ∞ or ∃i∃(a, a′) ∈ Zv

i : fa′ −
d(a′) < fa < ∞.” Then we can write Definition 5.4 as fv ≥ fvnv

, fv ≥ Myv. To
ensure yv = 1 whenever one of the fvi

equals ∞, we add the constraint ∀i <

nv : yv ≥ 1+fvi
−M

M , which forces yv = 1 only when fvi
> M − 1. Furthermore,

174 M. Lopuhaä-Zwakenberg and M. Stoelinga

to ensure yv = 1 whenever some a, a′ satisfy fa′ − d(a′) < fa, we would like to
add the constraint

∀i < nv∀(a, a′) ∈ Zv
i : yv ≥ min

{
fa−fa′+d(a′)

M , M−fa

M

}
. (2)

This forces yv = 1 only when both fa′ − d(a′) < fa and fa < M . To get rid
of the minimum, we introduce an auxiliary variable zv

i,a,a′ for each i < nv and
(a, a′) ∈ Zv

i as we did for the OR-condition. We then replace (2) with

∀i < nv∀(a, a′) ∈ Zv
i : yv ≥ fa−fa′+d(a′)

M − zv
i,a,a′ , yv ≥ M−fa

M − (1 − zv
i,a,a′).

Taking all of this together, it can be shown that the constraint fv ∈ [0,M]
holds automatically for all ‘reasonable’ f (i.e., if this does not hold for f , then
f will not minimize fRT

) and can be replaced by fv ∈ R. We then find that the
optimization problem (1) can be rewritten into the following MILP problem of
Fig. 3. Note that this optimization returns an f with fRT

≤ M − 1 if and only if
ST �= ∅. Hence this optimization can also be used to determine whether T can
successfully be attacked.

We note that this is not the only way to encode min time analysis into a
MILP problem; for instance, instead of using the constant M , one could intro-
duce an additional binary variable per node that denotes whether the node is
activated or not. We chose for this approach since this ensures we need fewer
optimization variables, even though this means that some equations such as (2)
are less intuitive. Note that we get quadratically many constraints above, which
is a consequence of the fact that we get a constraint for every pair (a, a′) in
Definition 3.4.

Fig. 3. The MILP problem for calculating min time.

Attack Time Analysis in Dynamic Attack Trees 175

5 Computation Time Reduction

In this section, we introduce an algorithm reducing the complexity of comput-
ing mt(T). The algorithm consists of two components: First, we show that a
bottom-up algorithm from [14] can be used to calculate min time for static (no
SAND-gates) and tree-shaped DATs. As the state of the art method, based on
binary decision diagrams [5], has exponential complexity, and the bottom-up
algorithm has linear complexity, this is a big improvement. Second, we split up
the calculation of min time into parts by identifying the modules of a DAT, i.e.
subDAGs that are connected to the rest of the DAT via only one node.

5.1 Bottom-Up Computation

Fig. 4. MT-BU for a DAT T .

An important tool is the algorithm
MT-BU introduced in [14] presented in
Algorithm 4. It attempts to calculate
mt(T) by traversing T bottom-up,
which only has linear time complex-
ity and is significantly faster than
the MILP approach of Fig. 3. For
tree-shaped T it calculates min time
correctly, but for DAGs it fails to
account for the fact that two chil-
dren of a node may share BAS,
which may be counted double. How-
ever, this double counting is only an
issue for SAND-gates, as the operators
min/max of OR/AND-gates are idem-
potent, i.e., min(x, x) = max(x, x) = x. This was first realized in [17], for attack-
defense trees under different semantics. However, min time based on these set
semantics can be proven to be equivalent to our definition in Sect. 3.2, yielding
the following result (Fig. 4):

Theorem 2 [14,17]. If T is tree-shaped or static, then MT-BU calculates mt(T).

5.2 Modular Analysis

Fig. 5. Modular analysis.

Algorithm 4 only reduces complexity in the
two relatively rare cases where the DAT is
static or tree-shaped. However, it is possible
to also reduce complexity when T is only
partially static and/or tree-shaped. A well-
established method in studying DATs is to
consider the modules of T :

176 M. Lopuhaä-Zwakenberg and M. Stoelinga

Definition 6 [9]. A module is a node v ∈ N \ NBAS such that all paths from
T \ Tv to Tv pass through v.

The root of T is always a module. If v is a module, then v is the only node
within Tv with parents outside of Tv. Hence we can create a tree T v by replacing
Tv within T by a new single BAS ṽ; the parents of ṽ in T v are the parents of v in
T . Theorem 3 shows that min time can be calculated for T by first calculating
it for Tv, and then for T v. This is depicted in Fig. 5.

Theorem 3. Let T be a DAT, and let v be a module of T . Let T v be the node
obtained by removing v and replacing v itself with a new BAS ṽ. Then mt(T, d) =
mt(T v, dv) where dv is a duration function for T v given by

dv(a) =

{
d(a), if a ∈ NBAS \ Bv,

mt(Tv, d|Bv
), if a = ṽ.

Fig. 6. AMod for a DAT T . The notation
T v, dv is from Theorem 3.

While the statement seems intu-
itively true, the proof requires quite
a bit of work as one needs to develop
machinery to relate attacks on T (and
their minimal chains) to attacks on
Tv and T v. Theorem 3 reduces com-
plexity in two ways: We split the
tree into two parts whose total size
is the same as the original tree. Since
MILP is NP-hard, this can impact
computation time. Furthermore, the
smaller DAT Tv can be static or tree-
shaped, in which case we can use
MT-BU (Fig. 6).

The resulting algorithm is dis-
played in Algorithm 6. Here Module
refers to an algorithm that finds the
modules of T ; this can be done with
linear time complexity [9]. Algorithm
AMod makes use of an algorithm A that
calculates min time. For this, one can use naive enumeration or the MILP app-
roach of Fig. 3, or potentially any new algorithm. Since the calculation of a
module’s min time value depends on its own modules, we act on the lower mod-
ules first, so Algorithm 6 handles the modules by ascending height. Note that
when T is tree-shaped, every inner node is a module, so AMod is equivalent to
MT-BU for any A.

We note that other definitions of min time, such as the automata-approach of
[18] and the multiple-activation definition of [14], also allow for modular decom-
position. However, as these definitions are not compatible with ours, we cannot
directly use these results, and we require a novel proof for Theorem 3.

Attack Time Analysis in Dynamic Attack Trees 177

6 Experiments

This section evaluates the performance of our methods. We compare the MILP
approach of Fig. 3 (MT-MILP) to the enumerative approach (MT-Enum). For the
latter, rather than exhaustively generating all succesful attacks, we generate
bottom-up a set of candidate attacks that include all minimal succesful attacks,
hence certainly the optimal attack by the monotonicity of t. For this we gener-
alize the set semantics of [17] to dynamic ATs. We also compare MT-MILP and
MT-Enum to their modular counterparts.

Fig. 7. DATs from the literature
used as building blocks. Trees
from [11,17] are adapted from
attack-defense Tree.

Existing methods in the literature are
based on series-parallel graphs [14] and priced
timed automata [18]. Their definitions of min
time are not equivalent to ours. In our view,
methods with different definitions of min time
can only be compared with respect to com-
putation time if one of them is designed to
be an approximation or bound of the other;
then one can compare the gain in computa-
tion time versus the loss in accuracy. However,
this is not the case here: the multiple activa-
tion definition is fundamentally different, and a
DAT constructed under this model represents
a system different from the same DAT in the
single activation model. Therefore, we cannot
directly compare performance to that of existing approaches.

In practice, attack trees can be very large [26,30]; however, for confidentiality
reasons these are typically not disclosed to the general public [7,26]. Hence to
our knowledge no established benchmark suites of DATs exist, and the existing
literature typically considers test cases with only ≤ 25 nodes [4,18]. For such
small DATs, the computation of min time takes less than a second no matter
which algorithm is being used, which makes them unsuitable for testing difference
in algorithm performance. To address the deficiency of a benchmark suite of
large DATs, we create a synthetic set of testing DATs. These are created by
combining DATs from the literature into larger ones. Then, we compare (1) the
MILP method MT-MILP to the enumerative algorithm MT-Enum and (2) the effect
of modular analysis on performance time.

All experiments are performed on a PC with an Intel Core i7-10750HQ
2.8 GHz processor and 16 GB memory. All algorithms are implemented in Mat-
lab, and for MILP we use the YALMIP environment [20] to translate the opti-
mization problem into the Gurobi solver [13], a state-of-the-art optimizer that
can handle MILP problems. The code and results are available in [22].

6.1 Generation of Testing DATs

To create a testing suite large enough for a meaningful performance compari-
son, we do the following. As building blocks, we use a selection of DATs from

178 M. Lopuhaä-Zwakenberg and M. Stoelinga

Fig. 8. The three ways of combining DATs.

the literature, shown in Fig. 7. For some, the duration of the BAS are random
variables, and we take the expected value for the duration; otherwise we take a
random duration from {1, 2, . . . , 10}. We use three methods for combining two
DATs T1, T2 into a larger one (see Fig. 8):

1. We take a random BAS v from T1 and consider the modular composition
by replacing v in T1 by T2. This represents a larger system, in which one
subsystem, represented by v in T1, is given its own DAT for more fine-grained
analysis.

2. We introduce a new root node v with a random label, and add edges (v,RT1)
and (v,RT2). This represents a system consisting of two separate subsystems.

3. We introduce a new root node v with a random label, and add edges (v,RT1)
and (v,RT2); we then pick random BAS b1 from T1 and b2 from T2 and identify
them (with a new random duration in {1, 2, . . . , 10}). This represents a system
consisting of two subsystems that have a shared attack step.

These are not the only ways by which multiple DATs can be combined; for
instance, T1 and T2 could share multiple BAS. We selected these three methods
to capture some of the common ways DATs are created by experts. Creating a
benchmark suite of large DATs that resemble DATs from industry is an impor-
tant avenue for further research, but beyond the scope of this paper.

We create two suites of testing DATs by combining the DATs from Fig. 7.
For the first suite, A, we combine DATs using one of the three methods above
(drawn randomly) until the result has a given number of nodes. The resulting
will have many modules, as T1 is a module under the first method, and both
T1 and T2 are modules under the second method. Therefore, we expect the
modular approaches to be very fast on the DATs in A. To also study DATs with
less modules, we create the second suite, B, by combining DATs using only the
third method. Again, one could assign other weights to the three combination
methods to obtain yet different testing suites, but A and B represent two of the
extremes of what DATs can look like.

For a given nmin, we combine DATs randomly drawn from Fig. 7 (either
via randomly drawn methods from the 3 above, or by method 3 only) until
|N | ≥ nmin. We do this 5 times for each 1 ≤ nmin ≤ 240, giving us two testing
sets A,B of 1200 DATs with 8 ≤ |N | ≤ 262. On average 26.6% of the nodes of
ATs in A, and 16.5% of the nodes of ATs in B are modules. Furthermore 54.2%
of the nodes of ATs in A, and 52.5% of the nodes of ATs in B are BAS.

Attack Time Analysis in Dynamic Attack Trees 179

Table 2. Summary of the results. All times are in seconds. Failure denotes failure
to compute within 104 seconds. Asmall contains 754 DATs with ≤ 160 nodes, and A
contains 1200 DATs with ≤ 262 nodes (including those of Asmall). The sets Bsmall and
B hold the same amount of DATs of the same size; they are designed to contain less
modules.

Asmall A
MT-Enum MT-MILP MT-EnumMod MT-MILPMod MT-MILP MT-EnumMod MT-MILPMod

Median time 1.234 0.906 1.461 1.680 1.422 2.797 3.070

Max time 10000 7.984 12.656 6.656 19.125 10000 30.469

Failure 3.71% 0% 0% 0% 0% 0.08% 0%

Bsmall B
Median time 1.391 0.938 1.469 1.656 1.266 3.203 2.773

Max time 10000 4.75 2326 9.484 4.75 10000 9.484

Failure 3.81% 0% 0% 0% 0% 3.08% 0%

Fig. 9. Median time (in seconds) of MT-Enum, MT-MILP, MT-EnumMod,
MT-MILPMod, grouped by the number of nodes |N |.

6.2 Time Comparisons

We measure the computation time of the four algorithms on the testing set; we
cap computation time per DAT at 104 s. We group the DATs depending on their
value of �|N |/20� and calculate the median per group: these are presented in
Fig. 9. We use the median because it allows us to incorporate the computations
that were cancelled after 104 s. Since already 21.3% of the DATs of A, and 13.8%
of DATs of B, with 141 ≤ |N | ≤ 160 fail to compute for MT-Enum, we do not
continue testing this method for larger DATs. The subsets of A,B of DATs
with |N | ≤ 160 is called Asmall,Bsmall, and consist of 754 resp. 761 DATs. The
results are also summarized in Table 2, and pairwise comparisons are presented
in Fig. 10.

On the testing set A, we see from Fig. 9 that MT-Enum is by far the slowest
method, while MT-MILP is the fastest; the two modular approaches are slightly
slower than MT-MILP and have similar efficiency. While the inefficiency of MT-Enum
is to be expected, it is surprising that modular analysis for MILP has a net neg-
ative effect on computation time. One possible reason is that the Gurobi solver,

180 M. Lopuhaä-Zwakenberg and M. Stoelinga

which we treat as a black box, might incorporate strategies to reduce the MILP
problem complexity that are equivalent to modular analysis on the DAT side. At
any rate, the enumerative approach clearly shows the advantage of incorporating
the modular approach. These results are also reflected in Fig. 10(a)–(d).

Fig. 10. Pairwise computation time comparisons of the four algorithms. The first algo-
rithm is the vertical axis while the second is the horizontal axis. Each mark is a DAT;
purple circles are computations aborted for exceeding 104 s. (Color figure online)

Interestingly, the difference in median computation time between MT-Enum
and MT-MILP disappears when considering the modular versions of these algo-
rithms, although the worst-case behaviour of MT-EnumMod is considerably worse
than that of MT-MILPMod (see Table 2). We hypothesize that this is due to the fact
that the DATs of A contain many modules. As a result, the ‘indecomposable’
sub-DATs on which the algorithms MT-Enum and MT-MILP are called will typically
be small. Since the difference in computation time between these algorithms only
appears for larger DATs, we do not see it in these experiments.

For testing set B, we again see that MT-Enum is by far the slowest. Furthermore,
for larger DATs MT-MILPMod outpaces MT-EnumMod considerably; see also Fig. 10(f).
This shows that also in a modular setting the MILP approach significantly speeds
up calculations for large enough DATs. This is to be expected from our results
on set A as for larger DATs the ‘indecomposable’ subDATs on which MT-MILP is
invoked will be larger as well. Interestingly, on this dataset MT-MILP is slightly

Attack Time Analysis in Dynamic Attack Trees 181

faster than MT-MILPMod, as can also be seen from Fig. 10(e). This might be due to
the fact that on wide DATs, the MILP methods of Gurobi are more efficient at
splitting up DATs into modules than our Matlab implementation of the modular
decomposition algorithm. A detailed study into this difference in performance
would entail a comprehensive analysis into Gurobi’s Matlab implementation,
which is beyond the scope of this paper.

Taking A and B together, we can conclude that both the MILP approach
and modular analysis create a large decrease in computation time. While these
methods are slightly slower for small DATs, computation time for such DATs
only takes a few seconds anyway. By contrast, for larger DATs the difference
in computation time can go up to a factor 103. For DATs with large modules,
MT-EnumMod loses out against MT-MILP and MT-MILPMod, which behave similarly.

7 Conclusion and Discussion

This paper introduced two novel tools to calculate min time for DATs. First, we
introduced a novel MILP-based approach that finds min time by phrasing it as
an optimization problem. Second, we show how modular analysis can be used
to reduce the computation time of any min time calculation algorithm. In the
experiments, we compared these to the enumerative method. The experiments
show that for large DATs both MILP and modular analysis can have a big
impact on computation time. In particular, the MILP approach is consistently
fast on any input DAT, making it a reliable tool for quantitative DAT analysis
in practice.

There are several directions in which this work can be expanded. First, a
benchmark suite of DATs is needed. For this it is important to find out what
sizes and properties are typical for DATs used in industry, even if industry DATs
themselves may not be published due to confidentiality reasons.

Second, modular analysis can also be used for other metrics, as has been
done for fault trees [27,29]. Since modular analysis is a very general idea, a good
approach would be to develop an axiomatization of metrics that can be handled
via modular analysis, so that the method can be applied to a large set of metrics
at once. Such a result is probably not hard to prove for metrics that are defined
bottom-up as in [17]; the challenge lies in metrics that are defined directly from
the semantics as in [5].

Third, our MILP approach can be combined with a Monte Carlo approach in
a stochastic setting where the precise BAS values are unknown. A more thorough
investigation can explore what guarantees such simulations can give for min time.
As Monte Carlo methods involve sampling a large sample, performance of the
min time calculation algorithm is important in such a study.

182 M. Lopuhaä-Zwakenberg and M. Stoelinga

References

1. Agyepong, E., Cherdantseva, Y., Reinecke, P., Burnap, P.: Challenges and per-
formance metrics for security operations center analysts: a systematic review. J.
Cyber Secur. Technol. 4(3), 125–152 (2020)

2. Ali, A.T., Gruska, D.P.: Attack trees with time constraints. In: CS&P, pp. 93–105
(2021)

3. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack
tree modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9338, pp. 291–299. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24249-1 25

4. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-
8 16

5. Budde, C.E., Stoelinga, M.: Efficient algorithms for quantitative attack tree anal-
ysis. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp.
1–15 (2021). https://doi.org/10.1109/CSF51468.2021.00041

6. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/
10.1007/11962977 19

7. Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulner-
abilities in SCADA systems. In: Proceedings of the International Infrastructure
Survivability Workshop, pp. 3–10. Citeseer (2004)

8. Chen, D.S., Batson, R.G., Dang, Y.: Applied Integer Programming: Modeling and
Solution. Wiley, New York (2011)

9. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996)

10. Fila, B., Wide�l, W.: Exploiting attack-defense trees to find an optimal set of
countermeasures. In: 2020 IEEE 33rd Computer Security Foundations Symposium
(CSF), pp. 395–410. IEEE (2020)

11. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1 24

12. François-Xavier, A., Olivier, B., Grégory, B., Vania, C., Hervé, D.: Bayesian attack
model for dynamic risk assessment. arXiv:1606.09042 (2016). Preprint

13. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

14. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

15. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter
attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1036–1051. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-
4 8

https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24
http://arxiv.org/abs/1606.09042
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-540-88873-4_8

Attack Time Analysis in Dynamic Attack Trees 183

16. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38
(2014)

17. Kordy, B., Wide�l, W.: On quantitative analysis of attack–defense trees with
repeated labels. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp.
325–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 14

18. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 11

19. Kumar, R., et al.: Effective analysis of attack trees: a model-driven approach. In:
Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 56–73. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89363-1 4

20. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In:
2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.
04CH37508), pp. 284–289. IEEE (2004)

21. Lopuhaä-Zwakenberg, M., Stoelinga, M.: Attack time analysis in dynamic attack
trees via integer linear programming. arXiv:2111.05114 (2021). Preprint

22. Lopuhaä-Zwakenberg, M.: Attack time analysis in dynamic attack trees via integer
linear programming (2023). https://zenodo.org/record/8173951

23. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

24. McQueen, M.A., Boyer, W.F., Flynn, M.A., Beitel, G.A.: Time-to-compromise
model for cyber risk reduction estimation. In: Gollmann, D., Massacci, F., Yaut-
siukhin, A. (eds.) Quality of Protection. Advances in Information Security, vol. 23,
pp. 49–64. Springer, Cham (2006). https://doi.org/10.1007/978-0-387-36584-8 5

25. Meyur, R.: A Bayesian attack tree based approach to assess cyber-physical security
of power system. In: 2020 IEEE Texas Power and Energy Conference (TPEC), pp.
1–6. IEEE (2020)

26. Paul, S.: Towards automating the construction & maintenance of attack trees: a
feasibility study. arXiv:1404.1986 (2014). Preprint

27. Reay, K.A., Andrews, J.D.: A fault tree analysis strategy using binary decision
diagrams. Reliab. Eng. Syst. Saf. 78(1), 45–56 (2002)

28. Rencelj Ling, E., Ekstedt, M.: Estimating the time-to-compromise of exploiting
industrial control system vulnerabilities. In: 8th International Conference on Infor-
mation Systems Security and Privacy-ICISSP, vol. 1, pp. 96–107 (2022)

29. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

30. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In: 2014
IEEE 27th Computer Security Foundations Symposium, pp. 337–350. IEEE (2014)

31. Vitkus, D., Salter, J., Goranin, N., Čeponis, D.: Method for attack tree data trans-
formation and import into it risk analysis expert systems. Appl. Sci. 10(23), 8423
(2020)

32. Wide�l, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: formal methods
for attack tree-based security modeling. ACM Comput. Surv. (CSUR) 52(4), 1–36
(2019)

https://doi.org/10.1007/978-3-319-89722-6_14
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-89363-1_4
http://arxiv.org/abs/2111.05114
https://zenodo.org/record/8173951
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-0-387-36584-8_5
http://arxiv.org/abs/1404.1986

SSCalc:
A Calculus for Solidity Smart Contracts

Diego Marmsoler(B) and Billy Thornton

University of Exeter, Exeter, UK
{d.marmsoler,b.thornton}@exeter.ac.uk

Abstract. Smart contracts are programs stored on the blockchain, often
developed in a high-level programming language, the most popular of
which is Solidity. Smart contracts are used to automate financial transac-
tions and thus bugs can lead to large financial losses. With this paper, we
address this problem by describing a verification environment for Solidity
in Isabelle/HOL. To this end, we first describe a calculus to reason about
Solidity smart contracts. The calculus is formalized in Isabelle/HOL and
its soundness is mechanically verified. Then, we describe a Verification
Condition Generator to automate the use of the calculus. Our approach
can be used to verify the functional correctness of Solidity smart con-
tracts. To demonstrate this, we use it to verify a simple token imple-
mented in Solidity. Our results show that the framework has the poten-
tial to significantly reduce the verification effort compared to verifying
directly from the semantics.

Keywords: Smart Contracts · Solidity · Program Verification ·
Isabelle/Solidity

1 Introduction

Blockchain [33] is a novel technology for storing data in a decentralized man-
ner, providing transparency, security, and trust. Although the technology was
originally invented to enable cryptocurrencies, it quickly found applications in
several other domains, such as finance [24], healthcare [5], land management [12],
and even identity management [43]. According to McKinsey, blockchain had a
market capitalization of more than $150B in 2018 [8] and Gartner predicts its
business value to be $3.1T by 2030 [19].

One important innovation that comes with blockchains are so-called smart
contracts. These are digital contracts that are automatically executed once cer-
tain conditions are met and that are used to automate transactions on the
blockchain. For instance, a payment for an item might be released instantly
once the buyer and seller have met all specified parameters for a deal. Every
day, hundreds of thousands of new contracts are deployed managing millions of
dollars’ worth of transactions [42].

Technically, a smart contract is code that is deployed to a blockchain and that
can be executed by sending special transactions to it. Smart contracts are usu-
ally developed in a high-level programming language, the most popular of which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 184–204, 2023.
https://doi.org/10.1007/978-3-031-47115-5_11

https://doi.org/10.5281/zenodo.8172356
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_11&domain=pdf
http://orcid.org/0000-0003-2859-7673
https://doi.org/10.1007/978-3-031-47115-5_11

SSCalc: A Calculus for Solidity Smart Contracts 185

is Solidity [18]. Solidity is based on the Ethereum Virtual Machine (EVM) and
thus it works on all EVM-based smart contract platforms, such as Ethereum,
Avalanche, Moonbeam, Polygon, BSC, and more. As of today, 85% of all smart
contracts are developed using Solidity [25] and according to a 2019 survey, Solid-
ity is by far the most popular language used by blockchain developers (in fact it
outranked the second most popular language by 100%) [38].

As for every computer program, smart contracts may contain bugs that can
be exploited. However, since smart contracts are often used to automate financial
transactions, such exploits may result in huge economic losses. For example, in
2016 a vulnerability in an Ethereum smart contract was exploited resulting in a
loss of approximately $60M [6]. More recently, hackers exploited a vulnerability
in the DeFi-platform Poly Network to steal $600M [34]. As another example, an
incorrectly initialized contract was the root cause of the Parity Wallet bug that
froze $280M [36]. In general, it is estimated that since 2019, more than $5B was
stolen due to vulnerabilities in smart contracts [13].

The high impact of vulnerabilities in smart contracts together with the fact
that once deployed to the blockchain, they cannot be updated or removed easily,
makes it important to “get them right” before they are deployed. As a result,
there has been a growing amount of work to verify smart contracts (see [2] for
an overview). Most of the existing work focuses on the automatic detection of
certain types of vulnerabilities, such as re-entrancy, integer overflow/underflow,
or call-stack depth limit. However, they do not allow for the verification of general
functional correctness.

Thus, in the following paper, we present SSCalc, a framework for the
verification of the functional correctness of Solidity smart contracts. To
this end, the contributions of this paper are twofold. First, we describe
a calculus to reason about Solidity smart contracts. Our calculus extends tradi-
tional calculi, used to reason about sequential and object-oriented programs [3],
with new rules to capture the characteristics of smart contracts. We formal-
ized the calculus in Isabelle/HOL [35] and verified its soundness mechanically
from the formal semantics of Solidity developed in previous work [26]. Second,
we developed a verification condition generator (VCG) to automate the use of
the calculus. The VCG is implemented in Isabelle/Eisbach [30] and consists of
a set of proof methods, which can be used to verify contract invariants and
pre-/postconditions for (internal) methods.

To evaluate our approach, we verified a basic implementation of a token [39] in
Solidity with and without using the calculus. Our results show that the calculus
has the potential to significantly reduce the effort required to verify a Solid-
ity smart contract. Without the calculus, verification required ca. 3250 lines of
Isabelle/Isar code whereas using the calculus reduced it to ca. 700 lines.

2 Background

Our calculus is based on the denotational semantics of a subset of Solidity
described in [26–28]. Our subset supports the following features of Solidity:

186 D. Marmsoler and B. Thornton

– Fixed-size integer types of various lengths with support for overflow and cor-
responding arithmetic.

– Domain-specific primitives to transfer funds and query balances.
– Different types of stores, such as storage, memory, calldata, and stack.
– Complex data types, such as hash-maps and arrays.
– Assignment with different semantics, depending on the location of the

involved data types (deep vs. shallow copy of complex data types).
– An abstract gas model that can be instantiated with concrete gas costs for

each statement.
– Internal and external method declarations and the ability to transfer funds

with external method calls.
– Declaration of fallback methods which are implicitly executed with monetary

transfers.

2.1 Inductive Data Types

Our semantics is formalized in higher-order logic using inductive data types [9].
To this end, we use bold font for types and Roman font for type constructors.

For a datatype

nat def= Zero() | Suc(nat)
we shall often use the case construct to match a variable against constructors:

dec(x) def= case x of

{
Zero() ⇒ Zero()
Suc(n) ⇒ n

We shall also use

type⊥
def= ⊥ ∪ {x⊥ | x ∈ type}

to denote the type that adds a distinct element ⊥ to the elements of type.

2.2 State Monad

Our semantics is defined using the concept of a state monad [14,40]. To this end
we first define a result type as follows:

result(n, e) def= N(n) | E(e)

The type result is defined over two type parameters, n, and e, which denote the
type for normal and erroneous return values, respectively.

We can then define a state monad as follows:

sm(a, e, s) def= s → result(a × s, e)

The monad requires three type parameters: type a for return values, type e
for exceptions, and type s for states. Such a monad either updates state s and
returns an element of type a or returns an exception of type e.

SSCalc: A Calculus for Solidity Smart Contracts 187

2.3 State

In Solidity users and contracts are identified by addresses with associated bal-
ances. Moreover, a contract operates over different types of stores: a stack and
memory to keep volatile data, as well as storage to keep persistent data. Finally,
in Solidity computation consumes so-called gas. Thus, a state is defined as follows:

state def= accounts × stack × memory × (address → storage) × nat

where accounts map addresses to balances and nat represents the available gas.
Data types stack, memory, and storage represent the different types of stores
and map locations to values (note also that each address has its private storage).
In the following, we use acc(st), sck(st), mem(st), sto(st), and gas(st) to access
the account, stack, memory, storage, and gas components of state st . Moreover,
we shall use

st�gas := g, acc := a, sck := k,mem := m, sto := s�

to update the gas, account, stack, memory, and storage of state st to g, a, k, m,
and s, respectively.

2.4 Exceptions

In the following, we distinguish between two types of exceptions to signal erro-
neous executions. Thus, we define the following type for exceptions:

error def= Gas() | Err()

An exception Gas occurs whenever a computation runs out of gas. All other
erroneous situations are captured by exception Err.

3 Calculus

In the following, we describe a weakest precondition calculus [17] to reason about
Solidity. To this end, we fix the following four parameters:

– ep: A procedure environment assigning contracts to their addresses.
– ad: The address of the contract to be verified
– contract: The implementation of methods of the contract to be verified.
– fb: The implementation of the fallback method of the contract to be verified.

In addition, we assume that the procedure environment ep associates the address
ad of the contract to be verified with its implementation contract and fb:

ep(ad) = (contract, fb)⊥

188 D. Marmsoler and B. Thornton

We can then define the weakest precondition for our state monad as follows:

wp : sm((), error, state) × (state → b) × (error → b) → state → b

wp(f, P,E) def= λst . case f(st) of

{
N(_, st ′) ⇒ P (st ′)
E(e) ⇒ E(e)

where () denotes the unit type (the type with only one element ()) and b is the
boolean type. It defines the weakest precondition of statement f , state predicate
P , and exception predicate E. If f , executed in state st , terminates successfully
with state st ′, the weakest precondition equals P evaluated over st ′. On the other
hand, if the statement throws an exception e, the weakest precondition equals
E evaluated over e.

A user usually prefers to specify correctness criteria using Hoare triples
instead of weakest preconditions. Thus, we further introduce the validity of a
Hoare triple for a statement. To this end, we first specify the notion of a state
predicate and an exception predicate:

spred def= accounts × stack × memory × (address → storage) → b

epred def= error → b

Now we can define validity as follows:

{_} _ {_}{_} : spred × sm((), error, state) × spred × epred → b

{P} f {Q}{E} def= ∀st . P (acc(st), sck(st),mem(st), sto(st))

=⇒ case f(st) of

⎧⎨
⎩N(_, st ′) ⇒ gas(st ′) ≤ gas(st) ∧

Q(acc(st ′), sck(st ′),mem(st ′), sto(st ′))
E(e) ⇒ E(e)

A Hoare triple {P} f {Q}{E} is valid if for every state st that satisfies the
state predicate P , statement f either terminates in a state st ′ that satisfies state
predicate Q or leads to an error e that satisfies error predicate E. Note that we
also require that execution does not increase the amount of available gas.

To validate our definitions, we proved the following lemma about the rela-
tionship between the validity of Hoare triples and weakest preconditions:

Lemma 1.

{P} f {Q}{E} ⇐⇒ ∀s. P (acc(s), sck(s),mem(s), sto(s))
=⇒ wp(f, (λs. Q(acc(s), sck(s),mem(s), sto(s))), E, s)

3.1 Basic Rules

Our calculus includes rules for all the basic statements: wp_Skip for the empty
statement, wp_Assign for assignments, wp_Comp for compositions, wp_ITE

SSCalc: A Calculus for Solidity Smart Contracts 189

for conditionals, and wp_While for while loops (which require the specifica-
tion of an invariant). These rules are mostly standard; and thus, they are not
discussed further here.

There are, however, two particularities worth mentioning. First, each rule
needs to deal with the case that there might not be enough gas available to exe-
cute a statement. Second, assignments are somewhat special in Solidity because
the semantics of assignments depend on the location of the expression on the
left and right. Each side may evaluate to a location on either stack, calldata,
memory, or storage. Thus, when verifying an assignment in Solidity, we must
consider 16 different cases and two additional error cases.

3.2 Method Invocation

In Solidity, a contract may have two types of methods. Internal methods can
only be called internally from within the same contract. External methods, on
the other hand, can only be called by other contracts. In addition, a Solidity
contract has a designated fallback method. This method is invoked whenever
the contract receives some payments or if a method is called that does not exist.

The following rule allows us to verify (recursive) method calls:

Wp_External_Invoke_Transfer
∀st ′. gas st ′ ≤ gas st =⇒ P (i, p, p′, pf , p′

f , st ′) � Q(i, p, p′, pf , p′
f , st)

P (i, p, p′, pf , p′
f , st ′)

where predicates P and Q are defined below and A � C denotes that C is
derivable from A in our calculus.

The rule requires the specification of several parameters:

– i: An invariant for the contract’s private storage and balance.
– p, p′: Pre/postconditions for each internal method.
– pf , p′

f : One pre/postcondition for the contract’s fallback method.

We can then use the rule to establish a predicate P for an arbitrary state st ′

by proving Q for an arbitrary state st . While proving Q, the rule allows us to
assume P for all states st ′ with less (or equal) gas than st .

In the following, we are going to discuss predicates P and Q in more detail.

Predicate P. This predicate is defined as follows:

P (i, p, p′, pf , p′
f , st) def= Pe(i, st) ∧ Pi(p, p′, st) ∧ Pfi(pf , p′

f , st) ∧ Pfe(i, st)

It establishes the weakest precondition for method calls and transfer statements.

Pe(iv , st). This predicate establishes the weakest precondition for external
method calls. In Solidity, external method calls can be used to invoke meth-
ods of other contracts deployed to the blockchain. Moreover, it is possible to
transfer funds from the caller to the callee with each call. In the following, we
use External(ad ′, i, xe, val) to denote an external method call where

190 D. Marmsoler and B. Thornton

– ad ′ is an expression denoting the address of the called contract.
– i is the identifier of the method to be called.
– xe is a list containing actual parameters for the method.
– val is an expression denoting the amount of funds sent with the call.

Predicate Pe(iv , st) can now be defined as in Fig. 1, where address(ev) denotes
the address associated with an environment ev , expr(ex , ev , cd , st , g) evaluates
an expression ex using an environment ev and calldata cd in a state st , ng is the
updated gas value gas(st)−costs(External(ad ′, i, xe, val), ev , cd , st), �x converts
a string to an integer, and E denotes the exception predicate λe. e = Gas ∨ e =
Err.

Fig. 1. Definition of Pe(iv , st).

Equation 3 establishes the weakest precondition of invariant iv and error
predicate E for an external method call executed in state st . Equation 1 ensures
that the address of the currently executing contract is indeed address ad of the
contract to be verified (fixed at the beginning of Sect. 3). Equation 2 requires
that the invariant holds before executing the call. However, note that we require
the invariant to hold on a modified version of the balance. In particular, value
v (which is obtained by evaluating expression val) is deduced from the actual
balance of the contract. This is because the actual call transfers v funds from
the caller to the callee. Thus, to ensure that the invariant holds after the call, we
must ensure that the invariant holds on a balance in which the value is already
deduced.

Pi(pre, post , st). This predicate establishes the weakest precondition for inter-
nal method calls. In Solidity, internal method calls can only invoke inter-
nal methods of the currently executing contract. In the following, we
use Invoke(i, xe) to denote a call to an internal method i with actual
parameters xe. Pi(pre, post , st) can now be defined as in Fig. 2, where
load(cp, fp, xe,nev , cd ′, sck ′,mem ′, ev , cd , st) initializes formal parameters fp

SSCalc: A Calculus for Solidity Smart Contracts 191

Fig. 2. Definition of Pi(pre, post , st).

with actual parameters xe, nev is a fresh environment for the execu-
tion of the method body, and ng is the updated gas value gas(st) −
costs(Invoke(i, xe), ev , cd , st).

Equation 6 establishes the weakest precondition of the method’s postcondi-
tion post(i) and error predicate E for an internal method call executed in state
st . Again, Eq. 4 ensures that the currently executing contract is the one to be
verified (with address ad). Equation 5, however, requires that the method’s pre-
condition holds before the execution of the call. Note that the precondition is a
predicate over 6 parameters: the current contracts balance and private store, as
well as the environment created by loading the actual parameters (environment
el, calldata cd l, stack kl, and memory ml).

Pfe(iv , st). This predicate establishes the weakest precondition for external trans-
fers. In Solidity, transfer statements can be used to transfer funds from contracts
to accounts. In the following, we use Transfer(ad ′, ex) to denote a transfer state-
ment in which

– ad ′ is an expression denoting the address of the receiver, and
– ex is an expression denoting the amount to be transferred.

Note that, if the receiving address belongs to a contract, a transfer implic-
itly triggers the execution of a so-called fallback method. Thus, Pfe(iv , st)
can be defined as in Fig. 3, where ng is the updated gas value gas(st) −
costs(Transfer(ad ′, ex), ev , cd , st).

192 D. Marmsoler and B. Thornton

Fig. 3. Definition of Pfe(iv , st).

Equation 10 establishes the weakest precondition of invariant iv and error
predicate E for a transfer statement executed in state st . Again, Eq. 7 ensures
that the currently executing contract is the one we want to verify (on address
ad). In addition, Eq. 8 requires that the receiving contract is different from the
executing contract (because for self-transfers we have a different rule). Finally,
Eq. 9 requires the invariant to hold before the transfer statement is executed.
Again, we require that the invariant holds on a balance in which the value is
already deduced from the balance of the currently executing contract.

Pfi(pref , postf , st). This predicate establishes the weakest precondition for inter-
nal transfers. The rule is similar to Pfe, but since control is not passed on to an
external contract we may use pre-/post-conditions instead of an invariant. Thus,
the definition of Pfi is the same as that of Pfe (shown in Fig. 3) with the following
changes:

– Eq. 8 is changed to adv = ad.
– In Eq. 9 iv(. . .) is replaced with pref (sto(st)(ad), �acc(st)(ad)).
– In Eq. 10 iv(. . .) is replaced with postf (sto(st)(ad), �acc(st)(ad)).
Note that we require pref to hold for the original balance acc(st)(ad) and not
for the modified version as in Eq. 9. This is because an internal transfer does
not modify the current contract’s balance, because the amount is first deduced
from it but then added again.

SSCalc: A Calculus for Solidity Smart Contracts 193

Predicate Q. This predicate is defined as follows:

Q(i, p, p′, pf , p′
f , st) def= Qe(i, st) ∧ Qi(p, p′, st) ∧ Qfi(pf , p′

f , st) ∧ Qfe(pf , p′
f , st)

It denotes proof obligations for different types of methods.

Qe(iv , st). This predicate denotes proof obligations for external methods; that
is, it tells us what we need to verify to establish the weakest precondition of an
invariant for an external method. It is defined in Fig. 4 where ng is the updated
gas value gas(st ′) − costs(External(adex ,mid , xe, val), ev , cd , st ′), nev is a fresh
environment for the execution of the method body, and transfer(s, r, v, a) is used
to transfer funds of value v from sending address s to receiving address r for
accounts a.

Equation 15 shows the actual statement we need to verify, i.e., that the
weakest precondition of invariant iv and error predicate E for method body
f holds in state st ′ with gas g′′, accounts acc, stack kl, and memory ml. The
statement needs to be verified only for external methods invoked from a context
outside the contract to be verified. Thus, Eq. 11 requires that f is indeed the
body of an external method mid of the contract to be verified (contract) and
Eq. 12 ensures that the method is invoked from outside (i.e. an address different
from the contract to be verified).

To verify Eq. 15 we can assume that the invariant holds for the state in which
f will be executed (Eq. 14). This is because we know that the invariant holds
when control leaves the current contract. Thus, if another contract is to call back
into the current contract the invariant must still hold. Note, however, that the
invariant holds only on a modified balance for contract ad. This is because the
calling contract may send some funds v with the method call which are then
transferred to the receiving contract ad. Thus, since we know that the invariant
holds before transferring the funds, we need to deduce v from the balance of ad
after the transfer.

When verifying Eq. 15 we can also assume that the current level of
gas is less than or equal to the original amount of gas (Eq. 13). This is
an important property because it allows us to use all P predicates from
Wp_External_Invoke_Transfer, which, according to the rule, can only
be assumed for states with less or equal gas than the original state.

194 D. Marmsoler and B. Thornton

Fig. 4. Definition of Qe(iv , st).

Qi(pre, post , st). This predicate denotes proof obligations for internal methods,
i.e., it tells us what we need to verify to establish the weakest precondition of
a method’s postcondition from its precondition. In Fig. 5 ng is the updated gas
value gas(st ′)−costs(Invoke(i, xe), ev , cd , st ′) and nev is a fresh environment for
the execution of the method body.

Equation 20 states what we need to verify, i.e., that the weakest precondition
of the postcondition post(mid) associated with method mid and error predicate
E for method body f holds in state st ′ with gas g, stack kl, and memory ml.
The statement needs to be verified only for internal methods invoked from a
context inside the contract to be verified. Thus, Eq. 16 requires that f is indeed
the body of an internal method mid of the contract to be verified (contract) and
Eq. 17 ensures that the method is invoked from inside (i.e., from address ad).

Again, when verifying Eq. 20, we can assume that the available gas is less or
equal to the original amount of gas (Eq. 18). Moreover, we can also assume that
the methods precondition holds for the environment in which method body f
will be executed (Eq. 19). The statement needs to be verified only for external
methods invoked from a context outside the contract to be verified. Thus, Eq.
11 requires that f is indeed the body of an external method mid of the contract
to be verified (contract) and Eq. 12 ensures that the method is invoked from
outside (i.e., an address different from the contract to be verified).

Qfe(iv , st). This predicate denotes proof obligations to establish the weakest pre-
condition of an invariant for fallback methods executed as a result of an external

SSCalc: A Calculus for Solidity Smart Contracts 195

Fig. 5. Definition of Qi(pre, post , st).

transfer. It is defined in Fig. 6 where ng is the updated gas value gas(st ′)− c and
nev is a fresh environment for the execution of the fallback method.

Fig. 6. Definition of Qfe(iv , st).

Equation 24 states what we need to verify, i.e., that the weakest precondition
of the invariant iv and error predicate E for our contracts fallback method fb
holds in state st ′ with gas g′, a fresh stack and memory, and account acc. Since
it only needs to be verified for external transfers, Eq. 21 ensures that the transfer
statement is issued externally.

Again, when verifying Eq. 24, we can assume that the current level of gas
is less than or equal to the original level (Eq. 22). Moreover, we know that the
invariant holds when the transfer occurs. Thus, since the transfer adds v funds
to the balance of contract ad, we can assume that the invariant holds when we
deduce v again.

196 D. Marmsoler and B. Thornton

Qfi(pref , postf , st). This predicate denotes proof obligations for internal transfers,
i.e., it tells us what we need to verify to establish the weakest precondition of the
postcondition of the fallback method from its precondition. Its definition is similar
to that of Qfe, with modifications similar to those required for Pfi above.

4 Formalization in Isabelle/HOL

The complete calculus is formalized in Isabelle/HOL, and its soundness is
mechanically verified1 from our semantics.

4.1 Verification of Soundness

The verification of soundness of our rules is mostly standard, except for rule
Wp_External_Invoke_Transfer. In particular, external method calls and
transfer statements transfer control to another contract. Thus, we must ensure
that other contracts can never change the validity of an invariant. To this end,
we prove the following lemma:

∀st ′. address(ev) �= ad ∧ (25)
iv(sto(st)(ad), �acc(st)(ad)) ∧ (26)
stmt(f, ev , cd , st) = N((), st ′) ∧ (27)
∀st ′. gas(st ′) < gas(st) =⇒ Qe(iv , st ′) ∧ (28)
∀st ′. gas(st ′) < gas(st) =⇒ Qfe(iv , st ′) (29)
=⇒ iv(sto(st ′)(ad), �acc(st ′)(ad)) (30)

With this lemma we verified that an invariant iv for the storage and balance
of contract ad is preserved (Eq. 26 and Eq. 30) by the execution of arbitrary state-
ments f (Eq. 27) executed in a different context from that of ad (Eq. 25), given
that the external methods (Eq. 28) and the fallback method (Eq. 29) of contract
ad preserve the invariant. Equation 28 and Eq. 29 are particularly important here
because f may contain statements that call back to ad and thus execute code
that may potentially impact iv .

Since our semantics is formalized as a deep embedding in Isabelle/HOL, the
statement above can be easily proven by structural induction on f .

4.2 Automation

To support users in applying the calculus for the verification of Solidity smart
contracts we implemented a verification condition generator (VCG). The VCG
automates the use of the calculus and leaves the user with a so-called verification
condition that needs to be discharged to ensure the correctness of the contract.
The VCG is implemented in Isabelle/Eisbach [30] and consists of different meth-
ods to support the verification of different types of statements2.
1 Theory Weakest_Precondition.thy from the accompanying artefact [29].
2 Section “Verification Condition Generator” in Weakest_Precondition.thy [29].

SSCalc: A Calculus for Solidity Smart Contracts 197

5 Methodology

In the following section, we demonstrate our approach using a simple example. To
this end, consider the contract depicted in Listing 1.1, which stores an unsigned
integer x (and possibly other variables not shown). Moreover, it provides an
internal method int1, which calls an external method ext() of a contract with
address ad1 and sends 1 ether with it. It also provides another internal method
int2, which calls int1. In addition, it provides an external method ext, which
transfers 1 ether to a contract with address ad2 and another 1 ether to itself.
Finally, it also has a fallback method which does not have a name.

1 contract Example {
2 uint x;
3 ...
4 function int1(uint y, ...) internal {
5 ...
6 ad1.call.value(1 ether)(abi.encodeWithSignature("ext()"));
7 ...
8 }
9 function int2(int y,) internal {

10 ...
11 int1(5, ...);
12 ...
13 }
14 function ext() external {
15 ...
16 ad2.transfer(1 ether);
17 ...
18 address(this).transfer(1 ether);
19 ...
20 }
21 function () external payable {
22 ...
23 }
24 }

Listing 1.1. A simple example contract.

To verify the contract using our calculus, we first need to specify the following:

– An invariant : A predicate over the contract’s member variables (including,
for example, x) and the contract’s balance.

– Preconditions for internal methods int1 and int2: Predicates over the
method’s formal parameters (including, for example, y), the contract’s mem-
ber variables (including, for example, x), and the contract’s balance.

– Postconditions for internal methods int1 and int2: Predicates over the con-
tract’s member variables and the contract’s balance.

– A precondition and postcondition for the contract’s fallback method: A pred-
icate over the contract’s member variables and the contract’s balance.

198 D. Marmsoler and B. Thornton

We then need to verify the following:

– Executing the body of int1 (Ln. 5 - Ln. 7) in a state in which its precondition
holds, leads to a state in which its postcondition holds.

– Executing the body of int2 (Ln. 10 - Ln. 12) in a state in which its precon-
dition holds, leads to a state in which its postcondition holds.

– Executing the body of ext (Ln. 15 - Ln. 19) in a state in which the invariant
holds, leads to a state in which the invariant holds again.

– Executing the body of the fallback method (Ln. 22) in a state in which its
precondition holds, leads to a state in which its postcondition holds, and
executing the body in a state in which the invariant holds, leads to a state in
which the invariant holds again.

To verify the above proof obligations we can use the rules of the calculus and
the following assumptions:

– If the invariant holds before executing Ln. 6, then it holds also after executing
it.

– If the precondition associated with int1 holds before the execution of Ln. 11,
then the corresponding postcondition holds after executing Ln. 11.

– If the invariant holds before executing Ln. 16, then it holds also after executing
it.

– If the fallback methods precondition holds before the execution of Ln. 18,
then its postcondition holds after executing Ln. 18.

6 Case Study: Verified Banking

In the following, we use our calculus to verify a contract that implements a
simple banking system.

6.1 The Contract

The contract should allow users to deposit funds and later withdraw them. A
possible implementation is provided by the contract shown in Listing 1.2.

1 contract Bank {
2 mapping(address => uint256) balances;
3
4 function deposit() external payable {
5 balances[msg.sender] = balances[msg.sender] + msg.value;
6 }
7
8 function withdraw() external {
9 uint256 bal = balances[msg.sender];

10 balances[msg.sender] = 0;
11 msg.sender.transfer(bal);
12 }
13 }

Listing 1.2. A simple banking contract.

SSCalc: A Calculus for Solidity Smart Contracts 199

The contract has one member variable balances to keep track of all the
balances. Moreover, it provides two methods to deposit and withdraw funds.
When a contract calls deposit with some funds, the funds are transferred to
the Bank contract and the amount is kept in msg.value. Thus, method deposit
simply adds the value to the balance of the calling contract to keep track of how
much each contract contributed to the funds of the banking contract. A contract
can call withdraw to get its funds back. To this end, the banking contract first
sets the caller’s internal balance to 0 (Ln. 10) and then returns the corresponding
funds (Ln. 11). Note that it is important to first update the internal balance
before transferring the money. Thus, the contract is secure against so-called
re-entrancy attacks [4]. However, the question remains whether the contract is
indeed functionally correct or if it is exposed to other vulnerabilities.

6.2 Formalizing the Contract

To answer this question, we first need to formalize the contract in our semantics.
To this end, we need to provide definitions for the parameters of our calculus
described at the beginning of Sect. 3:

contract =

⎧⎪⎨
⎪⎩

“balances” �→ Var(STMap(TAddr,STValue(TUInt(256))))
“deposit” �→ Method([],True,deposit)
“withdraw” �→ Method([],True,withdraw)

fb = Skip

The contract is formalized as a mapping from identifiers to corresponding
members. While “balances” refers to a variable, “deposit” and “withdraw” refer
to external methods with body deposit and withdraw defined as in Listing 1.2.
The contract does not define a fallback method; thus fb is defined as Skip.

6.3 Specification of Properties

The property we want to verify for our contract is that the relationship between
the sum of all stored balances and the internal balance of the contract is preserved
through the execution of each external method.

Thus, we first formalize the following invariant:

iv(bal , s, a) def= a − sum(s) ≥ bal ∧ bal ≥ 0 ∧ pos(s)

sum(s) def=
∑

{(ad,x) | s(ad+“.”+“balances”)=x⊥}
�x

pos(s) def= ∀ad , x. s(ad + “ .” + “balances”) = x⊥ =⇒ �x ≥ 0

The important part here is the first conjunction in the definition of iv: a −
sum(s) ≥ bal . Here, a represents the funds available to our banking contract
and sum(s) represents the sum of all its stored balances. Thus, the formula

200 D. Marmsoler and B. Thornton

requires that the difference between these two balances is bound by a certain
value bal .

Now, we can formalize the properties thst we want to verify using the Hoare
triple notation introduced in Sect. 3:

{I} stmt(External(Address(ad), “deposit” , [], val), env , cd) {I}{E}
{I} stmt(External(Address(ad), “withdraw” , [], val), env , cd) {I}{E}

where I((a,_,_, s)) def= iv(bal , s(ad), �a(ad)), E(e) def= e = Gas∨e = Err,
and address(env) �= ad.

6.4 Verification

As discussed in Sect. 3.2, Solidity implicitly triggers the execution of a so-called
fallback method whenever money is transferred to a contract. In particular, if
another contract calls withdraw, the transfer statement in Ln. 11 of Listing 1.2
triggers the execution of the callee’s fallback method. Thus, as we do not know
all potential contracts that call withdraw, we need to verify the invariant for all
possible implementations.

To evaluate our approach, we verified the above property twice: from its
semantics without using the calculus [28], and using our calculus [29]. Without
the calculus, verifying the above property required ca. 3 250 lines of Isabelle/Isar
code. Using the calculus reduced it to ca. 700 lines.

7 Related Work

Since Solidity is the most popular language for developing smart contracts there
has been growing interest in formalizing its semantics. Bhargavan et al. [10],
for example, provide a semantics of Solidity in F*. Crosara et al. [16] describe
an operational semantics for a subset of Solidity. Hajdu and Jovanovic [21],
provide a formalization of Solidity in terms of a simple SMT-based intermediate
language. In addition, Zakrzewski [44] describes a big-step semantics of a small
subset of Solidity and Yang and Lei [41] describe a formalization of a subset
of Solidity in Coq [37]. Moreover, Jiao et al. [22,23], provide a formalization of
Solidity in K. Finally, Cassez et al. [11] provide an implementation of Solidity
in Dafny. All of these works provide important contributions towards a better
understanding of Solidity. The focus of our work was to provide a framework for
the verification of smart contracts written in Solidity and while it is possible to
verify them directly from the semantics it is often tedious and difficult.

Another line of research has focused on the development of automatic ver-
ification techniques for Solidity programs. For example, Mavridou et al. [31]
provide an approach based on FSolidM [32], in which a Solidity smart contract
is modeled as a state machine to support model checking of common security
properties. In addition, Hajdu and Jovanovic [20] provide solc-verify, a modular
verifier for Solidity smart contracts. Work in this area usually focuses on the

SSCalc: A Calculus for Solidity Smart Contracts 201

automatic verification of different aspects of Solidity programs and can not be
used to verify general functional correctness, which is the focus of our work.

Finally, some research has focused on the verification of functional correctness
of Solidity programs. Early work in this area includes TinySol [7] and Feather-
weight Solidity [15], two calculi formalizing some of the core features of Solidity.
More recently, Ahrendt and Bubel described SolidiKeY [1], a formalization of a
subset of Solidity in the KeY tool to verify data integrity for smart contracts.
Similar to our work, research in this area can be used to verify the functional
correctness of Solidity contracts. However, the above works differ from the work
presented in this paper in two main aspects. First, the rules described above are
provided in the form of axioms rather than being derived from a formal semantic,
as is the case with our work. Second, the above works focus on a restricted subset
of Solidity. For example, none of the works consider fixed-size integers, different
types of stores with different semantics for assignments, or external vs. internal
method calls, which are key features of Solidity addressed by our calculus.

8 Conclusion

In this paper, we presented a framework for the verification of Solidity smart
contracts in Isabelle/HOL. To this end, we developed a calculus to reason about
Solidity statements, formalized it in Isabelle, and mechanically verified its sound-
ness. In addition, we developed a verification condition generator that auto-
mates the use of the calculus. To evaluate the approach, we used it to verify a
basic token in Solidity, which showed that the calculus can significantly reduce
the effort to verify Solidity smart contracts compared to a verification from its
semantics.

While our calculus supports most of the important features of Solidity there
are still some more advanced features of the language that are not yet supported.
In particular, the calculus does not yet support inheritance, which seems to be
an important feature for Solidity developers. Moreover, although our case study
demonstrates the feasibility of our approach it is not clear how well it can be
generalized to the verification of other contracts.

To address the above limitations, future work arises in two directions. First,
future work should extend the calculus to support more advanced features of
Solidity, such as inheritance. In addition, future work should also focus on con-
ducting additional case studies in which the calculus is used for the verification
of additional contracts.

Availability. Our formalisation and the evaluation results are available under
BSD license (SPDX-License-Identifier: BSD-2-Clause) [29].

Acknowledgements. We would like to thank Achim Brucker for his support with
Isabelle. Moreover, we would like to thank Wolfgang Ahrendt and Richard Bubel for
inspiring discussions about the verification of Solidity contracts.

202 D. Marmsoler and B. Thornton

References

1. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp.
9–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6_2

2. Almakhour, M., Sliman, L., Samhat, A.E., Mellouk, A.: Verification of smart con-
tracts: a survey. Pervas. Mob. Comput. 67, 101227 (2020). https://doi.org/10.
1016/j.pmcj.2020.101227

3. Apt, K.R., de Boer, F., Olderog, E.R.: Verification of Sequential and Concur-
rent Programs, 3rd edn. Springer, London (2009). https://doi.org/10.1007/978-1-
84882-745-5

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6_8

5. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: using blockchain for
medical data access and permission management. In: 2016 2nd International Con-
ference on Open and Big Data (OBD), pp. 25–30 (2016). https://doi.org/10.1109/
OBD.2016.11

6. Bahrynovska, T.: History of Ethereum Security Vulnerabilities, Hacks and Their
Fixes. https://applicature.com/blog/blockchain-technology/history-of-ethereum-
security-vulnerabilities-hacks-and-their-fixes. Accessed 18 Apr 2023

7. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for solidity con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 233–243. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9_15

8. Batra, G., Olson, R., Pathak, S., Santhanam, N., Soundararajan, H.: Blockchain
2.0: what’s in store for the two ends? https://www.mckinsey.com/industries/
industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-
two-ends-semiconductors-suppliers-and-industrials-consumers. Accessed 18 Apr
2023

9. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — Lessons learned in
formal-logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A.,
Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48256-3_3

10. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
gramming Languages and Analysis for Security, pp. 91–96. PLAS, ACM (2016).
https://doi.org/10.1145/2993600.2993611

11. Cassez, F., Fuller, J., Quiles, H.M.A.: Deductive verification of smart contracts
with dafny. In: Groote, J.F., Huisman, M. (eds.) Formal Methods for Industrial
Critical Systems, pp. 50–66. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-15008-1_5

12. Chavez-Dreyfuss, G.: Sweden tests blockchain technology for land registry. https://
www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV. Accessed 18
Apr 2023

13. Clegg, P., Jevans, D.: Cryptocurrency crime and anti-money laundering report.
Tech. rep, CipherTrace (2021)

14. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71067-7_16

https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/OBD.2016.11
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://doi.org/10.1007/978-3-030-31500-9_15
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/blockchain-2-0-whats-in-store-for-the-two-ends-semiconductors-suppliers-and-industrials-consumers
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1007/978-3-031-15008-1_5
https://doi.org/10.1007/978-3-031-15008-1_5
https://www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
https://www.reuters.com/article/us-sweden-blockchain-idUSKCN0Z22KV
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-3-540-71067-7_16

SSCalc: A Calculus for Solidity Smart Contracts 203

15. Crafa, S., Di Pirro, M., Zucca, E.: Is solidity solid enough? In: Bracciali, A., Clark,
J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 138–
153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1_11

16. Crosara, M., Centurino, G., Arceri, V.: Towards an operational semantics for solid-
ity. In: van Rooyen, J., Buro, S., Campion, M., Pasqua, M. (eds.) VALID, pp. 1–6.
IARIA (2019)

17. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

18. Ethereum: Solidity. https://docs.soliditylang.org/. Accessed 24 May 2023
19. Gartner. Forecast blockchain business value, worldwide (2019). https://www.

gartner.com/en/documents/3627117. Accessed 04 May 2023
20. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for solidity smart con-

tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3_11

21. Hajdu, Á., Jovanovic, D.: Smt-friendly formalization of the Solidity memory model.
In: Müller, P. (ed.) ESOP. LNCS, vol. 12075, pp. 224–250. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44914-8_9

22. Jiao, J., Kan, S., Lin, S.W., Sanan, D., Liu, Y., Sun, J.: Semantic understanding
of smart contracts: executable operational semantics of Solidity. In: SP, pp. 1695–
1712. IEEE (2020)

23. Jiao, J., Lin, S.-W., Sun, J.: A generalized formal semantic framework for smart
contracts. In: FASE 2020. LNCS, vol. 12076, pp. 75–96. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45234-6_4

24. Kelly, J.: Banks adopting blockchain ‘dramatically faster’ than expected:
IBM. https://www.reuters.com/article/us-tech-blockchain-ibm-idUSKCN11Y28D
(2016). Accessed 04 May 2023

25. Llama, D.: Tvl breakdown by smart contract language. https://defillama.com/
languages (2022)

26. Marmsoler, D., Brucker, A.D.: A denotational semantics of solidity in
Isabelle/HOL. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol.
13085, pp. 403–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92124-8_23

27. Marmsoler, D., Brucker, A.D.: Conformance testing of formal semantics using
grammar-based fuzzing. In: Kovács, L., Meinke, K. (eds.) Tests and Proofs, pp.
106–125. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09827-7_7

28. Marmsoler, D., Brucker, A.D.: Isabelle/solidity: a deep embedding of solidity in
isabelle/hol. Archive of Formal Proofs (2022). https://isa-afp.org/entries/Solidity.
html. Formal proof development

29. Marmsoler, D., Thornton, B.: SSCalc - A Calculus for Solidity Smart Contracts
(2023). https://doi.org/10.5281/zenodo.7846232

30. Matichuk, D., Wenzel, M., Murray, T.: An Isabelle proof method language. In:
Klein, G, Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 390–405. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_25

31. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: correct-by-design
smart contracts for Ethereum. In: FC (2019)

32. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS,
vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6_11

https://doi.org/10.1007/978-3-030-43725-1_11
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://docs.soliditylang.org/
https://www.gartner.com/en/documents/3627117
https://www.gartner.com/en/documents/3627117
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.1007/978-3-030-45234-6_4
https://www.reuters.com/article/us-tech-blockchain-ibm-idUSKCN11Y28D
https://defillama.com/languages
https://defillama.com/languages
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-031-09827-7_7
https://isa-afp.org/entries/Solidity.html
https://isa-afp.org/entries/Solidity.html
https://doi.org/10.5281/zenodo.7846232
https://doi.org/10.1007/978-3-319-08970-6_25
https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-319-89722-6_11

204 D. Marmsoler and B. Thornton

33. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
34. News, B.: Hackers steal $600m in major cryptocurrency heist (2021). https://

www.securityweek.com/hackers-steal-over-600m-major-crypto-heist. Accessed 04
May 2023

35. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic (2002)

36. Perez, D., Livshits, B.: Smart contract vulnerabilities: vulnerable does not imply
exploited. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 1325–
1341. USENIX Association (2021)

37. The COQ Development Team. The COQ proof assistant reference manual. LogiCal
Project (2004). version 8.0

38. TNW. These are the top 10 programming languages in blockchain (2019). https://
thenextweb.com/news/javascript-programming-java-cryptocurrency. Accessed 04
May 2023

39. Vogelsteller, F., Buterin, V.: “erc-20: token standard", ethereum improvement pro-
posals, no. 20 (2015). https://eips.ethereum.org/EIPS/eip-20

40. Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Program Design
Calculi, pp. 233–264. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-
662-02880-3_8

41. Yang, Z., Lei, H.: Lolisa: Formal syntax and semantics for a subset of the solid-
ity programming language in mathematical tool COQ. Math. Probl. Eng. 2020,
6191537 (2020)

42. YCharts.com. Ethereum transactions per day (2022). https://ycharts.com/
indicators/ethereum_transactions_per_day. Accessed 04 May 2023

43. Yurcan, B.: How blockchain fits into the future of digital identity (2016)
44. Zakrzewski, J.: Towards verification of Ethereum smart contracts. In: Piskac, R.,

Rümmer, P. (eds.) VSTTE. LNCS, vol. 11294, pp. 229–247. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03592-1_13

https://www.securityweek.com/hackers-steal-over-600m-major-crypto-heist
https://www.securityweek.com/hackers-steal-over-600m-major-crypto-heist
https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://eips.ethereum.org/EIPS/eip-20
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
https://ycharts.com/indicators/ethereum_transactions_per_day
https://ycharts.com/indicators/ethereum_transactions_per_day
https://doi.org/10.1007/978-3-030-03592-1_13

ATM: A Logic for Quantitative Security
Properties on Attack Trees

Stefano M. Nicoletti1(B) , Milan Lopuhaä-Zwakenberg1 ,
Ernst Moritz Hahn1 , and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, the Netherlands
{s.m.nicoletti,m.a.lopuhaa,e.m.hahn,m.i.a.stoelinga}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. Critical infrastructure systems—for which high reliability
and availability are paramount—must operate securely. Attack trees
(ATs) are hierarchical diagrams that offer a flexible modelling language
used to assess how systems can be attacked. ATs are widely employed
both in industry and academia but—in spite of their popularity—little
work has been done to give practitioners instruments to formulate queries
on ATs in an understandable yet powerful way. In this paper we fill this
gap by presenting ATM, a logic to express quantitative security proper-
ties on ATs. ATM allows for the specification of properties involved with
security metrics that include “cost”, “probability” and “skill” and permits
the formulation of insightful what-if scenarios. To showcase its poten-
tial, we apply ATM to the case study of a CubeSAT, presenting three
different ways in which an attacker can compromise its availability. We
showcase property specification on the corresponding attack tree and we
present theory and algorithms—based on binary decision diagrams—to
check properties and compute metrics of ATM-formulae.

1 Introduction

Critical infrastructure systems—for which high reliability and availability are
paramount—must operate securely.Attack trees (ATs) [54] are a flexiblemodelling
language used to assess how systems can be attacked. They operate by decompos-
ing the attacker’s goal into intermediate elements and basic attack steps that a
malicious actor can take to reach said objective. ATs are widely employed both in
industry and academia but—in spite of their popularity—little work has been done
to give practitioners instruments to formulate queries on ATs in an understand-
able yet powerful way. In this paper, we fill this gap by presenting a logic to express
quantitative Metrics on ATs (ATM). ATM is a powerful language able to formulate
structural queries on ATs that consider quantitative security properties, or secu-
ritymetrics, such as “cost” of an attack, “probability” of getting attacked and “skill”
of a malicious actor. The ability to formulate these queries is essential to provide

This work was partially funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
101008233, and the ERC Consolidator Grant 864075 (CAESAR).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 205–225, 2023.
https://doi.org/10.1007/978-3-031-47115-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_12&domain=pdf
http://orcid.org/0000-0001-5522-4798
http://orcid.org/0000-0001-5687-854X
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-47115-5_12

206 S. M. Nicoletti et al.

practitioners with an instrument to analyse what-if scenarios and to propel a more
quantitatively-informed decision making process.

Fig. 1. Nodes in an
attack tree.

Attack Trees. Attack trees (ATs) are hierarchical
diagrams that represent various ways in which a sys-
tem can be compromised [42,54]. Due to their pop-
ularity, ATs are referred to by many system engi-
neering frameworks, e.g. UMLsec [35] and SysMLsec
[3,53], and are supported by industrial tools such as
Isograph’s AttackTree [31]. The root—or top level event (TLE)—of an AT rep-
resents the attacker’s goal, and the leaves represent basic attack steps (BASes):
actions of the attacker that can no longer be refined. Intermediate nodes are
labeled with gates (see Fig. 1) that determine how basic actions of the attacker
can propagate to reach higher-complexity elements in the attack. ATs that do
not capture dynamic behaviours present only OR and AND gates—we call these
static attack trees (SATs)—but many extensions exist to model more elaborate
attacks. To build a solid and modular foundation for our framework, this paper
focuses on SATs. It is important to note that—despite their name—ATs can be
directed acyclic graphs (DAGs), i.e., graphs in which a node may have multiple
parents. Them being DAGs or tree-structured has consequences on computa-
tions [42].

Example 1. Consider the AT in Fig. 2 (excerpt from Fig. 6). This AT represents
different attacks to get access to the ground station database of a CubeSAT as
admin. The TLE of this sub-tree is represented by the ADA AND-gate. For the
attacker to reach ADA, they have to both gain access—the GA AND-gate —
and escalate privileges—the EP OR-gate. Each of these gates is then refined
by BASes: to gain access, an attacker must perform information gathering and
a successful phishing attack—the IGP BAS—and login to the ground station
database using phished credentials—the LDG BAS. In addition, they have to
either leverage misconfigurations—the LM BAS—or exploit vulnerabilities—the
EV BAS—to escalate privileges. Note that IGP is represented here as a BAS
but is further refined as an additional sub-tree in Fig. 6.

Fig. 2. AT modelling access to ground station
DB of a CubeSAT (excerpt from Fig. 6).

Metrics on Attack Trees. ATs
are often studied via quantitative
analysis, during which they are
assigned a wide range of security
metrics [15,42]. Such metrics are
key performance indicators that
formalize how well a system per-
forms in terms of security and are
essential when comparing alterna-
tives or making trade-offs. Typi-
cal examples of such metrics are the minimal time [5,38,39,43], minimal cost [4],
or maximal probability [33] of a successful attack (see Table 1 for more exam-
ples).

ATM: A Logic for Quantitative Security Properties on Attack Trees 207

1.1 Our Approach

A Logic for Attack Trees Metrics (ATM). To perform quantitatively
informed decision making w.r.t. security of systems, practitioners need the abil-
ity to analyse their models in a meaningful and thorough way. As such, they
must be able to formulate meaningful queries and meaningful what-if scenarios.
To cater for this need, this paper presents ATM, a logic for general Metrics on
Attack Trees. ATM is a flexible language used to specify properties that take
metrics such as “cost”, “skill” and “probability” into account directly on ATs.
ATM is structured on four layers: these allow practitioners a) to reason about
successful/unsuccessful attacks; b) to check whether metrics, such as the cost,
are bounded by a given value on single attacks; c) to compute metrics for a class
of attacks and d) to perform quantification.

Attack Trees in Practice. To offer a concrete example, we utilise ATM to
specify some properties on the AT model of a CubeSAT [32,46] from the liter-
ature [22] (see Fig. 6). This model exemplifies the effect of a security threat for
the availability of a system by showcasing three ways in which a malicious actor
could attack a CubeSAT: performing a denial of service attack, tampering with
data on the database of the ground station or killing radio communications on
the satellite. Our logic can be used to specify properties on the corresponding
AT and to check whether the system under examination exhibits desired char-
acteristics. Is it necessary to leverage misconfigurations to perform a successful
attack on CubeSAT’s communications? Is there an attack that ensures success-
ful access to the ground station database while keeping the cost under a certain
threshold? Is there an attack that ensures data tampering without exploiting
vulnerabilities in the ground station system? These are some of the properties
that one could specify and check in the framework we present.

Model Checking Algorithms. In addition, we present model checking algo-
rithms to check properties specified with ATM and to efficiently compute metrics
that appear in these properties. In particular, we provide algorithms to a) check
whether an AT and an attack satisfy a formula; b) compute all attacks that sat-
isfy an AT and a formula; c) check whether the metric of a formula is bounded
by a user-specified threshold; d) compute the metric value of formulae and e)
check whether a quantified ATM-formula holds true. Building on previous work
in the field [15,42,47,48], all these algorithms are based on construction and
manipulation of binary decision diagrams (BDDs). This translation to BDDs
constitutes a formal ground to address algorithmic procedures while integrating
novel work presented in this paper with previously introduced frameworks.

208 S. M. Nicoletti et al.

Contributions. To summarize, in this work:
1. We develop ATM, a logic to reason about general metrics on ATs. ATM allows

for the specification of metrics properties that include “cost”, “proability” and
“skill” and for the formulation of insightful what-if scenarios.

2. We showcase ATM by applying it to the case study of a CubeSAT and by
exemplifying properties specification.

3. We propose novel algorithms based on BDDs to perform model checking and
to compute metrics on properties specified using ATM.

1.2 Related Work

Numerous logics describe properties of state transition systems, such as labelled
transition systems (LTSs) and Markov models, e.g., CTL [18], LTL [50], and their
variants for Markov models, PCTL [28] and PLTL [49]. State-transition systems
are usually not written by hand, but are the result of the semantics of high-level
description mechanisms, such as AADL [12], the hardware description language
VHDL [20] or model description languages such as JANI [14] or PRISM [41].
Consequently, these logics are not used to reason about the structure of such
models (e.g. the placement of circuit elements in a VHDL model or the structure
of modules in a PRISM model), but on the temporal behaviour of the underlying
state-transition system. Similarly the majority of related work [9,11,55,56] on
model checking on fault trees (FTs)—the safety counterpart of ATs—exhibits
significant differences: these works perform model checking by referring to states
in the underlying stochastic models, and properties are formulated in terms of
these stochastic logics, not in terms of events in the given FT. In [57], the author
provides a formulation of Pandora, a logic for the qualitative analysis of temporal
FTs. In [27] the authors investigate how fault tree analysis (FTA) results can
be linked to software safety requirements by proposing the same system model
for both. They introduce a duration calculus based on discrete time interval
logic (ITL) [45] to give FTs formal semantics. In [47,48] the authors present
BFL—a logic on FTs that reasons about them in Boolean terms—and PFL—its
probabilistic counterpart. Our work is aligned in intentions to the latter two, as
we develop a logic directly on ATs. However, where they reason on FTs only in
Boolean or probabilistic terms, our work exhibits a broader scope by allowing for
more general queries on an ample class of security metrics. Regarding AT metrics,
a seminal paper by Mauw & Oosdijk [44] shows that metrics can be computed
for static ATs in a bottom-up fashion. Furthermore, [16,34] are among the first
to model and compute the cost and probability of attacks. In [38,39] an attack
is moreover characterised by the time it takes. In the related literature, most
works are on static ATs, with the relevant exception of [5,15,25,33,42] which
include sequential-AND gates. However, for static ATs the algorithmic spectrum
remains broader [42]. Such algorithms range from classical BDD encodings for
probabilities, and extensions to multi-terminal BDDs, to logic-based semantics
that exploit DPLL, including an encoding of SATs as generalised stochastic Petri
nets. Prominent contributions are [10] and [37, Alg. 1]: after computing so-called

ATM: A Logic for Quantitative Security Properties on Attack Trees 209

optional and necessary clones, computations are exponential on the number of
shared BAS (only). A thorough analysis of the literature on metrics computation
for ATs can be found in [15,42]. These two contributions provide efficient and
general algorithms to compute security metrics on ATs. We choose to adhere to
their perspective on metrics computations as it subsumes and generalizes most
of the already available literature.

Structure of the Paper. Section 2 covers background on ATs, Sect. 3 presents
syntax and semantics for ATM, Sect. 4 showcases an application of ATM to a
CubeSAT AT, Sect. 5 presents model checking algorithms for ATM−formulae
and Sect. 6 concludes the paper and discusses future work.

2 Attack Trees

Definition 1. An attack tree (AT) T is a tuple (N,E, t) where (N,E) is a
rooted directed acyclic graph, and t : N → {OR, AND, BAS} is a function such that
for v ∈ N , it holds that t(v) = BAS if and only if v is a leaf.

Moreover, ch : N → P(N) gives the set of children of a node and T has a
unique root, denoted RT . The subindex T is omitted if no ambiguity arises,
e.g. an attack tree T = (N, t , ch) defines a set BAS ⊆ N of basic attack steps.
If u ∈ ch(v) then u is called a child of v, and v is a parent of u. We let v =
AND(v1, . . . , vn) if t(v) = AND and ch(v) = (v1, . . . , vn), and analogously for OR,
denoting ch(v) = {v1, . . . , vn}. Furthermore, we denote the universe of ATs by
T and call T ∈ T tree-structured if for any two nodes u and v none of their
children is shared, else we say that T is DAG-structured. If only AND- and
OR-gates (or their derivatives) are present we say that T is a static attack tree
(SAT). In this paper we focus our attention on SATs and thus use the term
ATs interchangeably to denote them. The semantics of a AT is defined by its
successful attack scenarios, in turn given by its structure function. First, the
notion of attack is defined:

Definition 2. An attack scenario, or shortly an attack, of a static AT T is
a subset of its basic attack steps: A ⊆ BAST . We denote by AT = 2BAST the
universe of attacks of T . We omit the subscript when there is no confusion.

The structure function fT (v, A) indicates whether the attack A ∈ A succeeds at
node v ∈ N of T . For Booleans we adopt B = {1, 0}.

Definition 3. The structure function fT : N ×A → B of a static attack tree T
is given by:

fT (v, A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if t(v) = OR and ∃u ∈ ch(v).fT (u, A) = 1,

1 if t(v) = AND and ∀u ∈ ch(v).fT (u, A) = 1,

1 if t(v) = BAS and v ∈ A,

0 otherwise.

210 S. M. Nicoletti et al.

Fig. 3. All minimal attacks for AT T mod-
elling access to ground station DB of a Cube-
SAT (excerpt from Fig. 6).

An attack A is said to reach a node
v if fT (v, A) = 1, i.e. it makes
v succeed. If no proper subset of
A reaches v, then A is a mini-
mal attack on v. The set of min-
imal attacks on v is denoted �v�.
We define fT (A)

.= fT (RT , A), and
attacks that reach RT are called
succesful w.r.t. T. Furthermore, the
minimal attacks on RT (i.e. the minimal successful attacks) are called minimal
attacks. ATs are coherent [6], meaning that adding attack steps preserves suc-
cess: if A is successful then so is A ∪ {a} for any a ∈ BAS. Thus, the suite of
successful attacks of an AT is characterised by its minimal attacks.

Definition 4. The semantics of an AT T is its suite of minimal attacks �T �.

Example 2. Consider the AT in Fig. 3 representing ways to access the ground
station database of a CubeSAT as admin: its suite of minimal attacks consists
of {{IGP,LDG,LM}, {IGP,LDG,EV}}. That is, to mount a minimal attack
a malicious actor needs to gain access performing information gathering and
phishing IGP—a BAS that is further refined in Fig. 6—and by logging into
the DB of the ground station; to then either leverage misconfigurations LM
or exploit vulnerabilities EV in the DB software to gain admin privileges. A
non-minimal attack on this AT would include both LM and EV.

2.1 Security Metrics for Attack Trees

Security metrics—such as the minimal time and cost among all attacks—are
essential to perform quantitative analysis of systems and to support more
informed decision making processes. To enable this, i.e. computing security met-
rics, we adopt the well-established semiring framework. Semirings have vast
applicability potential [26] and have been successfully used to construct attribute
domains on ATs [15,30,36,42]. In this paper, we formulate linearly ordered unital
semiring attribute domains where V is the value domain, � is an operator to
combine values of BASes in an attack, � is an operator to combine values of dif-
ferent attacks and � is an order to compare values. These linearly ordered unital
semiring attribute domains provide a convenient way to define an ample class of
metrics including “min cost”, “min time”—both with parallel or sequential attack
steps—“min skill” and “discrete probability”.

Definition 5. A linearly ordered unital semiring attribute domain (simply
attribute domain or LOAD from now on) is a tuple L = (V,�,�, 1�, 1�,�)
where:

– V is a set;
– �,� : V 2 → V are commutative, associative binary operations on V ;
– � distributes over �, i.e., x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ V ;

ATM: A Logic for Quantitative Security Properties on Attack Trees 211

– � is absorbing w.r.t. �, i.e., x � (x � y) = x for all x, y ∈ V ;
– 1� and 1� are unital elements, i.e., 1� � x = 1� � x = x for all x ∈ V ;
– � is a linear order on V .

As anticipated, many relevant metrics for security analyses on ATs can be
formulated as attribute domains. Table 1 shows examples, where N∞ = N∪{∞}
includes 0 and ∞.

Example 3. An example of a LOAD is (N∞,min,+,∞, 0,≤). Indeed, min and
+ are commutative, associative operations on N∞. The distributive property
amounts to the fact that x+min(y, z) = min(x + y, x + z), while the absorbing
property can be stated as min(x, x + y) = x. The units are given by 1min = ∞
and 1+ = 0, and ≤ is a linear order on N∞. As we will discuss in Example 4,
this LOAD corresponds to the min cost metric on ATs.

Table 1. AT metrics with attribute domains.

Metric V � � 1� 1� �
min cost N∞ min + ∞ 0 ≤
min time (sequential) N∞ min + ∞ 0 ≤
min time (parallel) N∞ min max ∞ 0 ≤
min skill N∞ min max ∞ 0 ≤
discrete prob [0, 1] max · 0 1 ≤

It is important to note
that derived metrics such
as stochastic analyses and
Pareto frontiers can be rep-
resented by semirings. How-
ever, they do not fit in
this framework not being
LOADs [42]. Moreover, some
meaningful metrics—like the
cost to defend against all
attacks—do fall outside this category [42]. To render this framework functional,
all BASes of ATs are enriched with attributes. More precisely, first an attribu-
tion α assigns a value to each BAS; then a security metric α̂ assigns a value
to each attack scenario; and finally the metric qα assigns a value to the set of
minimal attacks. We then refer to LOADs to define AT metrics. Given a LOAD
(V,�,�, 1�, 1�,�) we assign to each BAS a an attribute value α(a) ∈ V . The
operators �,� are then used to define a metric value for T as follows:

Definition 6. Let T be an AT and let L = (V,�,�, 1�, 1�,�) be a LOAD.

1. An attribution on T with values in L is a map α : BAST → V ;
2. Given such α, define the metric value of an attack A by

α̂(A) =
�

a∈A

α(a);

3. Given such α, define the metric value of T by

qα(T) =
�

A∈�T �

α̂(A) =
�

A∈�T �

�

a∈A

α(a).

Example 4. Consider L from Example 3 representing the metric min cost, and
let T be the AT in Fig. 4. To each BAS we attach a cost value, given by the
attribution α : BAST → V given by {IGP �→ 15,LDG �→ 2,LM �→ 7,EV �→ 9}.

212 S. M. Nicoletti et al.

As in Example 2, T has two minimal attacks, A1 = {IGP,LDG,LM} and A2 =
{IGP,LDG,EV}. Since � = +, We have α̂(A1) = α(IGP)+α(LDG)+α(LM) =
15 + 2 + 7 = 24; this is the cost an attacker needs to spend to perform attack
A1. Similarly one finds α̂(A2) = 15 + 2 + 9 = 26. We then calculate qα(T) =
min(α̂(A1), α̂(A2)) = 24. Indeed, the minimal cost incurred by an attacker to
succesfully attack the system is by performing the cheapest minimal attack,
which is A1.

Fig. 4. Computing min cost for T : AT for accessing a ground
station DB of a CubeSAT (excerpt from Fig. 6).

When computing mul-
tiple metrics on a
given AT, one can
resort to multiple
LOADs and coher-
ently chosen attribu-
tions over its BASes.
We thus define such
a tree as follows:

Definition 7. An attributed AT is a tuple T = (T,L , a) where: 1. T is an
attack tree; 2. L = {L1, . . . , Ll} is a set of LOADs; 3. a = {αi}l

i=1 is a set of
attributions on T , where each αi takes values in Li.

Although in this paper we calculate metrics by considering all minimal attacks—
coherently with [15,42]—one could also simply consider all successful attacks.
For metrics obtained from LOADs this does not make a difference: for example,
the successful attack with minimal cost will always be a minimal attack, since
adding BASes can only increase the cost. Therefore, in the calculation of min
cost we may as well take the minimum over all successful attacks, rather than
just minimal attacks.

3 A Logic for at General Metrics

3.1 Syntax of ATM

Below, we present ATM, a logic for general Metrics on Attack Trees. ATM shares
the objective of developing a language directly on tree-shaped models with [47,
48]. However, it extends the scope of these works to the security domain and
allows for property specification that consider a large class of security metrics.
The syntax of ATM is structured on four layers. The first layer, φ, reasons about
the status of elements in an AT. Atomic formulae e represent BASes and IEs in
an AT and they can be combined with usual Boolean connectives. Furthermore,
we can forcefully set the value of an element in a layer 1 formula to either 0 or
1 with φ[e �→ 0] and φ[e �→ 1]. With MA(φ) we can check whether an attack is
a minimal attack, i.e., a minimal attack successful for a given φ. Layer two and
three reason about metrics. Layer 2 formulae allow the user to check whether a
given metric on a φ formula is bounded by m (Mk(φ) �k m) and to forcefully

ATM: A Logic for Quantitative Security Properties on Attack Trees 213

set the attribution of a given e ∈ ψ to an appropriate value ν (ψ[e k�→ ν]).
Boolean connectives are also allowed. Layer 3 formulae also allow the setting of
attributions but simply return the value of a calculated metric (Vk(φ)). Note
that for the layer 1, layer 2 and layer 3 formulae we usually assign values with
�→ to e ∈ BAS. We can however assign values to IEs if 1. e is a module [21], i.e.,
all paths between descendants of e and the rest of the AT pass through e 2. and
none of the descendants of e are present in the formula. If so, we prune that
(sub-)AT and treat occurring IEs as BASes. Finally, layer 4 formulae allow us to
perform quantification over layer 1 and layer 2 formulae. Given a set of LOADs
L = {L1, . . . , Ll} with Lk ∈ L and m ∈ V k the syntax is defined as follows:

Layer 1: φ ::= e | ¬φ | φ ∧ φ | φ[e �→ 0] | φ[e �→ 1] | MA(φ)

Layer 2: ψ ::= ¬ψ | ψ ∧ ψ | Mk(φ) �k m | ψ[e k�→ ν]

Layer 3: ξ ::= Vk(φ) | ξ[e k�→ ν]
Layer 4: γ ::= ¬γ | ∃(φ ∧ ψ) | ∀(φ ∧ ψ)

Syntactic Sugar. We define the following derived operators, where formulae θ
are either layer 1 or layer 2 formulae.

θ1 ∨ θ2 ::=¬(¬θ1 ∧ ¬θ2) θ1 �⇔ θ2 ::=¬(θ1 ⇔ θ2)
θ1 ⇒ θ2 ::=¬(θ1 ∧ ¬θ2) MD(φ) ::=MA(¬φ)
θ1 ⇔ θ2 ::= (θ1 ⇒ θ2) ∧ (θ2 ⇒ θ1)

where MD(φ) checks whether A is a minimal defence w.r.t. φ, i.e., a set that
guarantees that φ is not reached.

3.2 Semantics of ATM

The semantics for our logic reflect objects needed to evaluate the four syntactical
layers. For the first layer of ATM, formulae are evaluated on an attack A and on
a tree T. Atomic formulae e are satisfied by A and T if the structure function in
Definition 3 returns 1 with A and e as input. Formally:

A,T |= e iff fT (e, A) = 1
A,T |= ¬φ iff A,T �|= φ
A,T |= φ ∧ φ′ iff A,T |= φ and A,T |= φ′

A,T |= φ[ei �→ 0] iff A′,T |= φ with A′ = {a′
1, . . . , a

′
n} where

a′
i = 0 and a′

j = aj for j �= i
A,T |= φ[ei �→ 1] iff A′,T |= φ with A′ = {a′

1, . . . , a
′
n} where

a′
i = 1 and a′

j = aj for j �= i
A,T |= MA(φ) iff A ∈ �φ�T

With �φ�T we denote the minimal satisfaction set of attacks for φ, i.e., the set
of minimal attacks that satisfy φ given T. We define �φ�T as follows: �φ�T = {A |

214 S. M. Nicoletti et al.

A,T |= φ ∧ �A′ ⊆ A.A′,T |= φ}. It is important to note that—with semantics
defined as we did—we allow for fairly granular reasoning over ATs. In particular,
we can evaluate whether an attack compromises a particular sub-AT without
reaching the TLE. Semantics for the second and third layer require attributed
trees (see Definition 7). We can then define semantics for the second layer:

A,T |= ¬ψ iff A,T �|= ψ
A,T |= ψ ∧ ψ′ iff A,T |= ψ and A,T |= ψ′

A,T |= Mk(φ) �k m iff A,T |= φ ∧ α̂ (A) �k m

A,T |= ψ[ei
k�→ ν] iff A,T(a[αk(ai)

k�→ ν]) |= ψ

For an attack A and an attributed tree T to satisfy Mk(φ) �k m, both the attack
A and the tree T must satisfy the inner layer 1 formula and the security metric
calculated on the attack must respect the given threshold. We let X1 be the set
of layer 1 formulae and we define a φ-security metric to attribute a value to a
layer 1 formula:

Definition 8. A φ-security metric is a function qαT : X1 → V defined as follows:

qαT(φ) =
�

A∈�φ�T

�

a∈A

α(a).

Note that in Definition 8 some occurrences can lead to the application of the
qα function to the empty set, i.e., when �φ�T = ∅. To account for this, we
resort to 1� and 1� for � and � (see Definition 5). Assuming the case in which
qαT(φ) ≡ qα(∅), we fix that qαT(φ) = 1�; likewise for α̂ and 1�. Furthermore, with
qαTk : X1 → Vk we denote a φ-security metric whose domain and attribution are
obtained appropriately from the k-est LOAD Lk ∈ L . We then let a[αk(ai)

k�→ ν]
be the attribution on the element ai ∈ A via αk to an arbitrary value ν, chosen
appropriately from the domain V k of Lk. Consequently, we define semantics for
the third layer. Let ValT : X3 → V k define an evaluation function of layer three
formulae in X3:

ValT(Vk(φ)) = qαTk(φ)
ValT(ξ[ei

k�→ ν]) = Val
T(a[αk(ai)

k�→ν])
(ξ)

Finally, we can define semantics for the fourth layer containing quantifiers:

T |= ¬γ iff T �|= γ
T |= ∃(φ ∧ ψ) iff ∃A . A,T |= φ and A,T |= ψ
T |= ∀(φ ∧ ψ) iff ∀A . A,T |= φ and A,T |= ψ

ATM: A Logic for Quantitative Security Properties on Attack Trees 215

4 Case Study: Attacking a CubeSAT

Fig. 5. Representation of orbiting CubeSATs.

CubeSATs are a type of nanosatellite typically used for academic and educational
purposes [46]: they are usually built in units (or “U”) of 10cm x 10cm x 10cm
and can be combined to form larger satellites. They are relatively inexpensive to
design, build, and launch compared to traditional, larger satellites and they are
a popular choice among students, universities, technology pioneers, and crowd-
sourced initiatives [32]. To give a sense of the importance of CubeSATs in our
orbital ecosystem, we provide a representation of orbiting CubeSATs as of March
2023 in Fig. 5 and an animation in [23]. A total of 153 elements are plotted on
the Earth, following data provided by the online database Celestrack [17]. The
size of each sphere is exaggerated for visual purposes—a diameter of 500km
for each element—and satellites are propagated using the Simplified General
Perturbations 4 (SGP4) orbit propagator [29]. As CubeSATs are one of the
platforms achieving more consensus in the context of the ”New Space” [19,32], it
is fundamental that security risks on these systems are not overlooked. To cater
for this need, we showcase how ATM can be applied to specify useful properties
on CubeSATs.

216 S. M. Nicoletti et al.

Fig. 6. An AT representing ways to attack a CubeSAT.

Table 2. Abbreviations for the AT in Fig. 6.

CubeSAT TLE: Info Gathering + Phish: Data Tampering:
Disrupt CubeSAT Operations DCOp Info Gathering & Phishing IGP Tamper Data from CubeSAT TDC
DoS Attack: Collect Information CIn Tamper with Data TD
Denial of Service DoS Shodan Sh Login to DB as Admin LDB
Access CubeSAT UI AUI NMAP Nm Modify Database Entries MDE
Locate Interfaces LI Scrape Credentials SC Kill Comms on CubeSAT:
Login with Phished Creds PhC Access Ground Station: Kill Radio on CubeSAT KR
Disrupt Service DS Access Ground DB as Admin ADA Recon. and Weaponization RaW
Change Config. Settings ChC Gain Access GA Create Malicious App CMA
Delete Items on CubeSAT DIC Login to DB Ground Station LDG Exploit Ex
Steal User Credentials SUC Escalate Privilege EP Upload Malware to Server UMS
Craft Malicious Email CME Leverage Misconfig. LM Command for Upload EV
Send as Legit User SLU Exploit Vulnerabilties EV SAT Gets & Exec. Malware CEM

In Fig. 6, an AT represents three possible ways in which an attacker could
compromise the availability of a CubeSAT. The scenario and the original ATs are
taken from [22] and then slightly adapted to model a unique cohesive AT. The
TLE in Fig. 6 represents the disruption of CubeSAT’s operations—the DCOp
OR-gate. This gate is detailed by three children: DoS—the indigoindigo TLE of a
sub-tree on the left presenting a denial of service attack—TDC—the violetviolet
TLE of the central sub-tree detailing a data tampering attack—and KR—the
yellowyellow TLE of the sub-tree on the right that presents an attack killing commu-
nications on the CubeSAT. For a denial of service to happen, the attacker must
perform information gathering and a successful phishing attack—detailed by the
redred IGP AND-gate—and use gathered intel to access the CubeSAT UI and dis-
rupt the service. On the other hand, to perform a data tampering attack, one
must access the ground control database as admin—detailed by the greengreen ADA
AND-gate—then modify database entries and tamper with data. Finally, to kill
communications on the CubeSAT an attacker must perform reconnaissance and
weaponization, crafting a malicious app, and also conduct the exploit uploading
the malware on the CubeSAT via the ground station: executing this code on
the satellite would cause communications to go offline. Due to the increasing

ATM: A Logic for Quantitative Security Properties on Attack Trees 217

complexity of these three different attacks, the AT in Fig. 6 presents several sub-
trees that are shared. The redred sub-tree for information gathering and phishing
is shared by the denial of service attack and by the sub-tree that models getting
access to the database on the ground station. Furthermore, this greengreen sub-
tree is itself shared between the tampering data attack and the more complex
malware-based communication killing attack.

Properties. ATM allows us to specify some properties on the AT in Fig. 6. As
per semantics, properties 2 and 3 are evaluated w.r.t. a given attack. 1) What
are all minimal attacks to achieve denial of service? �DoS�T ; 2) Are the cost
of data-tampering and info gathering and phishing respectively lower than 20
and at most 5? Cost(TDC) < 20 ∧ Cost(IGP) ≤ 5; 3) Are the probability of
successfully attacking the TLE and the parallel time of attack lower than 0.05
and 45 respectively? Prob(DCOp) < 0.05 ∧ ParTime(DCOp) < 45; 4) What is
the min skill an attacker has to have to kill communications on the CubeSAT,
assuming that one needs skill of 20 to perform info gathering and phishing?
Skill(KR)[IGP �→ 20]; 5) Is there an attack that ensures data tampering without
exploiting vulnerabilities in the ground station system? ∃(TDC [EV �→ 0]); 6)
Is it necessary to leverage misconfigurations to perform a successful attack on
CubeSAT’s communications? ∀(KR ⇒ LM); 7) Is there an attack that ensures
successful access to the ground station DB while keeping the cost under 20?
∃ (Cost(ADA) < 20); 8) Do accessing the CubeSAT UI and disrupting service
always imply that successful attacks to the TLE are strictly cheaper than 35 and
strictly faster than 60 (when parallelized)? ∀((AUI ∧ DS) ⇒ (Cost(DCOp) <
35 ∧ ParTime(DCOp) < 60)) (Table 2).

5 Model Checking Algoritms

In this section we present model checking algorithms for ATM. As noted in [47,
48], some scenarios, especially in the Boolean domain, are trivial: e.g., checking
if A,T |= φ holds is trivial if φ is a formula that does not contain a MA or MD
operator. In that case, we can simply substitute the values of A in the atoms of
φ and see if the Boolean expression evaluates to true. Non trivial scenarios arise
if φ contains a MA or MD operator or if ATs are not tree-shaped. These require
computations based on BDDs, introduced in Sect. 5.1: a coherent choice with
the landscape of algorithms for FT logics [47,48] and AT computation [15,42].
In this section we build upon these results and present algorithms to: 1) Obtain
BDDs from layer 1 formulae taking the structure of a given tree T into account
(Sect. 5.2); 2) a) Check whether an attack A and a tree T satisfy a layer 1
formula and b) compute all the satisfying attacks A for a given tree T and layer
1 formula (Sect. 5.3); 3) Check whether an attack A and an attributed tree T
satisfy a layer 2 formula (Sect. 5.4); 4) Compute the metric value of a given layer
3 formula (Sect. 5.5); 5) Check whether an attributed tree T satisfies a layer 4
formula (Sect. 5.6).

218 S. M. Nicoletti et al.

5.1 Binary Decision Diagrams (BDDs)

BDDs are directed acyclic graphs (DAGs) that compactly represent Boolean
functions [2] by reducing redundancy. Depending on variable’s ordering, BDD’s
size can grow linearly in the number of variables and at worst exponentially. In
practice, BDDs are heavily used, including in AT analysis [15,42] and in their
safety counterpart, FTs [7,47,48,52]. Formally, a BDD is a rooted DAG Bf that
represents a Boolean function f : B

n → B over variables Vars = {xi}n
i=1. Each

nonleaf w has two outgoing arrows, labeled 0 and 1, and a label Lab(w) ∈ Vars;
furthermore, each leaf has a label 0 or 1. Given a b in B

n, the BDD is used to
compute f(b) as follows: starting from the top, upon arriving at a node w with
Lab(w) = xi, one takes the 0-edge if bi = 0 and the 1-edge if bi = 1. The label
of the leaf one ends up in, is then equal to f(b). A function f can be represented
by multiple BDDs, but has a unique reduced ordered representative, or ROBDD
[8,13], where the xi occur in ascending order, and the BDD is reduced as much as
possible by removing irrelevant nodes and merging duplicates. This is formally
defined below; we let Low(w) (resp. High(w)) be the endpoint of w’s 0-edge
(resp. 1-edge) and let RB be the BDD root.

Definition 9. Let Vars be a set. A (RO)BDD over Vars is a tuple B = (W,H,
Lab, u) where (W,H) is a rooted directed acyclic graph, and Lab : W → Vars �
{0, 1}, u : H → {0, 1} are maps such that: 1. Every nonleaf w has exactly two
outgoing edges h, h′ with u(h) �= u(h′), and Lab(w) ∈ Vars; 2. Every leaf w has
Lab(w) ∈ {0, 1}. 3. Vars are equipped with a total order, Bf is thus defined over
a pair 〈Vars, <〉; 4. the variable of a node is of lower order than its children, that
is: ∀w ∈ Wn .Lab(w) < Lab(Low(w)), Lab(High(w)); 5. the children of nonleaf
nodes are distinct nodes; 6. nodes are uniquely determined by their label, low
child and high child.

5.2 BDDs from ATs and Layer 1 Formulae

The first step to enable further computations is to obtain BDDs from layer
1 formulae taking the structure of a given tree T into account (for related
procedures on FT logics see [47,48]). Following, operations between BDDs
are represented by bold operands e.g., ∧, ∨. Where convenient notation-
ally, we write Bφ

T for BT (φ), i.e., the BDD B of φ, given T. Given a set of
variables Vars = {xi}n

i=1 existential quantification can be defined as follows:
∃ x. B = Restrict(B, x, 0)∨Restrict(B, x, 1) and ∃Vars. B = ∃x1.∃ x2. . . .
∃ xn. B. Furthermore, we define a set of primed variables Vars ′ = {x′

i}n
i=1 and let

B
φ
T [Vars � Vars ′] be the BDD Bφ

T in which every variable xi ∈ Vars is renamed
to its primed x′

i ∈ Vars ′. Finally we let Vars ′ ⊂ Vars ≡ (
∧∧∧∧∧∧

i x′
i ⇒ xi)∧(

∨∨∨∨∨∨
i x′

i

�=�= xi). Algorithms to conduct typical BDD operations—such as Restrict—can
be found in [2,8].

ATM: A Logic for Quantitative Security Properties on Attack Trees 219

Definition 10. The translation function of an AT T is a function fT : E → BDD
that takes as input an element e ∈ E.

fT(e) =

⎧
⎪⎨

⎪⎩

B(e) if e ∈ BAS
∨∨∨∨∨∨

e′∈ch(e)fT(e
′) if e ∈ IE and t(e) = OR

∧∧∧∧∧∧
e′∈ch(e)fT(e

′) if e ∈ IE and t(e) = AND

where B(e) is a BDD with a single node w with Low(w) = 0 and High(w) = 1.

Algorithm 1 computes Bφ
T following semantics for layer 1 formulae:

Algorithm 1. Compute B
φ
T from T and φ

1: Input: ATT, formula φ
2: Output: BDD B

φ
T

3: Method:
4: if φ = e then return fT(e)
5: else if φ = ¬φ′ then return ¬ (Algorithm 1(T, φ′))
6: else if φ = φ′ ∧ φ′′ then return Algorithm 1(T, φ′)∧Algorithm1(T, φ′′)
7: else if φ = φ′[ei �→ 0] then return Restrict(Algorithm 1(T, φ′), xi, 0)
8: else if φ = φ′[ei �→ 1] then return Restrict(Algorithm 1(T, φ′), xi, 1)
9: else // φ = MA(φ′)

10: return Algorithm 1(T, φ′)∧(¬∃¬∃Vars ′.(Vars ′ ⊂ Vars)∧
11: Algorithm 1(T, φ′)[Vars � Vars ′])
12: end if

5.3 Model Checking Layer 1 Formulae

Is an Attack Successful w.r.t. φ? Algorithm 2 checks whether A,T |= φ,
given an attack A and a tree T. First, the BDD Bφ

T for φ given T is constructed
via Algorithm 1. Then, the algorithm walks the BDD path representing values
of BASes in A. If it ends up in the terminal 0, then A,T �|= φ, otherwise—if the
terminal node is 1—A,T |= φ.

Algorithm 2. Check if A,T |= φ

1: Input: attack A, attack tree T, formula φ
2: Output: true iff A,T |= φ; false otherwise.
3: Method:
4: B

φ
T ← Algorithm 1(T, φ); wi = R

B
φ
T

5: while wi �∈ Wt do:
6: if ai ∈ A = 0 then wi = Low(wi)
7: else if ai ∈ A = 1 then wi = High(wi)
8: end if
9: end while

220 S. M. Nicoletti et al.

10: if Lab(wi) = 0 then return false
11: else // Lab(wi) = 1
12: return true
13: end if

All Successful Attacks w.r.t. φ. Our ability to construct a BDD Bφ
T for layer

1 formulae granted by Algorithm 1 allows us to compute all attacks A such that
A,T |= φ. Algorithm 3 performs this computation by applying the AllSat [2]
algorithm to Bφ

T : AllSat walks down the BDD and stores the paths that lead
to the terminal node 1. These paths then represent satisfying attacks for φ given
T. Note that Algorithm 3 can be used to compute all the minimal attacks of a
given φ by simply calling it on MA(φ).

5.4 Model Checking Layer 2 Formulae

Algorithm 3. Compute all A s.t. A,T |= φ

1: Input: ATT, formula φ
2: Output: {A | A,T |= φ}
3: Method:
4: B

φ
T ← Algorithm 1(T, φ); wi = R

B
φ
T

5: {A | A,T |= φ} ← AllSat(wi)
6: return {A | A,T |= φ}

Algorithm 4 presented in this
subsection checks if a layer 2
formula is satisfied, given an
attack A and an attributed
tree T. Boolean connectives
are resolved as usual via case
distinction. To check whether
A,T |= Mk(φ) �k m, first the
BDD Bφ

T for the inner layer 1
formula is constructed and Algorithm 2 is emplyed to assess whether A,T |= φ.
If that is not the case, we return false. Otherwise, we compute the metric value
for the given attack following the interpretation of � taken from the k−est LOSG
Lk of our attributed tree T. We store this value in metr_val, and we return the
result of the comparison with �k m. To handle the case in which we set evidence
for a specific atom ei in a layer 2 formula, we simply call the algorithm again
and we make sure that the attribution αk of the corresponding ai is mapped to
the chosen value ν.

Algorithm 4. Check if A,T |= ψ

1: Input: attack A, attributed AT T, formula ψ
2: Output: true iff A,T |= ψ; false otherwise.
3: Method:
4: if ψ = ¬ψ′ then return not Algorithm 4(A,T, ψ′)
5: else if ψ = ψ′ ∧ ψ′′ then return Algorithm 4(A,T, ψ′) and Algorithm

4(A,T, ψ′′)
6: else if ψ = Mk(φ) �k m then
7: if Algorithm 2(A,T, φ) returns true then // A,T |= φ
8: metr_val =

�
k

a∈A

αk(a)

9: return metr_val �k m

ATM: A Logic for Quantitative Security Properties on Attack Trees 221

10: else // A,T �|= φ
11: return false
12: end if
13: else // ψ = ψ′[ei

k�→ ν]
14: return Algorithm 4(A,T(a[αk(ai)

k�→ ν]), ψ′)
15: end if

5.5 Compute Metrics for Layer 3 Formulae

Algorithm 5. Compute metric for ξ-formula
1: Input: attributed ATT, formula ξ
2: Output: metric value for ξ.
3: Method:
4: if ξ = Vk(φ) then
5: (W, H,Lab, u) ← Algorithm 1(T, φ)
6: Wtodo ← W
7: while Wtodo �= ∅ do
8: Take w ∈ Wtodo without children in Wtodo

9: if Lab(w) = 0 then v(w) ← 1�
10: else if Lab(w) = 1 then v(w) ← 1�
11: else
12: v(w)←v(Low(w))�(v(High(w))�α(Lab(w)))
13: end if
14: Wtodo ← Wtodo \ {w}
15: end while return v(RW,H,Lab,u)

16: else // ξ = ξ′[ei
k�→ ν]

17: return Algorithm 5(T(a[αk(ai)
k�→ ν]), ξ′)

18: end if

This subsection show-
cases an algorithm
to compute a met-
ric value for a spec-
ified ξ-formula. If ξ
equals Vk(φ), one
approach would be
to directly use the
formula of Definition
8. However, directly
finding all minimal
attacks on φ is com-
putationally expen-
sive [42]. Instead, we
calculate metrics by
applying the BDD-
based method from
[42]. This method
exploits the fact that
paths from the root
to 1 in a BDD encode succesful attacks, and 1-labeled edges on such a path
represent the BAS of these attacks. Assigning weight α(Lab(w)) to an edge
(w,High(w)), the metric value can then be computed by a variant of the short-
est path algorithm for DAGs. Note that the method in [42] is defined only for
φ = e, but the result readily generalizes. If ξ = ξ′[ei

k�→ ν], the algorithm is called
again on ξ′ and the attribution αk on the corresponding ai is set to ν.

5.6 Model Checking Layer 4 Formulae

We present an algorithm to check whether an attributed tree T satisfies a layer
4 formula. The non-trivial cases of Algorithm 6 check whether T |= ∃(φ∧ψ) and
T |= ∀(φ∧ψ). In the former case, for each attack Ai in the set of satisfying attacks
for φ — {A | A,T |= φ} ← Algorithm 3(T, φ)—we check whether Ai,T |= ψ. If
we find a fitting Ai, we return it alongside true. Otherwise, we return false. In
the latter case, for each Ai in the set of all attacks for T AT we check whether
either Ai,T �|= φ or Ai,T �|= ψ. If we find a counterexample Ai, we return it
alongside false. Otherwise, we return true.

222 S. M. Nicoletti et al.

Algorithm 6. Check if T |= γ

1: Input: set of all attacks AT, attributed ATT, formula γ

2: Output: true iff T |= γ; false otherwise; (counter)example Ai.
3: Method:
4: if γ = ¬γ′ then return not Algorithm 6(A,T, γ′)
5: else if γ = ∃(φ ∧ ψ) then
6: for Ai ∈ {A | A,T |= φ} ← Algorithm 3(T, φ) do
7: if Algorithm 4(Ai,T, ψ) returns true then return true, Ai

8: end if
9: end for
10: return false
11: else if γ = ∀(φ ∧ ψ) then
12: for Ai ∈ AT do
13: if Algorithm 2(Ai,T,φ) returns false ∨ Algorithm 4(Ai,T,ψ) returns false then
14: return false, Ai

15: end if
16: end for
17: return true
18: end if

6 Conclusions

We presented ATM, a logic for general metrics on ATs that enables the con-
struction of complex queries and insightful what-if scenarios. We showcased its
usefulness with an application of ATM to the case study of a CubeSAT. Spec-
ified properties can then be checked and metrics computed via model checking
algorithms that we presented. Our work opens several relevant perspectives for
future research. First, it would be interesting to extend ATM to consider timed
behaviours: this would allow to further extend quantitative analysis capabilities.
This step could be achieved by extending ATM to dynamic ATs that consider the
sequential nature of attack steps. To handle dynamic gates in dynamic ATs it
would be very natural to have a logic that can express temporal properties, mov-
ing more in the direction of LTL [50] or CTL [18] or their timed variants TLTL
[51] and TCTL [1]. Another notable extension of ATM could express and cal-
culate Pareto fronts between metrics [42]. Moreover, it is foreseeable to extend
the proposed framework to safety-security variants of ATs and FTs, e.g., to
attack-fault trees (AFTs) [40], and to graphs that consider more general safety-
security risks, in the sense of probability × impact [24]. Lastly, implementing this
logic could further propel usability of ATM by providing hands-on feedback from
domain experts acquainted with threat modelling and vulnerability analysis.

Acknowledgements. The authors would like to thank Dr. Juan A. Fraire(0000-0001-
9816-6989) (Inria, CONICET and Saarland University) for the insightful discussions
about routing in space and for propagating and visualizing orbiting CubeSATs, result-
ing in Fig. 5 and in the animation in [23].

ATM: A Logic for Quantitative Security Properties on Attack Trees 223

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

2. Andersen, H.R.: An intro. to binary decision diagrams. Lecture notes, available
online, IT University of Copenhagen, p. 5 (1997)

3. Apvrille, L., Roudier, Y.: SysML-sec: a sysML environment for the design and
development of secure embedded systems. In: APCOSEC (2013)

4. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack
tree modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9338, pp. 291–299. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24249-1_25

5. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-
8_16

6. Barlow, R.E., Proschan, F.: Statistical theory of reliability and life testing: prob-
ability models. In: International Series in Decision Processes, Holt, Rinehart and
Winston (1975)

7. Basgöze, D., Volk, M., Katoen, J., Khan, S., Stoelinga, M.: BDDs strike back -
efficient analysis of static and dynamic fault trees. In: NFM, vol. 13260, pp. 713–
732 (2022)

8. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4471-4129-7

9. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree analysis and model
checking for safety assessment of complex system. In: EDCC, vol. 2485, pp. 19–31
(2002)

10. Bossuat, A., Kordy, B.: Evil twins: handling repetitions in attack–defense trees. In:
Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 17–37.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3_2

11. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive markov chains. In: DSN, pp. 708–717 (2007)

12. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

13. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: 27th ACM/IEEE Design Automation Conference, pp. 40–45 (1990)

14. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

15. Budde, C.E., Stoelinga, M.: Efficient algorithms for quantitative attack tree anal-
ysis. In: CSF, pp. 1–15 (2021)

16. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/
10.1007/11962977_19

17. Celestrack: Orbiting CubeSATs (2023). https://celestrak.org/NORAD/elements/
gp.php?GROUP=cubesat&FORMAT=tle. Accessed Mar 2023

https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/978-3-319-74860-3_2
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/11962977_19
https://celestrak.org/NORAD/elements/gp.php?GROUP=cubesat&FORMAT=tle
https://celestrak.org/NORAD/elements/gp.php?GROUP=cubesat&FORMAT=tle

224 S. M. Nicoletti et al.

18. Clarke, E.M., Emerson, E.: Design and synthesis of synchronisation skeletons using
branching time temporal logic. In: Logic of Programs, Proceedings of Workshop,
LNCS, vol. 31, pp. 52–71 (1981). Springer, Heidelberg. https://doi.org/10.1007/
bfb0025774

19. CORDIS, European Commission: MISSION (2023). https://cordis.europa.eu/
project/id/101008233

20. Déharbe, D., Shankar, S., Clarke, E.M.: Model checking VHDL with CV. In:
Gopalakrishnan, G., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 508–
514. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49519-3_33

21. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996)

22. Falco, G., Viswanathan, A., Santangelo, A.: Cubesat security attack tree analysis.
In: SMC-IT, pp. 68–76 (2021)

23. Fraire, J.: All active CubeSATs as of 2023 (according to Celestrak). https://www.
youtube.com/watch?v=PIkwxOvPLTw. Accessed Aug 2023

24. Fumagalli, M., et al.: On the semantics of risk propagation. In: International Con-
ference on Research Challenges in Information Science, pp. 69–86. Springer, Hei-
delberg (2023). https://doi.org/10.1007/978-3-031-33080-3_5

25. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua, R.:
Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_10

26. Golan, J.S.: Semirings and their Applications. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-94-015-9333-5

27. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-
ments. IEEE Trans. Softw. Eng. 24(7), 573–584 (1998)

28. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

29. Hejduk, M.D., Casali, S.J., Cappellucci, D.A., Ericson, N.L., Snow, D.: A
catalogue-wide implementation of general perturbations orbit determination
extrapolated from higher order orbital theory solutions. In: Proceedings of the
23rd AAS/AIAA Space Flight Mechanics Meeting, pp. 619–632 (2013)

30. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fund. Inf. 153(1–2), 57–86 (2017)

31. Isograph: AttackTree. https://www.isograph.com/software/attacktree/. Accessed
Mar 2023

32. Jet Propulsion Laboratory NASA: CubeSATs and SmallSATs. https://www.jpl.
nasa.gov/topics/cubesats. Accessed Mar 2023

33. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8_23

34. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter
attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1036–1051. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-
4_8

35. Jürjens, J.: UMLsec: extending UML for secure systems development. In: UML
2002 – The Unified Modeling Language, vol. 2460, pp. 412–425 (2002)

36. Kordy, B., Pouly, M., Schweitzer, P.: Probabilistic reasoning with graphical security
models. Inf. Sci. 342, 111–131 (2016)

https://doi.org/10.1007/bfb0025774
https://doi.org/10.1007/bfb0025774
https://cordis.europa.eu/project/id/101008233
https://cordis.europa.eu/project/id/101008233
https://doi.org/10.1007/3-540-49519-3_33
https://www.youtube.com/watch?v=PIkwxOvPLTw
https://www.youtube.com/watch?v=PIkwxOvPLTw
https://doi.org/10.1007/978-3-031-33080-3_5
https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1007/978-94-015-9333-5
https://www.isograph.com/software/attacktree/
https://www.jpl.nasa.gov/topics/cubesats
https://www.jpl.nasa.gov/topics/cubesats
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-540-88873-4_8

ATM: A Logic for Quantitative Security Properties on Attack Trees 225

37. Kordy, B., Wideł, W.: On quantitative analysis of attack–defense trees with
repeated labels. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp.
325–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_14

38. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1_11

39. Kumar, R., et al.: Effective analysis of attack trees: a model-driven approach. In:
Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 56–73. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89363-1_4

40. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: HASE, pp. 25–32 (2017)

41. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

42. Lopuhaä-Zwakenberg, M., Budde, C.E., Stoelinga, M.: Efficient and generic algo-
rithms for quantitative attack tree analysis. IEEE TDSC 20, 4169–4187 (2022)

43. Lopuhaä-Zwakenberg, M., Stoelinga, M.: Attack time analysis in dynamic attack
trees via integer linear programming. arXiv e-prints arXiv:2111.05114 (2021)

44. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727_17

45. Moszkowski, B.: A temporal logic for multi-level reasoning about hardware. STAN-
FORD UNIV CA, Technical report (1982)

46. NASA: CubeSATs Overview. https://www.nasa.gov/mission_pages/cubesats/
overview. Accessed Mar 2023

47. Nicoletti, S., Hahn, E., Stoelinga, M.: BFL: a logic to reason about fault trees. In:
DSN, pp. 441–452 (2022)

48. Nicoletti, S.M., Lopuhaä-Zwakenberg, M., Hahn, E.M., Stoelinga, M.: Pfl: a prob-
abilistic logic for fault trees. In: FM 2023, pp. 199–221 (2023)

49. Ognjanovic, Z.: Discrete linear-time probabilistic logics: completeness, decidability
and complexity. J. Log. Comput. 16(2), 257–285 (2006)

50. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
51. Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D.

thesis (1999)
52. Rauzy, A.: New algorithms for fault trees analysis. RESS 40(3), 203–211 (1993)
53. Roudier, Y., Apvrille, L.: SysML-Sec: a model driven approach for designing safe

and secure systems. In: MODELSWARD, pp. 655–664. IEEE (2015)
54. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
55. Thums, A., Schellhorn, G.: Model checking FTA. In: FME, vol. 2805, pp. 739–757

(2003)
56. Volk, M., Junges, S., Katoen, J.: Fast dynamic fault tree analysis by model checking

techniques. Trans. Ind. Inf. 14(1), 370–379 (2018)
57. Walker, M.D.: Pandora: a logic for the qualitative analysis of temporal fault trees.

Ph.D. thesis, The University of Hull (2009)

https://doi.org/10.1007/978-3-319-89722-6_14
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-89363-1_4
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://arxiv.org/abs/2111.05114
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://www.nasa.gov/mission_pages/cubesats/overview
https://www.nasa.gov/mission_pages/cubesats/overview

Refactoring of Multi-instance BPMN
Processes with Time and Resources

Quentin Nivon(B) and Gwen Salaün

University of Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble,
France

quentin.nivon@inria.fr

Abstract. Business process optimisation is a strategic activity in organ-
isations because of its potential to increase profit margins and reduce
operational costs. In this paper, we focus on a specific technique used
for process optimisation known as process refactoring. In this work, a
process is described using BPMN extended with quantitative aspects
for modelling execution times and resources associated with tasks. A
process is not executed once but multiple times, and multiple concur-
rent executions of a process compete for using the shared resources. In
this context, we propose a refactoring approach whose goal is to reduce
the total execution time of the process and optimise the usage of the
shared resources. To do so, we first analyse the given process in terms
of task dependency and resource usage, and then rely on these results to
restructure the process and return an optimal version of it. This process
refactoring technique is fully automated by a tool that we implemented
and applied on several examples for validation purposes.

1 Introduction

Context. Process optimisation is a strategic activity in companies and organi-
sations because it is a source of improvement in terms of throughput, resource
usage and associated costs. However, this is a difficult task, which requires a
precise description and understanding of these processes. Process optimisation
can be achieved in different ways. A first option is to compute metrics of inter-
est or precise recommendations to effectively change and improve manually the
aforementioned processes. Another option is to automatically compute a new
version of the process, which is an improved version of the original process. In
both cases, optimisation focuses on one or several specific criteria (execution
time, costs, resource usage, carbon footprint, etc.).

In this paper, we assume that processes are described using BPMN 2.0
(BPMN, as a shorthand, in the rest of this paper). BPMN was published as an
ISO/IEC standard in 2013 and is nowadays extensively used for modelling and
developing business processes. Additional quantitative information is required
to be able to precisely analyse and then optimise the process given as input.
Therefore, in this work, the process model also includes time as a duration asso-
ciated to tasks and an explicit description of the resources required to execute
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 226–245, 2023.
https://doi.org/10.1007/978-3-031-47115-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_13

Refactoring of Multi-instance BPMN Processes 227

each task. It is also worth noting that a process is not executed once but multi-
ple times resulting in multiple instances. For each execution/instance, each task
needs to acquire the required (globally shared) resources to be able to execute.
Motivation. When considering processes with time and resources, the two
main optimisation criteria are execution time/throughput and better usage of
resources (usually resulting in a reduction of associated costs). Operational
research offers several techniques to solve such optimisation problems. How-
ever, they are difficult to apply in this context, due to the expressiveness of
the model and the multiple instances of the process running in parallel, which
would increase a lot the operational cost of such techniques. Another solution
to this problem is resource optimisation, see e.g. [6,8], but this solution usually
implies some flexibility in terms of budget because the solution may propose to
increase the number of certain resources so as to obtain better results. If the
number of resources is fixed and cannot be updated, an alternative solution is to
change the organisation of the tasks within the process. This solution is usually
called process refactoring, and aims at restructuring the process to optimise the
aforementioned criteria.

Refactoring a process manually is however a very difficult task. A naive solu-
tion could be to increase the level of parallelism, but this solution does not
systematically work in the case of multiple executions of a process, which may
increase the competition (thus time) to acquire the resources. Therefore, there is
a need for automated refactoring techniques in order to optimise a process. Such
techniques can be used in different contexts, for improving an existing process
or at design time for optimising a new process before effectively deploying it.
Approach. Given a BPMN process model, we propose new optimisation tech-
niques that aim at automatically restructuring the given process. These refac-
toring techniques generate a different process which has the shortest execution
time in the best case, or is close to the shortest otherwise. This new process
is said to be optimal or close to optimal, given a number of shared resources.
The main idea is to adjust the structure of the process to avoid competition of
resources and bottlenecks, to obtain smoother executions of multiple instances
of the process. More precisely, in a first step, the approach transforms the pro-
cess into an optimal version, structurally speaking, by putting as many tasks in
parallel as possible. This intermediate process is optimal as it has the shortest
execution time possible. We then compute the pool of resources needed by the
process to execute without having concurrency issues while accessing resources.
If this pool of resources is smaller than the actual number of shared resources,
we return this process. If not, more resources would be required, but in this work
we do not want to change the number of shared resources. Therefore, we change
again the structure of the process to decrease the degree of parallelism of certain
tasks and thus remove the identified competition on some specific resources. As
a result, we return a refactored process whose execution time is close to optimal,
or optimal in the best case. The whole approach is fully automated by a tool that
we implemented. Even though the overall complexity of the approach is expo-
nential, the experimental results obtained on several real-world and handcrafted
examples were satisfactory, as none of the execution exceeded a few seconds.

228 Q. Nivon and G. Salaün

Structure. Section 2 introduces the languages and models used in this paper.
Section 3 presents the different steps of the refactoring approach proposed in
this paper. Section 4 describes the tool support and some experimental results
to assess the performance of the approach. Section 5 compares our solution to
related work and Sect. 6 concludes this paper.

2 Models

BPMN with Time and Resources. In this paper, we focus on BPMN
activity diagrams including the constructs related to control-flow modeling and
behavioural aspects. Beyond those constructs, execution time and resources are
also associated with tasks.

More precisely, the node types event, task, and gateway, and the edge type
sequence flow are considered. Start and end events are used, respectively, to
initialise and terminate processes. A task represents an atomic activity that
has exactly one incoming and one outgoing flow. A sequence flow describes two
nodes executed one after the other in a specific execution order. A task may
have a duration or delay, expressed by default in units of time (UT). Resources
are explicitly defined at the task level. A task can thus include, as part of its
specification, the required resources. In such a case, it means that the task needs
those resources to be able to execute. Once the resources are acquired, the task
is going to execute for the specified duration. The acquisition of a resource is
achieved in a “first-come-first-served” strategy. If a task needs more replicas of
one or several resources than those available, it remains in a waiting state until
the release of a sufficient number of replicas of the required resources.

Gateways are used to control the divergence and convergence of the execution
flow. We consider in this work the two main kinds of gateways used in activ-
ity diagrams, namely, exclusive and parallel gateways. The difference between
them is that only one outgoing flow of an exclusive gateway is executed (choice),
while all the outgoing flows of a parallel gateway are executed. Data-based con-
ditions for exclusive split gateways are modelled using probabilities associated
to outgoing flows.

Example. Figure 1 shows an example of BPMN process enhanced with time
and resources. Each task has a duration and makes use of resources. For example,
task Vaccination takes 7 units of time (days here) to execute in average and
requires one replica of resources doctor and user.

Dependencies Between Tasks. In BPMN, tasks are naturally ordered by
the sequence flows that are connecting them. Thus, two tasks connected by
a sequence flow are dependent, as one must be executed before the other. In
this approach, we perform a restructuring of the process. Thereby, there is no
guarantee regarding the final position of a task in the resulting process compared
to its position in the original one. Nonetheless, some tasks may have to remain in
a specific order to preserve the meaning of the process (e.g., some product should

Refactoring of Multi-instance BPMN Processes 229

Fig. 1. Example of “Trip Organisation” process in BPMN [9]

be packaged before its delivery). Providing these dependencies is required in this
work and is an information complementary to the BPMN process. They can be
given by the user or computed by analysing the data-flow graph corresponding
to the BPMN process [5,10].

In the rest of this paper, a dependency or partial order between two tasks
T1 and T2 is written as a pair (T1, T2). Two tasks are said to be dependent
if they belong to a pair of dependencies, and non-dependent otherwise. T1 is
said to be a predecessor of T2, and T2 a successor of T1. When there are several
dependencies, they can be concisely represented using a dependency graph, which
is a directed acyclic graph where each node corresponds to a task and each edge
to a dependency between two tasks.

Example. Figure 1 shows an example of trip organisation process. In this
example, the order of some tasks must not be changed by the refactoring tech-
niques. For example, documents have to be returned by the user before being
archived. Thus, task Return Documents must be executed before task Archive
Documents.
Abstract Graphs. An abstract graph is an internal representation of a BPMN
process that we use in this work as an intermediate format. It was originally
introduced in [11] where the authors propose first to generate an abstract graph
from a set of dependencies between tasks and then to generate the BPMN process
corresponding to this abstract graph. It worth noting that this representation
has the same expressiveness as the subset of BPMN that is supported in this
work.

Definition 1. (Abstract Graph) An abstract graph is a (hierarchical) directed
graph (SN , SE) where SN is a set of nodes and SE a set of directed edges con-
necting these nodes. A node n ∈ SN is defined as a pair (ST , SG) where ST is a
set of tasks and SG a set of abstract (sub-)graphs.

Given a set of dependencies, an abstract graph can be generated if and only
if the two following conditions are satisfied:

– Condition 1: For any task T”, if T” is a common successor of two tasks T
and T’, then the set of successors of T should be equal to the set of successors
of T’.

230 Q. Nivon and G. Salaün

– Condition 2: For any task T, if T is a common predecessor of two tasks
T’ and T”, then the set of predecessors of T’ should be equal to the set of
predecessors of T”.

If these conditions are not satisfied, several valid abstract graphs may be
generated from the given dependencies.
Metrics. Several metrics can be computed on a BPMN process extended with
quantitative aspects, such as execution times, synchronisation/waiting times,
resource usage or total costs. In this work, we mostly consider the time taken
by a process to execute since it is our main optimisation goal. The execution
time of a process corresponds to the difference between the timestamp at which
the last token has reached an end event and the timestamp at which the initial
token has left the start event. This time varies depending on the structure of
the process, the use of gateways or loops, but it is always finite if the process
is syntactically well-formed (i.e., if each execution scenario eventually ends up
with an end event). This approach considers two notions of execution times. The
first one, called worst-case execution time, corresponds to the longest time taken
by a BPMN process to complete its execution. Indeed, conditional structures,
such as loops or choices, may lead to several different execution times for a single
process.

Definition 2. (Worst-Case Execution Time) Let B be a BPMN process and
SET = {ET1, ET2, ..., ETn} the set of all possible execution times of B. The
worst-case execution time of B is defined as WCETB = max (SET).

The second execution time considered, called average execution time, is only
relevant in a multi-instance context. It represents the time taken by each instance
of the process to complete its execution, on average.

Definition 3. (Average Execution Time) Let B be a BPMN process executed n
times and {ETB1

, ETB2
, ..., ETBn

} the execution times of each instance of B.

The average execution time of B is defined as AETB = 1
n

n∑

i=1

ETBi
.

These execution times can be computed using simulation techniques [7].
These simulation techniques and the resulting execution times highly depends
on the workload of a process, which is a couple (N,R) where N represents the
number of instances of the process being executed and R the rate at which each
process execution is started. This rate is also known as inter-arrival time (IAT).

It is worth noting that synchronisation times play an important role in this
work. The synchronisation time to merge parallel gateways corresponds to the
time elapsed between the arrival of the first token through one of its incoming
flows and the arrival of the last token (thus resulting in the activation of that
merge). These merge gateways are often seen as bottlenecks because they induce
additional delays. On the other hand, adding more parallelism to a process may
also speed up its execution. The solution proposed in this paper takes particularly

Refactoring of Multi-instance BPMN Processes 231

care of this issue by adding parallelism when it does not induce such bottlenecks
and by avoiding parallelism when it results in additional delays.
Optimality. The main goal of this work is to improve the average execution
time of the original process by applying refactoring techniques to it. The final
process, returned to the user, is in the best case optimal.

Definition 4. (Optimal Process) Let B be a BPMN process, SD the set of
dependencies of B, and SBD

= {B1 , B2 , ..., Bn} the set of processes gen-
erated from B and satisfying SD. ∃Bi ∈ SBD

, Bi is optimal if and only if
min(AETB1

, AETB2
, ..., AETBn

) = AETBi
.

3 Refactoring

Overview. The approach proposed in this paper aims at automatically restruc-
turing a BPMN process in order to minimise its average execution time. It takes
as input a BPMN process with duration and used resources for each task, a pool
of shared resources and an IAT. We recall that in this work, a process is executed
multiple times, the beginning of execution of each instance being separated from
the previous one by the IAT. Our refactoring technique does not change the tasks
themselves, but the way they are organised within the process. The main idea
behind our approach is that we increase the parallelism of the process as much
as possible but not systematically. For instance, if adding parallelism results in
the increase of resource competition or bottlenecks coming from synchronisation
delays (at merge gateways), we prefer to keep a sequential organisation of tasks.
At the end, the approach returns a new BPMN process whose average execution
time is optimal or close to the optimal. It is worth noting that, except for the
position of the tasks, the semantics of the process is preserved (i.e., a task that
is not necessarily executed (choice), or that is possibly repeated (loop) has the
same behaviour in the final process).

Figure 2 gives an overview of the mains steps of the approach. Beyond the
previously mentioned inputs, our approach also needs as input a set of task
dependencies. These dependencies correspond to some strong ordering of tasks
that cannot be changed by our refactoring approach and thus must be preserved
in the final process. They can be given by the user or computed by analysing the
data-flow graph corresponding to the BPMN process [5,10]. The first step (1)
aims at computing an abstract graph corresponding to the given dependencies.
This abstract graph is an intermediate format which is used throughout this
work to simplify computations and restructuring that will finally lead to the
resulting process. In some cases however, as explained in the previous section, the
abstract graph cannot be generated because some conditions on the dependencies
are not satisfied. Concretely, this means that several abstract graphs satisfy
the given dependencies. Since the goal here is to generate an optimal process,
we need to choose, among the possible graphs satisfying the conditions, the
one that is optimal with respect to our goal. To do so, we explore all possible
additional dependencies for which the conditions become true, and among all

232 Q. Nivon and G. Salaün

these solutions we keep the one making the resulting abstract graph exhibit the
shortest execution time.

The next step (2) takes into account the shared resources and verifies whether
they are sufficient to execute the current abstract graph smoothly, that is, with-
out resource competition or synchronisation delays at merge gateways. If this
is the case, the resulting BPMN is synthesised and is optimal. If the shared
resources are not sufficient, two more steps are performed in the approach.
Step (3) analyses the current abstract graph, identifies the different sources
of competition/synchronisation issues, and rate them using a scoring system.
Repeatedly, the task identified as the highest issue is removed from its parallel
structure and put in sequence, until the shared resources allow a smooth exe-
cution of the process-to-be. Step (4) aims at refining the organisation of tasks
within the abstract graph in order to find the best structure between the tasks
that should be put in sequence and the others. When Steps (3) and (4) need to
be applied, the resulting BPMN process may not be optimal, but is close to the
optimal solution.

Fig. 2. Overview of the Approach

The rest of this section gives additional details on each step of the approach.
Computing Abstract Graph from Dependencies. The first step of this
approach consists of computing the abstract graph corresponding to the process
dependencies. This can be done using the algorithm proposed in [11], when
the conditions stated by the authors are respected. These conditions ensure
the uniqueness of the generated abstract graph. Thus, several abstract graphs
respecting the dependencies of the process may exist when the conditions are
not satisfied. Since our main concern is to generate an optimal abstract graph
in terms of execution time, we need to pick the one with the shortest execution
time. To do so, our idea is to iteratively add new dependencies to the initial ones,
until obtaining a set of dependencies that satisfies the conditions. By doing so,
we obtain all the possible abstract graphs satisfying the dependencies. Then, we
keep the one with the shortest execution time.

This computation is performed by Algorithm 1. This algorithm takes as input
the dependency graph built from the initial dependencies of the process, which
is moved in the set of pending graphs SCB . Then, for each pending graph, we
iterate over its tasks (i.e., nodes) and add a new dependency between this task

Refactoring of Multi-instance BPMN Processes 233

Algorithm 1 Optimal Dependencies Finding
Inputs: G = (GV ,GE) (Dependency graph built from the initial dependencies)
Output: GO (Optimal dependency graph validating the conditions)

1: SCB ← {G} ; SNB ← ∅ ; SPO ← ∅
2: while SCB �= ∅ do � Are there pending graphs?
3: for GC ∈ SCB do � Yes, iterate over each of them
4: for n ∈ GCV do � Then over each node of the current graph
5: SND ← findNonAlreadyDependentNodesOf (n)
6: for nd ∈ SND do � Then over each non already dependent node
7: G ′

C ← GC .copy() ; G ′
C .addDependencyBetween(n,nd)

8: G ′
C .removeShortestPathBetweenNodes(n,nd)

9: if conditionsSatisfied(G ′
C) then SPO ← SPO ∪ {G′

C}
10: else SNB ← SNB ∪ {G′

C}
11: end if
12: end for
13: end for
14: end for
15: SCB ← SNB ; SNB ← ∅
16: end while
17: return findOptimalGraph(SPO)

and another task that is not already dependent nor transitively dependent of
the current task (line 7). As this new dependency may generate a path (i.e., a
(transitive) dependency) between two nodes that were already connected, the
shortest path between these nodes is removed (i.e., the edges composing it are
removed) in order to avoid the duplication of dependencies, while preserving the
original ones (line 8). If this new dependency makes the constraints be satisfied,
the current graph is added to the set of possibly optimal graphs SPO . Otherwise,
it is added to the set of new pending graphs SNB . At the end of an iteration,
SNB is put in SCB and if it is not empty, a new iteration starts. When the while
loop finishes (line 16), each set of dependencies validating the conditions has
been built and put in the set of possibly optimal dependencies SPO . Then, the
algorithm generates the abstract graph corresponding to each possibly optimal
set of dependencies and computes its worst-case execution time. The one with
the shortest execution time is returned. The corresponding abstract graph is
finally generated, and all the non-dependent tasks are put in parallel with it.
Since we do not consider the resources in this step, this abstract graph is an
optimal version of the original process in terms of execution time, as tasks have
been put as much as possible in parallel. However, as this algorithm explores all
possible combinations of dependencies, its complexity is exponential. Nonethe-
less, real-world BPMN processes are usually small, thus even smaller are their
dependencies. Consequently, the execution time of this algorithm is rather short
in practice.

Example. Let us consider the trip organisation process shown in Fig. 1.
According to the user, the dependencies that should be preserved by the app-

234 Q. Nivon and G. Salaün

roach are the ones shown in Fig. 3(a). As the reader can see, these dependencies
do not validate the conditions stated previously, because for example, task Reim-
bursement has two predecessors (Flight Booking and Return Documents) that
do not have the same successors.

Fig. 3. Evolution of the Dependency Graph of the “Trip Organisation Process”

The result of the execution of Algorithm 1 on this dependency graph is shown
in Fig. 3(b). As the reader can see, a new dependency has been added between
tasks Flight Booking and Return Documents. The dependency between tasks
Flight Booking and Reimbursement has been removed because these tasks are
now transitively dependent through task Return Documents. These dependencies
now validate the conditions, and the corresponding abstract graph is optimal,
as it has the shortest worst-case execution time possible, that is 28UT.
Computation of Resource Usage. In the previous step, we have built an
abstract graph that is an optimal representation of our initial process satisfying
the dependencies that may exist between tasks. Nonetheless, this optimal graph
has been built without considering the resources required by the tasks composing
it to execute. Even if the execution time of the abstract graph may not vary a lot
in a single instance context, it may drastically increase in the multi-instance con-
text that we are dealing with, due to resource competition and synchronisation
delays. The goal of this step is then to verify whether our optimal abstract graph
can execute without such delays. To do so, we compute the resources needed by
a single instance of the abstract graph to execute without resource competition.
From this computation, we are able to compute the resources needed by mul-
tiple instances of the abstract graph to execute without resource competition.
Then, we compare these resources to the shared ones. If the pool of computed
resources is smaller than the pool of shared resources, the optimal abstract graph
can execute without resource competition nor synchronisation delays. The corre-
sponding BPMN process is then synthesised and returned to the user as optimal
version of the original process. Otherwise, steps 3 & 4 of Fig. 2 are performed
to limit the delays induced by the resource competition. In the latter case, the
BPMN process returned to the user is close to the optimal one.

The first part of this step consists of transforming the current abstract graph
into a tasks execution flow. A tasks execution flow is a representation in which

Refactoring of Multi-instance BPMN Processes 235

each task of the abstract graph is pictured as a box, for which the length rep-
resents the duration. Tasks are put one after the other if they are executed
sequentially, and one above the other if they are executed in parallel, along the
time axis. In case of choices or loops, their probability of execution is also indi-
cated. From this representation, we know exactly which task is executed at each
moment. The resource usage at any time is then computed directly, by consid-
ering the resource usage of each currently executing task. Nonetheless, we recall
that we are dealing with several instances of the abstract graph executing at
the same time. Thus, we are interested in computing the global resource usage
of the abstract graph. To do so, the idea is to count the maximum number of
instances running at the same time. This is feasible because the worst-case exe-
cution time of the abstract graph and the IAT are known. Once the maximum
number of instances running at the same time has been computed, the instances
are divided into three blocks. The first block contains the pivot instance, that
is the middle one. In other words, this instance is the instance for which the
number of instances that started before it is equal to the number of instances
that will start after it. The second block contains the instances that were already
running before the beginning of the pivot instance. The third block contains the
instances that started running after the beginning of the pivot instance. Then,
each instance in block 2 & 3 is shifted by a precise number of IAT in order
to represent the progression of its execution compared to the one of the pivot
instance. Thus, instances belonging to the second block are shifted by a negative
number of IAT, while instances belonging to the third block are shifted by a pos-
itive number of IAT. Finally, the tasks execution flow of each running instance
is traversed, and the tasks executing at their relative instant of time compared
to the pivot instance are retrieved. Then, we know precisely which tasks are
executing at any instant of time of the execution. The global resource usage of
the abstract graph (i.e., for multiple instances) is deduced by considering the
maximum usage of each resource over the execution.

Algorithm 2 Multi-Instances Resource Computation
Input: TS (Tasks executing per instant of time (single instance))
Output: RG (Global resource pool needed by the abstract graph)

1: TM ← ∅ � List of tasks executing per unit of time
2: NI ← �WCET

IAT
� − 1 � Number of instances already running

3: for t = 0; t < WCET; t++ do
4: Tt ← ∅ � List of tasks executing at time t
5: for i = -NI; i ≤ NI; i++ do
6: tr ← i × IAT + t � Relative time of instance i
7: if 0 ≤ tr < WCET then � Check that current instance is executing
8: Tt ← Tt ∪ TS .get(tr) � Add the tasks executing at t = tr
9: end if
10: end for
11: TM ← TM ∪ Tt

12: end for
13: return RG ← extractGlobalPool(TM)

236 Q. Nivon and G. Salaün

Algorithm 2 performs this computation. It takes as input the list of tasks
executing per instant of time for a single instance. Then, it starts by computing
the number of instances that were already running before the start of the pivot
instance (line 2). By symmetry, it computes the number of instances that started
executing after the beginning of the pivot instance. For each instant of time in
the abstract graph execution, it iterates over the running instances. For each
instance, it computes its relative instant of time tr, that is its instant of time
from the point of view of the pivot instance. Then, it verifies that this relative
instant of time corresponds to an instant of time in which the current instance
is running (i.e., has started and has not yet terminated). If this is the case, the
tasks executing at this instant of time are added to the list of all tasks executing
at this instant of time. This algorithm performs in linear time as it only traverses
the list of tasks executing at each instant of time once.

Fig. 4. Tasks Execution Flows of the Trip Organisation Process

Theorem 1. (Optimality of BPMN Generation) Let A be the abstract graph
generated from the original dependencies of the process, B the BPMN process
synthesised from A, RA the pool of available resources and RC the pool of
resources computed by Algorithm 2. Then, RC ≤ RA =⇒ B is optimal.

Proof (Sketch). In a first time, A is generated from the given set of depen-
dencies, without considering the resources. Either the dependencies validate the
conditions stated in Sect. 2, in which case A is optimal according to [11], or not,
in which case the optimal dependencies are computed using Algorithm 1. Then,

Refactoring of Multi-instance BPMN Processes 237

Algorithm 2 precisely computes the tasks executed at each instant of time of
the execution of the multiple instances of B. It returns the maximum number
of resources used at any instant of time, that we call RC . If RA > RC , none of
the instances will wait/compete to access a resource and execute a task, thus no
delay will increase the execution time of the instances. Consequently, the execu-
tion time of B, which is the shortest execution time possible, is the same for each
instance of B, i.e., ETB1

= ETB2
= ... = ETBn

. By construction, the AET of B is

then necessarily optimal: AETB = 1
n

n∑

i=1

ETBi
= ETB1

= ETB2
= ... = ETBn

��
Example. Now, let us illustrate this computation on an example. Figure 4

shows the tasks execution flows corresponding to all the instances of the optimal
trip organisation process running at the same time. The process has a worst-
case execution time of 28UT, and is ran with an IAT of 11UT. The number of
instances already executing when the pivot instance started is then �WCET

IAT 	 −
1 = 2. By symmetry, the same number of instances started executing after the
pivot instance. Then, by progressing through the execution of the pivot instance
(i.e., instance k), we are able to compute the tasks executed by all the running
instances of the abstract graph. For example, at time t = 10, the pivot instance
starts executing the task Return Documents. The corresponding relative time
for instance k − 1 is t = 21, as this instance started executing 11UT (1 ×
IAT) before the pivot instance. Thus, it is executing task Reimbursement. By
repeating this procedure for each instance, we obtain the list of tasks executing
at each instant of time for multiple instances. From this list, we compute the
global pool of resources needed by the process to execute without waiting times,
that is 2 assistants, 1 doctor, 2 financial staffs, 1 travel agency, 2 users and 1 visa
office.
Minimising Resource Competition Impact. At this point of the approach,
we have computed the resource usage of our optimal abstract graph, and found
that the shared resources were not sufficient to avoid resource competition and
synchronisation delays. This step consists of verifying whether the lack of certain
resources will strongly impact the average execution time of the abstract graph
or not, and, if it is the case, to identify all the tasks that should be removed
from their parallel constructs and put in sequence. Such tasks are called non-
parallelisable tasks. To do so, we compute for each insufficient resource a value
called absorbance. This value is the ratio between the amount of time at which
the usage of the resource is lower than the number of available replicas of the
resource, and the amount of time at which the usage of the resource is greater
than this number. If this value is below a certain threshold, we conclude that the
lack of the resource will not impact the average execution time of the abstract
graph. If this is the case for each insufficient resource, the abstract graph does
not need any modification. Thus, it is mapped to its equivalent BPMN represen-
tation [11] and returned to the user. Otherwise, some tasks have to be removed
from their parallel constructs and put in sequence to limit the resource com-
petition and the synchronisation delays. To do so, a score is assigned to each
task, according to its duration and its resource usage: the longer the duration

238 Q. Nivon and G. Salaün

the smaller the score, and the higher the cost the higher the score. Then, the
task with the highest score is put in sequence, and the absorbance of the new
abstract graph is computed. If it is below the threshold, the computation stops,
and the current task is put in the set of non-parallelisable tasks. Otherwise, the
second task with highest score is put in sequence, and so on. This computation
finishes either when the absorbance of the abstract graph reaches a value lower
than the threshold for each lacking resource, or when all the tasks using a lacking
resource have been put in sequence.

Algorithm 3 Find Non-Parallelisable Tasks
Inputs: PO ,PS ,G,T (Optimal resource pool, shared resource pool, abstract

graph, set of tasks of the abstract graph)
Output: SNP (Set of non-parallelisable tasks)

1: computeScores(T)
2: PL ← computeLackingResources(PO ,PS) ; modified ← True ; SNP ← ∅
3: while modified = True do � Iterate until fix point
4: modified ← False
5: for r ∈ PL do � Iterate over each lacking resource
6: δO ← computeWeightedOverUsageTimeOf (r ,G)
7: δU ← computeWeightedUnderUsageTimeOf (r ,G)
8: A ← δO

δU
× 100 � Compute absorbance of r

9: if A > Threshold then
10: THS ← getTaskWithHighestScore(r ,T)
11: T ← T \ {THS} ; SNP ← SNP ∪ {THS} ; modified ← True
12: putInSequence(THS ,G)
13: end if
14: end for
15: end while
16: return SNP

Algorithm 3 performs this computation. It takes as input the optimal pool
of resources PO, the pool of shared resources PS , the abstract graph G, and the
set of tasks of the abstract graph T . First, it assigns a score to each task (line 1).
Then, it computes the set of lacking resources (line 2). For each lacking resource
r, it computes its absorbance A (lines 6, 7, 8). If A exceeds the threshold, the
task with the highest score using this resource THS is put in sequence and added
to the list of non-parallelisable tasks SNP , and a new iteration starts. When the
algorithm reaches a fix point (i.e., no tasks were put in sequence in the previous
iteration), the while loop breaks, and the list of non-parallelisable tasks SNP is
returned. In this work, according to a study made on many examples (real-world
and handcrafted), we found that the threshold giving the best results was 100.
Thus, this threshold is used as default threshold in the approach. Nonetheless,
the user can still specify his own threshold as input. This algorithm runs in linear
time as it performs at most |T | iterations before finishing.

Example. Now, let us consider the optimal abstract graph of the trip organi-
sation process to illustrate this step. In this example, we consider that the shared

Refactoring of Multi-instance BPMN Processes 239

Fig. 5. Usage of Resource assistant Over Time

resources contain only one replica of the resource assistant, instead of the two
required by the abstract graph to execute without resource competition. This
means that tasks Mission Paperwork and Archive Documents will possibly be
put in sequence, as they both require one replica of resource assistant to exe-
cute. Figure 5 shows the usage of the resource assistant over the execution time
of the abstract graph. As the reader can see, the usage exceeds the total number
of replicas by one between times 2 & 3, 13 & 14, and 24 & 25. Conversely, the
usage is lower than the total number of replicas by one between times 9 & 11
and 20 & 22. The rest of the time, the replica is accessed without competition.
The absorbance of resource assistant is then 1×1+1×1+1×1

2×1+2×1 = 3
4 = 75. As this

absorbance is lower than 100 (default threshold), the tasks Mission Paperwork
and Archive Documents can remain in parallel. As no other resource is lacking,
none of the tasks of the optimal abstract graph needs to be put in sequence.
Thus, the BPMN process can directly be generated, as shown in Fig. 6. As the
reader can see, as no non-parallelisable tasks have been found, this process is
optimal as it has the highest degree of parallelism while respecting the original
dependencies.

Fig. 6. Optimal Version of the Trip Organisation Process

240 Q. Nivon and G. Salaün

Sequencing of Non-parallelisable Tasks. This step is executed when the
previous step has returned a list of non-parallelisable tasks. The goal of this step
is to isolate these tasks in the abstract graph, while preserving the dependencies
of the process. The principle of isolation is the following: each non-parallelisable
task of the abstract graph is removed from its current abstract node, and put
alone in a new abstract node. By doing so, the non-parallelisable tasks are not
anymore in parallel with other tasks, as only elements inside the same abstract
node are parallelised. This new abstract node is then added to the set of abstract
nodes of the abstract graph. As the dependencies of the process must be pre-
served by our approach, we split this step in two cases. In the first case, none of
the non-parallelisable tasks belong to the dependencies of the process. Thereby,
each non-parallelisable task can simply be put in a new abstract node, which is
connected either to the first or last node of the abstract graph (i.e., it becomes
either the first or the last abstract node of the abstract graph). By doing so, the
non-parallelisable tasks are kept all together in sequence while ensuring the high-
est level of parallelism for the rest of the abstract graph, and thus the shortest
execution time.

In the second case, some non-parallelisable tasks belong to the dependencies
of the process. Thus, they cannot simply be put at the beginning or at the end of
the abstract graph, as such restructuring may no longer satisfy the dependencies.
Instead of removing these tasks from their nodes as we do in the first case, we
extract all the tasks that should have been put in parallel with them. By doing
so, the non-parallelisable tasks now belong to isolated nodes that will no longer
be parallelised. Nonetheless, we still have to manage the tasks that we have just
extracted. These tasks may be put at several different places of the abstract
graph while preserving the dependencies of the process. As the main concern
of this approach is to minimise the execution time, we propose to compute all
the places where these tasks can be put. To do so, we try to put these tasks in
all possible abstract nodes of the graph while preserving the dependencies. In
the end, we obtain several abstract graphs that satisfy the dependencies of the
process. The one with the shortest execution time is then kept as best abstract
graph. While having the advantage of returning the abstract graph with shortest
execution time, this method also has the drawback of possibly taking a long time
to be executed, if the number of valid combinations is large. As an alternative
option, we propose an heuristic aiming at reducing this computational time. The
idea of this heuristic is the following: instead of computing all the possible nodes
that can host a task, we select the node having the closest greater execution time,
if existing. Thus, the execution time of the selected node will not be impacted
by its new task. If no such node exists, the task is put in the node having the
closest execution time. More formally, considering a task T of duration dt, and
three nodes n1, n2 and n3 of duration d1, d2 and d3, the chosen node is the one
minimising the quantity q = di−dt s.t. q > 0 for i ∈ {1, 2, 3}. If �i s.t. q > 0, the
chosen node is the one minimising the quantity |di − dt| for i ∈ {1, 2, 3}. This
heuristic runs in linear time, but may generate an abstract graph that does not
have the shortest execution time possible. Finally, the generated abstract graph
is transformed into its equivalent BPMN process and returned to the user.

Refactoring of Multi-instance BPMN Processes 241

Fig. 7. Generation of Abstract Graph with Non-Parallelisable Tasks

Example. Let us consider a BPMN process with six tasks T1 ,T2 ,T3 ,T4 ,T5 ,
T6 in sequence, and the following dependencies: (T1 ,T2), (T1 ,T3), (T3 ,T4),
(T3 ,T5), (T5 ,T6). Each task respectively has a duration of 6UT, 12UT, 10UT,
2UT, 7UT, 1UT. Finally, T5 has been marked as non-parallelisable during Step 3.
Figure 7 shows the abstract graphs generated after this step, both for the combi-
nation method and the heuristic. Figure 7(a) shows the six different abstract
graphs generated by the combination method. All of them have task T5 in
sequence in an isolated node, and respect the initial dependencies. According
to the duration of each task, the fifth abstract graph (circled) has the shortest
worst-case execution time (26UT), and is the one returned by the combination
method. Figure 7(b) shows the abstract graph generated by the heuristic. As the
reader can see, T2 is now in parallel with T3 and T4 in parallel with T6. The
resulting abstract graph has an execution time of 27UT, which is close to the
best one, but not the best.

4 Tool and Experiments

The approach has been fully implemented in Java. It consists of approximately
10,000 lines of code, and the tool is available online [16]. It has been tested
on various handcrafted and real-world examples found in the literature. The
experiments allowed us to evaluate our approach both in terms of usefulness and
performance, by considering the gain of the optimised process in terms of AET
and the time taken by the tool to execute. The number of instances for each
process tested vary between 20 and 100.

Table 1 summarises these experiments. Column 1 gives the name of the pro-
cess. Columns 2, 3 & 4 show several characteristics of the process (number of
nodes, flows, types of resources, replicas of resources, IAT). Columns 5 & 6 pro-
vide respectively the AET of the initial process and of the optimised process.
Column 7 shows the gain that was obtained by optimising the process. Column
8 states whether the available pool of resources is sufficient to execute the opti-

242 Q. Nivon and G. Salaün

Table 1. Experimental results

BPMN

process

Nodes/

Flows

Types/

Number of

Resources

IAT Initial

AET

(UT)

Final

AET

(UT)

Gain Sufficient

Resources

Time

(ms)

Perish. Goods

Tran. [21]

24/26 9/17 6 26 14 46.2% ✓ 563

Employee Hiring

[4]

19/21 7/12 3 30 18 40.0% ✓ 607

Trip

Organisation [9]

11/11 6/11 7 41 28 31.7% ✓ 588

Patient

Diagnosis [1]

14/15 4/12 20 61 46 24.6% ✓ 624

Shipment

Process [12]

16/18 5/10 5 46 42 8.70% ✓ 531

Evisa

Application [19]

11/11 3/7 5 84 71 15.5% ✗ 797

Employee

Recruit. [11]

14/14 7/11 5 92 80 13.0% ✗ 873

Account

Opening [17]

22/25 6/17 8 67 63 5.97% ✗ 732

Goods Delivery

[3]

11/12 6/16 1 78 77 1.28% ✗ 696

mal version of the process or not. Column 9 gives the time taken by the tool to
execute.

The results can be split in two parts: the processes having enough resources
to execute the optimal version of the process, and the others. In the first case, the
AET of the generated process is optimal, and is generally a significant improve-
ment of the initial one (up to 46% for the first process). A lower gain only
indicates that the initial process was already syntactically close to its optimal
form, not that the approach does not perform well. In the second case, the gain
is lower than in the first case (up to 15.5%), due to the decrease of parallelism
induced by the sequencing of some tasks. Overall, the tool executes in less than
1 s on real-world processes, which is satisfactory as this approach is executed at
design time.

5 Related Work

In this section, we focus on existing works on process refactoring. [20] presents
six common mistakes made by developers when modelling with BPMN. For
each problem, the authors present best practices for avoiding these issues. As an
example, the authors propose to use explicit gateways instead of using multiple
incoming/outgoing sequence flows. [2] presents a technique for detecting refac-
toring opportunities in process model repositories. The technique works by first
computing activity similarity and then computing three similarity scores for frag-
ment pairs of process models. Using these similarity scores, four different kinds of

Refactoring of Multi-instance BPMN Processes 243

refactoring opportunities can be systematically identified. As a result, the app-
roach proposes to rename activities or to introduce subprocesses. IBUPROFEN,
a business process refactoring approach based on graphs, is presented in [13,18].
IBUPROFEN defines a set of 10 refactoring algorithms grouped into three cat-
egories: maximisation of relevant elements, fine-grained granularity reduction,
and completeness. These works mostly focus on syntactic issues and propose
syntactic improvements of the process by, for instance, removing unreachable
nodes or by merging consecutive gateways of the same type. They do not aim at
providing any kind of optimisation regarding the process being designed as we
do. Moreover, they do not consider rich models as we do (including, e.g., time
and resources).

In [15], the authors present an approach for optimising the redesign of process
models. It is based on capturing process improvement strategies as constraints
in a structural-temporal model. Each improvement strategy is represented by
a binary variable. An objective function that represents a net benefit function
of cost and quality is then maximised to find the best combination of process
improvements that can be made to maximise the objective. The BPMN subset
used in [15] is similar to the one we use in this paper in terms of expressiveness.
However, the approach is rather different since they compute optimal redesigns
with respect to some constraints, thus resulting in a change in the number or
execution of tasks (e.g., by splitting a task into several ones, or by executing one
task or another instead of these two tasks in sequence). In contrast, we do not
change the semantics of the application but only the structure of the process
(the order in which the tasks are executed).

[11] proposes a semi-automated approach for helping non-experts in BPMN
to model business processes using this notation. Alternatively, [14] presents an
approach which combines notes taking in constrained natural language with pro-
cess mining to automatically produce BPMN diagrams in real-time as interview
participants describe them with stories. In this work, we tackle this issue from a
different angle since we assume that an existing description of the process exists
and that we want to automatically optimise it by updating its structure. In [9],
the authors propose a refactoring procedure whose final goal is to reduce the
total execution time of the process given as input. This solution relies on refac-
toring operations that reorganise the tasks in the process by taking into account
the resources used by those tasks. This work assumes that processes are exe-
cuted only once (single executions) and that only one replica of each resource is
avalaible. In contrast, our approach applies refactoring techniques on processes
that are executed multiple times, and for which several replicas of each resource
can be available (no contraints on the number of resources).

6 Concluding Remarks

In this paper, we have proposed a solution to the optimisation of business
processes using refactoring techniques. Processes are described using BPMN
extended with time and resources, and are executed multiple times. The final

244 Q. Nivon and G. Salaün

goal of this approach is to restructure the tasks within the process in order to
reduce the execution time and optimise the resource usage while avoiding bot-
tlenecks. To do so, the approach applies several successive steps. The first steps
aim at analysing the dependencies between tasks and the resources usage. From
these first results, the approach determines whether some tasks have to be put in
sequence to limit eventual bottlenecks, or if all the tasks can be put in parallel.
Finally, it returns a process that is either optimal or close to the optimal. The
whole approach is fully automated by using a tool we implemented, and was
applied to a set of real-world processes in order to evaluate its usefulness and
performance. The experiments show satisfactory results both in terms of optimi-
sation and computation time. The main perspective of this work is to consider
non-fixed IATs, such as IATs defined using probabilistic functions.

References

1. Bazhenova, E., Zerbato, F., Oliboni, B., Weske, M.: From BPMN process models
to DMN decision models. Inf. Syst. 83, 69–88 (2019)

2. Dijkman, R.M., Gfeller, B., Küster, J.M., Völzer, H.: Identifying refactoring oppor-
tunities in process model repositories. Inf. Softw. Technol. 53(9), 937–948 (2011)

3. Durán, F., Falcone, Y., Rocha, C., Salaün, G., Zuo, A.: From static to dynamic
analysis and allocation of resources for BPMN processes. In: Rewriting Logic and
Its Applications: 14th International Workshop, WRLA 2022, Munich, Germany, 2–
3 April 2022, Revised Selected Papers, pp. 3–21. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-12441-9 1

4. Durán, F., Rocha, C., Salaün, G.: Computing the parallelism degree of timed
BPMN processes. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS,
vol. 11176, pp. 320–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-04771-9 24

5. Durán, F., Rocha, C., Salaün, G.: Symbolic specification and verification of data-
aware BPMN processes using rewriting modulo SMT. In: Rusu, V. (ed.) WRLA
2018. LNCS, vol. 11152, pp. 76–97. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99840-4 5

6. Durán, F., Rocha, C., Salaün, G.: A rewriting logic approach to resource allocation
analysis in business process models. Sci. Comput. Program. 183 (2019)

7. Durán, F., Rocha, C., Salaün, G.: A rewriting logic approach to resource allocation
analysis in business process models. Sci. Comput. Program. 183 (2019)

8. Durán, F., Rocha, C., Salaün, G.: Resource provisioning strategies for BPMN pro-
cesses: specification and analysis using maude. J. Log. Algebraic Methods Program.
123, 100711 (2021)

9. Durán, F., Salaün, G.: Optimization of BPMN processes via automated refactoring.
In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A.
(eds.) Service-Oriented Computing: 20th International Conference, ICSOC 2022,
Seville, 29 November– 2 December 2022, Proceedings, pp. 3–18. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-20984-0 1

10. Eshuis, R., Gorp, P.V.: Synthesizing data-centric models from business process
models. Computing 98(4), 345–373 (2016)

11. Falcone, Y., Salaün, G., Zuo, A.: Semi-automated modelling of optimized BPMN
processes. In: Proceedings of SCC’21, pp. 425–430. IEEE (2021)

https://doi.org/10.1007/978-3-031-12441-9_1
https://doi.org/10.1007/978-3-031-12441-9_1
https://doi.org/10.1007/978-3-030-04771-9_24
https://doi.org/10.1007/978-3-030-04771-9_24
https://doi.org/10.1007/978-3-319-99840-4_5
https://doi.org/10.1007/978-3-319-99840-4_5
https://doi.org/10.1007/978-3-031-20984-0_1

Refactoring of Multi-instance BPMN Processes 245

12. Falcone, Y., Salaün, G., Zuo, A.: Probabilistic model checking of BPMN processes
at runtime. In: ter Beek, M.H., Monahan, R. (eds.) Integrated Formal Methods:
17th International Conference, IFM 2022, Lugano, Switzerland, 7–10 June 2022,
Proceedings, pp. 191–208. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-07727-2 11

13. Fernández-Ropero, M., Pérez-Castillo, R., Piattini, M.: Graph-based business pro-
cess model refactoring. In: Proceedings of the 3rd Intenational Symposium on
Data-Driven Process Discovery and Analysis, vol. 1027 of CEUR Workshop Pro-
ceedings, pp. 16–30 (2013)

14. Ivanchikj, A., Serbout, S., Pautasso, C.: From text to visual BPMN process models:
design and evaluation. In: Proceedings of MoDELS’20, pp. 229–239. ACM (2020)

15. Kumar, A., Liu, R.: Business workflow optimization through process model
redesign. In: Proceedings of TEM’22, LNCS, pp. 3068–3084. Springer, Cham (2022)

16. Nivon, Q.: Automated Tool for Multi-Instance BPMN Processes Optimisation
(2023). https://github.com/KyriuDev/MultiInstancesRefactoring

17. Nivon, Q., Salaün, G.: Debugging of BPMN processes using coloring techniques.
In: Tapia Tarifa, S.L., Proença, J. (eds.) Formal Aspects of Component Software:
18th International Conference, FACS 2022, Virtual Event, 10–11 November 2022,
Proceedings, pp. 90–109. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-20872-0 6

18. Pérez-Castillo, R., Fernández-Ropero, M., Piattini, M.: Business process model
refactoring applying IBUPROFEN: an industrial evaluation. J. Syst. Softw. 147,
86–103 (2019)

19. Salaün, G.: Quantifying the similarity of BPMN processes. In: Proceedings of
APSEC’22, pp. 1–10 (2022)

20. Silingas, D., Mileviciene, E.: Refactoring BPMN models: from ‘Bad Smells’ to best
practices and patterns. In: BPMN 2.0 Handbook, pp. 125–134 (2012)

21. Valderas, P., Torres, V., Serral, E.: Modelling and executing IoT-enhanced business
processes through BPMN and microservices. J. Syst. Softw. 184, 111139 (2022)

https://doi.org/10.1007/978-3-031-07727-2_11
https://doi.org/10.1007/978-3-031-07727-2_11
https://github.com/KyriuDev/MultiInstancesRefactoring
https://doi.org/10.1007/978-3-031-20872-0_6
https://doi.org/10.1007/978-3-031-20872-0_6

Verified Scalable Parallel Computing
with Why3

Olivia Proust and Frédéric Loulergue(B)

Univ Orléans, INSA CVL, LIFO EA 4022, Orléans, France

olivia.proust@etu.univ-orleans.fr, frederic.loulergue@univ-orleans.fr

Abstract. BSML is a pure functional library for the multi-paradigm
language OCaml. BSML embodies the principles of the Bulk Syn-
chronous Parallel (BSP) model, a model of scalable parallel comput-
ing. We propose a formalization of BSML primitives with WhyML, the
specification language of Why3 and specify and prove the correctness of
most of the BSML standard library. Finally, we develop and verify the
correctness of a small BSML application.

Keywords: scalable parallel computing · functional programming ·
deductive verification · interactive theorem proving

1 Introduction

High-level approaches to big data analytics such as Hadoop MapReduce [26] or
Apache Spark [1] are often inspired by bulk synchronous parallelism (BSP) [25]
a model of scalable parallel computing. In this context, scalable means that
the number of processors of the parallel machines running BSP programs could
range from a few to several thousand cores or more. Bulk Synchronous Parallel
ML (BSML) [19] is a pure functional library for the multi-paradigm language
OCaml1. BSML embodies the principles of the BSP model, at a higher level than
libraries such as the BSPlib library [14] and can easily express patterns [13,17]
(or algorithmic skeletons [4]) of frameworks such as MapReduce or Spark.

Why3 [2,3] is a framework for the deductive verification of programs. It
provides a specification and programming language named WhyML which can be
used directly or as an intermediate language for other tools to verify C [15], Java
[9], Ada or Rust [7] programs. The framework itself also provides mini-C and
mini-Python front-ends. Why3 generates verification conditions to be verified
by external provers. A strong point of Why3 is that it targets a large variety
of provers including Alt-Ergo [5], Z3 [21] and CVC5. Correct-by-construction
OCaml code can be extracted from WhyML.

Our contributions are the formalization of BSML and its standard library
in WhyML and its use in the specification and verification of a scalable parallel
function for the maximum prefix sum problem, using map and reduce skeletons.
1 https://ocaml.org.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 246–262, 2023.
https://doi.org/10.1007/978-3-031-47115-5_14

https://doi.org/10.5281/zenodo.8166091
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_14&domain=pdf
https://orcid.org/0009-0007-7154-5365
http://orcid.org/0000-0001-9301-7829
https://ocaml.org
https://doi.org/10.1007/978-3-031-47115-5_14

Verified Scalable Parallel Computing with Why3 247

The remainder of the paper is organized as follows. In Sect. 2, we give an
overview of Why3 and WhyML, including its limitations when dealing with
higher-order functions. We introduce functional bulk synchronous parallel pro-
gramming with BSML in Sect. 3. Section 4 is devoted to the formalization of
the primitives of BSML and its application to the specification and verification
of the BSML standard library. We consider the specification, development and
verification of a small application: a parallel function that solves the maximum
prefix sum problem in Sect. 5. We discuss related work in Sect. 6 and conclude
in Sect. 7.

The set of Why3 modules is called WhyBSML and is available at:

https://doi.org/10.5281/zenodo.8166092.

2 An Overview of Why3

2.1 Specifying and Verifying Functional Programs with Why3

Why3 is often use in the verification of imperative programs. As BSML is purely
functional and BSML applications mostly used the functional features of OCaml,
we focus here on the verification of functional programs. This focus is also a
necessity as we will explain in the next subsection.

In addition to its core features, Why3 provides a standard library with data
structures such as lists and arrays, as well as basic arithmetic logic with integers
and reals. We illustrate this short introduction with the example of Fig. 1. Note
that this figure presents a pretty-printed version of the actual code, for example
/\ is rendered as ∧, -> as →, ’a as α, etc.

WhyML developments are organized in modules. The example defines two
modules: Max (lines 1–8) and MaxList (lines 10-32). Defined modules can be used
in other modules with the use keyword. We use some modules of the Why3 stan-
dard library: int.Int about integer arithmetic (lines 2 and 11) and list.List,
list.Length, list.NthNoOpt for basic definitions and facts about lists (lines
12–14).

The module Max is devoted to the specification and definition of a function
max which returns the larger of two integers. This function does not have any
pre-condition but its post-conditions are introduced by the keyword ensures.

Assuming the file maximum.mlw contains only the module Max, verifying that
max satisfies its preconditions using the prover Alt-Ergo can be done with the
following command:

why3 prove --prover alt-ergo maximum.mlw

and the tool answers max indeed satisfies its contract:

File maximum.mlw:

Goal max’vc.

Prover result is: Valid (0.00s, 8 steps).

https://doi.org/10.5281/zenodo.8166092

248 O. Proust and F. Loulergue

Fig. 1. A WhyML Example

In our example, most of the functions to verify are recursive and often manip-
ulate lists. Lines 19–31 are an example of a recursive function that takes a list
of integers and returns the highest value the list contains.

To write the contract of function maximum, we use the notation l[i] to access
the ith element of list l. This notation is defined as a binary function in line 17
and is actually an alias for the nth function of the standard library. Note that
this definition is introduced by the keyword function instead of the keyword
let (as in line 4). The purpose of ([]) is to be used only in specifications while
max is code that is meant to be executed. Pure functions may be used in both
roles if they are defined using both keywords. In this example, max cannot be
used in assertions while the bracket notation cannot be used in programs.

For maximum, we have a larger contract with new clause types. We add a
pre-condition (following the keyword requires) to this contract, due to the fact

Verified Scalable Parallel Computing with Why3 249

that our function is not defined on empty lists. To ensure termination, we define
a variant, which must be decreasing with each recursive call. The recursive call
in line 30 is indeed call on the tail of the input list, thus this call is made on a
strictly smaller argument than l. The variant can be a term of any type as long
as this type comes with a well-founded order relation. It can even be a sequence
of terms: in this case, lexicographic ordering is used.

We need quantifiers to express our post-conditions. The maximum value must
be contained in the list (line 22 using ∃), and must be greater than or equal to
all the values in the list (line 21 using ∀).

The definition of the function follows in lines 24–30. It proceeds by pattern
matching on the input list. The case of the empty list (constructor Nil) is absurd
as the pre-condition specifies the input list should not be empty (expressed as a
fact on its length in line 20). If the list is a singleton (case (Cons h Nil)), the
result is of course the only element of the list. Otherwise — and let us ignore
lines 28–29 for the moment — the result is the maximum of the head and the
recursive call on the tail (line 30). Without lines 28–29, the execution of the tool
now answers:

File maximum.mlw:

Goal max’vc.

Prover result is: Valid (0.00s, 8 steps).

File maximum.mlw:

Goal maximum’vc.

Prover result is: Timeout (5.00s).

Using Z3 or CVC5, or increasing the timeout, or changing the proof strategy
does not change the outcome. It is possible to apply transformations to the goals.
Using the Why3 IDE, just splitting the verification condition for maximum gives
five verification conditions: one for verifying the empty case is indeed absurd,
one to check that the recursive call is indeed decreasing, one to check the pre-
condition of the recursive call and one for each post-conditions. All these sub-
goals are valid except for the one corresponding to the post-condition in line
22 remain unknown. To help the provers, we added lines 28–29 which relate
elements of l with elements of its tail via nth. This assertion is easily verified
and then eases the verification of the post-condition. The answer of the tool
changes to:

Prover result is: Valid (0.09s, 749 steps).

2.2 Limitations with Higher-Order Functions

To show the limitations of Why3 in handling higher-order functions, let us con-
sider the example of Fig. 2. Intuitively, option α extends the type α with a
value None and all the other values are encapsulated in the constructor Some.

In lines 1–10, we define a module Concrete containing the definition of a
function remove option that extracts the value encapsulated in an optional
value assuming this value is not None. In the module Failure, we apply this
function but through a higher-order function apply that just applies a function

250 O. Proust and F. Loulergue

Fig. 2. Limitations with Higher-Order Functions

to a value. The tool fails to verify the function test KO which intuitively does
exactly the same as remove option. Note that if remove option was performing
side effects or was partial because it may raise exceptions, Why3 would reject the
program with an error. Here the problem is less visible. Indeed, the arguments of
a higher-order function must be purely functional and total functions. In our case
remove option is not total as its pre-condition excludes None. The manifestation
of the problem can be seen in a sub-verification condition generated by Why3:
∀ opt:option α. opt �=None, which is impossible to prove.

Still, as most BSML primitives are higher-order functions, and we need to
use functions such as remove option, a work-around was needed. Our solution is
shown in module Abstract (lines 19–24). Instead of writing a concrete implemen-
tation of remove option, we declare a function remove option without defining
it, and we only give its semantics (with an axiom) when the pre-condition is met.

Verified Scalable Parallel Computing with Why3 251

It looks like a total function but if its application does not satisfy the precon-
dition then it is impossible to reason about the result of the application. If the
overall verification of a client code works despite an incorrect application of
remove option, it means the result of the incorrect application was not used. In
module Success, the same client code as module Failure uses module Abstract
instead of module Concrete and the verification succeeds.

3 Functional Bulk Synchronous Parallelism

The OCaml language is a versatile programming language that combines func-
tional, imperative and object-oriented paradigms. BSML [19] (Bulk Synchronous
Parallel ML) is an OCaml-based library that embodies the principles of the
BSP [25] (Bulk Synchronous Parallel) model. It provides a range of constants
and functions to facilitate BSP programming. The BSP machine, viewed as a
homogeneous distributed memory system with a point-to-point communication
network and a global synchronization unit, serves as the underlying architecture
for BSML. BSP programs, composed of consecutive super-steps, run on this kind
of machine. The execution of each super-step follows a distinct pattern, starting
with the computation phase where each processor-memory pair performs local
computations using data available locally. This phase is followed by the com-
munication phase, during which processors can request and exchange data with
other processors. Finally, the synchronization phase concludes the super-step,
synchronizing all processors globally.

With its collection of four expressive functions and constants like bsp_p
representing the number of processors in the BSP machine, BSML empowers
developers to create BSP algorithms. While OCaml supports imperative pro-
gramming and BSML can exploit it [16], in this paper we only consider the pure
functional aspects of OCaml and BSML. Indeed, the four BSML functions are
higher-order functions but Why3 does not handle non-pure function arguments.
This deliberate focus differentiates it from the imperative counterparts provided
by libraries such BSPlib for C [14]. The types and informal semantics of BSML
primitives are listed in Fig. 3.

Let us consider a function f that maps integers to values of type α
(denoted as f: int→α in OCaml). The BSML primitive mkpar f pro-
duces a parallel vector of type α par when applied to function f. Within
this parallel vector, each processor, identified by the index value i within
the range 0 ≤ i < bsp_p ,stores the computed value of f i . For instance,
employing the expression mkpar(fun i→i) yields a parallel vector denoted
as 〈0, . . . , bsp p − 1〉 of type int par . Throughout subsequent discus-
sions, we shall refer to this parallel vector as this. Additionally, the func-
tion replicate possesses the type α → α par and can be defined as follows:
let replicate = fun x → mkpar(fun i → x) . By employing the expres-
sion replicate x, the value x becomes uniformly available across all processors
within the parallel vector. Parallel vectors always have size bsp_p .

To apply a parallel vector of functions (which is not a function) to a parallel
vector of values, one has to use the primitive apply . Both mkpar and apply

252 O. Proust and F. Loulergue

Fig. 3. BSML primitives

are executed within the pure computation phase of a super-step. For commu-
nications and an implicit synchronization barrier, the last two primitives proj
and put should be applied. proj is essentially an inverse of mkpar but the

resulting function is partial and only defined on the domain [0, p-1] . As the
first constant constructor of any inductively defined type is considered as the
empty message, put allows to program any communication pattern of a BSP
super-step. In the input vector of put , each function encodes the message to be
sent to other processors by the processor holding it. In the result vector, each
function represents the message received from other processors by the processor
holding the function.

Figure 4 presents a small BSML example using its primitives and parfun
which is part of its standard library. List.map and List.fold_left are part
of the OCaml standard library and are sequential map and reduce functions.

At lines 4–5, we define a function list_of_par which converts a parallel
vector into a list. This function requires a full super-step for its execution because
it needs data exchanges. Also part of the BSML standard library, procs has
type int list and is the list [0;. . .;bsp_p-1] .

At lines 7–8, we define an algorithmic skeleton: a parallel map that operates
on a distributed list (represented here as a value of type α list par). This
function also requires the computation phase of a super-step and does not need
any data exchange or synchronization.

From line 10 to 13, we define the reduce algorithmic skeleton, using a binary
associative operation op and a neutral element e, it “sums” a distributed list
into a single value. It proceeds in two steps. First, each processor compute a
partial “sum” of the list it holds locally. Second, this vector of partial sums is
transformed into a list which is finally summed up. As we call list_of_par , a
full super-step is required.

Finally, in lines 15–18, we implement a parallel function to solve the maxi-
mum prefix sum problem. The goal is to compute the maximum value among

Verified Scalable Parallel Computing with Why3 253

the sums of the prefixes of a list. Computing at the same time the maximum
prefix sum and the sum of a list (in a pair) can be implemented using map
and reduce . For example, on a machine with at least 4 processors, the value
of mps (mkpar(function|0→[1;2]|1→[-1;2]|2→[-1;3]|3→[-4]|_→[]))
is 6. Indeed, the argument of mps is a distributed version (on 4 processors)

of the list [1;2;-1;2;-1;3;-4] and its prefix with the largest sum is the list
without its last element. We specify and prove the correctness of mps in Sect. 5.

Fig. 4. A BSML Example

4 Formalization of BSML Core and Standard Library

To be able to specify and write BSML programs, we need BSML primitives
in WhyML. BSML primitives are implemented in parallel on top of MPI [23]
called through OCaml’s Foreign Function Interface (FFI). Therefore, we cannot
provide BSML in WhyML as an implementation. We need to give a BSML
theory : a set of constant, axioms and function declarations. The axiomatization
of BSML primitives can be found in Fig. 5. The semantics of functions mkpar,
apply, proj and put are expressed in their contract (lines 12–24) while the
strict positivity condition on bsp_p is given as an axiom on line 4. The type of
parallel vector is abstract. Still we need to be able to observe parallel vectors.
That is the role of logic function get which is a ghost function: it can only
be used in specifications. A parallel vector is fully defined by the values all
the processors hold as expressed by the axiom extensionality in lines 9-10.
The axiomatization is very close to the informal semantics of Fig. 3. Instead of

254 O. Proust and F. Loulergue

Fig. 5. BSML Theory in WhyML

considering the parallel vectors globally with the notation 〈v0, . . . , vp−1〉, we
consider each value vi denoted by get v i.

It is possible to realize this theory by a sequential implementation, for exam-
ple implementing parallel vectors with sequential lists or arrays. This ensures
the consistency of this theory.

To illustrate the use of this theory, we now specify, implement and verify
several of the functions provided in the BSML standard library. The first one is
replicate:

let replicate (x: α) : par α
ensures { ∀ i:int. 0 ≤ i < bsp_p → get result i = x }

= mkpar(fun _ → x)

This verified function has only one post-condition: the result of replication is
parallel vector which contains the same value everywhere.

In Sect. 3, we mentioned the function parfun without defining it. Its imple-
mentation and specification follows, as well as the definition of function parfun2:

let parfun (f : α → β) (v: par α) : par β
ensures { ∀ i:int. 0 ≤ i < bsp_p →

get result i = f (get v i) }

Verified Scalable Parallel Computing with Why3 255

= apply (replicate f) v
let parfun2 (f : α → β → γ) (u : par α) (v : par β) : par γ

ensures { ∀ i:int. 0 ≤ i < bsp_p →
get result i = f (get u i) (get v i) }

= apply (parfun f u) v

It shows how to use the apply primitive. There is also a parfun3 function
omitted here.

Next, we use the communication primitive proj. As we wrote in Sect. 3, proj
is essentially the inverse of mkpar. This function allows us to obtain the value
of a vector v at a given processor i. However, it should not be used for such
individual vector access, otherwise the performances would be extremely poor.
Indeed, a call to proj requires a communication phase that is a total exchange
and a global synchronization barrier. The use of proj should thus be thought
as a collective operation. Note that proj and get have the same semantics.
However, the intent is very different: get is written only in specifications, can be
thought as an indexed array access, and is used for local reasoning, while proj
is used only in programs and requires a full super-step to execute. proj should
rather be thought as a global (i.e. concerning and involving all the processors)
conversion of a parallel vector into a function.

To illustrate proj, we define list_of_par. As we mentioned before this
function requires a complete super-step to run. Again it should be seen as a
global conversion from parallel vectors to lists:

let function list_of_par (v : par α) : list α
ensures { ∀ i:int. 0 ≤ i < bsp_p → result[i] = get v i }
ensures { length result = bsp_p }

= map (proj v) (procs())

As in the BSML/OCaml version we call procs – which needs to be a function
for Why3 to accept the code. procs returns the list of all processor identifiers.
The definition of procs relies on a function from_to itself implemented using a
init function. Our contribution does also contain a library of sequential func-
tions, mostly on lists, as well as verified lemmas stating their properties. These
functions can in most cases be used both in programs and in specifications.

Finally, the put primitive is illustrated to implement a broadcast function.
This data exchange (and implicit global synchronization) function is more precise
than proj, in the sense that with proj each processor sends the same value to
all processors, while with put each processor can send a different value to each
destination processor. Also, as some values are considered as empty messages,
this makes possible to reduce exchange costs. We remind the reader that after
a put, for all processors d and s, the result function at destination processor
d, applied to the identifier of source processor s returns the value of the input
function at source processor s applied to destination processor d.

The definition of the bcast_direct function of the standard library follows.
This function is used to broadcast a value from a root processor to all other
processors. To do so, first, we prepare a function vector for the processors to make

256 O. Proust and F. Loulergue

the messages to send to each other (local definitions make_msg and to_send). It is
clear that only the root processor will send data. The other processors’ message
is None which is interpreted by the BSML/OCaml implementation as an empty
message. Second, the local definition received proceeds with the data exchange
and ends the super-step. received is a parallel vector of functions. What we
are interested in is the value sent by processor root. That is why the local
definition optional_result then applies this parallel vector of functions to the
replicated value root. Of course, the obtained message is encapsulated in a Some
constructor. Therefore, all the processors finally apply remove_option to yield
the final result. The broadcast is meaningless if root is not a valid processor
identifier. In this case, the exception Bcast is raised:

let bcast_direct (root : int) (v : par α)
ensures { 0 ≤ root < bsp_p →

∀ i:int. 0 ≤ i < bsp_p →
get result i = get v root }

raises { Bcast }
= if (0 ≤ root) && (root < bsp_p)

then
let make_msg src load = fun _ →

if src = root then Some load else None in
let to_send = apply (mkpar make_msg) v in
let received = put to_send in
let optional_result = apply received (replicate root) in
parfun remove_option optional_result

else raise Bcast

Our BSML theory allows us to write BSML programs and their specifications
and is expressive enough for the Why3 framework to verify that they indeed
satisfy their specifications.

We only presented a sub-set of the functions of the BSML standard library we
implemented, and we refer to the companion artifact for the complete set of func-
tions. For example, we also provide the shift , shift_right and shift_left
communication functions, which offer a different communication pattern than
bcast_direct: Each data item is shifted by a certain number of processors.

5 Verified Scalable Maximum Prefix Sum

To exercise the formalization presented in the previous section, we specify and
verify an implementation of the maximum prefix sum informally presented in
Sect. 3. As in the BSML implementation, the implementation with WhyML relies
on algorithmic skeletons. The skeleton par_map is defined in lines 1–6 of Fig. 6.
The only difference with its BSML/OCaml counterpart is the post-conditions
including one expressed as a correspondence with the sequential map. Given a
distributed list dl (of type par(list α)), one obtains the same result by either
applying map_par then transforming the obtained distributed list into a list

Verified Scalable Parallel Computing with Why3 257

Fig. 6. Verified Algorithmic Skeletons in WhyML

Fig. 7. Algebra Concepts

with to_list, or applying the sequential map to the sequentialization of the
distributed list. Line 5 is just a hint for the provers: an application of lemma
flatten_map that basically commutes map and flatten.

The implementation (lines 8-20) of the parallel reduction reduce_par is also
very close to its BSML/OCaml counterpart of Fig. 4. As expected, the post-
condition on line 16 is expressed with respect to the sequential reduction here
implemented with the usual fold_left function. As the result is already a
sequential value there is no need to sequentialize it. However, this correspon-
dence is true only if op is associative and e is its neutral element which are

258 O. Proust and F. Loulergue

two pre-conditions stated lines 10–11. There are two additional pre-conditions
and a ghost argument, i.e. an argument only used in the contract (and possible
annotations) of the function. The reason is again to deal with a form of par-
tial functions. op is a total function, but it may not have the desired properties
(associativity, neutral element) on all the values of its input type. Indeed, the
OCaml version of op for mps that we will also use in the WhyML version of
mps, is not associative if we consider all pairs of integers. In the maximum pre-
fix sum problem, the first component of such a pair represents the maximum
prefix sum, it is therefore positive, and the second component the sum of the
list, thus it is lower or equal to the first component. The ghost argument inv
expresses such properties on the values manipulated during the reduction. This
is an invariant: op should preserve the property (line 12) and the input values
e and dl should satisfy this property (line 13). The predicates associative,
neutral, preserves and satisfies are defined in Fig. 7. Such definitions work
also well when there is no need for an invariant: in this case we simply use the
constant boolean function always returning true.

With these skeletons, it is possible to implement a parallel function to com-
pute the maximum prefix sum of a distributed list as we did in Sect. 3. First, we
define a specification as an inefficient function but direct translation of the infor-
mal specification: the mps_spec function on lines 1–2 of Fig. 8. We also define
op (lines 7–8) and f (line 10) which are the arguments to map and reduce as
in the BSML/OCaml example of Fig. 4. This time they are not local definitions
because we need to state and verify some lemmas about them and because we
have two versions of mps: mps_seq and map_par. The invariant explained above
is defined lines 12–13. We need an auxiliary function to verify the correctness
of our functions with respect to the specification: ms (line 4–5) is the tupling
of mps_spec and sum. The rest of the code in Fig. 8 is the definitions of the
sequential and parallel versions of the maximum prefix sum computation. Both
of them are expressed as a composition of map and reduce.

The proof that mps_seq indeed implements the specification mps_spec pro-
ceeds by using the first homomorphism theorem. This theorem states that a
homomorphic function can be implemented as a composition of map and reduce.
A function f is homomorphic when there exists a binary operation
 such that:
∀ l1 l2: list α. f(l1++l2) = (f l1)
 (f l2) where ++ denotes list con-
catenation. mps_spec is not homomorphic but ms is. Two lines of annotations
are necessary to guide the provers in the sequential case (lines 17–18). The
parallel case does need any annotation: basically the contracts of map_par and
reduce_par state their correspondence with their sequential counterpart thus
the correspondence of the parallel mps_par with the sequential mps_seq, and
mps_seq satisfies mps_spec.

The full development is about 600 lines of WhyML with about 45% of spec-
ifications and 55% of code. It generates 74 goals, 100% of which are proved.
Their verification produces 37 sub-goals. The strategy Auto level 2 is used: it
tries the provers CVC4, Alt-Ergo, CVC5 and Z3 with a short timeout (1 s). If
the goal is not proved then it splits the goal and tries on the sub-goals with the

Verified Scalable Parallel Computing with Why3 259

Fig. 8. Verified Maximum Prefix Sum in WhyML

same timeout and finally if necessary tries with a larger timeout (10 s). Alt-Ergo
version 2.4.3 proved 11 goals taking between 0.02 s and 0.56 s (when successful)
and CVC4 version 1.6 proved 91 goals taking between 0.04 s and 2.45 s. Several
sub-goals can contribute to a goal to be proved. For example the verification con-
dition of mps_seq is split in 3 sub-goals. In the number of the goals proved by
CVC4 and Alt-Ergo the root goals verified because their sub-goals are proved
are not counted. In our case, only 9 goals needed to be split to achieve their
proofs.

All the parts of the WhyML development that need to use BSML functions
include use bsml.BSML. When we extract the code however, the module BSML
cannot be extracted: there is no implementation for this module. For compiling
the OCaml code obtained by extraction of the other modules of our WhyML
development, we simply use the handwritten implementation of BSML in OCaml
(which uses OCaml’s FFI to call MPI C functions). This is done via a very simple
Why3 custom extraction driver: each BSML type or value is written using the
OCaml qualified identifier notation. For example, if the WhyML development
contains mkpar then the extracted code will contain Bsml.mkpar where Bsml
is the module containing the handwritten BSML parallel library.

260 O. Proust and F. Loulergue

6 Related Work

BSP-WHY [10,11] also uses (a previous version of) Why to verify bulk syn-
chronous parallel programs. However, the two approaches are very different.
BSP-WHY considers BSP programs written in an imperative style close to
BSPlib [14]. The verification proceeds by transforming well-formed programs
— a sub-class of what has been formally defined later by Dabrowski as textu-
ally aligned programs [6] — into sequential simulating programs that are then
verified using Why. The BSP-WHY code cannot be run on parallel machines.

The work closest to ours is the specification, verification and extraction of
BSML programs using the Coq proof assistant. Early contributions started with
the work of Gava [12]. A formalization of BSML primitives in a style very close
to the Why3 formalization presented in this paper was proposed by Tesson and
Loulergue [24] and used in a framework, named SyDPaCC, for the verification of
BSP functional programs [8,20]. The two main differences with our work is that:
(1) proofs are much less automated in Coq than in Why3 but (2) the framework
leverages the type-class resolution mechanism of Coq to automatically parallelize
programs. For example in this framework, the user does not need to write the
code for mps_seq and mps_par, but only needs to write mps_spec and to prove
that its tupling with sum is leftwards and rightwards (i.e. can be written as calls
to fold_left and fold_right) and exhibits a weak right inverse. The framework
would then use transformation theorems to automatically obtain mps_seq and
then verified correspondences as expressed in the post-conditions of map_par and
reduce_par to automatically produce mps_par [18].

Ono et al. [22] employed Coq to verify Hadoop MapReduce programs and
extract Haskell code for Hadoop Streaming or directly write Java programs anno-
tated with JML, utilizing Krakatoa [9] to generate Coq lemmas. The first part of
their work is functional and therefore closest to our work. However, it is limited
to MapReduce which is more general than the map_par and reduce_par skele-
tons but is less expressive than BSML. The second part of their work is more
imperative.

7 Conclusion and Future Work

We were able to formalize the primitives of the parallel programming library
BSML with WhyML and leverage Why3 for verifying a large part of the BSML
standard library as well as an application written in BSML. We plan to experi-
ment the extracted code more thoroughly and on larger parallel machines with
a few thousand cores.

WhyML offers exceptions and references, thus allows to write imperative
programs. However, such programs cannot be passed as arguments to higher-
order functions. It therefore limits the usage of imperative features with BSML
as all primitives are higher-order functions. The code outside BSML primitives
can be imperative thus the sequencing of BSP super-steps could be imperative. It
is also possible to use imperative features to implement pure functions passed as

Verified Scalable Parallel Computing with Why3 261

arguments to BSML primitives. Also, it is possible to deal with partial functions
as we did with remove_some . We plan to explore all these possibilities in the
future.

Acknowledgment. The authors thank the anonymous reviewers for their helpful
comments.

References

1. Armbrust, M., et al.: Scaling spark in the real world: performance and usabil-
ity. PVLDB 8(12), 1840–1851 (2015). https://www.vldb.org/pvldb/vol8/p1840-
armbrust.pdf

2. Bobot, F., Filliâtre, J.C., Claude, M., Melquiond, G., Paskevich, A.: The Why3
platform (2023). https://why3.lri.fr

3. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
Int. J. Softw. Tools Technol. Transfer 17(6), 709–727 (2014). https://doi.org/10.
1007/s10009-014-0314-5

4. Cole, M.: Algorithmic skeletons: structured management of parallel computation.
MIT Press (1989)

5. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT
Workshop: International Workshop on Satisfiability Modulo Theories. Oxford,
United Kingdom (2018). https://inria.hal.science/hal-01960203

6. Dabrowski, F.: A denotational semantics of textually aligned SPMD programs. J.
Log. Algebraic Methods Program. 108, 90–104 (2019). https://doi.org/10.1016/j.
jlamp.2019.02.010

7. Denis, X., Jourdan, J., Marché, C.: CREUSOT: a foundry for the deductive ver-
ification of rust programs. In: Riesco, A., Zhang, M. (eds.) Formal Methods and
Software Engineering. ICFEM 2022. LNCS, vol. 13478. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17244-1 6

8. Emoto, K., Loulergue, F., Tesson, J.: A verified generate-test-aggregate Coq library
for parallel programs extraction. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS,
vol. 8558, pp. 258–274. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08970-6 17

9. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 21

10. Fortin, J., Gava, F.: BSP-WHY: an intermediate language for deductive verifica-
tion of BSP programs. In: 4th workshop on High-Level Parallel Programming and
applications (HLPP), pp. 35–44. ACM (2010). https://doi.org/10.1145/1863482.
1863491

11. Fortin, J., Gava, F.: BSP-Why: a tool for deductive verification of BSP algo-
rithms with subgroup synchronisation. Int. J. Parallel Prog. 44(3), 574–597 (2015).
https://doi.org/10.1007/s10766-015-0360-y

12. Gava, F.: Formal proofs of functional BSP programs. Parall. Process. Lett. 13(3),
365–376 (2003)

13. Gava, F., Garnier, I.: New implementation of a BSP composition primitive with
application to the implementation of algorithmic skeletons. In: 23rd IEEE Interna-
tional Symposium on Parallel and Distributed Processing (IPDPS 2009), APDCM
workshop, pp. 1–8. IEEE (2009). https://doi.org/10.1109/IPDPS.2009.5160876

https://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
https://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
https://why3.lri.fr
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
https://inria.hal.science/hal-01960203
https://doi.org/10.1016/j.jlamp.2019.02.010
https://doi.org/10.1016/j.jlamp.2019.02.010
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1145/1863482.1863491
https://doi.org/10.1145/1863482.1863491
https://doi.org/10.1007/s10766-015-0360-y
https://doi.org/10.1109/IPDPS.2009.5160876

262 O. Proust and F. Loulergue

14. Hill, J.M.D., et al.: BSPlib: the BSP programming library. Parallel Comput. 24,
1947–1980 (1998)

15. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

16. Loulergue, F.: A BSPlib-style API for bulk synchronous parallel ML. Scalable
Comput.: Pract. Exp. 18, 261–274 (2017). https://doi.org/10.12694/scpe.v18i3.
1306

17. Loulergue, F.: Implementing algorithmic skeletons with bulk synchronous par-
allel ML. In: Parallel and Distributed Computing, Applications and Technolo-
gies (PDCAT), pp. 461–468. IEEE (2017). https://doi.org/10.1109/PDCAT.2017.
00079

18. Loulergue, F., Bousdira, W., Tesson, J.: Calculating parallel programs in Coq using
list homomorphisms. Int. J. Parallel Prog. 45(2), 300–319 (2016). https://doi.org/
10.1007/s10766-016-0415-8

19. Loulergue, F., Gava, F., Billiet, D.: Bulk synchronous parallel ML: modular imple-
mentation and performance prediction. In: Sunderam, V.S., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1046–1054.
Springer, Heidelberg (2005). https://doi.org/10.1007/11428848 132

20. Loulergue, F., Robillard, S., Tesson, J., Légaux, J., Hu, Z.: Formal derivation and
extraction of a parallel program for the all nearest smaller values problem. In:
ACM Symposium on Applied Computing (SAC), pp. 1577–1584. ACM, Gyeongju,
Korea (2014). https://doi.org/10.1145/2554850.2554912

21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Ono, K., Hirai, Y., Tanabe, Y., Noda, N., Hagiya, M.: Using Coq in specification
and program extraction of Hadoop MapReduce applications. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 350–365. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6 24

23. Snir, M., Gropp, W.: MPI the complete reference. MIT Press (1998)
24. Tesson, J., Loulergue, F.: A verified bulk synchronous parallel ML heat diffusion

simulation. In: International Conference on Computational Science (ICCS), pp.
36–45. Elsevier, Singapore (2011). https://doi.org/10.1016/j.procs.2011.04.005

25. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103 (1990). https://doi.org/10.1145/79173.79181

26. White, T.: Hadoop - The Definitive Guide. O’Reilly, 2nd edn. (2010)

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.12694/scpe.v18i3.1306
https://doi.org/10.12694/scpe.v18i3.1306
https://doi.org/10.1109/PDCAT.2017.00079
https://doi.org/10.1109/PDCAT.2017.00079
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/11428848_132
https://doi.org/10.1145/2554850.2554912
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.1016/j.procs.2011.04.005
https://doi.org/10.1145/79173.79181

Exact and Efficient Bayesian Inference
for Privacy Risk Quantification

Rasmus C. Rønneberg1(B), Raúl Pardo2, and Andrzej Wąsowski2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
rasmus.ronneberg@kit.edu

2 IT University of Copenhagen, Copenhagen, Denmark
{raup,wasowski}@itu.dk

Abstract. Data analysis has high value both for commercial and research
purposes. However, disclosing analysis results may pose severe privacy risk
to individuals. Privug is a method to quantify privacy risks of data ana-
lytics programs by analyzing their source code. The method uses proba-
bility distributions to model attacker knowledge and Bayesian inference
to update said knowledge based on observable outputs. Currently, Privug
uses Markov Chain Monte Carlo (MCMC) to perform inference, which is a
flexible but approximate solution. This paper presents an exact Bayesian
inference engine based on multivariate Gaussian distributions to accu-
rately and efficiently quantify privacy risks. The inference engine is imple-
mented for a subset of Python programs that can be modeled as multivari-
ate Gaussian models. We evaluate the method by analyzing privacy risks
in programs to release public statistics. The evaluation shows that our
method accurately and efficiently analyzes privacy risks, and outperforms
existing methods. Furthermore, we demonstrate the use of our engine to
analyze the effect of differential privacy in public statistics.

Keywords: Privacy risk analysis · Bayesian inference · Probabilistic
Programming

1 Introduction

Data anonymization methods gain legal importance [5] as data collection and
analysis are expanding dramatically in data management and statistical research.
Yet applying anonymization, or understanding how well a given analytics pro-
gram hides sensitive information, is non-trivial [20]. Contemporary anonymiza-
tion algorithms, such as differential privacy [18], require calibration to balance
between reducing risks and preserving the utility of data. To assess the risks,
data scientists need to assess the flow (leakage) of information from sensitive
data fields to the output of analytics.

Work partially supported by funding from the topic Engineering Secure Systems of the
Helmholtz Association (HGF), the KASTEL Security Research Labs and the Danish
Villum Foundation through Villum Experiment project No. 0002302.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 263–281, 2023.
https://doi.org/10.1007/978-3-031-47115-5_15

https://doi.org/10.5281/zenodo.8173905
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_15

264 R. C. Rønneberg et al.

Measuring the information leakage is a useful technique to quantify how much
an attacker may learn about the sensitive information a program processes. Many
methods have been proposed in this domain [4,8,9,12,14,15,29,32,34]. Privug is
a recent one [32]. It relies on Bayesian inference to quantify privacy risks in data
analytics programs. The attacker’s knowledge is modeled as a probability distribu-
tion over program inputs, and it is then conditioned on the disclosed program out-
puts. Then, Bayesian probabilistic programming is used to compute the posterior
attacker knowledge, i.e., the updated attacker knowledge after observing the out-
puts in the program. One of the advantages of Privug is that it works on the pro-
gram source code, and can be extended to compute most information leakage met-
rics [4]. However, Privug currently relies on approximate Bayesian inference such
as Markov Chain Monte Carlo [33]. These methods can be used to analyze arbi-
trary programs, but may be computationally expensive and may produce impre-
cise results. In quantifying privacy risks, precision is critical, as under-estimation
of risks may result in an illegal disclosure of personal information.

We present a new exact and efficient Bayesian inference engine for Privug
targeting attackers modeled by multivariate Gaussian distributions. Even though
not all standard program statements can be mapped to operations on Gaussian
distributions (and thus not all programs can be analyzed using our new engine),
multivariate Gaussian distributions are a good candidate for a semantic domain
of attacker’s knowledge for several reasons: (i) Multivariate Gaussians are closed
under many common operations and they can be computed efficiently; (ii) The
Gaussian distribution is a maximum entropy distribution under common con-
ditions [27,30] that allows modeling prior attacker knowledge with minimum
assumptions; (iii) Gaussians are commonly used in probabilistic modeling of
engineering systems to represent uncertainty of measurement.

This work constitutes a new point in the study of expressiveness vs perfor-
mance in quantification of privacy risks by means of Bayesian inference. Specif-
ically, our contributions are:

1. A probabilistic programming language for exact Bayesian inference using mul-
tivariate Gaussians. The language is a subset of Python (Sect. 3).

2. A definition of a sound (Sect. 3.2) Bayesian inference engine (Sect. 3.1) using
multivariate Gaussian distributions.

3. A proof-of-concept implementation of the inference engine as a library that
can be applied to analyze our subset of Python.

4. An application of the inference engine to a case study of privacy risk quantifi-
cation in public statistics (Sect. 4), with and without differential privacy [18].

5. An evaluation of the scalability of the inference engine, and a comparison
with existing inference methods for privacy risk quantification (Sect. 5). The
evaluation shows that our engine can analyze large systems involving thou-
sands of individuals, and also that we greatly outperform existing tools for
the programs supported in our language.

The code to reproduce the evaluation and case study in this paper is available
at [35]. The proof-of-concept implementation of the exact inference engine is an
open source project available at https://github.com/itu-square/gauss-privug.

https://github.com/itu-square/gauss-privug

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 265

2 Background

2.1 Privug: A Data Privacy Debugging Method

Let I,O denote sets of inputs and outputs, respectively. We use D(I) to denote a
space of distributions; in this case over inputs. Let d ∈ D(I) denote a distribution
over inputs, I ∼ D(I) denotes a random variable distributed according to d.

Privug [32] is a method to explore information leakage on data analytics pro-
grams. The method combines a probabilistic model of attacker knowledge with
the program under analysis to quantify privacy risks. This process is summarized
in the following steps:

(1) Prior. We first model the prior knowledge of an attacker as a distribution
over program inputs. This distribution represents the input values of a program
that the attacker finds plausible. For example, consider a program that takes as
input a real number A representing the age of an individual (I � R). A possible
prior knowledge of the attacker could be: A ∼ U(0, 120) (all ages between 0 and
120 are equally likely for the attacker) or A ∼ N (μ = 42, σ = 2) (the attacker
believes that the age of 42 and values nearby are most likely ages). We write
P (I) for the distribution of prior attacker knowledge.

(2) Probabilistic Program Interpretation. The second step is to interpret a tar-
get program π : I → O using the attacker prior knowledge. To this end,
we lift the program to run on distributions D(I) instead of concrete inputs
I. This corresponds to the standard lifting to the probability monad [24];
lift : (I → O) → (D(I) → D(O)). For example, consider the following program
that computes the average age of a list of ages (in Python):

1 def average_age(ages: List[float]): return sum(ages)/len(ages)

The lifted version of the program is (Python allows retaining the same body):

1 def average_age(ages: Dist[List[float]]): return sum(ages)/len(ages)

where Dist[List[float]] denotes a distribution over lists of floats, D(Rn). The
lifted program yields the distribution P (O |A). In general, the combination of
prior attacker knowledge with the lifted program yields a joint distribution on
inputs and outputs, P (O |I)P (I) = P (O , I).

(3) Observations. It is possible to analyze privacy risks for concrete outputs of
the program. To this end, one may add observations to the probabilistic model.
In the average example above, we could check how the knowledge of the attacker
changes when the attacker observes that the average is 44. This step yields the
posterior distribution P (I |O = 44). In general, the probabilistic lifting of the
program π defines a likelihood function on the joint distribution of input and
output, P (E |I ,O) with some predicate E on the joint distribution.

266 R. C. Rønneberg et al.

(4) Posterior Inference. The next step is to apply Bayesian inference to obtain
a posterior distribution on the input variables.

P (I ,O |E) = P (E |I ,O)P (O |I)P (I)/P (E) (1)

It is usually intractable to compute a symbolic representation of P (E). Therefore,
it is not possible to get analytical solutions for the posterior distributions. The
current implementation of Privug uses Markov Chain Monte Carlo (MCMC) [33]
to tackle this issue. But MCMC methods are approximate and do not always
converge. As mentioned above, the subject of this paper is to provide an exact
inference method to efficiently and precisely compute the posterior distribution.

(5) Posterior Analysis. We query the posterior and prior distributions (attacker
knowledge) to measure how much the attacker has learned. This can be done
by applying different techniques such as computing probability queries, plot-
ting visualizations of probability distributions, computing information theoretic
metrics (e.g., entropy or mutual information), and metrics from quantitative
information flow [4] such as Bayes vulnerability.

Fig. 1. Prior vs Posterior ages

For example, Fig. 1 compares the prior and
posterior distributions of the average age pro-
gram above. We analyze the case where the out-
put of the program is 44. The green line shows
the prior attacker knowledge on the victim’s age
P (A) and the blue line the posterior knowledge
P (A|O = 44) when observing that the program
output is 44. The prior attacker knowledge is
A ∼ N (35, 2) for the victim’s age and also for the
rest. The figure clearly shows that the attacker
now believes that higher ages are more plausible.
In other words, the attacker prior knowledge has been corrected towards more
accurate knowledge on the victim’s age.

2.2 Multivariate Gaussian Distributions

In this paper, we use capital Greek letters for matrices, and bold font for column
vectors. Small letters a and b are reserved for selecting subvectors (as in µa) and
pairs of them for selecting submatrices (as in Σba). Matrix and vector literals are
written in brackets. We write supp(X) for the support of the random variable X.

A multivariate Gaussian distribution, denoted X ∼ N (µ,Σ), defines a prob-
abilistic model composed of n normally distributed random variables, X =
[X1,X2, . . . , Xn]ᵀ. The distribution is parameterized by a vector µ of n means,
and a symmetric n × n covariance matrix Σ, so Σij = cov[Xi,Xj] gives the
covariance between Xi and Xj , Σkk gives the variance of Xk. We assume that
the covariance matrix is positive definite. The probability density function is:

P (x) = ((2π)n|Σ|)−1/2 exp
(−2−1(x − µ)ᵀΣ−1(x − µ)

)
(2)

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 267

where |Σ| denotes the determinant of the matrix Σ. We recall standard properties
of multivariate Gaussian distributions [10,19,28].

Theorem 1. Let
[
Xa

Xb

]
∼ N (µ,Σ) with µ =

[
µa

µb

]
and Σ =

[
Σaa Σab

Σba Σbb

]
. The

marginal distributions are Xa ∼ N (µa,Σaa), Xb ∼ N (µb,Σbb), and Xi ∼
N (µi,Σii) for i = 1 . . . a + b.

The covariance matrix identifies independent random variables:

Theorem 2. Let [X1, . . . , Xn]ᵀ ∼ N (µ,Σ), two marginals Xi, Xj with i �= j
are independent iff Σij = cov[Xi,Xj] = 0.

The space of Gaussian distributions is closed under affine transformations:

Theorem 3. Let X ∼ N (µ,Σ) and Y = AX + b be an affine transformation
with A ∈ R

m×n a projection matrix and b ∈ R
n×1 a column vector. Then,

Y ∼ N (Aµ + b,AΣAᵀ) holds.

We use Y |X1,X2, . . . , Xn to denote a random variable Y that is distributed
conditionally with respect to X1,X2, . . . , Xn. Linear combinations of random
variables can be used to define hierarchical probabilistic models consisting of
dependent random variables, such as Gaussian Bayesian networks [28].

Theorem 4. Let X ∼ N (µ,Σ) and Y |X ∼ N (aᵀX + b, σ2), where a ∈ R
n×1

is a vector, b ∈ R and σ2 > 0. Then [Xᵀ, Y]ᵀ ∼ N ([µᵀ,aᵀµ + b]ᵀ,Σ′) with

Σ′
1..n,1..n=Σ, Σ′

(n+1)(n+1) = σ2 + aᵀΣa, Σ′
i(n+1) = cov[Xi, Y] =

∑n
j=1 ajΣij .

Example 1. We present an example of a Gaussian Bayesian network [28]. Let
X1 ∼ N (50, 2), X2|X1 ∼ N (2X1 − 5, 1), and X3|X2 ∼ N (X2 − 10, 4). Here the
distribution of X2 is conditioned on X1, and of X3 on X2. The model defines
a joint multivariate Gaussian probability distribution [X1,X2,X3]ᵀ ∼ N (µ,Σ).
Theorem 4 allows to compute the mean, variance, and covariance of this joint
distribution:

µ=

⎡
⎣

50
2 · µ1 − 5
1 · µ2 − 10

⎤
⎦=

⎡
⎣

50
95
85

⎤
⎦, Σ=

⎡
⎣

2 2 · Σ11 0 + 1 · Σ12

1 + 2 · Σ11 · 2 0 + 1 · Σ22

4 + 1 · Σ22 · 1

⎤
⎦=

⎡
⎣

2 4 4
9 9

13

⎤
⎦

As the matrices are symmetric, we only show the upper-right part. Note that,
even tough X3 does not directly depend on X1, it still has a non-zero covariance.
The reason for this is the indirect dependence through X2. ��

We use conditioning to model observations on values of random variables.

Theorem 5. Let X ∼ N (µ,Σ) be split into two sub-vectors so that

X =
[
Xa

Xb

]
, µ =

[
µa

µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
and xb ∈ supp(Xb).

The conditioned distribution is Xa|(Xb = xb) ∼ N (µ′,Σ′) with µ′ = µa +
ΣabΣ−

bb(xb−µb) and Σ′ = Σaa−ΣabΣ−
bbΣba, where Σ− is the generalized inverse.

268 R. C. Rønneberg et al.

Example 2. Consider the multivariate distribution of Example 1. We condition
X3 to be 85. By Thm. 5 the posterior of X1,X2|X3 = 85 is N (µ′,Σ′) with

µ′ =
[
50
95

]
+

[
4
9

] [
13

]−
(85 − 85)=

[
50
95

]
and Σ′ =

[
2 4
4 9

]
−

[
4
9

][
13

]−[
49

]
=

[
10/13 16/13
16/13 36/13

]

��

3 Exact Inference Engine for Privug

Our inference engine is an interpreter of a probabilistic programming lan-
guage that corresponds to a subset of Python. We include variable assignments,
bounded for-loops, binary operators, sequencing, probabilistic assignments, and
observations (conditioning). Let vr ∈ R be real values, x, y, z, . . . denote (deter-
ministic) variables, X,Y,Z, . . . be (Gaussian) random variables, and X a vector
of random variables. Let ⊕ ∈ {+,−, ∗, /}. The syntax of well-formed programs
is generated by the rule p below.

(Expressions) e ::= vr | x | e ⊕ e
(Distributions) d ::= Normal(e, e) | Normal(e ∗ X + e, e)

(Statements) s ::= X = d | X = Y ⊕ e | X = Y + Z | condition(X, e) |
x = e | s; s | for x in range vr s

(Programs) p ::= s; return X

We admit (e) constants expressions, references to deterministic program vari-
ables, and binary operations. Two ways of defining normal distributions (d)
are supported: an independent Gaussian distribution, or a linear transformation
of random variables. Statements (s) are: probabilistic assignments (a normal, a
transformed distribution, a sum of two random variables), an observation (condi-
tioning), deterministic assignment, sequencing, and a limited for-loop. We define
no expressions over random variables, only statements, to simplify introduction
of changes to the state (the probabilistic model) in the semantics for each sub-
expression (Sect. 3.1). The for-loops are only a convenience construct for repeti-
tive statements. A program (p) terminates returning a random variable (return).
The distribution of the returned variable is the marginal of the posterior joint
probability distribution that we want to reason about.

Although the language appears restrictive, we show in Sect. 4 that it can be
used in realistic case studies; e.g., for the study of privacy risks in database recon-
struction attacks using public statistics. Furthermore, this syntax ensures sound-
ness and termination (Sect. 3.2) of a highly scalable (Sect. 5) inference engine.

3.1 Semantics

The formal semantics is defined in the small-step style, over terms of multivariate
Gaussian distributions (Sect. 2.2). It provides a sound and efficient inference
engine to track attacker knowledge in Privug (cf. Sect. 2.1).

A state S is a tuple 〈µ,Σ, σ〉. The first two elements define a multivariate
Gaussian distribution N (µ,Σ) over n random variables. Let V denote the set

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 269

of deterministic variables, σ : V → R maps variables to values. We use Σ[X,X]

to denote the variance of marginal variable X, and Σ[X,.], Σ[.,X] to denote the
covariance vectors of X with other variables in the state’s multivariate Gaussian
distribution. Similarly, Σ[X ,X], and Σ[X ,Y] denote the covariance matrix of the
sub-vector X of a multivariate Gaussian, and the covariance matrix between
sub-vectors X,Y of a multivariate Gaussian, respectively. We use μX to denote
the mean of X, and µX for the mean vector of X.

Definition 1 (Semantics). The semantics is given by the relations →e: e ×
S → R, →s: s × S → S and →p: p × S → R

n×1 × R
n×n for expressions e,

statements s, and programs p, respectively, as defined in Fig. 2.

The rules for expressions, (deterministic) assignments, sequence of statements,
and for-loops are standard, and they do not change the state’s multivariate Gaus-
sian distribution. We omit their details. Programs finish with a return instruc-
tion. It returns the mean-vector µa and covariance matrix Σaa of the specified
sub-vector of the state’s multivariate Gaussian. In what follows, we focus on the
rules manipulating the state’s multivariate Gaussian distribution.

There are two types of probabilistic assignments: independent and lin-
early dependent. In both cases the multivariate Gaussian distribution in the
state is extended with a new variable, and consequently the mean vector (µ)
and covariance matrix (Σ) increase their dimension. Independent assignments
(P-Asg-Ind) add to the mean vector the mean of the distribution. The covari-
ance matrix is also updated with two 0 vectors indicating the new variable is
not correlated with existing variables, and the variable’s variance is added to the
diagonal of the matrix. Dependent assignments (P-Asg-Dep) add to the mean
vector a mean computed as a linear combination with the mean of the dependent
random variable Y . The covariance matrix is extended with two vectors com-
puted from the covariance of the dependent variable with other variables, Σ[Y,.],
Σ[.,Y]. This is because the new variable depends on Y and consequently on all
the variables that Y depends on. The variance of the new variable is added to
the diagonal of the matrix as a linear combination with the variance of Y .

Example 3. Consider the program X = Normal(15, 2); Y = Normal(20, 1); Z =
Normal(2X, 1). The first assignment results in state µ = [15] and Σ = [2]. The
second assignment updates the state into,

µ′ =

[
15
20

]
Σ′ =

[
2 0
0 1

]

Note the zeros in the covariance coefficients as these variables are independent.
Finally, the last probabilistic statement results in

µ′′ =

⎡
⎣

15
20

2 · 15

⎤
⎦ =

⎡
⎣

15
20
30

⎤
⎦ Σ′′ =

⎡
⎣

2 0 2 · 2
0 1 2 · 0

2 · 2 2 · 0 22 · 2 + 1

⎤
⎦ =

⎡
⎣

2 0 4
0 1 0
4 0 9

⎤
⎦

Here we observe that the covariance between Z and X is updated with a non-
zero value due to the dependency between variables, but the coefficients of Y , Z
are 0 as these variable remain independent. ��

270 R. C. Rønneberg et al.

Fig. 2. Operational Semantics rules; S stands for a tuple 〈µ, Σ, σ〉.

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 271

Two rules (P-Op-PM) and (P-Op-MD) define binary operations between ran-
dom variables and values. These rules always produce a random variable that is
added to the state’s multivariate Gaussian. This is why the statement is com-
bined with an assignment.

When a value is added/subtracted to a random variable (P-Op-PM), a new
random variable is added with its mean updated accordingly. The new vari-
able inherits the variance an covariances of Y . For multiplication and division
(P-Op-MD), the mean is updated as before, but also the variance of the random
variable, and the covariances with the dependent random variables.

Example 4. Consider the program X = Normal(1, 1); Y = X + 2; Z = Y ∗ 2.
After the first statement we have the state µ = [1] and Σ = [1]. The second
statement updates the state such that,

µ′ =

[
1
3

]
Σ′ =

[
1 1
1 1

]

The last statements updates the state into

µ′′ =

⎡
⎣

1
3
6

⎤
⎦ Σ′′ =

⎡
⎣

1 1 2 · 1
1 1 2 · 1

2 · 1 2 · 1 22 · 1

⎤
⎦ =

⎡
⎣

1 1 2
1 1 2
2 2 4

⎤
⎦

Sum of Random Variables. The sum of two Gaussian random variables (P-Sum)
adds a new random variable to the multivariate Gaussian. The mean of the new
random variable is the sum of the means of the operands. The covariance of
the resulting random variable is the sum of the covariances of the operands
with other variables, i.e., the new variable depends on all the variables that the
operands depend on. The variance is the sum of the variances of the operands,
and the covariances of the operands.

Example 5. Consider the program X = Normal(15, 2); Y = Normal(2, 1); Z =
X + Y . After the second assignment we have

µ′ =

[
15
2

]
Σ′ =

[
2 0
0 1

]

Thus, the third assignment updates the state’s multivariate Gaussian into

µ′′ =

⎡
⎣

15
2

15 + 2

⎤
⎦ =

⎡
⎣

15
2
17

⎤
⎦ Σ′′ =

⎡
⎣

2 0 2 + 0
0 1 0 + 1

2 + 0 0 + 1 2 + 1 + 0 + 0

⎤
⎦ =

⎡
⎣

2 0 2
0 1 1
2 1 3

⎤
⎦

Conditions. For conditioning (P-Cond), we use Thm. 5 introduced in Sect. 2.2.
As a result of conditioning, the observed variable is removed from the mean
vector and covariance matrix. Note that, despite P-Cond applying to the newest
random variable, we may perform an affine transformation using a permutation
matrix that swaps the order of random variables. Thus, conditions may refer to
any variable in the multivariate Gaussian.

272 R. C. Rønneberg et al.

Example 6. Let µ′′, and Σ′′ be those in the final state of the program in Example
5. Suppose that we extend the program with the statement condition(Z, 1). The
resulting multivariate Gaussian is updated as

µ′′′ =

[
15
2

]
+

1 − 17

3
·
[
2
1

]
=

[
15
2

]
+

[−32/3
−16/3

]
=

[
13/3

−10/3

]

Σ′′′ =

[
2 0
0 1

]
− 1

3
·
[
2
1

]
· [

2 1
]

=

[
2 0
0 1

]
− 1

3
·
[
4 2
2 1

]
=

[
8/3 −2/3

−2/3 2/3

]

Recall that covariances may be negative as the covariance matrix is positive
definite (cf. Sect. 2.2).

3.2 Soundness and Termination

In what follows, we show that the semantics rules in Fig. 2 are sound, and that
the inference engine always terminates for well-formed programs.

We establish soundness of our engine by ensuring that all program statements
perform a closed-form transformation on the state’s multivariate Gaussian distri-
bution. Lemmas (1-5) assert the soundness of each of the rules in →s (cf. Fig. 2).
For example, below we show the proof of the lemma for sum of random variables
(i.e., P-Sum) whose soundness is based on the affine transformation property of
multivariate Gaussian distributions (cf. Thm. 3). The lemma asserts that the dis-
tribution resulting from executing the program statement is a well-formed mul-
tivariate Gaussian and also that the newly introduced variable is distributed as
the sum of the operands. We refer interested readers to the extended version of
the paper [36] for the proofs of the remaining lemmas. Again, we omit the sound-
ness details of deterministic statements and expressions as they are standard. The
soundness of the Ret rule follows from lemmas (1-5) and Thm. 1.

Lemma 1 (Sum random vars.). Let [X1,X2, . . .]ᵀ ∼ N (µ,Σ). For all states
S = 〈µ,Σ, σ〉, if 〈Y = Xi + Xj ,S〉 →s 〈µ′,Σ′, σ〉 and [X1,X2, . . . , Xi + Xj]ᵀ ∼
N (µ′′,Σ′′), then [X1,X2, . . . , Y]ᵀ ∼ N (µ′,Σ′) and N (µ′,Σ′) = N (µ′′,Σ′′).

Proof. Let A be a m × n projection matrix where An = In where In is a n × n
identity matrix, An+1[i] = An+1[j] = 1 and An+1[k] = 0 for i, j �= k. Let b = 0.
Then, by matrix multiplication [X1,X2, . . . , Xi + Xj]ᵀ = AX + b. By Thm. 3,
[X1,X2, . . . , Xi + Xj]ᵀ ∼ N (Aµ + b,AΣAᵀ). By matrix multiplication

eAµ + b =
[

µ
μXi

+ μXj

]

AΣAᵀ =

[
Σ Σ[.,Xi]

+ Σ[.,Xj]

Σ[Xi,.]
+ Σ[Xj ,.]

Σ[Xi,Xi]
+ Σ[Xj ,Xj]

+ Σ[Xi,Xj]
+ Σ[Xj ,Xi]

] (3)

By definition 1 and Eq. 3 we have that µ′ = Aµ + b and Σ′ = AΣAᵀ. Thus,
[X1,X2, . . . , Y]ᵀ ∼ N (µ′,Σ′) and N (µ′,Σ′) = N (Aµ + b,AΣAᵀ). ��

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 273

Lemma 2 (Independent assignment). Let [X1,X2, . . .]ᵀ ∼ N (µ,Σ). For all
states S = 〈µ,Σ, σ〉, if 〈Y = Normal(e1, e2),S〉 →s 〈µ′,Σ′, σ〉 and 〈S, ei〉 →e ci,
then [X1,X2, . . . , Y]ᵀ ∼ N (µ′,Σ′) and Y ∼ N (c1, c2) and Y,Xi are independent.

Lemma 3 (Dependent assignments). Let [X1,X2, . . .]ᵀ ∼ N (µ,Σ). For all
states S = 〈µ,Σ, σ〉, if 〈Y = Normal(e1 ∗ Xi + e2, e3),S〉 →s 〈µ′,Σ′, σ〉 and
〈S, ei〉 →e ci, then [X1,X2, . . . , Y]ᵀ ∼ N (µ′,Σ′) and Y | Xi ∼ N (c1Xi + c2, c3).

Lemma 4 (Binary operations with values). Let [X1,X2, . . .]ᵀ ∼ N (µ,Σ)
and ⊕ ∈ {+,−, ∗, /}. For all states S = 〈µ,Σ, σ〉, if 〈Y = Xi ⊕ e,S〉〉 →s

〈µ′,Σ′, σ〉 and 〈S, e〉 →e c and [X1,X2, . . . , Xi ⊕ c]ᵀ ∼ N (µ′′,Σ′′), then [X1,
X2, . . . , Y]ᵀ ∼ N (µ′,Σ′) and N (µ′,Σ′) = N (µ′′,Σ′′).

Lemma 5 (Conditioning). Let [Xᵀ
a , Y]ᵀ ∼ N (µ,Σ). For all states S = 〈µ,Σ,

σ〉, if 〈S, e〉 →e c and 〈condition(Y, c),S〉 →s 〈µ′,Σ′, σ〉, then X ′ ∼ N (µ′,Σ′)
and X ′ = Xa | Y = c.

Readers familiar with semantics of probabilistic programs will note that these
lemmas define the cases of a pushfoward measure semantics à la Kozen [7] on
the program statements in our language. A standard induction on the structure
of well-formed programs establishes soundness of our inference engine.

We also establish termination of our inference engine.

Lemma 6 (Termination). Given a well-formed program, the process of com-
puting the resulting multivariate Gaussian always terminates.

Proof. Well-formed programs are unbounded but finite sequences of program
statements. Thus, to prove termination, it suffices to prove that each program
statement is evaluated in finite time. Expressions (V-Exp, C-Exp, O-Exp) and
deterministic statements (D-Asg, Seq) can be resolved in constant time. For-
loops (For-B,For-I) are bounded and can be unfolded in linear time in the num-
ber of iterations. Probabilistic assignments (P-Asg-Ind, P-Asg-Dep) extend
the mean vector with one element and the covariance matrix with a row and
column vectors. Both operations can be performed in linear time in the number
of variables of the program. Binary operations between random variables and
values (P-Op-PM, P-Op-MD), summation of random variables (P-Sum) and
conditioning (P-Cond) are computed as a sequence of matrix multiplication
operations. All these operations can be computed in polynomial time in the size
of the program state, which is never larger than quadratic in the number of
variables in the program. Return (Ret) performs a lookup in the mean vector
and covariance matrix, which can be computed in constant time.

Our inference engine not only terminates for all well-formed programs, but,
most importantly, it is very efficient. In Sect. 5, we study the scalability of the
inference engine, and we show that it can efficiently analyze systems with thou-
sands of random variables. Moreover, we show that our method scales much
better than existing tools for the family of programs captured by our language.

274 R. C. Rønneberg et al.

Table 1. Left : Incomes pr. year in DKK for different age groups and genders. The num-
bers have been scaled down by a factor of 1000. Right : Priors used in the experiments.
The means are scaled down by a factor of 1000.

Age group Males Females

21-30

500 480 470 410
460 430 420 450
490 510 460 410
440 480 510 310
520 410 370 440

31-40

550 410 450 500
490 580 520 530
530 420 510 600
590 400 620 390
680 510 550 390

41-50

600 540 590 640
640 590 540 580
580 620 740 540
340 510 140 830
620 660 540 740

51-60

700 680 690 680
740 640 720 780
590 650 680 580
770 630 590 730
540 840 640 980

Age group Males Females

21-30

N (480, 100) N (490, 100) N (450, 100) N (430, 100)
N (440, 100) N (420, 100) N (410, 100) N (430, 100)
N (490, 100) N (490, 100) N (470, 100) N (400, 100)
N (520, 100) N (490, 100) N (490, 100) N (330, 100)
N (470, 100) N (400, 100) N (350, 100) N (400, 100)

31-40

N (500, 100) N (410, 100) N (400, 100) N (450, 100)
N (470, 100) N (490, 100) N (490, 100) N (480, 100)
N (500, 100) N (410, 100) N (500, 100) N (550, 100)
N (540, 100) N (410, 100) N (590, 100) N (350, 100)
N (500, 100) N (400, 100) N (510, 100) N (360, 100)

41-50

N (580, 100) N (530, 100) N (550, 100) N (490, 100)
N (590, 100) N (510, 100) N (520, 100) N (500, 100)
N (560, 100) N (590, 100) N (650, 100) N (480, 100)
N (280, 100) N (500, 100) N (150, 100) N (790, 100)
N (580, 100) N (600, 100) N (510, 100) N (700, 100)

51-60

N (680, 100) N (570, 100) N (680, 100) N (670, 100)
N (620, 100) N (610, 100) N (690, 100) N (700, 100)
N (600, 100) N (570, 100) N (630, 100) N (570, 100)
N (700, 100) N (600, 100) N (500, 100) N (670, 100)
N (520, 100) N (770, 100) N (600, 100) N (770, 100)

4 Case Study: Privacy Risks in Public Statistics

We analyze a program computing statistics on a database containing incomes
for different genders and age groups. The purpose of this case study is to demon-
strate the applicability of our approach in a real-life example. Average incomes
are available through public national statistics banks [1–3], which makes informa-
tion available to attackers. Leakage of private information and database recon-
struction attacks are known issues (e.g., in US census data [21]). We use our
inference engine to quantify the increase of attacker knowledge, as she gradually
obtains statistics from a database. We also analyze a differentially private [18]
mechanism in this setting. The case study uses a small database, but in Sect. 5 we
show that our inference engine scales to databases with thousands of individuals.

Releasing Public Statistics. Consider a data analyst that releases average statis-
tics on population income for different age groups and genders. An attacker
with access to the statistics attempts to learn the income of an individual in the
database. We consider the synthetic data shown in Tbl. 1 (left). The table shows
the income for 40 individuals in different age groups and genders. We consider
3 different cases. Case 1) the attacker obtains the average income for males in
the age group 21–30. Case 2) the attacker also obtains the average income for
all people in the age group 21–30. Case 3) the attacker also obtains the average
income for all males. In all cases the attacker attempts to learn the income of

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 275

the first male in database in the age group 21–30. We note that the observations
made by the attacker are independent, so it does not matter in which order the
attacker obtains the observations.

To understand the privacy risks for these 3 cases we use the Privug method
described in Sect. 2. In the following code snippet we show how to model the
steps for case 1 using our inference engine. We model the program using our
syntax (step 2).

1 def agg():

2 male_21_30 = [Normal(480_000, 100),]

3 male_21_30_total = male_21_30[0] + male_21_30[1] ...

4 male_21_30_average = male_21_total/10

5 condition("male_21_30_average", 472_000)

6 return male_21_30[0]

The array in line 2 contains the priors of the income for the individuals in
the database—Tbl. 1 (right) shows the complete list—denoted as P (Ii). They
represent the possible incomes that the attacker considers possible before making
any observations (step 1). The victim is the first male in the 21–30 age group,
P (I1). In lines 2–3, we compute the average income of this each group, which
defines P (O|Ii). In line 5, we add the attacker observation in the condition
statement (step 3). Finally, in line 6 we return the posterior distribution of
the victim P (I1|O), which represents the updated attacker knowledge (step 4).
Note that, for brevity, we omit the repetitive parts of the code. Also, arrays are
syntactic sugar. We refer interested readers to [35] for the complete source code.

Figure 3 shows how attacker knowledge is updated in the 3 cases above, and
how close it is to real victim data (vertical line). We plot the prior attacker knowl-
edge P (I1), and for each case we plot the posterior distribution after conditioning
on the output P (I1|O). The left plot shows the updated attacker knowledge with-
out differential privacy. As the plot shows, the attacker knowledge gets closer to
the actual income when obtaining more information. The most accurate attacker
knowledge is case 3 where the attacker obtains several average statistics.

Releasing Public Statistics with Differential Privacy. Given the above results,
the data analyst decides to use a differentially private mechanism [18] to protect
the individuals’ privacy. Differential Privacy (DP) is used in realistic settings for
the release of public statistics. Notably, it was used in the 2020 US Census as
a result of privacy issues in previous US Census editions [21]. Intuitively, if the
privacy protection mechanism satisfies differential privacy, then the impact of an
individual on the output of the program is negligible. More precisely, differential
privacy states that: a randomized mechanism M : I → O is (ε, δ)-differentially
private if for all O ⊆ O, and neighboring inputs i1, i2 ∈ I, the following holds

P (M(i1) ∈ O) ≤ exp(ε)P (M(i2) ∈ O) + δ.

The neighboring relation between inputs depends on the input domain (I). For
instance, when it applies to datasets of n natural numbers, N

n, it is usually
defined as the first norm ||ix − iy||1. The parameter ε is often referred to as the

276 R. C. Rønneberg et al.

Fig. 3. Updated attacker knowledge after adding observations. Incomes are scaled down
by a factor of 10. Left : Public stats. Right : Public stats with DP.

privacy parameter, and it is used to specify the required level of privacy. The
parameter δ is the probability of failure. This parameter relaxes the definition
of differential privacy. It is used to specify the probability that pure differential
privacy (i.e., with δ = 0) does not hold. This parameter may be used to, e.g.,
enable high utility gains while keeping a good level of privacy. Both ε and δ are
often determined empirically [17].

We analyze a differentially private mechanism for the 3 cases presented above.
To this end, we apply the Gaussian mechanism [18], which adds Gaussian noise
to the observable output (o) as o + N (0, σ2). The parameter σ2 is calculated
as follows: σ2 = 2Δ2 log(1.25/δ)/ε2. The sensitivity Δ ∈ R denotes how much o
changes if computed in two datasets differing in at most 1 entry. In our setting,
it is Δ = (max income − minincome)/sizeDB . We set δ = 1/size2DB—as usual for
this query [18]. We set ε to 0.9—this is an arbitrary value, but it is common to
use values < 1 in practice [17]. Adding Gaussian noise is proven to satisfy (ε, δ)-
differential privacy [18]. We remark that our method can be used to determine
the values of ε and δ that satisfy high level privacy requirements. For instance,
privacy requirements specified as probability queries for a given individual or
using quantitative information flow metrics [32]. The program implementing the
Gaussian mechanism is shown in the following listing

1 def agg_dp():

2 ...

3 noise = Normal(0, 1442533240)

4 male_21_30_average_dp = male_21_30_average + noise

5 condition("male_21_30_average_dp", 472_000)

6 return male_21_30[0]

We only show lines that change namely: line 3 where the noise distribution is
defined, and line 6 where we add the noise to the output. The variance σ2 of the
noise distribution is calculated using the equation above.

The right plot in Fig. 3 shows the updated attacker knowledge in the 3 cases.
We observe a decrease in privacy risks when using differential privacy; as the
change in attacker knowledge is insignificant for all cases. The plot shows that
the impact of the victim’s data on the released statistics is minuscule compared
to the non-differentially private version of the output.

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 277

Table 2. Left : KL-divergence between prior and posterior attacker knowledge on secret.
Right : Mutual information between secret and output random variables.

KL divergence Mutual information
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Public stats 312.762 3621.29 14374.13 4.17e-04 6.25e-05 7.81e-06
Diff. Priv 1.55e-12 1.72e-12 1.81e-12 5.00e-12 3.14e-13 2.16e-14

Information Leakage Metrics. In addition to inspecting the distributions of
attacker knowledge in Fig. 3, we show for demonstration how to compute two
metrics for information leakage: KL-divergence and mutual information [16].
Let [P,Q]ᵀ ∼ N (µ,Σ). KL-divergence is KL(P,Q) = log2(Σ

1/2
[Q,Q]/Σ1/2

[P,P]) +
(Σ[P,P] + (μP − μQ)2)/2Σ[Q,Q] − 1/2, and mutual information is I(P,Q) =
1/2 log2(Σ[P,P]Σ[Q,Q]/|Σ|).

Table 2 shows the results. The left shows the KL-divergence between prior
and posterior attacker knowledge on the secret. Intuitively, this is commonly
understood as information gain [11]. We observe an increase in information gain
from case 1 to 3 (both with and without differential privacy). However, with
differential privacy, information gain is virtually 0 for all cases. Tbl. 2 (right)
shows mutual information between attacker knowledge on the secret and the
output. When mutual information between two random variables is 0, it means
that the variables are independent. Thus, a value of mutual information close to
0 indicates that the amount of information shared between secret and output is
low. We observe that mutual information decreases from case 1 to 3 (both with
and without differential privacy). This is due to the output containing informa-
tion for a larger set of individuals (which minimizes the effect of the secret on
the output). As expected, mutual information is lower with differential privacy.
Admittedly, these metrics are hard to interpret in practice, but we remark that
more important than the concrete values is their relative distance—it provides
a quantitative mean to compare information leakage in different settings.

5 Scalability Evaluation

We evaluate the scalability of our exact inference engine proof-of-concept imple-
mentation. The scalability of Bayesian inference engines mainly depends on the
number of random variables. Thus, we consider two synthetic benchmark pro-
grams with increasing number of variables. The first computes the sum over an
increasing number of variables O =

∑n
i=1 Xi. We choose this benchmark as it

was originally used to measure the scalability of Privug [32]. We compare the
scalability of our engine to Privug MCMC using the NUTS [26] sampler and
the exact inference engine PSI [23]—PSI is the leading inference engine support-
ing the features of our language (cf. Sect. 6). We instruct NUTS to draw 10000
samples in 2 chains—this number of samples produces an accurate posterior in

278 R. C. Rønneberg et al.

Fig. 4. Execution time for our engine (privug-exact), Privug NUTS (privug-mcmc) and
PSI. Left : privug-mcmc, privug-exact, and PSI on O =

∑n
i Xi. Middle: privug-exact

on O =
∑n

i Xi. Right : privug-exact on condition(O, c).

this benchmark, see [32]. The second program performs the same computation
but adds a condition statement condition(O, c). The purpose is to evaluate the
scalability of our engine in more realistic settings for the case study in Sect. 4.
The evaluation run on a 4 × 2.80GHz cores machine with 16 GB RAM.

Figure 4 (left) shows the measured times for the first program. Execution time
does not increase significantly when going from 100 to 700 variables using our
engine. On the other hand, PSI takes approximately 40min when summing 700
variables. Most notably, our engine greatly outperforms PSI—in this experiment,
it was more than 40.000 times faster than PSI for 700 variables. Privug MCMC
exhibits better results, but our engine scales better. As the number of variables
increases, we observe a bigger gap between our engine and Privug MCMC—
with our engine 6 times faster for 700. It is noteworthy that our exact engine
outperforms an approximate inference method.

Figure 4 (middle,right) focus on the scalability for larger systems. The middle
plot, shows that our engine can handle the first program with 70000 variables
more efficiently that PSI for 700. Figure 4 (right) mimics the case study (Sect. 4).
We observe that the condition statement notably degrades the performance of
our engine. However, the running time for 5000 individuals is less than 40min.
We omitted PSI in this benchmark as conditioning would only decrease its per-
formance, and the previous experiment showed its lower scalability w.r.t. our
engine. Privug MCMC is also omitted as a fair comparison requires determining
the number of samples to draw to obtain an accurate posterior.

6 Related Work

The majority of existing methods to estimate privacy risks use sampling based
techniques [12–15,32,34]. In [32], Privug made use of MCMC algorithms to
perform Bayesian inference, e.g., Metropolis-Hastings or Hamiltonian Monte
Carlo [6,25,26]. Other sampling based methods target specific quantitative infor-
mation flow metrics [4]—these metrics are supported by Privug [32], and hence
by our engine. LeakWatch/Leakiest [14,15] use program samples to estimate
mutual information between secret inputs and public outputs. Cherubin et al.
and Romanelli et al. [12,34], use machine learning to compute metrics from the
g-leakage family [4]. These methods treat programs as black-boxes, so they can

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 279

analyze any program, as opposed to our method that targets a subset of Python
programs. However, their accuracy guarantees are proven in the limit, i.e., assum-
ing an infinite size sample. In practice, samples are finite and it is often difficult
to ensure that results are accurate; specially for programs with large number
of variables (such as the ones in Sect. 5). On the contrary, our inference engine
produces exact results. This is crucial as a under-approximations could miss
important privacy breaches. Furthermore, the scalability evaluation shows that
the inference engine scales better than MCMC-based Privug, which is one of the
most scalable methods for this type of systems [32].

There exist several works that use exact inference in the context of privacy
risk analysis. SPIRE [29] uses the exact inference engine PSI [22,23] to model
attacker knowledge and synthesize privacy enforcers. PSI computes a symbolic
representation of the joint probability distribution of a given program. It can
handle continuous and discrete random variables. It targets a more expressive
programming language than the subset of Python that our engine supports.
However, PSI scales poorly compared to our engine for programs that our engine
supports (cf. Sect. 5). Hakaru [31] and SPPL [37] are exact inference engines—
not used for privacy risk analysis. We did not consider them in our evaluation
because they do not handle some features of our language. Hakaru cannot handle
conditioning probability-zero events (as in lemma 5). SPPL does not support lin-
ear combination and sum of Gaussians (as in lemmas 3, 1). QUAIL [9] computes
mutual information between input and output variables. It performs forward
state exploration of a program to construct a Markov chain, which is then used
to compute mutual information. QUAIL works on discrete random variables.
Instead, our inference engine works on Gaussian (continuous) random variables
and computes the posterior distribution that can be used to compute mutual
information (cf. Sect. 4) and other quantitative information flow metrics [4,32].

Stein and Staton proposed a Gaussian-based semantics to study exact con-
ditioning through the lens of category theory [38]. They do not study the use of
the semantics for privacy risks quantification on a subset of Python programs,
or evaluate the efficiency of the semantics.

7 Conclusion

We have presented an exact Bayesian inference engine for quantifying privacy
risks in a subset of Python. We have proven that our inference engine is sound.
We have presented an application of our engine to analyze privacy risks on pub-
lic statistics; a realistic case study for national statistics agencies where privacy
risks analysis is crucial. We have also analyzed the impact of differential privacy
on data release. In the scalability evaluation, we have shown that our engine can
analyze systems with thousands of random variables, and that it greatly outper-
forms existing tools. All in all, this work provides a new point in the study of
expressiveness vs performance. Future work includes adapting our engine with
underlying probabilistic models that capture more Python program statements,
for instance Gaussian mixtures or the exponential family of probability distri-
butions.

280 R. C. Rønneberg et al.

References

1. Statistics Denmark. www.dst.dk/en Accessed 23 June 2023
2. Statistics New Zealand. www.stats.govt.nz/ Accessed 23 June 2023
3. US Census Bureau. www.census.gov/ Accessed 23 June 2023
4. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,

G.: The Science of Quantitative Information Flow. Springer, Cham (2020)
5. Article 29 Data Protection Working Party: Opinion 05/2014 on Anonymisation

Techniques (2014). www.pdpjournals.com/docs/88197.pdf
6. Avi Pfeffer: Practical probabilistic programming. Manning Publications Co. (2016)
7. Barthe, G., Katoen, J.P., Silva, A. (eds.): Foundations of Probabilistic Program-

ming. Cambridge University Press (2020)
8. Biondi, F., Kawamoto, Y., Legay, A., Traonouez, L.: Hybrid statistical estimation

of mutual information and its application to information flow. Formal Aspects
Comput. 31(2), 165–206 (2019)

9. Biondi, F., Legay, A., Traonouez, L.-M., Wąsowski, A.: QUAIL: a quantitative
security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) Computer
Aided Verification, pp. 702–707. Springer, Berlin, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39799-8_49

10. Bishop, C.M.: Pattern Recognition and Machine Learning. Information science and
statistics, Springer, New York (2006)

11. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach. Springer, New York (2002)

12. Cherubin, G., Chatzikokolakis, K., Palamidessi, C.: F-BLEAU: fast black-box leak-
age estimation. In: SP’19, pp. 835–852. IEEE (2019)

13. Chothia, T., Guha, A.: A statistical test for information leaks using continuous
mutual information. In: CSF’11, pp. 177–190. IEEE (2011)

14. Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information
leakage. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification, pp.
690–695. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39799-8_47

15. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: Estimating Information
Leakage from Java Programs. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11212-1_13

16. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)
17. Dwork, C., Kohli, N., Mulligan, D.: Differential privacy in practice: Expose your

epsilons! J. Privacy Confidentiality 9(2) (2019)
18. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.

Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)
19. Eaton, M.: Multivariate Statistics: A Vector Space Approach. Lecture notes-

monograph series, Institute of Mathematical Statistics (2007)
20. Elliot, M., Mackey, E., O’Hara, K., Tudor, C.: The Anonymisation Decision - Mak-

ing Framework. University of Manchester, UKAN (2016)
21. Garfinkel, S.L., Abowd, J.M., Martindale, C.: Understanding database reconstruc-

tion attacks on public data. Commun. ACM 62(3), 46–53 (2019)
22. Gehr, T., Misailovic, S., Vechev, M.T.: PSI: exact symbolic inference for proba-

bilistic programs. In: CAV’16. LNCS, vol. 9779, pp. 62–83 (2016)
23. Gehr, T., Steffen, S., Vechev, M.: λPSI: exact inference for higher-order probabilis-

tic programs. In: PLDI’20, pp. 883–897. ACM (2020)

www.dst.dk/en
www.stats.govt.nz/
www.census.gov/
www.pdpjournals.com/docs/88197.pdf
https://doi.org/10.1007/978-3-642-39799-8_49
https://doi.org/10.1007/978-3-642-39799-8_49
https://doi.org/10.1007/978-3-642-39799-8_47
https://doi.org/10.1007/978-3-642-39799-8_47
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13

Exact and Efficient Bayesian Inference for Privacy Risk Quantification 281

24. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE’14, pp. 167–181. ACM (2014)

25. Greenberg, S.C.E.: Understanding the Metropolis-Hastings Algorithm p. 10
26. Homan, M.D., Gelman, A.: The no-u-turn sampler: Adaptively setting path lengths

in Hamiltonian monte carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)
27. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University

Press, Cambridge (2003)
28. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Tech-

niques. MIT Press (2009)
29. Kucera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.T.: Synthesis of

probabilistic privacy enforcement. In: CCS’17, pp. 391–408. ACM (2017)
30. McElreath, R.: Statistical rethinking: A Bayesian course with examples in R and

Stan. CRC Press (2020)
31. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic Infer-

ence by Program Transformation in Hakaru (System Description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3_5

32. Pardo, R., Rafnsson, W., Probst, C.W., Wąsowski, A.: Privug: Using Probabilistic
Programming for Quantifying Leakage in Privacy Risk Analysis. In: Bertino, E.,
Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 417–438.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_21

33. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York,
NY (2004)

34. Romanelli, M., Chatzikokolakis, K., Palamidessi, C., Piantanida, P.: Estimating
g-leakage via machine learning. In: CCS’20. ACM (2020)

35. Rønneberg, R.C., Pardo, R., Wąsowski, A.: Exact and Efficient Bayesian Inference
for Privacy Risk Quantification (Accompanying Artifact). www.doi.org/10.5281/
zenodo.8173905

36. Rønneberg, R.C., Pardo, R., Wąsowski, A.: Exact and efficient Bayesian inference
for privacy risk quantification (extended version). arXiv:2308.16700 (2023)

37. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: Probabilistic programming
with fast exact symbolic inference. In: PLDI’21, pp. 804–819. ACM (2021)

38. Stein, D., Staton, S.: Compositional semantics for probabilistic programs with
exact conditioning. In: LICS’21, pp. 1–13. IEEE (2021)

https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-030-88428-4_21
www.doi.org/10.5281/zenodo.8173905
www.doi.org/10.5281/zenodo.8173905
http://arxiv.org/abs/2308.16700

A Formalization of Heisenbugs and Their
Causes

Sarah Sallinger(B), Georg Weissenbacher, and Florian Zuleger

TU Wien, Vienna, Austria
{sarah.sallinger,georg.weissenbacher,florian.zuleger}@tuwien.ac.at

Abstract. The already challenging task of identifying the cause of a
bug becomes even more cumbersome if those bugs disappear or change
their behavior under observation. Such bugs occur in a range of con-
texts including elusive concurrency bugs as well as unintended system
alterations during debugging and—as a pun on the name of Werner
Heisenberg—are often referred to as Heisenbugs. Heisenbugs can be
caused by various sources of nondeterminism on different system levels,
many of which developers and testers might not even be aware of. This
paper provides formal foundations for rigorously reasoning about causes
of Heisenbugs. It provides a formal definition of Heisenbugs in terms of
a hyperproperty and introduces a framework for determining the causal-
ity of Heisenbugs in presence of multiple candidate causes based on said
hyperproperty. We analyze the properties of causes and the implications
on practical causal analyses.

1 Introduction

Bugs which change their behavior under observation are notoriously difficult
to detect and fix. Inspired by Heisenberg’s uncertainty principle such bugs are
often referred to as Heisenbugs. Depending on the context, the term Heisenbug
has been used to describe slightly different concepts. In the software engineering
community, the term is used mostly for bugs whose analysis is hampered by
the probe effect, i.e., an unintended alteration of the system behavior during
debugging [18]. In the formal methods community, the term has been used to
refer to elusive faults arising from executions that exhibit nondeterminism, in
particular in the context of concurrent software [30]. In the context of automated
testing, the term flaky test is used for inconsistently failing test cases [31], i.e.
manifestations of Heisenbugs. As will become apparent in this paper, all the
mentioned phenomena can be formalized in a uniform manner. In the rest of the
paper, we hence use the term Heisenbug to refer to all the mentioned categories1.

1 In the literature, sometimes the term Mandelbug is used as an umbrella term for
the mentioned categories. However, Mandelbugs additionally include complex faults
where there is “a delay between the fault activation and the final failure occurrence”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 282–300, 2023.
https://doi.org/10.1007/978-3-031-47115-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-47115-5_16

A Formalization of Heisenbugs and Their Causes 283

A Formalization of Heisenbugs. The first contribution of this paper is a formal
definition of Heisenbugs. The unifying characteristic of Heisenbugs in the above-
mentioned categories is the existence of at least two system executions where one
execution is correct and the other exhibits a bug. In terms of testing, the same
test case sometimes succeeds and sometimes fails. We formalize this definition
in terms of a hyperproperty [7], which checks for the existence of two terminat-
ing executions with equal inputs but deviating outcomes for a final assertion
that is part of the system specification. Our definition accommodates deviations
caused by nondeterminism in a single program, e.g. due to concurrency, as well
as deviating behavior of different versions of the program, e.g. due to changes
for debugging.

Debugging Challenges. Previous studies have shown that Heisenbugs are preva-
lent even in mature software systems and that the bug fixing process takes signif-
icantly longer than for ordinary bugs [9]. Furthermore, Heisenbugs significantly
complicate automated testing techniques, as they lead to flaky tests [31].

A major step in the debugging process is the identification of the bug’s root
causes [35]. Developers reported this step to be particularly difficult for Heisen-
bugs [11] (referred to as flaky tests in this study). One reason for the complexity
is that Heisenbugs can be caused by mechanisms (i.e., sources of nondeterminism
or system alterations) located on all system levels ranging from the hardware
level to the user program. The following examples illustrate some possible causes:

Example 1 (Concurrency). We first present an example for a Heisenbug stem-
ming from system internal nondeterminism. The Therac-25 incident [24,37],
which resulted in the death of several cancer patients, is a notorious instance of
an atomicity violation [27]. Listing 1.1 illustrates the problem, which is caused
by the concurrent execution of two routines: the userInterface routine allows
the operator to choose between high energy x-ray therapy (isXray) and a lower
energy electron beam therapy (!isXray) and to set the intensity of the radi-
ation (isHigh). The assume statement in line 6 prevents a selection of high-
intensity electron therapy. The setup routine then processes these inputs: a
failed assertion represents the case where the patient is exposed to excessive radi-
ation. Assume that the user changes the initial configuration from high-intensity
x-ray treatment (isXray=true, isHigh=true) to low-energy electron therapy
(isXray=false, isHigh=false) in lines 4 and 7. If a context switch occurs right
after executing line 5, the assertion in line 13 will fail. When userInterface is
executed atomically, however, the assertion always holds.

1 bool isXray = true;

2 bool isHigh = true;

3 void *userInterface(void *a) {

4 isXray = read();

5 bool isHighTmp = read();

6 assume(isXray || !isHighTmp);

7 isHigh = isHighTmp;

8 }

9 void *setup(void *a) {

10 bool filter = isXray;

11 bool highEnergy = isHigh;

12 }

13 assert(filter || !highEnergy);

Listing 1.1. Illustration of Therac-25
atomicity violation

284 S. Sallinger et al.

To sum up, there is a Heisenbug caused by different possible schedules, which
is an example for the category of Heisenbugs arising from nondeterministic sys-
tems. Even if the scheduler might in fact be deterministic, its internal steps are
not observable for the programmer (which we model using nondeterminism).

Example 2 (Floating Point Precision). A prominent example for unintented
system alterations are debugging statements that inadvertently change program
outcomes. Consider Listing 1.2 (following [28]), which computes the square of
10308 and is expected to cause an overflow given the double-precision floating-
point representation. When compiled with optimization level -O3 and executed
using x87 instructions, however, the computation
results in 10308 rather than in an overflow, and
the assertion fails. The reason is that the com-
putation uses 80-bit floating point registers and
performs rounding only once values are stored in
64-bit memory cells. Adding the printf statement
in line 4 enforces such a write to memory, thus
yielding the expected overflow, and the assertion
holds.

1 double v = 1E308;

2 double y = 0;

3 y = v * v;

4 // printf("%g\n", y);

5 assert(isinf(y / v));

Listing 1.2. Floating-point
computation overflows in case
of printf-debugging

The failing and correct executions actually stem from two different system ver-
sions. In the considered execution model, the debugging statement changes the
semantics of the program, introducing a probe effect which causes the Heisenbug.

Multiple Causes. While the mechanisms causing the Heisenbugs in Example 1
and Example 2 can still be easily identified, such an analysis becomes more
challenging for more complex systems where several such mechanisms interact
in a non-trivial manner [33] (as in Example 3 below).

Example 3 (Weak Memory Models). Listing 1.3 shows Peterson’s mutual exclu-
sion algorithm for two processes. Computer architectures with weak memory
models relax the guarantees on the order in which variable assignments are
observed across processor cores, causing the algorithm to fail. In particular, the
synchronization fails if both processes set their flags in lines 5 and 15 but do not
commit the modifications from cache to shared memory before lines 8 and 18 are
executed, thus resulting in a Heisenbug (see [34]). Such a reordering, however, is
effectively prevented if there are printf statements in lines 7 and 17 (as might
be the case during development) and hence the bug only occurs once the printf
statements are removed. Yet, the printf statements are not causally related to
the Heisenbug (unlike in Example 2), as we will formally argue in Sect. 3.

Formal Causality Framework. In order to rigorously determine which mecha-
nisms cause a Heisenbug in settings with multiple candidate causes, we present
a formal causality definition based on Lewis’ counterfactuals [26] and the causal-
ity framework of Galles and Pearl [14]. In counterfactual reasoning, an event is
a cause of an effect, if in an alternative world where the cause does not occur,
the effect does also not occur. In a nutshell, in a setting with multiple candidate

A Formalization of Heisenbugs and Their Causes 285

1 int flagP0 = 0, flagP1 = 0;

2 int turn = 0;

3 int critical = 0, error = 0;

4 void *petersonP0(void *a) {

5 flagP0 = 1;

6 turn = 1;

7 //printf("barrier");

8 while (flagP1 && (turn == 1));

9 critical++;

10 if (critical != 1) error++;

11 critical--;

12 flagP0 = 0;

13 }

14 void *petersonP1(void *a) {

15 flagP1 = 1;

16 turn = 0;

17 //printf("barrier");

18 while (flagP0 && (turn == 0));

19 critical++;

20 if (critical != 1) error++;

21 critical--;

22 flagP1 = 0;

23 }

24 assert(error == 0);

Listing 1.3. Peterson’s algorithm occa-
sionally fails on weak memory models

mechanisms, a subset of the mechanisms is a cause of a Heisenbug if there are
correct as well as failing executions which agree on the behavior of all other
given mechanisms. This is formalized by means of a hyperproperty resembling
our formal definition of Heisenbugs.

Note that our formal definition of causes refers to alternative scenarios for
counterfactual reasoning. This requires the sources of nondeterminism to be
made explicit in the underlying model (or controllable in the system under test,
respectively). In practice, however, identifying and controlling all possible sources
of nondeterminism is hardly feasible. Therefore, we prove that our causal analy-
sis yields sound results even if some sources of nondeterminism remain unknown
or uncontrollable: the result of evaluating our causality hyperproperty in a non-
deterministic system is always a subset of a cause identified in the corresponding
determinized system in which all sources are made explicit and controllable.

Based on these results, we present an iterative refinement methodology for
causal analysis and discuss practical challenges. We showcase how the method-
ology can be applied for analyses based on model checking and testing.

Main Contributions. The paper presents:

– A formal definition of Heisenbugs in reactive systems in terms of a hyper-
property, in presence of system-internal nondeterminism and/or unintended
system alternations (Sect. 2).

– A hyperproperty-based approach for defining the causality of Heisenbugs in
the presence of several potential causes and nondeterminism (Sect. 3).

– A methodology for causal analysis based on iterative refinement (Sect. 4).

2 A Formalization of Heisenbugs

This section provides our system model and a formal definition of Heisenbugs.

286 S. Sallinger et al.

2.1 System Model

In the following, the term formula refers to a first-order formula with a back-
ground theory that fixes the interpretations of predicates and function symbols.

Definition 1. A Symbolic Transition System (STS) is a tuple (X, I, init,
final, T), where X and I are disjoint sets of system and input variables, respec-
tively, the initial condition init is a formula over X ∪ I, the final condition final
is a formula over X, and the transition relation T is a formula over X ∪ I ∪X ′,
where the variables X ′ denote primed copies of the variables X.

Let Val be a domain of values. Following [38], we assume Val to contain
a special value τ that represents quiescence, i.e., the absence of an input. A
configuration c of an STS is a mapping of the variables in (X ∪ I) to values in
Val. A state s is a mapping of the variables in X to values in Val. An input i
is a mapping of the variables in I to values in Val. The state c|X resp. input c|I
of a configuration c is the restriction of the mapping to variables in X resp. I.
We write c(v) for the value of a variable v ∈ (X ∪ I) in configuration c (and we
use the same notation for states and inputs).

For a formula ϕ and a mapping m of variables to values we write m |=
ϕ if ϕ evaluates to true under m. A configuration c is initial if c |= init. A
state s is final if s |= final. A configuration c is final if c|X is final. A state
s : X → Val is successor state of configuration c if 〈c, s′〉 |= T , where s′ :
X ′ → Val is the function that maps each primed variable x′ ∈ X ′ to s(x) and
〈·, ·〉 denotes the union of two mappings with disjoint domains. We call ci+1 a
successor configuration of ci if ci+1|X is a successor state of ci. We require that
final configurations do not have successor configurations.

A (finite or infinite) trace of an STS is a sequence of configurations c0, . . . , cn
where c0 |= init, and ci+1 is a successor of ci for all i ≥ 0. An execution of an
STS is a finite trace c0, . . . , cn such that cn is a final configuration.

It is straightforward to represent programs such as the examples from the
introduction as symbolic transition systems:

Example 4. Listing 1.1 can be modeled as an STS with I = {input1, input2} and
X = {isXray, isHigh, isHighTmp, filter, highEnergy, pc0, pc1}, where the variables
pc0 and pc1 model the program counters of the two threads. The initial condition
is (isXray∧isHigh∧pc0 = 4∧pc1 = 10). The final condition is (pc0 = 8∧pc1 = 12)
and describes that both traces have reached their final program location. The
transition relation T shown in Fig. 1 is a disjunctive partitioning that represents
a case split over all possible combinations of program locations, where the thread
to be executed in each step is chosen nondeterministically.

While Example 4 illustrates the case of nondeterminism in a single system
version, we next exemplify how to model system alterations in our formal model:
the original and the altered system can be combined in one STS with an initial
nondeterministic choice between two disjuncts of the transition relation.

A Formalization of Heisenbugs and Their Causes 287

Fig. 1. Transition relation for Listing 1.1

Example 5. The floating point program from Listing 1.2 can be modeled as an
STS where X = {v, y, pc, print}, I = ∅, the initial condition is (pc = 3 ∧ v =
10308 ∧y = 0), the final condition is pc = 5, and the transition relation is defined
as (pc = 3 ∧ pc′ = 5 ∧ y′ = v ∗ v ∧ v′ = v ∧ ¬print ∧ print′ = print) ∨ (pc =
3 ∧ pc′ = 5 ∧ y′ = convert64(v ∗ v) ∧ v′ = v ∧ print ∧ print′ = print) where
convert64 is a function producing the 64 bit representation of the number. The
initial condition does not constrain print, i.e., the initial value of print can be
arbitrary; this initial (nondeterministic) choice then fixes the respective disjunct
of the transition relation depending on whether the printf-statement is present
or not.

In the following, we formally define a number of useful properties of STSs.

Definition 2 (Termination). An STS is terminating if the STS does not have
infinite traces.

Definition 3 (Input Determinism). An STS is input-deterministic if 1) for
every input i there is at most one state s such that 〈s, i〉 |= init, and 2) for every
state s and every input i there is at most one successor state. Otherwise, it is
nondeterministic.

Definition 4 (Input-enabled). An STS is input-enabled if 1) for every input
i there is at least one state s such that 〈s, i〉 |= init, and 2) every configuration
that is not final has at least one successor. In case 2) is violated, we call the
transition relation partial.

We next define assertions as well as succeeding and failing executions:

Definition 5 (Assertions, Succeeding and Failing Executions). An
assertion is a formula ϕ over the system variables X. An execution π

def= c0, . . . , cn
succeeds with respect to ϕ if cn|X |= ϕ. Similarly, π fails if cn|X |= ¬ϕ. Abusing
our notation, we write π |= ϕ if π succeeds and π �|= ϕ if π fails.

We note that without input-enabledness, which we do not require in general,
traces can get stuck at non-final configurations: For example, in Fig. 1, any state
with pc0 = 5, pc1 = 12, isXray = false, input2 = true does not have a successor.
For such traces, it is not meaningful to argue whether they satisfy an assertion.

288 S. Sallinger et al.

This is why Definition 5 quantifies over executions, i.e., traces that end in a
final configuration. Moreover, Definition 5 disregards infinite traces, as we limit
ourselves in this paper to Heisenbugs that are observable in a finite amount of
time; we leave the extension to non-terminating traces to future work.

Example 6. Figures 2 and 3 show executions of the STS from Example 4. For
ϕ

def= (filter∨¬highEnergy) (the assertion in line 13), we have π1 |= ϕ and π2 �|= ϕ.

Fig. 2. Execution π1 of Fig. 1 Fig. 3. Execution π2 of Fig. 1

We presume that a system contains a bug if it has at least one failing execu-
tion (i.e., we assume that the assertion ϕ correctly encodes desired behavior of
the program):

Definition 6. Let (X, I, init, final, T) be an STS and the assertion ϕ be a for-
mula over X. The STS contains a bug with respect to ϕ if there exists a failing
counterexample execution:

∃πc . πc �|= ϕ.

A violation of the property ϕ in Definition 6, however, does not necessarily
constitute a Heisenbug.

2.2 Formal Definition of Heisenbugs

Heisenbugs are special bugs which occur only on some, but not on all executions.
We express this in terms of a hyperproperty [7]. Unlike properties over single
executions (such as Definition 6), hyperproperties relate sets of traces, allowing
us to characterize Heisenbugs by juxtaposing the behavior of two executions. In
particular, we require at least one succeeding and one failing execution induced
by the same input (as deviating behavior is to be expected for differing inputs).
To express this requirement for reactive systems, we define the projection of a
trace to its corresponding sequence of inputs that are not quiescent (i.e., not τ):

A Formalization of Heisenbugs and Their Causes 289

Definition 7. Let π be a trace of the STS (X, I, init, final, T), and let J ⊆ I be
some subset of the input variables. The input sequence J(π) is defined induc-
tively:

J(ε) = ε, J(c · π) =
{

J(π), if ∀i ∈ J : c(i) = τ
c|J · J(π) otherwise

where ε is the trace of length zero and · represents concatenation.

Example 7. The traces from Figs. 2 and 3 have the same inputs 〈input1 �→
false, input2 �→ τ〉 · 〈input1 �→ τ, input2 �→ false〉 for J = I = {input1, input2}.

Heisenbugs can be characterized using a hyperproperty asserting the exis-
tence of two executions with matching inputs, one of which violates the assertion
while the other fulfills it:

Definition 8. An STS (X, I, init, final, T) contains a Heisenbug with respect to
an assertion ϕ if

∃πc, πw . I(πc) = I(πw) ∧ πc �|= ϕ ∧ πw |= ϕ.

The execution πc is the counterexample execution, πw is the witness execution.

We emphasize that the definition is expressed in terms of a hyperproperty
stating that the inputs of the two traces must match. This condition cannot be
expressed as a simple trace property. Moreover, we remark that Definition 8 is
amenable to hyperproperty model checking (e.g., [13]).

Example 8. The Therac-25 example contains a Heisenbug with counterexample
execution π2 from Fig. 3 and witness execution π1 from Fig. 2.

3 Causality

In this section, we extend the hyperproperty from Definition 8 to counterfactually
reason about the causality of Heisenbugs. We first present a refinement step
for making potential causes explicit in the model and then introduce formal
definitions of causality in deterministic as well as nondeterministic systems.

3.1 Modeling Sources of Nondeterminism

For the purpose of causality analysis, the sources of nondeterminism (which we
call mechanisms) need to be made explicit. Nondeterminism can be due to incom-
plete observability, incomplete modeling or to inherent stochasticity in the mod-
eled system, as is the case for example in quantum mechanics [15, Section 3.1].
Nondeterminism stemming from incomplete observability and modeling can be
eliminated by refining the model with the relevant information. Even true non-
determinism can—at least in principle—be accounted for by means of prophecy
variables [1].

To formalize this idea, we introduce refinements of a transition system:

290 S. Sallinger et al.

Definition 9 (Refinement). Let S
def= (X, I, init, final, T) be an STS. We say

an STS Sref = (X � Xref , I � Iref , initref , finalref , Tref) is a refinement of S iff

1. for every 〈〈s, sref〉, 〈i, iref〉, 〈s′, s′
ref〉〉 |= Tref we have that 〈s, i, s′〉 |= T , and for

every state 〈s, sref〉 of Sref and transition 〈s, i, s′〉 |= T there are mappings
iref , s

′
ref of Iref and X ′

ref to values such that 〈〈s, sref〉, 〈i, iref〉, 〈s′, s′
ref〉〉 |= Tref ,

2. for every 〈〈s, sref〉, 〈i, iref〉〉 |= initref we have 〈s, i〉 |= init, and for every
〈s, i〉 |= init there are mappings iref , sref of Iref and Xref to values such that
〈〈s, sref〉, 〈i, iref〉〉 |= initref , and

3. for every 〈s, sref〉 |= finalref we have s |= final, and for every s |= final and
every mapping sref of the variables Xref to values we have 〈s, sref〉 |= finalref .

We note that the above definition preserves executions: Let Sref be a refine-
ment of some STS S. Then every execution of Sref gives rise to an execution of S
by projecting away the additional state and input variables. On the other hand,
the conditions in the refinement definition ensure that every execution of S can
be extended to an execution of Sref by choosing suitable values for the additional
state and input variables. We note that refinements can be thought of as adding
additional information to the STS under analysis, and the requirements in our
definition ensure that executions are preserved. If all mechanisms (i.e., sources
of nondeterminism) are explicit, refinement yields a deterministic system:

Definition 10 (Determinization). We say that an STS Sdet is a deter-
minization of some STS S, if Sdet is a refinement of S and is input-deterministic.

Example 9. The Therac-25 transition system from Example 4 can be refined by
setting Iref = {thread}, where thread is a Boolean variable selecting which thread
takes a step. The refined transition relation is shown in Fig. 4.

Fig. 4. Deterministic transition relation for Listing 1.1

Example 10. The floating point transition system from Example 5 can be
extended to a deterministic system by setting Iref = {debug} and considering
the refined initial condition (pc = 3 ∧ v = 10308 ∧ y = 0 ∧ (debug ⇔ print)), and
leaving the transition relation unchanged. We point out that the initial value of
the input variable debug fixes the value of print, which in turn fixes the transition
relation reflecting the presence of the printf-statement.

A Formalization of Heisenbugs and Their Causes 291

For Example 9 and Example 10 we have Xref = ∅. In the Peterson example
below, the refinement contains a state variable reflecting whether the cache state
has been propagated to main memory.

Example 11. Peterson’s algorithm (Listing 1.3) can be modeled as a deter-
minisitic STS. In this example we present the final refinement that makes all
involved mechanisms explicit. Alternatively, the mechanisms could be made
explicit in successive refinement steps. Figure 5 shows the part of the transi-
tion relation that models P0. Let X = {pc0, pc1, flagP0, flagP0c, flagP1, flagP1c,
turn, critical, error, print} where flagP0c and flagP1c represent the locally cached
versions of the flags. We have I = ∅ and Iref = {thread, debug, reorder}, where
thread indicates whether P0 or P1 takes a step (thread is omitted in Fig. 5).
Let Xref = {delay}, and let initref imply (print = debug ∧ delay = reorder). The
variable print indicates that the program version with printf-debugging is exe-
cuted, and delay is true if the modifications of the flags flagP0 and flagP1 are
only committed to shared memory after entering the critical section (to avoid
clutter, we assume only two possible points for committing the modification of
flagP0). We use (print ⇒ ¬delay) to model the interplay between two mecha-
nisms where the printf instruction prevents reordering because of the added
barrier, resulting in a partial transition relation. Moreover, initref ensures that
flagP0 = flagP0c = flagP1 = flagP1c = turn = critical = error = 0 and pc0 = 5
and pc1 = 15, and finalref is pc0 = 13 ∧ pc1 = 23.

Fig. 5. A part of Tref for Listing 1.3 (where V
def
= (X ∪ Xref) \ {pc0, pc1})

Note that the processor running the original nondeterministic version of
Peterson’s algorithm already has micro-architectural features that facilitate
instruction reordering (not modeled in Example 11); the auxiliary input reorder
and variable delay merely make this mechanism observable.

292 S. Sallinger et al.

3.2 Defining Causes

In the following, we provide a formal definition of causes inspired by Lewis’
counterfactuals [26] and the causality framework of Galles and Pearl [14].

Definition 11 (Cause). Let S
def= (X, I ∪ M, init, final, T) be a deterministic

STS, where I and M are disjoint sets of inputs, and let ϕ be an assertion. Let
M = MC � MN . We say that MC is a cause with respect to M and ϕ and iff

∃πc, πw . I(πc) = I(πw) ∧ MN (πc) = MN (πw) ∧ πc �|= ϕ ∧ πw |= ϕ (1)

and MC is a minimal subset of M with this property.

We note that in the above definition we require the inputs I to agree on the
executions πc and πw, while only the inputs M may differ. The rationale is that
we want to apply this definition for studying the causes of Heisenbugs: We are
given some (nondeterministic) STS with inputs I, which has a Heisenbug. We
now consider some determinization of the STS to which we have added inputs
M , modelling the mechanisms responsible for the nondeterminism. The above
definition then allows to study the cause among the modelled mechanisms: A
subset MC ⊆ M is a cause of a Heisenbug, if the Heisenbug still occurs when
the inputs MN agree in the deviating executions πc and πw.

Proposition 1 (Existence of a Cause). Let S
def= (X, I, init, final, T) be a

nondeterministic STS with a Heisenbug (Definition 8) with respect to an asser-
tion ϕ and let Sdet

def= (X ∪ Xdet, I ∪ M, initdet, finaldet, Tdet) be a determinization
of S. Then there exists a cause MC with respect to M and ϕ.

Proof. Let πc and πw be executions of S that satisfy Definition 8. Since refine-
ments preserve executions, there must be executions πcdet and πwdet of Sdet such
that πcdet|(I∪X) = πc and πwdet|(I∪X) = πw. Now assume that πcdet and πwdet

agree on M (in addition to I). Let 〈sc, scdet〉 and 〈sw, swdet〉 be the initial states
of πcdet and πwdet, respectively. Since Sdet is input-deterministic, however, there
is at most one state 〈〈s, sdet〉, 〈i,m〉〉 |= initdet, hence 〈sc, scdet〉 = 〈sw, swdet〉.
Moreover, for every state 〈s, sdet〉, each input 〈i,m〉 determines a unique succes-
sor state 〈s′, s′

det〉. Since πcdet|(I∪M) = πwdet|(I∪M), this violates the assumption
that πcdet �|= ϕ and πwdet |= ϕ. Hence, πcdet and πwdet must deviate on M . ��

Example 12. The Peterson example contains a Heisenbug with respect to ϕ
def=

(error = 0). Here, {reorder} and {thread} are causes, but {debug} is not: The set
{reorder} is a cause because of two executions which both have debug = false and
the same schedule interleaving the critical sections, but only one execution sets
reorder = true and hence exhibits the bug. The set {thread} is a cause because
of two executions which both have debug = false and reorder = true where
one execution uses a sequential schedule of the two processes and the second
execution uses a schedule interleaving the critical sections. Only the second exe-
cution exhibits the bug. However, the set {debug} is not a cause because any two

A Formalization of Heisenbugs and Their Causes 293

executions would either both have to set reorder = false, making the bug impos-
sible or both set reorder = true. In this case, by counterposition the constraint
(print ⇒ ¬delay) enforces debug = false, yielding a bug on both executions if the
schedule interleaves the critical sections or on no execution otherwise.

3.3 Causes and Nondeterminism

By introducing the notion of a contributing cause below, we show that even in
the presence of nondeterminism we can still provide guarantees.

Definition 12 (Contributing Cause). Let S
def= (X, I ∪ M, init, final, T) be a

(potentially nondeterministic) STS, where I and M are disjoints set of inputs,
and let ϕ, M = MC � MN satisfy the conditions in Definition 11. We call MC

a contributing cause of a Heisenbug.

We argue that any contributing cause must be a subset of a cause in a
corresponding determinization:

Theorem 1. Let S
def= (X, I ∪ M, init, final, T) be a nondeterministic STS and

let Sdet
def= (X ∪Xdet, I ∪M ∪J, initdet, finaldet, Tdet) be a determinization of S. Let

MC be a contributing cause in S with respect to M and assertion ϕ. Then, there
exists a cause C in Sdet with respect to M ∪ J and ϕ such that MC ⊆ C \ J .

Proof. Consider two executions πc and πw satisfying Definition 12 for S. Since
refinement preserves executions, there must be executions πcdet and πwdet in
Sdet such that πcdet|(I∪M∪X) = πc and πwdet|(I∪M∪X) = πw and πcdet �|= ϕ and
πwdet |= ϕ. By Definition 12, for MN = M \ MC it holds that πc|(I∪MN) =
πw|(I∪MN) and hence also πcdet|(I∪MN) = πwdet|(I∪MN). Hence (following an
argument similar to the one for Proposition 1) we argue that πcdet and πwdet

must deviate on a subset of MC ∪ J , i.e., there exists a cause C satisfying
Definition 11 such that C ⊆ MC ∪ J . Now assume that MC �⊆ C. Then MC

is not minimal, since (MC ∩ C) also constitutes a contributing cause. Thus, we
must have MC ⊆ C \ J . ��
Example 13. The refined STS in Example 9 is nondeterministic as the initial val-
ues of filter and highEnergy are unconstrained. Following Definition 12, {thread}
is a contributing cause. Consider a further refinement with Iref = {initF, initH}
and init = (filter = initF∧highEnergy = initH∧isXray∧isHigh∧pc0 = 4∧pc1 = 10).
As the initial values are never read, the cause is again {thread}.

We provide a condition under which contributing causes are also causes:

Definition 13 (Cause in Presence of Nondeterminism). Consider a
(potentially nondeterministic) STS S

def= (X, I ∪ M, init, final, T) such that for
all traces π, π′ of S with π|I∪M = π′|I∪M we have that

1. π ends in a final state if and only if π′ ends in a final state,
2. π |= ϕ if and only if π′ |= ϕ (in case both traces end in a final state).

294 S. Sallinger et al.

Let ϕ, M = MC � MN satisfy the conditions in Definition 11. We say that MC

is a cause in presence of nondeterminism with respect to M and ϕ.

We will next state a justification for the introduction of the above definition.
We first establish that input-enabled determinizations always exist:

Proposition 2. Let S
def= (X, I, init, final, T) be an input-enabled STS. Then, a

deterministic input-enabled refinement Sref always exists.

Proof. We set Iref = {oracle} for a single variable oracle, whose values are map-
pings of configurations to successors, i.e., oracle fixes a successor state s′ for every
configuration 〈s, i〉 such that 〈s, i, s′〉 |= T (note that at least one successor state
s′ always exists because of our assumption that S is input-enabled). We then
adopt Tref from T as the transition relation that moves to the successor state
fixed by the oracle variable. Likewise, we adopt the initial condition initref . ��

We next establish that no matter the input-enabled determinization S′ of
an STS S, a cause in the presence of nondeterminism in S is always a cause
in S′. Together with Proposition 2, which guarantees the existence of an input-
enabled determinization at least in theory, we obtain that a cause in presence of
nondeterminism can indeed by considered as a cause.

Theorem 2. Let MC be a cause in presence of nondeterminism with respect to
mechanisms M in an STS S

def= (X, I ∪M, init, final, T). Let Sdet
def= (X ∪Xdet, I ∪

M ∪ J, initdet, finaldet, Tdet) be an input-enabled determinization of S. Then MC

is also a cause in Sdet with respect to (I ∪ J).

Proof. Let πc and πw be executions of S that satisfy Definition 13. Since
refinements preserve executions, there must be an execution πcdet of S such
that πcdet|(I∪M∪X) = πc. In particular, we have πcdet �|= ϕ. Because Sdet is
input-enabled we can obtain a trace π of Sdet such that π|J = πcdet|J and
π|I∪M = πw|I∪M . Note that π induces a trace π′ of S with π′ = πwdet|I∪M∪X .
Hence, by the assumptions stated in Definition 13, the trace π′ is in fact an
execution (i.e., ends with a final configuration), and we have π′ |= ϕ. Thus, we
also get that π is an execution and that we have π |= ϕ. ��
Example 14. The nondeterministic refinement of the Therac-25 STS in Example
9 satisfies the properties in Definition 13. The refinement in Example 13 is input-
enabled and deterministic and the contributing cause is indeed a cause.

3.4 Testing and Causal Analysis

In the context of testing, an evaluation of Definition 11 and Definition 12, respec-
tively, is limited to the subset of the executions induced by a given test suite.
Lemma 1 characterizes the results that can be drawn by analyzing a subset of
the executions of an STS:

A Formalization of Heisenbugs and Their Causes 295

Lemma 1. Let πc and πw be executions satisfying Eq. 1 in Definition 11 (or
Definition 12, respectively) and let MC be the inputs deviating in πc and πw.
Then MC is a superset of a cause (or contributing cause, respectively).

Proof. Note that MC is a cause according to Definition 11 (or a contributing
cause according to Definition 12) if it is minimal with respect to Eq. 1. Otherwise,
there must be a cause that is a subset of MC . ��

Lemma 1 provides guarantees even if an exhaustive analysis is infeasible.
If, in addition, the conditions in Definition 13 are met (i.e., we can control or
at least observe the relevant mechanisms), then Proposition 2, Theorem 2, and
Lemma 1 guarantee that each overapproximation of a cause identified by testing
includes a non-empty (contributing) cause.

4 Analysis Methodology and Challenges

We sketch an (iterative) methodology for practical analyses based on the for-
malization above and showcase two possible instantiations and their challenges:

➀ Task: Starting from a Heisenbug (Definition 8), identify candidate mechanisms
M (e.g., consulting surveys [31]).
Challenge: The accuracy of the analysis is contingent on identifying the
relevant mechanisms.

➁ Task: Pick a mechanism m ∈ M and adapt (or refine according to Definition
9) the model or system to make m controllable (or at least observable).
Challenge: The system may be inherently uncontrollable or unobservable,
or attempts to control/observe it potentially introduce a probe effect.

➂ Task: Identify (contributing) causes by finding witnesses that deviate in as
few mechanisms as possible (i.e., satisfy Eq. 1 in Definition 11).
Challenge: Testing will yield over-approximations only (cf. Lemma 1).

➃ Task: Check a stopping criterion to determine whether further mechanisms
or refinement steps are required (steps ➀ and ➁).
Challenge: Assessing whether all causes have been correctly identified is
challenging and may amount to fixing the bug and re-verifying the system.

Causal Analysis Based on Model Checking. We built a NuSMV [5] model
of Peterson’s algorithm (Listing 1.3). We use self-composition [3], which com-
poses two copies Sw and Sc of the STS S, to reduce the existence of a counterex-
ample trace and a witness trace (which is a hyperproperty) to the existence of a
single trace in the composed model. NuSMV can then construct the trace as a
counterexample to an LTL property over the composed model. As NuSMV usu-
ally considers infinite traces, final conditions are accounted for in the property.
The existence of a Heisenbug can be confirmed by checking that NuSMV finds
a counterexample to the property ψ := G(finalc ∧ finalw ⇒ (ϕw ⇒ ϕc)) for final
and ϕ as in Example 11 and Example 12 (where subscripted predicates range
over the matching variable set).

296 S. Sallinger et al.

1 bool flag0 = false;

2 bool flag1 = false;

3 spinlock_t lock0, lock1;

4 void *thread0(void*) {

5 spin_lock(lock0);

6 flag0 = true;

7 assert (!flag1);

8 yield();

9 spin_lock(lock1);

10 flag0 = false;

11 spin_unlock(lock1);

12 yield();

13 spin_unlock(lock0);

14 }

15 void *thread1(void*) {

16 spin_lock(lock1);

17 flag1 = true;

18 assert (!flag0);

19 yield();

20 spin_lock(lock0);

21 flag1 = false;

22 spin_unlock(lock0);

23 yield();

24 spin_unlock(lock1);

25 }

Listing 1.4. An assertion fails if (and only
if) a deadlock occurs.

In step ➀, we pick the fact whether the print statements are executed and
model it adding variables printw and printc to the model (step ➁). In step ➂,
we invoke NuSMV on the property G(printw ⇔ printc) ⇒ ψ. As there is a
counterexample, we identify the empty set as a contributing cause.

We start another refinement iteration, pick concurrency as mechanism (step
➀) and model it by variables threadw and threadc (step ➁). We check the property
G((printw ⇔ printc) ∧ (threadw ⇔ threadc)) ⇒ ψ (step ➂). Again, there is a
counterexample and the empty set is a contributing cause.

In the next refinement iteration, we pick the weak memory behavior (step
➀) we model it by variables delayw and delayc and reflect the fact that
print =⇒ ¬delay (cf. Example 11) (step ➁). Checking property G((printw ⇔
printc) ∧ (threadw ⇔ threadc) ∧ (delayw ⇔ delayc)) ⇒ ψ returns true, hence
we have now found a non-empty cause superset and can start cause minimiza-
tion. A counterexample to G((printw ⇔ printc) ∧ (threadw ⇔ threadc)) ⇒ ψ
witnesses that delay is a cause, similarly a counterexample to G((printw ⇔
printc) ∧ (delayw ⇔ delayc)) ⇒ ψ witnesses that thread is a cause. As the model
satisfies G((delayw ⇔ delayc) ∧ (threadw ⇔ threadc)) ⇒ ψ, print is not a cause.
This concludes step ➂. As we identified a non-empty cause, no more refinement
steps are needed.

Test-Based Causal Analysis. Consider the code in Listing 1.4, which might
deadlock because of a faulty locking discipline. The assertions in lines 7 and 18
fail when a deadlock, caused by a specific (combination of) context switche(s),
occurs: a context switch at line 8 to thread1 (or, symmetrically, from line 19 to
thread0) causes both threads to wait for a lock held by the other thread.

In step ➀, we identify concurrency (limited to the context switches marked
by yield for simplicity) as potential cause. Following the approach of KISS [32],
we control the scheduler (step ➁) by sequentializing the concurrent program
and simulating the execution of a large subset of its interleavings. In KISS,
threads can be started and terminated nondeterministically at any point during
the execution. Using closures to save the local state of a thread, we add the

A Formalization of Heisenbugs and Their Causes 297

capability to re-enter a thread after its interruption by yield. The execution of
thread0 (thread1, respectively) can be interrupted at lines 8 and 12 (19 and
23, respectively). Our sequentialization enables us to explicitly control these
four context switches, inducing 24 potential schedules. Random (or systematic)
exploration of these schedules then yields executions that terminate normally
or violate an assertion. Failing executions deviate from the non-failing ones by
performing a context switch at lines 8 or 19, at least one of which must constitute
(part of) the candidate cause(s) we identify in step ➂.

Testing merely provides an over-approximation of the cause MC (Lemma
1). Due to the minimality requirement in Definition 11 and Definition 12, how-
ever, removing one element from MC (by controlling the mechanism accordingly)
eliminates the entire cause. Assume for now, that thread0 in Listing 1.4 always
executes first, in which case the context switch at line 8 is a unique cause for the
deadlock. Consider an over-approximation comprising of two context switches at
lines 8 and 19. Blocking the context switch at line 8 eliminates the Heisenbug,
while blocking the one at line 19 doesn’t. By individually blocking the context
switches and checking whether subsequent testing provides sufficient confidence
that the bug has been eliminated, we obtain a stopping criterion in step ➃.

If, however, executions may start with thread0 or thread1, the context
switches at lines 8 and 19 form two independent (non-intersecting) causes (due
to the symmetry in Listing 1.4). Consequently, both context switches must be
identified to eliminate all causes of the bug (cf. Sect. 3.4). Blocking individual
context switches (as suggested above) does not provide a reliable stopping cri-
terion. Despite this limitation, testing-based analysis can help the developer to
narrow down the set of candidate causes significantly.

5 Related Work

Terminology and Definition of Heisenbugs. The first paper mentioning Heisen-
bugs [17] uses the term for transient software bugs which disappear under obser-
vation. In [18], bugs are classified into Bohrbugs (bugs manifesting consistently),
Mandelbugs (bugs with complex error propagation), and Heisenbugs (bugs man-
ifesting differently under the probe effect). In contrast to this informal classifi-
cation, our definition is formal, covering Heisenbugs which stem from the probe
effect as well as from nondeterminism. The term is frequently (and informally)
used in the context of concurrency [30], where it exclusively refers to bugs caused
by control-flow nondeterminism. In the context of testing, the notion of flaky
tests [31] resembles the notion of Heisenbugs. The comparison of failing and
non-failing executions is used in several lines of research with goals orthogonal
to the definition of bug classes. Differential assertion checking [21] compares fail-
ing and non-failing executions to define relative correctness of different program
versions. In the context of diagnosability, the notion of critical pairs of failing
and non-failing executions with equivalent observations is used to check whether
faults can be detected at runtime [6].

298 S. Sallinger et al.

Causality. Our definition of causality is inspired by Lewis’ counterfactuals [25].
The negation of Definition 11 mirrors the definition of causal irrelevance in [14]
and Definition 11 corresponds to its dual notion of causality between variables
[12]. A core difference is that our interventions are restricted to inputs that rep-
resent nondeterministic mechanisms rather than affecting arbitrary points of the
transition relation (or the causal model). Moreover, causal models have a fixed
propagation depth, while we consider an arbitrary number of unwindings of the
transition relation. Halpern and Pearl [19,20] provide a widely accepted defini-
tion of “actual” causes based on counterfactuals, where contingencies are used
to control interference between interventions. Several lines of work reason about
the origin of system faults [2,4,10,16,23] using Halpern and Pearl’s notion of
causality. In [8], actual causality is used to explain violations of hyperproperties.
It formalizes causes for violations of (arbitrary) universally quantified hyper-
properties as a hyperproperty with quantifier alternation, which can then be
checked with a model checker such as [13]. We formalize causes for Heisenbugs
(a specific hyperproperty) in terms of an existentially quantified hyperproperty.

Several approaches exist for automatically detecting causes of flaky tests.
The RootFinder tool [22] collects passing and failing executions and correlates
their differences with a specific cause. In [39] the authors present a tool for
finding code locations that lead to differences between succeeding and failing
executions. Identifying what happens in these locations is left to the developer.
In [29,36] the system is repeatedly executed under different configurations to
check which configuration influences the manifestation of the bug. All of these
approaches are based on computing correlations rather than performing rigorous
causal inference. In contrast, our framework is based on a formal causal analysis
accounting for interactions of multiple potential causes. [31] provides a taxonomy
of causes relevant in the context of automated testing.

6 Conclusion

While the term Heisenbug is widely used, its exact meaning often depends on
the context. We provide a formal definition that unifies the notion of Heisen-
bugs caused by a system alteration and those caused by nondeterminism. Fur-
thermore, we present a hyperproperty-based framework for determining which
mechanisms cause the manifestation of a Heisenbug. In particular, our approach
allows the identification of causes in the presence of multiple mechanisms that
could trigger a Heisenbug and gives guarantees for results of a causal analy-
sis even in presence of nondeterminism. Building on this result, we sketch a
methodology for causal analysis based on iterative refinement.

Acknowledgements. This work was partially supported by ERC CoG ARTIST
101002685, by the FWF project W1255-N23, by a netidee scholarship, and by the
Vienna Science and Technology Fund (WWTF) [10.47379/VRG11005].

A Formalization of Heisenbugs and Their Causes 299

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. In: LICS (1988)
2. Baier, C., et al.: From verification to causality-based explications. In: ICALP (2021)
3. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.

In: FM (2011)
4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-

amples using causality. In: CAV (2009)
5. Climatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.

In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

6. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via
symbolic model checking. In: IJCAI (2003)

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

8. Coenen, N., et al.: Explaining hyperproperty violations. In: CAV (2022)
9. Cotroneo, D., Grottke, M., Natella, R., Pietrantuono, R., Trivedi, K.S.: Fault trig-

gers in open-source software: an experience report. In: ISSRE (2013)
10. Dubslaff, C., Weis, K., Baier, C., Apel, S.: Causality in configurable software sys-

tems. In: ICSE (2022)
11. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding flaky tests:

the developer’s perspective. In: ESEC/FSE (2019)
12. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artif.

Intell. 142(1), 53–89 (2002)
13. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL

and HyperCTL∗. In: CAV (2015)
14. Galles, D., Pearl, J.: Axioms of causal relevance. Artif. Intell. 97(1–2), 9–43 (1997)
15. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computa-

tion and Machine Learning. MIT Press (2016)
16. Gössler, G., Stefani, J.B.: Causality analysis and fault ascription in component-

based systems. Theor. Comput. Sci. 837, 158–180 (2020)
17. Gray, J.: Why do computers stop and what can be done about it? Tech. Rep. 85.7,

PN87614, Tandem Computers (1986)
18. Grottke, M., Trivedi, K.S.: A classification of software faults. In: ISSRE (2005)
19. Halpern, J.Y.: A modification of the halpern-pearl definition of causality. In: IJCAI

(2015)
20. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach:

part 1: causes. British J. Philos. Sci. 56 (2005)
21. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion

checking. In: ESEC/FSE (2013)
22. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root causing

flaky tests in a large-scale industrial setting. In: ISSTA (2019)
23. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:

VMCAI (2013)
24. Leveson, N., Turner, C.: An investigation of the Therac-25 accidents. IEEE Com-

put. 26(7), 18–41 (1993)
25. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1974)
26. Lewis, D.: Counterfactuals. Wiley-Blackwell (2001)
27. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via

access-interleaving invariants. IEEE Micro 27(1), 26–35 (2007)

https://doi.org/10.1007/3-540-45657-0_29

300 S. Sallinger et al.

28. Monniaux, D.: The pitfalls of verifying floating-point computations. TOPLAS
30(3), 1–41 (2008)

29. Moran, J., Augusto Alonso, C., Bertolino, A., de la Riva, C., Tuya, J.: FlakyLoc:
flakiness localization for reliable test suites in web applications. J. Web. Eng. 19(2),
267–296 (2020)

30. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: OSDI (2008)

31. Parry, O., Kapfhammer, G.M., Hilton, M., McMinn, P.: A survey of flaky tests.
TOSEM 31(1), 1–74 (2021)

32. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI (2004)
33. Ratliff, Z.B., Kuhn, D.R., Kacker, R.N., Lei, Y., Trivedi, K.S.: The relationship

between software bug type and number of factors involved in failures. In: ISSRE
Wksp (2016)

34. Senftleben, M.: Operational Characterization of Weak Memory Consistency Mod-
els. Master’s thesis, University of Kaiserslautern (2013)

35. Sommerville, I.: Software Engineering, 9 edn. Addison-Wesley (2010)
36. Terragni, V., Salza, P., Ferrucci, F.: A container-based infrastructure for fuzzy-

driven root causing of flaky tests. In: ICSE (2020)
37. Thomas, M.: The story of the therac-25 in lotos. High Integr. Syst. J. 1(1), 3–15

(1994)
38. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In: Margaria,

T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61042-1 42

39. Ziftci, C., Cavalcanti, D.: De-Flake your tests : automatically locating root causes
of flaky tests in code at google. In: ICSME (2020)

https://doi.org/10.1007/3-540-61042-1_42

Verifying Read-Copy Update Under RC11

Mikhail Semenyuk1 , Mark Batty2 , and Brijesh Dongol1(B)

1 University of Surrey, Guildford, UK
b.dongol@surrey.ac.uk

2 University of Kent, Canterbury, UK

Abstract. Read-Copy Update (RCU) is a key lock-free synchronisation
mechanism that is used extensively in the Linux kernel. One use of RCU
is safe memory reclamation in languages such as C/C++ that do not
support garbage collection. Correctness of RCU is, however, difficult to
verify, even when assuming sequentially consistent (SC) memory. In this
paper, we develop and verify an RCU implementation under RC11 (a
restricted version of C11 weak memory model, which includes relaxed
and release-acquire accesses), increasing the verification challenge. Our
proof technique is based on a notion of ownership, which we use to sys-
tematically track each thread’s read/write capabilities to each memory
location. In our proof, we extend a recent Owicki-Gries logic for RC11,
which we combine with our ownership model to show correctness. All
our proofs have been mechanised in the Isabelle/HOL theorem prover.

Keywords: Owicki-Gries · ownership · RCU · verification · C11 ·
weak memory

1 Introduction

Over the years, many non-blocking concurrent algorithms [12] have been devel-
oped to exploit the parallelism possibilities in multi-core architectures. Unlike
lock-based algorithms (which restrict access to critical regions), non-blocking
programs rely on atomic test-and-set primitives (e.g., compare-and-swap) to
ensure consistency of the object being implemented. Non-blocking algorithms
generally yield better performance (i.e., are more scalable) than their lock-based
counterparts, and by design, avoid problems such as priority inversion and dead-
lock. However, a key problem faced by such algorithms is that of safe memory
reclamation, particularly in languages such as C/C++, which do not provide
garbage collection. Here, since multiple threads may access the same memory
location concurrently, prior to freeing a memory location, one must make sure
that no other concurrent thread has a reference to that location. Otherwise this
may lead to memory access violations via the ABA problem [9,10].

Semenyuk is supported by VeTSS. Batty is supported by EPSRC grants
EP/X021173/1, EP/V000470/1, and EP/X015076/1. Dongol is supported by EPSRC
grants EP/X037142/1, EP/X015149/1, EP/V038915/1, and EP/R025134/2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 301–319, 2023.
https://doi.org/10.1007/978-3-031-47115-5_17

https://doi.org/10.5281/zenodo.8099415
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_17&domain=pdf
http://orcid.org/0000-0002-0563-0525
http://orcid.org/0000-0001-7053-4364
http://orcid.org/0000-0003-0446-3507
https://doi.org/10.1007/978-3-031-47115-5_17

302 M. Semenyuk et al.

There have been many proposals for safe memory reclamation such as epoch-
based reclamation [8], hazard pointers [19] and RCU [17]. Prior works have
considered verification of hazard pointers for particular algorithms (e.g., [16,
22,28]) and specialised separation logics that have been shown to work across
several memory reclamation schemes [9]. However, these works have assumed a
strong memory model of sequential consistency (SC), which is not supported by
modern multi-processor systems. In this paper, we assume a more realistic con-
currency model based on the RC11 weak memory model [14,15], which models
both relaxed and release-acquire accesses as present in RC11.

Our main case study is RCU [17], which is one of the most widely used mem-
ory reclamation schemes. Although RCU has been proven correct under SC [9],
its main memory reclamation property fails under RC11 using relaxed accesses1.
There are two options to addressing this issue: (1) introduce additional weak
memory synchronisation within the RCU library itself, or (2) ensure adequate
weak memory synchronisation in a client and use RCU without change. Although
the latter introduces additional programmer overhead, it is much more desirable
from a performance point of view, since the RCU library itself can fully benefit
from the parallelisation possibilities from weak memory.

Thus, our solution is not to modify the RCU original algorithm, but to show
how it can be safely used by a client program, even when all memory operations
within the RCU library are relaxed. The main thrust of our work is a formal
proof of correctness that extends a recent Owicki-Gries logic [3] for RC11.2 We
extend RC11 logic in two ways. The first introduces a new type of assertion
that captures the message passing paradigm in RC11 through the last write in
memory. This assertion is particularly effective for reasoning about locations that
are only ever updated through read-modify-write operations.3 Second, we use a
systematic ownership discipline [25] to simplify reasoning about the read/write
capabilities that threads have on each memory location.

Contributions. This paper comprises three main contributions. (1) We present
a method of using RCU under RC11, where the RCU algorithm contains only
relaxed accesses, and weak-memory synchronisation is relegated to the client.
(2) We extend the RC11 semantics with a model of pointers and a systematic
model of ownership. Additionally, we extend an existing Owicki-Gries logic for
RC11 with a new type of assertion. This extended model is used to prove correct-
ness of our example program. (3) Our entire development, including our RC11

1 The RC11 model has been extensively studied [14,15] as a strengthening of the C11
memory model [1,23,32] that offers operations such as releasing writes and acquiring
reads (that enable inter-thread synchronisation) as well as relaxed reads and writes
that are unsynchronised.

2 Note that developments in weak memory include logics (e.g., [26,31,33]) for the full
C/C++ model with relaxed dependencies [1,13,23]. However, these models and log-
ics are currently still too difficult to use in practice for programs such as RCU, which
require reasoning about an unbounded number of threads. We consider verification
of such programs to be part of future work.

3 Such locations are common in non-blocking algorithms, e.g., the top pointer of the
Treiber Stack [29].

Verifying Read-Copy Update Under RC11 303

Fig. 1. Shared counter Fig. 2. ABA problem for the shared
counter in Fig. 1

semantics, logic and proof of RCU, has been mechanised in the Isabelle/HOL
proof assistant to provide a high level of assurance.

Auxiliary Material. The Isabelle/HOL proofs corresponding to this submission
may be found here [24].

2 Motivation

In this section we present some background and motivation for our work. This
includes the ABA problem in the context of memory reclamation (Sect. 2.1),
McKenney’s RCU algorithm for solving ABA (Sect. 2.2), and the changes needed
for correctness of RCU under RC11 (Sect. 2.3).

2.1 ABA Problem During Memory Reclamation

High-performance lock-free algorithms, such as the Treiber stack [29] and the
Michael-Scott queue [20], use non-blocking atomic read-modify-write operations
(e.g., CAS) to synchronise threads. A CAS-based implementation typically takes
a snapshot of a shared location, and computes a new value based on this local
snapshot, before updating the shared location using a CAS. We illustrate the
essence of the approach using a shared counter (Fig. 1) with an increment oper-
ation inc on a shared location C, implemented using a typical lock-free pattern.
The executing thread takes a snapshot of C at Line 6, calculates a new value for
the contents of the location C at Lines 7 and 8, and attempts to update C to
point to the new value at Line 9. Note that the CAS will fail, if the value of C
does not match value the local snapshot, which occurs when there is interference
from another thread. Further note that there is some subtlety with the imple-
mentation in that, after a successful execution of the CAS (Line 9), C points to a
new location containing the updated value.

The question of memory reclamation is typically not the focus of such algo-
rithms, and is left up to the implementer to deal with. However, extra attention

304 M. Semenyuk et al.

Fig. 3. Safe use of RCU in RC11

must be paid to avoid the occurrence of a common phenomenon known as the
ABA problem [12], where the value of a location changes from “A” to “B” the
back to “A”. A thread that takes a snapshot from the first “A” may not notice
that the value has changed if it compares its snapshot with the second “A”.

Example 1. Consider the following execution of Fig. 1 as depicted in Fig. 2. In
Fig. 2(a), assume that threads t1 and t2 have both taken snapshots of the shared
pointer C, and stored the value 3 (located in memory address 0x23), in their
local copies of v (i.e., both t1 and t2 have executed Line 7 of Fig. 1). Suppose
t2 continues execution so that it completes the inc operation. This gives rise to
the state depicted in Fig. 2(b), where the address 0x23 is freed, and C points to
a new location 0x24 with value 4. Suppose that another thread t3 (not shown)
completes an entire inc operation, picking the freed location 0x23, updating the
value to 5, and swinging the pointer C to 0x23. Now if t1 continues execution,
its CAS can succeed, which will cause the value of C to be updated to 4 (since
t1’s local value of v is 3).

2.2 An RCU-Based Solution

An RCU-based solution to safe memory reclamation is presented in Fig. 3. It
assumes N threads and a shared array of RCU flags, rcu, initialised to an array
of 0s. We assume that t is the thread identifier of the calling thread (where
0 ≤ t ≤ N-1). The RCU flag for thread t is therefore rcu[t]. Each thread
sets and unsets its RCU flag by calling rcu enter and rcu exit, respectively.

Verifying Read-Copy Update Under RC11 305

Fig. 4. Message passing

A thread that is about to free a location must first call sync to ensure no other
thread is accessing that location. In sync, the calling thread first takes a local
snapshot r of rcu, then iterates through r. If r[i] is found to be set, then it
waits until rcu[i] is unset.

Correct use of RCU prevents threads from performing reclamation on
addresses that other threads could reference. The addition of calls to rcu enter
and rcu exit outlines a critical region. When threads are outside of this region,
they have no opportunity to cause the ABA problem, because they must read
a new value of C to successfully execute their CAS. This principle makes recla-
mation safe — during RCU synchronisation (i.e., execution of sync), threads
that are about to perform reclamation are forced to wait for competing threads
to leave the critical region, before proceeding to memory deallocation. To cope
with weak memory, the program in Fig. 3 uses an atomic fetch-and-add opera-
tion (FAA) without any increment when reading the value of C (unlike the simple
read in Fig. 1). This is discussed in more detail in Sect. 2.3.

Note that rcu[i] may be set by thread ti after the syncing thread, say t has
read rcu[i] as being unset. This is however not a problem. When using RCU,
the client program must ensure that when ti calls rcu enter, the location that
ti is trying to protect is different from the location that t is trying to free via its
sync operation. Conversely, a sync operation executed by thread t may be in
progress before rcu[i] is set. In this case, t will be forced to wait for ti to call
rcu exit, but this is an example of a false-negative, and does not violate safety.

The counter from Fig. 1 modified to use RCU is given in Fig. 3. Prior
to accessing the shared location C, the executing thread, say t, must first
call rcu enter (Line 27). Upon successfully performing its operation, t calls
rcu exit (Line 33). Note that t must also exit rcu exit when its CAS fails, and
the only opportunity to do this is at Line 26. This is matched by an earlier
call to rcu enter at Line 24. Following [9], we perform a reclaim operation,
which uses a detached list, det, to improve the efficiency of memory reclama-
tion. At Line 16, t inserts the freed location into its detached list, then non-
deterministically decides, whether to perform reclamation at Line 17 or not. If
it decides to perform reclamation, it first executes sync (Line 18), and once this
is complete, frees all of the locations in its detached list (Line 19).

2.3 Execution Under RC11 Memory

A difference between the program in Fig. 1 and Fig. 3 is that we assume the
latter executes under RC11 with relaxed and release-acquire accesses. Unlike

306 M. Semenyuk et al.

SC, where reads always read from the last write, RC11 allows threads to access
stale writes (i.e., writes that have been overwritten). The difference between
relaxed and release-acquiring operations is best explained using the message
passing example [1,3,15] (see Fig. 4). Assuming all variables are instantiated
with the value 0, the program on the left can only guarantee r, s ∈ {0, 1} when
it terminates since thread 2 is allowed to read a stale value for x even if it reads
the new value for y written by thread 1. In contrast, the program on the right
can guarantee the stronger property r = 1 −→ s = 1 upon termination since
thread 2 can only set r to 1 if it reads from thread 1’s write to y. This induces
a release-acquire synchronisation, which ensures that thread 2 can only read the
value 1 for x (written by thread 1) when it later updates s.

Example 2. To see the importance of the release and acquire flags on FAA and
CAS, consider an execution of the program in Fig. 3, where these flags are omitted.
Suppose a thread t1 executes Line 28 (having set rcu[t1] to 1 in rcu enter).
Suppose another thread t2 executes inc, successfully performing its CAS. Due
to RC11’s weak memory effects, t2 may continue with its execution and miss
that rcu[t1] has been set to 1 since weak memory allows t2 to read stale, i.e.,
overwritten values, when the program is improperly synchronised.

To prevent the issues described in Example 2, we require acquire/release
annotations on FAA and CAS, to ensure relaxed updates (e.g., to rcu) are correctly
propagated. Namely, we must replace the simple read of C in Fig. 1 with a fetch-
and-add (FAA) at Line 28 in Fig. 3. Additionally, this FAA, as well as the CAS,
must be both releasing and acquiring.

Note that RC11 provides an opportunity for parallelisation that would not be
possible under SC. Namely, under SC, the RCU algorithm forces a synchronising
thread t1 (i.e., a thread executing sync) to wait until rcu[t2] is set to 0 for thread
t2 regardless of whether t2 has references to addresses in the detached list of t1.
Under RC11, another thread t2 setting rcu[t2] to 1 can be missed by t1, since
t1 is able to read stale values. Note that t1 can only miss t2 entering its RCU
(i.e., setting rcu[t2] to 1), when it is impossible for t2 to access the locations in
the detached list of t1. Thus, this behaviour is safe and provides an opportunity
for improved performance.

3 Background

In this section, we first present our modelling language and semantics for RC11-
RAR, which is RC11 restricted to relaxed and release-acquire accesses (Sect.
3.1). For simplicity, we write RC11 to mean RC11-RAR. In Sect. 3.2, we present
the Owicki-Gries proof rules. Our presentation combines prior works on Owicki-
Gries for weak memory [2,3]. In Sect. 3.3, we present the two weak-memory
assertions from [3] that we use in our proof.

Verifying Read-Copy Update Under RC11 307

3.1 Syntax and RC11 Semantics

Syntax. Our formal modelling language is unstructured and defined in terms
of a mapping from labels (of type Label) to commands (of type Com). Let Loc
and Val be the set of all locations and values, respectively. We assume Loc is
partitioned into local LocL, global LocG and auxiliary LocA locations. Suppose
r ∈ LocL, x ∈ LocG , m,n ∈ Val , i, j, k ∈ Label , â ∈ LocA and α ∈ Com.
Moreover, let ExpL be expressions over LocL and BExpL � B be boolean-valued
expressions over LocL, and suppose ê be an expression over both LocL and LocA.

Com ::= r := ExpL | x :=[R] ExpL | r ←[A] x
| r := FAA[R][A](x, n) | r := CAS[R][A](x,m, n)

LabAux ::= i | 〈i, â := ê〉

LCom ::= α goto LabAux | if B goto j else to k

Here, we use [X] to mean that the annotation X is optional. Thus,
CAS[R][A](x,m, n) denotes either a relaxed CAS (CAS(x,m, n)), a releasing CAS
(CASR(x,m, n)), an acquiring CAS (CASA(x, n)) or a release-acquiring CAS
(CASRA(x,m, n)).

Let Tid be the set of all thread identifiers. A program is a function of type
(Tid × Label) ⇀ LCom that maps a thread id (of type Tid) and a label to the
command to be executed.

The operational semantics for our language is defined in three parts: the
program semantics, the memory semantics and the combined semantics that
brings the program and memory semantics together.

Program Semantics. The program semantics (Fig. 5) assumes three state
components: the local state, lst ∈ Tid → (LocL ⇀ Val), the auxiliary
state, ast ∈ Tid → (LocA ⇀ Val) and the program counter state, pct ∈
Tid → Label , where ⇀ denotes a partial function. Figure 5 defines the steps
(P, lst , ast , pct) =a⇒t (P, lst ′, ast ′, pct ′) that the thread t of concurrent program
P can take, where a is either a memory action or a silent action τ . Note that
we assume that the local variables of different threads are disjoint, i.e., if t
= t′,
then dom(lst(t)) ∩ dom(lst(t′)) = ∅.

We write �E�s for the value of E evaluated in the state s and define
f [x → v] = λi. if i = x then v else f(i) for functional override.

RC11-RAR Memory Semantics. The memory semantics (given in Fig. 6)
defines transitions over the RC11 state (denoted by σ). We assume that the
write and RMW actions are of type W and can be read by a read or an RMW
action (of type R). We let WR and RA be the set of releasing write actions and
acquiring read actions, respectively.

Each global write or RMW is represented by a write event (a, q), where a is
a write or RMW action, and q is a rational number that we use as a timestamp
(c.f., [3]). For w = (a, q), we denote w’s timestamp by tst(w) = q. We also
use wrval to denote the value written by an action (if any). The memory state
contains the following components:

– writes ⊆ W × Q recording the set of all writes that have occurred in the
execution thus far.

308 M. Semenyuk et al.

Fig. 5. Selected program semantics, assuming ls, ls ′ ∈ LocL ⇀ Val and as, as ′ ∈
LocA ⇀ Val and defining IF = if b goto j else to k and CAS = CAS[R][A](x, m, n)

– tview t ∈ LocG → writes recording the viewfront of thread t. Thread t can
read from any write to location x whose timestamp is at least tst(tview t(x)).

– mvieww ∈ LocG → writes recording the viewfront of write w, which is set to
be the viewfront of the thread that executed w at the time of w’s execution.
We use mvieww to compute a new value for tview t if a thread t synchronizes
with w, i.e., if w ∈ WR and another thread executes an e ∈ RA that reads
from w (see Fig. 6).

– covered ⊆ writes recording the set of writes that cannot be seen by modifying
actions wr and rmw. This is used to maintain atomicity of existing rmw
actions. Since an rmw with a write a is introduced immediately after (in
timestamp order) the write, say w, that it reads from, later modifications to
the state must not introduce a write between w and the write corresponding
to the rmw. Doing so would violate atomicity of the rmw action (see [3] for
further details).

Combined Semantics. The program semantics is combined with the memory
semantics as follows, where LS = (lst , ast , pct)

(P,LS) =
τ⇒t (P,LS ′)

(P,LS , σ) =⇒ (P,LS ′, σ)

(P,LS) =
a⇒t (P,LS ′) σ

a
t σ′

(P,LS , σ) =⇒ (P ′,LS ′, σ′)

The full state of a program in RC11 is denoted Σ, where each state of Σ is a
pair of the form (LS, σ).

Verifying Read-Copy Update Under RC11 309

Fig. 6. Selected transition relations of the memory semantics, where OWσ(t, x) =
{(a, q) ∈ σ.writes | var(a) = x ∧ tst(σ.tview t(x)) ≤ q} define the observable writes,
(v1 ⊗ v2)(x) = if tst(v2(x)) ≤ tst(v1(x)) then v1(x) else v2(x) returns the maximal
timestamp and freshσ(q, q′) = q < q′ ∧ ∀w′ ∈ σ.writes. q < tst(w′) ⇒ q′ < tst(w′)
returns a fresh timestamp after q

3.2 Owicki-Gries Reasoning

The proof outline of a program is a triple: (init , ann, I), where init ∈ 2Σ defines
the initial state, ann ∈ Tid × Label → 2Σ and I ∈ 2Σ is a global invariant.
This definition can be extended to handle termination, but, given that our main
example is non-terminating, we omit this detail for simplicity. We assume pro-
grams start execution such that pct(t) = ι for all t ∈ Tid , where ι ∈ Label is a
special label denoting the initial label.

Definition 1 (Valid proof outline). A proof outline (init , ann, I) is valid
for a program P iff the following hold:

Initialisation. For all t ∈ Tid, init −→ I ∧ ann(t, ι).
Local correctness. For all t ∈ Tid and i ∈ Label , either:

– P(t, i) = α goto j and
{
I ∧ ann(t, i)

}
α

{
I ∧ ann(t, j)

}

– P(t, i) = α goto 〈j, â := ê〉 and
{
I ∧ ann(t, i)

}
α

{
(I ∧ ann(t, j))[ê/â]

}

– P(t, i) = if B goto j else to k and both
• I ∧ ann(t, i) ∧ B −→ ann(t, j) and
• I ∧ ann(t, i) ∧ ¬B −→ ann(t, k) hold.

Stability. For all t1, t2 ∈ Tid such that t1
= t2 and i1, i2 ∈ Label :
– if P(t1, i1) = α goto j, then{

I ∧ ann(t2, i2) ∧ ann(t1, i1)
}

α
{
ann(t2, i2)

}
;

– if P(t1, i1) = α goto 〈j, â := ê〉, then{
I ∧ ann(t2, i2) ∧ ann(t1, i1)

}
α

{
ann(t2, i2)[ê/â]

}
.

310 M. Semenyuk et al.

3.3 View-Based Assertions

Prior works [3,4] have defined several view-based assertions, that enable reason-
ing about weak memory behaviours. In the proof of RCU, we have found that
many of these are not needed. On the other hand, we have identified a new type
of assertion that we call conditional-on-last that greatly simplifies reasoning,
which we introduce in Sect. 4.2.

Definite Observation. This is denoted [x =t u] and means that thread t must
observe the value u for x if it reads x. For a set of writes W , let Wx be the writes in
W that write to location x. The last write to x in W is denoted last(W,x), where
last(W,x) = w ⇔ w ∈ Wx ∧ (∀w′ ∈ Wx. tst(w′) ≤ tst(w)). Then, we obtain:

[x =t n] = λσ. σ.tview t(x) = last(σ.writes, x) ∧ wrval(last(σ.writes, x)) = n

The first conjunct ensures that the viewfront of t for x is the last write to x in
σ (thus t can only read this last write to x). The second conjunct ensures that
the value written by the last write is n.

Covered Write. When a location x is only modified using RMW operations, it
is often convenient to reason about them using the covered write assertion [3–5],
denoted Cn

x . This states that all writes to variable x except the last write are
covered, and that the last write to x has value n. Formally we have:

Cn
x = λσ. ∀w ∈ σ.writesx. w /∈ σ.covered −→

wrval(w) = n ∧ w = last(σ.writesx, x)

4 Extensions to Semantics and Logic

To prove correctness of our RCU example, we require two extensions to the
semantics and logic. First, in Sect. 4.1, we extend our RC11 model with a simple
model of pointers. Second, in Sect. 4.2, we extend the assertion language (Sect.
3.3) with a new type of assertion that simplifies reasoning about message passing
over covered writes.

4.1 Allocation Model

One of the first challenges in verifying RCU (Sect. 5) is adapting an adequate
representation of the allocation functions new and free called in Lines 23 and
20 of Fig. 3. In practice, C programs assume one of two schemes based on prove-
nance (the origins of the value of each pointer), whose models require intricate
considerations depending on how aliasing is to be handled [18]. Our RCU imple-
mentation relies on only allocation functions new and free, and thus, use a
simple allocation map, A : Π −→ Loc that maps a pointer identifier (of type
Π) to a location. This mapping is inspired by provenance mappings [18], but is
much simpler. On every allocation, we choose a fresh pointer identifier i (that is
unique across the entire execution). The following transitions handle allocations

Verifying Read-Copy Update Under RC11 311

and freeing of pointers, where A[i → ⊥] denotes that the mapping i → is
removed from A:

Alloc

a = alloc(i, l)
i /∈ dom(A) l /∈ ran(A)

A
a

↪→ A[i 	→ l]
Kill

a = kill(i) i ∈ dom(A)

A
a

↪→ A[i 	→ ⊥]

The resulting Isabelle model is lightweight and guarantees that no two objects
with different pointer identifiers values share the same location in memory.

∀ i, j ∈ dom(A). i
= j −→ A(i)
= A(j) (1)

Full Allocation Semantics. The next step is to link this allocation semantics
with the program semantics from Sect. 3.1. Recalling that LS = (lst , ast , pct),
we have two transitions depending on whether or not the transition in question
modifies the allocation mapping:

(P,LS , σ) =⇒ (P ′,LS ′, σ′)

(P,LS , σ, A) =⇒ (P ′,LS ′, σ′, A)

(P,LS) =
a⇒t (P ′,LS ′) A

a
↪→ A′

(P,LS , σ, A) =⇒ (P ′,LS ′, σ, A′)

Note that the second rule only applies when a is an alloc or kill action. The
first premise of the rule uses Par in Fig. 5 to reduce to a step of thread t, which
in turn reduces to a step transition (−a→). Then, using the rule Step (assuming
no auxiliary variables are modified) reduces to an execution of some program
syntax. Here we assume two atomic statements r := new X (which performs an
allocation) and free(l) (which frees the location l). The behaviours of these
statements are defined by the following rules:

a = alloc(, l)
(r := new X, ls) −a→ ls[r → l]

a = kill(l)
(free(l), ls) −a→ ls

4.2 Extending the Assertion Language

In prior works [3–5], message-passing, as enabled by release-acquire synchro-
nisation in RC11 programs, is achieved by an assertion known as conditional
observation. This assertion states that synchronising on a particular write to a
location, say x, guarantees that the reading thread’s view advances sufficiently
on another location, say y, such the reading thread no longer sees stale writes
to y. For the purposes of our verification, this assertion is insufficient because
it inherently assumes that threads synchronise on a unique value. Instead, we
define a new type of assertion that we call conditional-on-last, which does not
have a uniqueness requirement: it only requires that the reading thread sees
the last write to the synchronising variable (i.e., x in the discussion above). We
show that this assertion is sufficient for verifying our example, but conjecture
that it could also apply to other examples such as non-blocking data structures

312 M. Semenyuk et al.

(e.g., the Treiber stack [29]), where all updates to a shared global pointer occurs
through a read-modify-write instruction.

Conditional-on-Last Observation. This is denoted �x = u�(y = v) and
means that if the last write to location x has value u, then x is a releasing
write (or RMW) such that synchronising on x is guaranteed to advance the
reading thread’s view on y such that it definitely observes y to have the value v.
Formally,

�x = u�(y = v)
≡ λσ. let last(σ.writes, x) = w, last(σ.writes, y) = w′ in

wrval(w) = u −→ w ∈ WR ∧ σ.mvieww(y) = w′ ∧ wrval(w′) = v

Like with other assertions in the proof (see [3–5]), we verify a number of
pre/postcondition axioms describing the interaction between the conditional-
on-last observation assertions and the atomic program statements.

For example, a weak memory read by any thread t preserves the conditional-
on-last observation. Similarly, provided the location of a weak memory write
does not affect x or y, the conditional-on-last observation is preserved, recalling
that [X] means that the annotation X is optional.

X = �x = u�(y = v)
{
X

}
r ←[A] z

{
X

}
z /∈ {x, y} X = �x = u�(y = v)

{
X

}
z :=[R] n

{
X

}

The next rule shows how conditional-on-last observations can be used to syn-
chronise on another location through a release-acquire CAS:

{
Cu

x ∧ �x = u�(y = v)
}

r := CASRA(x, u, n)
{
r −→ [y =t v]

}

Lastly, we show how information can be relayed through the assertion, when
using a release-acquire CAS, provided that the CAS succeeds:

{
Cm

x ∧ [y =t v]
}
r := CASRA(x, m, u)

{
r −→ �x = u�(y = v)

}

5 Proof of Correctness

Our strategy for showing that ABA cannot occur in our algorithm is by track-
ing each thread’s reads and writes to each location. We introduce a notion of
ownership of memory locations within Owicki-Gries proofs [25] to track the read
and write capabilities of each thread. Threads may only dereference a pointer if
they have at least a read capability on the pointer value. Similarly, a pointer can
be de-allocated only by the thread which holds write capabilities over it.

Verifying Read-Copy Update Under RC11 313

5.1 Ownership and Capabilities

We differentiate between read/write capabilities over addresses by introducing
two ownership types:

ownrd ∈ Loc −→ 2T ownwr ∈ Loc −→ T ∪ {⊥}
where ownrd is an auxiliary map tracking ownership of read capabilities over
addresses, and ownwr is an auxiliary map tracking write capabilities. Note that
multiple threads may have read capability to each location, whereas at most one
thread has write capability.

To enable tracking changes in the mapping of read and write capabilities, we
introduce the following auxiliary functions:

OA
rd(x,t) ≡ ownrd := ownrd [x → ownrd(x) ∪ {t}]

OR
rd(x,t) ≡ ownrd := ownrd [x → ownrd(x) \ {t}]

OA
wr(x,t) ≡ ownwr := ownwr [x → t]

OR
wr(x,t) ≡ ownwr := ownwr [x → ⊥]

where OA and OR stand for Acquire and Release, respectively.
We incorporate these auxiliary functions in our model, as shown in Fig. 7.

Note that we also add another auxiliary variable repeat, initially false, that is set
to true the first time the CAS at Line 31 is executed. This is to accommodate the
special case, where rcu exit is spuriously called at Line 26 at the first execution
of the loop.

At Line 23, thread t acquires both read and write capabilities over the address
that it allocates. When performing a FAA call, Line 28, the thread acquires read
capability on the location, to which the shared pointer C points. The next change
in ownership occurs at Line 31, but this change is conditional and only occurs if
the CAS is successful. If the CAS is successful, i.e., r is set to true, the executing
thread releases write capability on n (the new value of C), while acquiring write
capability on s (the old value of C). The former is because the thread publishes
n for shared access and relinquishes its rights to de-allocate the address. The
latter is essential for the thread to be able to free the memory at location s at
a later stage of the algorithm. If the CAS fails, the executing thread returns to
Line 26 after having set repeat to true. Here it relinquishes its read capabilities
of the address pointed to by the local s, before it is set to the new value of the
shared pointer, C.

5.2 Invariants and Proof Outlines

The proof of correctness relies on several invariants, which we describe below.
We first describe the main invariant that we wish to preserve. Subsequently, we
describe the mechanisms that help preserve the main invariant from the point of
view of executing threads. We discuss how the assumption of the weak memory
model affects our proof, and incorporate semantics, which demonstrate how the

314 M. Semenyuk et al.

RCU synchronisation method helps preserve the main invariant. This section
utilises a mix of global invariants and proof outlines to demonstrate the general
strategy of the Isabelle/HOL proof.

Main Correctness Property. The main correctness property is straightfor-
ward to state: We require that if a location is free, then no thread has read
capability on that location. Formally, we have the following, where we assume
isFree(l) = ∀i ∈ dom(A). A(i)
= l:

∀ u. isFree(u) −→ ownrd(u) = {} (2)

Since a thread relinquishes its own read/write capabilities on any location it frees,
a consequence of (2) is that a thread is only ever able to de-allocate a memory
location if no other thread has read or write capability on that location. Note
that (3) below ensures that we also have ownwr (u) = ⊥ as a consequence of (2).

Global Properties on Read and Write Capabilities. We maintain the fol-
lowing properties relating read and write capabilities on memory locations. First,
if a thread has write capability on a location, then it must also have read capa-
bility on that location. Second, given that nt is the value of the pointer n of
thread t, allocated at Line 23 in Fig. 3, and that t holds the write capability on
nt, t must also be the only thread with read capability on the location.

∀ u, t. ownwr (u) = t −→ t ∈ ownrd(u) (3)
∀ t. ownwr (nt) = t −→ ownrd(nt) = {t} (4)

The key difference between invariant assertions (3) and (4) is that thread t,
which has performed its pointer allocation on Line 23, is the only thread with
read capabilities over the referenced address. Here, the read ownership mapping
of location nt should consist only of the allocating thread t.

Global Weak Memory Properties. From a weak-memory perspective, as
discussed in Sect. 2.3, the main property we must guarantee is that a thread
that can free a location, say u, must see that any thread that has read capability
on u has executed rcu enter. This is challenging due to the fact that rcu enter
is a relaxed write, under RC11, without adequate synchronisation, a thread may
see stale updates to rcu. To show that this is not the case (i.e., that the program
is well synchronised), we maintain the following invariant:

∀ u, t, t′. t
= t′ ∧ u ∈ ran(dett) ∧ t′ ∈ ownrd(u) −→ [rcu(t′) =t 1] (5)

which states that for any location in thread t’s detached list, if another thread
t′ has read capability on that location, then t must see that rcu(t′) has been set
to 1. This means that t, when executing its sync operation, will wait for rcu(t′)
to be unset (i.e., for t’ to execute rcu exit).

Thread-local proof obligations. We establish (5) via message passing the
information about updates to rcu through release-acquire synchronisation on

Verifying Read-Copy Update Under RC11 315

the shared counter C. Message passing is proved in two steps and expressed as
thread-local proof obligations as shown in Fig. 7.

First, preCASok(t) (defined below) is used to establish that, prior to exe-
cuting the CAS, the executing thread can be sure that it will see that rcu(t′)
is 1 for any thread t′ that has read capability on C, if the CAS is successful.
This is guaranteed by the consequent �C = u�(rcu(t′) = 1) of preCASok(t). The
execution of a successful CAS by thread t under precondition preCASok(t) estab-
lishes postCASok(t) below, which states that for any other thread t′ that has read

Fig. 7. Proof outline for the RCU algorithm for thread t with highlighted assertions
denoting the changes from the previous statement and X ++ x denoting a list X
appended with the element x.

316 M. Semenyuk et al.

capability on the newly freed location st, thread t has a definite observation that
rcu(t′) is 1.

preCASok(t) = ∀ u, t′. t
= t′ ∧ Cu
C ∧ t′ ∈ ownrd(u) −→ �C = u�(rcu(t′) = 1)

postCASok(t) = ∀ t′. t
= t′ ∧ t′ ∈ ownrd(st) −→ [rcu(t′) =t 1]

Note that postCASok(t) is used later in the precondition of 16 in Fig. 8 to establish
(5), i.e., when the location st is inserted into the t’s detached list.

Fig. 8. Proof outline the reclaim method for thread t. The proof of sync(), which
is non-atomic, is straightforward, following from the discussion in Overview 5.2, and
hence elided

Along with some minor book-keeping assertions, the final thread-local pred-
icates we require are the following:

Rt(LocSeq) = ∀ x ∈ ran(LocSeq). t ∈ ownrd(x)
Wt(LocSeq) = ∀ x ∈ ran(LocSeq). ownwr (x) = t

where Rt(LocSeq) holds iff t has read capability on all the locations in the set
of locations LocSeq . Similarly, Wt(LocSeq) for write capabilities.
Overview. Having introduced all the necessary invariants, we recap the main
steps of the proof. We observe that to ensure condition (2), we require the pre-
condition of Line 20 shown in Fig. 8. This follows specifically from the assertion
(∀u. u ∈ ran(dett) −→ ownrd(u) = {t}), which is in turn guaranteed after
completion of sync, via (5). The latter is preserved after execution of Line 16
in Fig. 8, following from the assumption of postCASok(t). Finally, postCASok(t)
is established from a successful execution of CAS, Line 31, in Fig. 7 using the
preCASok(t) statement in its precondition. Note that preCASok(t) holds until the
CAS succeeds, as shown in Fig. 7.

6 Related and Future Work

We build on our previous work [25], specifically with the use of ownership to aid
verification of interference freedom. The notion of ownership is well studied and
work related to ownership is discussed at length in our earlier paper.

Verifying Read-Copy Update Under RC11 317

The closest related work to this paper is that of Tassarotti et al. [27], where
they verify correctness of an implementation of RCU under the release-acquire
memory model, using a specialised separation logic called GPS [30]. Like us,
they use ownership over read and write capabilities to help guarantee absence
of data races. Under their model of ownership, having neither full nor partial
permission to access a location, makes it impossible for a thread to read that
location, while another is augmenting it’s contents. The transfer of these access
rights is also defined very similar to us, and occurs, for example, upon gaining
a reference to a location or during the compare-and-swap operation. However,
unlike our work, their proofs are (a) not mechanised and (b) over a stronger
memory model, where all writes are releasing and all reads are acquiring.

The topic of safe memory management in sequentially consistent models is
discussed at length in works by Dechev et al. [6,7], Herlihy et al. [11] and Hart et
al. [10]. More specifically, they introduce approaches to safely handle and reason
about memory reclamation, while evaluating their results based on performance
of implemented algorithms. The general approach to safe memory management
involves monitoring for competing threads on either the shared locations by
monitoring for competing threads inside critical regions, which encompass the
shared locations in question. The RCU method is of the latter type of approach.
To this end, we believe our ownership based approach could be used to help
verify these algorithms.

Another approach to solving ABA is that of hazard pointers (HP) [21]. HP
is a direct counterpart to the RCU method, offering management of accesses
directly, by observing that competing threads have access to the to-be-reclaimed
addresses. What is interesting, is that during verification of our ownership model,
we rely on the very same mechanism to guarantee interference freedom, alongside
ABA-freedom. It would be interesting to see how our verification approach can
be adapted to verify an algorithm using HPs in the context of RC11.

7 Conclusions

This paper uses a previously discussed notion of ownership [25] to facilitate ver-
ification of a solution to the ABA problem. Moreover, we propose an improve-
ment on the original algorithm in the form of relaxing the memory model and
adding release/acquire annotations. We make use of and extend the operational
semantics for the RC11 weak memory model to help demonstrate correctness
of the augmented algorithm. We show that the proposed RCU solution to the
ABA problem can be implemented in RC11 with minimal changes to the source
code. The idea of ownership could be readily extended to help reason about
interference.

We verified the RCU solution to be ABA free under the assumption of a
weak memory model in Isabelle/HOL. This paper uses the notion of ownership
over capabilities to make the formal and subsequently high-level proofs easy to
understand. It was natural to implement the operational semantics, and they
helped to further preserve the concise nature of our proof.

318 M. Semenyuk et al.

References

1. Batty, M.J.: The C11 and C++11 concurrency model. Ph.D. thesis, University
of Cambridge, UK (2015). https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.
708458

2. Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based owicki-gries
reasoning for persistent x86-tso. In: Sergey, I. (ed.) ESOP. LNCS, vol. 13240, pp.
234–261. Springer (2022). https://doi.org/10.1007/978-3-030-99336-8 9

3. Dalvandi, S., Doherty, S., Dongol, B., Wehrheim, H.: Owicki-Gries reasoning for
C11 RAR. In: Hirschfeld, R., Pape, T. (eds.) ECOOP. LIPIcs, vol. 166, pp. 11:1–
11:26. Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.11

4. Dalvandi, S., Dongol, B.: Implementing and verifying release-acquire transactional
memory in C11. Proc. ACM Program. Lang. 6(OOPSLA2), 1817–1844 (2022).
https://doi.org/10.1145/3563352

5. Dalvandi, S., Dongol, B., Doherty, S., Wehrheim, H.: Integrating Owicki-Gries for
C11-style memory models into Isabelle/HOL. J. Autom. Reason. 66(1), 141–171
(2022). https://doi.org/10.1007/s10817-021-09610-2

6. Dechev, D.: The ABA problem in multicore data structures with collaborating
operations. In: CollaborateCom, pp. 158–167 (2011). https://doi.org/10.4108/icst.
collaboratecom.2011.247161

7. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Understanding and effectively pre-
venting the ABA problem in descriptor-based lock-free designs. In: ISORC, pp.
185–192 (2010). https://doi.org/10.1109/ISORC.2010.10

8. Fraser, K.: Practical lock-freedom. University of Cambridge, Computer Laboratory,
Tech. rep. (2004)

9. Gotsman, A., Rinetzky, N., Yang, H.: Verifying concurrent memory reclamation
algorithms with grace. In: Felleisen, M., Gardner, P. (eds.) ESOP. LNCS, vol. 7792,
pp. 249–269. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6 15

10. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of memory
reclamation for lockless synchronization. J. Parallel Distributed Comput. 67(12),
1270–1285 (2007). https://doi.org/10.1016/j.jpdc.2007.04.010

11. Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Nonblocking memory manage-
ment support for dynamic-sized data structures. ACM Trans. Comput. Syst. 23(2),
146–196 (2005). https://doi.org/10.1145/1062247.1062249

12. Herlihy, M., Shavit, N., Luchangco, V., Spear, M.: The art of multiprocessor pro-
gramming. Newnes (2020)

13. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) POPL, pp.
175–189. ACM (2017). https://doi.org/10.1145/3009837.3009850

14. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency.
ACM SIGPLAN Notices 51(1), 649–662 (2016)

15. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential consis-
tency in C/C++11. In: Cohen, A., Vechev, M.T. (eds.) PLDI, pp. 618–632. ACM
(2017). https://doi.org/10.1145/3062341.3062352

16. Lowe, G.: Analysing lock-free linearizable datatypes using CSP. In: Gibson-
Robinson, T., Hopcroft, P.J., Lazic, R. (eds.) Concurrency, Security, and Puzzles
- Essays Dedicated to Andrew William Roscoe on the Occasion of His 60th Birth-
day. LNCS, vol. 10160, pp. 162–184. Springer (2017). https://doi.org/10.1007/978-
3-319-51046-0 9

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708458
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708458
https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.1145/3563352
https://doi.org/10.1007/s10817-021-09610-2
https://doi.org/10.4108/icst.collaboratecom.2011.247161
https://doi.org/10.4108/icst.collaboratecom.2011.247161
https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9

Verifying Read-Copy Update Under RC11 319

17. McKenney, P.E.: Exploiting deferred destruction: an analysis of read-copy-update
techniques in operating system kernels. Oregon Health & Science University (2004)

18. Memarian, K., et al.: Exploring C semantics and pointer provenance. Proc. ACM
Program. Lang. 3(POPL), 67:1–67:32 (2019). https://doi.org/10.1145/3290380

19. Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In: Ricciardi, A. (ed.) PODC, pp. 21–30. ACM (2002).
https://doi.org/10.1145/571825.571829

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Burns, J.E., Moses, Y. (eds.) Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, Philadelphia, Pennsylvania, USA, 23–26 May 1996, pp. 267–275. ACM (1996).
https://doi.org/10.1145/248052.248106, https://doi.org/10.1145/248052.248106

21. Michael, M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004). https://doi.org/10.
1109/TPDS.2004.8

22. Parkinson, M.J., Bornat, R., O’Hearn, P.W.: Modular verification of a non-blocking
stack. In: Hofmann, M., Felleisen, M. (eds.) POPL, pp. 297–302. ACM (2007).
https://doi.org/10.1145/1190216.1190261

23. Paviotti, M., Cooksey, S., Paradis, A., Wright, D., Owens, S., Batty, M.: Modular
relaxed dependencies in weak memory concurrency. In: Müller, P. (ed.) ESOP.
LNCS, vol. 12075, pp. 599–625. Springer (2020). https://doi.org/10.1007/978-3-
030-44914-8 22

24. Semenyuk, M., Dongol, B.: Isabelle/HOL files for Verifying Read-Copy Update
under RC11 (2022). https://doi.org/10.5281/zenodo.8099415

25. Semenyuk, M., Dongol, B.: Ownership-based Owicki-Gries reasoning. In: Proceed-
ings of the 38th ACM/SIGAPP Symposium on Applied Computing, pp. 1685–1694
(2023)

26. Svendsen, K., Pichon-Pharabod, J., Doko, M., Lahav, O., Vafeiadis, V.: A separa-
tion logic for a promising semantics. In: Ahmed, A. (ed.) ESOP. LNCS, vol. 10801,
pp. 357–384. Springer (2018). https://doi.org/10.1007/978-3-319-89884-1 13

27. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for
weak memory. SIGPLAN Not. 50(6), 110–120 (2015). https://doi.org/10.1145/
2813885.2737992

28. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with
hazard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC. LNCS, vol. 6916,
pp. 239–255. Springer (2011). https://doi.org/10.1007/978-3-642-23283-1 16

29. Treiber, R.K.: Systems programming: Coping with parallelism. Thomas J. Watson
Research, International Business Machines Incorporated (1986)

30. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory with ghosts,
protocols, and separation. In: Black, A.P., Millstein, T.D. (eds.) OOPSLA, pp.
691–707. ACM (2014). https://doi.org/10.1145/2660193.2660243

31. Wright, D., Batty, M., Dongol, B.: Owicki-Gries reasoning for C11 programs with
relaxed dependencies. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) FM.
LNCS, vol. 13047, pp. 237–254. Springer (2021). https://doi.org/10.1007/978-3-
030-90870-6 13

32. Wright, D., Dalvandi, S., Batty, M., Dongol, B.: Mechanised operational reasoning
for C11 programs with relaxed dependencies. Formal Aspects Comput. 35(2), 10:1–
10:27 (2023). https://doi.org/10.1145/3580285

33. Wright, D., Dalvandi, S., Batty, M., Dongol, B.: Mechanised operational reasoning
for C11 programs with relaxed dependencies. Form. Asp. Comput. (2023). https://
doi.org/10.1145/3580285, just Accepted

https://doi.org/10.1145/3290380
https://doi.org/10.1145/571825.571829
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/248052.248106
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.5281/zenodo.8099415
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2813885.2737992
https://doi.org/10.1145/2813885.2737992
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1007/978-3-030-90870-6_13
https://doi.org/10.1007/978-3-030-90870-6_13
https://doi.org/10.1145/3580285
https://doi.org/10.1145/3580285
https://doi.org/10.1145/3580285

QNNRepair: Quantized Neural Network
Repair

Xidan Song1 , Youcheng Sun1(B) , Mustafa A. Mustafa1,2(B) ,
and Lucas C. Cordeiro1,3(B)

1 Department of Computer Science, The University of Manchester, Manchester, UK
{xidan.song,youcheng.sun,mustafa.mustafa,lucas.cordeiro}@manchester.ac.uk

2 COSIC, KU Leuven, Leuven, Belgium
3 Federal University of Amazonas, Manaus, Brazil

Abstract. We present QNNRepair, the first method in the literature
for repairing quantized neural networks (QNNs). QNNRepair aims to
improve the accuracy of a neural network model after quantization. It
accepts the full-precision and weight-quantized neural networks, together
with a repair dataset of passing and failing tests. At first, QNNRe-
pair applies a software fault localization method to identify the neu-
rons that cause performance degradation during neural network quan-
tization. Then, it formulates the repair problem into a MILP, solving
neuron weight parameters, which corrects the QNN’s performance on
failing tests while not compromising its performance on passing tests.
We evaluate QNNRepair with widely used neural network architectures
such as MobileNetV2, ResNet, and VGGNet on popular datasets, includ-
ing high-resolution images. We also compare QNNRepair with the state-
of-the-art data-free quantization method SQuant [22]. According to the
experiment results, we conclude that QNNRepair is effective in improv-
ing the quantized model’s performance in most cases. Its repaired models
have 24% higher accuracy than SQuant’s in the independent validation
set, especially for the ImageNet dataset.

Keywords: neural network repair · quantization · fault localization ·
constraints solving

1 Introduction

Nowadays, neural networks are often used in safety-critical applications, such
as autonomous driving, medical diagnosis, and aerospace systems [61]. In such
applications, often quantized (instead of full precision) neural network models are
deployed due to the limited computational and memory resources of embedded
devices [23]. Since the consequences of a malfunction/error in such applications
can be catastrophic, it is crucial to ensure that the network behaves correctly
and reliably [47].

Quantized neural networks [23] use low-precision data types, such as 8-bit
integers, to represent the weights and activations of the network. While this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 320–339, 2023.
https://doi.org/10.1007/978-3-031-47115-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_18&domain=pdf
http://orcid.org/0000-0003-2612-6296
http://orcid.org/0000-0002-1893-6259
http://orcid.org/0000-0002-8772-8023
http://orcid.org/0000-0002-6235-4272
https://doi.org/10.1007/978-3-031-47115-5_18

QNNRepair: Quantized Neural Network Repair 321

reduces the memory and computation requirements of the network, it can also
lead to a loss of accuracy and the introduction of errors in the network’s out-
put. Therefore, it is important to verify that the quantization process has not
introduced any significant errors that could affect the safety or reliability of the
network.

To limit the inaccuracy in a specific range, various neural network model ver-
ification methods [14,25,30,31,56] have been proposed. Neural network verifica-
tion [26,44,48] aims to provide formal guarantees about the behavior of a neural
network, ensuring that it meets specific safety and performance requirements
under all possible input conditions. They set constraints and properties of the
network input and output to check whether the model satisfies the safety prop-
erties. However, neural network verification can be computationally expensive,
especially for large, deep networks with millions of parameters. This can make
it challenging to scale the verification process to more complex models. While
the majority of the neural network verification work is on full precision models,
many verification techniques focus on quantized models as well [4,19,25,60].

Other researchers improve the performance and robustness of the trained
neural network models by repair [6,20,50,54,59]. These methods can be divided
into three categories: retraining/refining, direct weight modification, and attach-
ing repairing units. There are also quantized aware training (QAT) tech-
niques [8,21,34], a method to train neural networks with lower precision weights
and activations, typically INT8 format. QAT emulates the effects of quantization
during the training process. QAT requires additional steps, such as quantization-
aware back-propagation and quantization-aware weight initialization, making the
training process more complex and time-consuming. Quantized-aware training
methods require datasets for retraining, which consume a lot of time and stor-
age. However, for Data-free quantization like SQuant [22], which does not require
datasets, the accuracy after quantization is relatively low.

In QNNRepair, we use the well-established software fault localization meth-
ods to identify suspicious neurons in a quantized model corresponding to the per-
formance degradation after quantization. We then correct these most suspicious
neurons’ behavior by MILP, in which the constraints are encoded by observing
the difference between the quantized model and the original model when inputs
are the same. The main contributions of this paper are three-fold:

– We propose, implement and evaluate QNNRepair – a new method for repair-
ing QNNs. It converts quantized neural network repair into a MILP (Mixed
Integer Linear Programming) problem. QNNRepair features direct weight
modification and does not require the training dataset.

– We compare QNNRepair with a state-of-the-art QNN repair method –
Squant [22], and demonstrate that QNNRepair can achieve higher accu-
racy than Squant after repair. We also evaluate QNNRepair on multiple
widely used neural network architectures to demonstrate its effectiveness.

– We have made QNNRepair and its benchmark publicly available at:
https://github.com/HymnOfLight/QNNRepair

https://github.com/HymnOfLight/QNNRepair

322 X. Song et al.

2 Related Work

2.1 Neural Network Verification

The first applicable methods supporting the non-linear activation function for
neural network verification can be traced back to 2017, R Ehlers et al. [14]
proposed the first practicable neural network verification method based on SAT
solver (solve the Boolean satisfiability problem) [13]. They present an approach
to verify neural networks with piece-wise linear activation functions. Guy Katz
et al. [31] presented Marabou, an SMT(Satisfiability modulo theories) [11]-based
tool that can answer queries about a network’s properties by transforming these
queries into constraint satisfaction problems. However, implementing SMT-based
neural network verification tools is limited due to the search space and the scale of
a large neural network model, which usually contains millions of parameters [18].
The SMT-based neural network verification has also been proved as an NP-
complete problem [30]. Shiqi Wang et al. develop β-CROWN [56], a new bound
propagation-based method that can fully encode neuron splits via optimizable
parameters β constructed from either primal or dual space. Their algorithm
is empowered by the α,β-CROWN (alpha-beta-CROWN) verifier, the winning
tool in VNN-COMP 2021 [5]. There are also some quantized neural network
verification methods. TA Henzinger et al. [25] proposed a scalable quantized
neural network verification method based on abstract interpretation. However,
due to the search-space explosion, it has been proved that SMT-based quantized
neural network verification is a PSPACE-hard problem [25].

2.2 Neural Network Repair

Many researchers have proposed their full-precision neural network repairing
techniques. These can be divided into three categories: Retraining, direct weight
modification, and attaching repairing units.

In the first category of repair methods, the idea is to retrain or fine-tune the
model for the corrected output with the identified misclassified input. DeepRe-
pair [59] implements transfer-based data augmentation to enlarge the training
dataset before fine-tuning the models. The second category uses solvers to get
the corrected weights and modify the weight in the trained model directly. These
types of methods, including [20] and [54], used SMT solvers for solving the weight
modification needed at the output layer for the neural network to meet specific
requirements without any retraining. The third category of methods repairs the
models by introducing more weight parameters or repair units to facilitate more
efficient repair. PRDNN [50] introduces a new DNN architecture that enables
efficient and effective repair, while DeepCorrect [6] corrects the worst distortion-
affected filter activations by appending correction units. AIRepair [49] aims to
integrate multiple existing repair techniques into the same platform. However,
these methods only support the full-precision models and cannot apply to quan-
tized models.

QNNRepair: Quantized Neural Network Repair 323

2.3 Quantized Aware Training

Some researchers use quantized-aware training to improve the performance of
the quantized models. Yuhang Li et al. proposed a post-training quantization
framework by analyzing the second-order error called BRECQ(Block Recon-
struction Quantization) [34]. Ruihao Gong et al. proposed Differentiable Soft
Quantization (DSQ) [21] to bridge the gap between the full-precision and low-bit
networks. It can automatically evolve during training to gradually approximate
the standard quantization. J Choi et al. [8]proposed a novel quantization scheme
PACT(PArameterized Clipping acTivation) for activations during training - that
enables neural networks to work well with ultra-low precision weights and acti-
vations without any significant accuracy degradation. However, these methods
require retraining and the whole dataset, which will consume lots of computing
power and time to improve tiny accuracy in actual practices. In addition, there
is a method called Data-free quantization, which quantizes the neural network
model without any datasets. Cong Guo et al. proposed SQuant [22], which can
quantize networks on inference-only devices with low computation and memory
requirements.

3 Preliminaries

3.1 Statistical Fault Localization

Statistical fault localization techniques (SFL) [37] have been widely used in soft-
ware testing to aid in locating the causes of failures of programs. During the
execution of each test case, data is collected indicating the executed statements.
Additionally, each test case is classified as passed or failed.

This technique uses information about the program’s execution traces and
associated outcomes (pass/fail) to identify suspicious program statements. It
calculates four suspiciousness scores for each statement based on the corre-
lation between its execution and the observed failures. We use the notation
Caf , Cnf , Cas, Cns. The first part of the superscript indicates whether the state-
ment was executed/“activated” (a) or not (n), and the second indicates whether
the test is a passing/successful (s) or failing (f) one. For example, Cas is the
number of successful tests that execute a statement C. Statements with higher
suspiciousness scores are more likely to contain faults. There are many possi-
ble metrics that have been proposed in the literature. We use Tarantula [29],
Ochiai [2], DStar [57], Jaccard [3], Ample [9], Euclid [17] and Wong3 [58], which
are widely used and accepted in the application of Statistical fault localization, in
our ranking procedure. We discuss the definition and application in our method
of these metrics in Sect. 4.1. In addition, SFL has been also used for analyzing
and explaining neural networks [16,51].

3.2 Neural Network and Quantization

A neural network consists of an input layer, an output layer, and one or more
intermediate layers called hidden layers. Each layer is a collection of nodes, called

324 X. Song et al.

neurons. Each neuron is connected to other neurons by one or more directed
edges [15].

Let f : I → O be the neural network N with m layers. In this paper, we focus
on a neural network for image classification. For a given input x ∈ I, f(x) ∈ O
calculates the output of the DNN, which is the classification label of the input
image. Specifically, we have

f(x) = fN (. . . f2 (f1 (x;W1, b1) ;W2, b2) . . . ;WN , bN) (1)

In this equation, Wi and bi for i = 1, 2, . . . , N represent the weights and bias
of the model, which are trainable parameters. fi (zi−1;Wi−1, bi−1) is the layer
function that maps the output of layer (i − 1), i.e., zi−1, to the input layer i.

Quantization. As one of the general neural network model optimization methods,
model quantization can reduce the size and model inference time of DNN models
and their application to most models and different hardware devices. By reducing
the number of bits per weight and activation, the model’s storage requirements
and computational complexity can be significantly optimized. Jacob et al. [28]
report benchmark results on popular ARM CPUs for state-of-the-art MobileNet
architectures, as well as other tasks, showing significant improvements in the
latency-vs-accuracy tradeoffs. In the following formula, r is the true floating
point value, q is the quantized fixed point value, Z is the quantized fixed point
value corresponding to the 0 floating point value, and S is the smallest scale
that can be represented after quantization of the fixed point. The formula for
quantization from floating point to fixed point is as follows:

r = S(q − Z)
q = round

(
r
S + Z

) (2)

Currently, Google’s TensorFlow Lite [10] and NVIDIA’s TensorRT [55] sup-
port the INT8 engine framework.

3.3 Solvers for Mixed Integer Linear Optimization

MILP (Mixed Integer Linear Programming) is an extension of linear program-
ming in which some or all of the decision variables are restricted to integers. In
this type of problem, the objective function and all constraints are linear, but
due to the presence of integer constraints, the solution space becomes discrete,
making the problem more complex and challenging.

All state-of-the-art solvers for MILP employ one of many existing variants
of the well-known branch-and-bound algorithm of [33]. This class of algorithm
searches a dynamically constructed tree (known as the search tree).

The state-of-the-art MILP solvers include Gurobi [41], which is a commercial
solver widely used for linear programming, integer programming, and mixed inte-
ger linear programming. According to B. Meindl and M. Templ’s [36] Analysis
of commercial and free and open source solvers for linear optimization prob-
lems, Gurobi is the fastest solver and can solve the largest number of problems.

QNNRepair: Quantized Neural Network Repair 325

Another reason for choosing Gurobi was primarily in the area of neural network
robustness, and other approaches, such as alpha-beta-crown in the area of neural
network verification, use Gurobi as their backend. Hence we use Gurobi as the
backend to solve the neural network repairing problem.

Other MILP solver include: CPLEX [39], GLPK (GNU Linear Programming
Kit) [35]. Python external library Scipy [7] also provides some functions for
MILP.

4 QNNRepair Methodology

The overall workflow of QNNRepair is illustrated in Fig. 1. It takes two neural
networks, a floating-point model and its quantized version for repair, as inputs.
There is also a repair dataset of successful (passing) and failing tests, signifying
whether the two models would produce the same classification outcome when
given the same test input.

Fig. 1. The QNNRepair Architecture.

The passing/failing tests are used by QNNRepair to evaluate each neuron’s
importance and localize these neurons to repair for improving the quantized

326 X. Song et al.

model’s performance (Sect. 4.1). The test cases can be generated by by dataset
augmentation [45] or various neural network testing methods [40,42,52,53].
In QNNRepair, the neural network repair problem is encoded into a Mixed
Integer Linear Programming problem for solving the corrected neuron weights
(Sect. 4.2). It then replaces the weights with corrected weights, which QNNRe-
pair evaluates the performance of the quantized model by testing its classifica-
tion accuracy. If the quantized model’s performance is good enough w.r.t. the
floating point one after repair, the model is ready for deployment. Otherwise,
QNNRepair continues by selecting other parameters to repair. More detailed
information is presented in Algorithm 1 (Sect. 4.3).

4.1 Ranking the Importance of the Neurons

QNNRepair starts with evaluating the importance of the neurons in the neural
network for causing the output difference between the quantized model and the
floating point one. When conducting an inference procedure on an image, the
intermediate layer in the model has a series of outputs as the inputs for the next
layer. The outputs go through activation functions, and we assume it is a ReLU
function. For the output, if it is positive, we place it as one. If not, we place it
as zero, naming it the activation output. Let fi and qi represent the activation
output of a single neuron in full-precision and quantized models separately. If
there is a testing image that makes (fi, qi) not equal, we consider the neuron
as “activated", and we set vmn = 1, otherwise vmn = 0. Then we define the
activation function matrix to assemble the activation status of all neurons for
the floating-point model:⎛

⎜
⎝

f11 · · · f1n
...

. . .
...

fm1 · · · fmn

⎞

⎟
⎠ = fi and qi for the quantized model.

We define the activation differential matrix to evaluate the activation differ-
ence between the floating point and the quantized model. Given an input image
i, we calculate diffi = fi − qi between the two models. We form a large matrix
of these diff i regarding the image i. The element in this matrix should be 0 or
1, representing whether the floating and quantized neural networks’ activation
status is the same.

We borrow the concepts from traditional software engineering, just replacing
the statements in traditional software with neurons in neural network models.
We define the passing tests as the images in the repair set that the floating-
point and quantized model have the same classification output, and failing tests
as their classification results are different. For a set of repair images, we define
< Caf

n , Cnf
n , Cas

n , Cns
n > as following:

– Caf
n is the number of “activated" neurons for failing tests.

– Cnf
n is the number of “not activated" neurons for failing tests.

– Cas
n is the number of “activated" neurons for passing tests.

– Cns
n is the number of “not activated" neurons for passing tests.

QNNRepair: Quantized Neural Network Repair 327

We borrow the concepts from traditional software fault localization: Taran-
tula [29], Ochiai [2], DStar [57], Jaccard [3], Ample [9], Euclid [17] and Wong3 [58]
and defined the indicators of neuronal suspicion in Table 1. Note that in DStar,
* represents the n square of Caf

n .

Table 1. Importance (i.e., fault localization) metrics used in experiments

Tarantula:
Caf

n /(Caf
n +Cnf

n)
Caf

n /(Caf
n +Cnf

n)+Cas
n /(Cas

n +Cns
n)

Euclid:
√

Caf
n + Cns

n

Ochiai: Caf
n√

(Caf
n +Cas

n)(Caf
n +Cnf

n)
DStar: Caf∗

n

Cas
n +Cnf

n

Ample:
∣∣∣ Caf

n

Caf
n +Cnf

n
− Cas

n
Cas

n +Cns
n

∣∣∣ Jaccard: Caf
n

C
af
n +C

nf
n +Cas

n

Wong3: Caf
n − h h =

⎧
⎪⎨

⎪⎩

Cas
n if Cas

n ≤ 2

2 + 0.1 (Cas
n − 2) if 2 < Cas

n ≤ 10

2.8 + 0.01 (Cas
n − 10) if Cas

n > 10

We then rank the quantitative metrics of these neurons from largest to small-
est based on certain weights, with higher metrics indicating more suspicious
neurons and the ones we needed to target for repair.

4.2 Constraints-Solving Based Repairing

After the neuron importance evaluation, for each layer, we obtain a vector of
neuron importance. We rank this importance vector. The neuron with the highest
importance is our target for repair as it could have the greatest impact on the
corrected error outcome.

The optimization problem for a single neuron can be described as follows:

Minimize: M

Subject to:
M ≥ 0
δi ∈ [−M,M] ∀i ∈ {1, 2, . . . , n}

If floating model gives the result 1 and quantized model gives 0:

∀xi in TestSet X :
m∑

i=1

wixi < 0 and
m∑

i=1

(wi + δi)xi > 0

If floating model gives the result 0 and quantized model gives 1:

∀xi in TestSet X :
m∑

i=1

wixi > 0 and
m∑

i=1

(wi + δi)xi < 0

(3)

328 X. Song et al.

In the formula, m represents the number of neurons connected to the pre-
vious layer of the selected neuron, and we number them from 1 to m. We add
incremental δ to the weights to indicate the weights that need to be modified all
the way to m. M is used to make δ1...δi are sufficiently small. The value δ1...δi
are encoded as the non-deterministic variables, and our task is to use Gurobi to
solve these non-deterministic based on the given constraints.

We assume that in the full-precision neural network, this neuron’s activation
function gives the result 1, and the quantized gives 0. The corrected neuron in
the quantized model result needs to be greater than 0 for the output of the
activation function to be 1. If in the full-precision neural network, this neuron’s
activation function gives the result 0, and the quantized gives 1. The corrected
neuron in the quantized model result needs to be smaller than 0 for the output of
the activation function to be 0. In this case, we make the distance of the repaired
quantized neural network as close as possible to that of the original quantized
neural network.

The inputs to our algorithm are a quantized neural network Q that needs to
be repaired, a set of data sets X for testing, and the full-precision neuron network
model F to be repaired. We use Gurobi [41] as the constraint solver to solve the
constraint and then replace the original weights with the result obtained as the
new weights.

4.3 QNNRepair Algorithm

Our repair method is formulated in Algorithm 1. The input to our algorithm
is the full-precision model F , the quantized model Q. The repair set X, the
validation set V , and the number of neurons that need to be repaired N (Line
1). Firstly, we initialize arrays to store the activation states of the floating and
quantized model, the values of the neuron importance, and four arrays Cas[],
Caf [], Cns[] and Cnf [] mentioned in Sect. 4.1 (Line 1). For these six arrays, we
set all elements to 0.

Next, in lines 3–4, for each input in the test set x ∈ Xn, we perform the
inference process once obtain the neurons’ activation states in the corresponding
model layers and store them in the activation states of the floating and quantized
model. In line 5, if x[i] is a failing test, then we add the difference of activation
status between the float model and quantized model to Cas[i], and vice versa.
In line 11 and 12, we calculate Cns[] and Cnf [] according to the definition in
Sect. 4.1. We calculate the importance (here we use DStar as an example) for
each neuron regarding seven importance metrics and sort them in descending
order then store them in set In[] in line 14.

Then, we pick the neuron in In[], according to the neuron’s weights and
the corresponding inputs from the previous layer, we create and solve the LP
problem we discussed in Sect. 4.2, get the correction of each neuron, and update
their weights. When it arrives at the maximum number of neurons to repair, the

QNNRepair: Quantized Neural Network Repair 329

loop breaks and we have corrected all the neurons. These are implemented at
lines 17-24 in Algorithm 1.
Algorithm 1: Repair algorithm

Input: Floating-point model F , Quantized model Q, Repair set X, Validation
set V , Number of neurons to be repaired N

Output: Repaired model Q′, Repaired model’s accuracy Acc
1 Initialize Fa[][], Qa[][], In[], Cas[], Caf [], Cns[], Cnf []
2 foreach X do
3 Fa[][i] = getActStatus(F, xi)
4 Qa[][i] = getActStatus(Q,xi)
5 if x[i] is a failing test then
6 Caf [i] = Caf [i] + |Fa[][i] − Qa[][i]|
7 else
8 Cas[i] = Cas[i] + |Fa[][i] − Qa[][i]|
9 end

10 end
11 Cnf [] = Cnf [] − Caf []
12 Cns[] = Cns[] − Cas[]
13 In[] = DStar(Cas

n [], Cas
n [], Cas

n [], Cas
n [])

14 In[] = sort(In[]) // In descending order
15 Initialize weight of neurons w[][] and the increment δ[][]
16 foreach neuron[i] ∈ In[] do
17 foreach edge[j][i] ∈ neuron[i] do
18 w[j][i] = getWeight(edge[j][i])
19 end
20 δ[][i] = solve(X,w[][i]) // Solve LP problem 3
21 foreach edge[j][i] ∈ neuron[i] do
22 edge[j][i] = setWeight(w[j][i] + δ[j][i])
23 Q′ = update(Q, edge[j][i])
24 end
25 if i >= N then
26 break
27 end
28 end
29 Acc = calculateAcc(Q′, V)
30 return Q′

Finally, we evaluate the classification accuracy of the corrected quantized
model. If it satisfies our requirements, then the model is repaired. Otherwise,
try other combinations of parameters like important metrics or the maximum
number of neurons needed to repair and repeat the LP solving and correction
process. The output for this algorithm is the repaired model with updated weight.

5 Experiment

5.1 Experimental Setup

We conduct experiments on a machine with Ubuntu 18.04.6 LTS OS Intel(R)
Xeon(R) Gold 5217 CPU @ 3.00GHz and two Nvidia Quadro RTX 6000 GPUs.
The experiments are run with TensorFlow2 + nVidia CUDA platform. We use
the Gurobi [41] as the linear program solver and enable multi-thread solving (up
to 16 cores). We apply QNNRepair to repair a benchmark of five quantized
neural network models, including MobileNetV2 [43] on ImageNet datasets [12],
and ResNet-18 [24], VGGNet [46] and two simple convolutional models trained
on CIFAR-10 dataset [32]. The details of these models are given in Table 2.

330 X. Song et al.

Table 2. The baseline models. Parameters include the trainable and non-trainable
parameters in the models; the unit is million (M). The two accuracy values are for the
original floating point model and its quantized version, respectively.

Accuracy
Model Dataset #Layers #Params floating point quantized

Conv3 CIFAR-10 6 1.0M 66.48% 66.20%
Conv5 CIFAR-10 12 2.6M 72.90% 72.64%
VGGNet CIFAR-10 45 9.0M 78.67% 78.57%
ResNet-18 CIFAR-10 69 11.2M 79.32% 79.16%
MobileNetV2 ImageNet 156 3.5M 71.80% 65.86%

We obtained the full-precision MobileNetV2 directly from the Keras library,
whereas we trained the VGGNet and ResNet-18 models on the CIFAR-10
dataset. We also defined and trained two smaller convolutional neural networks
on CIFAR-10 for comparison: Conv3, which contains three convolutional layers,
and Conv5, which contains five convolutional layers. Both models have two dense
layers at the end. The quantized models are generated by using TensorFlow Lite
(TFlite) [1] from the floating point models. In TFLite, we chose dynamic range
quantization, and the weights are quantized as 8-bit integers. The quantized con-
volution operation is optimized for performance, and the calculations are done
in the fixed-point arithmetic domain to avoid the overhead of de-quantizing and
re-quantizing tensors.

For repairs of the quantized model’s performance, we use a subset of Ima-
geNet called ImageNet-mini [27], which contains 38,668 images in 1,000 classes.
The dataset is divided into the repair set and the validation set. The repair
set contains 34,745 images, and the validation set contains 3,923 images. The
CIFAR-10 dataset contains 60,000 images in 10 classes in total. 50,000 of them
are training image, and 10,000 of them are test set. We use 1,000 images as
the repair set. We use the repair set to identify suspicious neurons, generate LP
constraints, apply corrections to the identified neurons, and use the validation
set to evaluate the accuracy of the models. We repeat the same experiment ten
times for random neuron selection and get the average to eliminate randomness
in repair methods.

5.2 Repair Results on Baselines

In this part, we apply QNNRepair to these baseline quantized models, except
for MobilenetV2, in Table 2. In our experiments, MobileNetV2 is trained on
ImageNet while other models are trained on CIFAR-10, and it contains more
layers. The results for MobileNetV2 are reported in Sect. 5.5. For each model,
we perform a layer-by-layer repair of its last dense layers. We name these dense
layers dense-3 (the third last layer), dense-2 (the second last layer), and dense-1
(the output layer).

QNNRepair: Quantized Neural Network Repair 331

Table 3. QNNRepair results on CIFAR-10 models. The best repair outcome for each
model, w.r.t. the dense layer in that row, is in bold. We further highlight the best
result in blue if the repair result is even better than the floating point model and in
red if the repair result is worse than the original quantized model. Random means that
we randomly select neurons at the corresponding dense layer for the repair, whereas
Fault Localization refers to the selection of neurons based on important metrics in
QNNRepair. In All cases, all neurons in that layer are used for repair. ’n/a’ happens
when the number of neurons in the repair is less than 100, and ’-’ is for repairing the
last dense layer of 10 neurons, and the result is the same as the All case.

Random Fault Localization -
#Neurons repaired 1 5 10 100 1 5 10 100 All

Conv3_dense-2 63.43% 64.74% 38.90% n/a 66.26% 66.36% 62.35% n/a 57.00%
Conv3_dense-1 65.23% 66.31% - n/a 66.10% 66.39% - n/a 66.46%
Conv5_dense-2 72.49% 72.55% 72.52% 72.52% 72.56% 72.56% 72.56% 72.56% 72.54%
Conv5_dense-1 72.51% 72.52% – n/a 72.58% 72.56% – n/a 72.56%

VGGNet_dense-3 78.13% 78.44% 78.20% 78.38% 78.83% 78.82% 78.78% 78.66% 78.60%

VGGNet_dense-2 78.36% 78.59% 78.44% 78.22% 78.55% 78.83% 78.83% 78.83% 78.83%

VGGNet_dense-1 78.94% 67.75% – n/a 79.29% 69.04% – n/a 74.49%

ResNet_dense_1 78.90% 78.92% – n/a 79.08% 79.20% – n/a 78.17%

The QNNRepair results are reported in Table 3. We ranked the neurons
using important metrics and chose the best results among the seven metrics.
We also run randomly picked repairing as a comparison. We have chosen Top-
1, Top-5, Top-10, Top-100, and all neurons as the repairing targets. For most
models, the repair improves the accuracy of the quantized network, and in some
cases, even higher than the accuracy of the floating-point model.

The dense-2 layer only contains 64 neurons in the Conv3 model. Hence we
selected 30 neurons as the repair targets. In the dense-1 layer of Conv3, the effect
of repairing individual neurons is not ideal, but as the number of repaired neurons
gradually increases, the more correct information the Conv3 quantization model
obtains from the floating-point model, so the accuracy gradually improves until it
reaches 66.46% (which does not exceed the accuracy of the floating-point Conv3
neural network, but it gets very close to it: 66.48%, see Table 2). This is because
all the repair information in the last layer comes from the original floating-
point neural network. Note that because of the simple structure of the Conv3
neural network, the floating-point version of Conv3 itself is inaccurate, and the
quantized and repaired neural network does not exceed the accuracy. In the
dense-2 layer of Conv5, applying importance metrics to repair this layer is slightly
better than random selection, only 0.01% regarding randomly selecting 5 neurons
compared with using fault localization to select Top-5 neurons. Compared to
the quantized model before repair, whose accuracy is 72.64%, the repairing only
gets an accuracy of 72.56%, which does not improve the model’s accuracy. In
the dense-1 layer of Conv5, the best result is using fault localization to pick the
Top-1 neuron and repair at 72.58% accuracy, and this is not better than the
quantized model before repair.

332 X. Song et al.

For VGGNet and ResNet-18 neural networks, the dense-1 layer is a good com-
parison. Both VGGNet and ResNet-18 have relatively complex network struc-
tures, and the accuracy of the original floating-point model is close to 80%. In
the dense-1 layer of ResNet-18, only some of the neurons were repaired with
accuracy close to their original quantized version, but all of them did not exceed
the exact value of the floating-point neural network after the repair. However,
unlike ResNet-18, correcting a single neuron randomly in the dense-1 layer of
VGGNet make it more accurate than the quantized version of VGGNet. Using
the importance metric and correcting a single neuron make the accuracy even
higher than the floating-point version of VGGNet. However, repairing dense-1 of
VGGNet was unsatisfactory, especially when 5 neurons are selected for repair; it
suffered a significant loss of accuracy, even below 70%, which was regained if all
ten neurons in the last layer were repaired. In the dense-2 layer of VGGNet, the
overall accuracy is higher than 78%. When the importance metric is applied, the
accuracy reaches 78.83%, noting that this accuracy is also achieved if all neurons
in this layer are repaired. For the dense-3 layer of VGGNet, repairing 5 or 10
neurons using importance metrics will achieve the highest accuracy at 78.83%,
the same as repairing the dense-2 layer.

Table 4. QNNRepair results on ImageNet model.

Random Fault Localization –
#Neurons repaired 10 100 10 100 All
MobileNetV2_dense-1 70.75% 70.46% 70.77% 70.00% 68.98%

ImageNet. We also conducted repair on the last layer for MobileNetV2 trained on
the ImageNet dataset of high-resolution images. Using Euclid as the importance
metric and picking 10 neurons as the correct targets achieve the best results, at
70.77%, improving the accuracy the quantized model.

5.3 Comparison with Data-Free Quantization

We tested SQuant [22], a fast and accurate data-free quantization framework
for convolutional neural networks, employing the constrained absolute sum of
error (CASE) of weights as the rounding metric. We tested SQuant two quan-
tized models, the same as our approach: MobileNetV2 trained on ImageNet and
ResNet-18 on CIFAR-10. We made some modifications to the original code to
support MobileNetV2, which is not reported in their experiments.

In contrast, to complete data-free quantization, our constraint solver-based
quantization does not require a complete dataset but only some input images
for repair. Despite taking much more time than SQuant because it uses Gurobi
and a constrained solution approach, MobileNetV2 – a complex model trained
on ImageNet – QNNRepair achieves much higher accuracy.

QNNRepair: Quantized Neural Network Repair 333

Table 5. QNNRepair vs SQuant

MobileNetV2 ResNet-18
Accuracy Time Accuracy Time

SQuant [22] 46.09% 1635.37 ms 70.70% 708.16 ms
QNNRepair 70.77% ∼15 h 79.20% ∼9 h

5.4 Repair Efficiency

The constraints-solving part contributes to the major computation cost in
QNNRepair. For other operations, such as importance evaluation, modifica-
tion of weights, model formatting, etc., it takes only a few minutes to complete.
Thereby, Table 6 measures the runtime cost when using the Gurobi to solve the
values of the new weights for a neuron for our experiments on the VGGNet
model. It is shown in Table 6 that 75% of the solutions were completed within
5min, and less than 9% of the neurons could not be solved, resulting in a total
solution time of 9 h for a layer of 512 neurons.

Table 6. The Gurobi solving time for constraints of each neuron in the dense-2 layer
of the VGGNet model. There are 512 neurons in total.

Duration <=5 mins 5–10 mins 10–30 mins 30 mins-1 h No solution

Percentage 75% 8.98% 5.27% 1.76% 8.98%

5.5 Comparison Between Fault Localization Metrics in QNNRepair

We let the model and the layer stay the same. We use MobileNetV2 and the
last layer as our target. We compare seven representative important metrics
mentioned in Sect. 5.5. In these experiments, we used 1,000, 500, 100, and 10
jpeg images as the repair sets to assess the performance of different importance
assessment methods.

Firstly, we rank the neurons in the last layer using seven different repre-
sentative important metrics, which are Tarantula [29], Ochiai [2], DStar [57],
Jaccard [3], Ample [9], Euclid [17] and Wong3 [58]. As shown in Fig. 2, for the
last fully connected layer of MobileNetV2, the important neurons are mainly
concentrated at the two ends, those neurons with the first and last numbers.
The evaluation metrics results are relatively similar for different neurons.

We selected the 100 neurons (for Conv3, it is 30 neurons) with the highest
importance and could be solved by MILP solvers according to different impor-
tance measures. The deltas are obtained according to Eq. 3, and we apply the
deltas to the quantized model. After that, we use the validation sets from Ima-
geNet, which contains 50,000 jpeg images, to test the MobileNetV2 model. We

334 X. Song et al.

Table 7. The results regarding importance metrics, including 7 fault localization met-
rics and 1 random baseline. The number of images indicates how many inputs are in
the repair set.

Model+Repair Layer #ImagesTarantulaOchiai DStar JaccardAmple Euclid Wong3 Random

MobileNetV2_dense-11000 70.61% 69.76% 69.73% 69.73% 69.72% 70.70%69.73% 69.56%
500 68.99% 69.01% 69.05% 69.05% 68.99% 69.46%69.06% 69.00%
100 69.50% 69.42% 69.46% 69.46% 69.53% 69.98% 69.46% 70.12%
10 70.62% 70.15% 70.12% 70.12% 70.17% 70.73%70.12% 70.18%

VGGNet_dense-3 1000 78.64% 78.64% 78.64% 78.64% 78.65% 78.66%78.66%78.22%
VGGNet_dense-2 1000 78.83% 78.83%78.83%78.83%78.83%78.83%78.83%78.38%
Conv3_dense 1000 59.50% 59.50%59.50%59.50%59.27% 59.27% 59.27% 32.42%

also use the validation sets from CIFAR-10, which contains 10,000 png image
files, to test VGGNet and Conv5 after the repair. As a comparison, we also ran-
domly picked 100 neurons to apply to repair and tested their accuracy. We give
the results of the top 100 important neurons after selection and repair, as shown
in Table 7.

We pick Tarantula and plot the scatter plots based on the importance dis-
tribution of the different neurons. We rank the importance of those neurons and
draw line plots as illustrated in Fig. 2.

The figures give scatter plots of neuron importance and ranked line plots for
the last dense layer of MobileNetV2. The horizontal coordinates of these plots
are the serial numbers of the neurons. For the last layer in the MobileNetV2
model, few neurons have the highest importance. More than 300 neurons had
an importance measurement of 0, and another large proportion had an impor-
tance of 0.5 or less. Based on the ranking of the importance of neurons, all the
evaluation metrics except Tarantula and Euclid considered 108, 984, 612, 972
to be the four most important neurons in this layer, and among the 5th-10th
most important neurons, 550, 974, 816, 795 and 702, just in a different order.
This is reflected in the importance distribution graphs as spikes at the ends and
as spikes at the ends of the graphs. Hence Ochiai, Dstar, Jaccard, Ample, and
Wong3 have similar performance regarding the accuracy evaluation, and Euclid
and Tarantula achieve better accuracy on ImageNet validation sets.

Table 7 shows that the Euclid importance assessment method is highly effec-
tive, achieving relatively good results from restoration with 500 images to
restoration with ten images and achieving only weaker accuracy than the Taran-
tula method in a restoration scenario with 1,000 images. A random selection
of neurons can achieve good restoration results, especially when we select 100
images as restoration images, it has a validation accuracy higher than 70%. Also,
in Table 7, our methods work well with the models containing fewer neurons. In
experiments with Conv3_dense, our approach achieves more than 20% higher
accuracy than random selection. When it comes to large models, although it is
not as obvious as smaller models, but still has higher accuracy than random selec-
tion in most cases, even if random selection is better than importance ranking,

QNNRepair: Quantized Neural Network Repair 335

which is only a little bit better (0.14%). Considering the successful and failing
tests used for repair, i.e., the repair images, in our experiments, the repair results
of using 10 repair images were slightly better than using 1,000 repair images. For
the Euclid method that produces the best repair results, the accuracy of using
10 images is 0.03% higher than using 1,000 repairing images.

Fig. 2. Importance distribution regarding certain importance metrics on MobileNetV2.

For the VGGNet model, for the same reason as MobileNetV2 regarding the
neuron importance ranking, the Tarantula, Ochiai, DStar, Jaccard, Euclid, and
Wong3 give the same results when selecting 100 top important neurons to repair.
As a comparison, the accuracy of random selection in dense-2 layer and dense-3
has a slight drop, at 78.38% and 78.22%. For Conv3 model, the seven importance
metrics give the same results, and randomly selected 30 neurons suffered a great
accuracy loss, at 32.42%. But compared to the results in Table 3, repairing 30 top
neurons also suffered accuracy drops. For the dense layer of conv3, the best repair
is still to select one neuron for repair based on Tarantula sorting at 66.10%, and
if random selection is taken into account, then selecting five neurons for repair
would give the best result at 64.74%.

We also conducted a side-by-side comparison of the number of images
required for the repair on MobileNetV2. It shows that the best results are
obtained using 1,000 images for repair and 10 images for the repair, but given
the amount of time required to generate constraints for the repair using 1,000
images and to solve the constraints using Gurobi, we recommend using a smaller
set of repair images for the model.

Euclid demonstrates that it has the highest accuracy most of the time, and
repairing with importance evaluation is more accurate than repairing randomly
selected neurons.

5.6 Limitations

According to Nemhauser and Wolsey [38], the MILP problem is NP-Hard. There
is no known polynomial time algorithm that can solve all MILP instances. There-

336 X. Song et al.

fore, for very large or structurally complex problems, the solver may take a
very long time to find the optimal solution or an acceptable approximate solu-
tion. Hence, selecting more repairing images for correction will have a greater
likelihood of Gurobi being unable to solve the MILP problem, reflected in the
limitation of improving accuracy.

6 Conclusion

In this paper, we presented QNNRepair, a novel method for repairing quan-
tized neural networks. Our method is inspired by traditional software statistical
fault localization. We evaluated the importance of the neural network models
and used Gurobi to get the correction for these neurons. According to the exper-
iment results, after correcting the model, accuracy increased compared with the
quantized model. We also compared our method with state-of-the-art techniques;
the experiment results show that our method can achieve much higher accuracy
when repair models are trained on large datasets.

As the future works, we will move forward to larger datasets; currently, we
support MobileNetV2 trained on ImageNet. In the future, we will test our tool
and make it scalable for larger models and not limited to classification tasks like
GPT and stable diffusion. For these large networks, due to the complexity of the
model itself, repairing them will require a lot of computational resources, and
we will find a balance between improving accuracy and computing time.

For some of the repairing problems, Gurobi was not able to solve them in
the given time limit, so in the future, we intend to optimize the encoding of the
neural network repair problem to increase the speed of the repair solution and
to solve some of the repair problems that were not previously solved. We will
also try more problem solvers in the future, such as SMT solvers, to solve these
problems that Gurobi cannot solve.

Acknowledgements. This work is funded by the EPSRC grants EP/T026995/1,
EP/V000497/1, EU H2020 ELEGANT 957286, Soteria project awarded by the UK
Research and Innovation for the Digital Security by Design (DSbD) Programme, and
Cal-Comp Electronic by the R&D project of the Cal-Comp Institute of Technology
and Innovation.

References

1. TensorFlow Lite. https://www.tensorflow.org/lite
2. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: On the accuracy of spectrum-based

fault localization. In: Testing: Academic and industrial conference practice and
research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE (2007)

3. Agarwal, P., Agrawal, A.P.: Fault-localization techniques for software systems: a
literature review. ACM SIGSOFT Softw. Eng. Notes 39(5), 1–8 (2014)

4. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verify-
ing binarized neural networks. In: TACAS 2021. LNCS, vol. 12652, pp. 203–222.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_11

https://www.tensorflow.org/lite
https://doi.org/10.1007/978-3-030-72013-1_11

QNNRepair: Quantized Neural Network Repair 337

5. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

6. Borkar, T.S., Karam, L.J.: Deepcorrect: correcting dnn models against image dis-
tortions. IEEE Trans. Image Process. 28(12), 6022–6034 (2019)

7. Bressert, E.: Scipy and numpy: an overview for developers (2012)
8. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakr-

ishnan, K.: Pact: parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085 (2018)

9. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight bug localization with ample. In:
Proceedings of the Sixth International Symposium on Automated Analysis-Driven
Debugging, pp. 99–104 (2005)

10. David, R., Duke, et al.: Tensorflow lite micro: Embedded machine learning for
tinyml systems. Proc. Mach. Learn. Syst. (2021)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on computer vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

14. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

15. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8_3

16. Eniser, H.F., Gerasimou, S., Sen, A.: DeepFault: fault localization for deep neu-
ral networks. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol.
11424, pp. 171–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6_10

17. Galijasevic, Z., Abur, A.: Fault location using voltage measurements. IEEE Trans.
Power Delivery 17(2), 441–445 (2002)

18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Others: Ai2: safety and robustness
certification of neural networks with abstract interpretation. In: 2018 IEEE Sym-
posium on Security and Privacy (SP), pp. 3–18. IEEE (2018)

19. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_5

20. Goldberger, B., et al.: Minimal modifications of deep neural networks using verifi-
cation. In: LPAR, p. 23rd (2020)

21. Gong, R., et al.: Differentiable soft quantization: bridging full-precision and low-bit
neural networks. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 4852–4861 (2019)

22. Guo, C., et al.: Squant: on-the-fly data-free quantization via diagonal hessian
approximation. arXiv preprint arXiv:2202.07471 (2022)

23. Guo, Y.: A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752 (2018)

http://arxiv.org/abs/2109.00498
http://arxiv.org/abs/1805.06085
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-16722-6_10
https://doi.org/10.1007/978-3-030-16722-6_10
https://doi.org/10.1007/978-3-030-45237-7_5
http://arxiv.org/abs/2202.07471
http://arxiv.org/abs/1808.04752

338 X. Song et al.

24. He, K., et al.: Deep residual learning for image recognition. Proceedings of the
IEEE conference on computer vision and pattern recognition pp. 770–778 (2016)

25. Henzinger, T.A., Lechner, M., et al.: Scalable verification of quantized neural net-
works. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)

26. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety Verification of Deep Neural
Networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

27. ifigotin: Imagenetmini-1000. https://www.kaggle.com/datasets/ifigotin/
imagenetmini-1000 (2021), (Accessed 4 April 2023)

28. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713 (2018)

29. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 273–282 (2005)

30. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT Solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

31. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

32. Krizhevsky, A., Hinton, G.: CIFAR-10 (canadian institute for advanced research).
Tech. rep., University of Toronto (2009). https://www.cs.toronto.edu/kriz/cifar.
html

33. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming
problems. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-
2008, pp. 105–132. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
540-68279-0_5

34. Li, Y., et al.: Brecq: pushing the limit of post-training quantization by block recon-
struction. arXiv preprint arXiv:2102.05426 (2021)

35. Makhorin, A.: Glpk (gnu linear programming kit). http://www.gnu.org/s/glpk/
glpk.html (2008)

36. Meindl, B., Templ, M.: Analysis of commercial and free and open source solvers
for linear optimization problems. Eurostat and Statistics Netherlands within the
project ESSnet on common tools and harmonised methodology for SDC in the ESS
20 (2012)

37. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(3), 1–32 (2011)

38. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization john, vol.
118. Wiley & Sons, New York (1988)

39. Nickel, S., Steinhardt, C., Schlenker, H., Burkart, W.: Ibm ilog cplex optimization
studio-a primer. In: Decision Optimization with IBM ILOG CPLEX Optimization
Studio: A Hands-On Introduction to Modeling with the Optimization Program-
ming Language (OPL), pp. 9–21. Springer (2022). https://doi.org/10.1007/978-3-
662-65481-1_2

40. Odena, A., Olsson, C., Andersen, D., Goodfellow, I.: Tensorfuzz: Debugging neural
networks with coverage-guided fuzzing. In: ICML, pp. 4901–4911. PMLR (2019)

41. Optimization, G.: Inc. gurobi optimizer reference manual, version 5.0 (2012)

https://doi.org/10.1007/978-3-319-63387-9_1
https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000
https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1007/978-3-540-68279-0_5
http://arxiv.org/abs/2102.05426
http://www.gnu.org/s/glpk/glpk.html
http://www.gnu.org/s/glpk/glpk.html
https://doi.org/10.1007/978-3-662-65481-1_2
https://doi.org/10.1007/978-3-662-65481-1_2

QNNRepair: Quantized Neural Network Repair 339

42. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of
deep learning systems. In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pp. 1–18 (2017)

43. Sandler, M., et al.: Mobilenetv 2: inverted residuals and linear bottlenecks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018)

44. Sena, L.H., Song, X., da S. Alves, E.H., Bessa, I., Manino, E., Cordeiro, L.C.:
Verifying quantized neural networks using smt-based model checking. CoRR abs/
arXiv: 2106.05997 (2021)

45. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. J. Big Data 6(1), 1–48 (2019)

46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

47. Song, C., Fallon, E., Li, H.: Improving adversarial robustness in weight-quantized
neural networks. arXiv preprint arXiv:2012.14965 (2020)

48. Song, X., et al.: Qnnverifier: a tool for verifying neural networks using smt-based
model checking. CoRR abs/ arXiv: 2111.13110 (2021)

49. Song, X., Sun, Y., Mustafa, M.A., Cordeiro, L.: Airepair: a repair platform for
neural networks. In: ICSE-Companion. IEEE/ACM (2022)

50. Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In: PLDI
(2021)

51. Sun, Y., Chockler, H., Huang, X., Kroening, D.: Explaining image classifiers using
statistical fault localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M.
(eds.) ECCV 2020. LNCS, vol. 12373, pp. 391–406. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58604-1_24

52. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: Structural test
coverage criteria for deep neural networks. ACM Trans. Embedded Comput. Syst.
(TECS) 18(5s), 1–23 (2019)

53. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Con-
colic testing for deep neural networks. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 109–119 (2018)

54. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Păsăreanu, C.S.: NNrepair:
constraint-based repair of neural network classifiers. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12759, pp. 3–25. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8_1

55. Vanholder, H.: Efficient inference with tensorrt. In: GPU Technology Conference,
vol. 1, p. 2 (2016)

56. Wang, S., Zhang, H., Xu, K., Others: Beta-crown: efficient bound propagation
with per-neuron split constraints for neural network robustness verification. In:
Advances in Neural Information Processing Systems 34 (2021)

57. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The dstar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2013)

58. Wong, W.E., Qi, Y., Zhao, L., Cai, K.Y.: Effective fault localization using code
coverage. In: COMPSAC, vol. 1, pp. 449–456. IEEE (2007)

59. Yu, B., et al.: Deeprepair: style-guided repairing for deep neural networks in the
real-world operational environment. IEEE Trans. Reliability (2021)

60. Zhang, Y., et al.: Qvip: an ilp-based formal verification approach for quantized
neural networks. In: ASE. IEEE/ACM (2022)

61. Zhang, J., Li, J.: Testing and verification of neural-network-based safety-critical
control software: a systematic literature review. Inf. Softw. Technol. 123, 106296
(2020)

http://arxiv.org/abs/2106.05997
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2012.14965
http://arxiv.org/abs/2111.13110
https://doi.org/10.1007/978-3-030-58604-1_24
https://doi.org/10.1007/978-3-030-58604-1_24
https://doi.org/10.1007/978-3-030-81685-8_1
https://doi.org/10.1007/978-3-030-81685-8_1

Timeout Prediction for Software Analyses

Nicola Thoben(B) , Jan Haltermann , and Heike Wehrheim

Department of Computing Science, University of Oldenburg, Oldenburg, Germany
{nicola.thoben,jan.haltermann,heike.wehrheim}@uol.de

Abstract. Software verification tools automatically prove the correct-
ness of programs with respect to user supplied specifications. Today, such
tools implement a range of different types of analyses. As different anal-
yses are good at different sorts of verification tasks, state-of-the-art tools
often employ sequential compositions of analyses in which every anal-
ysis gets a fixed time slot assigned for verification. As a consequence,
however, one analysis might consume parts of the overall available time
although it does not finish within its time slot.

In this paper, we propose timeout prediction as a way to determine
when an analysis should get its full time slot and when to prematurely
stop it. Our technique for timeout prediction employs machine learning
to predict whether a given analysis will terminate on a given verification
task (within a time limit) or will time out. To this end, we develop static
as well as dynamic features of verification tasks and analyses. Values of
static features can be statically determined for tasks; dynamic features
are determined while an analysis is already running. Our experimental
evaluation shows that we can predict timeouts with a high accuracy.

Keywords: Software verification · sequential compositions · timeout
prediction

1 Introduction

Although software verification is a challenging problem, the field has made enor-
mous progress in the past years by developing and adopting new tools and tech-
niques, among others visible in the annual verification competitions such as
SV-Comp1 or VerifyThis [16]. In practice (and in these competitions), tools use
a plethora of different techniques like predicate analysis, bounded model check-
ing, value analysis, or k-induction. Each of these techniques has its individual
strengths and weaknesses, while none of it is superior to the others. To enhance
the performance, it is common to employ a combination of conceptually different
techniques, e.g., in SV-Comp 2023 19 out of 52 participants used a portfolio-based
approach. These combinations either make use of a parallel [3,7,23] or a sequen-
tial composition [3,8,9,13,15,20,21,25,26] of different approaches. In the former,
the approaches are executed in parallel as a portfolio, and the available comput-
ing resources are split among them, whereas in the latter case full resources are
given to each approach but the overall available execution time is split. Nearly
1 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 340–358, 2023.
https://doi.org/10.1007/978-3-031-47115-5_19

https://zenodo.org/record/8181380
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_19&domain=pdf
http://orcid.org/0009-0004-9378-033X
http://orcid.org/0000-0002-5098-0495
http://orcid.org/0000-0002-2385-7512
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23
https://doi.org/10.1007/978-3-031-47115-5_19

Timeout Prediction for Software Analyses 341

all implementations of such sequential compositions employ hand-crafted strate-
gies assigning fixed time budgets to each analysis. One of the main reasons is
that an apriori prediction of the expected run time for a technique on a given
task is extremely challenging. Thus, if a certain analysis within a sequence does
not succeed in computing a correct answer to the verification problem, it usually
still consumes the full-time budget assigned to it.

In this paper, we present a technique for predicting timeouts of analyses
during their execution, allowing for a fast reallocation of resources to other,
more promising analyses that may solve the task correctly. The main idea of our
approach is to use machine learning to predict at runtime whether the analysis
will succeed within the assigned time limit. For this, we first designed a set
of 29 different features for CEGAR-based [10] (CEGAR = Counter Example
Guided Abstraction Refinement) predicate analyses. This feature set contains
static features of programs like the size of the control-flow graph, as well as
dynamic features, partially dependent on the analysis, like the elapsed CPU time,
the number of conducted CEGAR iterations, or the number of variables within
the discovered predicates. We reduced this set to eight features using feature
selection to prevent overfitting and to speed up the prediction. In addition, a
third feature set consists of the static features alone (out of the 29 features).
Next, we built a method for extracting the data of these features for analyses
implemented in the tool CPAchecker [4] for usage as the training and test
sets. Using this data, we employed a random forest classifier, after evaluating
various machine learning techniques for this use case, and trained a predictor. We
integrated the prediction within a sequential composition of analyses in order to
abort one analysis in case a timeout is predicted. More precisely, in our evaluation
we employed a sequential combination of predicate analysis with k-induction.

Our evaluation on SV-COMP benchmarks shows in particular that the small
set of eight features suffices to predict timeouts with an accuracy of 86%.
Employed within the sequential composition, performing first predicate anal-
ysis with the prediction followed by k-induction, 15 new tasks get solved instead
of reaching the time limit, compared to the sequence without a prediction. The
computation time of complex tasks is reduced by 74% in the median.

2 Background

We start by giving some notations on programs and explaining predicate analysis
and the concept of CEGAR to which we later apply timeout prediction.

2.1 Programs and Control Flow Automata

In software verification, programs are checked for errors. The goal is to show
whether a program is correct, or not, with respect to a certain specification. In
this paper, we propose timeout prediction for verification of programs written
in C and specifications given by error locations, which together are also referred

342 N. Thoben et al.

Fig. 1. Example program add, the corresponding CFA and an ARG.

to as (verification) task in the further course. In that, a program is correct if no
error location is reachable.

Programs and their error locations can be represented as control flow
automata (CFAs) [2] which are directed graphs. The edges of these graphs are
labeled with the operations of the respective program and connect control flow
locations. A CFA A = (L, �0, G, LE) consists of a set of program locations L, an
initial location �0 ∈ L and a set of edges G ⊆ (L×Ops×L), with op ∈ Ops (the
set of operations) being either an assignment, an assume operation (for boolean
conditions of if or loop statements) or a function call or return. The CFA also
contains all error locations LE of the program, which are defined as the locations
with an incoming transition −error()−−−−→. In CFAs we mark these in red.

Locations are reachable if a program path σ = �0 −op0−−→ �1 −op1−−→ . . . to these
locations exists that is feasible, i.e., concrete values for the program variables
exist to reach an error location via execution of operations op0, op1, . . . [5,18].
The exact semantics of CFAs is of no importance for our approach, so we elide
it here.

Figure 1a shows an example C program add in which the variable a is assigned
to 0 and then incremented by 1 in each iteration within a while loop until a is no
longer less than 6. After the loop, an if statement is used to check whether a is
unequal to 6. If this is the case, the error location l7 ∈ LE is reached by calling
error(). This will however never occur since a is always 6 when the while loop
is exited. In Fig. 1b the CFA corresponding to program add can be found.

2.2 Predicate Analysis

One widely used analysis technique for software verification is predicate analy-
sis [17], a technique that examines the reachability of specific locations within
a program via abstract interpretation [11]. Instead of using concrete program
states, assigning concrete values to the variables of a program, the states in a

Timeout Prediction for Software Analyses 343

Fig. 2. ARG for example program add with predicates {a = 0, true, false}

predicate analysis are abstractly described by predicates. All (currently)
employed predicates are kept in a set π called the precision.

During predicate analysis, an abstraction of the concrete program execu-
tion is build and the CFA thereby gets unrolled into an abstract reachability
graph (ARG). Every state in the ARG is related to a CFA location � and
abstractly describes a set of concrete states. Predicate analysis aims at prov-
ing non-reachability of error locations on such ARGs. Figure 1c shows an ARG
of program add using precision π = {true, false}. We see a path from q0 to q6
which is related to the CFA error location �7 (a potential counterexample). On
the ARG, location �7 thus seems reachable. In this example, the predicate anal-
ysis would next refine the precision by a technique called counterexample guided
abstraction refinement (CEGAR).

2.3 CEGAR

CEGAR [10] is a technique for computing precisions, e.g. the sets of predicates,
for analysis. CEGAR works iteratively and starts with a very coarse precision
(e.g., with π = {true, false}). Within one pass, it first builds an abstract model
of the program executions using this precision. On this model, the reachability
of abstract states representing error locations is checked. If a path to an error
location is found, this is a potential counterexample. Counterexamples next need
to be checked for feasibility. If feasible, an error is indeed found and CEGAR
stops. If the counterexample is not feasible, the level of abstraction as defined by
the precision is too coarse and needs to be refined. There are different techniques
for refining precisions which are however of no importance for our technique of
timeout prediction. Once a new precision is computed, the iteration starts anew
with the next pass.

344 N. Thoben et al.

In Fig. 2 we see the ARG of the example program when extending the preci-
sion by predicate a = 0. The previous counterexample is not present in the ARG
anymore. In this CEGAR iteration, since the predicate a = 0 is true at state q1
due to the operation a = 0 the condition on the edge leading to q2 cannot be
true. Nonetheless, another counterexample is found because the predicate a = 0
is not true anymore after one unrolling of the while loop in the program. Again,
this new counterexample can be eliminated by refining the precision.

3 Features for Learning

Since different analyses perform differently based on the given program, it is
possible that a particular analysis cannot complete the verification in a given
period of time, while other analyses can. Especially in benchmark settings, when
many verification tasks need to be solved, a lot of time may be wasted by analyses
running until they timeout.

To prevent this, we present a timeout prediction based on machine learn-
ing here. The prediction is used to abort a running analysis when the machine
learning model predicts that it will not compute a result in time. Here, we will
only present models that are trained to abort predicate analyses. Similar models
could be trained for other types of analyses, e.g. for value analysis, in particular
when they also employ CEGAR techniques. We train two sorts of models, one
for predicting at the beginning of every analysis whether the analysis should be
started at all, and the second for predicting at each CEGAR iteration whether
to continue the analysis or not.

In order to be able to train such models, we first need features (of programs
or analysis runs). The chosen features can be split into two groups:

1. Static features that describe the program and remain unchanged during the
analysis, and

2. dynamic features which change throughout the analysis.

Static features have been used before in related work for selection of verification
tools or analyses [1,14]. In our case, they describe the size of the program as
well as some properties of loops within programs. The performance of CEGAR
depends on both and thus can be partially predicted by this kind of features.
In particular, if the analysis were to perform one CEGAR refinement per loop
iteration, it would most likely timeout.

Dynamic features are less often used in related work. We employ them here
to enable the learned model to predict whether the analysis is making good
progress. One reason for an analysis not coming to an end with a conclusive
result is the fact that CEGAR techniques do not necessarily compute predicates
which are helpful for verification. Because of this, our dynamic features examine
predicates in detail so that the model can learn about connections between
specific sorts of predicates and timeouts of the analysis. Other dynamic features
examine the runtime of the analysis, the number of CEGAR iterations, and the
structure of the ARG to infer whether time is wasted by unrolling loops.

Timeout Prediction for Software Analyses 345

Table 1. All features

Index Description Type

s1 no. of all loops in program static

s2 no. of endless loops static

s3 no. of loops nested in another loop static

s4 estimated no. of max. loop iterations of all loops in program static

s5 no. of arrays in program static

s6 no. of CFA nodes static

p1 time from start of analysis to begin of current iteration dynamic

p2 index of current iteration dynamic

arg1 current no. of all ARG states dynamic

arg2 no. of new ARG states in current iteration dynamic

arg3 no. of abstraction locations (e.g. loop heads) in path to ARG state
with the highest index

dynamic

arg4 no. of new abstraction locations dynamic

arg5 most often occurring CFA location in ARG dynamic

pred1 no. of predicates used since previous iteration dynamic

pred2 no. of predicates with = operator dynamic

pred3 no. of new predicates with = operator dynamic

pred4 no. of predicates with < operator dynamic

pred5 no. of new predicates with < operator dynamic

pred6 no. of predicates with + operator dynamic

pred7 no. of predicates with / operator dynamic

pred8 no. of predicates with ∗ operator dynamic

pred9 no. of predicates with % operator dynamic

pred10 no. of predicates with only one operator dynamic

pred11 no. of predicates with multiple operators dynamic

pred12 highest no. of different variables in one predicate dynamic

pred13 no. of predicates with the most occurring variable dynamic

pred14 no. of predicates that include more than one variable dynamic

pred15 no. of predicates with constants increasing by 1 dynamic

pred16 highest no. of boolean operations in a single predicate dynamic

To train models, we next require training data (i.e., data instances with values
of features) which we first need to collect. The values of all features are collected
within CPAchecker [4] through the available ARG, CFA, and general statistics.

For the models that will be used in every CEGAR iteration, the data must
also be collected in each iteration. Thus, each row of data in these datasets
(one instance) corresponds to the values of features of one such iteration and
the number of data rows per analysis represents the number of iterations the
analysis runs in total. For the model used at the beginning of an analysis, we
only use static features.

346 N. Thoben et al.

In the following, we describe three feature sets (FS1, FS2 and FS3) for which
we later provide results of experimental evaluations. We have made further exper-
iments with different subsets of FS1 (see [30]) which we – due to lack of space –
can however not describe here.

A total of 29 features has been selected for the first feature set FS1 (see
Table 1). To speed up the prediction and avoid overfitting, we then used the
feature selection technique Select from Model2 (see also Sect. 4) to reduce the
feature set giving FS2 ={s1, s6, p1, p2, arg1, arg2, arg3, arg5}. A third feature
set FS3={s1, s2, s3, s4, s5, s6} consists of all static features of FS1 only. Table 1
shows the type of each feature as well as a short description.

We next explain all features of the reduced feature set FS2 in more detail
because the evaluation showed that it performs better than FS1 and FS3 (see
Sect. 5). First, we have two general features. The CPU time from the point
on when the analysis starts is tracked by feature p1. Every time the feature
extraction starts in an iteration, the time that has elapsed so far will be stored for
this feature. It is possible that after a certain time the probability of the analysis
finding a result decreases and this is detected by the trained model. Feature p2
stores the current CEGAR iteration in which the feature extraction is called.
CEGAR is working iteratively, so the value of this feature will always start at
0 in the first data line and increases with every following iteration. The value
of this feature in the last gathered data line of an analysis, therefore, describes
how many CEGAR iterations are done until the analysis is stopped due to a
timeout or termination. A strongly increasing, high number of iterations could
possibly indicate that it is unlikely that the analysis computes a result before
the timeout.

Static Features in FS2. The two static features in FS2 are s1 and s6. They
do not change during the running analysis. s1 counts the number of for or while
loops within the C program to be analyzed. Since the unrolling of loops is often
the reason for a high number of CEGAR iterations and additionally for timeouts,
the number of loops can be an indicator of the performance of the analysis. The
program seen in Fig. 1a contains one while loop, so the value for this feature is
1 for the entire analysis.

Feature s6 counts the number of CFA nodes. As described in Sect. 2.1, a
single CFA node describes a specific location � of the program to be analyzed.
A high number of nodes can therefore be used to conclude that a program is
large and more likely to be more difficult to analyze than a short program. In
the example Fig. 1b the CFA consists of eight nodes, so the value for s6 is 8
throughout every iteration of the analysis.

ARG-Related Features in FS2. Feature arg1 counts all the states in the ARG
when the CFA gets unrolled. The value for arg1 is 7 for the ARG in Fig. 1c and 9
for the one in Fig. 2. For arg2 the number of ARG states in both the current and
previous iterations are compared to determine the difference. Which of the new

2 https://scikit-learn.org/stable/modules/generated/sklearn.\discretionary-feature
selection.SelectFromModel.html.

https://scikit-learn.org/stable/modules/generated/sklearn.discretionary {-}{}{}feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.discretionary {-}{}{}feature_selection.SelectFromModel.html

Timeout Prediction for Software Analyses 347

Fig. 3. Overview of data collection, training and prediction steps.

states have been in the previous set of states is not relevant for this feature. In
Fig. 1c the ARG consists of seven states and in the following CEGAR iteration
of nine states, as seen in Fig. 2. This makes the value of arg2 to be 2 in the
current iteration.

Feature arg3 takes a look at every ARG state on the path to the last explored
state and counts the abstraction locations. An abstraction location is telling us
where to perform an abstraction, which is by default at every loop head in the
CFA but can also be set to every node or whenever multiple paths get merged.
The number of loop heads in the example Fig. 2 in the path leading to q12 is 2
because the loop head �1 appears twice.

Feature arg5 determines the CFA location occurring most often in the ARG.
Every ARG state belongs to a CFA location. If a loop gets unrolled or a method
is called often, a CFA location present in this loop or method can appear multiple
times on the ARG. Loop unrolling can possibly cause many CEGAR iterations and
may result in a timeout. In Fig. 2 the most often occurring locations are �1 and �3,
both being in the ARG twice, so the value of this feature is 2 in this iteration.

Predicate-Related Features in FS2. Surprisingly, the feature selection tech-
nique Select from Model did not keep any of the predicate-related features in
FS2. Predicate-related features (pred1 to pred16) store values about precisions
in predicate analyses, like the number of predicates or the number of certain
operators in predicates. In conclusion, then, the properties of the predicates do
not have a strong influence on the predictions of the model.

4 Timeout Prediction

An overview of the components of our implementation and their interaction can
be found in Fig. 3. We realized all components except for the training within
the software verification tool CPAchecker. All processes related to machine
learning, such as preparing the data, splitting the data into training and test

348 N. Thoben et al.

sets, feature selection and training the model, are implemented using sklearn3

in Python, so these are realized independently of CPAchecker.
We shortly describe all the components involved in timeout prediction next.

Our approach requires a set of tasks to learn from. After learning, the timeout
prediction can then be used for a (potentially different) set of tasks. For eval-
uation of our approach, we have employed over 10 000 tasks taken from the
category ReachSafety of the SV-Comp benchmark collection.

Data Collection. For implementing timeout prediction, we must first train a
machine learning model. This requires a data set consisting of data instances
with values of the features listed in Sect. 3 plus the correct prediction, i.e. the
class (1 or 0) of a particular data instance. Class 1 represents the case that the
analysis will return a result (within the given time limit) and class 0 the case
when it times out.

As one model has to make a prediction at the start of the predicate analysis
and the other models in each CEGAR iteration, we run predicate analysis twice
on every task: once for the model using FS3, not collecting data throughout
CEGAR iterations, and then again for the other models (FS1 and FS2) collecting
also data of dynamic features.

Training. Before actually training, we first need to choose a particular classifier.
For this we have chosen a random forest classifier which turned out to perform
best in experimental evaluations (compared to decision trees, SVMs and logis-
tic regression). Random forests consist of multiple decision trees whose leaves
represent the classes (0 or 1) to which data points can be assigned. All inner
nodes of the trees (i.e., nodes which are not leaves) contain decisions consisting
of thresholds that examine the values of the features to then determine the path
to the next node accordingly.

Since the benchmark tasks in category ReachSafety are divided into different
subcategories according to their structure, the training and test set is divided
in such a way that 25% of each subcategory is randomly selected for the test
set (used in the evaluation) and the rest for the training set. This avoids bias to
certain program structures.

Feature Selection. The overall feature set FS1 presented in Sect. 3 is reduced
by feature selection to speed up the prediction and to avoid overfitting. sklearn
provides different feature selection methods. Since there is no ideal method to
select the best features for training, the results of three methods were compared:
Select from Model, Select k Best and Sequential Feature Selection.

Select from Model calculates the importance of each feature based on an
already trained model. The importance of a feature indicates how relevant it is
for the predictions of this model. The most important features are then selected
for the reduced set. Select from Model was applied to the model trained with
FS1 and performed better than the alternatives. The resulting feature set is FS2.

Prediction. The trained models can be called from within the predicate analysis
in the CPAchecker by using a script that passes the relevant data to the model
3 https://github.com/scikit-learn/scikit-learn.

https://github.com/scikit-learn/scikit-learn

Timeout Prediction for Software Analyses 349

and returns the result of the prediction. This input data consists of values for
the same features as for the previous data collection. The script is called in each
CEGAR iteration, or in case of the model trained only on static features, at the
beginning of the analysis.

The prediction predicts whether the analysis will produce a result before
the specified time limit or not. In case of a negative prediction, the running
analysis is stopped without providing any results. Alternatively, the analysis is
left running until either (1) a result is found, (2) it reaches the timeout or (3) a
prediction in the following CEGAR iterations aborts the analysis.

5 Evaluation

As explained in the previous section, we have implemented all components nec-
essary for timeout prediction. In the evaluation, we were interested in several
aspects of our approach: (a) the choice of feature sets and how they compare
to each other with respect to the quality of predictions and their required time,
(b) the usage of machine learning and whether the involved machinery pays off
compared to simple heuristics, and (c) the usefulness of timeout predictions in
sequential compositions of analyses.

We have formulated the following three research questions for the evaluation
of these aspects.

RQ1 Comparing static features to dynamic ones, which feature set leads to a
better-performing model?

RQ2 Can a machine learning model outperform simple heuristics?
RQ3 Does a sequential composition benefit from a timeout prediction?

5.1 Evaluation Setup

The evaluation is done on Intel Xeon E3-1230 v5 @ 3.40 GHz (8 cores)
machines, 33 GB of memory, and Ubuntu 22.04 LTS with Linux kernel 5.15.0.
BenchExec [6] is used for the execution of all runs to ensure reproducibility. To
make sure the setup matches that of the SV-Comp, the analyses are limited to
15 GB of memory, 4 CPU cores, and 15 min of CPU time.

5.2 Metrics

In order to evaluate the different models, the ground truth (= correct prediction)
must be known first. This has already been determined during data collection.
We then employ the ground truth and the actual predictions to calculate values
of standard metrics for the models. The metrics are computed from the model’s
values of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN).

The TPs state that the prediction of the model has been positive and also
agrees with the ground truth. In this case, the prediction correctly states that

350 N. Thoben et al.

the analysis will not reach a timeout. TNs also make a correct prediction, but
this time a negative one. This means the analysis does not provide a result before
the timeout and the model predicts the timeout before it occurs. So these two
values represent the number of correct predictions about whether the analysis
will terminate before the timeout or not. The FPs and the FNs each indicate the
number of incorrect predictions, i.e., when the model indicates that the analysis
will terminate before timeout when it does not, and vice versa.

The values of TPs, TNs, FPs, and FNs are used to compute the standard
metrics. The first is Accuracy to indicate how many of the predictions are correct
in total.

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

The Precision indicates how high the number of correctly predicted positive pre-
dictions is in relation to all positive predictions. If the priority is, that timeouts
do not remain undetected, care should be taken to ensure that the Precision is
high. With a low Precision, more time is consumed by analyses that could have
been aborted.

Precision =
TP

TP + FP
(2)

For the Recall, the number of correctly detected positive predictions is again
considered, but now in proportion to all results that are actually positive by
the ground truth. A high Recall is desirable when all positive results have to be
recognized as such. A low value in the context of timeout predictions means that
many analyses are incorrectly aborted and the verification results can no longer
be determined.

Recall =
TP

TP + FN
(3)

The structure of Specificity is similar to that of Recall, but focuses on nega-
tive instead of positive predictions. Therefore, if it is important that the actual
negative objects are also recognized as negative, the Specificity should contain
a high value. A high Specificity in this case means that timeouts are recognized
as such, i.e. the analyses are not incorrectly allowed to continue.

Specificity =
TN

TN + FP
(4)

In order to combine the recall and the precision into one value and to make
models comparable by a single value, the F1 Score is calculated. It makes it
easier to see the overall performance at a glance.

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

Depending on the goal of the user of the models, the metrics can be of
different importance. With regard to the motivation to run several analyses in
sequences until a result is found, a high specificity makes sense. If an analysis is
incorrectly aborted, one of the following analyses may still be able to determine
a result.

Timeout Prediction for Software Analyses 351

Table 2. Results of the evaluation, measured by presented metrics

Accuracy Recall Specificity Precision F1-Score

FS1 0.88 0.85 0.94 0.95 0.90

FS2 0.86 0.81 0.94 0.95 0.87

FS3 0.88 0.89 0.86 0.90 0.90

Fig. 4. Comparison of computation time of predicate analysis using FS1 and FS2.

5.3 RQ1: Comparing Static Features to Dynamic Ones, Which
Feature Set Leads to a Better Performing Model?

In Sect. 3, the three feature sets are presented. Two of these sets, FS1 and FS2,
contain both dynamic and static features, a third one (FS3) consists of static
features only. The values of the metrics allow the different feature sets to be
compared with each other.

In Table 2, it can be seen that FS1 achieves the best values except for Recall.
The static feature set achieves the highest recall value with 89% and is therefore
the best at predicting that an analysis will not reach the timeout. With respect
to Specificity (94%) and Precision (95%), i.e. the correct detection of timeouts,
FS1 and FS2 perform better. With respect to Accuracy (88%) and the F1 Score
(90%), the static model and the one that also used dynamic features for training
do not differ.

FS2 has been reduced to eight features to avoid overfitting and to save time.
By reducing the size of the feature set, the computation time of the analyses of
the majority of the tasks can actually be reduced. This is visualized by Fig. 4. In
Fig. 4a, the CPU time needed by the predicate analysis to solve a task correctly
is shown on the x-axis for FS1 and on the y-axis for FS2. For all tasks below the

352 N. Thoben et al.

Table 3. Evaluation results of simple heuristics, measured by presented metrics.

Accuracy Recall Specificity Precision F1-Score

FS2 0.86 0.81 0.94 0.95 0.87

Heuristics 0.61 0.99 0.06 0.61 0.75

diagonal line, reducing features has saved time. The dashed lines indicate that for
a task being below/above, the CPU time is less than halved/more than doubled.

Figure 4b shows the median factor of the increase in CPU time due to reduc-
ing the feature set for all correctly solved tasks. The x-axis describes the CPU
time in seconds when using the FS1 model for the prediction. The number of
tasks that require the time shown is represented by the width of the bars.

Within a sequential composition, the priority lies in correctly detecting time-
outs rather than detecting that the analysis produces a result. The reason for
this is the fact that in case of a wrong abort, the subsequent analyses may still
come to a result. Therefore we employ FS2 to answer the next two research
questions.

5.4 RQ2: Can a Machine Learning Model Outperform Simple
Heuristics?

An alternative to predictions via machine learning would be to employ simple
heuristics. This would in particular significantly decrease the overhead of the
prediction. For comparison with our own approach, we therefore designed and
implemented a very simple heuristics, namely counting the number of CEGAR
iterations and stopping the analysis after the 50th iteration. We have also made
experiments with more complicated heuristics involving values of features s4, s6,
arg1 and arg5, but these have performed worse.

For the evaluation of the heuristics, we used the same set of tasks as in the
experiments for RQ1.

In Table 3 we show the result of the comparison between the heuristics and
the reduced feature set FS2. It can be seen that heuristics achieve a very high
Recall value of 99% and, in contrast, a low Specificity value of 6%. These values
result from the fact that very few analyses are aborted overall and that the
heuristics barely takes action, so they are less significant. Since the test set
contains more solved tasks than timeouts, the accuracy is still at 61%, since
most tasks are correctly not aborted. It can be said that this simple heuristics,
chosen by intuition, does not outperform the machine learning model.

5.5 RQ3: Does a Sequential Composition Benefit from a Timeout
Prediction?

In software verification, sequential compositions in which several different anal-
yses are executed one after another are often used. An analysis in a sequence

Timeout Prediction for Software Analyses 353

Table 4. Evaluation results of prediction in a sequential composition.

Solved # Unsolved # Add. Solved

Without Prediction 1164 945 154

With Prediction 997 1112 15

is started when the previous analysis does not return a result within a certain
time limit. If individual analyses in a sequence do not produce a result, they
however still use all the time attributed to them. Since a time limit is also set
for the entire sequence, this wastes time that may be better used by the following
analyses.

To evaluate whether a sequence can benefit from our timeout prediction, we
investigated a sequence that occurs as a subsequence in [1]: Predicate Analysis,
with 450 seconds maximum run time, followed by k-induction [32]. The entire
sequence is given a timeout of 900 seconds. This configuration is used on all
tasks that were also used to answer RQ1 and RQ2.

While running the analyses on these tasks, we check in each CEGAR iteration
of the predicate analysis whether the analysis should be aborted. If the prediction
is negative before the predicate analysis has reached 450 seconds runtime or the
task gets solved, k-induction is started early. It then has more time than the
usual 450 seconds, depending on the time of abort, until the total time limit of
900 seconds is reached. For the prediction, the reduced feature set FS2 is used,
due to the mentioned reasons of overfitting and time savings.

In Table 4 we show the effect of prediction on the number of tasks that can be
solved (i.e., for which verification is successfully completed). In summary, out of
the 2 109 tasks of our test set prediction can ensure that 15 additional tasks are
solved (which could not be solved before due to timeouts of the two analyses).
Unfortunately, due to incorrect aborts of the predicate analysis, this also entails
that 154 tasks are no longer solved, although they are solved in a configuration
without timeout prediction.

Figure 5a shows the effect of prediction on the computation time. The x-axis
of the scatterplot shows the CPU time of the sequence without prediction, the
y-axis shows the CPU time of the sequence with prediction. We see that the time
for tasks that can be solved quickly increases when using prediction. However,
the time is significantly shortened for tasks where the verification takes more
time. The tasks in the plot in Fig. 5b are summarized by CPU Time of the
sequence without prediction. The y-axis again shows the median factor of the
increase in time by adding the prediction to the sequence. Here it can be seen
more easily how much faster the analyses of the complex tasks are due to the
prediction. The tasks taking more than 100 seconds of CPU time only need 26%
of the original time with prediction in the median.

So while the overall CPU time for solving complex verification tasks is
reduced, we unfortunately also have less correctly solved tasks. For a successful
application of timeout prediction within a sequence of two analyses, we require

354 N. Thoben et al.

Fig. 5. Comparison of computation time of predicate analysis + k-induction without
and with prediction.

a setting (a choice of analyses and their order) in which the second analysis in
the sequence can actually make use of the additional time it gets and solve tasks
on which the first analysis times out. Such a setting could be found by doing
experiments with lots of different pairs of analyses. This is left for future work.

6 Related Work

Closest related to our own approach are works on selecting analysis or algorithms
during software verification. Selecting the best-performing analysis or configu-
ration for a given task is in general a challenging endeavor. Therefore, heuris-
tics [1,28] or algorithm selectors [3,12,14,21,25,26,31] are used. Their task is to
either select the best configuration for a single tool [28], the most promising analy-
sis [3,14] or a sequence of analyses [1,12,26,31]. To be able to employ these meth-
ods, the program needs to be represented as a feature vector. Many make use of
hand-crafted, syntactic features such as program size, and the presence of spe-
cific language features like arrays or enumerations [1,14,28]. Instead of using just
a selected set of program features, the full program can also be used as input to
the algorithm selectors. For this, the program is transformed, e.g. using Contex-
tualized Syntax Trees [27], Abstract Syntax Trees [21], or a combination of mul-
tiple graphs [12,25,26]. In contrast to our approach, these techniques predict the
analysis or the sequence of analyses offline, hence only using static program fea-
tures, whereas we predict timeouts during the running analysis, allowing the use
of dynamic features. These techniques can be seen as an orthogonal line of work,
and we reused static features computed by the analysis within our approach.

Timeout Prediction for Software Analyses 355

The majority of software verification techniques internally make use of SAT-
or SMT-solvers. Hence, using the best solver for a given query is one key to suc-
cess. There are therefore several algorithm selection approaches for such solvers
which predict their performance for a given query [19,22,24,29].

The approaches of Scott et al. [29] and Leeson et al. [22] work directly on
the abstract syntax tree of the query, in [19] a fixed feature set is used. All three
approaches predict the best solver in advance. In contrast, Luo et al. [24] present
an approach to predict the remaining execution time of an SMT-Solver for a
given query in symbolic execution, allowing to steer the exploration of paths.
For prediction, operands occurring in the remaining sub-formulae of the query
are used as features. Unlike our approach, Luo et al. perform the prediction once
in the analysis. Also, regression techniques are selected for the adaptive machine
learning and a time value in the form of seconds is predicted in opposite to a
class. Again, we could reuse the features for formulae in our approach.

7 Conclusion

In this paper, we presented a timeout prediction for predicate analysis in the
tool CPAchecker which employs machine learning for prediction. The goal was
to detect whether a running predicate analysis, performed on an individual veri-
fication task, still returns a result before a specified time limit is reached. When
it is predicted that a timeout will be reached, the analysis is aborted early.
In sequential compositions, in which different analyses try to solve a task one
after the other, resources could then be given to the following analyses after the
predicate analysis is aborted.

For this purpose, three feature sets were first defined and then employed
for training multiple machine learning models. A collection of data of these
features built a dataset that was subsequently used for training and evaluation.
The evaluation on the tasks of the SV-Comp benchmarks compared all generated
models and showed that a small feature set consisting of eight features, which are
both static and dynamic, achieves an accuracy of 86%. Applied in a sequential
composition, consisting of predicate analysis and k-induction, 15 tasks could be
solved that were not solved without the prediction. With the prediction, the
sequential composition needs only 26% of the original time to solve complex
tasks.

As future work, we see potential in finding sequential compositions other
than predicate analysis plus k-induction in which our trained models can be more
useful. This requires determining sequences of analyses in which the later analysis
actually needs the additional time after an abort of the predicate analysis. This
is likely to happen when combining two complementary analyses. Moreover, the
application of timeout prediction is not limited to predicate analysis and the
features presented here. Our dynamic features could also easily be adapted to
other CEGAR-based analyses and the static features are anyway applicable to
all analyses. Finally, combining machine learning and handcrafted heuristics into
a hybrid approach might prove to be useful as well.

356 N. Thoben et al.

References

1. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp.
144–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 11

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 51

3. Beyer, D., Kanav, S., Richter, C.: Construction of verifier combinations based on
off-the-shelf verifiers. In: FASE 2022. LNCS, vol. 13241, pp. 49–70. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99429-7 3

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: FMCAD 2010, pp. 189–197. IEEE (2010)

6. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. STTT 21(1), 1–29 (2019)

7. Chalupa, M., Henzinger, T.A.: BUBAAK: runtime monitoring of program verifiers.
In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. TACAS 2023. LNCS, vol. 13994, pp. 535–540.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8 32

8. Chalupa, M., Mihalkovič, V., Řechtáčková, A., Zaoral, L., Strejček, J.: Symbiotic
9: string analysis and backward symbolic execution with loop folding. In: TACAS
2022. LNCS, vol. 13244, pp. 462–467. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99527-0 32

9. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety checking
revisited. Int. J. Softw. Tools Technol. Transf. 22(2), 115–133 (2020). https://doi.
org/10.1007/s10009-019-00526-2

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM 1977,
pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

12. Czech, M., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Predicting rankings of soft-
ware verification tools. In: SWAN@ESEC/SIGSOFT FSE 2017, pp. 23–26. ACM
(2017). https://doi.org/10.1145/3121257.3121262

13. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 34

14. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Formal Methods Syst. Des. 50(2), 289–316
(2017). https://doi.org/10.1007/s10703-016-0264-5

https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-030-99429-7_3
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1007/s10009-019-00526-2
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/s10703-016-0264-5

Timeout Prediction for Software Analyses 357

15. Ernst, G.: KORN–software verification with horn clauses (Competition Contri-
bution). In: Sankaranarayanan, S., Sharygina, N. (eds) Tools and Algorithms for
the Construction and Analysis of Systems. TACAS 2023. LNCS, vol. 13994, pp
559–564. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8 36

16. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.: VerifyThis – verification
competition with a human factor. In: Beyer, D., Huisman, M., Kordon, F., Steffen,
B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 176–195. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17502-3 12

17. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

18. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based model checking.
J. Autom. Reason. 64(6), 1051–1091 (2020). https://doi.org/10.1007/s10817-019-
09535-x

19. Healy, A., Monahan, R., Power, J.F.: Predicting SMT solver performance for soft-
ware verification. In: F-IDE@FM 2016, EPTCS, vol. 240, pp. 20–37 (2016). https://
doi.org/10.4204/EPTCS.240.2

20. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

21. Leeson, W., Dwyer, M.B.: Graves-CPA: a graph-attention verifier selector (Com-
petition Contribution). In: TACAS 2022. LNCS, vol. 13244, pp. 440–445. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99527-0 28

22. Leeson, W., Dwyer, M.B., Filieri, A.: Sibyl: improving software engineering tools
with SMT selection. In: Proceedings of ICSE (2023)

23. Luckow, K., et al.: JDart: a dynamic symbolic analysis framework. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 26

24. Luo, S., Xu, H., Bi, Y., Wang, X., Zhou, Y.: Boosting symbolic execution via
constraint solving time prediction (experience paper). In: ISSTA 2021, pp. 336–
347. ACM (2021). https://doi.org/10.1145/3460319.3464813

25. Richter, C., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

26. Richter, C., Wehrheim, H.: PeSCo: predicting sequential combinations of verifiers.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 229–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17502-3 19

27. Richter, C., Wehrheim, H.: Attend and represent: a novel view on algorithm selec-
tion for software verification. In: ASE 2020, pp. 1016–1028. IEEE (2020). https://
doi.org/10.1145/3324884.3416633

28. Saan, S. et al.: GOBLINT: autotuning thread-modular abstract interpretation. In:
Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. TACAS 2023. LNCS, vol. 13994, pp. 547–552.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8 34

29. Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh, V.: MachSMT: a machine
learning-based algorithm selector for SMT solvers. In: TACAS 2021. LNCS, vol.
12652, pp. 303–325. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72013-1 16

https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.4204/EPTCS.240.2
https://doi.org/10.4204/EPTCS.240.2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1145/3460319.3464813
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1145/3324884.3416633
https://doi.org/10.1145/3324884.3416633
https://doi.org/10.1007/978-3-031-30820-8_34
https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/978-3-030-72013-1_16

358 N. Thoben et al.

30. Thoben, N.: Online Performance Prediction of Software Verification using Machine
Learning. Master’s thesis, University of Oldenburg, Department of Computer Sci-
ence (2023)

31. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: algorithm selection
for software model checkers. In: MSR 2014, pp. 132–141. ACM (2014). https://doi.
org/10.1145/2597073.2597080

32. Wahl, T.: The k-induction principle (2013). http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf

https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2597073.2597080
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

Tool Papers

PMC-VIS: An Interactive Visualization
Tool for Probabilistic Model Checking

Max Korn1(B) , Julián Méndez2(B) , Sascha Klüppelholz1(B) ,
Ricardo Langner2(B) , Christel Baier1(B) , and Raimund Dachselt2(B)

1 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{max.korn,sascha.klueppelholz,christel.baier}@tu-dresden.de
2 Interactive Media Lab Dresden, TU Dresden, Dresden, Germany

{julian.mendez2,ricardo.langner,raimund.dachselt}@tu-dresden.de

Abstract. State-of-the-art Probabilistic Model Checking (PMC) offers
multiple engines for the quantitative analysis of Markov Decision Pro-
cesses (MDPs), including rewards modeling cost or utility values. Despite
the huge amount of internally computed information, support for debug-
ging and facilities that enhance the understandability of PMC models
and results are very limited. As a first step to improve on that, we present
the basic principles of PMC-VIS, a tool that supports the exploration
of large MDPs together with the computed PMC results per MDP-state
through interactive visualization. By combining visualization techniques,
such as node-link diagrams and parallel coordinates, with quantitative
analysis capabilities, PMC-VIS supports users in gaining insights into
the probabilistic behavior of MDPs and PMC results and enables dif-
ferent ways to explore the behaviour of schedulers of multiple target
properties. The usefulness of PMC-VIS is demonstrated through three
different application scenarios.

1 Introduction

Probabilistic model checking (PMC) is a well-established technique used in the
field of formal verification to analyze and assess the behavior of probabilistic
systems. Sources of probabilistic behavior include randomized algorithms as well
as stochastic assumptions about the external use of the system (i.e., the system
environment) and error probabilities. PMC combines concepts from probability
theory and model checking to provide quantitative insights into the reliability
and performance of such systems on various types of stochastic models. It is
applicable at all stages of the life cycle of a system (i.e., in the design phase, at
runtime, and at inspection time) for the evaluation of system properties, such
as reliability, safety, and various cost and performance metrics.

State-of-the-art probabilistic model checkers, such as PRISM [23], Storm [15],
and MRMC [20], have successfully been applied in various application fields,

M. Korn and J. Méndez—Authors contributed equally.

c© The Author(s) 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 361–375, 2023.
https://doi.org/10.1007/978-3-031-47115-5_20

https://doi.org/10.5281/zenodo.8172531
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47115-5_20&domain=pdf
http://orcid.org/0000-0003-3049-2539
http://orcid.org/0000-0003-1029-7656
http://orcid.org/0000-0003-1724-2586
http://orcid.org/0000-0003-4519-2168
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0002-2176-876X
https://doi.org/10.1007/978-3-031-47115-5_20

362 M. Korn et al.

including computer science, engineering, robotics, and biology [2,7]. Neverthe-
less, understanding, debugging, and using computed results for a given general
goal often involves a laborious manual process that is only supported by hand-
written and tailored software scripts in combination with general-purpose tools
for handling large datasets. Existing model checkers provide rather limited sup-
port for (re)configuration tasks (i.e., calibrating systems before or at runtime
to complete set objectives under possibly multiple criteria) that involve sys-
tematically exploring and understanding (1) complex system behavior and (2)
metrics returned by PMC processes. While there exist model checkers for PMC
that provide graphical user-interfaces to inspect the model and its results, like
PRISM [23], they do not incorporate advanced visualization techniques.

From the application viewpoint, the missing visual tool support for using
computed PMC results has already been recognized in some domains, such as
DNA sequencing [7] and automated driving [13]. The tools proposed in these
fields provide support for solving concrete problems in their respective domains,
yet they do not transfer to more domain-independent general goals such as
(re)configuration. To the best of our knowledge, no PMC tool fully harnesses
interactive visualization to support the exploration and facilitate the under-
standing of large models and their (functional or non-functional) properties.

In response, we set to create PMC-VIS, a visual tool that explicitly supports
understanding the above-mentioned system behavior (1) and metrics (2) while
remaining independent from a concrete application field. PMC-VIS connects the
PRISM model checker on the backend side with a visualization frontend. Our
focus is on Markov Decision Processes (MDPs) as operational models, in which
the initial states stand for design alternatives (configurations) and the nondeter-
ministic choices stand for possible reconfiguration steps. Metrics in this setting
are of a quantitative nature and include probabilities and expectations of random
variables, standing for either costs or gained rewards. The backend of our tool
PMC-VIS consists of a simple API shell around PRISM that allows for calls to
the model checker at runtime and a database wrapper for efficient data-exchange
to the frontend. The frontend consists of a web-based application that enables
exploration of large MDPs including features for comparing metrics computed
by PMC attached to MDP states, actions and schedulers, while additionally sup-
porting finding suitable configurations in families of MDPs and reconfiguration
in adaptive systems modeled as MDPs. The current version of PMC-VIS, usage
scenarios, and performance experiments are available at imld.de/pmc-vis.

2 Background and Related Work

Markov Decision Processes (MDP) are formal, stochastic models used to describe
systems that exhibit both controllable and uncontrollable behaviour [3]. MDPs
are typically represented as directed graphs with states as vertices and actions
(also referred to as transitions) as edges. Edges can additionally express uncer-
tainty, or in other words, the same action may lead to different states according
to a probability distribution. We will use the term PMC results to refer to the

https://imld.de/pmc-vis

The PMC-VIS Tool 363

output of the PMC, including probabilities of temporal events and expectations
of random variables. Apart from the sole purpose of evaluation by means of a
quantitative analysis, the computed PMC results can be used to decide on dif-
ferent design alternatives, determine appropriate values for system parameters
(i.e., parameter synthesis for configuration) and to synthesize suitable adapta-
tion policies (i.e., strategy synthesis for reconfiguration in adaptive systems) by
examining schedulers, the functions that resolved the non-determinism during
computation.

Visual Tools for Model Checking. HMMEditor [7] and TraceVis [13] exem-
plify the usage of PMC results for specific application scenarios which do not
transfer to domain-independent (re)configuration tasks. On the other hand, tools
like Palette [19] and Theseus [11] visualize model checking outcomes, but not the
model or its inherent behaviour. Another example of this is MDPVis [25], which
provides insights for debugging through a succinct overview of MDPs of arbitrary
size, yet it does not visualize individual decisions nor the model itself, making it
quite abstract for understanding the model behavior. Some model checking tool-
boxes in adjacent fields, such as mCRL2 [5], CADP [10] and UPPAAL [4] already
contain capabilities to create visual support for understanding their models by
visualizing them in graph form. In the field of MDPs, this also has been partially
addressed for learning scenarios [27] as well as for the understanding of model
checking counterexamples [17], using multiple coordinated views. But all these
tools were evaluated on relatively small graphs, making scaling to large MDPs
remain an open challenge.

Degree-Of-Interest for Large Decision Graphs. Large graphs are typically
handled using aggregation and clustering methods [12], (e.g., ZAME [8] and
ASK-GraphView [1] and HybridVis [24]), or focus+context techniques [6,30].
However, noting that a complete graph overview may not be necessary for deci-
sion graphs (as the interest is typically on a few decisions at a time), we make
use of Degree-Of-Interest (DOI) graphs [14] instead. This approach for large
graph exploration shows only an initial set of nodes and delegates to the user
the responsibility of revealing, on-demand, the neighbors of nodes of interest. In
this way, the graph is revealed progressively. This is fitting for MDPs as we can
expand by discreet time steps of the model. However, while visual clutter and
subsequently, cognitive load, start low, they increase as the graph is expanded
in this approach. To overcome this limitation, we take further inspiration from
concepts for iterative graph exploration on sequential views [16,29].

Parallel Coordinates Plots for Multivariate Graphs and Decision-
Making. The surveys on multivariate network visualization [21,26] present vari-
ous approaches fitting to our challenge of joining per-state PMC results to MDPs.
Most prominently, multiple coordinated view setups featuring Parallel Coordi-
nates Plots (PCPs) [18] are used to effectively display and explore the attributes
alongside or within the graph view. A PCP consists of a set of n parallel lines axes
for each of the dimensions or attributes of n-dimensional data. The data points
are then represented as polylines connecting the axes at the values of each data

364 M. Korn et al.

Fig. 1. Screenshot of PMC-VIS, illustrating three panes (a, b, c), each showing a
different part of the MDP. The settings sidebar is visible on (d).

point’s attributes. By organizing the data in such a way, it is possible to detect
patterns and correlations between attribute values. PCPs typically incorporate
interaction techniques such as axes re-ordering, brushing and highlighting. By
brushing on an axis x, the user selects the set of data points where the value for
x is within the range determined by the brushed area. Multiple brushes can be
specified simultaneously on different axes, which is why PCPs are employable
for multi-criteria decision-making (e.g., Parasol [28]). HybridVis [24] also exem-
plifies the usage of a PCP alongside a graph view. Using the before-mentioned
abstraction approaches, this graph view scales, although visually cluttered, to
a few thousand nodes. The PCP encodes the multi-variate nodes of the graph,
which in turn allows coordinated filtering and highlighting in both views.

3 PMC-VIS: Visualising Probabilistic Model Checking

As an interdisciplinary team, bridging the visualization and formal verification
communities, we designed and developed PMC-VIS, a tool that integrates visu-
alization techniques and efficient retrieval methods. A screenshot of PMC-VIS
can be seen in Fig. 1. PMC-VIS consists of two web servers, Backend and Fron-
tend. Our architecture decouples the heavy probabilistic model checking compu-
tations done in the Backend from the visualization and interaction service pro-
vided by the Frontend. The Frontend can request data for states or subgraphs of
interest from Backend, and uses this data to populate interactive visualizations.

Backend: The Backend server manages instances of the model checker
Prism [23], using its publicly available API1. As opposed to retrieving the data
from resulting log files, we extract and store it in a database while it is generated
during the stages of the PMC process. Before model checking, we extract struc-
tural information from the model input: existence of variables and their domains

1 github.com/prismmodelchecker/prism-api.

https://github.com/prismmodelchecker/prism-api

The PMC-VIS Tool 365

Fig. 2. Representation of MDPs. Version (a) is a more typical, compact version, with
edges for actions and vertices for states. We propose version (b) for PMC-VIS, with a
more stretched but explicit representation of actions versus outcomes.

(i.e., possible values they can take), labels for the states, parameters for exper-
iments, and reward functions. After model construction, we create two tables,
for (1) reachable states in the model, together with information about variables,
labels and rewards, and (2) reachable actions, along with their labels and pos-
sible outcomes. After model checking a property, the computed PMC results
are extracted for every reachable state of the MDP and stored in the above-
mentioned tables, along with the scheduler actions taken or possibly taken.

Frontend: The Frontend of PMC-VIS is a web-based application that visual-
izes MDPs and their conjunct PMC results through sequential panes. Each pane
has two sub-panes, for a graph view and an attribute view. Every graph view uses
the Degree-Of-Interest (DOI) [14] approach to reveal the MDP on demand, and
every attribute view uses configurable Parallel Coordinates Plots (PCPs) [18] to
navigate through the PMC results related to selections within the graph view.
Both panes and sub-panes are re-sizable, and the content within them adapts
to the available space. For example, Fig. 1a shows a vertical PCP to better use
the height of the sub-pane, whereas the PCPs in Fig. 1b and c are horizontal.
PMC-VIS uses both traditional context menus and direct interactions (e.g.,
shift+click, double click) to support both novices and experienced users.

DOI MDPs: We designed a representation of MDPs, visible in Fig. 2b. For
the states, we use rectangular nodes. For the edges, instead of overloading their
meaning to indicate both actions and probabilistic outcomes (as shown in edge β
of Fig. 2a), we explicitly separate these meanings by introducing handle nodes for
the actions as label-less circles. This allows the user to more easily scan and parse
the edges, since an outgoing edge from a state will always carry the action name
(e.g., α, β, γ), and any outgoing edge from a handle node shows the probability
of reaching the state that it points to. For example, when only glancing over
Fig. 2a one could mistakenly get the impression that there are two outgoing
actions from s1 (as opposed to just β). This effect worsens when, (e.g., for each
state) there are several outgoing actions, each with several probable outcomes. In
reconfiguration tasks, where the user needs to decide between several actions, the
handle nodes also simplify the selection of actions by area (e.g., using rectangle
or lasso selections over the circle nodes instead of edges). The labels of the states
are provided by the Backend as either text or icons. The scheduler choices are
represented as solid edges, with the sub-optimal choices shown as dashed edges.
Our proposed representation suits the implementation of an incremental DOI

366 M. Korn et al.

approach well, since the data transfers are always small despite the introduced
components. Expanding states reveals their immediate next actions and states.
This expanding can be done within the same pane, or onto one, or several,
adjacent panes.

PMC Results via PCPs: Alongside each DOI graph, a PCP is shown in
each pane to explore the additional PMC results. The PCPs in our PMC-VIS
tool support axes re-ordering and brushing for selections, hovering to preview
selections, and other miscellaneous options for numerical, boolean and nominal
data. The data that is shown on the PCP of a pane is linked to the selection
of nodes on its respective graph view, meaning that states (blue) and actions
(orange) can be loaded onto the PCP for filtering based on the shown PMC
results, which in turn can refine the selection made on the graph view through
e.g., axes brushing. The PCPs can be seen at the bottom of the panes visible
in Fig. 1a–c. Additionally, details for each state on the DOI graph can be shown
on-demand via tooltips.

Settings: PMC-VIS has a sidebar on the right with several options to modify
the shown attributes of the PMC results, as well as several graph layout options
(e.g., force-directed, hierarchical) that can be applied to each pane individually.
Understanding the part of the MDP shown in each pane may be easier using
different graph layout options for particular cases, and this flexibility in con-
figuration supports varying user preferences within each individual pane. The
settings sidebar is visible in Fig. 1d.

Multi-pane Possibilities: Our multi-pane approach allows the users to expand
as much as desired and to create structural “check-points” by expanding a
selection of states from the MDP onto new panes. Doing so creates multiple
work spaces within the same MDP, enhancing the scalability of the DOI app-
roach by turning the model exploration into a task that can be distributed and
completed asynchronously. Furthermore, a pane can be cloned onto a neighbor
pane, for comparison and to save previous states. This approach also supports
backtracking to previous states and work spaces, to re-evaluate decisions and
explore branching paths of the MDP. Lastly, the content of any pane can be
exported/imported, allowing users to completely off-load their progress from a
browser tab and start directly from any state or state selection that they had
reached before.

Implementation: The Backend uses dropwizard2 to establish a RESTful web-
server that wraps Prism and manages an SQL-lite database. The Frontend
of PMC-VIS uses the Cytoscape.js3 library (v3.25.0 [9]) for the graph views,
enhanced through several of its add-ons (e.g., for graph layouts), alongside the
well-established D3.js4 library (v7.8.4) to construct the PCPs. This selection of
libraries and frameworks ensures efficient loading and rendering times.

2 dropwizard.io.
3 js.cytoscape.org.
4 d3js.org.

https://dropwizard.io/
https://js.cytoscape.org/
https://d3js.org/

The PMC-VIS Tool 367

4 Usage Scenarios and Performance

To illustrate the capabilities of PMC-VIS, we provide four example models
and several performance measurements on the accompanying artifact [22] and
website imld.de/pmc-vis. In the following, we exemplify the usage of PMC-VIS
for three individual usage scenarios on the model of a server management system
(SMS). This model, consisting of 93,588 states, describes how a number of tasks
is distributed to a number of servers. The usage scenarios are further illustrated
in the Appendix of this paper.

Scenario 1 (Configuration) deals with the model configuration, in which
the user is interested in finding a good server setup. In order to do this, a selection
over the initial 84 states must be made. Using the PCP, the user can refine a
selection that satisfies some criteria of interest. For example, by brushing the axis
for PrMaxHappy near value 1, the user ensures that only states that maximize
the probability of successfully completing all tasks are selected. After similarly
brushing over the lowest values of maximum and minimum energy consumption
(MostEnergy and LeastEnergy), a selection of only 3 states is achieved and
can be expanded on an adjacent pane. Other patterns can be seen in the PCP
that may inform different selections, for which the user can simply go back to
the original pane to change the selection.

Scenario 2 (Exploration) explains how through the exploration of the
MDP in different panes, it is possible for the user to distinguish 3 phases the
model goes through, which helps construct a visual understanding of the model
behavior while using PMC-VIS: (1) generating tasks, (2) re-configuring, and
(3) assigning work. These phases repeat until some termination criteria is reached
(e.g., a fixed number of phases have been completed). The split between these
different phases also highlights the value of using different panes to make sure
that no partial work is lost, which in systems with a single view is often not
possible.

Lastly, Scenario 3 (Strategic Exploration) describes the additional
means by which the users of PMC-VIS can construct strategies while navi-
gating the MDP, informed by the accompanying PMC results. These strategies
are essentially a list of choices that must be made in order to find certain paths in
the MDP, that fulfill the goals of the SMS. Users can discover strategies by com-
paring per-node tooltips, PCPs in different panes (for both states and actions
within the MDP), and MDPs with different highlighted schedulers. Schedulers,
and particularly, the comparison of multiple scheduler options, helps the user
understand how non-determinism is solved for maximum and minimum PMC
results. Thus, the flexible exploration and comparison facilities of PMC-VIS
aid in making sense of schedulers over multiple properties without the need to
trigger new model checking computations. Ultimately, the creation of a strat-
egy may span many panes, and disconnected, asynchronous work, which is why
PMC-VIS also provides a feature to export a collection of marked nodes, which
can be loaded onto a pane to explore gaps until a complete strategy has been
developed.

https://imld.de/pmc-vis

368 M. Korn et al.

Performance Experiment: Our goal was to provide both fast build time and
smooth interaction with the MDP regardless of its total size. Thus, we mea-
sured the build and response times of multiple models of similar structure but
exponentially increasing size (measured in number of states of the MDP), all
solved for the same properties. With respect to the model computation times,
our experiment shows that the overhead introduced by the creation and initial
insertion into the database, compared to only executing the PMC procedures,
is mainly bound to the database writing speed, where we perform around 40–50
operations per millisecond. However, all operations scale similarly with respect
to model size, meaning we can compute PMC results normally with Prism.
Likewise, with regards to the model exploration, the Frontend performance is
influenced by the response times of the Backend, which we kept under a second
for small requests (1 to 5 states) or within a few seconds for large (10 queried
states) requests, even on a model with 107 states. Beyond this, on a laptop with
Intel(R) Core(TM) i7-7500U CPU and 16 GB of RAM, and using a Chromium
114.0.5735.133 browser, a single pane continues to operate smoothly with over
500 nodes. However, we do not foresee users working with large requests often,
nor with that much content on a single pane.

5 Conclusion

We contributed PMC-VIS to support exploration of MDPs and PMC config-
uration and reconfiguration tasks. Our solution incorporates DOI graphs and
PCPs on a multi-pane approach that, making use of efficient model checking
and retrieval methods, supports users in understanding model behaviour and
conjunct PMC results. We discussed how PMC-VIS can be used to answer var-
ious formal verification questions, especially in regard to the (re)configuration
tasks. We foresee that further formal model and verification methods would
benefit from extensions of our approach. Thus, we look forward to further gen-
eralizing PMC-VIS in various directions towards an IDE for automata-based
operational models, model checking of functional and nonfunctional properties
and functionalities for various synthesis questions, including further features for
what-if analysis.

Data-Availability Statement. PMC-VIS, the used models, scenarios and
performance experiment are open source and available on our supplementary
web page at imld.de/pmc-vis and in the accompanying artifact at Zenodo [22].
Further figures of PMC-VIS can be found in the Appendix of this paper.

https://imld.de/pmc-vis

The PMC-VIS Tool 369

Acknowledgements. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy:
EXC-2068, 390729961 - Cluster of Excellence “Physics of Life” and EXC 2050/1,
390696704 - Cluster of Excellence “Centre for Tactile Internet” (CeTI) of TU Dresden,
by DFG grant 389792660 as part of TRR 248 – CPEC (see https://cpec.science) and
by the German Federal Ministry of Education and Research (BMBF, SCADS22B) and
the Saxon State Ministry for Science, Culture and Tourism (SMWK) by funding the
competence center for Big Data and AI “ScaDS.AI Dresden/Leipzig”.

Appendix

The following illustrations are appended to the paper for the interested reader to
have a deeper look at PMC-VIS and our results. (See Figs. 3, 4, 5, 6, 7 and 8).

Fig. 3. Related to Scenario 1 described in Sect. 4. Axes brushing on the parallel coor-
dinates plot. The numbers (1) through (4) represent the order of the brushing steps to
reach a selection of 3 states out of the initial 84.

https://cpec.science

370 M. Korn et al.

Fig. 4. Related to Scenario 2 described in Sect. 4. Three phases of our model shown
as patterns in the graph views: (a) Generating tasks, (b) re-configuring servers, (c)
assigning work to each server.

Fig. 5. Related to Scenario 3 described in Sect. 4. Different edge highlights depending
on the selected scheduler. (a): PrMax Happy was selected. (b): Least Energy was
selected.

The PMC-VIS Tool 371

Fig. 6. Related to Scenario 3 described in Sect. 4. Shift+click on a state (with blue
border) shows a tooltip, detailing all properties selected in the settings sidebar. (Color
figure online)

Fig. 7. Related to the experiment described in Sect. 4. (a): Times for single model com-
putation. (b): Average response time (gathered over 10,000 responses). These experi-
ments were carried out on a server with Intel(R) Xeon(R) L5630 CPUs with in total 8
physical cores and 189GB of DDR3 RAM.

372 M. Korn et al.

F
ig
.
8
.
S
cr

ee
n
sh

o
t

o
f
P
M
C
-V

IS
,
sh

ow
in

g
3
pa
n
es

(a
,
b
,
c)

.
P
a
n
e

(a
)

sh
ow

s
th

e
in

it
ia

l
st

a
te

s
o
f
th

e
M

D
P

(a
s

a
g
ri

d
o
f
u
n
co

n
n
ec

te
d

n
o
d
es

a
b
ov

e,
a
n
d

a
s

p
o
ly

li
n
es

in
th

e
P

C
P

b
el

ow
).

P
a
n
e

(b
)

sh
ow

s
a

se
t

o
f

se
le

ct
ed

a
ct

io
n
s

(i
n

o
ra

n
g
e)

.
P
a
n
e

(c
)

sh
ow

s
a

se
le

ct
io

n
ov

er
th

e
p
o
ss

ib
le

o
u
tc

o
m

es
o
f

a
ch

o
se

n
a
ct

io
n

(s
ta

te
s,

in
b
lu

e)
.
(d

)
sh

ow
s

th
e

se
tt

in
g
s

si
d
eb

a
r,

cu
rr

en
tl

y
li
n
k
ed

to
p
a
n
e

(b
)

a
s

in
d
ic

a
te

d
b
y

th
e

g
re

en
b
o
rd

er
o
n

to
p

o
f
th

is
p
a
n
e.

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

The PMC-VIS Tool 373

References

1. Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: a large scale graph visu-
alization system. IEEE TVCG 12(5), 669–676 (2006). https://doi.org/10.1109/
TVCG.2006.120

2. Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
91908-9 21

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

5. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2 ISBN 9783030174651

6. Card, S.K., Shneiderman, B., MacKinlay, J.D.: Readings in Information
Visualization-Using Vision to Think. Series in Interactive Technologies. Morgan
Kaufmann Publishers (1999). ISBN 1-55860-533-9

7. Dai, J., Cheng, J.: HMMEditor: a visual editing tool for profile hidden Markov
model. BMC Genom. 9(1), S8 (2008). https://doi.org/10.1186/1471-2164-9-S1-
S8. ISSN 1471–2164

8. Elmqvist, N., et al.: ZAME: interactive large-scale graph visualization. In: 2008
IEEE PacificVis, pp. 215–222 (2008). https://doi.org/10.1109/PACIFICVIS.2008.
4475479

9. Franz, M., et al.: Cytoscape.js 2023 update: a graph theory library for visu-
alization and analysis. Bioinformatics 39(1) (2023). https://doi.org/10.1093/
bioinformatics/btad031. ISSN 1367–4811

10. Garavel, H., et al.: CADP 2011: a toolbox for the construction and analysis of dis-
tributed processes. STTT 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-
012-0244-z. ISSN 1433–2787

11. Goldsby, H., Cheng, B.H.C., Konrad, S., Kamdoum, S.: A visualization framework
for the modeling and formal analysis of high assurance systems. In: Nierstrasz,
O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp.
707–721. Springer, Heidelberg (2006). https://doi.org/10.1007/11880240 49

12. Görke, R., Hartmann, T., Wagner, D.: Dynamic graph clustering using minimum-
cut trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009.
LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03367-4 30 ISBN 978-3-642-03367-4

13. Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.:
TraceVis: towards visualization for deep statistical model checking. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12479, pp. 27–46. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-83723-5 3

14. van Ham, F., Perer, A.: Search, show context, expand on demand: supporting large
graph exploration with degree-of-interest. IEEE TVCG 15(6), 953–960 (2009).
https://doi.org/10.1109/TVCG.2009.108

15. Hensel, C., et al.: The probabilistic model checker storm (2020). arXiv: 2002.07080
[cs.SE]

https://doi.org/10.1109/TVCG.2006.120
https://doi.org/10.1109/TVCG.2006.120
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1186/1471-2164-9-S1-S8
https://doi.org/10.1186/1471-2164-9-S1-S8
https://doi.org/10.1109/PACIFICVIS.2008.4475479
https://doi.org/10.1109/PACIFICVIS.2008.4475479
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1093/bioinformatics/btad031
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/11880240_49
https://doi.org/10.1007/978-3-642-03367-4_30
https://doi.org/10.1007/978-3-642-03367-4_30
https://doi.org/10.1007/978-3-030-83723-5_3
https://doi.org/10.1109/TVCG.2009.108
http://arxiv.org/abs/2002.07080

374 M. Korn et al.

16. Horak, T., Dachselt, R.: Hierarchical graphs on mobile devices: a lane-based app-
roach. In: CHI MobileVis Workshop (2018)

17. Horak, T., et al.: Visual analysis of hyperproperties for understanding model check-
ing results. IEEE TVCG 28(1), 357–367 (2022). https://doi.org/10.1109/TVCG.
2021.3114866. ISSN 1941–0506

18. Johansson, J., Forsell, C.: Evaluation of parallel coordinates: overview, catego-
rization and guidelines for future research. IEEE TVCG 22(1), 579–588 (2016).
https://doi.org/10.1109/TVCG.2015.2466992

19. Kamhi, G., Fix, L., Binyamini, Z.: Symbolic model checking visualization. In:
Gopalakrishnan, G., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 290–
302. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49519-3 19 ISBN
9783540495192

20. Katoen, J.-P., et al.: The ins and outs of the probabilistic model checker MRMC.
IPerform. Eval. 68(2), 90–104 (2011). https://doi.org/10.1016/j.peva.2010.04.001.
ISSN 0166–5316

21. Kerren, A., Purchase, H.C., Ward, M.O. (eds.): Multivariate Network Visualiza-
tion. LNCS, vol. 8380. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06793-3

22. Korn, M., et al.: Interactive Visualization Meets Probabilistic Model Checking
Artifact (2023). https://doi.org/10.5281/zenodo.8172531

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

24. Liu, Y., et al.: HybridVis: an adaptive hybrid-scale visualization of multivari-
ate graphs. JVLC 41, 100–110 (2017). https://doi.org/10.1016/j.jvlc.2017.03.008.
ISSN 1045–926X

25. McGregor, S., et al.: Facilitating testing and debugging of Markov Decision Pro-
cesses with interactive visualization. In: IEEE VL/HCC 2015, pp. 53–61 (2015).
https://doi.org/10.1109/VLHCC.2015.7357198

26. Nobre, C., et al.: The state of the art in visualizing multivariate networks. CGF
38(3), 807–832 (2019). https://doi.org/10.1111/cgf.13728

27. Pfannkuch, M., Budgett, S.: Markov processes: exploring the use of dynamic visu-
alizations to enhance student understanding. JSE 24(2), 63–73 (2016). https://
doi.org/10.1080/10691898.2016.1207404

28. Raseman, W.J., Jacobson, J., Kasprzyk, J.R.: Parasol: an open source, interactive
parallel coordinates library for multi-objective decision making. EMS 116, 153–163
(2019). https://doi.org/10.1016/j.envsoft.2019.03.005

29. Tan, Y.-Q., et al.: VecRoad: point-based iterative graph exploration for road graphs
extraction. In: 2020 IEEE/CVF CVPR, pp. 8907–8915 (2020). https://doi.org/10.
1109/CVPR42600.2020.00893

30. Wang, Y., et al.: Structure-aware fisheye views for efficient large graph exploration.
IEEE TVCG 25(1), 566–575 (2019). https://doi.org/10.1109/TVCG.2018.2864911

https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2015.2466992
https://doi.org/10.1007/3-540-49519-3_19
https://doi.org/10.1016/j.peva.2010.04.001
https://doi.org/10.1007/978-3-319-06793-3
https://doi.org/10.1007/978-3-319-06793-3
https://doi.org/10.5281/zenodo.8172531
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.jvlc.2017.03.008
https://doi.org/10.1109/VLHCC.2015.7357198
https://doi.org/10.1111/cgf.13728
https://doi.org/10.1080/10691898.2016.1207404
https://doi.org/10.1080/10691898.2016.1207404
https://doi.org/10.1016/j.envsoft.2019.03.005
https://doi.org/10.1109/CVPR42600.2020.00893
https://doi.org/10.1109/CVPR42600.2020.00893
https://doi.org/10.1109/TVCG.2018.2864911

The PMC-VIS Tool 375

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Ahrendt, Wolfgang 106
Ameur-Boulifa, Rabéa 11
Artho, Cyrille 106

B
Baier, Christel 361
Batty, Mark 301

C
Conchon, Sylvain 30
Cordeiro, Lucas C. 320
Corradi, Quentin 11

D
Dachselt, Raimund 361
De Castro Pinto, Theo 47
Dongol, Brijesh 301
Dyck, Florian 66

E
Egolf, Derek 85
Eshghie, Mojtaba 106

G
Ghosal, Sandip 126

H
Hahn, Ernst Moritz 205
Hähnle, Reiner 3
Haltermann, Jan 145, 340
Henrio, Ludovic 11
Hildebrandt, Thomas Troels 106

J
Jakobs, Marie-Christine 145
Jonsson, Bengt 126

K
Kamburjan, Eduard 3
Klüppelholz, Sascha 361
Korn, Max 361
Korneva, Alexandrina 30

L
Langner, Ricardo 361
Lopuhaä-Zwakenberg, Milan 165, 205
Loulergue, Frédéric 246

M
Madelaine, Eric 11
Marmsoler, Diego 184
Méndez, Julián 361
Mustafa, Mustafa A. 320

N
Nicoletti, Stefano M. 205
Nivon, Quentin 226

P
Pardo, Raúl 263
Proust, Olivia 246

R
Richter, Cedric 66, 145
Rollet, Antoine 47
Rønneberg, Rasmus C. 263
Rümmer, Philipp 126

S
Salaün, Gwen 226
Sallinger, Sarah 282
Scaletta, Marco 3
Schneider, Gerardo 106
Semenyuk, Mikhail 301
Song, Xidan 320
Stoelinga, Mariëlle 165, 205

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Ferreira and T. A. C. Willemse (Eds.): SEFM 2023, LNCS 14323, pp. 377–378, 2023.
https://doi.org/10.1007/978-3-031-47115-5

https://doi.org/10.1007/978-3-031-47115-5

378 Author Index

Sun, Youcheng 320
Sutre, Grégoire 47

T
Thoben, Nicola 340
Thornton, Billy 184
Tobor, Ireneusz 47
Tripakis, Stavros 85

W
Wąsowski, Andrzej 263
Wehrheim, Heike 66, 145, 340
Weissenbacher, Georg 282

Z
Zuleger, Florian 282

	Preface
	Organization
	Randomized Testing of Distributed Systems (Abstract)
	Contents
	Invited Contribution
	Herding CATs
	1 Introduction
	2 CATs by Example
	2.1 General Structure of a CAT
	2.2 Accessing the Program State: Observation Quantifiers
	2.3 Running Example
	2.4 Goal of Specification
	2.5 CATs

	3 Wrapping Up
	References

	Regular Papers
	Refinements for Open Automata
	1 Introduction
	2 Open Automata and Their Composition
	2.1 Preliminaries and Notations
	2.2 Open Automata (OA)
	2.3 Relations Between Open Automata
	2.4 A Bisimulation for Open Automata
	2.5 Reachability

	3 Simulation for Automata with the Same Holes
	4 A Simulation Relation that Takes Holes into Account
	5 Properties of Our Simulation Relations
	5.1 Non-blocking Composition
	5.2 Properties

	6 Related Work
	7 Conclusion
	References

	The Cubicle Fuzzy Loop: A Fuzzing-Based Extension for the Cubicle Model Checker
	1 Introduction
	2 Backgound on Cubicle
	3 Motivation
	4 Fuzzing Cubicle
	5 Experimental Results and Discussion
	6 Conclusion and Related Work
	References

	Guiding Symbolic Execution with A-Star
	1 Introduction
	2 Running Example
	3 A* Guided Symbolic Execution
	4 Guiding the Exploration Towards the Unknown
	5 Application to Binary Programs
	6 Experimental Results
	7 Conclusion
	References

	Robustness Testing of Software Verifiers
	1 Introduction
	2 Background
	3 Robustness Testing for Software Verification
	3.1 Robustness of Software Verifiers
	3.2 Semantics-Preservation
	3.3 Transformations
	3.4 Robustness Testing Through Repeated Transformations

	4 Evaluation
	4.1 Benchmark Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Decoupled Fitness Criteria for Reactive Systems
	1 Introduction
	2 Preliminaries
	3 A Formal Framework for Capturing Fitness
	4 Reducing Fitness Evaluation to Matrix Analysis
	4.1 Step [stepspsrecur]2: Constructing the Recurrence Relation
	4.2 Step [stepspsmatrix]3: Matrix Analysis

	5 Case Studies
	5.1 Case Study #1: Simple Communication Protocol
	5.2 Case Study #2: Two Phase Commit (2PC)
	5.3 Case Study #3: Alternating Bit Protocol (ABP)

	6 Related Work
	7 Conclusions and Future Work
	References

	Capturing Smart Contract Design with DCR Graphs
	1 Introduction
	2 Background
	2.1 Smart Contracts: Ethereum and Solidity
	2.2 Dynamic Condition Response Graphs

	3 Smart Contract Design Patterns as DCR Graphs
	4 Modeling and Analysis of a Casino Smart Contract
	5 Related Work
	6 Conclusion and Future Work
	References

	An Active Learning Approach to Synthesizing Program Contracts
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Contracts
	3.2 Register Automata
	3.3 Active Learning of Register Automata

	4 Contract Synthesis
	4.1 Learning a Behavioural Model
	4.2 Generating Contracts from a Register Automaton
	4.3 Correctness and Optimality

	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Ranged Program Analysis via Instrumentation
	1 Introduction
	2 Background
	2.1 Program Syntax and Semantics
	2.2 Program Ranges
	2.3 Ranged Program Analysis

	3 Ranged Program Analysis via Instrumentation
	3.1 Instrumenting Programs with Ranges
	3.2 From Test Cases to Branching Decisions
	3.3 Instrumentation-Based Ranged Analysis
	3.4 Handling Underspecified Bounds

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: Comparison of the CPA-Based and Instrumentation-Based Ranged Program Analysis
	5.3 RQ2: Comparing Range Instrumentation and Range Reduction
	5.4 RQ3: Comparison of Instrumentation-Based Ranged Analysis with Standalone Execution
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Attack Time Analysis in Dynamic Attack Trees via Integer Linear Programming
	1 Introduction
	2 Related Work
	3 Dynamic Attack Trees
	3.1 Semantics
	3.2 The Min Time Metric
	3.3 Relation to Semantics of ch10Budde2021

	4 An MILP Approach to Min Time
	5 Computation Time Reduction
	5.1 Bottom-Up Computation
	5.2 Modular Analysis

	6 Experiments
	6.1 Generation of Testing DATs
	6.2 Time Comparisons

	7 Conclusion and Discussion
	References

	SSCalc: A Calculus for Solidity Smart Contracts
	1 Introduction
	2 Background
	2.1 Inductive Data Types
	2.2 State Monad
	2.3 State
	2.4 Exceptions

	3 Calculus
	3.1 Basic Rules
	3.2 Method Invocation

	4 Formalization in Isabelle/HOL
	4.1 Verification of Soundness
	4.2 Automation

	5 Methodology
	6 Case Study: Verified Banking
	6.1 The Contract
	6.2 Formalizing the Contract
	6.3 Specification of Properties
	6.4 Verification

	7 Related Work
	8 Conclusion
	References

	ATM: A Logic for Quantitative Security Properties on Attack Trees
	1 Introduction
	1.1 Our Approach
	1.2 Related Work

	2 Attack Trees
	2.1 Security Metrics for Attack Trees

	3 A Logic for at General Metrics
	3.1 Syntax of ATM
	3.2 Semantics of ATM

	4 Case Study: Attacking a CubeSAT
	5 Model Checking Algoritms
	5.1 Binary Decision Diagrams (BDDs)
	5.2 BDDs from ATs and Layer 1 Formulae
	5.3 Model Checking Layer 1 Formulae
	5.4 Model Checking Layer 2 Formulae
	5.5 Compute Metrics for Layer 3 Formulae
	5.6 Model Checking Layer 4 Formulae

	6 Conclusions
	References

	Refactoring of Multi-instance BPMN Processes with Time and Resources
	1 Introduction
	2 Models
	3 Refactoring
	4 Tool and Experiments
	5 Related Work
	6 Concluding Remarks
	References

	Verified Scalable Parallel Computing with Why3
	1 Introduction
	2 An Overview of Why3
	2.1 Specifying and Verifying Functional Programs with Why3
	2.2 Limitations with Higher-Order Functions

	3 Functional Bulk Synchronous Parallelism
	4 Formalization of BSML Core and Standard Library
	5 Verified Scalable Maximum Prefix Sum
	6 Related Work
	7 Conclusion and Future Work
	References

	Exact and Efficient Bayesian Inference for Privacy Risk Quantification
	1 Introduction
	2 Background
	2.1 Privug: A Data Privacy Debugging Method
	2.2 Multivariate Gaussian Distributions

	3 Exact Inference Engine for Privug
	3.1 Semantics
	3.2 Soundness and Termination

	4 Case Study: Privacy Risks in Public Statistics
	5 Scalability Evaluation
	6 Related Work
	7 Conclusion
	References

	A Formalization of Heisenbugs and Their Causes
	1 Introduction
	2 A Formalization of Heisenbugs
	2.1 System Model
	2.2 Formal Definition of Heisenbugs

	3 Causality
	3.1 Modeling Sources of Nondeterminism
	3.2 Defining Causes
	3.3 Causes and Nondeterminism
	3.4 Testing and Causal Analysis

	4 Analysis Methodology and Challenges
	5 Related Work
	6 Conclusion
	References

	Verifying Read-Copy Update Under RC11
	1 Introduction
	2 Motivation
	2.1 ABA Problem During Memory Reclamation
	2.2 An RCU-Based Solution
	2.3 Execution Under RC11 Memory

	3 Background
	3.1 Syntax and RC11 Semantics
	3.2 Owicki-Gries Reasoning
	3.3 View-Based Assertions

	4 Extensions to Semantics and Logic
	4.1 Allocation Model
	4.2 Extending the Assertion Language

	5 Proof of Correctness
	5.1 Ownership and Capabilities
	5.2 Invariants and Proof Outlines

	6 Related and Future Work
	7 Conclusions
	References

	QNNRepair: Quantized Neural Network Repair
	1 Introduction
	2 Related Work
	2.1 Neural Network Verification
	2.2 Neural Network Repair
	2.3 Quantized Aware Training

	3 Preliminaries
	3.1 Statistical Fault Localization
	3.2 Neural Network and Quantization
	3.3 Solvers for Mixed Integer Linear Optimization

	4 QNNRepair Methodology
	4.1 Ranking the Importance of the Neurons
	4.2 Constraints-Solving Based Repairing
	4.3 QNNRepair Algorithm

	5 Experiment
	5.1 Experimental Setup
	5.2 Repair Results on Baselines
	5.3 Comparison with Data-Free Quantization
	5.4 Repair Efficiency
	5.5 Comparison Between Fault Localization Metrics in QNNRepair
	5.6 Limitations

	6 Conclusion
	References

	Timeout Prediction for Software Analyses
	1 Introduction
	2 Background
	2.1 Programs and Control Flow Automata
	2.2 Predicate Analysis
	2.3 CEGAR

	3 Features for Learning
	4 Timeout Prediction
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Metrics
	5.3 RQ1: Comparing Static Features to Dynamic Ones, Which Feature Set Leads to a Better Performing Model?
	5.4 RQ2: Can a Machine Learning Model Outperform Simple Heuristics?
	5.5 RQ3: Does a Sequential Composition Benefit from a Timeout Prediction?

	6 Related Work
	7 Conclusion
	References

	Tool Papers
	PMC-VIS: An Interactive Visualization Tool for Probabilistic Model Checking
	1 Introduction
	2 Background and Related Work
	3 PMC-VIS: Visualising Probabilistic Model Checking
	4 Usage Scenarios and Performance
	5 Conclusion
	References

	Author Index

