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Abstract. In the design of structures, there are uncertainties of differ-
ent origin often associated with the properties of materials, geometry and
applied loads. With the Reliability-Based Design Optimization (RBDO)
method, it is possible to consider design constraints in terms of failure
probabilities or target reliability indices, for a structure subject to perfor-
mance constraints as limit state functions (LSF), in a classical optimiza-
tion problem. In this way, RBDO analysis takes design variables uncer-
tainties and its effects directly. This work intents to present a RBDO
application in a steel frame, with an usual double-loop approach, con-
sidering the first and second order structural analysis, with optimization
by Genetic Algorithms (GA). Target reliability indices are defined and
assessed by FORM (First Order Reliability Method), while GA searches
the optimal solution between 18 W-shapes from AISC database (2017),
which represents the mininum material mass required for satisfy the con-
straints. In some cases, it is shown that considering second-order effects
can result in lighter frames, as the calculated reliability index can get
higher.

Keywords: RBDO · Genetic Algorithms · FORM · Structural
Optimization · Second Order Analysis

1 Introduction

The design of structures is directly associated to satisfy conflicting requirements,
such as cost, safety and durability. Unquestionably, uncertainties are naturally
present in all the variables and steps that compose the design. Thus, optimiz-
ing a structure through a deterministic approach often results in poor reliable
configurations.

In this way, the Reliability-Based Design Optimization (RBDO) approach
is able to find the best compromise between cost and reliability assurance, by
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including the uncertainties [3]. The challenge of RBDO is the computational
effort employed in evaluate reliability constraints, making it difficult to deal
with more complex problems [8].

Besides the usual double-loop approach, other techniques have been proposed
to speed up the RBDO process, such as SORA (Sequential Optimization and
Reliability Analysis) [10], SLA (Single-Loop Approach) [17] and SAP (Sequential
Approximate Programming) [9].

Truong and Kim [25] point out that for deterministic design optimization
(DDO), there are many articles and research material in the literature, but in
the case of RBDO, few studies related to steel frames have been performed.
In addition, geometric and material nonlinear behaviors often are not consid-
ered [23,26].

This paper intents to present a RBDO double-loop approach of a steel frame,
considering first and second order structural analyses. FORM is used to obtain
the reliability index β and Genetic Algorithms perform the optimization. Three
target reliability indices are established and design variables can also assume
different values. Reliability indices found by second order analysis tend to be
higher than the first order ones. However, the minimum mass found by second
order approach is not always smaller than first order case.

1.1 Softwares

CS-ASA. The CS-ASA - Computational System for Advanced Structural Anal-
ysis is a finite element method based program [24], able to perform statics and
dynamics analysis of steel structures [6] and statics analysis of composites steel-
concrete structures [16], considering geometric imperfections, material nonlin-
earity and semi-rigid connections.

MATLAB. Matlab R© manages all the analysis stages, as calling the struc-
tural analysis program CS-ASA; the reliability loop (FORM algorithm) and the
optimization loop (‘ga’ function in Matlab R©).

1.2 Second Order Analysis of Structures

The CS-ASA presents 3 options for second order analysis formulations. The
one used in this work, called SOF-2 [24], was developed by Yang and Kuo, in
1994 [27]. The typical frame finite element adopted can be seen in Fig. 1 and its
implementation passes by some simplifying assumptions, such as: cross sections
remain flat after deformation and are compacts; lateral or torsional buckling are
not allowed; small deformations are assumed, but large rotations/displacements
are allowed; axial shortening due to curvature is neglected.

Achieving the condition of structural equilibrium consists of resolving a bal-
ance between applied external forces and internal forces of the structure [4]. Such
task can be expressed in an equation, as Eq. 1 and, for the second order analysis
case, it depends on displacements (U) and internal forces in the members (P).

Fint(U,P) � Fext (1)
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Fig. 1. Adopted finite element.

Fint is the vector of internal forces; Fext is the vector of external forces, which
can be expressed as the product between a load parameter λ and a reference
external force vector Fr, which defines the direction of the acting external
forces [4]. So, Fext = λFr.

The numerical strategy to solve Eq. 1 is an incremental-iterative approach,
based on Newton-Raphson method. Thus, it is more convenient to expand Eq. 1,
defining the elastic and geometrical matrices involved in the process:

Ft
int +

n∑

e

[ke
i + ke

g]Δue � Ft
ext + ΔλFr (2)

where the superscript “t” defines the last equilibrium configuration; Δue is the
incremental nodal displacement vector of the element “e”; ke

i is the element’s
elastic linear stiffness matrix, defined in Eq. 3; ke

g is the element’s geometric
stiffness matrix, defined in Eq. 4; Δλ is the load parameter increment.

ke
i =

∫

Le

NTDNdx (3)

ke
g = P

∫

Le

[NT
uNu + NT

v Nv]dx (4)

Le is the finite element length; N refers to the interpolation functions vector;
D represents the material constitutive relationship matrix; P is the axial force
acting on the finite element. The interpolation function vectors Nu and Nv are
associated with the axial and lateral displacements, respectively.

2 Structural Optimization

2.1 Optimization Problem

The optimization problem consists of maximizing or minimizing one or more
objective functions, within specific design conditions previously established [21].
We may formulate it as follows:

Find X =
{

x1 x2 ... xn

}
, that minimizes/maximizes f(X),
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subject to:

ci(X) ≤ 0, i = 1, 2, ...,m, (5)
dj(X) = 0, j = 1, 2, ..., p, (6)

xlow
k ≤ xk ≤ xup

k , k = 1, 2, ..., n, (7)

where:

– X is the n-dimensional vector containing the design variables to be optimized;
– f(X) is the objective function of the problem, which in structural optimiza-

tion, can represent the weight, volume or manufacturing cost, for example;
– ci(X) and dj(X) are inequality and equality constraints, respectively, known

as behavior constraints, related to the performance and limit states of the
structural system under study;

– xlow
k and xup

k are the lower and upper bounds that design variables can
assume, known as lateral constraints, related to feasible physical limits [22];

– i, j, k, m, n and p are arbitrary values.

Figure 2 represents a hypothetical two-dimensional problem, in which the feasible
region was obtained by applying two behavior constraints ca and cb, as well as
the lateral constraints xlow

1 , xup
1 , xlow

2 , xup
2 .

Fig. 2. Constraints surfaces for a hypothetical two-dimensional problem
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2.2 Genetic Algorithms

In 1975, Holland [15] proposed a new optimization method, based on principles
of nature, such as genetics and natural selection in the reproduction of species:
the Genetic Algorithms (GA). The GA’s make part of a set of so-called modern
optimization methodologies [22].

As stochastic and gradient-free method, GA has good applicability in prob-
lems like multi-objective optimization; problems containing mixed continuous
and discrete variables; also for discontinuous or non-differentiable functions, as
well as for non-convex design spaces. The basic terminology relevant to genetic
algorithms is cited below:

– Objective function: the function to be optimized;
– Penalty function: mathematical expression applied to the fitness value of

an individual, calculated based on the violation of constraints;
– Fitness function: mathematical expression given by the sum of the objective

and penalty functions, which indicates how fitted to the problem an individual
solution can be;

– Individual: is the variables vector. It is also called chromosome and, its
entries, genes. Vector X below represents this structure:

X =
[
x1 x2 x3 ... xn

]
;

– Population: is the matrix of individuals. The user must specify a value p,
for the population size. Therefore, the population matrix will have dimension
p × n and n is the number of variables in the problem;

– Generation: each generation represents an iteration, in which a new popu-
lation matrix will be created, by applying the genetic operators, known as:
selection, elitism, crossover and mutation;

– Diversity: is measured by the distance between individuals in a population.
Greater the diversity of a population is, greater is the scan of the design space;

– Parents and Children: The GA’s, through the selection process, use the
individuals with the best fitness value of the current generation, called par-
ents, to create those of the next iteration (children).

The flowchart in Fig. 3 outlines the running of genetic algorithms.

3 Reliability Analysis and RBDO Methodology

3.1 First Order Reliability Method - FORM

The reliability indices calculated in this work are obtained by applying FORM,
that is an approximation of the limit state function, by a tangent hyper-surface
at the design point [11], where the distance from the origin to this point is what
we call the reliability index β [13]. Once we have β, it is possible calculate the
failure probability pFORM

f , which is the cumulative standard normal distribution
function (Φ) value at −β (Eq. 8).

pFORM
f = Φ(−β) (8)
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Fig. 3. Genetic algorithms flowchart.

Obtaining β involves a mapping transformation of random variables [18,20]. For
the Nataf’s transformation case, this operation starts from an original space X to
a normal space Z, and then from the space Z to a standard normal uncorrelated
space Y. Equations 9 and 10 show the chain rule for the Jacobian matrices, used
in the process:

Jyx =
[

∂yi

∂xk

]
=

[
∂yi

∂zj

∂zj

∂xk

]
= L−1(Dneq)−1 = JyzJzx (9)

Jxy =
[

∂xi

∂yk

]
=

[
∂xi

∂zj

∂zj

∂yk

]
= DneqL = JxzJzy (10)

where L is the lower triangular matrix obtained from the Cholesky decomposition
and Dneq is the diagonal matrix of standard deviations of equivalent normal
variables. Thus, x and y variables can be obtained by Eqs. 11 and 12:

y = Jyx {x − μneq} (11)

x = Jxy {y + μneq} (12)

where μneq is the normal equivalent mean.
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FORM calculates the reliability index β by means of the following steps
(based on [7]):

1. Calculation of non-normal distributions parameters;
2. Determination of equivalent correlation coefficients and the Cholesky decom-

position matrix L;
3. Determination of Jacobian matrices Jyz and Jzy;

Jyz = L−1 (13)

Jzy = L (14)

4. Choice of the starting point xk, for k = 0 (beginning of the iterative process);
Start of the iterative process

5. Calculation of equivalent normal distributions parameters;
6. Updating the Jacobian matrices Jyx and Jxy;
7. Transformation of point xk from X to Y;
8. Limit state function g(xk) assessment;
9. Calculation of gradients:

a. Calculation of the partial derivatives of g(X) in the design space X;
b. Gradient transformation to Y;
c. Calculation of linearized sensitivity factors α(yk);

10. Calculation of the new point yk+1;
11. Transformation of yk+1 to space X;
12. Convergence check. If convergence criteria are met, the algorithm is inter-

rupted. Otherwise, the iteration number is increased and it returns to step
5. Convergence criteria:

1 − |∇g(yk+1)
tyk+1|

||∇g(yk+1)|| ||yk+1||
< ε (15)

|g(yk+1)| < δ (16)

13. Evaluation of the reliability index at the design point: β = ||y∗||.

3.2 Reliability-Based Design Optimization - RBDO

In RBDO methodology, the uncertainties related to each variable of a problem
are directly taken into account in the optimization process [7]. Failure probabil-
ities or targets reliability indices are defined as optimization constraints. Hilton
and Feigen [14] first proposed the method in their work: Minimum weight anal-
ysis based on structural reliability, in 1960.

In this way, we must add the reliability constraint to the optimization prob-
lem presented in Subsect. 2.1:

P [gi(X)] ≤ Pf , i = 1, 2, ..., n (17)

or:
βi(X) ≥ βT , i = 1, 2, ..., n (18)
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where P [gi(X)] is the failure probability of a structure for a given limit state
function gi(X); Pf is the failure probability calculated by Eq. 19 below; βi(X)
is the reliability index of a structure; βT is the target reliability index.

Pf = P [X ∈ Ωf ] =
∫

Ωf

fX(X) dX (19)

Ωf is the failure domain; fX(X) is the probability density function for the ran-
dom variable X.

Table 1 shows a sequence of steps for the RBDO analysis, using a double-loop
approach, where optimization is the outer loop and reliability assessment is the
inner one.

4 Numerical Example: RBDO Analysis of a Single Floor
Steel Frame

4.1 General Information

A RBDO analysis is made for the single floor steel frame shown in Fig. 4. The
problem has 8 random variables, whose statistical characteristics are in Table 2,
including the applied loads D, L and W ; the section properties: area A, inertia
Ix and plastic section modulus Zx; material properties: Young’s modulus E and
yield strength Fy.

Table 3 shows the W-shapes characteristics, from AISC database (2017), in
which the optimizer searches for the best configuration to satisfy the constraint
(a target reliability index) and the objective function, which is minimize the total
mass. This frame has been studied by several authors [5,12,19], but originally
as a reliability problem only.

4.2 Limit State Function

For the reliability analysis carried out by FORM, one ultimate limit state is
verified, which is flexure and axial force acting on column element 4, node 4.
This interaction of efforts shall be limited by Eqs. 20 and 21 [2]:

(i) If Pr

Pc
≥ 0.2

Pr

Pc
+

8
9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0 (20)
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Table 1. General sequence of steps for the RBDO analysis.

RBDO double-loop approach (MatlabR©)

1 Define n (number of repetitions);

2

3 For i from 1 to n, do:

4

5 Structural analysis: Calls the FEM Program CS-ASA;

6

7 opts = optimoptions(@ga, ...); (set genetic algorithms options)

8

9 A = [...]; b = [...]; Aeq = [...]; beq = [...]; lb = [...]; ub = [...]; intcon = [...];

10 (set behavior and lateral constraints)

11

12 [x,fval] = ga(@Fobj,nvars,A,b,Aeq,beq,lb,ub,@nonlcon,intcon, opts);

13 (calls GA, performs the optimization and returns the variables X

14 optimized and also the value of the objective function fval)

15

16 ↪→ Inner loop - Reliability constraints evaluation: using FORM,

17 the solver checks whether the found reliability index is above

18 the target;

19

20 WriteNewFile(X); (calls the function that will rewrite the file to

21 CS-ASA, for a new structural analysis with the updated variables X);

22

23 End-For

Fig. 4. Single Floor Steel Frame.

(ii) If Pr

Pc
< 0.2

Pr

2Pc
+

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0 (21)
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Table 2. Statistical properties of random variables [12].

Variable Unit Mean
Coefficient of
variation

Distribution
function

D kN/m 6.42 0.10 Normal

L kN/m 0.73 0.25
Ext. Value -
Type 1 (largest)

W kN/m 5.98 0.37
Ext. Value -
Type 1 (largest)

A cm2 Table 3 0.05 Normal

I cm4 Table 3 0.05 Normal

Zx cm3 Table 3 0.05 Normal

E MPa 199947.96 0.06 Normal

Fy MPa 273.03 0.11 Normal

where Pr: required axial strength; Pc: available axial strength (Eqs. 22 and 23,
if tension or compression); Mr: required flexural strength; Mc: available flexural
strength (Eq. 24); x: major axis bending; y: minor axis bending.

Pc,ten = AFy (22)

Pc,com = AFcr (23)

Mc = ZxFy (24)

Fcr is the critical stress given by Eq. 25 or Eq. 26:

(i) If λc ≤ 1.5
Fcr =

(
0.658λ2

c

)
Fy (25)

(ii) If λc > 1.5

Fcr =
(

0.877
λ2

c

)
Fy (26)

λc is the reduced slenderness ratio [1], calculated by Eq. 27:

λc =
KL

π

√
AFy

EIx
(27)

where K is the effective length factor and L the laterally unbraced length of the
member.

4.3 Design Variables

The variables are W-shapes, taken as discretes by GA optimizer, varying from
1 to 18 and then mapped to Table 3, whose characteristics like linear mass, area
(A), inertia (Ix) and plastic section modulus (Zx) are used in the process.
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For first and second order analyses, 3 possibilities were studied: 1- considering
all elements with the same W-shape (1 optimization variable); 2- considering
beam elements and columns elements with different W-shapes (2 optimization
variables); 3- considering beam elements with the same W-shape, but allowing
columns with different W-shapes (3 optimization variables).

Table 3. W-shapes properties of the design space.

n◦ Label Mass [kg/m] A [10−3m2] Ix [10−5m4] Zx [10−4m3]

1 W250x17.9 17.9 2.28 2.24 2.06

2 W200x19.3 19.3 2.48 1.65 1.87

3 W310x21.0 21.0 2.68 3.69 2.85

4 W250x22.3 22.3 2.85 2.87 2.62

5 W200x22.5 22.5 2.86 2.00 2.23

6 W150x22.5 22.5 2.86 1.21 1.77

7 W310x23.8 23.8 3.04 4.29 3.29

8 W150x24.0 24.0 3.06 1.34 1.92

9 W250x25.3 25.3 3.22 3.41 3.06

10 W200x26.6 26.6 3.39 2.58 2.79

11 W130x28.1 28.1 3.59 1.09 1.09

12 W310x28.3 28.3 3.59 5.41 4.05

13 W250x28.4 28.4 3.63 4.01 3.54

14 W150x29.8 29.8 3.79 1.72 2.46

15 W200x31.3 31.3 3.97 3.13 3.34

16 W250x32.7 32.7 4.19 4.91 4.26

17 W200x35.9 35.9 4.57 3.44 3.79

18 W150x37.1 37.1 4.74 2.22 3.10

4.4 Design Constraints

Besides the lateral constraints of the previous item, there is also the reliability
constraint, given by a target value, as Eq. 28. Three scenarios were proposed:
βT,1 = 2.0, βT,2 = 2.5 and βT,3 = 3.0.

c =
βT,i

βi
− 1 ≤ 0 (28)
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4.5 Objective Function

The objective function M(X), which represents the minimum mass of the struc-
ture, is given by Eq. (29):

M(X) =
n∑

i=1

mili, (29)

where n is the number of variables; mi is the linear mass for a given W-shape
(Table 3); li is the length of the bar.

4.6 Optimization Algorithm Setting

Genetic Algorithms were used to optimize the structure, with the following spe-
cific settings:

– Population size (‘PopulationSize’): 10 - 12 individuals;
– Creation function (‘CreationFcn’): ‘gacreationuniform’ (default);
– Crossover function (‘CrossoverFcn’): ‘crossoverscattered’ (default);
– Mutation function (‘MutationFcn’): ‘mutationgaussian’ (default);
– Elite individuals (‘EliteCount’): 5% of population size (default);
– Maximum number of generations (‘MaxGenerations’): 200;
– Algorithm for handling nonlinear constraints (‘NonlinearConstraintAlgo-

rithm’): ‘penalty’;
– Tolerance for objective function (‘FunctionTolerance’): 10−6;
– Tolerance for constraints (‘ConstraintTolerance’): 10−3;

4.7 Results

Case A: One Design Variable. Table 4 shows the results obtained for case
where all the elements have same section. It can be seen that for βT,3 = 3.0, the
second order analysis reaches a economy of material of 11.8%, when compared
to the first order case. Furthermore, second order case presents smaller con-
straint violations and, consequently, higher calculated reliability indices, when
both approaches use the same structural configuration.

Table 4. Case A: one design variable.

βT Analysis Mass (kg) W-shape Const. c βi

2.0 1◦ Order 345.6 W310 × 21.0 −0.318 2.933

2◦ Order 345.6 W310 × 21.0 −0.391 3.284

2.5 1◦ Order 345.6 W310 × 21.0 −0.147 2.933

2◦ Order 345.6 W310 × 21.0 −0.239 3.284

3.0 1◦ Order 391.7 W310 × 23.8 −0.192 3.713

2◦ Order 345.6 W310 × 21.0 −0.087 3.284
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Case B: Two Design Variables. Table 5 shows the results obtained for case
where beam elements and column elements have different sections. It can be
seen that for βT,3 = 3.0, the second order analysis reaches a economy of mate-
rial of 6.1%, when compared to the first order case. Furthermore, second order
case presents smaller constraint violations and, consequently, higher calculated
reliability indices, when both approaches use the same structural configuration.

Table 5. Case B: two design variables.

βT Analysis Mass (kg) W-Columns W-Beam Const. c βi

2.0 1◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.267 2.729

2◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.339 3.025

2.5 1◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.084 2.729

2◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.174 3.025

3.0 1◦ Order 337.8 W310 × 23.8 W250 × 17.9 −0.135 3.468

2◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.008 3.025

Case C: Three Design Variables. Table 6 shows the results obtained for case
where beam elements are composed of the same W-shape and columns elements
may differ in their sections. It can be observed that in the 3 scenarios, both
approaches had the same structural configuration. Furthermore, second order
case presents smaller constraint violations and, consequently, higher calculated
reliability indices.

Table 6. Case C: three design variables.

βT Analysis Mass (kg) W-Column 1 W-Beam W-Column 4 Const. c βi

2.0 1◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.238 2.626

2◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.315 2.918

2.5 1◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.048 2.626

2◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.143 2.918

3.0 1◦ Order 316.2 W250× 17.9 W250× 17.9 W310× 23.8 −0.104 3.348

2◦ Order 316.2 W250× 17.9 W250× 17.9 W310× 23.8 −0.180 3.657

5 Conclusions

This work presented theoretical topics and an example for the RBDO method,
using FORM and Genetic Algorithms, through a double loop approach. Despite
the simplicity of the numerical application, a considerable computational effort
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was used in the process, with the analysis time being quite dependent on the
computer’s processing power.

It was possible to notice that as far as the design variables were increased,
closer was the mass found by the first or second order analyses. However, sec-
ond order case presented smaller constraint violations and, consequently, higher
calculated reliability indices, when both approaches used the same structural
configuration.
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