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2 University Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
3 Institut de Recherche pour le Developpement, Marseille, France

Abstract. Rainfall monitoring is of paramount importance for many
applications, such as meteorology, hydrology, and flood prevention. In
order to circumvent the expensive deployment of weather radar networks,
many articles propose rainfall estimation by using the received signal
power of microwave links as they are sensitive to precipitation at certain
frequencies. In this context, the International Telecommunication Union
(ITU) provides a power-law relationship that allows the computation of
the precipitation rate from the attenuation due to rainfall. This physics-
based approach uses scattering calculation to derive the power-law coef-
ficients, which depend only on the frequency. However, the practical use
of this equation faces other important parameters, such as the link length
and the distance from the bucket gauge to the microwave link. These fac-
tors may significantly affect the prediction. In this article, it is proposed
a data-based alternative for the estimation of the power-law coefficients,
where the Levenberg-Marquardt algorithm is used to adjust them using
several data collected from different radio links in West Africa. The esti-
mation quality is assessed in terms of its correlation with rain rate mea-
surements from bucket gauges spread across the African testbed.

Keywords: rainfall estimation · signal attenuation ·
Levenberg-Marquardt algorithm

1 Introduction

In recent years, the world has been experiencing increasing scenarios of droughts
and floods that threaten many countries economically and in many other differ-
ent ways. Such extreme events might be a consequence of climate change that
tends to worsen over time. An early-warning information system is a key part of
counterbalancing this endangerment. For this purpose, rainfall monitoring plays
a crucial role. The precipitation rate must be precisely measured with high spa-
tial and temporal resolution in order to monitor an eminent extreme event.
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For developed countries, weather radar networks are a well-established solu-
tion for rainfall monitoring. Another usual approach is to use weather satellites
to estimate the precipitation rate. Both solutions are capable of covering a broad
area, which is particularly beneficial for large countries.

Unfortunately, having a dense deployment of weather radars is costly, and
developing countries cannot afford it. Regarding weather satellite monitoring,
some efforts have been made with the Tropical Rainfall Measuring Mission
(TRMM), which consists of a constellation of satellites to monitor and study
tropical and subtropical precipitation. This mission was a result of collaborative
work between the United States and Japan. The TRMM has been an important
data source for meteorological and hydrological activities worldwide [6]. Nat-
urally, some emerging countries in such regions took advantage of the rainfall
measurement. Notwithstanding, it is well-known that satellite rainfall monitor-
ing still lacks accuracy, especially for high-resolution and real-time applications
[5], and ground measurements to tweak the rainfall estimation are still required
to adjust or to downscale satellite estimates.

Some papers have proposed alternatives to rainfall estimation, such as using
satellite radio links already in operation and broadly spread worldwide. These
satellite communication links usually operate on Ka or Ku bands, which are
mainly corrupted by rainfall. Even though these base stations primarily focus
on satellite services, it is possible to estimate the precipitation rate from rain-
induced attenuation of the received signal [1,4,9].

In-situ rain gauge measurement is also a very cost-attractive and high-
accuracy solution to monitor the rainfall [4]. However, this technique only pro-
vides a point-scale measurement, and a high density of gauges would be necessary
to cover an urban area [8]. Another common usage is to compare the rain gauge
measurement with the estimated values of a given method. In this case, the gauge
is not a monitoring system but a reference set to assess the method’s accuracy.

Similar techniques can also be applied to ground-to-ground microwave links
[2,7,10,15]. These terrestrial radio networks have the advantage of providing
measurements of close-to-ground links, which is beneficial for near-surface rain-
fall estimation. In scenarios where weather radars are not available operationally,
commercial microwave links (CML) might be an alternative for measuring rain-
fall [7,10,15]. Since the International Telecommunication Union (ITU) provides
a straightforward relationship between the attenuation due to rain and precipi-
tation rate, it is possible to remove the path attenuation along the link (baseline
level) and calculate the precipitation rate from the remaining attenuation, which
is assumed to be caused by the rainfall. This physics-based approach utilizes scat-
tering calculation to derive the power-law coefficients, which depend only on the
frequency [11]. However, real applications also have other parameters that might
influence the quality of the estimation, such as radio link length, distance from
the precipitation area taken into consideration, etc.

This paper proposes an alternative data-driven estimation of the power-law
coefficients, where the Levenberg-Marquardt algorithm is used to recursively
adjust them in order to minimize the sum of the square of the error. The pre-
dicted rainfall time series of the proposed model is compared with a reference
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rain gauge (closest one), and the Pearson correlation between both curves is com-
puted and used as figure of merit for precision. Moreover, the results are also
compared with the time series predicted by using the standard ITU coefficients.

The main contributions of this article are:

1. Data treatment of the bucket gauge measurements and its mathematical anal-
ysis to estimate the rainfall via Levenberg-Marquardt algorithm.

2. Comparison of the estimated time series with the prediction from the ITU
model.

3. Numerical analysis of a real dataset collected in Niamey, the capital of Niger.

The present article is organized as follows: In Sect. 2, the geographical context
is detailed. Section 3 introduces the Levenberg-Marquardt algorithm and the
data treatment for the present application. In Sect. 4 and 5, the results and
conclusions are exposed, respectively.

2 Geographical Context

The present article makes use of a dataset collected in Niamey, the capital of
Niger. The environment is characterized as semi-arid, with a rainfall rate between
500 mm/yr and 750 mm/yr, where most of this precipitation occurs between
June and September. There is practically no rain in the remaining months (from
October to April). Convective rains created by Mesoscale Convective Systems
(MCS) comprise for 75% − 80% of the total rainfall [14].

The commercial microwave link data was originally obtained through a part-
nership established with the mobile telecommunication operator Orange (the net-
work has now been bought by Zamani Com). The project entitled “Rain Cell Africa
- Niger” is financed by the World Bank’s Global Facility for Disaster Reduction
and Recovery (WB/GFDRR) and aims to test the potential of CML-based rain-
fall estimation for urban hydrology in Africa. Indeed, previous results for a single
radio link in Ouagadougou have indicated the feasibility of such an approach [2].

In order to cover this area, an instrumental setup that records the received
power level and rainfall gauge measurement was built in Niamey. In 2017,
this system continuously recorded the testbed for 6 months, approximately,
and yielded a dataset from 135 microwave links and three bucket gauges. The
microwave frequencies varies from 18 GHz up to 23 GHz, with a link length
between 0.5 km and 5.5 km. Their measurements were recorded at a period of
15 min between the samples and with a resolution of 1 dB. The bucket gauges,
on the other hand, recorded the precipitation in mm h−1 with a resolution of
0.5 mm but at the same rate. It is assumed no timing synchronism impairment
between the samples from the CML and the bucket gauge.

The criterion used to associate the kth radio link to the ith tipping bucket
gauge is the selection of the gauge whose distance from the center point of
the communication link to it is minimum. This distance varies from 1 km to
6 km, approximately. Table 1 shows the number of radio links associated with
each tipping gauge. The tipping gauge of number 1 has much more radio links
associated with it, which naturally leads to more data availability.
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Table 1. Distribution of radio links by frequency for each gauge: each row has the
number of links that are associated with a given gauge.

Gauge number 18 GHz 19 GHz 22 GHz 23 GHz

1 4 4 44 45

2 2 1 10 8

3 3 3 3 8

3 Mathematical Analisys and Data Treatment

3.1 The Levenberg-Marquardt Algorithm

Let yi(n) ∈ R be the nth measurement sample collected by the ith rain gauge
(in mm/h) during one day. The signal yi(n) has no missing or zero-valued data,
i.e., only the time series intervals with rainfall measurements are considered.

Let us further define xk(n) ∈ R as the specific attenuation (in dB/km)
attributable to rain along the kth radio link for the same day. Each signal
xk(n) ∈ R is associated to one and only one gauge yi(n). Our goal is to pre-
dict yi(n) by using the set {xk(n) | k ∈ Si}, where Si is the set of radio links
associated to the gauge i.

A power-law relationship converts the specific attenuation into rain rate by
using the following formula [15]:

ŷi(n) = wk,1

√
xk(n)
wk,0

, (1)

where wk =
[
wk,0 wk,1

]� and (·)� is the transpose operator.
The usual method is to apply Mie’s solution to Maxwell’s equations in order

to evaluate the attenuation-rainfall relationship and define wk. This approach
requires defining the environment temperature and the radio link operating fre-
quency.

Another alternative is to treat (1) as an optimization problem, where each
link-gauge pair has its own set of coefficients that minimizes a given objective
function. For linear problems, the ordinary least-squares algorithm provides an
analytical solution that minimizes the squared Euclidean distance of the error
vector between the data and the curve-fit function. However, the power-law
relationship is clearly nonlinear in its parameters, wk, and thus an iterative
process shall be used in order to find the optimum solution. By treating the
present problem as a nonlinear least-squares regression, the objective function
can be defined as

E(wk(n)) = e�
i (n)ei(n)

= y�
i (n)yi(n) − 2y�

i (n)ŷi(n) + ŷ�
i (n)ŷi(n), (2)
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where ei(n) = yi(n) − ŷi(n) is the error vector, with yi(n) = [yi(1)yi(2)
· · · yi(n)]� and ŷi(n) =

[
ŷi(1) ŷi(2) · · · ŷi(n)

]�. For each sample n, the opti-
mization algorithm acts recursively on the parameter vector wk(n) in order to
minimize the cost function, E(·).

The first-order Taylor series approximation of the function E(·) at the instant
n + 1 is given by

ΔE(wk(n)) � Δw�
k (n)g(n), (3)

where ΔE(wk(n)) = E(wk(n+1))−E(wk(n)) is the difference of the cost function
between the instants n + 1 and n, Δwk(n) = wk(n + 1) − wk(n) is the update
vector to be calculated by the optimization method, and

g(n) =
∂E(wk(n))

∂wk(n)
(4)

is the gradient vector.
By replacing (2) into (4), we have that [3]

g(n) = −2
∂ŷi(n)
∂wk(n)

y(n) + 2
∂ŷi(n)
∂wk(n)

ŷi(n)

= −2J�(n)ei(n), (5)

where

J(n) =
∂ŷ�

i (n)
∂wk(n)

(6)

is the Jacobian matrix in denominator layout. The steepest descent algorithm
updates the parameters vector in the opposite direction of the gradient vector.
In other words, the vector

Δwk(n) = γJ�(n)ei(n) (7)

points at the tangent line in which the downhill direction of E(·) is maximum on
the operating point wk(n). In this equation, the value γ ∈ R is a step-learning
hyperparameter that regulates the convergence speed [13]. Although the gradient
descent method has the advantage of simplicity, such an estimator has only first-
order local information about the error surface in its neighborhood. In order to
increase the performance of the estimator, one can employ another algorithm,
called Newton’s method, which considers the quadratic approximation of the
Taylor series, i.e.,

ΔE(wk(n)) � Δw�
k (n)g(n) +

1
2
Δw�

k (n)H(n)Δwk(n), (8)

where

H(n) =
∂2E(wk(n))

∂wk(n)∂w�
k (n)

(9)
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is the Hessian matrix at the instant n.
By differentiating (8) with respect to wk(n) and setting its value to zero, we

get the update vector that minimizes E(·) quadratically, which is given by

g(n) + H(n)Δwk(n) = 0

Δwk(n) = −H−1(n)g(n), (10)

where 0 is the zero vector. Replacing (5) into (10), ignoring the constant factor,
and inserting the step-learning, yields

Δwk(n) = γH−1(n)J�(n)ei(n). (11)

whereas the steepest descent seeks the tangent line in the most downhill
direction, Newton’s algorithm finds the tangent parabola that minimizes the
cost function, which prompts to a faster convergence to the optimum value when
compared to gradient-based methods. However, the biggest drawback is the com-
putation of H−1(n), which is usually costly.

One way out is to resort to quasi-Newton methods, where the inverse of the
Hessian matrix is updated recursively and updated by low-rank matrices, with-
out requiring inversion. Another solution is to obtain a nonrecursive approxi-
mation of H(n). For the optimization problems where the objective function is
the sum of the squares of the error, the Gauss-Newton method can be used to
accomplish such task. The biggest advantage is that the Hessian is approximated
by a Gramian matrix that takes only first-order derivatives, in addition to being
symmetric and positive definite, which consequently makes it invertible.

The base idea of the Gauss-Newton method is to linearize the dependence of
ŷi(n) on a local operating point w, i.e.,

ŷi(n)|wk(n)+w � ŷi(n) +
∂ŷ�

i (n)
∂wk(n)

w

� ŷi(n) + J(n)w, (12)

where ŷi(n)|wk(n)+w is the value of ŷi(n) when the coefficient vector is wk(n)+
w. By replacing (12) into (2), it follows that

E(wk(n) + w) =y�
i (n)yi(n) − 2y�

i (n)(ŷi(n) + J(n)w)

+ (ŷi(n) + J(n)w)�(ŷi(n) + J(n)w)

=y�
i (n)yi(n) + ŷ�

i (n)ŷi(n)

− 2(yi(n) − ŷi(n))�J(n)w

− 2y�
i (n)ŷi(n) + w�J�(n)J(n)w (13)

Thus, differentiating (13) with respect to w, and setting the result to zero,
we obtain w = Δwk(n), i.e.,

− J�(n)ei(n) + J�(n)J(n)Δwk(n) = 0. (14)
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Reorganizing the previous equation and inserting the step-learning, we have
that

Δwk(n) = γ(J�(n)J(n))−1J�(n)ei(n). (15)

By comparing (15) with (11), we notice that the Gauss-Newton method
approximates the Hessian matrix, H(n), to 2J�(n)J(n) (the constant factor
was dropped out), thus avoiding second-order derivatives.

The Levenberg-Marquardt (LM) method combines the two algorithms pre-
sented in this article: the steepest descent and a Newton-like algorithm. It tries to
take advantage of the convergence guaranteed1 by the gradient method, and the
fast convergence of Newton’s method. The update vector of the LM algorithm
is given by

Δwk(n) = γ
(
J�(n)J(n) + λ(n)I

)−1
J�(n)ei(n), (16)

where I is the identity matrix. The goal of the hyperparameter λ(n) is twofold:
it performs the Tikhonov regularization, preventing J�(n)J(n) from being ill-
conditioned, and also controls how the algorithm behaves. The LM method leans
toward Gauss-Newton for small values of λ(n), while large values make it behave
as the gradient descent. The initial coefficient vector, wk(1), is likely far from the
optimal point since it is randomly initialized. Hence, it is sensible that the LM
algorithm initially behaves like the gradient descent once J�(1)J(1) is probably
a bad estimate (the Hessian matrix depends on the operating point of the coef-
ficient vector when the cost function is nonquadratic). Insofar as the estimate of
H(n) becomes trustworthy, the LM algorithm shall decrease λ(n) toward zero,
causing it to behave like the Gauss-Newton.

Finally, the coefficient vector adopted to estimate the rainfall is defined as

wk � wk(N + 1) = wk(N) + Δwk(N), (17)

where N is the number of samples in the training set.

3.2 Data Treatment and Analysis

The first step in the data treatment is to select days with rainfall events from
the collected time series. In other words, the received power level, x̃k(m), and
rainfall gauge measurement, ỹi(m), are decimated, producing x̃k(n) and yi(n),
respectively. From the 6-month dataset, only 11 days with rainfall events are
considered. A rainfall event is defined as a period in which the bucket gauge
continuously measures nonzero values for, at minimum, 3 h and 45 min. Since
the recording period is only 15 min, it leads to a dataset containing at minimum
15 samples for each rainfall event.

1 Provided that γ is properly chosen.
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Afterwards, the sampled received power level is converted to the specific
attenuation, xk(n), by subtracting the baseline level from x̃k(n) and dividing it
by the distance of the kth radio link. The baseline is determined by using the
method recommended by Schleiss and Berne [12], which uses the moving window
method to determine the variance.

In order to obtain a reliable analysis with the available dataset, it is performed
a cross-validation where each fold comprises the samples obtained from a given
rainfall event. The parameters were estimated using the training dataset, whereas
the test dataset is used to assess the model performance. For this paper, it is
adopted a ratio of 63% − 37% for the training and test datasets, respectively. It
leads to 7 and 4 days for the training and test datasets, respectively. Algorithm
1 summarizes the procedure used in this work to process the data, estimate the
parameters, and analyze the results. In this algorithm, the symbol ρ indicates
the Pearson correlation coefficient between yi(n) and ŷi(n), which is used as
figure of merit.

Algorithm 1: Data processing for the kth radio link
Input: xk(m)
Output: Pearson correlation of all folds

1 foreach Fold do // Cross-validation

2 forall Training set do
3 x̃k(n) ← Decimate x̃k(m)
4 yi(n) ← Decimate ỹi(m)
5 xk(n) ← Get the specific attenuation from x̃k(n)
6 Δwk(n) ← Equation (16)
7 wk(n + 1) ← Δwk(n) + wk(n)

8 forall Test set do
9 ŷi(n) ← Equation (1)

10 ρ ← Compute the Pearson correlation between yi(n) and ŷi(n)

4 Results and Discussions

Considering that the system provides the minimum, mean, and maximum atten-
uation reached by each radio link, Fig. 1 shows the box plot obtained by the
model for each situation. A kernel smoothing technique is applied to the set of
Pearson correlations in order to estimate its distribution, which is also shown
in this figure. For the sake of performance comparison, the results obtained in
this work are contrasted to the performance obtained using the original ITU
coefficients, under the same methodology of test datasets and cross-validation.



198 R. V. Pacelli et al.

Fig. 1. Box plot of the rainfall estimation.

It is possible to notice that the proposed model presents a considerable vari-
ance with outliers when it is used the maximum or minimum attenuation. How-
ever, for the mean attenuation, the mean correlation is 82.45%, without consid-
erable loss of performance for all folds. This result is slightly lower than the mean
correlation obtained by the physics-based method. However, its performance in
terms of variance, 1.10 × 10−2, surpasses the results obtained when using the
ITU model, which obtained 1.16 × 10−2.

Figure 2 shows the time series estimation for the best and worst folding. Both
estimations came from the gauge number 1, which has more radio links associated
with it. Nevertheless, as shown in Fig. 2a, both methods failed in estimating the
measured rainfall that occurred on June 13, 2017 for a given training-test dataset
split.
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Fig. 2. Time series estimation of the best and worst folding case.
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5 Conclusions and Future Work

In this article, we presented a new methodology to estimate the coefficient
parameters of the rainfall via Levenberg-Marquardt algorithm. The available
data was properly preprocessed before estimating the coefficient parameters. The
cross-validation technique was applied in order to obtain a reliable estimation of
performance, assessed in terms of the Pearson correlation coefficient.

Additionally, the estimated performance was compared with results when
the original ITU coefficients are used, under the same conditions of the test
datasets. The results show that both methodologies achieved similar results,
where the present estimation technique presented a lower mean and variance.

In this work, the power-law relationship provided an estimation mapping that
does not take into account the time correlation between the samples. Moreover,
the raw data was decimated, and only intervals with reasonable rainfall events
are considered. Future efforts might consider the correlation time of the radio
link attenuation, and how it can be exploited to estimate precipitation.
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