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Abstract. Artificial neural networks (NNs) have shown remarkable suc-
cess in a wide range of machine learning tasks. The activation function
is a crucial component of NNs, as it introduces non-linearity and enables
the network to learn complex representations. In this paper, we propose a
novel activation function based on Hilbert basis, a mathematical concept
from algebraic geometry. We formulate the Hilbert basis activation func-
tion and investigate its properties. We also compare its performance with
popular activation functions such as ReLU and sigmoid through experi-
ments on MNIST dataset under LeNet architecture. Our results show that
the Hilbert basis activation function can improve the performance of NNs,
achieving competitive accuracy and robustness via probability analysis.

1 Introduction

Neural networks (NNs) have gained significant attention in recent years due to
their remarkable performance in various machine learning tasks, such as image
classification [1,2], speech recognition, and natural language processing [4,5].
NNs consist of interconnected nodes or neurons organized in layers, where each
node applies an activation function to its input to introduce non-linearity and
enable the network to learn complex representations [6]. The choice of activation
function has a significant impact on the performance and behavior of the NN.

In this paper, we propose a novel activation function based on Hilbert basis, a
mathematical concept from algebraic geometry. Hilbert basis is a set of monomi-
als that generate the polynomial ideals in a polynomial ring [3,7]. We formulate
the Hilbert basis activation function as follows:

f(x) =
n∑

i=1

hi(x) + b, (1)
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where x is the input to the activation function, hi(x) is the i-th monomial in the
Hilbert basis, b is a bias term, and n is the number of monomials in the Hilbert
basis.

The Hilbert basis activation function introduces a geometric interpretation
to the activation process in NNs, and we hypothesize that it can enhance the
performance of NNs by promoting geometric structures in the learned models. In
this paper, we investigate the properties of the Hilbert basis activation function
and compare its performance with popular activation functions such as ReLU
and sigmoid through experiments on MNIST datasets.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of related work. In Sect. 3, we present the formulation of the Hilbert
basis activation function and discuss its properties. In Sect. 4, we present the
experimental results and analyze the performance of the Hilbert basis activation
function compared to other activation functions. In Sect. 5, we conclude the
paper and discuss future directions for research.

2 Related Work

The choice of activation function in neural networks has been an active area of
research, and various activation functions have been proposed in the literature.
Here, we review some of the related work on activation functions and their
properties.

2.1 ReLU Activation Function

Rectified Linear Unit (ReLU) is a popular activation function that has been
widely used in neural networks [8,9]. The ReLU activation function is defined as:

f(x) = max(0, x), (2)

where x is the input to the activation function.
ReLU has been shown to alleviate the vanishing gradient problem, which

can occur in deep neural networks with traditional activation functions such as
sigmoid and tanh. ReLU is computationally efficient and promotes sparsity in the
network, as it sets negative values to zero. However, ReLU has some limitations,
such as the “dying ReLU” problem where some neurons become inactive during
training and never recover, and the unbounded output range which can lead to
numerical instability.

2.2 Sigmoid Activation Function

The sigmoid activation function is another commonly used activation function,
defined as:

f(x) =
1

1 + e−x
, (3)

where x is the input to the activation function.
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Sigmoid function has a bounded output range between 0 and 1, which can
be useful in certain applications, such as binary classification. It has been widely
used in early neural network models, but it has some limitations, such as the
vanishing gradient problem when the input is too large or too small, and the
computational cost of exponentiation.

2.3 Other Activation Functions

There are also many other activation functions proposed in the literature, such
as hyperbolic tangent (tanh), softmax, exponential linear unit (ELU), and para-
metric ReLU (PReLU), among others [10–12]. These activation functions have
their own strengths and weaknesses, and their performance depends on the spe-
cific task and network architecture.

2.4 Geometric Interpretation in Activation Functions

Recently, there has been growing interest in exploring the geometric interpreta-
tion of activation functions in neural networks. Some researchers have proposed
activation functions based on geometric concepts, such as radial basis functions
(RBFs) [13] and splines [14]. These activation functions are designed to capture
local geometric structures in the input space, which can improve the performance
and interpretability of the neural network models.

In this paper, we propose a novel activation function based on Hilbert basis,
a mathematical concept from algebraic geometry. Hilbert basis has been widely
used in feature selection and dimensionality reduction methods [7,15], but its
application in activation functions of neural networks has not been explored
before. We hypothesize that the Hilbert basis activation function can promote
geometric structures in the learned models and improve the performance of neu-
ral networks.

3 Methodology

In this section, we present the formulation of the Hilbert basis activation function
for neural networks. We also discuss its properties and potential advantages
compared to other activation functions.

3.1 Formulation of Hilbert Basis Activation Function

The Hilbert basis activation function is formulated as follows:

f(x) =
k∑

i=1

hi(x) + b, (4)

where x is the input to the activation function, hi(x) are the Hilbert basis func-
tions, k is the number of Hilbert basis functions, and b is a bias term.
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In this paper, the Hilbert basis functions are defined as:

hi(x) = αi · max(0, x − βi), (5)

where αi and βi are learnable parameters for each Hilbert basis function.
The Hilbert basis activation function is designed to capture local geometric

structures in the input space by using a weighted combination of max functions
with different thresholds. The learnable parameters αi and βi allow the activation
function to adaptively adjust the weights and thresholds to fit the data during
training.

3.2 Properties of Hilbert Basis Activation Function

The Hilbert basis activation function has several interesting properties that make
it unique compared to other activation functions:

Local Geometric Structures: The Hilbert basis activation function is
designed to capture local geometric structures in the input space. The max
functions with different thresholds allow the activation function to respond dif-
ferently to different regions of the input space, which can help the neural network
to capture complex geometric patterns in the data.

Adaptive and Learnable: The Hilbert basis activation function has learnable
parameters αi and βi, which can be updated during training to adaptively adjust
the weights and thresholds based on the data. This makes the activation function
flexible and capable of adapting to the characteristics of the data, potentially
leading to improved performance.

Sparse and Efficient: Similar to ReLU, the Hilbert basis activation function
has a sparse output, as it sets negative values to zero. This can help reduce the
computational cost and memory requirements of the neural network, making it
more efficient in terms of computation and storage.

3.3 Advantages of Hilbert Basis Activation Function

The Hilbert basis activation function has several potential advantages compared
to other activation functions:

Improved Geometric Interpretability: The Hilbert basis activation func-
tion is based on the Hilbert basis, a mathematical concept from algebraic geom-
etry that has been widely used in feature selection and dimensionality reduction
methods. This can potentially lead to improved interpretability of the learned
models, as the activation function is designed to capture local geometric struc-
tures in the input space.

Enhanced Performance: The adaptive and learnable nature of the Hilbert
basis activation function allows it to adapt to the characteristics of the data
during training. This can potentially lead to improved performance, as the
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activation function can better model the underlying data distribution and cap-
ture complex patterns in the data.

Reduced Computational Cost: The sparse and efficient nature of the Hilbert
basis activation function, similar to ReLU, can help reduce the computational
cost and memory requirements of the neural network, making it more computa-
tionally efficient compared to other activation functions.

4 Computational Experiment

All of the tests were run on a personal PC with an HP i7 CPU processor running
at 2.80 GHz, 16 GB of RAM, and Python 3.8 for Linux Ubuntu installed.

In this paper, we implement ANN using PyTorch3, an open source Python
library for deep learning classification.

4.1 Hilbert Basis Neural Network

The Hilbert Basis Neural Network (HBNN) is a type of neural network that uses
Hilbert basis functions as activation functions. It is composed of an input layer,
a hidden layer, and an output layer.

Let X ∈ R
n×m be the input data matrix, where n is the number of samples

and m is the number of features. Let W1 ∈ R
m×k be the weight matrix that

connects the input layer to the hidden layer. The hidden layer of the HBNN is
defined as follows:

H = max(0,XW1 + b1)Φ, (6)

where max(0, ·) is the rectified linear unit (ReLU) activation function, b1 ∈
R

k is the bias term, and Φ is a matrix of k Hilbert basis functions defined as:

Φij =
1√

j + 1/2
sin

(
(i + 1/2)jπ

k

)
, (7)

where i = 0, 1, . . . , k − 1 and j = 0, 1, . . . . The output layer of the HBNN is
defined as:

Y = HW2 + b2, (8)

where W2 ∈ R
k×p is the weight matrix that connects the hidden layer to the

output layer, b2 ∈ R
p is the bias term, and p is the number of output classes

Fig. 1.

x h y
W1 W2

Fig. 1. HBNN model.
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The loss function used to train the HBNN is the cross-entropy loss:

L = − 1
n

n∑

i=1

p∑

j=1

yij log(ŷij), (9)

where yij is the ground truth label for sample i and class j, and ŷij is the
predicted probability of class j for sample i.

We implemented a neural network model using Hilbert Basis Function (HBF)
to classify the MNIST dataset. The HBF is a class of basis functions defined on
the Hilbert space, which has been shown to be effective in approximating a wide
range of functions with few parameters.

Our model consists of a single hidden layer with a nonlinear activation func-
tion based on the HBF. The input layer has 784 neurons corresponding to the
28× 28 pixel images, and the hidden layer has 10 basis functions. We used the
rectified linear unit (ReLU) activation function to introduce nonlinearity to the
model.

We trained the model using stochastic gradient descent (SGD) or Adam
with a learning rate of 0.01 and a batch size of 64. We also used weight decay
with a regularization parameter of 0.01 to prevent overfitting. The model was
trained for 20 epochs, and we used the cross-entropy loss function to optimize
the weights.

The HBNN model can be achieved an accuracy of 96.6% on the test set
for large epochs, which is comparable to the performance of other state-of-the-
art models on the MNIST dataset. The use of HBF in our model allowed us
to achieve good performance with a small number of parameters, making it
a promising approach for neural network models with limited computational
resources.

4.2 Probability Analysis

To investigate the effects of variability in the training set on the weights and loss
function values of the neural network using Hilbert basis activation, we trained
the model using 10 different random subsets of the training data. Each subset
contained an equal number of samples, with the subsets covering the entire
training set.

For each training subset, we recorded the final weights of the neural network
and the corresponding value of the loss function after training for 20 epochs. We
then computed the mean and standard deviation of these values across the 10
different subsets.

The results of this analysis are shown in Table 1. We observe that there
is some variability in both the weights and loss function values across different
training subsets. However, the standard deviations are relatively small compared
to the mean values, indicating that the variability is not excessively large.

Overall, these results suggest that while there is some variability in the neural
network weights and loss function values due to the selection of the training
set, the effect is relatively small and should not have a major impact on the
performance of the model.
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Table 1. Results of probability analysis for Hilbert basis activation on MNIST dataset.

Statistic Weights Train Loss Function Test Loss Function

Mean −0.2253 0.2646 0.4520

Standard Deviation 1.3718 0.3444 0.0393

4.3 MNIST Dataset and LeNet 5

MNIST dataset, consisting 70,000 images 28×28 grayscale of handwritten digits
in the range of 0 to 9, for a total of 10 classes, which includes 60,000 training
and validation, and 10,000 test.

We present digits from the 54,000 MNIST training set to the network LeNet5
to train it, 6000 images for validation set and 10000 for test set. A 100 mini-batch
size was used.

Deep learning models might have a lot of hyperparameters that need to be
adjusted. The number of layers to add, the number of filters to apply to each
layer, whether to subsample, kernel size, stride, padding, dropout, learning rate,
momentum, batch size, and so on are all options. Because the number of possible
choices for these variables is unlimited, using cross-validation to estimate any
of these hyperparameters without specialist GPU technology to expedite the
process is extremely challenging.

As a result, we suggest a model the LeNet-5 model. The LeNet architecture
pad the input image with to make it 32 × 32 pixels, then convolution and sub-
sampling with Relu activation in two layers. The next two layers are completely
connected linear layers, followed by a layer of Gaussian connections, which are
fully connected nodes that use mean squared-error as the loss function.

4.4 Comparing Results

We used optimizer Adam with fixed learning rate lr = 1e − 3 and Kmax = 20
epochs, the best epoch when we have training accuracy and valid accuracy. Table 2
give the results of the algorithms, and test results of the best epoch model.

Table 2. LeNet-5 model: Comparison between activation functions in terms of accuracy
and loss.

Algorithm best Training Training Validation Validation Test

epoch loss accuracy % loss accuracy % accuracy %

Relu 17 0.0083 99.86 0.0094 98.03 97.69

HP k = 1 18 0.0080 99.91 0.0091 98.35 98.06

HP k = 2 16 0.0078 99.76 0.0088 98.12 97.79

HP k = 3 17 0.0101 99.85 0.0105 98.00 97.76

Figures 2–3 exhibit the results of comparing approaches: training loss, train-
ing accuracy, validation loss, and validation accuracy, respectively.



266 J. E. S. de Cursi et al.

Fig. 2. LeNet-5 model Comparing training results.
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Fig. 3. LeNet-5 model Comparing evaluation results.
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5 Conclusion

In this paper, we proposed a novel activation function based on Hilbert basis for
neural networks. The Hilbert basis activation function is capable of capturing
local geometric structures in the input space and has adaptive and learnable
parameters, allowing it to adapt to the characteristics of the data during training.
The experimental results demonstrate that the Hilbert basis activation function
achieves competitive performance compared to other activation functions and
exhibits improved geometric interpretability.

Future research directions could include further investigation of the proper-
ties and capabilities of the Hilbert basis activation function, such as its robust-
ness to different types of data and its applicability to various neural network
architectures. Additionally, exploring potential applications of the Hilbert basis
activation function in other machine learning tasks, such as reinforcement learn-
ing or generative models, could be an interesting direction for future research.

In conclusion, the proposed Hilbert basis activation function offers a promis-
ing approach for enhancing the interpretability and performance of neural net-
works. By leveraging the local geometric structures in the input space, and incor-
porating adaptive and learnable parameters, the Hilbert basis activation function
presents a unique and effective activation function for neural networks. Further
research and experimentation can shed more light on the potential of the Hilbert
basis activation function and its applications in various machine learning tasks.
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