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Preface

This book assembles the full papers accepted by the 6th International Symposium on
Uncertainty Quantification and Stochastic Modeling (Uncertainties 2023), jointly orga-
nized by INSA Rouen Normandy and the Universidade Federal do Ceara (UFC, Fort-
aleza, Brazil). The congress was held from July 30 to August 4, 2023. This congress was
originally scheduled to be held in 2022, but the pandemic crisis due to COVID forced it
to be postponed to 2023, under a 100% virtual form.

After the first meeting held in Maresias, Brazil, in 2012, Uncertainties became a
biannual event in order to create a permanent forum for the discussion of academic,
scientific, and technical aspects of uncertainty quantification in mechanical systems.
Previous meetings were held in Rouen (2014), Maresias (2016), Florianópolis (2018),
and Rouen (2020). The pandemic prevented the conference from being held in 2022, so
the conference was postponed to 2023.

The main goal of Uncertainties is to provide a forum for discussion and presenta-
tion of recent developments concerning academic, scientific, and technical aspects of
uncertainty quantification in engineering, including research, development, and practical
applications, which are strongly encouraged.

Uncertainties 2023 is a sequel of the 5th International Symposium on Uncertainty
Quantification and Stochastic Modeling (Uncertainties 2020), held in Rouen (France)
from June 29th to July 3rd, 2020.

Uncertainties 2023 is organized on behalf of the ScientificCommittee onUncertainty
in Mechanics (Mécanique et Incertain) of the AFM (French Society of Mechanical
Sciences) Scientific Committee on Stochastic Modeling and Uncertainty Quantification
of the ABCM (Brazilian Society of Mechanical Sciences) SBMAC (Brazilian Society
of Applied Mathematics).

José Eduardo Souza De Cursi
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Uncertainties of Numerical Simulation for Static
Liquefaction Potential of Saturated Soils

W. H. Huang1(B), Y. Shamas1, K. H. Tran2,3, S. Imanzadeh1,2, S. Taibi2,
and E. Souza de Cursi1

1 Normandie Univ., INSA Rouen Normandie, Laboratoire de Mécanique de Normandie,
76801 Saint-Etienne du Rouvray, France
wenhao.huang@insa-rouen.fr

2 Normandie Université, UNIHAVRE, Laboratoire Ondes et Milieux Complexes,
CNRS UMR 6294, Le Havre, France

3 Faculty of Civil Engineering and Environment,
Thai Nguyen University of Technology, Thai Nguyen City, Thai Nguyen, Vietnam

Abstract. The wind turbine foundations are subject to dynamic and static load-
ings. Some studies have shown that it is necessary to study the liquefaction of the
soil under the foundations due to the impact of these loadings. However, in litera-
ture there are notmany studies focusing on the comparison between the experimen-
tal results and numerical modeling of static liquefaction. In this study, NorSand
model was used to simulate the static liquefaction behavior of soil. First, a series
of experimental data were selected from the literature to study the experimental
behavior leading to liquefaction of saturated Hostun sand RF. Then, these experi-
mental data were compared to the results simulated by using NorSandmodel. This
study focuses on the uncertainties of experimental results leading to the uncertain-
ties of numerical modeling results. Furthermore, the numerical model integrates
physical parameters related to the nature of the soil and also mathematical param-
eters. Tomodelize the static liquefaction of soil, some input parameters are needed
to be determined based on the experimental tests. The corresponding uncertainties
are evaluated to quantify the effect of the model parameters on the liquefaction
potential soil of Hostun sand RF. An analysis of the uncertainties linked to the
choice of these parameters makes it possible to reduce the difference between the
experimental results and their simulation and as well the uncertainties.

Keywords: Static liquefaction · Saturated soil · NorSand model · Triaxial
undrained tests · Hostun sand RF · Statistical errors · Uncertainties

1 Introduction

The concept of static liquefaction was first proposed by Castro et al., [1–4] 1975. How-
ever, it was not until the 1990s that static liquefaction gradually attracted attention [5].
The occurrence of flow landslide damage caused by static liquefaction is very sudden and
extremely harmful to engineering, such as the landslide accident that occurred during
the construction of Wachusett Dam inMassachusetts, USA, in 1907, which caused huge

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. E. S. De Cursi (Ed.): UQSM 2023, LNME, pp. 1–15, 2024.
https://doi.org/10.1007/978-3-031-47036-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47036-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-47036-3_1


2 W. H. Huang et al.

human injuries and property damages, thus drawing the attention of scholars worldwide.
Themain reason for liquefaction is that the effective stress and shear strength of saturated
sand decrease significantly or even reach zero due to the increase of pore water pressure
[6]. This phenomenon is called liquefaction. There are two reasons for liquefaction, one
is the dynamic cycle of earthquake [7–9], the other is static load. The liquefaction caused
by earthquake is called cyclic liquefaction, and the liquefaction caused by static load is
called static liquefaction. The research of this paper mainly focuses on the simulation
of the whole process of mechanics and deformation development of sand in the process
of static liquefaction by using the numerical simulation method.

At present, the NorSand constitutive model (NS) [10] is familiarly used to simulate
the static liquefaction phenomenon of saturated sandy soil under undrained conditions.
The advantage of this model is that only few soil parameters are required, which can be
estimated from routine laboratory or in-situ tests, and is able to explicitly capture the
behavior of the entire soil, from static liquefaction of loose sands to swelling of dense
sands. However, few researchers have studied the uncertainty generated in numerical
simulation. In this paper, the selection of state parameters in the simulation process is
systematically analyzed and compared, and the uncertainty of simulation results caused
thereby is emphatically analyzed.

2 Material

The material used in this paper is a fine sandy soil (Hostun sand RF), where Fig. 1 shows
the particle shape of this sandy soil under the microscope [11, 12], and Fig. 2 shows the
particle distribution of this material and make comparison with limitation of liquefiable
soil [13].

Fig. 1. Microscopic picture of Hostun sand RF [11, 12]

Table 1 shows the particle size composition and basic physical property index of
Hostun sand RF [14, 15]. The specific gravity of Hostun sand RF is 2.65, the friction
angle is about 40°, and the maximum and minimum void ratios are 1.041 and 0.648,
respectively. Where D10, D50 and D60 in Table 1 are the effective particle size, average
particle size and limiting particle size of Hostun sand RF respectively.
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Fig. 2. Comparison between the particle distribution of Hostun sand RF and other liquefied sand
[13]

Table 1. Particle size composition and basic physical property index of Hostun sand RF [14, 15]

Grain specific weight ρ (g/cm3) emax emin D10(µm) D50(µm) D60(µm) Friction
angle ϕ

(°)

2.65 1.041 0.648 200 300 400 40

3 Triaxial Experimental Tests

In order to verify the applicability of the NorSand constitutive model, the main param-
eters of the model must be obtained on the basis of laboratory tests. Therefore, it is
necessary to know the instruments required for the test. This paper will refer to the
apparatus used to carry out the static liquefaction tests [11].

3.1 Experimental Instruments

The static liquefaction test of sandy soils is carried out using a special type of autonomous
triaxial unit whose originality comes from the loading pattern of the specimen, which is
carried out by means of a piston located at the bottom of the lower support and which
can be moved vertically in one direction or the other. The movement of the piston can be
achieved by displacement or by controlled pressure, hydraulically ensured by a pressure
chamber containing degassed water (Fig. 3).

3.2 Experimental Static Liquefaction of Hostun Sand RF

The size of the sample is a standard triaxial sample with a height of 140 mm and a
diameter of 70 mm, and the sample’s saturation is completely saturated, this test adopts
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Fig. 3. Schematic diagram of triaxial device for static liquefaction test [11]
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the undrained test, and the confining pressure is controlled at 100 kPa, then the axial
stress is continuously increased until the sample is sheared to failure.

The experimental results are shown in Fig. 4. It can be seen from the figure that with
the constant increase of axial strain, the deviatoric stress will continue to increase to the
maximumvalue, and then rapidly decrease to close to 0, the reason for this phenomenon is
that the increase of porewater pressure resulted in the decrease the effective stress of soil,
which cause a significant decline in the shear strength of the sample. This characteristic
of sand is called static liquefaction phenomenon.

4 Numerical Simulation

4.1 Constitutive Model of Soil—NorSand Model

TheNorSandmodel was first proposed byMike Jefferies [20] and is a constitutive model
developed based on the critical state soil mechanics theory. NorSand is a generalized
critical state model that can accurately capture the effect of soil porosity on soil behav-
ior and, therefore, can simulate soil static liquefaction behavior very accurately within
a certain range [16, 17]. In addition, the NorSand model has the advantage that few
parameters are required and most of them can be obtained from within the laboratory.

The parameters of the NorSandmodel (Table 2) are independent of the void ratio and
the confining pressure, which means that the values are kept constant for each type of
soil. In general, the optimization of parameters is achieved by simulating soil behavior
under different conditions through laboratory triaxial tests, this is very helpful for future
numerical simulation work.

Table 2. Parameters of NorSand model [20]

Description Parameters

Critical state locus ‘Altitude’ of CSL: Γ

Slope of CSL: λe

Dilation limit Material parameter: χ tc

Strength parameter Critical friction ratio: Mtc

Material parameter: N

Plastic hardening Hardening parameter: Ho

Hardening parameter: HΨ

Elasticity Reference value of the shear modulus at the reference pressure: Gref

Exponent of the power-law elasticity: nG

Poisson’s ratio: ν

Over-consolidation ratio R

Softening parameter S

State parameter ψ
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4.2 Input Parameters Used in the Model

4.2.1 State Parameter

The state parameter, as shown in the Fig. 5, as a key controlling variable of the NorSand
model, means the difference between the soil pore ratio and its critical pore ratio at a
current pressure.

ψ = e − ec (1)

In Eq. 1, ψ is the state parameter of the soil, e is the current pore ratio of the soil,
and ec is the void ratio of the critical state at the current mean stress. On the other hand,
it can be seen that the state parameter contains two influencing parameters, density and
pressure. When ψ >0, the pore ratio of the current soil is greater than the critical pore
ratio in the same state, and the soil is in a loose state at this time, and when ψ <0, the
pore ratio of the current soil is less than the critical pore ratio in the same state, and the
soil is in a dense state at this time. In other words, the larger ψ is, the looser the soil is,
and the smaller ψ is, the denser the soil is.

Fig. 5. Definition of state parameter ψ [10]

TheCSL inFig. 5 is determined by the fitting lineCSL inFig. 6 from the experimental
tests. This figure presents the relationship between void ratio at critical state and the
effective mean stress p’. It can be seen that there is some variability between the fitting
line and the experimental points of void ratio at critical state for different value of
effective mean stress.

The void ratio of normally consolidated soil remaining constant, with the increase
in axial stress, the pore water pressure will increase accordingly, resulting in a decrease
in effective stress until the specimen fails, at which time the soil reaches a critical state
under this void ratio, and then a series of critical state points are obtained by testing the
specimens under different void ratios.

From Figs. 6 and 7, a fitted straight line can be obtained, and this line is the critical
state line (CSL) of Hostun RF sand with the absolute value of slope 0.03 and intercept
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Fig. 6. Representation of the experimental data to determine the void ratio at critical state for
different values of mean effective stress for Hostun sand RF [11]

1.035. Therefore, the slope λe and ‘Altitude’ Γ of the critical state line (CSL) can be
obtained as shown in Fig. 7.

e = - e ln(p') + 

e=0.03,  =1.035
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Fig. 7. Numerical fitting of critical state line (CSL)
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4.2.2 Others Parameters

The various parameters of Hostun RF sand need to be determined before conducting
numerical simulations, as shown in Table 3, Gref/Pref represents Shear rigidity, where
Gref is the scaling constant for elastic shear modulus and Pref is the reference mean
pressure (typically the common value of 100 kPa is used); v denotes the elastic Poisson’s
ratio; Γ and λe are the intercept and slope of the critical state line, respectively. Mtc

refers to the critical friction ratio at triaxial compression; χ tc represents the dilatancy
rate parameter; N is the volumetric coupling parameter in stress dilatancy; H0 denotes
the plastic hardening modulus. The Table 3 also shows the values of each parameter
for Hostun RF sand under the application of NorSand model, in comparison to the
typical range of values suggested by Mike et al. [10]. Some of them are taken from the
state parameter presented in Sect. 4.2.1 and some of them are taken from the preceded
adjustment modelization.

Table 3. Parameter values for Hostun RF sand and typical ranges for each parameter

Parameters Gref/Pref v Γ λe Mtc χ tc N H0

Hostun RF
sand

150 0.2 1 0.03 1.5 4 0.35 100

Typical
range

100–160 0.1–0.3 0.9–1.4 0.01–0.07 1.2–1.5 2–5 0.2–0.5 25–500

4.3 Modelization of Triaxial Test

To validate the model, finite element software was used to simulate the triaxial consol-
idated undrained test, and the simulated results were compared with the experimental
results.

As shown in Fig. 8 (a), the dimensions of the specimen are 140 mm in height and
70 mm in diameter. As using axisymmetric coordinate, only one quarter of the specimen
is used for simulation (Fig. 8 a and b) [18, 19]. The method of strain control was used
to shear the sample, the calculation stops after reaching the specified axial strain (20%).
The effective confining stress is 100 kPa. The other two boundaries are normally fixed.
It’s means that the points on these two boundaries can only move along the axis (Fig. 8
b and c).
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a) Concept diagram of 

triaxial test

b) Axisymmetric 

coordinate

c) Numerical simulation

Fig. 8. Simulation of undrained triaxial test

4.4 Results

Figure 9 shows the liquefaction area in the soil when the axial strain reaches 20%. The
purple inverted triangle is the liquefaction point, where the effective stress is almost
equal to 0. It can be seen that liquefaction has occurred in the sample after shearing the
modeling sample. The liquefaction points on the top of the sample are denser than the
bottom one due to the mesh of finite element method.

In order to better understand the change of stress inside the specimen after shear fail-
ure, any one liquefaction point is taken as the calculation point to obtain the relationship
curve of stress with axial strain as shown in Fig. 10, it can be seen that as the axial strain
increases, the deviator stress increases to a maximum value at a small strain (<1%), and
then decreases rapidly until it approaches 0, at the same time, the pore water pressure
inside the specimen increases with the increase of axial strain, and then remains constant
at about 100 kPa, which is equal to the confining stress of the specimen, which means
that the effective stress of the specimen is zero at this time, thus leading to liquefaction.

Fig. 9. Liquefaction appearance inside the sample
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Fig. 10. Numerical relation Curve between excess pore water pressure, deviatoric stress with
axial strain of fully saturated specimen

5 Discussions

5.1 Error Analysis

The static liquefaction potential is an important parameter for measuring the resistance
of soil to liquefaction and is closely related to the porosity (or void ratio) of the soil.
Generally, the denser the soil, the smaller the porosity, and the stronger the resistance to
liquefaction (as in Case 3 in Fig. 11), resulting in a smaller static liquefaction potential.
Conversely,when the soil is looser, the porosity is larger, and the resistance to liquefaction
is weaker (as in Case 2 in Fig. 11), resulting in a larger static liquefaction potential. To
determine these two boundary conditions, which is considered as the extremities and the
critical cases, it is necessary to calculate the maximum and minimum value.

In order to verify the accuracy of the fitted CSL, an error analysis was performed on
its fitted straight line, and the error between the void ratio of each experimental specimen
and the void ratio on the fitted straight line under the same stresswas calculated, as shown
in Eq. 2,

Error = ee − ef (2)

ee is the void ratio obtained from the specimen experiment, ef is the void ratio calculated
from the fitted straight line, and its maximum positive error and maximum negative error
are shown in Table 4.

It can be seen from Table 4 that when the void ratio of the sample is 0.991, the
positive error with the fitted straight line (CSL) is the largest; when the void ratio of the
sample is 0.946, the negative error with the fitted straight line (CSL) is the largest; while
keeping the slope of the fitted straight line λe unchanged, the maximum positive error
straight line and theminimumnegative error straight line are respectively fitted, as shown
in Fig. 11. In order to separate these lines, three cases are defined: case 1 correspond
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Table 4. Maximum positive error and minimum negative error

Types Experimental data [11] Fitting Error

Void ratio 0.991 0.983 +0.008

0.946 0.957 −0.011

the fitting line, case 2 correspond the maximum positive error, case 3 correspond the
minimum negative error.

Case 1

y = -0.03ln(p') + 1.0349

Case 2

y = -0.03ln(p') + 1.0436

Case 3

y = -0.03ln(p') + 1.0242
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Fig. 11. Error comparison of fitting Critical State Line

5.2 Discussion

From three fitting straight lines in Fig. 11, the void ratio at the critical state with mean
effective stress of 100 kPa was deducted (Points A, B, C in Fig. 11). Table 5 shows
the value of state parameter ψ calculated based on these deducted void ratios following
Eq. 1. When the soil’s void ratio change also results in the change of altitude of CSL
(
) which is presenting in Fig. 11 and Table 5.

From these values of state parameter and altitude ofCSL, threemodels corresponding
to three values of void ratio at critical state were carried out to evaluate the effect of void
ratio on the liquefaction behavior. This calculation is necessary when the soil in situ is
always not uniform, the void ratio of the soil often distributes around a mean value. It
can be seen from Fig. 12 that when the strain is about 0.5%, the deviatoric stress of the
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Table 5. State parameters obtained fromdifferent fitting straight lines under the confiningpressure
of 100 kPa

Types Void ratio (100 kPa) State parameter ψ Altitude of CSL
Γ

Modelized soil
(Current void ratio in Eq. 1)

e = 1.007 [21, 22] - -

Case 1 Point B:
ec = 0.897

0.110 1.035

Case 2 Point C:
ec = 0.905

0.102 1.044

Case 3 Point A:
ec = 0.886

0.121 1.024

sample reaches the maximum. Compare the maximum values of the three simulation
results with the experimental results, and calculate the error according to Eq. 3,

Error = qMe − qMm

qMe
× 100% (3)

where qMe is the maximum of the deviatoric stress obtained from the experiment, qMm

is the maximum of the deviatoric stress obtained from the simulation, the calculation
results are shown in Table 6.

Table 6. Error between the maximum deviatoric stress of simulation results and experimental
results

Types Experimental data (qMe) Case 1 (qMm) Case 2
(qMm)

Case 3
(qMm)

Deviatoric stress (kPa) 47.4 47.6 48.9 45.9

Error (%) - 0.42 −3.05 3.43

It can be seen that the maximum deviatoric stress obtained by case 1 has the smallest
error between the considered cases compared with the experimental results. Moreover,
its decreasing trend after reaching the maximum deviatoric stress; and its final stable
state after reaching an axial strain of 10%, graph of case 1 remain almost the same as
that of the experimental data. This shows that the case 1 results are very close to the
experimental results, and also shows that the NorSand model can well simulate the static
liquefaction of soil.

Similarly, Fig. 13 shows the relationship curve between the excess pore water pres-
sure and the axial strain. It can be seen that although the state parameters are different,
the differences between the three simulation results are very small, and the overall trend
is consistent with the experimental results. With the increase of the axial strain, the
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Fig. 12. Deviatoric stress vs axial strain of three simulated cases and experimental data

excess pore water pressure also increases continuously until it remains stable around
100 kPa, which indicates that with the increase of the axial strain, the effective stress of
soil continuously decreases and finally approaches 0.
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Fig.13. Excess pore water pressure vs axial strain of three simulated cases and experimental data
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6 Conclusion and Perspective

In this research paper, it can be seen that the results of NorSand model have a good
agreement with the experimental data. When the axial strain is small (about 0.4–0.5%),
the deviatoric stress of soil reaches the maximum, after reaching the peak, the deviatoric
stress starts to drop rapidly (close to 0), and then remains stable.

The uncertainties of the void ratio measurement at the critical state affect the mod-
eling results. The maximum value of the measured void ratio at the critical state results
a 3.05% difference of deviatoric stress compare to the experimental results for more
conservative model (Case 2), while this difference is 3.43% corresponding to the mini-
mum value of the measured void ratio at the critical state (less conservative model, Case
3). The 0.019 (2.14%) of void ratio increase results in 3 kPa (6.54%) of decrease in
deviatoric stress. It means that there is a band for the peak of deviatoric stress to fluc-
tuate depending on the distribution of measured void ratio at critical state. This result
also suggests perspective that it is necessary to build the distribution law of liquefaction
potential, or the peak of deviatoric stress, based on the distribution law of void ratio at
critical state.
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Abstract. Silt-based construction material is an ecological and economical alter-
native for typical cement-based concrete and has received lately the researchers’
attention more than before. Some researches were done on the raw earth material
to enhance its characteristics as strength and ductility for being widely used for
various materials. Yet, many other mechanical properties can be used to study the
mechanical properties of raw earthmaterials such as strainmodulus and toughness.
Studies concerning the toughness of a material were rarely considered previously
except for metals despite its significant role associated to the energy absorbed
by the material under loading before fracturing. The purpose of this paper is to
restate the normal toughness definition used in the literature for typical construc-
tion materials and presents the possibilities of the repetitions of our experimental
tests showing the statistical error occurred between same tests performed compar-
ing the stress-strain graphs for three replicates done for each formulation out of 25.
This paper will focus on the uncertainties and the possibility to neglect the intrud-
ing samples to reach better results and better simulate and fit the experimental
data in numerical analysis. Experimental tests has some statistical errors and the
uncertainties must be minimal compared to the complications of the experiment.

Keywords: Silt-based material · Raw earth concrete · Stress-Strain curve ·
Area · Energy · Toughness · Statistical errors · Uncertainties

1 Introduction

Statement of uncertainty is required to develop a better understanding of the results
obtained and analyze the experimental data. This is done by studying the different influ-
encing instruments on the replication of the test by defining the different aspects of the
test procedure having the greatest effects on the results so it can be controlled more
closely.

Since ever, raw earth materials, consisting mainly of a compacted mixture of moist
clay and sand, has been used as a building material. Pollution is well spread in whole
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world, and nowadays all countries are searching for new and green energies or even
trying to limit the use of the grey energy.

The modern construction materials using concrete and steel are highly energy-
intensive in terms of grey energy. Hence a new ecological and economical construction
material is required, known as eco-geomaterials for construction,mainly raw earth-based
materials with low energy consumption compared to modern materials [1, 2].

Raw earth material are natural materials available everywhere in the world and in
great amounts with a low and affordable cost. They Require only 1% of energy through
the production process compared to that of concrete [3]. They are recyclable and can be
reversible, reducing or avoiding notable quantity of waste. Hence it needs to be studied
more and developed to be a great alternative of the cement-based concrete.

Numerous studies have been established to improve the raw earth materials’ prop-
erties regarding its mechanical strength, the shrinkage and swelling, the cracking and
the hygro-thermal properties [4]. Stabilizers as lime, cement and/or gypsum and rein-
forcement as strong fibers are used to improve these properties to meet the expected
performance required from a building material [5].

To improve any property of the raw earth material, several components (natural
and/or manmade materials) can be added as a constituent of the mixture. Depending on
the raw earth construction technique followed, adding small quantity of binders such as
lime and/or cement, may enhance the material’s compressive strength up to a certain
level to become acceptable as a construction and building material [4, 6, 7].

Different studies on the raw earthmaterial’s ultimate compressive strength [8] and its
ductility [9] with the influence of the substituents used in the mixture on these properties
were previously done by Imanzadeh et al.

As much as toughness characteristic of materials is important, many studies were
performed on fiber reinforced hydraulic lime mortar [10, 11] and fly ash concrete [12],
but studies for toughness for raw earth concrete is rarely conducted.

Based on the Absolute toughness of the material defined from the literature as the
total area under the stress-strain curve which is Total energy absorbed by the material
before it fractures [13]. Different softwares are used to estimate the area under the
stress-strain curves and verify the precision of these results.

In our study, we have 25 different formulations by changing the percentages by
mass of the constituents; and for each formulation we have 3 replicates. Due to some
uncertainties in the experiments, these 3 replicates are not exactly the same and there is
small difference between the results of each from the other.

In this paper, the uncertainty from the experiments is reduced by checking and
removing any intruding replica to reach better statistical data as a new approach to
minimize the uncertainties.

2 Materials

The raw earth concrete is made from mixing different materials made of soil, binders
(cement and lime), flax fibers and water.
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2.1 Soil Material

Natural silt is chosen as a building material for being abundantly available locally.
Based on the grading size distribution curve, the Atterberg limits and according to

LPC-USCS (ASTMD2487-11) standard [14], this soil is categorized as silty sand (SM).
Where the detailed description of the properties of this silty sandwas done by Imanzadeh
et al. [8].

2.2 Binders

Cement and Lime acting as binders are used in the mixture of the raw earth concrete.
According to the European standard EN459-1, the lime added is obtained from the
Proviacal® DD range. It is a calcic quicklime CL 90-Q (R5, P3); it contains 90.9%
available CaO and has a reactivity of t60 = 3.3 min [15]. According to the NF EN197-
1[16] and NF P15-318 [17] standards, CEM I 52.5 N cement is used in the mixture of
this material. Where a detailed properties of these binders is acknowledged by Eid 2017
[18].

2.3 Flax Fibers

Locally extracted flax fibers from the Normandy’s region is used in the mixture of this
raw earth concrete. Since theNormandy region is responsible for 55%of total production
of flax in France, these flax fibers are chosen to be added to the mixture [19]. A proper
description of these flax fibers was explicated by Imanzadeh et al. [9]. Fiber content in
the mixture is varied in the range of 0.3%–0.45% in mass: 0.3% was considered as a
low level and 0.45% as a high level of fiber content in specimens.

2.4 Incorporation of a Superplasticizer Additive

Limited water content is required in the mixture of raw earth concrete to minimize
its shrinkage. Superplasticizer additives can be adjoined to the mixture acting as an
alternative to preserve the consistency during the manufacturing process of the con-
crete. SIKA VISCOCRETE TEMPO-10, is a new generation superplasticizer based
on acrylic copolymer, according to NF EN 934-2 standard, is added as an alternative
[20]. This superplasticizer can be used without constraints for the construction of rein-
forced and pre-stressed concrete structures; because it doesn’t contain chlorides or any
other harming substances that might cause or promote the corrosion of the steel. The
super-plasticizer contributes to deflocculating fine grains and to lubrification of the solid
surfaces, decreasing the friction stresses between particles [21]. A constant amount of
additive of 5 ml/m3 has been used for each sample preparation.

The raw earth concrete samples are prepared using a potable tap water from the pipe
in the laboratory.
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2.5 Mixtures

Laboratory mixer of 4L capacity is used for the mixing procedure in order to obtain
homogeneous samples with random distribution of the materials. Two successive phases
are considered: First one for the dry mixing for all the dry materials; The second phase
is the wet mixing by adding the water and additives. Additional details are mentioned
by Imanzadeh et al. [9].
Limitation Considered

For the mixture of raw earth material, three constraints are considered respecting the
various constraints from economical, ecological and environmental constraints.

Fundamental Constraint:
As theweight of the ingredients should sumup to 100% inweight for all themixtures.

Obtaining the first constraint:
Fiber % + Lime % + Cement% + Water% + Silt% = 100%
Economical and ecological constraints:
The main purpose of using raw earth concrete is to limit the use of unnecessary grey

energy providing the best possible mechanical properties. Hence to limit the grey energy,
the percentage of binders used (lime and cement) should be limited in themixtures. Thus,
Cement percentage in the mixture is limited to be maximum 16% from the sample’s
weight, and Lime limited to 12%maximum. Moreover, both constituents together, must
not exceed the 16% of the total weight of the specimen.

Finally, the workability constraint:
Suitableworkability of themixture is insured for a bettermechanical property [22] by

imposing the fluidity conditions using the concrete slump test fulfilling S3 consistency
condition according to the standard NF EN 206-1 [23]. Resulting with the following
condition: 2.5 <– 9 Silt – 22 lime – 9 cement + 42 water < 3.
Mixing Range

Considering the various constraints listed above, the mixing range of the constituents is
defined as follows in the Table 1.

Table 1. Mixing ranges of constituents.

xi Lower Limit (%) Upper Limit (%)

x1: Fiber 0.3 0.45

x2: Lime 0 12

x3: Cement 4 16

x4: Water 20 25

x5: Silt 47 75

Formulations

Considering the above mixing ranges of the constituents, 25 different formulations are
considered varying all constituents at the same time respecting all the constraints defined
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before. Table 2 is observed for each formulation with each different percentages by mass
of constituents.

Table 2. List of the formulations and their constituents.

Formulation Fiber (x1) Lime (x2) Cement (x3) Water (x4) Silt (x5)

1 0.0030 0.0000 0.1600 0.2239 0.6131

2 0.0030 0.0647 0.0400 0.2500 0.6423

3 0.0030 0.0000 0.0400 0.2290 0.7280

4 0.0045 0.0000 0.0400 0.2287 0.7268

5 0.0030 0.0000 0.0400 0.2345 0.7225

6 0.0045 0.0000 0.0400 0.2342 0.7213

7 0.0030 0.0000 0.1600 0.2295 0.6075

8 0.0045 0.0000 0.1600 0.2292 0.6063

9 0.0045 0.0719 0.0881 0.2500 0.5855

10 0.0030 0.0560 0.1040 0.2500 0.5870

11 0.0045 0.0568 0.1032 0.2500 0.5855

12 0.0045 0.0000 0.1200 0.2253 0.6502

13 0.0045 0.0000 0.1600 0.2255 0.6100

14 0.0040 0.0000 0.1600 0.2237 0.6123

15 0.0030 0.0237 0.1363 0.2326 0.6044

16 0.0045 0.0543 0.0400 0.2500 0.6512

17 0.0045 0.0438 0.0400 0.2429 0.6688

18 0.0045 0.0479 0.1121 0.2412 0.5943

19 0.0035 0.0480 0.0400 0.2500 0.6585

20 0.0035 0.0713 0.0887 0.2500 0.5865

21 0.0038 0.0000 0.1000 0.2291 0.6672

22 0.0030 0.0299 0.0841 0.2396 0.6433

23 0.0038 0.0261 0.0859 0.2409 0.6433

24 0.0038 0.0320 0.1280 0.2383 0.5980

25 0.0038 0.0301 0.0840 0.2395 0.6426

3 Experimental Method

3.1 Sample Preparation

First, the used silt in the mixture is oven-dried at 60 °C for 48 h in order to control the
amount of water in the specimens.
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Then, the homogeneous samples are prepared carefully in the laboratory to ensure a
randomdistribution of the fibers. Laboratorymixer of a 4L capacity is used for themixing
procedure involving two successive phases: First phase, mixing the dry components (silt,
fibers and binders) for two minutes; Second phase, wet mixing for three minutes by
adding the solvents (water and additives).

Afterwards, the molds of 100 mm height and 50 mm diameter are filled associated
with vibration for two minutes via a vibrating table. To ensure the achievement of the
majority of the chemical reactions due to binders, a 90 days of curing time is assured
by storing the obtained specimens time in controlled laboratory environment (relative
humidity RH≈50% and temperature T≈22 °C). In total of 75 specimens are produced,
including 3 trials for each of the 25 formulations with different mix proportions.

3.2 Unconfined Compression Strength Test

After 90 days of curing-time, an axial Unconfined Compressive Strength (UCS) test
(Fig. 1) according to NF P94-420 [24], NF P94-425 [25] French standards is performed
on the cured specimens with different mix proportion.

Fig. 1. Experimental Unconfined Compressive Test.

Hence, the toughness parameters are deduced from the applied axial stress versus
axial strain curve obtained from UCS test.

The UCS experimental work is done in the laboratory using an apparatus of 100 kN
maximum load capacity and ±0.05 mm accuracy potentiometric displacement sensor
connected to a computer-controlled acquisition center. The tests are controlled under
a strain rate of 0.1 mm/min without any confining stress on the sample. Additional
information concerning the experimental device was stated by Imanzadeh et al. [8]. The
force exerted on each specimen was recorded with its corresponding displacement from
the sensor. Where the axial stress is calculated by dividing the force with the specimen’s
cross sectional are and its corresponding strain is calculated by dividing the displacement
recorded by the initial height of the specimen.

3.3 Stress-Strain Curves

Using the obtained data from the experiment, the stress-strain curve is drawn for each
specimen to study the behavior of the material and the effect of each component on it.
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Imanzadeh et al. [9] have already validated that the threshold of 15% of strength
loss after reaching the peak is enough to analyze the plastic behavior of the material.
Hence the study of toughness is done according to this threshold.Moreover Formulations
2,4,5,15 and 19 were excluded since these specimens show gradual increase in strength
without reaching maximum compressive strength.

Most of the specimen gave similar path for stress-strain curve containing three
regions:

1. Region A containing both the toe region and the linear part of the curve.
2. Region A’ including a non-linear path of the pre-peak region on the curve, after region

A and before reaching the peak described as a plastic zone, usually associated to the
non-linear phase due to micro-cracking.

3. Finally, region B involving the non-linear path after the peak until reaching the
85% stress of the ultimate compressive stress achieved. B is the area under the
curve between Ultimate Compressive Strength (UCS) stress value and its 85% value
defining part of the post-peak region as indicated in Fig. 2.

Fig. 2. Raw Earth Material’s Stress-Strain Curve with Regions defined

4 Absolute Toughness

Raw earth material got the world’s attention lately for its high suitability to replace
normal concrete in construction for better environments. Various studies were previously
achieved on raw earth material by Imanzadeh et al. [8, 9] by performing unconfined
compressive test on raw earth samples where the ultimate compressive strength of the
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material without fibers and its ductility in the presence of fibers was already established.
In this work, the focus will be on the additional mechanical properties of this material
as the material’s toughness for its importance in the civil engineering studies.

In general, toughness is defined as the ability of thematerial to withstand impacts and
dynamic loads. It is defined as the energy absorbed without cracking or energy needed
to slow down the crack’s propagation before fracturing [13].

Toughness is the combination of strength and plasticity [26], where tough material
can take hard blows without rupturing.

Absolute toughness indicates themaximumand total amount of strain energy per unit
volume that the material can absorb just before it fractures. The analysis of the plastic
behavior of the material using the threshold of 15% of strength loss after reaching the
peak was previously validated by Imanzadeh et al. [9].

Hence, in our case, absolute toughness is calculated as the area under the stress-
strain curve until reaching a value of 85% of UCS after reaching the maximum. This
quantity represents the entire area under the stress-strain diagram considering the strain
at threshold of 15% of strength loss after reaching the peak as the maximum studied
strain.

In conclusion, toughmaterial should be ductile and strong at the same time. Stronger:
Withstand higher load value; Tougher: resist changes andmaintain properties under load.

For the following parts these notations are used:

i: Number of formulations = 1, 2 … 25.
j: Number of trials = 1,2 or 3.
Xi,j: is the toughness component of the trial j of the formulation i.

In some trials UCS (the maximum in the stress-strain graph) is not reached so this
index couldn’t be calculated and replaced by ‘/’ or the curve looks strange.

In some trials 85% of UCS is not reached but due to obvious decrease in the curve
after reaching UCS and a small interpolation the value of deformation at the 85%UCS
stress could be calculated and hence the toughness index too.

4.1 Methodology

For the unit of this value obtained it should be in Joules per cubic meter to be as defined
energy per unit volume.

Ti,j = (A+A’+B)i,j which is the total area under the stress-strain curveuntil reaching
85% of the UCS after reaching the peak. The three different regions are presented in
Fig. 2.

4.2 Results

Within the three trials there might be incoherence between one and the other two causing
the existence of high standard deviation. So, these incoherent values are deleted neglect-
ing this intruding trial considered to be deficient in order to reach an acceptable standard
deviation for all values.

The toughness obtained from the areas under the stress-strain curves for each of the
three trials of each formulation is presented in Table 3 with the mean value for these
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three trials. Moreover the standard deviation (STD) which is the probability distribution
of values is also presented; also, Table 3 contains the coefficient of variation (CV) which
is the percentage of the ratio of the standard deviation to the mean value, expressed as
percentage permitting the comparison between distributions of values whose scales of
measurement are not comparable. For more accuracy, a low CV gives more precision.

Table 3. Absolute toughness values for the 3 trials of the 25 formulations with their mean value,
standard deviation and the coefficient of variation.

Formulation Ti,1 [kJ/m3] Ti,2 [kJ/m3] Ti,3 [kJ/m3] Ti [kJ/m3] STD [kJ/m3] CV (%)

1 90,52 103,63 86,81 93,66 8,84 9,44

2 / / / / / /

3 11,81 / / 11,81 / /

4 / / / / / /

5 / / / / / /

6 9,01 / / 9,01 / /

7 74,53 65,85 72,96 71,11 4,63 6,50

8 101,51 73,23 95,08 89.94 14,82 15,08

9 30,48 46,42 37,51 38,14 5,82 15,26

10 43,65 35,25 / 39,45 5,94 15,06

11 44,31 26,75 34,85 35,30 7,39 20,93

12 51,24 57,71 38,64 49,20 10,16 20,65

13 82,42 107,32 55,48 94,87 25,93 27,33

14 88,94 107,90 90,36 95,73 10,56 11,03

15 / / / / / /

16 11,85 / / 11,85 / /

17 10,52 / 11,02 10,77 0,35 3,28

18 41,16 49,65 51,71 47,51 5,59 11,77

19 / / / / / /

20 / 29,41 34,37 31,89 0,88 2,62

21 36,22 37,25 36,33 36,60 0,57 1,55

22 29,98 32,23 33,89 32,03 1,96 6,13

23 45,02 35,12 35,17 38,44 5,70 14,83

24 68,87 64,03 65,07 65,99 2,55 3,86

25 34,79 48,07 48,48 43,78 7,79 17,79

The results can be shown more clearly in Fig. 3 where the standard deviation of the
absolute toughness is shown for each formulation.
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Fig. 3. Standard deviation of the mean value of the absolute toughness for each formulation

In order to minimize the uncertainties that come from the experiments, and decrease
the observed statistical parameters, for each formulation, an introduing experiment is
tried to be distinguished and removed. The intruding trial for each of the formulation
is removed to obtain a lower CV and hence more precised results. An example on the
intruding trial for formulation 1 is shown in the Fig. 3, where the second trial has a
different behavior corresponding to the other two trials of the same formulation. Hence
removing this false trial gave a much better standard deviation and a better coefficient
of variation, leading to more precise results corresponding to the formulation. Same
procedure was done on all the other formulations and the results are presented in the
Table 4. In all the formulations, the intruding replicate was chosen in terms of difference
in the area under the stress strain graphs compared to the other two graphs. In other
words, this intruding one was found in a way to minimize the standard deviation for the
toughness property of the material (Fig. 4).

Fig. 4. Stress-Strain curve of the three trials of Formulation 1.
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Hence in all the following analysis done, the adjusted mean values of each
formulation from Table 4 is considered to have more precise results.

Table 4. Adjusted absolute toughness values for the 25 formulations with acceptable standard
deviation and coefficient of variation.

Formulation Ti,1 [kJ/m3] Ti,2 [kJ/m3] Ti,3 [kJ/m3] Ti [kJ/m3] STD [kJ/m3] CV (%)

1 90,52 / 86,81 88,67 2,62 2,96

2 / / / / / /

3 11,81 / / 11,81 / /

4 / / / / / /

5 / / / / / /

6 9,01 / / 9,01 / /

7 74,53 / 72,96 73,74 1,11 1,51

8 101,51 / 95,08 98,29 4,55 4,63

9 30,48 / 37,51 34,00 1,44 4,22

10 43,65 35,25 / 39,45 5,94 15,06

11 / 26,75 34,85 30,80 3,61 11,71

12 51,24 57,71 / 54,48 2,45 4,50

13 82,42 107,32 / 94,87 17,61 18,56

14 88,94 / 90,36 89,65 1,00 1,12

15 / / / / / /

16 11,85 / / 11,85 / /

17 10,52 / 11,02 10,77 0,35 3,28

18 / 49,65 51,71 50,68 1,46 2,87

19 / / / / / /

20 / 29,41 34,37 31,89 0,88 2,77

21 36,22 37,25 36,33 36,60 0,57 1,55

22 29,98 32,23 33,89 32,03 1,17 3,66

23 / 35,12 35,17 35,14 0,04 0,10

24 68,87 64,03 65,07 65,99 2,55 3,86

25 / 48,07 48,48 48,27 0,29 0,60

This showed the high decrease in the coefficient of variation for most of the studied
formulations meaning more precision with lower experimental uncertainties.

The results showed a huge improvement in terms of uncertainties and specially
with reaching a coefficient of variation lower than 5% in most of the formulations and
low standard deviation; except for formulations 10, 11 and 13 but still, this statistical
parameter was decreased with this method (Fig. 5).
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Fig. 5. Standard deviation of the mean value of the adjusted absolute toughness for each
formulation

5 Conclusion

After studying the toughness of the raw earth concrete sample, the analysis of the results
was improved by removing the intruding replicate. The toughness of the material is the
energy of the material can handle before breaking, and it was used in this study as the
energy needed for thematerial to reach its maximum strength and loses 15% of it. So, the
absolute toughness was studied as the area under the stress-strain graph in the defined
domain and it was clear how to distinguish the intruding formulation using this graph.
Two statistical parameters were considered, the standard deviation and the coefficient of
variation, to remove the intruding sample and improve these parameters to have more
precise results.

Removing the intruding data improved the coefficient of variation to reach val-
ues lower than 5% for most of the formulations which is convenient with the
recommendations.

As much as the experiments were done precisely, but a small distortion in the sample
can cause a huge misleading in the tests results. That’s is why replicates of the tests
is recommended, but also the intruding data should be well located and removed from
the analysis to reach a better precision. In this way the analyzed data can be modelized
easier and better using the fundamental laws.
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Abstract. Day after day, soil liquefaction took the attention of the researchers due
to its huge and dangerous impact on its surroundings. Generally, soil liquefaction
is related to saturated soils; however, recent studies showed that it is possible for
unsaturated soils. Laboratory tests are done using dynamic triaxial test on unsat-
urated Hostun sand RF. As all experimental tests, uncertainties are unavoidable
due to many factors affecting these tests from the sample preparation, the consid-
ered approximations (the stopping conditions of each phase of the test) and the
heterogeneity of the material. Dynamic triaxial experiments were done on Hostun
Sand RF samples with relative density of 50% in undrained conditions. This paper
presents the possibilities of the repetitions of our experimental tests showing the
statistical error (standard deviation and coefficient of variation) occurring between
the same tests performed, focusing on the different parameters that might cause
these uncertainties. The experimental tests carried out showed that it is impossible
to be 100% repeatable and perfect, but the statistical errors and the uncertainties
must be minimal compared to the complexity of the experimental test. To reduce
these uncertainties, it is necessary to perform more replicated tests; however, in
geotechnical field, it costs additional time and expenses.

Keywords: Cyclic Liquefaction Potential · Dynamic Triaxial Tests ·
Unsaturated soils · Hostun Sand RF · Statistical Errors · Uncertainties

1 Introduction

1.1 Uncertainties in Experiments

All kind of experiments are subjected to various types of uncertainties due to unavoidable
errors. There are some random errors that come from human beings and their experi-
mental skills and performance and precision in reading the experimental measurements.
Plus, there is the systematic errors that come from tools utilized during the experiments
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[1]. If these types of errors are considered in the analysis of the received data, accuracy
of the experiments increases effectively and a better correlation can be reached with
better fittings [2].

Uncertainty is a term referred to a possible magnitude of error defined by Airy
1861 [3], where Moffat 1988 [4] described various types of errors in measurements for
single-sample test. This kind of uncertainty for such tests is rarely considered because
the mostly used one is for the multiple-samples tests. Moffat 1982 and 1985 [5, 6] has
described the analysis of single-sample uncertainty.

1.2 Liquefaction and Dynamic Triaxial Tests

Liquefaction is a very dangerous phenomena that occurs when the pore pressure of the
soil increases rapidly subjecting the soil particles to a high pressure. As a result, the sand
particles lose their bonds and rapidly lose their strength and behave like a liquid under
cyclic loading [7–10].

When soils liquefy, deformations develop rapidly and causes large-scale infrastruc-
ture collapse [11, 12].

In order to reproduce real soil consolidation conditions and perform cyclic loading
on soil samples, dynamic triaxial apparatus is used in the laboratory to better understand
liquefaction for partially saturated soils.

2 Materials and Test Procedure

For the experiment test listed in this paper, Hostun RF sand is used as a testing material.
In the domain of liquefaction, Hostun RF sand is one of the most used materials in
geotechnical tests for being considered as fine clear sand [13, 14]. This sand has a void
ratio of 1.041 as maximum and 0.648 as minimum; it has 60% of it grains smaller
than 400 µm and 10% smaller than 200 µm. This is clearly shown with the grain size
distribution of this sand as shown in Fig. 1; where it can be seen also that this distribution
lies inside the liquefiable zone of soils characterized by Iwaski, 1986 [15].

A sample with relative density of 50% corresponding to initial void ratio of 0.85
and initial water content of 19% is reconstructed using the wet tamping technique.
This technique is widely considered in the literature for sample preparation for tests
on liquefaction phenomena [16]. The sample with diameter of 70 mm and height of
140 mm is compacted using this method and it has initial saturation degree of 60%. A
latex membrane of 0.3 mm thickness is used to prohibit the direct contact between the
sample and the surrounding cell water.

The sample is well installed into the cell and the initial saturation degree is verified
by the Skempton’s parameter B measurement. After that, the sample is consolidated and
subjected to cyclic loading and then the increase in pore pressure to this dynamic load
is dissipated and then the sample was fully saturated using ramp for a long time.

Finally, the sample is removed and its final characteristics are measured and
calculated.

Five experiments has been done for the purpose to study the uncertainty of the
machines and all falls in the same range and the results shown in this paper is for the
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Fig. 1. Grain size distribution of Hostun RF sand

closest one to the average values. The other tests followed other paths from drained or
undrained consolidated dynamic triaxial tests.

3 Tools

Different laboratory instruments are used during the test as the dynamic triaxial apparatus
and its sub-devices as pressure controllers and axial displacement sensors and the Load
transducers in addition to the balance used to measure the final characteristics of the
sample.

3.1 Balance

The sample studied is reconstructed using sand andwater with specific defined quantities
to have the required relative density and needed initial saturation degree. To do so, the
mass of the sand used and the amount of added water is measured using a balance of a
maximum reading of 2010 g and reading error of ±0.01 g (Fig. 2).

Fig. 2. Precise Balance
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3.2 Load Transducer

The cell, where the sample is inside, is fixed at the base of the press and the load
transducer is the one applying the cyclic loading from above. This load transducer can
read a maximum of 5 kNwith a total error of±0.112%. As the test starts, the press is not
used to move the sample towards the load transducer as the case in normal cases; rather
than the load transducer is the one moving to apply dynamic load on the sample. So,
in our tests, the load transducer’s precision plays an important role in the calculations
(Fig. 3).

Fig. 3. Press and Load transducer

3.3 Axial Displacement Transducer

The axial displacement transducer is placed to measure the displacement of the load
transducer during the dynamic load. This axial displacement transducer has a maximum
reading of 25.73 mm and a non-linear error of 0.09% full scale. This error is considered
in the calculations in the uncertainties of the measurements due to this transducer.

3.4 Pressure Controllers

To measure the pore water pressure inside the sample, an automatic pressure controller
(APC) is used. This instrument can have amaximum reading of 1000 kPa in pressure and
maximum of 200 cubic centimeters (cc) in volume of water. It has a pressure resolution
of ±0.1 kPa and volume resolution of ±0.001 cc. The same system is used to control
the cell pressure and measure the volume of water used in the process (Fig. 4).
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Fig. 4. Automatic pressure controller

4 Experimental Uncertainties Calculation

During the triaxial tests, various phases are followed from sample preparation to sample
saturation if needed and its consolidation, then applying the cyclic loading on and after
that dissipating the pressure induced due to this loading. Finally, saturation phase of the
sample and then removing it to calculate its final characteristics as the final water content
of the sample, considering that the sample is fully saturated after the final phase (Fig. 5).

To calculate the status and characteristics of the sample during the test, the most
precise path is to follow it starting from its final state at the sample removal and going
back step by step through the previous phases. This is due to lack in precision in well
densifying the sample to the required density manually where the marge error will be
significant compared to the calculated one due to random errors that come from the
person doing the experiment.

The uncertainty of measurement in each step is calculated as using the differential
error analysis [17, 18].

Considering that a final result f in function of variables x, y, z, etc.; the uncertainty
of obtaining the value of is related to the uncertainty in the measurement of the variables
as the following:
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Fig. 5. Steps followed for dynamic triaxial test

5 Studied Variables

Based on the different tools defined, various variables are measured in each phase of
the test and can be summarized in the Table 1. The values of the parameters measured
during one of the tests are shown; where these values differ from one test to another
depending on the state of the sample like its density and its saturation degree.

The percentage of the uncertainty in the measured values remains almost the same
in the other tests followed.

Table 1. Variables Measured in various steps of the test

Variables
Phases

Saturation Consolidation Loading Reconsolidation Sample Removal

Volume of sand Vs (cm3)
– from balance

- - - - 293.3

Volume of water in Sample
from final state (cm3)
– from balance

- - - - 205.0

Volume of Back Pressure
Controller (cm3)

129.5 137.1 137.1 202.5 -

Pressure from the
Back-Pressure Controller
(kPa)

10 0 - 500 -

Pressure from the Cell
Pressure Controller (kPa)

30 100 100 600 -

Axial Displacement (mm) - - ±1.4, 2.1, 2.8, 3.5 - -

Load Applied (N) - - +1473.4 → −282.4 - -
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6 Results and Discussion

Starting from the last phase of our test, which is the sample removal. Considering that
the error in this phase come from the balance alone. As the sample is removed, few sands
get stuck on the membrane and these few grams are considered by measuring the weight
of the membrane and the sand stuck on it together. After that, the membrane is cleaned
well and dry it before we remeasure its weight alone. The difference in the weights gives
the weight of the lost sand to have more precise calculations.

From the wet sand that is removed from the triaxial test, wemeasure its weight which
is the weight of the sand and water measured as 953.60 g ± 0.01 g given by the balance
used. This sample is entered to the oven for 24 h at 100 °C and then measured the weight
of the completely dry sand and it is found to be 754.60 g ± 0.01 g.

From these measurements, the final water content is calculated using the following
formula:

w(%) = Water Content (%) = Mass of water

Mass of dry sand
.100 = Mw

Ms
.100. (2)

The water content is calculated as 26.4%. To calculate the uncertainty of this
measured value, Eq. 1 is used as the following.

Knowing that range error of balance is ±0.01 g, this uncertainty in measuring the
mass of the sample will be ±0.01 g. From this, the uncertainty of measuring the mass
of dry sand is the same. Then, the relative error of this measurement is 0.0013% of the
measured value. The range error concerning the measurement of the weight of the water
is the summation in errors of measurements of the wet sample (costing from sand and
water) and the error from measuring the dry sand alone (Fig. 6). Then the relative error
frommeasuring the weight of water is 0.01%. Finally using Eqs. 1 and 2we can calculate
the relative error in measuring the final water content as following:

�w

w
= �Mw

Mw
+ �Ms

Ms
= ±0.0113% (3)

Then the error of measuring water content is:

�w = ±0.0113%.26.4% = ±0.003% (4)

Then the final water content of the sample is 26.4% ± 0.003%.
From the final phase, final water content of the sample is calculated. Going one step

before, the is the saturation phase of the sample using ramp by increasing the pore water
pressure and the cell pressure at the same time. So, there is increase in effective stress
on sample and the change in volume measured in this phase from automatic pressure
controller is just the volume of air in sample replaced by the volume of water due to the
applied pressure.

The volume of water in sample at the end of sample is calculated in previous para-
graph by the balance. Plus, from the back-pressure controller, the volume of water added
to the sample during this phase is measured. Hence, the initial state of the sample at the
beginning of the phase of saturation can be calculated.
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Fig. 6. Measuring of sample before and after drying it

The volume of water at the end of saturation phase is:

Vwf = 205.00 cm3 ± 0.02 cm3 (5)

The volume measured by the APC during the saturation phase is:

deltaV = 77.57 cm3 ± 0.001 cm3 (6)

Then the volume of water in sample at the beginning of saturation phase is:

Vwi−sat =
(

205.00 cm3 − 77.57 cm3
)

±
(

0.02 cm3 + 0.001 cm3
)

Vwi−sat =
(

127.43 cm3
)

±
(

0.021 cm3
)

= 127.43 cm3 ± 0.016% (7)

As the value of water measured is smaller, the range error decreases too.
As a result, at the beginning of saturation ramp, the sample characteristics are

presented in the following table (Table 2):

Table 2. Volumes of different parts of sample before saturating the sample

Value (cm3) Error (cm3) Relative Error (%)

Volume of sand Vs 293.3 0.004 0.001

Volume of water Vwi−sat 127.43 0.021 0.016

Volume of air Vai−sat 77.57 0.001 0.001

Total volume of sample Vi−sat 418.24 0.026 0.006

From this table, it can be seen that the percentage error decreases due to using the
APC systemwith higher precision than the balance used.Moreover, an error of 0.026 cm3

is still very small.
From these characteristics, the void ratio (e) of the sample can be calculated at the

initial state of saturation phase. The void ratio is calculated as:

ei−sat = Volume of Void

Volume of dry sand
= Vv

Vs
(8)
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So, as calculated with the water content, the relative error in this void ratio is found
to be 0.012% and the value is 0.69. So, the initial void ratio in ts step is 0.69 ± 0.00008
where the error is negligible.

The saturation degree (Sr) of the sample at initial state is calculated as:

Sri−sat = γs

γw
.
wi−sat

ei−sat
(9)

where γs and γw are 2.65 g/cm3 and 1 g/cm3 respectively and are constants. So, the error
in the saturation degree is calculated from the errors in water content and void ratio.
Then, initial saturation degree is 62.9% ± 0.021%.

The same concept is followed in each step of the phases and in each step the void ratio
and the saturation degree is calculated to reach a real initial saturation degree ranging
between 55.774% and 55.826% of a value of 55.8% with relative error of 0.1% only.
This shows the high precision of the system used compared to that of the researcher
performing the experiment. The initial saturation degree of the sample is calculated to
be 55% which is relatively far from the expected value which is supposed to be 50%.
The relative error of this experiment considering the saturation degree is 10% using
the formula given by Derenzo, 2010 [19] which the difference between calculate value
from the experiment and the expected value from sample preparation with respect to the
expected one. The same relative error for the relative density of the sample, or in other
words its void ratio, is found to be 3% only. Meaning that the compaction error of the
sample is less important than preparing the sample where there might be error occurring
when preparing the quantities of sand and water used.

Before the dynamic load phase, the volume of water in sample is calculated to be
137.05 cm3 ± 0.023 cm3 and the value of volume of air in the unsaturated in the sample is
85.07 cm3 ± 0.006 cm3. The volume of air in this phase is calculated from the change in
volume of the cell measured by the APC system considering that in unsaturated sample
the change in volume of sample in undrained conditions is due to the change in the
volume of air in it.

The load transducer and displacement transducer have very small error compared
to the value measured and no difference can be seen in the measured values even with
considering the errors from the system during the cyclic loading phase.

The samples is subjected to cyclic loading with the axial strain increasing by 1% in
double amplitude after each 10 cycles (Fig. 7) using the same protocol utilized in the
literature [20, 21].

The pore pressure of sample increased to 12 kPa only and stabilized there where
the applied confining pressure applied is 100 kPa (Fig. 8). Meaning that there is no
liquefaction in the sample due to relatively highly unsaturation degree of the sample.

The stress (load applied on sample over its cross section) versus the strain (dis-
placement applied over the initial height of the sample) is shown in Fig. 9. It shows the
decrease in the slope of the graph as the double amplitude applied increases. Finally,
Fig. 10 shows the stress versus mean applied pressure on sample.

These figures show that the sample didn’t liquify as the pore pressure of the sand
didn’t increase to reach the same value as that of the cell pressure. Depending on different
values, such as relative density and saturation degree, these graphs can change. As the
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Fig. 7. Applied axial strain protocol

Fig. 8. Pore Pressure versus Number of cycles

relative density decreases meaning that the sample is more loose and as the saturation
degree increases, the liquefaction potential of the sample increases and the change in pore
pressure in Fig. 8 can increase to reach the value of 100 kPa leading to a null effective
stress at liquefaction. Moreover, the stress reached at liquefaction phase in Fig. 9 can
reach zero. Yet, the uncertainty in the values remains the same, whatever is the case of
the test studied, as they are measured by the instruments.
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Fig. 9. Stress versus strain for the first cycle for each step of applied double amplitude

Fig. 10. Stress versus mean applied pressure

7 Conclusion

This paper studied the relative error and the error of the measurements done during a
triaxial test on a sample of initial degree of saturation 55% and saturation degree of
63%. Even the sample is not liquefied, but the study of these uncertainties is essential
to prove the high precision of the tools used during the test. These uncertainties can be
considered later also in any modulization to obtain more precise results and a best fitting
model.
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Finally, in all these errors, the random errors from the human being is more important
than that of the systematic errors coming from the experimental tools used.
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Abstract. In geotechnical engineering, it is common to use data from only one
field test (SPT test) to predict input stiffness parameters in the study of stress vs.
displacements behaviour of foundations. This is made from correlations available
in the literature for different kinds of soils. As a result, the variation that occurs
between different correlations may be significant and must be critically analysed
with respect to the accuracy of the foundation design and, consequently, its safety.
In this context, this paper aims to study the impact of the variations of friction
angle (φ’) and Young’s modulus (E) predicted by several different correlations
from field SPTmeasurements available in the literature. Based on the estimations,
four groups of estimated results were defined with the corresponding values of
φ’ and E within such groups (for high and low values of both φ’ and E). Such
values were applied in a numerical Finite Elements Method (FEM) model of an
aerogenerators foundation to calculate vertical displacements and stress fields.
In the groups in which only one of the parameters was varied, it was observed
that the Young’s modulus has a significant influence on the displacements, while
that was not the case for the friction angle in the investigated foundation, due
to predominant, linear-elastic condition in the investigated foundation. The paper
demonstrated the significant variation in geotechnical analysis that can occur with
the use of different input correlations in geotechnical studies. These uncertainties
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lead either to overestimate or to underestimate the foundation design, which may
affect economy and safety, thus emphasizing the need for more accurate field tests
and more laboratory investigation and control.

Keywords: Foundation Behaviour · Numerical Modelling · Soil Parameters ·
Geotechnical Measurements

1 Introduction

The use of wind power gained prominence for being an abundant source of renewable
energy in some regions of theworld. It can reduce fossil fuel consumption. In this context,
this is concomitant with the ONU’s 7th Sustainable Development Goal: to ensure access
to affordable, reliable, sustainable, and modern energy for all. Wind energy provides
several socioeconomic and environmental benefits, and is one of the most cost-effective
energy sources in Brazil (ABEEÓLICA, 2020).

In this context, the aerogenerators structures and soil under the foundation must be
studied from the engineering point of view. The onshore wind turbines are supported in
reinforced concrete foundations. Due to technological advances that cause the increase
of tower’s height and blades length, larger foundations of the order of hundreds of cubic
meters and with high diameters are more and more common (SILVA, 2014). In addition
to structural considerations, geotechnical analyses are needed to ensure proper design
and the stability of the tower.

One of the biggest challenges for geotechnical studies considering Brazilian sites
is related to the geotechnical investigation. There are significant differences between
Brazil and France with respect to the employed tests (MILITITSKY, 2019). In Brazil,
most commonly, the Standard Penetration Test (SPT), exclusively, is performed, while
in France the Pressiometric Ménard Test (PMT) is conducted, and, in some cases, it is
accompanied by seismic tests, as well as laboratory triaxial tests with field materials.
Even in more developed countries that is not always the case, and in countries under
development it is seldom the case.

Thus, analysis of the stresses and displacements is necessary to design and, for that,
the geotechnical investigation is of paramount importance to determine parameters of
soil such as Young’s modulus, Poisson ratio, friction angle, cohesion, unit weight and
dilatancy angle. These parameters can be estimated with a laboratory testing campaign.
However, the extraction of undeformed samples is, usually, logistically and economically
impractical. Alternatively, different authors propose the use of correlations with the
required input parameters and the results obtained from the Standard Penetration Test
(SPT). This test is the most common to be executed, being the most widely used in
foundation projects in Brazil and in many cases, the only one to be done (CINTRA
et al., 2013). It consists of penetrating the soil with a standard hammer of 65 kg forced
into the hole with strokes of 75 cm of height and counting the number NSPT of strokes
needed to penetrate 30 cm.
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The practice of determining only SPT results during geotechnical investigations
to estimate values of the engineering properties, such as the friction angle (φ’) and
the Young’s modulus (E), leads to strong variability, following the different available
correlations and the experience of the analyst, affecting the design directly. Then, the
choice of the most appropriate method the field conditions can affect the final analysis
and this will be evaluated in this article. Thereby, the objective of this study is to evaluate
the interference of the input parameters variation on a numerical modelling of stresses
and displacements under the aerogenerator foundation and to analyse the influence of
such uncertainties on its design.

2 Methodology

The research presented in this article deals with the variation of input parameters in a
numerical structural modelling of wind turbines’ foundation. The idea is to understand
the stress and displacement behaviourwhen differentmethods to determine the resistance
and deformability parameters are used, for understanding which range of variation on
estimated input parameters affects significantly the results in terms of the analysed
stresses and displacements.

Data from the Cacimbas wind farm (located in Trairi-Ceará-Brazil) was used.
Figure 1 presents (a) the location of Ceará and (b) the location of Trairi.

Fig. 1. Location of (a) Ceará and (b) Trairi on Brazilian map.

In this site, the geotechnical campaign was conducted, consisting of seven SPT tests
ranging between 14 m and 22 m of depth. The obtained geotechnical profile is presented
in Fig. 2.

SPT-03 was chosen for the investigations in this paper. The reason for this choice
is because the water is at a more critical level, with most part of soil in a saturated
condition. Figure 3 presents in more details the SPT profile with variation of number N
as a function of the depth.

From the presented data, analysing the variation of sand compactness, the foundation
was conceptually divided into five layers of soil: (i) loose sand from 0 m to 6 m; (ii) one



Analysis of the Impact of Uncertainties on the Estimation 45

SPT-02 SPT-03
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Fig. 2. Geotechnical profile of Cacimbas site.

Fig. 3. Geotechnical profile of Cacimbas wind farm site.

medium sand from 6 m to 8 m; (iii) another medium sand from 8 m to 10 m; (iv) another
medium sand from 10 m to 12 m; and (v) a stiff to very stiff sand from 12 m to 80 m. The
80 m depth is related to the boundary condition of the model and the intermediate layers,
composed of medium sand, were divided to predict the variable parameters (φ’, E) with
greater precision. Based on those layers, the geotechnical parameters fixed (γ, γsat, c’,
� and ν) were obtained with typical values from the literature for similar materials, as
presented in Table 1.

Based on the presented data, the parameters φ’ and E were estimated using different
correlations from field SPT measurements available in the literature. To determine φ’,
the correlations used were: Kulhawy & Mayne (1990) – Propositions 1 and 2, Wolff
(1989), De Mello (1971), Godoy (1983), Teixeira (1996), Meyerhof (1959) – Yoshida
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Table 1. Soils parameters estimated from SPT-03 of the Cacimbas wind farm.

Parameter Layer 1 Layer 2, 3 and 4 Layer 5 References

Moist unit weight of soil
– γ

18 kN/m3 19 kN/m3 20 kN/m3 Godoy (1972)

Saturated unit weight of
soil – γsat

19 kN/m3 20 kN/m3 21 kN/m3 Godoy (1972)

Cohesion – c’ 10 kPa 10 kPa 10 kPa Moura et al. (2014)

Dilatancy angle – � 0° 5° 10° Pinto (2006), Moura
et al. (2014)

Poisson’s ratio – ν 0.3 0.3 0.3 -

(1988), Muromachi (1974), Hatanaka &Uchida (1996). To determine E, the correlations
used werere: Mikhejev (1961), Bowles (1996) – Propositions 1 and 2, De Mello (1971),
Décourt et al. (1989), Teixeira & Godoy (1996), Trofimenkov (1974), De Freitas et al.
(2012), Makwana & Gandhi (2019) and Afonso (2016). The expressions are given in
Tables 2 (for friction angle) and 3 (for Young’s modulus).

Table 2. Correlation methods considered for friction angle estimation.

Expression References

φ′ = [
15.4.(N1)60

]0.5 + 20 Hatanaka & Uchida (1996)

φ′ = 28 + 3.75.σ′−0.012
v . N0.46

60 Meyerhof (1959) – Yoshida (1988)

φ′ = 27.1 + 0.3.(N1)60 − 0.00054.(N1)
2
60 Wolff (1989)

φ′ = √
20.N + 15 Teixeira (1996)

φ′ = 20 + 3.5.
√
N Muromachi (1974)

φ′ = 54 − 27.6034.exp exp
(−0.014.(N1)60

)
Kulhawy & Mayne (1990) Proposition 1

φ′ = tag−1
(

N
12.2+0.2.σv′

)0.34 Kulhawy & Mayne (1990) Proposition 2

φ′ = 28◦ + 0.2. N Godoy (1983)

φ′ = acrtg

(
0.712

1.49−
√

N
0.28.σv ′+27

)
De Mello (1971)
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Table 3. Correlation methods considered for Young’s modulus estimation.

Expression References

E = (15000 to 22000).ln N55 Mikhejev (1961)

E = (2600 to 2900).N55 Bowles (1996) – Proposition 1

E = 6000. N55 Bowles (1996) – Proposition 2

E = 3.(N − 3) De Mello (1971)

E = 3.5. N60 Décourt et al. (1989)

E = α. K . N Teixeira & Godoy (1996)

E = 43.1.(log N60) Trofimenkov (1974)

E = 8000. N0.8
60 De Freitas et al. (2012)

E = 0.3925. N60 + 54.25 Makwana & Gandhi (2019)

E = 2.9. N + 2.7 Afonso (2016)

3 Results and Discussions

3.1 Parametric Study and Numerical Modelling Conditions

The trends of the estimation results for φ’ are presented in Fig. 4. They consider the
correlations from Table 2 and the SPT results from Fig. 3.

Based on the behaviour presented by the chosen correlations, it is noted that there are
two defined trends formed. The trend 1, by Kulhawy&Mayne (1990) – P1,Wolff (1989)
andGodoy (1983), and the trend 2 byMeyerhof (1959) –Yoshida (1988) andKulhawy&
Mayne (1990) – P2. The other methods do not show representative behaviour, compared
to the methods cited and considering the soil type. In this case, the soil is a sand and
based on literature, the friction angle should have values around 28°–35°, as shown by
Pinto (2006), Cintra et al. (2011) and others authors in literature, proving that De Mello
(1971) and Teixeira (1996) were not representative of the range of common values. The
Muromachi (1974) and Hatanaka & Uchida (1996) were excluded because they did not
exhibit similar behaviour to any of the groups.

Group A was chosen as reference, because based on local experience and obser-
vations by Gonin et al. (1992), this trend is more adequate for sand in the relative
density observed in the SPT test. Group B was chosen to model the situation varying the
input parameters, but, in general, for local experience, these values have a low order of
magnitude.

The trends of the estimation results for E are presented in Fig. 5. They consider the
correlations from Table 3 and the SPT results from Fig. 3.

Based on the behaviour presented by the correlations, it is noted that there are three
defined trends formed. Group A comprises De Mello (1971), Décourt et al. (1989),
Teixeira & Godoy (1996), De Freitas et al. (2012) and Afonso (2016). This group is
formed by methods developed by Brazilian authors and represents the highest values
found. Based on this and considering the local experience and results shown by Correia
(2004), this group was utilized as reference.
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Fig. 4. Groups of behaviour trend for friction angle as a function of the depth.

Group Bwas formed by the behaviour trend ofMikhejev (1961) withminimum (E =
15000.ln N55, cf. Table 3) and medium (E = 22000.ln N55, cf. Table 3) considerations,
Bowles (1996) – Proposition 1 with minimum (E = 2600.N55 cf. Table 3) and medium
(E = 2750.N55, cf. Table 3) values and Trofimenkov (1974). The variation of relative
density is not significative (Correia, 2004) and based on this information, the Group B
was considered for varying the input parameters in the FEM modelling.

For the numerical analyses, when it comes to the soil, the SPT-03 was considered
to determine parameters and layers of soil. In the model generated, five layers were
utilized within the considered depth of 80 m. Basic geotechnical parameters were based
on Table 1, and soil constitutive behaviour analysed according to Mohr-Coulomb theory
and input parameters based on the groups evaluated in Figs. 4 and 5.

The finite element mesh was created in a parallelepiped format with 160 m × 160 m
× 80m. In the lateral boundaries, only horizontal displacements were fixed at zero. In the
bottom boundary all the displacements were zero (Fig. 6a). The mesh of Finite Element
Method (FEM) comprises 10-node tetrahedral elements (Fig. 6b). A mesh sensitivity
analysis was performed considering default software meshing “very coarse”, “coarse”,
“fine” and “very fine” compared to “medium”.Based on obtained results, it was chosen to
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Fig. 5. Groups of behaviour trend for Young’s modulus as a function of the depth.

use the mediummesh, given that the variation is not significant and this mesh adequately
represents the situation in the numerical model.

Fig. 6. Geometries of the considered numerical model of the foundation soil for (a) the soil
layers-limit and (b) the finite elementsmesh format. Boundary conditions consider zero-horizontal
displacement on the sides and fixed condition at the bottom.
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With respect to geometry and parameters of the foundation concrete structure, it is
used the data provided by Imanzadeh et al. (2021) that considers a reinforced concrete
with elastic behaviour; thus, the parameters were 25 kN/m3 for unit weight, 30 GPa for
Young’s modulus and 0.2 for Poisson’s ratio. The characteristics of the foundation was
a superficial structure, circular with 19.8 m of diameter and 4.2 m of depth in which is
a rigid plate element on PLAXIS 3D (Fig. 7).

Fig. 7. Geometry of foundation: (a) top view; (b) perspective view and (c) frontal view.

The considerations related to the load take in to account a concentrated force resultant
of the structure weight (vertical) and wind force (horizontal) eccentric with equivalent
distance to the ratio of moment (M) to vertical force (W). This study only considers static
loading, so that the dynamic effects needed to be accounted through reserve factors in
the prediction of moment and wind force. The values adopted in this paper were based
on data from Imanzadeh et al. (2021), with the moment (M) being equal to 109.6 MN.m,
structure weight (W) equal to 17.3 MN and the wind force (Fwind) equal to 1.37 MN.
The resultant load is applied in the top of foundation, disregarding the superstructure
effects.

3.2 Displacements Under Foundation

The displacements under the foundation (cf. Fig. 8) were obtained considering the vari-
ation of input parameters (φ’, E) per group (calculated from some of the correlations
in Table 2 and 3, as explained in Sect. 3.1). To analyse the displacements, the −4.50 m
of depth was fixed to evaluate the behaviour on horizontal position. To evaluate the
behaviour as a function of the depth, four points were considered, as indicated in the
Fig. 8. The points 1 and 4 indicates the end of the foundation, point 2 is the middle and
the point 3 is where the load is applied.

To analyse the influence of the input parameter variation, it was considered four
different groups: AA, AB, BA, BB The group AA is the group of reference, with the
most adjusted results for φ’ and E. The group AB varies the friction angle and BA varies
the Young’s modulus. Lastly, the group BB varies both parameters. Figure 8 shows the
behaviour as a function of the depth.

As seen in Fig. 8, the variation of φ’ (group AB compared with group AA and group
BA compared with group BB) do not generate a significant difference in the curves.
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Fig. 8. Effect of input parameters variation in the displacement per point: (a) Point 1; (b) Point
2; (c) Point 3 and (d) Point 4.

The variation of E (group BA and group BB compared with group AA and group AB)
generates a significant difference in the curves. Analysing the behaviour of vertical
displacements, it is possible to see the highest values for point 3, followed by Points 4,
2 and 1. It happens because the load is applied in Point 3 and this affects the region of
Points 4 and 2 after point 3. The Point 1 is the least affected because it is on the opposite
side of the load application. The maximum variation of vertical displacements occurred
at 8.00 m of depth, except to Point 2 (8.94 m of depth). The values vary from 6.03 mm
to 10.11 mm when the Mohr-Coulomb Theory (LAMBE & WHITMAN, 1991) was
utilized to predict foundation behaviour using PLAXIS 3D.

Observing the behaviour of the defined groups, two trends are evident, one for groups
AA and AB and other for groups BA and BB. This means that the variation of friction
angle does not affect the results while the Young’s modulus causes a variation in the
results.

The fact that the friction angle does not generate any significant variation in the results
is associated with the fact that most of the analysed model behaved in elastic conditions,
so that this parameter did not affect the generated displacements. For the same reason,
the Young’s modulus affects the results because this modulus exactly represents the
change in soil elasticity.

In order to design the structure accurately and in favour of safety, it is necessary
that a more complete geotechnical investigation campaign is carried out, so that these
parameters can be obtained from laboratory tests and not by correlations. Errors can be
on the order of 72%. In the case where only the SPT test is performed, the professional’s
local experience and specific methods for the region provide a direction, but they may
not be enough to confirm the generated predictions, which highlights the importance of
carrying out geotechnical tests.
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4 Conclusions

This paper showed the importance of evaluating the input parameters for displacements
results in wind farm foundations. To understand this, the SPT was utilized to provide
friction angle andYoung’s modulus estimations through correlations methods with NSPT
number. The variation obtained by each correlation method reinforces the importance to
usemethodswithin the limitations inwhich it was developed, as a place of estimation and
types of soils, as well as considering the local experience. Professional experience and
literature records can guide estimates based on other case studies, but do not guarantee
adequate accuracy.

The effect of the input parameters variation was evaluated, observing a discrepancy
in the results for the Young’s modulus variation, while there is no significant variation
for the change in the friction angle. Errors in the estimation of E may cause prediction
errors of the displacements and stresses of the order of 72%. The variation that occurred
for E and not for φ’ is expected due to the elastic condition of the soil in proper foun-
dation designs. This fact demonstrates the importance of carrying out tests to obtain the
parameters, mainly E, so that the input parameters have good accuracy and consequently
give representative outputs.

The paper demonstrated that there is significant variation in geotechnical analysis
that can occur with the use of different input correlations in geotechnical studies. These
uncertainties lead either to overestimate or to underestimate the foundation design, and
may affect economy and safety, thus emphasizing the need for more accurate field tests,
to reduce them as much as possible.
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Abstract. For many years, starting in the 1960s and 1970s, concrete was known
only as a utilitarian material providing mechanical strength and durability for
new construction (civil works; bridges, tunnels, and administrative and residential
buildings). Today, environmental considerations complement the design of struc-
tures. Aesthetics has been treated differently, it has been too often forgotten in the
construction of large complexes for many years, to become the “unloved” grey
material. Indeed, raw concrete surfaces tend to be porous and have a relatively
uninteresting appearance. However, Auguste Perret, the French architect of rein-
forced concrete was the initiator of the use of concrete as a stone in the design
of building facades. The present study concerns the uncertainties on the Uncon-
fined Compressive Strength (UCS) of raw and textured concrete. For do this, the
nine raw concrete samples and the nine texture concrete samples were prepared.
Thereafter, the Unconfined Compressive Strength test was carried out to measure
the Unconfined Compressive Strength values. The corresponding uncertainties are
evaluated to quantify the uncertainties on the Unconfined Compressive Strength
for raw and texture concrete samples. Finally, the compression of theUncertainties
on the Unconfined Compressive Strength of raw and textured concrete samples
was done.

Keywords: raw and textured concrete · bush hammering · Unconfined
Compressive Strength · Statistical errors · Uncertainties

1 Introduction

Despite very frequent use of reinforced concrete, urban constructions built with this
material are sometimes unpopular, in particular by the gray and smooth aspect of the
external surfaces. Working on its surface conditions is an alternative that allows to
vary its appearance. The French Architect, Auguste Perret, (1874–1954) well known
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for its use of this material construction in urban architecture had a high regard for
this construction material, did not hide it and treated it like stone. The reconstruction
of the center of Le Havre (1945–1960) is a major project, and the last for him, now
registered at UNESCO World Heritage Sites [1–3]. It is an architectural complex of
150 ha, which is designed and built in reinforced concrete with administrative and
religious buildings (town hall, schools, churches…) but also shops and housing. With
Perret, concrete presents various surfaces and colors on the same façade (Fig. 1). At
that time, the additives were not very developed and the visible surfaces were either
marked by the wooden forms, leaving a wood imprint, or bush hammered to expose
aggregate concrete and thus to give texture and colour. Depending on the case, the
material is simply coated to be protected, washed to bring out the grain of the gravel,
bush-hammered to obtain an irregular surface. Bush-hammering is used on the stones
worked tool to texturize stone observed on many monumental masonry constructions,
as castles, churches, triumphal arch and other prestigious buildings.

After, many architects followed this regard and developed architectural style like
“Brutalism” which spread all over the world after the Second World War. It reached the
culminating point in the 1960s and fade away in the late 1970s. One of the main features
characterizing the brutalist trend in architecture was the exposure of building materi-
als and their textures as well explained by Niebrzydowski, 2019, [4]. Bush-hammered
concrete surfaces were introduced to brutalist architecture at the turn of the 1950s and
1960s, e.g. the town hall in Asker in Norway (1961–1963) designed by Kjell Lund and
Nils Slaato.

Since the construction, the technical department of town planning of Le Havre are in
charge of monitoring the evolution of buildings to preserve this heritage. If some local
damages appear on exposed surfaces of the buildings housing in Le Havre of 70 years
old, they are linked to corrosion effects. Regular and local repair work is carried out. It
is wished to restore the same appearance (Fig. 1b). Even local damages, the structural
integrity is kept like have shown many studies on Saint Joseph Church [5].

Today, for vertical surfaces, bush hammering is no longer done manually, but with
an electric rollers bush hammering, it’s feasible to prepare medium to large surfaces.
Figure 2 presents a textured concrete for vertical surfaces using the bush hammering
performed by the construction company of Gohar Sang Gareh Dag at Tabriz city in
Iran. However, the works inspection, to allow the technique, requires to verify that the
repeated impact of the hammers has no effect on the structural qualities of the concrete.

Tooledfinishes involvemechanically tooling or hammering the off-formfinish to pro-
duce a rough texture. Commonmethods include bush hammering, point tooling, abrasive
blasting and hammered-nib [6]. Courard 1998 [7] studied the geometric characterization
of the surface of the concrete. In his study, it was established that the difference between
sandblasting and polishing is more coming from the waviness than the roughness of the
surface.

Some researchers have studied the influence of concrete-rockbonds and roughness on
the shear behavior of concrete-rock interfaces. Badika et al., 2022 [8] recently performed
the direct shear tests of three types of roughness: smooth interfaces, bush-hammered
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(a)

(b)

Fig. 1. (a) details of treated surface with hammering technique (inside and outside) and (b) local
repair to restore the appearance (Saint joseph church 2003 built in 1965)

interfaces, and natural granite interfaces under three levels of normal stress. It was con-
cluded that bush-hammered interfaces generate stronger concrete-granite bonds com-
pared to the naturally rough concrete-granite interface. Secondly the micro-roughness
generated by the bush-hammering process does not significantly affect the friction angle
nor captures the entire complexity of the natural roughness.

To our knowledge, a little research has been carried out on the unconfined compres-
sive strength of textured concrete. However, verifying that the impact of the hammers
has no effects on the structural qualities of the concrete is important. The present study
concerns the uncertainties on the Unconfined Compressive Strength (UCS) of raw and
textured concrete samples. This study was carried out by the construction company of
Gohar SangGarehDagwith the collaboration of the two French laboratories: Laboratory
of Mechanics of Normandy (INSARouen Normandie) and the Laboratory ofWaves and
Complex Media (University Le Havre Normandie). The corresponding uncertainties are
evaluated experimentally to quantify the uncertainties on the Unconfined Compressive
Strength for raw and textured concrete samples. Finally, the comparison of the uncer-
tainties on the Unconfined Compressive Strength of raw and textured concrete samples
was done.
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Fig. 2. Textured concrete performed by the construction company of Gohar Sang Gareh Dag
(Tabriz, Iran)

2 Materials and Experimental Methods

2.1 Materials

The used concrete formulation was presented in the Table 1. The amount of the cement,
water, gravel and sand are respectively 345, 216, 983 and 726 kg/m3.

Ahigh-performance cement for coldweather called the «RapideULTRACEM52,5R
(CEM I)» from the brandCalciawas used. The number 52,5 corresponds to the resistance
within 28 days, and the letter R indicates a fast resistance from 2 days. This cement is
reserved for highway structures and Civil Engineering works. Its reactivity reduces the
effects of the cold and enables the development of short-term resistances. Moreover, it’s
very high mechanical resistances allow fast formworks removal. This type of cement is
mainly suitable for armed or prestressed concrete and contains at least 95% of clinker
and no more than 5% of minor components.

Table 1. Concrete formulation

Constituent Kg/m3

Cement 345

Water 216

Gravel 983

Sand 726
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2.2 Experimental Methods

2.2.1 Sample Preparation

The preparation procedure was established with care in order to obtain homogeneous
samples. Samples were prepared in a laboratory mixer. The experiment involves con-
ducting various tests on samples of raw and textured concrete. If the tests are carried
out in sufficient number (from 9 samples), it is possible to study the uncertainties on
the UCS values [9]. For this purpose, the results of the nine samples of raw concrete
and nine samples of textured concrete are analyzed. Thereafter, the comparison of the
obtained results is performed.

The preparation of concrete is an essential step in building construction and infras-
tructure. To prepare concrete, it is necessary to mix aggregates such as sand and gravel,
cement, and water, as well as other possible additives such as admixtures or pigments.
Most concrete mixes are prepared using special machines called concrete mixers. Con-
crete mixers are equipped with a rotating drum that mixes the concrete ingredients until
they are well blended. Concrete mixers can be manually or automatically fed, depend-
ing on the amount of concrete to be produced. In large constructions, concrete batching
plants are often used, which are specialized facilities for producing large quantities of
concrete efficiently and regularly. Once the concrete has been properly mixed (using a
vibrating needle, for example), it is placed in cylindrical mold of 11 * 22 cm, ensuring
that the mold is well filled and the surface is smooth and level. Then, the samples were
stored for 90 days of curing-time in controlled laboratory environment. After allowing
the sample to dry for 90 days of curing-time, it is carefully demolded and left to dry
completely before cleaning the sample surface to remove any impurities as shown in
Fig. 3. Once the sample has been cleaned, the Unconfined Compressive Strength test
(UCS) can be carried out to evaluate the quality of the concrete. Proper preparation of
concrete samples ensures accurate and reliable results during UCS test.

Fig. 3. Sample preparation
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Figure 4 presents the prepared raw and textured concrete cylindrical samples using
the bush hammering.

Fig. 4. a) raw concrete samples, b) textured concrete samples

2.2.2 Unconfined Compressive Strength Test (UCS)

The Unconfined Compressive Strength test is a laboratory test used to derive the Uncon-
firmed Compressive Strength (UCS) of a concrete sample. The Unconfirmed Compres-
sive Strength (UCS) test stands for the maximum axial compressive stress that a sample
can bear under zero confining stress. Due to the fact that stress is applied along the
longitudinal axis, the Unconfined Compressive Strength test is also known as Uniax-
ial Compression test. Laboratory prepared samples were used to estimate unconfined
compressive strength values.

During the test, from the axial load, axial displacement is commonly measured to
measure the sample’s UCS value. The Fig. 5 shows the apparatus used to carry out the
Unconfined Compressive Strength test. The two plates shall be carefully cleaned before
the sample is placed in the testing chamber. The load should be continuously applied at
a rate of 5.7 kN/s. The samples were sheared on unconfined compressive strength path
according toNFP94-420 andNFP94-425 French standards [10, 11]. Then, experimental
stress and strain values are estimated for each sample. The experimental stress-strain
curve was analyzed through its maximum value (UCSmax) which are presented in the
following section.
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Fig. 5. Unconfined Compressive Strength test (UCS)

3 Results and Discussion

TheUCS tests were carried out on the 9 raw concrete samples and the 9 textured concrete
samples. The UCS test allows to plot the experimental unconfined compressive stress
versus strain. Then, calculate the value of unconfined compressive strength for each
sample. The Fig. 6 shows the experimental unconfined compressive stress versus strain
for raw and textured concrete samples. For the raw concrete samples for the strain value
of less than 0.1% the curves are very close but for the strain value more than 0.1%
one can see a little dispersion in the curves. Furthermore, for the latter, the curves are
nonlinear compared to the those with the strain values less than 0.1%.

In the same way, for the textured concrete samples for the strain value of almost less
than 0.07% the curves are very close except for the curve of sample 8. For the strain
value more than 0.07% one can see the dispersion in the curves are important compared
to those one from raw concrete samples for the value of the strain smaller than 0.07%.
Furthermore, for the latter, the curves are nonlinear compared to the those with the strain
values less than 0.07%.

The experimental stress-strain curves for textured concrete samples are more nonlin-
ear than those ones from raw concrete samples. In the same way, the curves dispersions
are more important for textured concrete samples compared to those ones from raw
concrete samples.

TheTable 2 presents themeasured unconfined compressive strength values (UCSmax)
for the both raw and textured concrete samples. The unconfined compressive strength
values vary respectively from 43.96 to 52.16 MPa and from 45.65 to 55.75 MPa for the
raw and textured concrete samples.

The unconfined compressive strength values versus sample number, for the raw and
textured concrete samples, are presented in Fig. 7. One can observe that the dispersion
of UCSmax values for the raw and textured concrete samples. Concerning the comparing
the UCSmax values for the raw and textured concrete samples, the difference is very
important for the sample 4 which is around 12 MPa. This difference for the sample 5 is
equal to zero, while the average difference of UCSmax values for the other samples is
around 5 MPa.

The different types of uncertainties can explain the dispersion and the differences
in the UCSmax values. In fact, the uncertainties can usually be divided into two groups:
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Fig. 6. Experimental stress-strain curves for a) raw concrete samples and b) textured concrete
samples

aleatory or active uncertainty and epistemic or passive uncertainty [12, 13]. The first
group is irreducible and due to the natural variability of random phenomena and it is
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Table 2. Measured unconfined compressive strength values (UCSmax, MPa) for raw and textured
concrete samples

Samples UCSmax (raw concrete) UCSmax (textured concrete)

1 52.16 47.12

2 50.23 45.65

3 49.95 46.59

4 44.02 55.74

5 50.42 50.42

6 48.56 53.63

7 46.46 53.30

8 43.96 51.08

9 46.36 51.92

intrinsic to the material. The second group is due to a lack of knowledge but can be
reduced by obtaining additional information [14]. This epistemic or passive uncertainty
is divided into three categories: measurement uncertainties, model uncertainties, and
statistical uncertainties.

Even though the samples have the same concrete formulation and preparation
method, concrete is a heterogeneous material. Therefore, one cannot have exactly the
same quantity and distribution of aggregates, water, sand, and cement in all of prepared
samples. This active uncertainty related to the material is therefore inevitable, and the
knowledge of the engineer can only estimate it at best. On the other hand, epistemic or
passive uncertainty can be reduced. Indeed, the experiment was carried out on nine raw
and nine textured samples. One could reduce the statistical uncertainties related to the
obtained results by increasing the number of studied samples. Furthermore, the measur-
ing equipments have a degree of uncertainty regardless of precision and accuracy. These
numerous uncertainties explain the differences in the UCSmax values.

The Table 3 presents for the raw and textured concrete samples, mean, standard
deviation and coefficient of variation values.One can see that from the results the standard
deviation and coefficient of variation of both raw and textured concrete samples are close
and the standard deviation remains less than 4%, so there isn’t any risk on the values.
This alsomeans that the data scatter is low and the precision of the UCSmax mean value is
good. One can note that the textured concrete samples have almost close mean UCSmax
values as the raw concrete samples. Indeed, on the 9 textured concrete samples, the mean
UCSmax value is about 5% higher than raw concrete samples. Then, one can conclude
that, the impact of the hammers has very small effects on the structural qualities of the
concrete samples and it can be negligible.

Indeed, one can note that a clear effect on the stress-strain curves before the failure
for the textured concrete samples which remains limited (Fig. 6b). In this study, the
authors are interested inmeasuring themaximumUnconfinedCompressive Stress values
(UCSmax)which remains comparable for the raw and textured concrete samples. It would
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Fig. 7. Unconfined compressive strength values versus sample number, for the raw and textured
concrete samples

Table 3. Statistical analysis of UCSmax values (MPa) for raw and textured concrete samples

Statistical parameters UCSmax (raw concrete) UCSmax (textured concrete)

Mean 48.01 50.61

Standard deviation 2.95 3.49

Coefficient of variation 6.14 6.90

be interesting to deepen this point on the behavior before failure by multiplying the
number of tested samples not only by Unconfined Compressive Stress test but also with
other characterization techniques.

4 Conclusions

In this research paper, it has been noted that the bush hammering used to valorize the
aesthetic appearance of reinforced concrete, increased granular and color texture, has not
effects on the structure integrity. The treated surfaces observed in Le Havre are 70 old
year and local damages were identified since 20 years during restoration of Saint Joseph
church and defects are quickly cured. However, the degraded zones can be easily repaired
with the good formulation to respect the initial texture (grains and color). Indeed, during
this restoration works, a chart of different formulations has been established. Nowadays,
it is difficult to distinguish repaired zones from the other. Of course, the energy of the
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hammer must be controlled, just to peel off the superficial film after the formworks are
removed and when defects are detected, it is necessary to cure effectively.

To complete the observations, two series of samples (raw and textured concrete) are
compared on the base of the Unconfined Compressive Strength (UCS). If the tests are
carried out in sufficient number (from 9 samples), it is possible to study the uncertainties
on the UCS values. Thereafter, the stress-strain curves were plotted to calculate UCSmax.
The statistical analysis was performed on UCSmax values. It was demonstrated that the
mean, standard deviation and coefficient of variation of both raw and textured concrete
samples are close and the standard deviation remains less than 4%, so there isn’t any
risk on the values. These results point out that, the impact of the hammers has very small
effects on the structural qualities of the concrete and it can be negligible.

Acknowledgements. The authors would like to thank the professor Anne PANTET from Uni-
versity Le Havre Normandie for her careful reading of the paper and her constructive comments
leading to improvements in this paper.
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Abstract. New challenges in shape optimization design under uncer-
tainties lead to inspiration from nature. In this paper, we choose trees as
the inspiration resource and apply the axiom of uniform strains, a gov-
erning principle of tree design, to avoid material overloading or under-
utilizing. The hypothesis of the uniform strains is formulated as the mean
and standard deviation of strains which are defined as the optimiza-
tion objectives. Then we use the isogeometric analysis (IGA) method
to establish the numerical models. To take the geometric uncertainties
into account, the coordinates of control points are defined as design vari-
ables. In the optimization process, the non-dominated sorting genetic
algorithm II (NSGA-II) is applied to update design variables to figure
out the optimal geometry. The Pareto front is obtained after iterative
computation. The results based on bio-inspired criteria show that struc-
tural resistance can be increased significantly. This research provides new
criteria for structural robust design under uncertainties.

Keywords: Bio-inspired · shape optimization · robust design · IGA ·
NSGA-II · uncertainties

1 Introduction

Shape optimization is a crucial component of many engineering applications,
including aerospace, transportation vehicles, and architecture [1–4]. By optimiz-
ing the structural geometry, one can ensure that the design functions effectively,
adapts to changes, and performs optimally under various deterministic parame-
ters. However, in the real-world scenario, structures may face numerous uncer-
tainties during production or service, such as environmental changes, material
imperfections, equipment wear, and failure [5,6]. These uncertain factors can
lead to unexpected changes or performance failures, potentially compromising
the structure’s normal operation. Effectively and accurately quantifying these
uncertainties and incorporating them into the design procedures poses a signifi-
cant challenge for researchers and engineers alike.

Numerous researchers have proposed various methods in the literature to
address shape optimization design under uncertainties. These methods can
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be broadly categorized into two important categories: Robust Optimization
Design [3,6–8] and Reliability-based Design Optimization [9–11]. Shape opti-
mization design under uncertainties has found widespread applications in engi-
neering. However, further development is necessary to minimize cost/benefit
ratios and enhance competitiveness, particularly when dealing with complex
structures.

Numerous scholars have made efforts to seek effective and simple methods of
shape optimization design by turning to nature for inspiration. Natural struc-
tures such as bone, tooth, and tree exhibit lightweight and acceptable resistance,
superior stiffness and toughness, allowing them to survive in diverse environ-
ments. In the work of Sun [12], a bio-inspired hull shape for autonomous under-
water vehicles (AUVs) is proposed by studying and modeling the body shape
of humpback whales. The paper aims to develop an innovative shape design for
AUVs with minimal drag and energy consumption. However, they pointed out
that the shape optimization has not been considered yet. In the paper [13], a new
bearing inspired by a lamb’s elbow is proposed. They have found the best clear-
ance specification to reduce contact pressure through finite element simulations,
and the optimal shape is obtained using the design of experiment method. In
the article [14], a new bio-inspired method of shape optimization based on bio-
logical growth using ABAQUS was first proposed. Later, [15] pointed out that a
novel method for shape optimization based on a tree’s biological growth coupling
boundary element method was simple and efficient. These biological structures
self-optimize their shape using their unique approach to reduce stress peaks,
withstand external loads, and produce a well-distributed strain map internally,
leading to lightweight structures [16].

In this paper, we are focusing on the robust design optimization of the L-
shape under geometric uncertainties inspired by the tree’s biological growth. To
describe the L-shape accurately we used the Non-Uniform Rational B-splines
(NURBS) curve. To model and analyze the L-shape we applied the isogeometric
analysis (IGA) method. The IGA method, first developed in 2005 [17], could
implement geometric models and analysis models in the same framework. Owing
to plenty of advantages of the IGA, it has been applied for shape optimizations
with a relatively high computation speed [4,18–20].

Assumption that the material properties of the trunk are constant, the axiom
uniform strain has been verified and applied it as a design rule in structural
design [21–23]. However, they haven’t given any mathematical formulation to
express it. Therefore in this paper, we propose an innovative shape design opti-
mization criteria based on the tree’s biological growth called the axiom uniform
strain considering the tree’s material is various heterogeneous. In this paper, we
focus on robust shape optimization with regard to geometrical uncertainties. A
Latin Hypercube sampling feeds into the geometrical design variables. NSGA-II
executes the optimization and carries out the Pareto front, which could give the
optimal robust design solution.

The research has been organized in the following way. First, the bio-inspired
design criteria is proposed. The robustness shape optimization design method
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is formulated by using bio-inspired design criteria based on the IGA method.
Finally, the numerical example of the L-shape optimization design is presented
to prove that it is an efficient method for practical application.

2 Biomimetics Design Criteria

The branch-trunk joint now widespread in nature and its shape has mostly been
optimized during evolution. Müller et al. [24] studied the strain distribution
by measuring a loaded branch-trunk joint with the 3D Electronic Speckle Pat-
tern Interferometry (ESPI) experiences. In his research, he pointed out that the
branch-trunk joint carried out a uniform distribution of strain by combining its
natural structural shape, material properties, and fiber orientation. This exam-
ple illustrates tree is an efficient structure that we could learn from. Mattheck
proposed using the Soft-Kill-Option (SKO) for shape design could obtain an
optimized shape achieving the axiom of uniform strain in his work [25].

Our inspiration is also from the structure of the branch-trunk joint. We
propose using the axiom of uniform strain as the shape optimization design
criteria. Thus in the process, the optimization considers minimizing both the
mean and standard deviation of the strain as the criteria, especially in the weak
area. It can be denoted ad Eq. (1):

min

⎧
⎨

⎩

μ̄ =
∑N

i=1 εvon

N ,

S̄ =
√∑N

i=1(εvon −μ̄)2

N .
(1)

εvon is the strain of the i-element with i = 1, 2, ..., N . μ̄ is refers to the mean
strain value of the optimization domain area and S̄ is the standard deviation of
strain.

3 Isogeometrical Model

The IGA method is suitable for shape optimization, as the geometric design
model can be described precisely and can be modified easily without remeshing.
It couples tightly design models and analysis models. In our study, the IGA
method is under consideration. The detailed descriptions of establishing the
geometric model and the analysis model can be found in references [17–20,26].
The initial shape could be built using NURBS basis functions with giving the
information, i.e. the position of the control point Pi and the weight of the control
point ωi, knot vector and so on. The most important parameters are Pi and ωi,
which is the essence of shape optimization with the IGA method. In our study,
we just focus on changing the shape by moving the position of the control point.

4 Robust Optimization

Shape optimization problem considering the uncertainties based on bio-inspired
design criteria using the IGA method consists of:
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(1) Design variables. In our research, we mainly focus on the geometrical
properties of the structure to reduce the high concentrated strain under uncertain
conditions. After giving some specifications about the geometry of the structure
with bounding conditions and the equations of calculations about the equivalent
Von Mises strain εvon. The design variables can be defined as X = [X1,X2, ...,Xi]
for adapting the coordinates of the control points in the horizontal direction and
the vertical direction respectively to change the geometry.

(2) Objective functions. The axiom of uniform strain is employed as the bio-
inspired criteria to reduce the high concentrated equivalent Von Mises strain for
the purpose of improving the structural resistance in the weak area. The high
concentrated equivalent Von Mises strains are to be minimized in the weak area,
and thus the objective functions can be formulated as Eq. (2):

min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ(μ̄) =
∑M

k=1 μ̄

M ,

S(μ̄) =
√∑M

k=1(μ̄−μ(μ̄))2

M ,

μ(S̄) =
∑M

k=1 S̄

M ,

S(S̄) =
√∑M

k=1(S̄−μ(S̄))2

M ,

(2)

where M is the number of the Latin hypercube samplings.
(3) Constraint conditions. Constraints are set on the optimization problem

according to the specific engineering problem.

5 Robustness Problem

Two important characteristics that have a significant influence on the equivalent
Von Mises strain consist of geometry and material properties. In this study, we
only consider the uncertainties of geometry, considering that the output is com-
monly subject to such problems during the manufacturing process. Therefore,
we apply normal distribution for geometry design parameters, i.e. the standard
deviation σ around its mean value μ. In other words, it is expressed as a normal
random variable N(μ, σ2).

6 Optimization Method

To improve the accuracy and the efficiency of the robust optimization, the initial
model is established to optimize the geometry shape by using the IGA method.
Figure 1 illustrates the flowchart of the robust optimization problem. Firstly,
input the geometrical data, material properties, and boundary conditions. Define
the design variables and their values of the stochastic parameters during which
the Latin hypercube sampling is adopted to obtain sampling points. Secondly,
using the IGA method to analyze the structure model of each case was designed
based on the samplings data, and the response values were obtained through
numerical simulation. Then the bio-inspired criteria we proposed in Eq. (2) are
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applied as the objective function. Finally, robust optimization uses the non-
dominated sorting genetic algorithm-II (NSGA-II) to select and complete the
optimal design.

Fig. 1. The flowchart of the robust optimization.

7 2D L-Shape Structure Example

7.1 Problem Statements

In this research, our optimization problem is related to the 2D L-shape structure
design described in Fig. 3(a). It is a structure broadly used as a structural shape
design to define the best solutions based on some specifications. For this case,
the parameters Young’s modulus E = 1, Poisson’s ratio ν = 0.3, a = 5, and the
external force P = 1 proposed (Fig. 2).

7.2 Model Establishment

After specifying the geometry of the L-shape and the boundary conditions,
employing NURBS surfaces contributing the 4 × 3 control point net to gov-
ern the whole design domain as shown in Fig. 3(b). The detailed coordinates
and weight of the twelve control points in total are listed in Table 1. NURBS
surfaces to ensure the C1 continuity for all the control points and the coarsest
mesh is defined by the open knot vectors Ξ × H, where Ξ = {0, 0, 0, 0.5, 1, 1,
1} and H = {0, 0, 0, 1, 1, 1}. The whole L-shape domain was discretized using
h-refinement which enables elements to split uniformly around the corner.
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Fig. 2. 2D L-shape structure design.

Table 1. Control points coordinates for the initial shape of the L-shape domain.

Number X Y ω1

1 2a 2 0 1

2 0 0 1

3 0 0 1

4 0 2a 1

5 2a 0.5a 1

6 a 0.5a 1

7 0.25a a 1

8 0.25a 2a 1

9 2a a 1

10 a+X1
3 a 1

11 a A+X2 [3] 1

12 a 2a 1
1 ω is the weight.
2 a is the fixed length of the horizon-
tal/vertical.
3 X1 and X2 are design variables to
move specific control points 10 and
11 respectively.
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7.3 Optimization Problem

We focus on the geometrical properties of the L-shape corner B to reduce the
high concentrated strain under uncertainties. The design variables can be defined
as X = [X1,X2] for adapting the coordinates of the control points 10 and 11
respectively to change the shape of the corner B. More specifically, X1 enables
horizontal direction movement of control point 10 with a range from −3 to 0
while X2 implements vertical direction movement of control point 11 with a
range from 0 to 5. Geometric uncertainties are expressed as normal random
variables X1 ∼ N1(nominal1, 0.1), X2 ∼ N2(nominal2, 0.1), where nominali
is a value of design variables Xi. The total number M = 100 of the normal
random samplings could be executed with the Latin hypercube procedure [27].
Therefore, the mathematical formulation of the L-shape optimization problem
can be expressed as Eq. (3). The NSGA-II used as the optimization algorithm is
executed together using the IGA analysis model, with a sleeted population size
of 30, the maximum simulation generation number set at 100. It takes 19163.2 s
to calculate in total with Macbook Pro 2021, Matlab version R2021b.

min :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J1 : μ(μ̄) =
∑M

k=1 μ̄

M ,

J2 : S(μ̄) =
√∑M

k=1(μ̄−μ(μ̄))2

M ,

J3 : μ(S̄) =
∑M

k=1 S̄

M ,

J4 : S(S̄) =
√∑M

k=1(S̄−μ(S̄))2

M ,

s.t :
{−3 ≤ X1 ≤ 0,

0 ≤ X2 ≤ 5.

(3)

7.4 Results and Discussions

The results are presented in this section. Figure 3 shows the last generation
results of the L-shape design optimization process executed by the NSGA-II
algorithm directly. We can see in Fig. 3(a) that we had found the solutions (or
Pareto sets) enable all objectives to converge. And these non-dominated solutions
only appear for a few ranges as shown in Fig. 3(b). From the Pareto set data
given in Appendix, most of the design variable X1 is equal to 0 while the range
of the design variable X2 is from 4.447 to 5. Hence, several different solutions
to the L-shape design optimization problem under the geometric uncertainties
seem to have emerged which needs us to take care of making a decision.
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Fig. 3. The results of Pareto front and set for the L-shape design.

One of the optimal L-shape for the non-dominated solution is presented in
Fig. 4, where X1 = 0 and X1 = 5. We can see that the optimal shape of the
L-shape design looks like the branch-trunk joint maintaining a uniform strain
distribution even considering the uncertainties. The maximum equivalent Von
Mises Strain is 7.90. Compared with the initial shape where the maximum equiv-
alent Von Mises Strain reaches 45.69, it has been improved on a large scale.
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Fig. 4. The optimal shape of L-shape with X1 = 0 and X1 = 5.

8 Conclusions

The tree is our brilliant and experienced engineer, which has survived the mer-
ciless trials of evolution. This is the source of our inspiration. We are trying to
find it out and apply it to instruct us in optimizing the structural shape design.

In our study, shape optimization considering uncertainties is going through
an evolution from complex FEM-based optimization to IGA-based using a bio-
inspired method inspired from the branch-trunk joint, which is hoped to be an
efficient method for practical application.

Using the bio-inspired shape optimization for structural robust design based
on the IGA method not only can be achieved in a relatively simple way but also
improve the structural resistance. Thus, this paper provides a new structural
design principle and a new method to do shape optimization considering the
uncertainties.
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Appendix

See Table 2.

Table 2. The non-domination solutions of the L-shape design optimization.

Number X1 X2 J1 J2 J3 J4

1 0 5 3.71147 0.0377116 0.901097 0.0115308

2 −0.31244 4.43324 3.9284 0.0376476 0.938071 0.00788164

3 0 5 3.7108 0.0304324 0.901587 0.0133521

4 −0.0318365 5 3.71909 0.0273385 0.905746 0.0135637

5 0 4.87747 3.73778 0.0367894 0.899441 0.0107874

6 −0.18407 4.447 3.88236 0.0338068 0.929603 0.00816209

7 −0.111876 4.62095 3.82316 0.0319539 0.915325 0.00818323

8 −0.241927 4.41902 3.9073 0.0366396 0.934421 0.00805071

9 0 4.5738 3.80156 0.0295998 0.910463 0.00826809

10 0 4.64428 3.78736 0.032156 0.905971 0.00847748

11 −0.00550185 5 3.71261 0.0281521 0.902407 0.0134078

12 0 4.75196 3.76433 0.0318756 0.901469 0.0090477

13 0 4.70828 3.77362 0.0299529 0.903051 0.00881749

14 0 4.78827 3.75655 0.0351174 0.900379 0.00970629

15 0 4.83184 3.74729 0.0308973 0.900139 0.0102957

16 0 4.79461 3.7554 0.0333627 0.900513 0.00941333

17 0 4.96375 3.71896 0.0305739 0.900785 0.012412

18 0 4.90835 3.7313 0.0358567 0.899602 0.0110063

19 0 4.6719 3.78127 0.0302468 0.90453 0.0085032

20 −0.00330848 5 3.71193 0.0291382 0.902028 0.0132548

21 0 4.86015 3.7415 0.0286517 0.900238 0.0107393

22 0 4.99569 3.71241 0.0331029 0.901271 0.0127761

23 0 4.92196 3.72834 0.034686 0.899881 0.0111289

24 0 4.82914 3.74846 0.0368639 0.899723 0.0104729

25 0 4.69613 3.77598 0.0319809 0.903447 0.00863407

26 0 4.87257 3.73904 0.0313682 0.900083 0.0114176

27 0 5 3.71143 0.0327453 0.901293 0.0130035

28 0 4.80051 3.75406 0.0354783 0.900124 0.00995685

29 0 5 3.71156 0.034229 0.901313 0.0119798

30 0 4.94221 3.72377 0.0326062 0.900311 0.0119512



76 C. Liu et al.

References

1. Kou, J., et al.: Aeroacoustic airfoil shape optimization enhanced by autoencoders.
Exp. Syst. Appl. (2023). https://doi.org/10.1016/j.eswa.2023.119513

2. He, Z., Liu, T., Liu, H.: Improved particle swarm optimization algorithms for
aerodynamic shape optimization of high-speed train. Adv. Eng. Softw. 173, 103242
(2022). https://doi.org/10.1016/j.advengsoft.2022.103242

3. Yu, M., Liu, J., Huo, W., Zhang, J.: Shape optimization of the streamlined train
head for reducing aerodynamic resistance and noise. Appl. Sci. 12(19), 10146
(2022). https://doi.org/10.3390/app121910146

4. Hirschler, T., Bouclier, R., Duval, A., Elguedj, T., Morlier, J.: Isogeometric sizing
and shape optimization of thin structures with a solid-shell approach. Struct. Mul-
tidiscip. Optim. 59, 767–785 (2019). https://doi.org/10.1007/s00158-018-2100-6

5. Zang, T.A.: Needs and opportunities for uncertainty-based multidisciplinary design
methods for aerospace vehicles. National Aeronautics and Space Administration,
Langley Research Center (2002)

6. Moustapha, M., Galimshina, A., Habert, G., Sudret, B.: Multi-objective robust
optimization using adaptive surrogate models for problems with mixed continuous-
categorical parameters. Struct. Multidiscip. Optim. 65(12), 1–22 (2022). https://
doi.org/10.1007/s00158-022-03457-w

7. Troian, R., Shimoyama, K., Gillot, F., Besset, S.: Methodology for the design of
the geometry of a cavity and its absorption coefficients as random design variables
under vibroacoustic criteria. J. Comput. Acoust. 24(02), 1650006 (2016). https://
doi.org/10.1142/S0218396X16500065

8. Wang, R., Luo, Y.: Uncertainty-based comprehensive optimization design for the
thermal protection system of hypersonic wing structure. Appl. Sci. 12(21), 10734
(2022). https://doi.org/10.3390/app122110734

9. Allen, M., Maute, K.: Reliability-based shape optimization of structures under-
going fluid-structure interaction phenomena. Comput. Methods Appl. Mech. Eng.
194(30–33), 3472–3495 (2005). https://doi.org/10.1016/j.cma.2004.12.028

10. Kim, D.W., Kwak, B.M.: Reliability-based shape optimization of two-dimensional
elastic problems using BEM. Comput. Struct. 60(5), 743–750 (1996). https://doi.
org/10.1016/0045-7949(95)00433-5

11. Enevoldsen, I., Sørensen, J.D., Sigurdsson, G.: Reliability-based shape optimization
using stochastic finite element methods. In: Der Kiureghian, A., Thoft-Christensen,
P. (eds.) Reliability and Optimization of Structural Systems 1990: Proceedings of
the 3rd IFIP WG 7.5 Conference Berkeley, California, USA, 26–28 March 1990,
pp. 75–88. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-84362-
4 8

12. Sun, T., et al.: Design and optimization of a bio-inspired hull shape for AUV by
surrogate model technology. Eng. Appl. Comput. Fluid Mechanics 15(1), 1057–
1074 (2021). https://doi.org/10.1080/19942060.2021.1940287

13. Sysaykeo, D., Mermoz, E., Thouveny, T.: Clearance and design optimization of bio-
inspired bearings under off-center load. CIRP Ann. 69(1), 121–124 (2020). https://
doi.org/10.1016/j.cirp.2020.03.006

14. Mattheck, C., Burkhardt, S.: A new method of structural shape optimization based
on biological growth. Int. J. Fatigue 12(3), 185–190 (1990). https://doi.org/10.
1016/0142-1123(90)90094-U

15. Cai, R., Cai, S., Yang, X., Lu, F.: A novel method of structural shape optimization
coupling BEM with an optimization method based on biological growth. Struct.
Optim. 15, 296–300 (1998). https://doi.org/10.1007/bf01203545

https://doi.org/10.1016/j.eswa.2023.119513
https://doi.org/10.1016/j.advengsoft.2022.103242
https://doi.org/10.3390/app121910146
https://doi.org/10.1007/s00158-018-2100-6
https://doi.org/10.1007/s00158-022-03457-w
https://doi.org/10.1007/s00158-022-03457-w
https://doi.org/10.1142/S0218396X16500065
https://doi.org/10.1142/S0218396X16500065
https://doi.org/10.3390/app122110734
https://doi.org/10.1016/j.cma.2004.12.028
https://doi.org/10.1016/0045-7949(95)00433-5
https://doi.org/10.1016/0045-7949(95)00433-5
https://doi.org/10.1007/978-3-642-84362-4_8
https://doi.org/10.1007/978-3-642-84362-4_8
https://doi.org/10.1080/19942060.2021.1940287
https://doi.org/10.1016/j.cirp.2020.03.006
https://doi.org/10.1016/j.cirp.2020.03.006
https://doi.org/10.1016/0142-1123(90)90094-U
https://doi.org/10.1016/0142-1123(90)90094-U
https://doi.org/10.1007/bf01203545


Isogeometric Optimization of Structural Shapes 77

16. Mattheck, C.: Teacher tree: the evolution of notch shape optimization from complex
to simple. Eng. Fract. Mech. 73(12), 1732–1742 (2006). https://doi.org/10.1016/
j.engfracmech.2006.02.007

17. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Eng. 194(39–41), 4135–4195 (2005). https://doi.org/10.1016/j.cma.2004.10.
008

18. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization.
Comput. Methods Appl. Mech. Eng. 197(33–40), 2976–2988 (2008). https://doi.
org/10.1016/j.cma.2008.01.025

19. Hassani, B., Tavakkoli, S.M., Moghadam, N.: Application of isogeometric analysis
in structural shape optimization. Scientia Iranica 18(4), 846–852 (2011). https://
doi.org/10.1016/j.scient.2011.07.014

20. Wang, Y., Wang, Z., Xia, Z., Poh, L.H.: Structural design optimization using iso-
geometric analysis: a comprehensive review. Comput. Model. Eng. Sci. 117(3),
455–507 (2018). https://doi.org/10.31614/cmes.2018.04603

21. Dean, T., Long, J.N.: Validity of constant-stress and elastic-instability principles of
stem formation in Pinus contorta and Trifolium pratense. Ann. Bot. 58(6), 833–840
(1986). https://doi.org/10.1093/oxfordjournals.aob.a087265

22. Mattheck, C.: Engineering components grow like trees. Materialwiss. Werk-
stofftech. 21(4), 143–168 (1990). https://doi.org/10.1002/mawe.19900210403

23. Mattheck, C., Bethge, K.: The structural optimization of trees. Naturwis-
senschaften 85, 1–10 (1998). https://doi.org/10.1007/s001140050443

24. Müller, U., Gindl, W., Jeronimidis, G.: Biomechanics of a branch-stem junction in
softwood. Trees 20, 643–648 (2006). https://doi.org/10.1007/s00468-006-0079-x

25. Mattheck, C.: Design in Nature: Learning from Trees. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-3-642-58747-4

26. Nguyen, V.P., Anitescu, C., Bordas, S.P., Rabczuk, T.: Isogeometric analysis: an
overview and computer implementation aspects. Math. Comput. Simul. 117, 89–
116 (2015). https://doi.org/10.1016/j.matcom.2015.05.008

27. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncer-
tainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23–69 (2003).
https://doi.org/10.1016/S0951-8320(03)00058-9

https://doi.org/10.1016/j.engfracmech.2006.02.007
https://doi.org/10.1016/j.engfracmech.2006.02.007
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2008.01.025
https://doi.org/10.1016/j.cma.2008.01.025
https://doi.org/10.1016/j.scient.2011.07.014
https://doi.org/10.1016/j.scient.2011.07.014
https://doi.org/10.31614/cmes.2018.04603
https://doi.org/10.1093/oxfordjournals.aob.a087265
https://doi.org/10.1002/mawe.19900210403
https://doi.org/10.1007/s001140050443
https://doi.org/10.1007/s00468-006-0079-x
https://doi.org/10.1007/978-3-642-58747-4
https://doi.org/10.1016/j.matcom.2015.05.008
https://doi.org/10.1016/S0951-8320(03)00058-9


Uncertainties About the Water Vapor
Permeability of Raw Earth Building Material

Ichrak Hamrouni1,2(B), Habib Jalili1, Tariq Ouahbi1, Saïd Taibi1, Mehrez Jamei2,
Hatem Zenzri2, and Joanna Eid3

1 Normandie Université, UNIHAVRE, LOMC, CNRS UMR 6294, Le Havre, France
ichrak.hamrouni@univ-lehavre.fr

2 National Engineering School of Tunis, LGC, University Tunis Elmanar, Le Belvedere,
1002 Tunis, Tunisia

3 AI Environnement, R&D Department, Fontenay-Sous-Bois, France

Abstract. In order to reduce the energy impact of building materials and, more
generally, the environmental impact, raw earth can be an alternative to the conven-
tional building materials like cement and fired earth bricks. Since earliest times,
earthen building materials are becoming one of the most known construction tech-
niques in the world thanks to its important benefits. This material has the capacity
to play a significant role in regulating moisture and heat in buildings. It is dis-
tinguished by its low thermal conductivity, which renders it an effective thermal
insulator. Additionally, it exhibits a remarkable ability to facilitate the diffusion
of water vapor.

In this study, we are interested in the hygric characterization of raw earth
material. Generally, in the experiment studies, one test is not representative and is
not sufficient to analyze the results and the observed phenomenas. For this reason,
a repetitive hygric experimental tests were carried out in this study and the results
showing the uncertainties of the measurements will be presented and analyzed to
determine the parameters that could cause these uncertainties.

Keywords: Raw earth · flax fibers · water vapor permeability · uncertainties

1 Introduction

The choice of an eco-material based on raw earth as a construction material must meet
precise specifications concerning mechanical resistance, durability, rigidity, and perfor-
mance in transfers by determination of hydro-mechanical properties. Several researches
have been carried out on the hygrothermal properties of raw earth materials. These mate-
rials are capable of ensuring hygro-thermal comfort in buildings, due to breathability and
insulation in terms of vapor and heat transfers respectively. In this study,we are interested
in the hygric characterization of a composite material raw earth-flax fibers. Repetitive
tests of measuring the water vapor permeability of raw earth alone, flax fibers alone and
composite raw earth-flax fibers were carried out. The results showing the uncertainties
of the measurements will be presented and analyzed to determine the parameters that
could cause these uncertainties.
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2 Materials and Methods

2.1 Materials

In the current research, the studied materials are raw earth material and flax fibers. The
raw earth is a naturally occurring silt sourced from the Normandy region in France. It is
classified as a sandy-silt SL (SM) material according to the LPC-USCS classification,
as indicated in Table 1. The flax fibers are locally extracted, then processed by cutting
and drying before using for the experiment. These fibers are defined by their thickness,
which ranges from 40 to 80 μm, a length of 7 cm, and a density of 1400 kg/m3.

Table 1. Grading size table of silt GO [1]

Limon GO

Teneur en fines (< 80 μm) 35%

Argile (<2 μm) 0%

Limon (de 2 μm à 60 μm) 25%

Sable (de 0,06 mm à 2 mm) 67%

Gravier (>2 mm) 8%

Limites d’Atterberg

Limite de liquidité WL = 22%

Indice de plasticité IP ≈ 6

Classification LPC-USCS sable-limoneux SL (SM)

The water vapor permeability of raw earth alone, fibers alone and the earth-fiber
composite was measured using the cup method. The fibers were studied with different
arrangements (longitudinal, transverse and random) and densities. The composite raw
earth-flax fibers are prepared by compaction using a static press in a proctor mold.

The remarkable factors that were taken into account during the water vapour per-
meability tests were the density of the silt material with different percentages of mixed
fibres, as well as the different arrangements of the latter (longitudinal, transverse and
random) as shown in Table 2.
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Table 2. Different cases studied for the measure of water vapor permeability [2]

Flax fibers in transversal 
arrangement

Flax fibers in longitudinal ar-
rangement

Flax fibers in random ar-
rangement

Raw earth alone Raw earth-random flax  
Fibers 

Raw earth-transversal flax 
fibers 

2.2 Methods

To measure the water vapor permeability of fibers alone silt alone and composite raw-
earth, two experimental setups have been developed in the laboratory based on the “Cup
method” following to standard ISO 12572:2001 [3] (Fig. 1 and Fig. 2).

Using the Fick law, we can determine the water vapor permeability δv [kg/ (m. s.
Pa)] of the studied materials:

δv = e
jv

�pv
= e

jv
pv2 − pv1

(1)

e: sample’s thickness [m]
jv: water vapor flux density [kg/m2. s].
pv: water vapor pressure [Pa].
�pv is the gradient of the water vapor pressure [Pa].

3 Results

3.1 Flax Fibers

In order to evaluate the anisotropy of water vapor permeability of flax fibers regard their
orientation, we conducted tests involving the transfer of vapor through fiber bundles
oriented in different directions: random, transverse, and longitudinal. Figure 3 illustrates
the water vapor permeability evolution of flax fibers as a function of density for the three
different orientations. The results show that the water vapor permeability decreases as
fiber density increases, regardless of the fiber arrangement.
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Fig. 1. Water vapor permeability measuring device for raw earth-flax fibers samples [2]

Fig. 2. Water vapor permeability measuring device for silt-flax fibers [2]

For longitudinal fibers, the permeability ranges from1.11× 10–10 to 9.93× 10–11 kg/
(m. s. Pa) when the density goes from 100 to 300 kg/m3. In the case of transverse fibers,
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this decrease is more pronounced, with permeability decreasing from 6.83 × 10–11 to
4.78 × 10–11 kg/ (m. s. Pa). Additionally, our results demonstrate that fibers oriented in
the same direction as the vapor flow exhibit higher permeability to water vapor.

Fig. 3. Flax fibers water vapor permeability evolution as a function of their arrangement and
densities [2]

3.2 Raw Earth-Flax Fibers

Figure 4 illustrates thewater vapor permeability evolution as a function of the percentage
of added fibers of the composite material raw earth-flax fibers with randomly and trans-
versely arrangements. A significant increase in vapor permeability with the increasing
percentage of fibers, regardless of their orientation was observed.

A particularly significant change occurs when 1% of fibers is added to the soil,
compared to the soil alone without fibers. At this point, the permeability increases from
9.38× 10–12 to 1.10× 10–11 kg/ (m. s. Pa) in the case of transversely oriented fibers and
to 1.30 × 10–11 kg/ (m. s. Pa) with randomly oriented fibers. Then, this growth softens
with the increase of percentage of fibers from 1% to 5%with a slope of 2.65× 10–13 kg/
(m. s. Pa) for the two types of fibers’ arrangement.

Furthermore, for a given percentage of fibers, the permeability of silt GO reinforced
with a random arrangement of fibers is higher than that with a transverse arrangement.
These results align with the those observed in Fig. 3, where the water vapor permeability
obtained with a random distribution of fibers alone was higher than that in the case of a
transverse arrangement.
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Fig. 4. Rawearth -flaxfiberswater vapor permeability evolution as a function of fibers’ percentage
[2]

4 Uncertainties

For experimental studies, one single test is not representative and not sufficient to ana-
lyze the results and the observed phenomena. For this reason, in this study, repeti-
tive experimental tests of permeability measurement were realized. The results showed
uncertainties of measurements which were calculated as follows:

Standard Deviation (STD):

STD =
√∑N

i=1

(
δvi − δvi

)2
N

(2)

δvi: water vapor permeability for the test i [kg/ (m. s. Pa)].
δvi: mean value of water vapor permeability [kg/ (m. s. Pa)].
N: number of tests.
Coefficient of Variation (CV):

CV = STD

δvi
× 100 (3)

4.1 Flax Fibers

The uncertainties obtained for the case of the tests for the flax fibers are illustrated in the
Table 3. We can observe from the results that the maximum CV is equal to 7. According
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to Costa et al., 2002 [4], if the CV is lower than 7%, that’s show a high experimental
precision. So, we can conclude from the results of the water vapor permeability of flax
fibers in different arrangements show acceptable uncertainties.

Table 3. Uncertainties about the water vapor permeability of flax fibers in different arrangements

Density δvi [kg/ (m. s. Pa)] STD [kg/ (m. s. Pa)] CV [%]

Longitudinal
Arrangement

100 1.11. 10–10 1.2. 10–12 1.08

200 1.09. 10–10 3.54. 10–13 0.33

300 9.93. 10–11 4.03. 10–12 4.06

Random
Arrangement

100 1.06. 10–10 7.02. 10–12 6.6

200 9.08. 10–11 1,31. 10–12 1.45

300 8.89. 10–11 6.49. 10–12 7

Transversal
Arrangement

100 6.83. 10–11 3.13. 10–13 4.59

200 6.34. 10–11 1.58. 10–12 2.48

300 4.78. 10–11 2.57. 10–13 5.37

4.2 Raw Earth - Flax Fibers

The uncertainties obtained for the case of the tests for the raw earth-flax fibers are
illustrated in the Table 4. We can observe that the CV for these experiments does not
exceed 5% so according to Costa et al., 2002 would be classified as of high precision.

Table 4. Uncertainties about the water vapor permeability of raw earth – flax fibers composites

Percentage of fibers δvi [kg/ (m. s. Pa)] STD [kg/ (m. s. Pa)] CV [%]

Raw earth
– random flax
fibers

0 9.38. 10–12 2.55.10–13 2.71

1 1.26. 10–11 5.7.10–13 4.53

2 1.29. 10–11 5.10–13 3.89

3 1.30. 10–11 3.44.10–13 2.65

4 1.34. 10–11 6.24.10–13 4.67

5 1.37. 10–11 3.42.10–13 2.51

Raw earth
– transversal flax
fibers

1 1.12. 10–11 3.26. 10–13 2.9

2 1.17. 10–11 4.91. 10–13 4.22
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5 Conclusion

This paper focus on the hygric characterization of a raw earth-fibers composite material.
The water vapor permeability of a natural silt, flax fibers and silt reinforced with flax
fibers was determined using the “cup method”. The results highlight the effect of fibers’
orientation on their ability to let pass water vapor, more the fibers are oriented in the
same direction as the vapor flow, more they are permeable to water vapor. Besides, the
addition of flax fibers to the raw earth material improves the water vapor permeability of
the raw earth from 9.38. 10–12 to 1.37. 10–11 kg/ (m. s. Pa) in the case of random fibers
and from 9.38. 10–12 to 1.17. 10–11 kg/ (m. s. Pa) in the case of transversal fibers.

As in this study, repetitive tests of measuring water vapor permeability of differ-
ent materials were carried out, the results show uncertainties. The maximum observed
coefficient of variation (CV) in the case of fibers alone is about 7% and about 5% in
the case of composite raw earth-fibers. These coefficients show a high precision of the
experimental tests.
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Abstract. The present work aims to analyze the effectiveness of a passive vibra-
tion control device in a structure subjected to random vibrations. The structure is a
ten-story building equipped with a TunedMass Damper (TMD) at the top and it is
subjected to artificial seismic excitations generated by the Kanai-Tajimi spectrum.
The uncertainties present in both the systems and excitation parameters are taken
into account. Thus, mass, stiffness and damping of the structure and the TMD, as
well as peak ground acceleration (PGA), ground frequency and ground damping
ratio are assumed as random variables, and the problem is solved via Monte Carlo
Simulation. The study uses Newmark’s numerical integration method to obtain
the results of displacement, velocity, acceleration and maximum interstory drift
values of the structure. The results obtained during the study demonstrate that the
variance decreased and the dynamic response of the structure in terms of interstory
drift is considerably reduced by about 55% after installing the TMD at the top of
the building.

Keywords: Seismic Excitation · Tuned Mass Damper · Vibration Control

1 Introduction

The installation of vibration control mechanisms in structures subjected to the effects
of dynamic forces aims to reduce the magnitudes of displacement and interstory drift,
providing a greater level of comfort and safety to users. These devices have different
varieties and operating principles, with their specific characteristics and their application
is determined by the type of structure designed and the possible events it will be subjected
to [1].

These devices can be classified into three types, the active ones that need an external
energy power to be activated, the semi-actives that require a small source of external
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energy for operation and use themovement of the structure to develop control forces, and
the passive ones that stand out for consuming a minimum amount of power compared to
the others [2]. The operation of passive mechanisms consists of energy dissipation using
the oscillation of the main structure, with a secondary system that reduces the unwanted
kinetic energy of the system, some examples of passive systems are friction dampers,
viscoelastic dampers and tuned mass dampers [3].

The device model implanted in this work for vibration control is the tuned mass
damper (TMD), whose operating principle consists of a mass, a spring and a viscous
damper system coupled to the main structure [4]. This mechanism has a positive point
which is the low waste of energy as it is a passive system, being a cheap and effective
device. The TMD is dimensioned mainly to tune with the first vibration mode of the
structure [5]. In this work, the TMD is able to reduce the vibrations of the building
against seismic events.

Second [6], one of the most famous applications of the tuned mass damper is in
the Taipei 101 skyscraper, in Taiwan, whose implementation is a milestone of modern
engineering in the field of mechanical vibrations, serving as a basis for studies of new
scientific projects. The application of this damping system in the building took into
account that the city of Taipei is often hit by earthquakes and the TMD contributes to
reducing the recurring vibrations of these unwanted events.

It is of great importance to note that the uncertainties in the structural properties
of mass, stiffness and damping together with the parameters of the random dynamic
excitation that take into account the peak ground acceleration, ground frequency and
ground damping can change the optimal solution of the stipulated problem. Thus, it is
extremely important to take into account uncertainties in the procedure in order to avoid
damage to the structure, reduced performance and failures [7].

Within this context, the main objective of the present work is to propose a methodol-
ogy to verify the effectiveness of installing a tuned mass damper at the top of a ten-story
structure subject to random earthquakes, considering uncertainties and with the aim of
reducing the maximum interstory drift of the building.

2 Methodology

In this chapter, themain concepts necessary for carrying out the case study are discussed.
Therefore, as the focus is on the area of mechanical vibrations, the analysis of equations
of motion as well as basic notions of vibrating elements are essential foundations for the
work. Other factors such as methods of numerical integration and analysis of seismic
events are also theorized throughout the chapter. In addition, in the area of probability
and statistics, the input of random variables, among other fundamentals are necessary
concepts for the work.

2.1 Equation of Motion

According to [8], the equation of motion for a vibrating system with the action of an
external force and with n degrees of freedom (DOF) is formulated to provide, from
numerical calculations, the amplitudes of displacement, velocity and acceleration of the
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system. To obtain the response of the equation of motion in the case of a structure sub-
jected to an earthquake, it must be considered that the force vector is a base acceleration.
The description of this formula is shown by Eq. (1).

[M ]ẍ(t) + [C]ẋ(t) + [K]x(t) = −[M ]ẍg(t) (1)

where [M] is themassmatrix, [C] is the dampingmatrix and [K] is the stiffnessmatrix, all
with dimensions (n x n). The term ẍ(t) represents the acceleration vector as a function
of time, ẋ(t) represents the velocity vector as a function of time, x(t) represents the
displacement vector as a function of time and ẍg(t) is the acceleration vector of the soil
as a function of time, generated by the Kanai-Tajimi spectrum, which multiplied by the
matrix [M] gives the forces of the seismic event.

In the numerical resolution of a shear building system considering the vectors in
the transverse orientation of the structure, with n degrees of freedom, there is a need to
formulate matrices containing the vibratory parameters of the structure for the calcula-
tion. The sizing of the matrices follows a pattern linked to the number of DOFs in the
structure, forming square matrices of dimensions (n x n) [9]. The mass matrix, stiffness
matrix and damping matrix are cited below (see Eqs. 2, 3 and 4).

[M ] =

⎡
⎢⎢⎢⎣

m1 0
0 m2

· · · 0
· · · 0

...
...

0 0

. . .
...

· · · mn

⎤
⎥⎥⎥⎦ (2)

where [M] is the mass matrix, m1 is mass 1, m2 is mass 2, and mn is the mass of the last
inertia element of the system.

[K] =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 · · · 0 0
−k2 k2 + k3 · · · 0 0
...

...
. . .

...
...

0 0 · · · kn−1 + kn −kn
0 0 · · · −kn kn

⎤
⎥⎥⎥⎥⎥⎦

(3)

where [K] is the stiffness matrix, k1 is the spring 1, k2 is the spring 2, and kn is the
stiffness of the last element of the system.

[C] =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 · · · 0 0
−c2 c2 + c3 · · · 0 0
...

...
. . .

...
...

0 0 · · · cn−1 + cn −cn
0 0 · · · −cn cn

⎤
⎥⎥⎥⎥⎥⎦

(4)

where [C] is the damping matrix, c1 is the damping 1, c2 is the damping 2, and cn is the
damping of the last element of the system.

To solve Eq. (1), a program developed in Matlab based on Newmark’s method of
numerical integration was used, which is an implicit method used to solve displacement,
velocity and acceleration equations in the time domain [10].
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2.2 Random Parameters of the Structure

In this work, the parametric probabilistic approach was used to obtain the uncertainties
of the system parameters, in order to take into account, the uncertainties in the mass,
stiffness and damping parameters of the main structure and the TMD installed at the
top. These three stochastic variables are modeled as uncorrelated random variables with
Lognormal distribution, as they cannot assume negative values, due to physical aspects,
with known mean and coefficient of variation. Thus, in each run of the routine, the
structure presents different parameters. Since the system’s response depends on these
random variables, it becomes random [11].

The structure to be studied was defined as a ten-story building equipped with a single
tuned mass damper at the top. The building is simplified for the case study, simulating it
as a shear building with ten tranversal DOFs, the mass is concentrated in each slab and
the columns are springs of a certain stiffness, with viscous damping, the demonstration
of this structure with the TMD installed is illustrated in Fig. 1:

Fig. 1. Ten-degree-of-freedom buildingwith a single tunedmass damper at the top, (adapted from
[15]).

The work was analyzed for the case situation where a single TMD is installed at the
top of the structure, considering it has a mass of 3% of the total mass of the building.
The mass, stiffness and damping parameters for each of the ten floors of the structure,
with the TMD parameters and their respective mean values and coefficient of variation
of 5%, representing the uncertainties of the application, are described in Table 1.

Considering the mean values of the parameters in Table 1 and assuming coefficients
of variation equal to zero for the random variables, the first three natural frequencies of
the present structure are 1.01, 3.00, and 4.94 Hz.
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Table 1. Mean value and coefficient of variation of structure and TMD random parameters.

Random Variable Mean Value Coefficient of Variation (%)

Mass per story 360 ton 5

Stiffness per story 650 MN/m 5

Damping per story 6.2 MNs/m 5

Mass of the TMD 108 ton 5

Stiffness of the TMD 3.865 MN/m 5

Damping of the TMD 0.181 MNs/m 5

2.3 Random Seismic Excitations

According to [11], to solve Eq. (1) it is necessary to define the seismic loading. In this
study, the seismic load is defined as a force of a one-dimensional seismic event that
is simulated through the Kanai-Tajimi spectrum [12, 13] with a power spectral density
function given by Eq. (5):

S(ω) = S0

⎡
⎢⎣

ω4
g + 4ω2

gξ
2
gω2

(
ω2 − ω2

g

)2 + 4ω2
gξ

2
gω2

⎤
⎥⎦, S0 = 0.03ξg

πωg

(
4ξ2g + 1

) (5)

where S0 is the constant spectral density, related to the peak ground acceleration (PGA),
ωg is the ground frequency and ξg is the ground damping. Uncertainties in the ground
and in the seismic excitation itself, which cannot be predicted, interfere with the optimal
solution of theKanai-Tajimi spectrum, therefore the excitationmust be considered taking
into account uncertainties. In the case of the seismic excitation, two levels of uncertainty
can be observed, first the uncertainty of the random phase angle of the Tanai-Kajimi
formula and finally the uncertainties of the soil of the dynamic excitation, in this case,
the frequency of the soil, the soil damping and the PGA are assumed as independent
Lognormal variables with known mean and coefficient of variation, as well as structure

Table 2. Mean value and coefficient of variation of seismic random parameters.

Random Variable Mean Value Coefficient of Variation (%)

PGA 0.35 g 10

ωg 1 Hz 10

ξg 0.3 10

Note in Table 2 that the ground frequency value is very close to the natural frequency of the
building, around 1 Hz. When the frequencies approach, the resonance phenomenon occurs, where
the displacement amplitudes tend to infinity, so this is the worst possible situation for this structure
[10]. In Fig. 2 the spectral intensity of the earthquake is plotted, where the density of frequencies
around 1 Hz is confirmed
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parameters, so the excitation has uncertainty over uncertainty [5]. The random variables
of the problem, their mean values and their respective coefficient of variation of 10%,
representing the uncertainties of the excitation, are described in Table 2.

Fig. 2. The Kanai-Tajimi spectral intensity in relation to the frequency for the soil scenario of
Table 2.

In this study, the earthquake was generated for a duration of 20 s with an integration
step of 0.02 s. Following the mean values mentioned in Table 2 this graph was generated
and plotted in Matlab, and the demonstration of the earthquake is illustrated in Fig. 3.

Fig. 3. Accelerogram of the artificial seismic event generated with Kanai-Tajimi spectrum of the
mean values in Table 2.
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2.4 Monte Carlo Simulation and Latin Hypercube Sampling

The Monte Carlo Simulation (MCS) is a numerical method based on sampling random
values with a large number of observations in order to acquire statistical results for prob-
abilistic situations. The simulation starts from an average value with a specific variation
to obtain the observations, where first it is assumed that all random variables are unre-
lated to each other, adjusting the problem in terms of these variables, and characterizing
the probabilities as a probability density function to finally generate their determined
values [14].

Thus, to generate the randomvariables forMCSwas usedLatinHypercube Sampling
(LHS). TheLHS reduces the computational cost and provides an efficientway to generate
variables from their distributions, taking samples from equal intervals, and selecting
different values of a random variable where the domain of the random variable is divided
into n intervals of equal probability. A value from each range is chosen at random with
respect to the probability density in the interval, the choice must be made in a random
way with respect to the density in each interval, so the selection must reflect the height
of the density across the range [5].

3 Results and Discussions

Completing the studies of this work and considering the case of the proposed ten-story-
building with a TMD at the top, subjected to random artificial earthquakes, the Matlab
computational routine was executed providing, from the application of the Newmark
method, the values of displacement, velocity and acceleration for each instant of time.
For this situation, the results obtained of maximum interstory drift are the ones desired
for the vibration analysis of the problem, being able to obtain them from the difference
between the displacement values of each floor. Therefore, the values of the structural
model with TMD can be compared with the model without vibration control, analyzing
the effectiveness of installing this device. Considering that each story of the building is
a DOF, these are the values of maximum drift, described in Table 3.

Analyzing Table 3, it is notable that there is a considerable reduction in themaximum
drift values per floor, reaching values around 55%, the expected reduction values are due
to the installation of the tuned mass damper in the structure. The maximum interstory
drift value has occurred on the second floor of the building, so thiswill be used for general
analysis as it is themost critical situation in this case. Then it becomes necessary to define
the number of samples to be used in the course of the study, so a graph of convergence of
the mean of the maximum interstory drift values is drawn up to define the ideal number
to be used for the work, it is shown in Fig. 4.

Analyzing Fig. 4, it was decided to use the amount of 300 samples, as this is where the
line tends to stabilize, providing greater credibility of results. Based on this definition, a
probability density function was created in relation to the maximum drift for the number
set of samples, in the situation without vibration control and in the case with TMD
installed, the results can be compared and analyzed in Fig. 5.

Figure 5 demonstrates the frequency diagrams in unit area histograms constructed
for the uncontrolled structure case (red histogram) and for the controlled structure case
(blue histogram) for maximum drift. Looking at the graph, it can be seen that the blue



Dynamic analysis of a building equipped with a Tuned Mass Damper 93

Table 3. Values of maximum inter-story drift in uncontrolled structure and structure with TMD.

Story Number Uncontrolled Structure (m) Structure with TMD (m) Reduction (%)

1 0.0862 0.0400 53.59

2 0.0878 0.0401 54.32

3 0.0793 0.0357 54.98

4 0.0815 0.0364 55.33

5 0.0686 0.0304 55.68

6 0.0665 0.0295 55.63

7 0.0480 0.0215 55.20

8 0.0397 0.0184 53.65

9 0.0262 0.0131 50.00

10 0.0138 0.0090 34.78

Fig. 4. Convergence of the mean of maximum interstory drift.

curve is slender compared to the red curve, this is due to the variance has been reduced
after installing the TMD, thus showing the effectiveness of the proposed methodology.

For a better demonstration of the vibration control event, an analysis graph
was plotted for the maximum interstory drift values obtained on the second floor
of the building in relation to the time of action of the seismic forces, which is
equivalent to 20 s. Thus, the data can be analyzed in another way, and the demonstration
of the reduction of amplitudes can be better visualized, as illustrated in Fig. 6.

Looking at the graph in Fig. 6, it is possible to visualize a notable reduction of the
amplitudes of the structure, the reduction occurs mainly after 12 s of earthquake action,
where the amplitudes of the structure without control (red curve) increase, but those
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Fig. 5. Probability density function of maximum interstory drift for uncontrolled structure (red
curve) and structure with TMD (blue curve). (Color figure online)

Fig. 6. Interstory drift on the second floor for uncontrolled structure (red curve) and structure
with TMD (blue curve). (Color figure online)

of the structure with vibration control (blue curve) are reduced. The values refer to the
second floor of the structure because, as already mentioned, it is the worst point for
interstory drift in this case.
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4 Conclusions

One of the positive points of a TMD is that it is a passive energy dissipation device that
do not need mechanisms for activation, so it become cheaper compared to active ones,
this is one of the advantages of the tuned mass damper, together with its effectiveness
and reliability.

With the results obtained in the numerical simulation, a technical analysis was car-
ried out based on theoretical references in order to prove the values that define the
effectiveness of the tuned mass damper. The responses of the comparison between the
structure with TMD installed and the structure without a vibration control device, as seen
in Fig. 6, demonstrate that over time the seismic event was active, there was a visible
drop in interstory drift amplitudes. In percentage values, this vibration control device
was effective in reducing interstory drift by about 55% in its most critical case, as shown
in Table 3, thus being able to be considered a passive control system applicable to the
case study of this work.

In this study, the installation of the vibration control device also contributed to
reducing the variance arising from uncertainties in the system, visible in the probability
density function in Fig. 5. Uncertainties of the structure, the TMD and the seismic force
that are common in real cases, due to human actions and of nature, uncertainties are
always present and must be considered because they affect the final results of the study.

Thus, it can be concluded from the values obtained the effectiveness of the proposed
methodology and the installation of the vibration control mechanism, which showed
that a passive energy dissipation device was effective in reducing the interstory drift of
this building, bringing safety in critical earthquake situations that may pose a danger to
individuals of the place.
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Abstract. In the design of structures, there are uncertainties of differ-
ent origin often associated with the properties of materials, geometry and
applied loads. With the Reliability-Based Design Optimization (RBDO)
method, it is possible to consider design constraints in terms of failure
probabilities or target reliability indices, for a structure subject to perfor-
mance constraints as limit state functions (LSF), in a classical optimiza-
tion problem. In this way, RBDO analysis takes design variables uncer-
tainties and its effects directly. This work intents to present a RBDO
application in a steel frame, with an usual double-loop approach, con-
sidering the first and second order structural analysis, with optimization
by Genetic Algorithms (GA). Target reliability indices are defined and
assessed by FORM (First Order Reliability Method), while GA searches
the optimal solution between 18 W-shapes from AISC database (2017),
which represents the mininum material mass required for satisfy the con-
straints. In some cases, it is shown that considering second-order effects
can result in lighter frames, as the calculated reliability index can get
higher.

Keywords: RBDO · Genetic Algorithms · FORM · Structural
Optimization · Second Order Analysis

1 Introduction

The design of structures is directly associated to satisfy conflicting requirements,
such as cost, safety and durability. Unquestionably, uncertainties are naturally
present in all the variables and steps that compose the design. Thus, optimiz-
ing a structure through a deterministic approach often results in poor reliable
configurations.

In this way, the Reliability-Based Design Optimization (RBDO) approach
is able to find the best compromise between cost and reliability assurance, by
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including the uncertainties [3]. The challenge of RBDO is the computational
effort employed in evaluate reliability constraints, making it difficult to deal
with more complex problems [8].

Besides the usual double-loop approach, other techniques have been proposed
to speed up the RBDO process, such as SORA (Sequential Optimization and
Reliability Analysis) [10], SLA (Single-Loop Approach) [17] and SAP (Sequential
Approximate Programming) [9].

Truong and Kim [25] point out that for deterministic design optimization
(DDO), there are many articles and research material in the literature, but in
the case of RBDO, few studies related to steel frames have been performed.
In addition, geometric and material nonlinear behaviors often are not consid-
ered [23,26].

This paper intents to present a RBDO double-loop approach of a steel frame,
considering first and second order structural analyses. FORM is used to obtain
the reliability index β and Genetic Algorithms perform the optimization. Three
target reliability indices are established and design variables can also assume
different values. Reliability indices found by second order analysis tend to be
higher than the first order ones. However, the minimum mass found by second
order approach is not always smaller than first order case.

1.1 Softwares

CS-ASA. The CS-ASA - Computational System for Advanced Structural Anal-
ysis is a finite element method based program [24], able to perform statics and
dynamics analysis of steel structures [6] and statics analysis of composites steel-
concrete structures [16], considering geometric imperfections, material nonlin-
earity and semi-rigid connections.

MATLAB. Matlab R© manages all the analysis stages, as calling the struc-
tural analysis program CS-ASA; the reliability loop (FORM algorithm) and the
optimization loop (‘ga’ function in Matlab R©).

1.2 Second Order Analysis of Structures

The CS-ASA presents 3 options for second order analysis formulations. The
one used in this work, called SOF-2 [24], was developed by Yang and Kuo, in
1994 [27]. The typical frame finite element adopted can be seen in Fig. 1 and its
implementation passes by some simplifying assumptions, such as: cross sections
remain flat after deformation and are compacts; lateral or torsional buckling are
not allowed; small deformations are assumed, but large rotations/displacements
are allowed; axial shortening due to curvature is neglected.

Achieving the condition of structural equilibrium consists of resolving a bal-
ance between applied external forces and internal forces of the structure [4]. Such
task can be expressed in an equation, as Eq. 1 and, for the second order analysis
case, it depends on displacements (U) and internal forces in the members (P).

Fint(U,P) � Fext (1)
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Fig. 1. Adopted finite element.

Fint is the vector of internal forces; Fext is the vector of external forces, which
can be expressed as the product between a load parameter λ and a reference
external force vector Fr, which defines the direction of the acting external
forces [4]. So, Fext = λFr.

The numerical strategy to solve Eq. 1 is an incremental-iterative approach,
based on Newton-Raphson method. Thus, it is more convenient to expand Eq. 1,
defining the elastic and geometrical matrices involved in the process:

Ft
int +

n∑

e

[ke
i + ke

g]Δue � Ft
ext + ΔλFr (2)

where the superscript “t” defines the last equilibrium configuration; Δue is the
incremental nodal displacement vector of the element “e”; ke

i is the element’s
elastic linear stiffness matrix, defined in Eq. 3; ke

g is the element’s geometric
stiffness matrix, defined in Eq. 4; Δλ is the load parameter increment.

ke
i =

∫

Le

NTDNdx (3)

ke
g = P

∫

Le

[NT
uNu + NT

v Nv]dx (4)

Le is the finite element length; N refers to the interpolation functions vector;
D represents the material constitutive relationship matrix; P is the axial force
acting on the finite element. The interpolation function vectors Nu and Nv are
associated with the axial and lateral displacements, respectively.

2 Structural Optimization

2.1 Optimization Problem

The optimization problem consists of maximizing or minimizing one or more
objective functions, within specific design conditions previously established [21].
We may formulate it as follows:

Find X =
{

x1 x2 ... xn

}
, that minimizes/maximizes f(X),
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subject to:

ci(X) ≤ 0, i = 1, 2, ...,m, (5)
dj(X) = 0, j = 1, 2, ..., p, (6)

xlow
k ≤ xk ≤ xup

k , k = 1, 2, ..., n, (7)

where:

– X is the n-dimensional vector containing the design variables to be optimized;
– f(X) is the objective function of the problem, which in structural optimiza-

tion, can represent the weight, volume or manufacturing cost, for example;
– ci(X) and dj(X) are inequality and equality constraints, respectively, known

as behavior constraints, related to the performance and limit states of the
structural system under study;

– xlow
k and xup

k are the lower and upper bounds that design variables can
assume, known as lateral constraints, related to feasible physical limits [22];

– i, j, k, m, n and p are arbitrary values.

Figure 2 represents a hypothetical two-dimensional problem, in which the feasible
region was obtained by applying two behavior constraints ca and cb, as well as
the lateral constraints xlow

1 , xup
1 , xlow

2 , xup
2 .

Fig. 2. Constraints surfaces for a hypothetical two-dimensional problem
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2.2 Genetic Algorithms

In 1975, Holland [15] proposed a new optimization method, based on principles
of nature, such as genetics and natural selection in the reproduction of species:
the Genetic Algorithms (GA). The GA’s make part of a set of so-called modern
optimization methodologies [22].

As stochastic and gradient-free method, GA has good applicability in prob-
lems like multi-objective optimization; problems containing mixed continuous
and discrete variables; also for discontinuous or non-differentiable functions, as
well as for non-convex design spaces. The basic terminology relevant to genetic
algorithms is cited below:

– Objective function: the function to be optimized;
– Penalty function: mathematical expression applied to the fitness value of

an individual, calculated based on the violation of constraints;
– Fitness function: mathematical expression given by the sum of the objective

and penalty functions, which indicates how fitted to the problem an individual
solution can be;

– Individual: is the variables vector. It is also called chromosome and, its
entries, genes. Vector X below represents this structure:

X =
[
x1 x2 x3 ... xn

]
;

– Population: is the matrix of individuals. The user must specify a value p,
for the population size. Therefore, the population matrix will have dimension
p × n and n is the number of variables in the problem;

– Generation: each generation represents an iteration, in which a new popu-
lation matrix will be created, by applying the genetic operators, known as:
selection, elitism, crossover and mutation;

– Diversity: is measured by the distance between individuals in a population.
Greater the diversity of a population is, greater is the scan of the design space;

– Parents and Children: The GA’s, through the selection process, use the
individuals with the best fitness value of the current generation, called par-
ents, to create those of the next iteration (children).

The flowchart in Fig. 3 outlines the running of genetic algorithms.

3 Reliability Analysis and RBDO Methodology

3.1 First Order Reliability Method - FORM

The reliability indices calculated in this work are obtained by applying FORM,
that is an approximation of the limit state function, by a tangent hyper-surface
at the design point [11], where the distance from the origin to this point is what
we call the reliability index β [13]. Once we have β, it is possible calculate the
failure probability pFORM

f , which is the cumulative standard normal distribution
function (Φ) value at −β (Eq. 8).

pFORM
f = Φ(−β) (8)
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Fig. 3. Genetic algorithms flowchart.

Obtaining β involves a mapping transformation of random variables [18,20]. For
the Nataf’s transformation case, this operation starts from an original space X to
a normal space Z, and then from the space Z to a standard normal uncorrelated
space Y. Equations 9 and 10 show the chain rule for the Jacobian matrices, used
in the process:

Jyx =
[

∂yi

∂xk

]
=

[
∂yi

∂zj

∂zj

∂xk

]
= L−1(Dneq)−1 = JyzJzx (9)

Jxy =
[

∂xi

∂yk

]
=

[
∂xi

∂zj

∂zj

∂yk

]
= DneqL = JxzJzy (10)

where L is the lower triangular matrix obtained from the Cholesky decomposition
and Dneq is the diagonal matrix of standard deviations of equivalent normal
variables. Thus, x and y variables can be obtained by Eqs. 11 and 12:

y = Jyx {x − μneq} (11)

x = Jxy {y + μneq} (12)

where μneq is the normal equivalent mean.
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FORM calculates the reliability index β by means of the following steps
(based on [7]):

1. Calculation of non-normal distributions parameters;
2. Determination of equivalent correlation coefficients and the Cholesky decom-

position matrix L;
3. Determination of Jacobian matrices Jyz and Jzy;

Jyz = L−1 (13)

Jzy = L (14)

4. Choice of the starting point xk, for k = 0 (beginning of the iterative process);
Start of the iterative process

5. Calculation of equivalent normal distributions parameters;
6. Updating the Jacobian matrices Jyx and Jxy;
7. Transformation of point xk from X to Y;
8. Limit state function g(xk) assessment;
9. Calculation of gradients:

a. Calculation of the partial derivatives of g(X) in the design space X;
b. Gradient transformation to Y;
c. Calculation of linearized sensitivity factors α(yk);

10. Calculation of the new point yk+1;
11. Transformation of yk+1 to space X;
12. Convergence check. If convergence criteria are met, the algorithm is inter-

rupted. Otherwise, the iteration number is increased and it returns to step
5. Convergence criteria:

1 − |∇g(yk+1)
tyk+1|

||∇g(yk+1)|| ||yk+1||
< ε (15)

|g(yk+1)| < δ (16)

13. Evaluation of the reliability index at the design point: β = ||y∗||.

3.2 Reliability-Based Design Optimization - RBDO

In RBDO methodology, the uncertainties related to each variable of a problem
are directly taken into account in the optimization process [7]. Failure probabil-
ities or targets reliability indices are defined as optimization constraints. Hilton
and Feigen [14] first proposed the method in their work: Minimum weight anal-
ysis based on structural reliability, in 1960.

In this way, we must add the reliability constraint to the optimization prob-
lem presented in Subsect. 2.1:

P [gi(X)] ≤ Pf , i = 1, 2, ..., n (17)

or:
βi(X) ≥ βT , i = 1, 2, ..., n (18)
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where P [gi(X)] is the failure probability of a structure for a given limit state
function gi(X); Pf is the failure probability calculated by Eq. 19 below; βi(X)
is the reliability index of a structure; βT is the target reliability index.

Pf = P [X ∈ Ωf ] =
∫

Ωf

fX(X) dX (19)

Ωf is the failure domain; fX(X) is the probability density function for the ran-
dom variable X.

Table 1 shows a sequence of steps for the RBDO analysis, using a double-loop
approach, where optimization is the outer loop and reliability assessment is the
inner one.

4 Numerical Example: RBDO Analysis of a Single Floor
Steel Frame

4.1 General Information

A RBDO analysis is made for the single floor steel frame shown in Fig. 4. The
problem has 8 random variables, whose statistical characteristics are in Table 2,
including the applied loads D, L and W ; the section properties: area A, inertia
Ix and plastic section modulus Zx; material properties: Young’s modulus E and
yield strength Fy.

Table 3 shows the W-shapes characteristics, from AISC database (2017), in
which the optimizer searches for the best configuration to satisfy the constraint
(a target reliability index) and the objective function, which is minimize the total
mass. This frame has been studied by several authors [5,12,19], but originally
as a reliability problem only.

4.2 Limit State Function

For the reliability analysis carried out by FORM, one ultimate limit state is
verified, which is flexure and axial force acting on column element 4, node 4.
This interaction of efforts shall be limited by Eqs. 20 and 21 [2]:

(i) If Pr

Pc
≥ 0.2

Pr

Pc
+

8
9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0 (20)
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Table 1. General sequence of steps for the RBDO analysis.

RBDO double-loop approach (MatlabR©)

1 Define n (number of repetitions);

2

3 For i from 1 to n, do:

4

5 Structural analysis: Calls the FEM Program CS-ASA;

6

7 opts = optimoptions(@ga, ...); (set genetic algorithms options)

8

9 A = [...]; b = [...]; Aeq = [...]; beq = [...]; lb = [...]; ub = [...]; intcon = [...];

10 (set behavior and lateral constraints)

11

12 [x,fval] = ga(@Fobj,nvars,A,b,Aeq,beq,lb,ub,@nonlcon,intcon, opts);

13 (calls GA, performs the optimization and returns the variables X

14 optimized and also the value of the objective function fval)

15

16 ↪→ Inner loop - Reliability constraints evaluation: using FORM,

17 the solver checks whether the found reliability index is above

18 the target;

19

20 WriteNewFile(X); (calls the function that will rewrite the file to

21 CS-ASA, for a new structural analysis with the updated variables X);

22

23 End-For

Fig. 4. Single Floor Steel Frame.

(ii) If Pr

Pc
< 0.2

Pr

2Pc
+

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0 (21)
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Table 2. Statistical properties of random variables [12].

Variable Unit Mean
Coefficient of
variation

Distribution
function

D kN/m 6.42 0.10 Normal

L kN/m 0.73 0.25
Ext. Value -
Type 1 (largest)

W kN/m 5.98 0.37
Ext. Value -
Type 1 (largest)

A cm2 Table 3 0.05 Normal

I cm4 Table 3 0.05 Normal

Zx cm3 Table 3 0.05 Normal

E MPa 199947.96 0.06 Normal

Fy MPa 273.03 0.11 Normal

where Pr: required axial strength; Pc: available axial strength (Eqs. 22 and 23,
if tension or compression); Mr: required flexural strength; Mc: available flexural
strength (Eq. 24); x: major axis bending; y: minor axis bending.

Pc,ten = AFy (22)

Pc,com = AFcr (23)

Mc = ZxFy (24)

Fcr is the critical stress given by Eq. 25 or Eq. 26:

(i) If λc ≤ 1.5
Fcr =

(
0.658λ2

c

)
Fy (25)

(ii) If λc > 1.5

Fcr =
(

0.877
λ2

c

)
Fy (26)

λc is the reduced slenderness ratio [1], calculated by Eq. 27:

λc =
KL

π

√
AFy

EIx
(27)

where K is the effective length factor and L the laterally unbraced length of the
member.

4.3 Design Variables

The variables are W-shapes, taken as discretes by GA optimizer, varying from
1 to 18 and then mapped to Table 3, whose characteristics like linear mass, area
(A), inertia (Ix) and plastic section modulus (Zx) are used in the process.
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For first and second order analyses, 3 possibilities were studied: 1- considering
all elements with the same W-shape (1 optimization variable); 2- considering
beam elements and columns elements with different W-shapes (2 optimization
variables); 3- considering beam elements with the same W-shape, but allowing
columns with different W-shapes (3 optimization variables).

Table 3. W-shapes properties of the design space.

n◦ Label Mass [kg/m] A [10−3m2] Ix [10−5m4] Zx [10−4m3]

1 W250x17.9 17.9 2.28 2.24 2.06

2 W200x19.3 19.3 2.48 1.65 1.87

3 W310x21.0 21.0 2.68 3.69 2.85

4 W250x22.3 22.3 2.85 2.87 2.62

5 W200x22.5 22.5 2.86 2.00 2.23

6 W150x22.5 22.5 2.86 1.21 1.77

7 W310x23.8 23.8 3.04 4.29 3.29

8 W150x24.0 24.0 3.06 1.34 1.92

9 W250x25.3 25.3 3.22 3.41 3.06

10 W200x26.6 26.6 3.39 2.58 2.79

11 W130x28.1 28.1 3.59 1.09 1.09

12 W310x28.3 28.3 3.59 5.41 4.05

13 W250x28.4 28.4 3.63 4.01 3.54

14 W150x29.8 29.8 3.79 1.72 2.46

15 W200x31.3 31.3 3.97 3.13 3.34

16 W250x32.7 32.7 4.19 4.91 4.26

17 W200x35.9 35.9 4.57 3.44 3.79

18 W150x37.1 37.1 4.74 2.22 3.10

4.4 Design Constraints

Besides the lateral constraints of the previous item, there is also the reliability
constraint, given by a target value, as Eq. 28. Three scenarios were proposed:
βT,1 = 2.0, βT,2 = 2.5 and βT,3 = 3.0.

c =
βT,i

βi
− 1 ≤ 0 (28)



108 L. D. B. Lecchi et al.

4.5 Objective Function

The objective function M(X), which represents the minimum mass of the struc-
ture, is given by Eq. (29):

M(X) =
n∑

i=1

mili, (29)

where n is the number of variables; mi is the linear mass for a given W-shape
(Table 3); li is the length of the bar.

4.6 Optimization Algorithm Setting

Genetic Algorithms were used to optimize the structure, with the following spe-
cific settings:

– Population size (‘PopulationSize’): 10 - 12 individuals;
– Creation function (‘CreationFcn’): ‘gacreationuniform’ (default);
– Crossover function (‘CrossoverFcn’): ‘crossoverscattered’ (default);
– Mutation function (‘MutationFcn’): ‘mutationgaussian’ (default);
– Elite individuals (‘EliteCount’): 5% of population size (default);
– Maximum number of generations (‘MaxGenerations’): 200;
– Algorithm for handling nonlinear constraints (‘NonlinearConstraintAlgo-

rithm’): ‘penalty’;
– Tolerance for objective function (‘FunctionTolerance’): 10−6;
– Tolerance for constraints (‘ConstraintTolerance’): 10−3;

4.7 Results

Case A: One Design Variable. Table 4 shows the results obtained for case
where all the elements have same section. It can be seen that for βT,3 = 3.0, the
second order analysis reaches a economy of material of 11.8%, when compared
to the first order case. Furthermore, second order case presents smaller con-
straint violations and, consequently, higher calculated reliability indices, when
both approaches use the same structural configuration.

Table 4. Case A: one design variable.

βT Analysis Mass (kg) W-shape Const. c βi

2.0 1◦ Order 345.6 W310 × 21.0 −0.318 2.933

2◦ Order 345.6 W310 × 21.0 −0.391 3.284

2.5 1◦ Order 345.6 W310 × 21.0 −0.147 2.933

2◦ Order 345.6 W310 × 21.0 −0.239 3.284

3.0 1◦ Order 391.7 W310 × 23.8 −0.192 3.713

2◦ Order 345.6 W310 × 21.0 −0.087 3.284
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Case B: Two Design Variables. Table 5 shows the results obtained for case
where beam elements and column elements have different sections. It can be
seen that for βT,3 = 3.0, the second order analysis reaches a economy of mate-
rial of 6.1%, when compared to the first order case. Furthermore, second order
case presents smaller constraint violations and, consequently, higher calculated
reliability indices, when both approaches use the same structural configuration.

Table 5. Case B: two design variables.

βT Analysis Mass (kg) W-Columns W-Beam Const. c βi

2.0 1◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.267 2.729

2◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.339 3.025

2.5 1◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.084 2.729

2◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.174 3.025

3.0 1◦ Order 337.8 W310 × 23.8 W250 × 17.9 −0.135 3.468

2◦ Order 317.3 W310 × 21.0 W250 × 17.9 −0.008 3.025

Case C: Three Design Variables. Table 6 shows the results obtained for case
where beam elements are composed of the same W-shape and columns elements
may differ in their sections. It can be observed that in the 3 scenarios, both
approaches had the same structural configuration. Furthermore, second order
case presents smaller constraint violations and, consequently, higher calculated
reliability indices.

Table 6. Case C: three design variables.

βT Analysis Mass (kg) W-Column 1 W-Beam W-Column 4 Const. c βi

2.0 1◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.238 2.626

2◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.315 2.918

2.5 1◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.048 2.626

2◦ Order 306.0 W250× 17.9 W250× 17.9 W310× 21.0 −0.143 2.918

3.0 1◦ Order 316.2 W250× 17.9 W250× 17.9 W310× 23.8 −0.104 3.348

2◦ Order 316.2 W250× 17.9 W250× 17.9 W310× 23.8 −0.180 3.657

5 Conclusions

This work presented theoretical topics and an example for the RBDO method,
using FORM and Genetic Algorithms, through a double loop approach. Despite
the simplicity of the numerical application, a considerable computational effort
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was used in the process, with the analysis time being quite dependent on the
computer’s processing power.

It was possible to notice that as far as the design variables were increased,
closer was the mass found by the first or second order analyses. However, sec-
ond order case presented smaller constraint violations and, consequently, higher
calculated reliability indices, when both approaches used the same structural
configuration.
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Pós-Graduação em Engenharia Civil, Ouro Preto (2016)

20. Melchers, R.E.: Structural Reliability Analysis and Prediction, 2nd edn. John
Wiley and Sons, New York (1999)

21. Messac, A.: Optimization in practice with MATLAB R©: for engineering students
and professionals. Cambridge University Press, New York (2015)

22. Rao, S.S.: Engineering Optimization: Theory and Practice. John Wiley & Sons,
Florida (2019)

23. Shayanfar, M., Abbasnia, R., Khodam, A.: Development of a GAbased method
for reliability-based optimization of structures with discrete and continuous design
variables using OpenSees and Tcl. Finite Elem. Anal. Des. 90, 61–73 (2014)

24. Silva, A.R.D.: Sistema computacional para análise avançada estática e dinâmica
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and Rafael-Jacinto Villanueva
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Camı́ de Vera, s/n, 46020 Valencia, Spain

caranvi1@upv.es

Abstract. In the real world, multiple dynamic biological phenomena
present an intrinsic randomness due to their nature. One of the most
common ways of modeling them is to use random differential or random
difference equations, whose parameters are considered as random vari-
ables. However, since these are complex models, independence between
these parameters is usually assumed just for simplicity, without even
having tested this hypothesis in the phenomenon under study. On the
other hand, the impossibility of solving the calibration of random mod-
els with classical deterministic optimization techniques has given rise to
new stochastic calibration techniques, such as bio-inspired algorithms.
In this paper, we present a calibration method based on the Multi-
Objective Particle Swarm Optimization (MOPSO) algorithm of a ran-
dom model with a set of random parameters without assuming inde-
pendence between them. The calibration goal is to find the multivariate
probability distribution of the random parameters vector that best cap-
tures the uncertainty of the data by minimizing two fitness functions.
To show the value of the method, we will apply it to a simple first-order
difference model for the evolution of the growth of breast cancer.

Keywords: random model · calibration · multivariate · Particle
Swarm Optimization

1 Introduction

The use of differential equations has allowed us to better understand and pre-
dict physical phenomena. Nowadays, with the advances in computer science,
even unknown solutions to complex equations can be estimated. However, it is
important to note that when we build a model to describe real-life phenomena we
are not able to capture this behavior without error. When building a model one
often omits some details and makes assumptions about the model that could be
wrong. Additionally, if we want our modeling to imitate real-life processes, the
use of data is necessary. This data, which is often scarce, contains measurement
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errors caused both by instrumentation and by human errors. Hence, although
traditional deterministic models have been well studied and documented, the
introduction of uncertainty in models appears to be necessary to account for the
errors and better understand the world around us. This uncertainty can be intro-
duced by random models, which assume that the model parameters are random
variables instead of deterministic values, and where the outcome is a stochastic
process with a time-varying probability density function: the 1-PDF. With this
function, the uncertainty of the random model is quantified, and it is possible
to estimate statistics of interest such as the expected value, variance, confidence
intervals, etc.

However, the introduction of uncertainty into models increases its difficulty.
To simplify calculations the parameters are assumed to be independent in most
models with uncertainty. Nevertheless, the testing of the independence assump-
tion is often omitted although in many cases it can either not be proven. A good
example of this is the Bertalanffy model which is used to model the weight of
a fish at a time t. This model assumes that the change in weight depends on
energy losses and energy acquisition [4]. If this model is considered as an initial
valued problem, then another parameter is the initial weight of the fish. In this
example it is natural to consider the parameters as a vector of random variables
with an underlying correlation structure. This was done and calibrated using
real data, giving an estimate of the covariance matrix which confirms that the
parameters are indeed correlated [8].

If, more generally, independence between parameters is not assumed, then the
random vector of model parameters follows a multivariate probability distribu-
tion, characterized by its joint probability density function (or joint PDF). How-
ever, this approach presents several challenges, such as the appropriate choice
of the joint PDF or the calibration of its parameters from the data, i.e., to find
those parameters of the joint PDF of the model parameter vector whose samples
generate simulations well fitted to the real data. Faced with this fact, the classical
deterministic optimization algorithms, unable to calibrate random models, have
given way to a new generation of stochastic algorithms, such as bio-inspired algo-
rithms [10]. However, despite the possibilities offered by this field, few researches
are working without the assumption of independence in their models.

In this paper, we propose a calibration method of its parameters based on
the bio-inspired Multi-Objective Particle Swarm Optimization (MOPSO) algo-
rithm [3] oriented to random models with multivariate distributions, without
assuming independence between their parameters. The calibration goal is to
find the multivariate probability distribution of the random parameters vector
that best captures the uncertainty of the data by minimizing several fitness func-
tions. In Sect. 2, we formally expose the proposed a calibration method based on
MOPSO algorithm for a general random model. In Sect. 3, we present a practi-
cal application case on a simple first-order difference equation which describes
a tumor growth, and the obtained results. Finally, in Sect. 4, we present several
conclusions.
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2 Calibration Method

Suppose we have a random dynamic model MΘ(t), t > 0 with a random vec-
tor of parameters Θ = (θ1, . . . , θk) ∼ D(p1, . . . , pm), where D(p1, . . . , pm) is a
multivariate distribution with m parameters. If the explicit expression of D is
known, we only need to estimate the parameters (p1, . . . , pm) to fully describe
the behavior of Θ and, consequently, the model MΘ(t).

As this is a computational calibration method, the model evaluation is carried
out for a discrete and finite set of time instants T = {t0, t1, . . . , te}. Thus, let
us denote the data sequence for the model calibration as Xdata = {Xdata

t :
t ∈ T}, and a set of N simulations of the model MΘ(t) as X = {X

(n)
t : t ∈

T ; n = 1, . . . , N}. We define the goal of the calibration method as finding the
parameters (p1, . . . , pm) for a distribution D(p1, . . . , pm) that generate a set of
model simulations X best approaching Xdata.

To quantify the goodness of fit between data and model simulations, we define
two objective functions:

Standard deviation function:

Fσ(X) =
∑

t∈T

√√√√ 1
N

N∑

n=1

(
X

(n)
t − X̄t

)2

, (1)

Inside-outside function:

Fio

(
X,Xdata

)
=

∑

t∈T

d
(
Xdata

t ,
[
Qα/2(Xt), Q1−α/2(Xt)

])
, (2)

where

X̄t =
1
N

N∑

n=1

X
(n)
t , (3)

Xt =
{

X
(n)
t : n = 1, . . . , N

}
, (4)

d(x, [q,Q]) =

{
0 if x ∈ [q,Q],
min{|x − q|, |x − Q|} if x �∈ [q,Q],

(5)

and where Qα(Xt) is the α-order quantile function for a vector Xt.
If we only calibrate with the inside-outside function, the algorithm will tend

to generate distributions D(p1, . . . , pm) with a high variance in order to widen its
confidence interval (i.e. generate a larger space between the quantiles) and thus
capture all the points of the Xdata series within the confidence interval. There-
fore we need to introduce a second objective function, the standard deviation
function, in order to penalize distributions with high variances.

The behavior of both functions is antagonistic (orthogonal), since when we
try to minimize the inside-outside function, we will necessarily widen the variabil-
ity between simulations to obtain a wider confidence interval and, consequently,
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the standard deviation function will be larger. On the contrary, if we try to min-
imize the standard deviation function, i.e. the variability between simulations,
the confidence interval between simulations will be narrower, thus leaving more
points of the data series outside the interval and increasing the inside-outside
function [11].

Therefore, we are faced with a multi-objective problem, where both objective
functions, Fσ and Fio, are minimized simultaneously, and where the result of the
optimization problem is not a single solution, but a set P ∗ = {(p1, . . . , pm)s :
s = 1, . . . , S} of S Pareto-optimal solutions, whose solutions are not dominated
by each other [1].

The parameter search by the calibration algorithm will be carried out in the
domain

I = Ip1 × · · · × Ipm
,

where Ipi
= [api

, bpi
] is the interval where each parameter pi is defined. The

domain can also be restricted to certain regions to speed up the search for good
solutions.

To calibrate the model MΘ with two objective functions we use the Multi-
Objective Particle Swarm Optimization (MOPSO) algorithm. In this algorithm,
a solution or “particle” represents a vector (p1, . . . , pm). The search process goes
as follows:

1. L particles each containing Pl = (p1, . . . , pn) for l = 1, . . . , L are randomly
sampled from our parameter space Im.

2. Given Xdata for each particle Pl:
(a) N vectors Θ are sampled from D(Pl) to simulate X set.
(b) Fio(X,Xdata) and Fσ(X) are computed. Pl is then classified as local best,

global best, or other. If l = 0 then it is considered a global best. Otherwise,
Pl is considered a local best if it dominates in the Pareto sense Pl−1 and
a global best if it dominates P0, . . . , Pl−1.

(c) If Pl is a local or global best, Pl+1 is generated in one of two ways:
i. Sample from Im (10% probability).
ii. Otherwise (with 90% probability), update Pl by adding a velocity

term and then performing a mutation operation (with 10% probabil-
ity) as done in [7]

3. Steps (a)-(c) are reiterated up to a maximum number of iterations Mmax

large enough to achieve convergence. The global Pareto-optimal solutions are
returned.

3 Application: The Tumor Growth Case

3.1 Data

Data is extremely important to argue that a model we build replicates real
physical phenomena. The data we study in this work is a time series of the
size of tumours in mice. Although to better understand the dynamics of cancer
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in humans, data of human cancers will be ideal, it is not something readily
available because many tumors are removed as soon as detected and of the ethical
concerns of doing such a study. This data is, nevertheless, is an estimation of
the overall behaviour of tumors through time. Experiments in mice have been
of great impact for the understanding of illnesses and medication development
in areas such as immunology and oncology [6,9].

In the data used, the rumors of breast cancer in mice was measured in mm3

using a technique named xenograft, where human tissue was injected into mice.
This technique is described in [5]. Our data is of the following form:

Xdata = {Xdata
t , t ∈ T}

where T = {t0, t1, . . . , tm} is a series of organized time points and each Xt

represents the tumor size at time t this data is shown in Table 1 and Fig. 1.

Table 1. Data series table [5].

Time t Tumor size Xt in (mm3)

0 45.74

16 194.257

30 675.14

33 936.53

43 1941.7

48 2558.6
Fig. 1. Data series graph.

3.2 Model

Among the many dynamic models to study the tumour growth [2], the simplest
ones are given by exponential and logistic equations. For this problem, according
to the data, we choose to build the simplest model that describes the early stages
of tumor growth, i.e., a first order linear model of the following form:

Xt+1 = Xt(1 + K), X0,K ∈ R+, t ∈ N, (6)

where X0 is the size of the tumor at time t = 0 and K is the tumour growth
rate. Given this form of the model, the random sequence {X1,X2, . . . } is built
recursively. In this problem, we also assume that Θ = (K,X0) ∈ R

2
+ is a random

vector, so that Xt,∀t will be a random variable.
As the random vector is restricted to R

2
+ domain, let Θ = (K,X0) ∼

Log-normal(µ,Σ) where
µ = (μK , μX0)

is the mean vector, and Σ is the covariance matrix, with the form

Σ =
(

σ2
K ρσKσX0

ρσKσX0 σ2
X0

)
.
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A log-normal distribution has been chosen because it is a way to restrict a
normal distribution to R+ wihout adding more parameters to estimate. The joint
probability density function (joint PDF) of the bivariate log-normal distribution
is given by

fΘ(θ) = fK,X0(k, x0) =
1

2πkx0

√|Σ|e
− 1

2 (log (k,x0)−µ)T Σ(log (k,x0)−µ) (7)

Hence to fully describe our model MΘ defined in Equation (6), we need to
estimate (μK , μX0 , σK , σX0 , ρ) parameters of the log-normal distribution. To do
so we apply to the problem the calibration scheme described in Sect. 2.

3.3 Calibration and Results

In this problem, the objective of the calibration is to find a set of Pareto-
optimal solutions P ∗ = {Ps = (μK , μX0 , σK , σX0 , ρ)s : s = 1, . . . , S}. To bound
the search domain of the PDF parameters, a nonlinear deterministic fit of the
model to the data has been carried out, obtaining that

θ∗ = (k, x0)∗ = (0.0739, 85.568)

is the model parameters vector that minimizes the Root Mean Square Error
(RMSE) of the difference between the model output and the data. We have also
checked, by evaluating different values of k and x0, that for k ∈ [0.0682, 0.0785]
and for x0 ∈ [66.446, 104.690], the RMSE deviates no more than 5% with respect
to the minimum (see [11] for a more complete explanation). With this analysis,
it also follows that the parameter k is more sensitive than x0. Knowing that each
bivariate log-normal distribution component satisfies that

E[Θi] = eμi+
σ2

i
2 ; μi = logE[Θi] − σ2

i

2
,

we establish that

– σK ∈ IσK
=

[
10−5, 10−2

]
and σX0 ∈ IσX0

=
[
10−5, 0.5

]
(a sufficiently wide

interval for both standard deviations).

– μK ∈ IμK
=

[
log 0.0682 − (10−2)2

2 , log 0.0785 − (10−5)2
2

]
= [−2.686,−2.544],

and μX0 ∈ IμX0
=

[
log 66.446 − 0.52

2 , log 104.690 − (10−5)2
2

]
= [4.071, 4.651].

These intervals have been constructed by taking the k and x0 values from the
deterministic analysis of the model, and combining them with the deviation
values that generate the wider search intervals.

– ρ ∈ [−1, 1], as we know that correlation coefficient is always between [−1, 1].

Thus, the search space is defined as

I = IμK
× IμX0

× IσK
× IσX0

× Iρ

= [−2.686,−2.544] × [4.071, 4.651] × [
10−5, 10−2

] × [
10−5, 0.5

] × [−1, 1].
(8)
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For the execution of the calibration method, a total of L = 60 particles and
Mmax = 10000 maximum iterations were used, and the number of simulations
of the model for each particle was N = 1000. Additionally, to ensure the replica-
bility of the results, the random numbers generation (for simulations) has been
carried out with a different seed for each MOPSO particle. The programming of
the algorithm has been carried out in Python v.3.11 [11,12].

The Pareto front obtained in the calibration is shown in Table 2 and Fig. 2a.
As can be seen, S = 13 Pareto-optimal solutions (global bests) have been found.
It should be noted that the optimal values of means μ of the Pareto front are
very similar (due to their restricted search interval), and that the optimal order
of the deviations is mainly around 10−3 (for σK) and 10−2 (for σX0), meanwhile
the correlation coefficients are highly variable between −1 and 1.

Table 2. Pareto front solutions obtained by the MOPSO algorithm.

Solution Particle (μK , μX0 , σK , σX0 , ρ) Objective functions (Fio, Fσ)

1 (−2.647, 4.581, 0.00757, 0.0255, −0.519) (186.994, 153.679)

2 (−2.574, 4.307, 0.00575, 0.0592, 0.444) (39.899, 422.790)

3 (−2.592, 4.352, 0.00303, 0.00525, −0.582) (390.670, 42.442)

4 (−2.603, 4.454, 0.00821, 0.0181, −0.912) (247.070, 68.855)

5 (−2.577, 4.152, 0.00679, 0.163, −0.812) (0.000, 761.355)

6 (−2.600, 4.226, 0.00300, 0.00646, −0.897) (1167.891, 21.987)

7 (−2.582, 4.316, 0.00185, 0.0530, 0.920) (42.913, 368.820)

8 (−2.591, 4.275, 0.00671, 0.0991, 0.0131) (13.378, 567.747)

9 (−2.580, 4.277, 0.000488, 0.0921, 0.890) (15.034, 540.836)

10 (−2.558, 4.286, 0.00117,0.0734, −0.290) (28.276,460.505)

11 (−2.607, 4.372, 0.00424, 0.0754, −0.559) (42.691, 406.310)

12 (−2.590, 4.412, 0.00453, 0.0268, −0.333) (96.463, 167.512)

13 (−2.569, 4.224, 0.00625, 0.102, −0.0636) (9.356, 592.523)

Often the solution that gives an equilibrium between both objective func-
tions is chosen but in this work solution number 10 has been chosen, prioritizing
slightly the inside-outside function over the variance one. With the chosen solu-
tion, the log-normal joint PDF of the model parameters Θ = (K,X0) has been
defined and represented in Fig. 2b, and N pairs of parameters have been sam-
pled from it to simulate a set X of N simulations. From these simulations, it is
possible to estimate the expected value as

X̄ =
{
X̄t : t ∈ T

}
,

where X̄t is the average of the simulations values at time t defined in Equation
(3), and the 95% confidence interval as

CI95% = {[Q0.025(Xt), Q0.975(Xt)] : t ∈ T},

where Xt is the simulations values vector at time t defined in Equation (4) and
Qα(.) is the α-order quantile function. The results of the probabilistic model
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fitting, shown in Fig. 2c, show that the random model, without assuming inde-
pendence between its parameters, correctly captures the uncertainty of the data
within its 95% confidence interval.

(a) Pareto front solutions obtained by the
MOPSO algorithm.

(b) Best joint PDF. (c) Best probabilistic model fitting

Fig. 2. .

4 Conclusions

In this work we have proposed and successfully applied a method of calibration
of a random model - in our case, a tumor growth first-order difference equation -
without assuming the hypothesis of independence between its random vector of
parameters Θ = (K,X0) ∼ Log-normal(µ,Σ). Since from the deterministic cal-
ibration of the model we have obtained information on the parameters expected
values E[K] and E[X0], related to the vector of means µ = (μK , μX0), the chal-
lenge of the calibration has been to determine the width (in both dimensions) of
the joint PDF, determined by the deviations σK and σX0 , and the correlation
coefficient ρ, which determine the Σ matrix.
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Given a wide search margin for deviations, the results have shown that the
Pareto-optimal deviation values should be on the order of 10−3 for K and 10−2

for X0. Such low deviation values suggest that the model is particularly sensitive
to variations in its parameters, as the model is of the exponential type. However,
the correlation coefficient, which is highly variable in the Pareto front solutions
(given deviations within the same order), suggests that there is no preferred
direction of variances in the distribution that generates better simulations than
others. In other words, simulations with correlation coefficients very high or very
close to 0 yield good solutions (for the same order in the values of the deviations,
i.e., for similar distribution widths), so that the correlation coefficient would not
be a determining parameter in the shape of the distribution. In our specific
problem, independence between K and X0 parameters is a hypothesis that can
be assumed or not without consequences in the results: in both cases, we reach
good solutions.

The main limitation of the method is that the objective functions are oriented
to the data and simulations of the random model, but not to the shape of the
joint PDF. It could be the case that, in other random models, the optimization
algorithm generates Pareto-optimal solutions (distributions) where its density
is concentrated around parameters’ regions with low error, but omitting other
good parameters’ regions. In view of this, a possible improvement would be
the introduction of a criterion of preference for wider distributions, either as a
selection criterion for Pareto front solutions or as a new objective function for
calibration. Another limitation is the lack of more time series that would allow
a more robust statistical analysis, although since this is a tumor growth model
for a specific patient, only a single record is available.

With all this, we believe that our proposal takes a step forward in the tech-
nique of stochastic fitting of random models without losing its generality by
making strong assumptions such as the parameters independence.
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Abstract. Additive manufacturing is making it possible to increase the
complexity of designed mechanical structures. However, the variability
inherent to this manufacturing process can influence significantly the
performance of structural elements, specially in phononic crystals and
metamaterials since their working principles relies on the repetition of
identical cells with a dedicated designed geometry. In this work, first,
a design of experiments approach is applied to a determine a sampling
strategy in order to characterize an additive manufacturing machine.
Then, mechanical properties of the samples are inferred using material
properties measured with an ultrasound transducer. The material density
was measured using the weight of the samples, both dry and immersed in
water, using the buoyancy force expression. It is known that the elastic
modulus measured via ultrasound is biased. Therefore, the distributions
inferred using ultrasound measurements were updated using experimen-
tal forced responses of sample rods and dynamic models via the Spectral
Element Model. Updated values are used in statistical regression model-
ing to infer the stochastic field over print are of the 3D printer. The pre-
sented work is a first step in the longer term research goal: to show how to
model the overall variability of a given additive manufacturing process,
which is usually obtained in the statistical process control, and explain
how to use it in the design of robust phononic crystal and metamaterial
designs. The printing direction presented a statistically significant rela-
tionship with the elastic modulus and with the mass density, while only
the printing direction presented a statistically significant relationship for
the shear modulus.

Keywords: Uncertainty quantification · Statistical regression ·
Statistical inference · Kernel smoother

1 Introduction

Geometrically complex designs, which include metamaterials and phononic crys-
tals, can be printed using additive manufacturing [14]. However, the variability of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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such manufacturing process can influence the printed structures substantively,
specially the mechanical properties [16] are more impacted than what occurs
typically in other manufacturing processes [15,17] and, thus, statistical process
control can be a tool to assure that the manufacturing process will coincide
with the design [18]. The inferred variability can be propagated through a deter-
ministic model to obtain the stochastic result, and it can be used in a robust
optimization approach as showed in [2].

The objective of this research is to show how statistical modeling can be
applied to the data obtained from statistical process control to estimate stochas-
tic fields that represent the variability of the mechanical properties of 3D printed
parts. This estimation can be, for instance, combined with a robust optimization
for designing phononic crystals and metamaterials that are robust against these
types of variability.

2 Design of Experiments

In the current research, we assumed variability in the mass density (ρ), Young’s
modulus (E), and shear modulus (G). These variables were assumed as depen-
dent variables, which could be tested if they are statistically related to the inde-
pendent variables: thickness (T ), printing position (P = {Px, Py, Pz}), which
is the position the parts are printed inside the 3D printer, printing direction
(D = {Dx,Dy,Dz}). The measurements were taken from samples defined as
parallelepipeds. In addition, samples were taking over the weeks to see if the
machine settings would influence the mechanical properties. For this paper a
3D Printer of the type “Prusa MK3S” with a print volume of approximately
11 dm3 and making use of the fused deposition modeling technique is studied. In
addition, by taking samples over time, the assumption of the variability being
the same over the time due to substantive changes in the used material and the
setting were checked through statistical test.

Before the measurements, we assumed each observation for E follows a nor-
mal distribution with a mean of 2.1 and standard deviation of 0.5, as found by [3]
in a similar manufacturing process, and consequently, the mean of samples fol-
lows a t-distribution. Assuming the α value was defined as 5%, and the type II
error for 11 statistical degrees-of-freedom for a distribution XA with mean X̄A

1.5 distant from X̄ is lower than 0.001%, and assuming that no more than four
variables are going to be tested at the same time, the sample size of 15 is defined.

Each week, for 3 weeks, 15 samples were printed in one print, whose positions
were defined by dividing the batch into 216 (6 in x direction, 6 in y direction, and
6 in z direction) smaller boxes of 30× 30× 30 mm. Then, the printing position of
each sample was defined by taking samples without replacement from a discrete
uniform distribution U(1, 6) for x, y, and z directions, defining, thus, the vector
P . Hence, rectangular parallelepipeds with dimensions of 1.5d1x1.5xd1xd1 mm,
were defined, where the term 1.5d1 was sampled from the continuous uniform
distribution U(5, 25). Thus, the thickness can be defined as T = d1. The variable
time was also included in the analysis as week number (0, 1, 2).
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For each sample, the values of E and G were observed using a Olympus 38DL
Plus acquisition system with the M106 and V152 longitudinal and shear wave
contact ultrasound transducer of 2.25MHz. The mass density was estimated
using the highly precise Acculab Atilon scale, where the samples’ weights were
measured dry and submerged in water. Once the estimations of E, G, and ρ are
done, their statistical relationships with the independent variables can be made
using statistical regression modeling.

3 Statistical Regression Models

For each dependent random variable, the vector of values y can be defined and
modeled using the matrix of observations of independent variables weighted by
the parameter vector β as presented in Eq. (1) [10].

y = Xβ + ε. (1)

Assuming that each element on vector ε follows a normal distribution with
zero mean and variance σ2, and that all these distributions are independent of
each other, i.e., ε ∼ N(0, σ2INiv

), where INiv
is the identity matrix. Then, the

maximum likelihood estimator to estimate β and σ2 are respectively given by [9]

β̂ = (X ′X)−1X ′y, (2a)

σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

N
. (2b)

After that, a statistical test can be applied to test the hypothesis of βj being
statistically significant, i.e., βj �= 0 using a significance level of 5% [9].

The relationships between the dependent variables E, G, and ρ, with the inde-
pendent variables T , P , and D were hence verified. Variables D were included
as dummy variables (δ(Dc) with c = {x, y, z}) [11], where 0 indicates the absence
and 1 presence of these variables. All the combinations of the independent vari-
ables at the power of one, two, and three were used in the analyses. The Akaike
information criterion [7,8] was in the selection of the models that presented
statistically significant parameters and presented valid assumptions.

The Breusch-Pagan test [4] was used to check if the variance is the same for
all the terms in the vector ε, the Shapiro-Wilk test [5] was used to verify the
normality, and the Durbin-Watson [6] test was used to verify the assumption of
independency on the residuals.

Using the proposed methodology, the stochastic regression models in Eq. (3)
were obtained.

Em ∼ N(2.9740 + 0.34445 × (δ(Px) + δ(Py)), 0.4035), (3a)

Gm ∼ N(1.1247 + 0.1200 × (δ(Px) + δ(Py)), 0.2718), (3b)

ρm ∼ N(1.1956 + 0.0036 × (δ(Px) + δ(Py)), 0.0974). (3c)

As can be observed by the estimated equations, the parts printed in the z
direction have significantly lower Young’s modulus, shear modulus, and mass
density than the parts printed in x and y directions.
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Fig. 1. Illustration of two simulated field of E3d (a), G3d (b), and ρ3d (c) with 1,000
samples each. The straight line is the field mean, the dashed lines are the intervals that
contains one, two, and three standard deviations.

3.1 Kernel Smoother

Using the models in Eq. (3), discrete samples of E, G, and ρ in the three-
dimensional space can be defined as the vectors of length n E3d, G3d, and ρ3d.
When premultiplying one of those vectors by the Kernel matrix K, the sampled
vector can be made smoother, whose r-th row and s-th column element is given
by [1]
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Fig. 2. Two raw (red dots) then smoothed (blue lines) samples of the stochastic fields
of Young’s modulus (a), shear modulus (b), and mass density (c). (Color figure online)

Krs =
fK

(
d3d,r−d3d,s

ζ

)

∑n
s=1 fK

(
d3d,r−d3d,s

ζ

) (4)
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Fig. 3. Illustration of two smoothed samples of E3d (a), G3d (b), and ρ3d (c) with
n = 100.

where the function fK(d) can be an exponential function of the spatial distance
(d) between d3d,r and d3d,s with correlation length ζ [12,13].

The 1,000 samples of the spatial E, G, and ρ sampled from Eq. (3) and
smoothed using the Kernel smoother, whose elements are given by Eq. (4), are
illustrated in Fig. 1.

Two samples of the smoothed E3d, G3d, and ρ3d are illustrated in Fig. 2. For
large enough samples, after convergence of the Monte Carlo method, the three-
dimensional spatial field of E, G, and ρ can be simulated. Figure 3 illustrates two
samples of the smoothed field of the mechanical properties on a specific frame
structure.

4 Final Remarks

In the current research, we have used some data, simulating the data from a
statistical process control from a manufacturing process, and we have shown how



128 L. H. M. S. Ribeiro et al.

to infer and estimate the variability via stochastic field. The estimated stochastic
field can be used to check if the manufacturing process is under control, and it can
be used in robust optimization via combining engineering design and statistical
process control. In the current research, we found a significant lower Young’s
modulus, shear modulus, and mass density for the parts printed in z direction
than the ones printed in x and y directions.
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Abstract. To present ideas, a model problem consisting of a mov-
ing mass-belt system with random friction showing the stick-slip phe-
nomenon is treated. The dynamics is simulated. The objective of this
work is to assess the behaviour of the computation cost in terms of the
run-time, which is random, and its relationship with some of the output
variables that define the dynamical behaviour of the mechanical sys-
tem, such as the duration of the phases present in the simulation, sticks
and slips, and the number of phases that occur in each realisation. All
this is analysed from a stochastic perspective. However, the probabilistic
model to analyse the distribution of a three-dimensional random vector,
formed by the run-time, duration and number, belongs to R4, thus it
is difficult to characterise and visualise. Hence, in this study, the use of
random variable transformations to produce new independent variables
is explored as an attempt to reduce the number of dimensions that need
to be considered. Also, the change of variables is used to assess the link
between the behaviour of the results and the chosen integration method.
It is shown that the predictions obtained with the Monte Carlo method
combined with a Multiple Scales analytical approximation are influenced
by the number of transition phases rather than their durations.

Keywords: computational costs · stochastic run-time · multiple
Scales method

1 Introduction

The Monte Carlo (MC) method is an important tool to deal with stochastic
problems, as it can be used to construct statistical models for random object
transformations [1,2]. The method deals with the stochastic problem by parti-
tioning it into many deterministic ones where, in each, a realisation of the random
input is used. First, a random sample of the input is generated. After collecting a
sufficiently large number of realisations, the next step involves transforming each
realisation of the sample according to some mathematical transformation. The
method is based on the law of large numbers, hence a large amount of realisations
is required [3] to assure convergence of the results. For the current application,
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the transformation is given by the equations of motion of the oscillator described
in [4]. A sample of the output is obtained by collecting the results obtained in
each of the realisations. Thus, these output parameters are also random vari-
ables that need to be stored and that, in the end, will be used to construct the
statistical model.

Even though each realisation is deterministic in nature, neither the inputs,
the outputs, nor the computational costs are. The uncertainty associated with
the inputs is propagated to the output parameters, as shown in [5,6]. Moreover,
the elevated number of calculations required to assure an accurate statistical
model makes the MC method a big data problem, especially when the transfor-
mation is given by a differential equation that is solved by numerical integration,
as shown in [7]. Taking into account that the computational resources are lim-
ited, the computational costs and, particularly, the total run-time can be of the
utmost importance.

In this paper, the run-time associated with the simulation of a random oscil-
lator is studied from a stochastic perspective. This is achieved by comparing
the results of the MC method combined with a Runge-Kutta numerical inte-
gration scheme, and the MC combined with an analytical approximation based
on the multiple scales method. Up to the authors’ knowledge, this study is a
novelty given that most papers concerning stochastic simulations ignore the fact
that the run-times are also of stochastic nature, [8,9]. Eventually, the run-times
play a role in determining whether a stochastic analysis is feasible or not, and
their behaviour could have an impact on the efficient assignment of the available
resources.

In this paper, the influence of the integration method in the run-times asso-
ciated with the Monte Carlo simulations is explored. For this task, the results
considering three different integration strategies are compared: an analytical app-
roach based on the Multiple Scales method, a Runge-Kutta numerical scheme
with variable time-step, and a Runge-Kutta approach with fixed time-step. The
idea of comparing the different methods is also assessing how the features of
each integration technique affect the stochastic behaviour of the run-times.

2 The Mass-Belt Model

As it was stated, the system that is used for the analysis is described in details [4].
A brief description of the system, without providing all the details of the formu-
lation involved, is given herein to grasp the basics properties of the system that
will be used.

The dynamical problem is that of a mass-spring-damper that moves over a
belt is analysed. A sketch of the system is given in Fig. 1, along with a sketch
depicting the general characteristics of the friction model that is use. For the
present application, the belt in contact with the mass-spring-damper system
moves at a constant speed. The equation that described the dynamics of the
system in terms of y, the position of the mass, is given by

mÿ(t) + γ ẏ(t) + k y(t) = fat , (1)
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Fig. 1. Mass-spring-damper system with dry friction.

where m, k and γ are the mass, the spring constant, and the damping coefficient.
The friction force is indicated as fat in that equation and its behaviour is depicted
in Fig. 2.

-2 -1 0 1 2

-1

0

1

Fig. 2. Friction force model with a = 0.1 and fd = 0.5.

In [4] a description of the general behaviour of the system is also presented. It
was shown that the dynamics present stick-slip oscillations. Thus, the behaviour
can be mathematically expressed in terms of a piece-wise function where stick-
slip phases alternate. The characteristics of a stick-phase, which in this problem
imply that the mass moves at a constant speed over some period, assure the
existence of an exact solution for those periods. However, during the slip phases,
due to the non-linear behaviour of the system, an exact solution can no longer
be obtained. In that context, an analytical approximation was developed using
the multiple scales method. In the end, [4] provides an approximation to the
solution of the problem given by a piece-wise function that combines an exact
solution for the slip phases with the multiple-scales analytical approximation for
the slip ones.

Another alternative to find an approximation to the solution of this problem
is to use a numerical integration scheme, such as the Runge-Kutta method. In
this type of approximation the solution is advanced in time by taking small time-
steps. However, this characteristic usually makes the method more demanding
than the analytical approach from [4].

The idea of this paper is to quantify the computational cost of each approach
when a stochastic problem is considered. For that purpose, the Monte Carlo
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method is used (see [2] for a detailed description of the method). In this paper,
the dynamic friction force is modelled as a random variable given by a uniform
distribution with support [0.8, 1.8]. The variability in the friction influences the
output variables of interest, such as the transition instants, the phase duration,
the number of sticks, the position of the system, and the computational cost.

3 Results and Discussions

The stochastic problem is tackled by combining the Monte Carlo method with
three different approximation strategies to integrate the equation of motion.
These strategies are:

– AN: Monte Carlo combined with a Multiple Scale method analytical approx-
imation;

– NV: Monte Carlo combined with a numerical integration scheme based on
the Runge-Kutta method of 4th and 5th order. This case uses an automatic
variable time-stepping scheme;

– NF: Monte Carlo combined with a numerical integration scheme based on the
Runge-Kutta method of 4th order with fixed time step.

The numerical and analytical approximations were simulated with the param-
eters shown in Tab. 1. The simulated time is [0 , 2000 ]s. A total number of 105

realisations were used for the approaches AN and NV, and due to time con-
straints, 4 · 104 realisations were used for the NF approach.

Table 1. Parameters used in the simulations.

Parameter Value Unit Parameter Value Unit

m 1 Kg k 0.1 N/m

v −2 m/s y(0) 1 m

γ 1 (N s)/m ẏ(0) 4 m/s

a 0.1 (Kg s)/(m2) fe 2 N

ε 0.0001 - g 9.81 m/s2

The normalised histograms associated with the run-times of each approach
are depicted in Fig. 3 for a) AN; b) NV and c) NF. By direct inspection of the
results, it is observed that the support is orders of magnitude different. This is
supported by the statistics associated with these histograms, which are presented
in Table 2. Differences in the shape and the statistics of these distributions are
found. NV took, in mean, ≈ 10 times longer to simulate than AN, and NF took ≈
300 times longer than AN. These differences are exclusively due to characteristics
intrinsic to each of the approximation strategies, given that the same input
sample for the friction coefficient was used for the realisations in the three cases.
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Fig. 3. Normalised histograms for the run-times obtained with MC combined with: a)
AN, b) NV e c) NF.

Table 2. Some statistics for the variables RAN , RNV e RNF .

Approach Mean value Standard deviation 3rd order moment 4th order moment

AN 5.51 s 0.43 s 0.16 3.62

NV 65.80 s 6.02 s −1.08 7.69

NF 1, 64 · 103 s 54, 21 s 23, 01 718, 53

To understand why those differences occurred, in what follows the run-times
and their relations with other characteristic variables in a stick-slip problem are
further analysed. To do this, the run-times are discriminated into two groups: the
ones associated with the stick phases and the ones linked with the slip phases.

3.1 Further Understanding the Behaviour of the Run-Times
with An

The run-times associated with the AN approach are depicted in Fig. 4, where a)
shows the time taken to complete the integration of the stick phases; b) shows
the time taken to complete the integration of the slip phases; and c) the total
run-time which is the sum of the two previous.

When analysing the support, it is observed that the run-time associated with
the stick phases is almost negligible when compared to those of the stick phases.
In fact, the stick phases are calculated ≈ 1000 times faster than the slip ones.
The reason for this difference lies in the integration strategy itself. For instance,
the stick phases are governed by a simple equation (see [4] for details), and they
correspond to a motion with constant speed. An exact solution for this phase
is easy to obtain, as well as the time instant where the phase ends, which can
be calculated in a straightforward manner from the same equation by isolating
t. In contrast, with the slip phases the equation of motion is approximated
using a Multiple Scales expansion where the initial parameters of the piece-
wise approximation need to be calculated. This process now requires finding the
roots of a system of non-linear system of equations, as indicated in [10], at the
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beginning of each phase. In addition, finding the transition instant where a phase
ends also requires solving the roots of a non-linear equation. Given that these
manipulations are more demanding in terms of computation costs, it is expected
that they have an impact on the differences in the run-time between the stick
and the slip phases.

Fig. 4. Normalised histograms of the run-times for a) the stick phases; b) the slip
phases; and c) the total run-time. All correspond to the simulation case AN.

To further understand the behaviour of these run-times, in what follows the
random vectors [Rstick

AN ,Dstick], [Rstick
AN , Nstick] and [Rslip

AN ,Dslip], [Rslip
AN , Nslip]

are analysed. For this an analysis, a transformation of random variables will
be used. The justification for this transformation comes from observing the
behaviours depicted in Fig. 5. In the figure, a superior view of the joint histogram
of some of these random vectors, and the height of the histogram is represented
with a colourmap. On top of these graphs, linear regressions represented in solid
black lines were overlayed.

When observing the behaviour of the data of these histograms with respect
to the regression line, some tendencies are observed. For instance, the histograms
associated with [Rstick

AN , Nstick] and [Rslip
AN , Nslip] tend to follow the direction of

the regression line, a behaviour which is not observed with either [Rstick
AN ,Dstick]

nor [Rslip
AN ,Dslip]. This tendency leads to formulating the hypothesis that, by

considering a transformation of variables, that is, considering a different frame
of reference to evaluate the responses, more information about the dependency
among these random vectors can be stated. In fact, it is sought to evaluate
if, for a given linear transformation, the new variables behave as independent
stochastic variables.

To assess the previous hypothesis, the following general transformation rule
given by π1 is considered.

π1 :

⎧
⎪⎨

⎪⎩

r2 = r − r̃ = r − α2n − β2

n2 = n

d2 = d

(2)
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Fig. 5. Superior view of the joint histograms of the random vectors associated with
the An approach: a) rstickAN e nstick; b) rstickAN e dstick; c) rslipAN e nslip; e d) rslipAN e nslip.

where α2 and β2 are the parameters associated to the regression, r2 is a new
transformed variable, r is the run-time (either of the stick or the slip phase), n
is the number of phases and d their duration.

In the present study, the following two expressions for the regressions in the
form of r̃ = α2n + β are used

r̃stickAN = 5, 2 · 10−6 nstick + 0.21 · 10−4 (3)

and
r̃slipAN = 5, 9 · 10−2 nslip + 0.071. (4)

The following results are obtained in the transformed space. Figure 7 depicts
the results for the transformed vectors [R2

stick
AN ,D2

stick], [R2
stick
AN , N2

stick] and
[R2

slip
AN ,D2

slip], [R2
slip
AN , N2

slip], obtained with π1 and (3).
The graph shows very interesting results. To the left, in a) and c), the joint

normalised histograms obtained with the transformed variables in the new coor-
dinate system are depicted. To the right, in b) and d), the products of the
marginals are shown. It is observed that in the new variable space, the resulting
vector [R2

stick
AN , N2

stick] is independent in the stochastic sense. But a new and
interesting result was found: with this transformation also [R2

stick
AN ,D2

stick] is
independent.
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An analogue observation can be found when analysing [R2
slip
AN , N2

slip] and
[R2

slip
AN , D2

slip], whose joint histograms are depicted in Fig. 6 a) and c), and the
histogram associated with the product of the marginals in b) and d). The results
in this graph are obtained using π1 and (4).

Fig. 6. A superior view of the histograms of the random vectors associated with slip
phases in the AN approach is depicted for figures a) and c), while a representation
constructed using the product of the marginals is shown in b) and d).

An interesting and unexpected result is found with the behaviours of [R2
stick
AN ,

D2
stick] and [R2

slip
AN , D2

slip], which now are independent from a stochastic per-
spective. Although it is not explored herein, the reason for this behaviour could
lie in the fact that the durations and the number of phases are deterministically
related. Therefore, eliminating the dependency in the stochastic sense with one
of the two, in this case, the number of phases, may also eliminate the dependency
with the duration. But this observation is left as a hypothesis to be explored in
further studies.



138 H. E. Goicoechea et al.

Fig. 7. A superior view of the histograms of the random vectors associated with stick
phases in the AN approach is depicted for figures a) and c), while a representation
constructed using the product of the marginals is shown in b) and d).

4 Conclusions

In this study, the problem of an oscillator that exhibits stick-slip was addressed.
Stochastic dry friction was considered, with the dynamic friction modelled as a
uniform probability distribution. The focus of this study was set on the compu-
tational aspects of the stochastic simulations.

Considering the deterministic problem, which is non-linear due to the dry
friction, an exact closed-form solution does not exist, and approximation tech-
niques must be used. As a consequence, the stochastic problem was solved by
means of three strategies: a combination of the Monte Carlo method with numer-
ical integration with variable time-step, Monte Carlo with numerical integration
with fixed time-step, and the combination of the Monte Carlo method with an
analytical integration, where an approximation is obtained by using the Multiple
Scale method.

With the numerical integration, an approximation was obtained by discretis-
ing the equation in the time domain following the Runge-Kutta integration
scheme. The method relies on taking small time-steps to guarantee the accu-
racy of the solution. Whereas, with the analytical integration, an approximation
given by a closed-form expression can be obtained for the stick and the slip
phases.

The analytical approximation is constructed as a piecewise function, due to
the sudden change in the behaviour between stick and slip phases. But once
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the general form of the closed-form expression is known, only the information
at the transition instants and the initial conditions at the beginning of each
phase is required to completely define the behaviour of the system at any time.
This has a direct impact on the computational costs involved with the analytical
approximation, and it is advantageous if compared to the numerical one where
many intermediate time steps in between the transition instants are required to
assure accuracy in the approximation. Moreover, it can be a decisive factor in
defining the feasibility of a stochastic study, given the large number of realisations
that need to be performed, and the run-time involved in such calculations.

All these previous aspects are reflected in the results obtained for the stochas-
tic oscillator problem. To understand the link between the run-times and the
integration strategies, joint histograms considering the run-time and some char-
acteristic variables for the problem, in this case, the duration and the number
of phases were analysed. After that, a change of variables was proposed, and it
was shown that the new variables are independent, from a stochastic perspec-
tive. This allowed us to further understand the relationship between the different
behaviours in the run-time and the adopted integration strategy. It was observed
that the results obtained with the analytical approximations were influenced by
the number of phases rather than by their durations. This is associated with
how an analytical approximation is constructed, and the way each of the phases
is solved without using intermediate time-steps. It is left for future work to pro-
duce a similar analysis for the other approaches with the numerical integration
schemes.
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Abstract. In this paper, the spread of a general epidemic over time is
modeled as a branching process. It is a stochastic process sorted as an
individual-based model, which records population growth over genera-
tions with uncertainties to its size. The source of randomness is inher-
ently related to the individual behavior of each member in a population.
In this context, the transmissibility of the disease, i.e., the contagion from
an infected person to susceptible ones is the root. Therefore, a discrete
random variable models the number of infections per infector and rules
the branching process. Given the probabilistic model of the contagion,
the objective of the paper is to compare three methodologies to evalu-
ate the mass functions of further generations of the branching process:
probability generating functions (pgf), Markov chains (MC) and Monte
Carlo simulations (MCS). The former gives analytical expressions, that
can be symbolic computed, to evaluate the probability of an arbitrary
number of infected members for a desired generation, whereas MC is a
semi-numerical methodology and the latter is indeed a numerical one. The
comparison between all of them relies on computational cost (runtime and
storage) and limitation of applicability in relation to the mass function of
the contagion. One of the characteristics of interest in the analysis is the
determination of which methodologies allow the calculation of the mass
function of a further generation without computing the mass functions
of previous ones. This feature is referred in here as not time-dependent.
Another characteristic of interest is the determination of which method-
ologies allow the computation of just some values of the mass function
of a generation, i.e., probabilities related to the same generation can be
achieved independently from the others. This is so-called a local property.

Keywords: epidemic · branching process · probability generating
functions · Markov chains · Monte Carlo simulations

1 Introduction

The transmissibility of an epidemic is related to how easily a disease can
spread from the contagion of an infected person (infector) to susceptible ones
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(infectees) [6]. It relies on hardly traceable features, such as the individual behav-
ior and the pathogen’s infectivity itself. Therefore, it is more suitable to model
the transmissibility, including its inherent uncertainty.

The usual disease transmission models [11] are classified into three major
groups: population-level, metapopulation and individual-level. The former splits
the population according to the health state of its members. These subgroups
are named compartments. The dynamic of the transitions between them are
based on some averages. Metapopulation models slice the population into two
groups, each one with specific parameters according to the disease and general
characteristics. The latter is composed by networks and individual-based models
(IBM) and it is getting more attention because it deals with stochastic outbreaks.

Such an IBM model is the branching process. It deals with the so-called
demographic stochasticity [5], i.e., the population randomness over time is a
consequence of the individual’s uncertainty. This way, it entails the stochastically
features of transmissiblity. The Bienaymé-Galton-Watson (BGW) is the classical
version. It is a discrete state process in discrete time [2,3]. There are also the
continuous ones in time [1,8] and the ones that the state space is continuous
(CSBP), such as the Feller type.

In here, probabilistic descriptions of the size of subsequent generations of
infected people are dealt. Therefore, it is meaningful to quantify the uncertainty
over the process. Since some popular set of statistics, for example mean and
standard deviation, mean and coefficient of variation or Shannon entropy, are not
suitable as a proper measure for this task [7], the cumulative distribution function
(CDF) still remains the best option. For this reason, the aim of this paper is to
compare approaches to find the values of the mass function of further generations
in a discrete state branching process that models an epidemic’s spread.

This paper is organized as follows. Section 2 introduces the mathematical
formulation of the branching process and the context of the epidemic’s propaga-
tion over time to this model. Section 3 presents three different methodologies to
find the values of the mass function to further generations in order to quantify
the uncertainty: probability generating function, Markov chain and Monte Carlo
simulation. In Sect. 4, there is a comparison among the approaches taking into
account computational cost, applicability of random variables and other features
later on discussed.

2 Epidemics Spreading Stochastically over Time

In a certain population, an epidemic takes off with a single infector, who is
individual number 1 from the ramification tree in Fig. 1. This infected member
belongs to the so-called 0th generation. The number of new members infected
per infector is ruled by a discrete random variable in here named contagion C.
As a consequence of the contact with individual number 1, only another person
was infected (individual number 2). Therefore, the size of the 1st generation is
unitary. Then, another realization related this time to individual number 2 of
C is done. The outcome is that this infector spread the disease to individuals
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number 3 and 4, and hence the 2nd generation’s size is two. For each one of
these two infected people, a new realization of C is done. The evolution over
time follows the same dynamic and in Fig. 1 is depicted this realization of the
branching process up to the 5th generation.

1

2

3 4

5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21

Fig. 1. Realization of the branching process up to the 5th generation.

The family of random variables of the branching process X = {Xt} , t ∈ N
0

is in this context the size of each generation of members infected. For definition,
it starts with the deterministic statement X0 = 1, which means a single initial
infector. In this model, the contagion random variable for each member infected
is independent and identically distributed (i.i.d.), which means that the trans-
missibility does not rely on the population size and the evolution over time. The
size of a subsequent generation Xt+1 is determined by the amount of infectors of
the most previous one Xt. For each infector member of the latter, a realization
of contagion is done and the total sum is the size. Generally speaking, we have
according to Schinazi [10] that

Xt+1 =
Xt∑

k=1

C, t ∈ N
0. (1)

The operation in Eq. (1) is a sum of a random quantity of random variables
and in order to find the values of the mass functions of any generation beyond
the first (further generations), three methodologies are presented next.

3 Methodologies to Find the Values of Mass Functions
of Further Generations

3.1 Probability Generating Functions

The values of a mass function P (X = x) of a non-negative integers-valued ran-
dom variable X can be rewritten as a sequence of probabilities that respects the
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normalization condition. One way to get this sequence is through its probability
generating function (pgf), which is unique for each discrete random variable.
The pgf of X is the function GX (s) defined by

GX (s) := E
(
sX
)

=
∞∑

x=0

sx P (X = x) = p0 + p1s + p2s
2 + . . . . (2)

A classical example is the pgf from a Binomial distribution. This probability
distribution models in this context a society with strictly social distancing rules,
in which an infector contacts with m infectees at most and the probability of
infection is p for each of them. Its pgf is given as

GX (s) =
∞∑

x=0

(
m

x

)
px (1 − p)m−x

sx = [(1 − p) + p s]m . (3)

The pgf from any further generation Xt+1 can be related to the pgf from the
contagion random variable according to Grimmett and Welsh [4]

GXt+1 (s) =
∞∑

x=0

sx P (Xt+1 = x) = E
(
sXt+1

)

=
∞∑

i=0

E
(
sXt+1 | Xt = i

)
P (Xt = i)

=
∞∑

i=0

E

⎛

⎜⎝s

C + C + . . . + C︸ ︷︷ ︸
Xt times

⎞

⎟⎠P (Xt = i)

=
∞∑

i=0

GC (s)︸ ︷︷ ︸
argument

i
P (Xt = i) , since i.i.d.

= GXt
(GC (s)) , as result of the definition in Eq. (2).

= GC (GC (. . . (GC (s)))) , recurrence happens t times. (4)

In order to find a specific probability P (Xt+1 = k) up from the pgf GXt+1 (s),
it must be k times differentiated, divided for the factorial of k and then evaluated
in s = 0,

P (Xt+1 = k) =
1
k!

d(k) [GC (GC (. . . (GC (s))))]
ds(k)

∣∣∣∣
s=0

. (5)

This analytical approach allows us to calculate the values of the mass function
of any further distribution without knowing the previous ones. This feature is
referred in here as not time-dependent. The probabilities related to the same
generation are also achieved individually from the others and it is so-called a
local methodology. For instance, we are looking to find the values of the mass
function of the second generation when the contagion random variable is modeled

as C ∼ Binomial (2, 0.7). The pgf from it is
[
0.7 (0.7 s + 0.3)2 + 0.3

]2
according
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to Eqs. (3) and (4). In order to find the whole values of the support of the mass
function from X2, the operation in Eq. (5) must be done individually as many
times as the possible outcomes of the realization of this random variable, which
in this case is five:

P (X2 = 0) =
1
0!

[
0.7 (0.7 s + 0.3)2 + 0.3

]2∣∣∣∣
s=0

= 0.132.

P (X2 = 1) =
1
1!

d(1)
[
0.7 (0.7 s + 0.3)2 + 0.3

]2

ds(1)

∣∣∣∣∣∣∣
s=0

= 0.213.

P (X2 = 2) =
1
2!

d(2)
[
0.7 (0.7 s + 0.3)2 + 0.3

]2

ds(2)

∣∣∣∣∣∣∣
s=0

= 0.336.

P (X2 = 3) =
1
3!

d(3)
[
0.7 (0.7 s + 0.3)2 + 0.3

]2

ds(3)

∣∣∣∣∣∣∣
s=0

= 0.202.

P (X2 = 4) =
1
4!

d(4)
[
0.7 (0.7 s + 0.3)2 + 0.3

]2

ds(4)

∣∣∣∣∣∣∣
s=0

= 0.118.

The mass function of X2 is displayed next at Fig. 2.

0 1 2 3 4
0

0.2

0.4

0.6

Fig. 2. Mass function of X2 for C ∼ Binomial (2, 0.7).

3.2 Markov Chain Property

The branching process is Markovian, i.e., the sequence of random variables X =
{Xt}t∈N

defined in the discrete and finite state space S follows the rule: if we
are looking to reach any state it+1 ∈ S of some random variable Xt+1, it is only
necessary to know the conditional probability of it based on the current random
variable Xt reaching the state it ∈ S, regardless of its past [4,9],

P (Xt+1 = it+1 | X0 = i0,X1 = i1, . . . , Xt = it) =
P (Xt+1 = it+1 | Xt = it) .

(6)
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It is fundamental in here that the state space S is finite. For this reason, the
contagion random variable C of the branching process must also have a finite
support. The conditional probabilities pi,j (t) = P (Xt+1 = j | Xt = i) , t > 0,
as in Eq. (6) are named the t-th one-step tranisition probabilities. They are
elements of the stochastic matrix known as the t-th one-step transition matrix
T (t). The last follows the normalization condition for each row:

∑
j∈ S

pi,j = 1.
It is responsible to relate the mass function of the distribution of Xt+1 with the
Xt one. It also enables to link the mass function of Xt+1 with the X1 one. In
order to do this, the values of the initial distribution, i.e., X1, along the whole
state space S must be organized in a row vector λX1 (which is the same of the
contagion, λC) and all the one-step transition matrices T (1) ,T (2) , . . . ,T (t)
must be known. The procedure is done in Eq. (7).

λXt+1 = λC T (1)T (2) . . .T (t) . (7)

The state space S of the branching process is defined according to the furthest
generation of which the values of the mass function is desired to know. The
dimension of all one-step transition matrices is then |S| × |S|. But this is not
a homogeneous Markov chain, which means the one-step transition matrices
are not the same over the time. The reason of it is that each generation has
a different upper limit of infectees, despite the fact that the whole branching
process is defined on S. This limit comes from the stochastic network structure
of the branching process. The t-th generation for instance have qC

t infectees at
most, in which qC is the upper possible value from a realization of C. The t-th
one-step transition probabilities pi,j (t) are then obtained according to

pi,j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if

{
i = j = 0
i > qC

t, j = 0

0, if

⎧
⎪⎨

⎪⎩

i = 0, j �= 0
i > qC

t, j �= 0
0 < i ≤ qC

t, j > i × qC

P

(
Xt=i∑

k=1

C = j

)
, otherwise .

(8)

The last statement above in Eq. (8) is calculated with the help of the pgfs.
Unlike the Eq. (1), the size of the most previous generation, Xt = i, is already
known. The pgf GXt+1 is related to GC as in Grimmett and Welsh [4]
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GXt+1 (s) =
∞∑

x=0

sx P (Xt+1 = x) = E
(
sXt+1

)

= E

⎛

⎝s

C + C + . . . + C︸ ︷︷ ︸
i times

⎞

⎠ = E
(
sCsC . . . sC

)

= E
(
sC
)
E
(
sC
)
. . .E

(
sC
)
, from independence

= GC (s) GC (s) . . . GC (s) , by Eq. (2)

= GC
i (s) . (9)

Finally, the probability of the sum of a given number of random variables is

P

(
Xt=i∑

k=1

C = j

)
=

1
j!

d(j)
[
GC

i (s)
]

ds(j)

∣∣∣∣∣
s=0

. (10)

This semi-numerical technique is a time-dependent and not a local one. In
order to find the values of the mass function of Xt+1, the operation in Eq. (7)
sequentially evaluates all the values of mass functions of the previous generation.
The mass function is always found as a row vector of the whole state space S

and is not possible to find the probabilities locally per state.
Taking the same example before. The state space of the Markov chain is

S = {0, 1, 2, 3, 4}. Therefore, the first one-step transition matrix has size 5 × 5
and the row vector of initial probability distribution has size 1 × 5. Notice that
the actual support of the contagion random variable C ∼ Binomial (2, 0.7) is
[0, 1, 2]. As a consequence, it is necessary to define probabilities for the remain
states. Their probabilities P (C > 2) are zero. This way, the values of the mass
function of X2 are obtained from the relation in Eq. (7),

λX2 = λC T (1) ,

where the row vector of the initial probability has size five

λC =
[
0.090 0.420 0.490 0 0

]

and the first one-step transition matrix has its components calculated according
to Eq. (8) and the last statement with the help of Eq. (10)

T (1) =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
0.090 0.420 0.490 0 0
0.008 0.076 0.265 0.412 0.240

1 0 0 0 0
1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

The operation results in the whole row vector at once

λX2 =
[
0.132 0.213 0.336 0.202 0.118

]
.
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3.3 Monte Carlo Simulation

Some transformations of random objects are hard to make analytically. Instead of
that, we make realizations of these objects, then the transformations are applied
individually in each generated experiment. In this case, it means to make nr

realizations of the branching process. Each one of them is an experiment. They
consist in one sample.

Sample statistics can be taken from the nr realizations of the branching pro-
cess. They are actually random variables since they depend intrinsically on the
random numbers generator. In order to deal with this uncertainty, a convergence
analysis must be made. Thus, an error ξ1 must be fixed. For a certain quantity
of experiments generated, if the sample statistics do not satisfy this tolerance,
another sample with a greater number than nr realizations must be generated
and sample statistics reevaluated. For this case, the difference between the sam-
ple mean μ̂Xt+1 and the expectation of the generation’s random variable Xt+1

is compared with the tolerance

ξ̂t+1 =
∣∣E (Xt+1) − μ̂Xt+1

∣∣ < ξ1. (11)

Despite the fact that we don’t know previously the probability distribution
of any further generation, its expectation can be found from Grimmett and
Welsh [4] with the help of the pgfs and Abel’s lemma

d(1)GXt+1 (s)
ds(1)

=
d(1)

ds(1)

∞∑

x=0

sx P (Xt+1 = x)

=
∞∑

x=0

d(1)

ds(1)
sx P (Xt+1 = x)

=
∞∑

x=0

xsx−1
P (Xt+1 = x) .

(12)

Taking s = 1 in Eq. (12), the expectation is found

d(1)GXt+1 (s)
ds(1)

∣∣∣∣∣
s=1

=
∞∑

x=0

xP (Xt+1 = x)

= E (Xt+1) .

(13)

From Eq. (4), the pgf from the generation Xt+1 is a multicomposition function
of t recurrences of the pgf from the contagious random variable, so

E (Xt+1) =
d(1) [GC (GC (. . . (GC (s))))]

ds(1)

∣∣∣∣
s=1

. (14)

This numerical approach is a time-dependent and not a local methodology.
Once the number of experiments nr is determined, each realization of the branch-
ing process gives values of infected members per generation. After that, a nor-
malized histogram of each desired generation is done and the approximated mass
function along the support is visualized.
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4 Comparison Among the Methodologies

The comparison among the methodologies showed above shall not be done based
on a single perspective. There are many variables presented in this task, e.g.,
computational cost (runtime and storage) and the law of the mass function
chosen for the contagion random. Some other points are relevant, such as time-
dependency and local properties. The machine that runs the MATLAB codes is
a MacBook Air M2, 16 GB of RAM and 512 GB of storage.

In this work, the contagion random variable’s law is C ∼ Binomial (m, p).
The former parameter changes in the range m = [1, 2, . . . , 5], while the latter one
in p = [0.1, 0.3, . . . , 0.9]. This distribution is also chosen because the Markov’s
chain technique requires a discrete random variable with finite support. The
furthest generation observed in here is X6 due its already high values of runtime
(CPU time) for some methodologies.

Figure 3 shows the runtime spent of the pgf approach to find the whole val-
ues of the mass function per generation. This methodology is at first hand not
dependent on the parameter p. The main reason of it is the fact that the bino-
mial pgf has p as a scalar and as a constant in its analytical expression. The only
exception is the case of p = 0.5, in which the runtimes are faster. The explana-
tion is that in this situation the expression in Eq. (3) does a factorization that
decreases the runtime. If an expansion of the analytical function of the pgf is
previously done, the runtime remains close to the other cases.

1 2 3 4 5
0

0.1

0.2

0.3

1 2 3 4 5
0

5

10

15

20

25

1 2 3 4 5
10-2

100

102

104

Fig. 3. Runtime per generation for the pgf approach.

On the other hand, the parameter m occurs as an exponent. Figure 3 shows
indeed that the runtime has a significantly dependency on the value of m in
every generation. As further as the generation is, the runtime of this approach
increases the most. It is a consequence of the complexity of the multicomposition
function from Eq. (5). The runtime spent to find the values of the mass function
for the whole support up the fourth generation is not feasible anymore, except
for p = 0.5. An interesting aspect of the runtime in this methodology is that it
is a deterministic property despite of computational noises. Furthermore, this
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is the only local and time-independent technique. If the aim is to find specific
values of the mass function of some generation, this might be an interesting
approach.

The Markov chain technique has a similar effect of the parameter p as the pgf
approach. In this case, there is not a remarkable influence coming from p = 0.5
as in the previous methodology. Figure 4 shows that the meaningful dependency
relies on the parameter m, once the Eq. (10) for the t-th one step transition
probabilities uses also the binomial pgf.
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Fig. 4. Runtime per generation for the MC approach.

The main difference is that, this time, there are not multicompositions func-
tions, which makes smaller runtimes than the pgf approach. For m = 1, there is
indeed a homogeneous Markov chain and the runtime remains almost the same
regardless the generation. The reason is that the state space in this situation is
S = {0, 1} and the only possible time-evolution to this branching process is that
each generation has a single infector. As a consequence, the one-step transition
matrix does not change over time. It also has a significant small dimension of
2 × 2 and the operation in Eq. (7) is way more feasible. The remain cases show
an amount growth of the runtime per generation. It has also a deterministic
runtime.

For the Monte Carlo simulation, the convergence study was realized with
the mass function of C ∼ Binomial (5, 0.9) and the third generation was the
one to perform Eq. (11), because the number of experiments required to further
ones increases a lot. The tolerances was ξ1 = 10−3. The required number of
experiments were 28738. For this reason, all the Monte Carlo simulations next
were done with nr = 30000. Figures 5 and 6 show respectively the convergence
study and the evolution of histograms of the mass function of X3 per different
values of nr.

Different from the other techniques, this is a purely numerical one and does
not rely on any pgf. Since it is dependent on the realizations of the branching
process, and, as a consequence, on a series of realizations of the contagion random
variable, greater values of p and m result in longer runtimes. Despite of the
approximate values from the mass functions, this technique shows the greatest
benefit in runtime for further generations, as shown in Fig. 7. On the other hand,
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Fig. 5. Convergence study of the third generation for C ∼ Binomial (5, 0.9).
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Fig. 6. Normalized histogram evolution of X3 for C ∼ Binomial (5, 0.9) per nr.

the convergence for further generations than the third one for the same criteria
of tolerances requires a greater number of nr than the one used. Furthermore,
features of the probabilistic model, e.g., the mathematical relation between the
contagion and any generation’s size random variable is lost in this methodology.
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Fig. 7. Runtime per generation for the MCS approach.

The runtime in here is a stochastic object. It is dependent on the sample
generator. Figure 8 shows the runtime spent for each experiment also from the
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third generation for C ∼ Binomial (5, 0.9). The total value of runtime of the
simulation is therefore a sum of random experiments’ runtime.

Fig. 8. Normalized histogram of runtime per experiment.

Next, it is presented in Figs. 9, 10 and 11 a storage analysis of the method-
ologies. The saved files from the pgf approach contain the symbolic expressions
of the Eq. (5) for each quantity of infectors, the runtime spent to operate it
and the values of the mass function. The ones from the MC technique carry
the vector of the initial distribution, the required one-step transition matrices
and the probabilities related to the support of the desired generation and the
previous ones. Finally, for the MCS methodology, the files have the number of
infected members, the runtime spent per generation of each experiment and the
probabilities related to all infected members of the generations up to the desired
one.
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Fig. 9. Storage per generation for the pgf approach.

The greatest increase of storage size per generation happens to the pgf
methodology. This is related to the data that includes an extensive use of sym-
bolic computation. Since it is a local methodology, a symbolic expression is
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required for each value of the mass function. This time the parameter p shows
a stronger influence than in the case of the runtime analysis. For further gen-
erations, the storage size increases as the parameter p turns greater, except for
p = 0.5. In this case, there is still a major benefit. Another similar fact is that
the storage increases exponentially according to the value of the parameter m,
reflecting the complexity of the expression in Eq. 5 according to this value. This
is also a deterministic feature.
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Fig. 10. Storage per generation for the MC approach.

For the MC technique, the similarity of the influence of the parameter m
remains. On the other hand, the parameter p shows some stronger influence on
the storage size, specially when p = 0.5. Up to third generation, this approach
has the lowest values of storage per generation. Another relevant aspect depicted
in Fig. 10 is that for the 5th and 6th generations, the higher values of p seem to
decrease the storage size.
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Fig. 11. Storage per generation for the MCS approach.

The storage size for the MCS approach is a stochastic feature. The data files
collect generation per generation the results of a binomial random generator
for several times. This is reflected specially in the second generation in Fig. 11
when any recognizable pattern is not found based on what it is usually expected
for the combination of greater values of m and p. As generations goes by, for
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p = 0.1 and p = 0.3, the storage size seems to increase in a linear way on m.
On the other hand, for the values of p = 0.5, p = 0.7 and p = 0.9, it seems to
increase asymptotically to a limit storage value. For the furthest generations,
this methodology has the lowest values of storage size.

5 Conclusions

In this work, three different methodologies to obtain the values of the mass func-
tions over generations are used and compared. The pgf methodology presents
the advantage of having an analytical expression that links each value of the
mass function of some generation to the random variable chosen to model the
contagion. Despite this beneficial property, when the aim is to find the whole
probabilities of the number of members infected for any generation, it was found
that the methodology struggles in terms of computational costs. In the MC tech-
nique, there is a numerical connection between the values of the mass functions
and the values of the contagion one. From the perspective of the computational
costs, this connection can be used to find the probabilities related to the whole
support of some generation in a more feasible way. Nevertheless, the application
of the this methodology is limited, as it can only be applied to distributions
where finite and discrete supports are considered. Finally, the MCS approach
shows the best performance in terms of computational costs. However, the con-
vergence of further generations reflects a high number of experiments, and a big
data problem is a reality.
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Abstract. Data Assimilation is a procedure for fusion from the observa-
tional system and previous forecasting to calculate the initial condition
– also called analysis – for the next prediction cycle. Several methods
have been developed and applied for data assimilation (DA). We can
cite the Kalman filter, particle filter, and variational approach as meth-
ods employed for DA. However, the mentioned methods are computer
intensive. One alternative to reduce the computational effort for DA is
to apply a neural network (NN) to emulate a computationally expensive
technique. The NN approach has been also applied for ensemble predic-
tion to address uncertainty quantification for each forecasting cycle. A
self-configuring framework was applied to design the best NN architec-
ture to emulate the Kalman filter for DA, using the metaheuristic: Multi-
ple Particles Collision Algorithm (MPCA). The optimal artificial neural
network is implemented on two types of co-processors: FPGA (Field-
Programmable Gate Array), and TPU (tensor processing unit). Shallow
water 2D system is designed to simulate ocean circulation dynamics,
where the finite difference scheme is used for numerical integration of
the model. The artificial neural network was effective, with reduction
of processing time. The use of FPGA or TPU as co-processors for data
assimilation have similar precision in comparison with analysis calculated
by software. The better processing time performance among multi-core
CPU, FPGA, and TPU was obtained by the TPU when the number of
grid points (N ×N) is greater than 150. For N ≤ 150, the CPU presented
a smaller execution time.

Keywords: Data assimilation · ocean circulation · artificial neural
network · co-processors: FPGA and TPU

1 Introduction

Modern forecasting systems are based on time integration of differential equa-
tions by numerical methods [10,14]. For weather and climate operational predic-
tion centers, supercomputers with high processing power are used for this task.
This is a research field under permanent development [4].
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In order to produce a better prediction as possible, one important issue is
to compute the initial condition (IC). The calculation of the IC is called data
assimilation (DA). DA is a procedure for combining data from an observation
system and data from the mathematical model [11]. The DA procedure is named
analysis. The computation of the analysis demands a huge computational effort,
due to the dimension of the observational data and the number of grid points
in computer models of the atmosphere and/or ocean dynamics. Therefore, there
are many investigations for new methods for DA, and the innovative hardware
architectures.

To save processing time, new algorithms based on artificial neural networks
[7] have been proposed. The goal of the present paper is to report results using
co-processors for CPU multi-core: FPGA (field programmable gate array), and
TPU (tensor processing unit).

Cintra and co-authors applied neural networks for data assimilation for a 3D
atmospheric global circulation model [8]. The neural network was designed to
have a similar analysis as that obtained by the local ensemble transform Kalman
filter. The uncertainty evaluation is computed by using an ensemble prediction
approach [11]. Neural networks were trained using the ensemble average only.
The trained neural network was applied for each ensemble member producing an
ensemble prediction. Fifteen ensemble members were employed in the numerical
experiment, showing a practical way to use neural network as a data assimilation
with ensemble framework. From this consideration, the forecasting uncertainty
quantification can be calculated by using the same strategy as Cintra et al. [8].

A shallow water 2D (SW-2D) system is used as a simplified model to simulate
ocean circulation [5]. The finite difference method is employed to discretize the
SW-2D system, and the time integration is carried out by a forward-backward
scheme [13].

Here, a neural network is the method for data assimilation. The optimal
multi-layer perceptron neural network (MLP-NN) is configured to emulate the
Kalman filter [6]. The self-configuring MLP-NN is performed by solving an
optimization problem with the meta-heuristic multi-particle collision algorithm
(MPCA) [12]. The MLP-NN for the data assimilation process was codified to
the FPGA and TPU. The DA processing itself was faster with the FPGA, but
considering the time for data transfer between the CPU and the co-processor
plus the DA processing the TPU was more effective. Indeed, the TPU processing
is superior to the CPU when the number of grid space points (N ×N) is greater
than 150 (N > 150).

2 Shallow Water Model for Ocean Dynamics

The shallow-water system is used to represent a 2D ocean circulation. The ocean
depth is rigid surface defined by: z = h(x, y), and the ocean interface with the
atmosphere is a free surface defined as: z ≡ q(x, y, t) + h(x, y). Two dimension
equations are obtained by vertical integration of the Euler equation on verti-
cal [1]. The average depth denoted by H is coupled to the velocity vector, with
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components (u, v). A limited area is the domain for ocean circulation [5], where
the differential equations for time t > 0 over a 2D region D(x, y) are given by:

∂u

∂t
− fv + g

∂q

∂x
+ ruu = Fu (1)

∂v

∂t
+ fu + g

∂q

∂y
+ rvv = Fv (2)

∂q

∂t
+ H

(
∂u

∂x
+

∂v

∂y

)
+ rqq = 0 (3)

where D(x, y) = (0, Lx) × (0, Ly), g is the gravity acceleration, f is the Coriolis
parameter, parameters (ru, rv, rq) are the damping coefficients [5], and (u, v) is
the ocean velocity components. The heterogeneous terms Fu and Fv are written
as:

Fu = −Cd ρa u2
a/(H ρw) , (4)

Fv = 0 . (5)

being Cd the drag coefficient is the parameter Cd, ρa and ρw, are the air and
ocean water densities, respectively, and zonal wind ua has a constant value.
Boundary conditions {∂D(x, y)} are the same used by Bennet [5] – see also
Campos Velho et al. [6].

Table 1 shows the numerical values for numerical discretizations, and the
parameters assumed to represent the ocean dynamics – see Bennett [5].

Table 1. Parameters used in the integration for the SW-model.

Parameter Value Parameter Value

Δt (s) 180 ru (s−1) 1.8 × 104

Nt 200 rv (s−1) 1.8 × 104

tmax (h) 3.6 × 104 rq (s−1) 1.8 × 104

Δx (m) 105 ρq (kg m−3) 1.275

Δy (m) 105 ρw (kg m−3) 1.0 × 103

Nx 40 g (m s−2) 9.806

Ny 40 f (s−1) 1.0 × 10−4

H (m) 5000 Cd 1.6 × 10−3

ua (m s−1) 5

3 Data Assimilation

The best combination between a previous prediction (background) and from data
from observation system is called data assimilation (DA), producing the analysis.
The analysis is the initial condition for next prediction cycle.
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The configuration for supervised multilayer perceptron neural network
(MLP-NN) [9] to emulate the Kalman filter is found by MPCA meta-heuristic.
The MLP-NN is applied over each grid point, where the inputs are the observa-
tion and the background, and the output is the analysis for that grid point.

The cost function to be minimized by the MPCA is given by:

J(X) = penalty ×
[
ρ1 ELearn + ρ2 EGen

ρ1 + ρ2

]
; (6)

penalty = c1 e{#neurons}2
+ c2 {#epochs} + 1 . (7)

where the square difference between the analysis obtained from the Kalman fil-
ter and the MLP-NN output is the training (ELearn) and generalization (EGen)
errors, respectively. The cost function also looks for the simplest NN, with a
balance between errors with the smallest number of neurons and faster con-
vergence for the training (learning) phase – see Eq. (7). Other parameters
in Eq. (6) are free ones. For the present problem, it is assumed the values
(ρ1, ρ2, c1, c2) = (0.5, 0.5, 5 × 108, 5 × 105) [2].

As a first experiment, the data assimilation is executed at each 10 time-steps,
with the grid points expressed in Table 1 (Nx × Ny = 40 × 40). The result for
the experiment with MLP-NN emulating a Kalman filter for data assimilation is
shown in Fig. 1. The experimental values are collected at 25 points for the ocean

Fig. 1. Data assimilation for ocean circulation at time-step t = 30 by using Kalman
filter and MLP neural network.



160 M. Paiva et al.

level q(x, y). After 3 cycles of DA (time-step t = 30), isocurves for the q-variable
are displayed in Fig. 1: true dynamics (“TRUE”), Kalman filter (“KF”), and
neural network (“ANN”). The difference between the analysis and the reference
values (TRUE lines) is smaller when the data assimilation is executed with the
neural network than Kalman filter.

4 Co-processors: FPGA and TPU

4.1 FPGA

A field-programmable gate array (FPGA) is an integrated circuit containing
an array of programmable logic blocks, with reconfigurable interconnects. Logic
blocks can be combined in different ways to calculate complex functions. Gener-
ally, FPGA can be configured by using a hardware description language (HDL),
in a similar way as in the application-specific integrated circuit (ASIC).

Cray XD1 is a heterogeneous computer system integrating CPU multi-core
and reconfigurable computing technologies. Cray XD1 is based on Direct Con-
nected Processor (DCP) architecture. The machine has six interconnected nodes
(blades). Each blade contains two CPUs (2.4 GHz AMD Opteron) and one FPGA
(Xilinx Virtex II Pro). Figure 2 shows the architecture of a Cray XD1 node
(blade).

Fig. 2. Sketch for the Cray XD1 blade.

4.2 TPU

Different from scalar processors, operating on single data only, a central process-
ing unit (CPU) designed for a type of parallel computation with instructions to
operate on one-dimensional arrays of data, this type of parallel CPU is called
vector processor.

The tensor processing unit (TPU) is also an Application-Specific Integrated
Circuit (ASIC). It is designed to operate two-dimensional arrays optimizing
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matrix multiplication and accumulation operations. Google company developed
a specific hardware for the Google’s Tensorflow project – deep learning AI frame-
work. The first TPU version (TPUv1) appeared in 2016. The second TPU version
(TPUv2) was announced in 2017. The TPUv2 card is also compatible with com-
puter available in the market. Years 2018 and 2021, Google presented the third
and fourth versions (TPUv3 and TPUv4, respectively) of the TPU chips. The
hardware of the respective TPU versions are illustrated in Fig. 3.

(a) (b)

(c) (d)

Fig. 3. TPU versions: (a) TPUv1, (b) TPUv2, (c) TPUv33 (d), TPUv4.

5 Results

5.1 FPGA Results

The numerical experiment was carried out with space domain discretization
(Nx = Ny = N) as shown in Table 1 (N = 40), with DA cycle activated at each
10 time-steps. Software processing (CPU) was executed with 121709 µs, while
the hardware execution spent 209187 µs.

The CPU execution was much faster than FPGA. Actually, there are more
advanced FPGA than that implemented in the Cray XD1 blade nowadays. Look-
ing at closer the experiment execution time, there are two types of time to be
considered: data transfer, and effective processing time. Table 2 shows the time
for the transfer of data between CPU-FPGA and FPGA-CPU, and the effective
processing by the FPGA. Table 2 shows the time for transfer data between CPU-
FPGA and FPGA-CPU, and the effective processing by the FPGA. There is a
difference of time for transferring data from CPU-FPGA (greater) than FPGA-
CPU (lower). This difference is because for FPGA-CPU transfer the data are
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storaged on the DRAM – see Fig. 2 –, a memory accessed by CPU and FPGA.
However, the FPGA time processing for effective execution is very small (2μs).

Table 2. FPGA: time for effection processing × time for data transfer.

Process time

CPU-FPGA transfer 181635 µs

FPGA-CPU transfer 9455 µs

FPGA processing 2 µs

5.2 TPU Results

The numerical experiment with TPU was carried out on the Google Colabora-
tory platform, also called as “Colab”. Colab is a cloud service, hosted by the
Google company. The main language for the Colab is Python, but the plat-
form also works with other computer languages: Fortran, R, Julia, Swift, among
other. The Google Colab has three options for processing: CPU, GPU, and TPU.
The experiments used an CPU Intel R© Xeon R© 32-bit 2.20 GHz, with only one
TensorCore type TPUv2, containing eight TensorCores.

The TPUv2 was executed with several number of grid points. Depending on
the number of grid points, the CPU presented a better performance than TPU.
Therefore, other executions were necessary to evaluate the performance with
enhancing the number of grid points. Table 3 shows execution times (seconds)
for CPU and TPU for several number of grid points. For this application with
the described hardware, if the number of space discretization points (N × N) is
lower than 150 the CPU has a better performance than TPUv2.

Table 3. CPU vs TPUv2.

Matrix: N × N CPU time TPU time

100 0,2110564709 0,3778991699

150 0,3215475082 0,3667955399

200 0,4424006939 0,3672273159

250 0,6224746704 0,3842322826

6 Final Remarks

Data assimilation for a simplified ocean circulation model was carried out by self-
configuring multi-layer perceptron neural network. The optimal MLP-NN was
designed to emulated the Kalman filter (KF). Campos Velho et al. [6] did an algo-
rithm complexity analysis showing that NN has a lower complexity than KF, with
computer experiments showing a significant reduction of the processing time.
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In a different fashion, the focus of the present paper is to apply co-processors
for speeding up the DA processing by the MLP-NN. Results with two co-
processors were presented: FPGA and TPU.

The MLP-NN was implemented on FPGA (cray XD1 heterogeneous com-
puter) and TPUv2 (CoLab Google cloud). The results with FPGA had a slower
performance than CPU. From Table 2, it is clear that the time for transfer data
between CPU and co-processor was the main factor for the difference of the
processing time. There is new hardware embracing CPU and FPGA in the same
chip. One example is the Zynq-7000 family, integrating an ARM Cortex-A9
CPU with FPGA on SoS (system-on-chip). But, this hardware is not standard
for HPC servers. The TPUv2 performance was superior than the CPU with
number of grid points greater than 150. However, the results with TPU are still
preliminaries.

Ensemble prediction [11] is the standard procedure to address the predictabil-
ity, the forecasting uncertainty quantification, by the operational weather and
ocean circulation prediction centers. The predictability can be computed as the
strategy developed by Cintra et al. [8] for ensemble prediction.
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Abstract. Uncertainty propagation has gained increasing attention in the research
community in recent years. A better understanding of the uncertainty translates
into amore efficient final product. Compositematerials are susceptible to the afore-
mentioned uncertainties, for instance bymeans of variations inmaterial properties,
loadings and manufacturing process. In this study, a composite plate uncertainty
propagation problem is addressed with three techniques: Anti-optimization Inter-
valAnalysis, Polynomial Chaos Expansion (PCE), and the traditionalMonteCarlo
method. The dynamic mechanical response of the composite plate is analysed
in the time domain. The anti-optimization interval analysis approach resulted in
wider envelopes in the time histories (lower and upper bounds) when compared
to PCE and Monte Carlo, especially in the last and more challenging example.
Despite being unable to generate envelopes as broad as the other two approaches,
PCE showed to be very attractive due to the small number of function evaluations
used, especially in simpler problems. The adopted PCE algorithm is based in a
non-intrusive approach: The Multivariate Collocation Method.

Keywords: Composite plate · PCE · anti-optimization

1 Introduction

Compositematerials are widely employed in engineering applications due to their attrac-
tive mechanical qualities, such as high strength-to-weight ratio, stiffness, and fatigue
resistance. However, uncertainties in load, fiber angle, and material properties may
heavily impact the structural behavior. Therefore, the uncertainty propagation analy-
sis is essential to predict the structural response and design a safe and efficient final
product.

According to [1],MonteCarlo in associationwith finite elementmethod is frequently
used for uncertainty analysis in composite laminated structures. This approach is per-
formed in [2], for example. Despite being the classical approach to uncertainty problems,
Monte Carlo has a slow convergence rate and high computational cost.
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Recently, [3] used the anti-optimization and Monte Carlo approaches with convex
hull to evaluate the uncertainty propagation in composite laminates. The comparison
showed that anti-optimization approach is very attractive in the composite uncertainty
propagation problem. Consequently, many authors have been using this approach such
as [4–7].

The Polynomial Chaos Expansion (PCE) is another interesting technique, often used
to perform recent uncertainty analysis. The great attraction regarding PCE is definitely
the low number of numerical evaluations needed to solve problems (often dozens of
function calls, compared to tens of thousands usually required by other approaches). The
number of evaluations depends on the number of uncertain variables and the complexity
of the problem, which may require polynomial with higher levels of expansion. Recent
examples of PCE in composite materials are [8–10]. Extensive literature can be found
in the subject, such as [11–15].

This study uses Polynomial Chaos Expansion (PCE), Monte Carlo, and Anti-
Optimization techniques to access the uncertainty propagation in a composite plate.
The structure is simulated in the time domain using the Newmark algorithm and the
finite element method. Envelopes are generated by each approach and compared with
each other in different problems: uncertainty in fiber orientation angle, excitation load,
damping ratio, and finally, an example regarding a higher number of composite layers.

2 Methods

The main methods and assumptions used in this study will be briefly presented in this
section, such as the finite element simulation of a rectangular plate in time domain, and
the uncertainty propagation techniques: Monte Carlo sampling; Anti-optimization; and
generalized polynomial chaos.

2.1 Finite Element Simulation of a Plate

In order to simulate the composite plate, a finite element analysis algorithm based on
Mindlin plate theory is used. According to [16] the displacement field in this case is the
same as in first order deformation theory (FSDT):

u(x, y, z) = u0(x, y) + zθx(x, y), (1)

v(x, y, z) = v0(x, y) + zθy(x, y), (2)

w(x, y, z) = w0(x, y), (3)

where u, v, and w are the displacements, θx is the rotation on the x axis, and θy is the
rotation on the y axis.

The strain tensor can be found by deriving the displacements u, v, and w as follows
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εxx

εyy

γxy

γxz

γyz

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
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∂z
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To define the stiffness matrix, one should start from the strain energy and integrate
throughout each layer over the thickness direction. The membrane part of the stiffness
matrix K(e)

mb, the membrane-bending coupling components K(e)
mb and K(e)

bm, the bending

K(e)
bb and the shear component K(e)

ss are obtained as follows

K(e)
mm =

nc∑

k=1

∫

A

BT
mDkBm(Zk+1 − Zk)dA (5)

K(e)
mb =

nc∑

k=1

∫

A

BT
mDkBb

1

2
(Z2

k+1
− Z2

k )dA (6)

K(e)
bm =

nc∑

k=1

∫

A

BT
b DkBm

1

2
(Z2

k+1
− Z2

k )dA (7)

K(e)
bb =

nc∑

k=1

∫

A

BT
b DkBb

1

3
(Z3

k+1
− Z3

k )dA (8)

K(e)
ss =

nc∑

k=1

∫

A

BT
s DkBs(Zk+1 − Zk)dA (9)

where nc is the number of layers, D is the rotated constitutive matrix, Bm and Bb are the
shape function matrix for membrane and bending, respectively, and zk is the coordinate
for the kth layer in the thickness direction with the reference being the middle plane of
the composite plate (starting at k = 1 in the negative coordinate).

Thus, the element matrix results in

K(e) = K(e)
mm + K(e)

mb + K(e)
bm + K(e)

bb + K(e)
ss . (10)

The global stiffness matrixK is then assembled by superposition. The corresponding
global mass matrix M is obtained as usual in a similar way.

For the free vibration, [16] states that the equation of motion in Mindlin plates, apart
from the damping, can be expressed as

Mü+ Ku = f , (11)

where f is the force vector, and ü and u are the accelerations and displacements vec-
tors. The natural frequencies and vibration mode shapes can be found by solving an
eigenproblem, described as

(K−�2M)� = 0, (12)

with � being a diagonal matrix containing the square of circular frequencies (ω2
i ), and

� is the eigen matrix with the columns being the corresponding vibration modal shape
vectors (φi).
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Table 1. Typical mechanical properties of epoxy/carbon fiber unidirectional lamina. [17].

Property Symbol Unit Graphite/epoxy

Longitudinal elastic modulus E1 GPa 181

Transversal elastic modulus E2 GPa 10.30

Major Poisson’s ratio v12 - 0.28

Shear modulus G12 GPa 7.71

A cantilever composite plate was simulated in this study, presenting 0.15m x 0.05m,
with 144 elements (mesh can be checked at Fig. 2). It was assumed epoxy/carbon com-
posite which mechanical properties are listed in Table 1 [17], and the simulation was
solved in time domain usingNewmark scheme. All software was implemented inMatlab
R2012a.

A shear correction factor κ = 5/6 is used, as shown in [16]. Other elastic properties
follow the usual assumption for plane stress.

2.2 Monte Carlo Sampling Approach

Monte Carlo (MC) sampling is the classic approach for solving uncertainty propagation
problems. Although being reliable, MC has a slow convergence rate, thus being unap-
plicable in models that require hours to days for a single evaluation [15]. Convergence
rates can be increased by using Latin hypercube and quasi-Monte Carlo sampling, but
the method remains exceedingly computationally expensive.

An advantage ofMCsampling is that the number of uncertain input variables does not
increase the convergence time. This is also true for Anti-optimization Interval Analysis
approach, but, on the other hand, not true for Polynomial Chaos Expansion (PCE).
Therefore, in problems with a high number of uncertain input variables the PCE method
may become infeasible.

Although it is a robust method, usually taken as a reference for comparisons, works
have shown [3] that for extreme system’s response scenarios, its results may not be as
accurate as Anti-Optimization methodology.

2.3 Anti-optimization Interval Analysis

Consider a system (Fig. 1) with uncertain input variables Z = (Z1,Z2, . . . ,Zd ), and
parameters θ = (θ1, θ2, . . . , θi), the result is an output vector Y = (Y1,Y2, . . . ,Yn).
There are two special combinations of input variables and parameters within that uncer-
tainty limits (Z,Z, θ, and θ) that generates the maximum and minimum outputs (Y,Y). .
The under and overscore symbolmeansminimum andmaximum values. This is the basis
for the approach to uncertainty propagation problem called interval analysis. It is impor-
tant to highlight that this solution is not trivial, since the extreme output is not necessarily
given by the combination of extreme input (Y = f

(
Z∗
u, θ

∗
u

)
and Y = f

(
Z∗
l , θ

∗
l

)
, where

Z∗ = (Z∗
1,Z

∗
2 , . . . ,Z∗

d ) and θ∗ = (Z∗
1,Z

∗
2 , . . . ,Z∗

d )). A double optimization can be used
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in order to cope with this problem, which is usually referred to as anti-optimization
interval analysis.

The anti-optimization analysis can be stated as:

Find [Z∗
l , θ

∗
l ] and [Z∗

u, θ
∗
u ] that minimizes and maxmimizes the output [Y,Y]

Subject to : Z∗ ∈ [Z,Z], and θ∗ ∈ [θ, θ ]. (13)

In this anti-optimization scenario, the number of design variables is d + i, being d
the number of uncertain input variables and i the number of parameters.

Fig. 1. Representation of a system with uncertain variables Z, parameters θ and output Y.

In this work the optimization procedure will be carried by a Spiral Optimization
Algorithm (SOA) with the following optimization parameters: population n = 20, con-
vergence rate r = 0.99, rotation angle β = π/2, randomization index α = 0.99, con-
traction factor αt = 0.99, and convergence tolerance tol = 0.01. For more information
on the anti-optimization interval analysis approach, please refer to [3].

2.4 Multivariate Generalized Polynomial Chaos Expansion (gPCE)

According to [15], the gPCE is a way of representing a stochastic process u(z) para-
metrically. Consider a vector of uncertain variables Z = (Z1,Z2, . . . ,Zd ) mutually
independent, the gPCE expands the process using orthogonal polynomials � as follows

uN (Z) =
∑

|j|≤N

ûj�j(Z), (14)

where z represents the random variables,N is the degree of the expansion, and u
∧

is theN -
th degree orthogonal gPCE projection (being N = (n + p)!/(n!p!)). There are two main
approaches regarding the PCE: intrusive and non-intrusive. In the intrusive method, the
PCE decomposition is introduced directly within themodel. In the non-intrusivemethod,
on the other hand, the model is assumed as a black box and sampled for integration at
specific points. In this study only the non-intrusive method will be included since this
allows easy implementation for any given system representation.

The original PCE was based on Hermite polynomials, and the application was effec-
tive only for Gaussian distributed parameters. The gPCE, however, uses orthogonal basis
polynomials chosen according to the distribution of the stochastic parameters. Table 2
shows the correspondence between distributions and polynomial basis in gPCE.
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Table 2. Distributions and polynomial basis. [13].

Distribution of input variables gPCE basis polynomials Support

Gaussian Hermite (−∞, ∞)

Gamma Laguerre [0, ∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

According to [13], one approach to non-intrusive method is called Stochastic
Collocation Method (SCM), that relies on expansion through Lagrange interpolation
polynomials.

ũ(Z) ≡ L(u) =
M∑

j=1

u(Zj)hj(Z), (15)

where hj are the Lagrange polynomials. It is important to note that hi
(
Zj

) = δij for
i, j ∈ [1, . . . ,M ] (δ being Kronecker delta), so the interpolation ũ(Z) is equal to the
exact solution in each of theM collocation points. A set of collocation points are chosen

ZM = {
Zj

}M
j=1, then each of the nodes Zj are solved for j = 1, . . . ,M in a form of

deterministic system. The points can be selected byMonte Carlo simulation, but usually
a clever choice of collocation points is made (following the quadrature rule for example).
This approach is called Multidimensional Colocation PCE.

The mean of the interpolation u
∧

can be computed as

E(ũ) =
M∑

j=1

u(Zj)

∫

T
hj(Z)ρ(z)dz, (16)

where � is the random space in wich Z is defined and ρ(z) is a distribution specific
weight.

Using the quadrature rule to evaluate the integral, Eq. (16) gives

E(ũ) =
M∑

j=1

u(Zj)

M∑

k=1

hj(Zk)ρ(zk)wz, (17)

where zk andwk are the quadrature points and weights respectively. Since the quadrature
points are chosen as collocation points, previous formulation finally becomes Eq. (18)

E(ũ) =
M∑

j=1

u(Zj)ρ(Zj)wj, (18)
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According to [14], the gPCE coefficients can be used to estimate the statistics of a
random process directly as

μ = E

⎡

⎣
∑

|j|≤N

ûj�j(z)

⎤

⎦ = û0 (19)

σ 2 = E

⎡

⎢
⎣

⎛

⎝
∑

|j|≤N

ûj�j(z)

⎞

⎠

2
⎤

⎥
⎦ =

∑
û2 (20)

where μ denotes mean value and σ 2 the variance.

3 Simulation, Results and Discussion

For the following examples, a [±45] graphite/epoxy composite with a thickness of
0.25 mm is used. As mentioned, the dimension of the composite plate is 0.15 m x 0.05 m
with a total of 144 finite elements, and the boundary condition is FFFC (one clamped
edge and the others free, a cantilever plate). The composite is excited by a sustained 0.1N
force applied to the middle of the tip of the rectangular plate and maintained throughout
the simulation, as shown in Fig. 2. The damping ratios for the first four vibration modes
are taken as ζ1 = 2 × 10−2, ζ2 = 3 × 10−2, ζ3 = 6 × 10−2, ζ4 = 1 × 10−1.

Each simulation lasts 0.3 s and is solved in the time domain using Newmark method
with �t = 1 × 10−3 s. The algorithm is implemented in MATLAB R2012a and run in
an Intel® Core™ i5-9600KF 3.7 GHz CPU with 16 GB RAM in approximately 0.2 s.
A modal analysis of the composite structure gives the vibration mode shapes presented
in Fig. 3.

Fig. 2. Finite element mesh representation (clamped in one edge). F denotes the load.
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For comparison purposes the mean and variance results obtained with gPCE will be
used to find the envelopes assuming Y = (2μ − √

12σ 2)/2 and Y = (2μ + √
12σ 2)/2.

Also, with the aim of a fair comparison, the number of Monte Carlo simulations will be
limited according to the number of evaluations of the anti-optimization analysis.

a) b)

c) d) 

Fig. 3. a) first, b) second, c) third, and d) forth vibration modes.

The uncertainty analysis results will be presented in 4 subsections: uncertainty in
fiber orientation angle, excitation load, damping ratio, and finally, an example regarding
a higher number of composite layers.

3.1 Uncertainty in Fiber Orientation Angle

For this problem, the aforementioned configuration is subjected to a ±5◦ uncertainty
in each lamina (uniform distribution). Figure 4 shows the uncertainty envelopes for
MC, anti-optimization interval analysis and multivariate colocation gPCE. The vertical
displacement is measured at the same point where the excitation force is applied (see
Fig. 2).

From Fig. 4, it can be observed that both Monte Carlo and Anti-optimization
approaches produced close results, although the anti-optimization envelop is broader
for the same number of function calls (12600). The PCE method captured the general
envelop behavior efficiently, given it consumed very little function calls (only 22 for a
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Fig. 4. Displacement envelope for ±5◦ uncertainty in fiber orientation.

level 2 polynomial expansion). However, its precision is comparatively lower than the
other methods.

For the first valley (t = 0.08 s), the percentual increase in maximum vertical dis-
placement due to uncertainties found by gPCE,Monte Carlo, and anti-optimization, was
respectively 16.3%, 21.4% e 22.4%([μ − envelopevalue]/μ).

To check main discrepancies in Fig. 4, it was selected 2 points marked with a cross.
These points were exhaustively anti-optimized to find the maximum value for the dis-
placement. The particle swarmalgorithm (PSO)was used as an independent optimization
engine. It was found that there was no combination of the input uncertain variables capa-
ble of further expanding the envelopes in these points, as indicated by the gPCE. This
suggests that the overshoot found by gPCE is most likely due to an imprecision of the
method. Moreover, increasing the level of polynomial expansion up to 6 did not result
in a noticeable improvement in envelope accuracy. Furthermore, it is worth noting that
regions where the anti-optimization obtained a broader envelope do not raise any con-
cern regarding imprecisions. This is because the anti-optimization provides the exact
input configuration that generated each solution, which is a significant advantage over
the gPCE.

For replicability purposes, the PSO algorithm parameters used in the validation tests
were: population n = 100, inertial moment ω = 0.9, cognitive components 1 and 2
c1 = c2 = 2.01, convergence tolerance tol = 10−6, initial mutation coefficient α = 0.9
and mutation decay αt = 0.01.
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3.2 Uncertainty in the Excitation Load

The composite plate is now subjected to a ±20% uncertainty in the excitation load
(uniform distribution). The results can be checked in Fig. 5.

Fig. 5. Displacement envelope for ±20% uncertainty in load.

All uncertainty propagation approaches generated similar envelopes in this exam-
ple, likely because of the low complexity level of the problem. For the first valley, the
percentual increase in maximum vertical displacement due to uncertainties was 20% for
all methods, as expected. The number of function evaluations for gPCE was 7, against
10600 for Monte Carlo and anti-optimization solutions.

3.3 Uncertainty in Damping Ratio

The aforementioned configuration is now subjected only to a ±40% uncertainty in the
damping ratio (uniform distribution). Figure 6 shows the results for each approach.

From Fig. 6 one can note that the damping ratio uncertainty generated narrow
envelopes when compared to load and fiber orientation examples. Thus, the structure
sensitivity to damping is lower in comparison to the already analyzed uncertain variables.
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Fig. 6. Displacement envelope for ±40% uncertainty in damping coefficient.

3.4 Uncertainty in Fiber Orientation with Increasing Number of Laminae

In previous examples Monte Carlo and anti-optimization approaches generated similar
results. In order to have a higher distinction between envelopes, a more challenging
problem is devised. For this reason, the configuration used in this last example has been
modified to accommodate a higher number of uncertain variables.

This last problem is a variation of the first one presented in this work, being a
[454/ − 454] graphite/epoxy composite with ±5◦ uncertainty in each lamina (uniform
distribution). Figure 7 shows the results obtained by each approach.

Compared to the previous examples, the increase in the number of uncertain variables
successfully highlighted the differences between approaches. In this problem, a level 3
polynomial expansionwas used in gPCE (1408 evaluations), resulting in amore accurate
solution compared to the level 2 expansion used in previous examples. Expansions up to
level 6 were tested and did not yield improvements in precision. These higher expansion
levels required 9376, 54672, and 287408 evaluations for levels 4, 5, and 6, respectively.

The anti-optimization approach resulted in a broader envelope and thus a better solu-
tion, as shown inFig. 7. The number of evaluations forMonteCarlo and anti-optimization
was 12600. For the first valley, t = 0.8 s, the percentual increase in maximum vertical
displacement due to uncertainties found by gPCE, Monte Carlo, and anti-optimization,
was respectively 14.8%, 19.6% e 23.6% (evaluated as described in example 3.1).
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Fig. 7. Displacement envelope for ±5◦ uncertainty in fiber orientation at each of the 8 laminae.

4 Conclusion

In this work a 0.15 m x 0.05 m graphite/epoxy composite was simulated in the time
domain using finite element analysis. This composite structure was used in 4 different
uncertainty propagation problems, where gPCE, Monte Carlo, and anti-optimization
were used to generate the vertical displacement envelopes.

The results show that gPCE is an extremely powerful tool, able to solve the problems
with a minimum number function evaluations. Despite being precise in the simpler
problems, gPCE was not able to compete satisfactorily against the accuracy of the other
two methods in the last and more complex example. The narrower envelope resulting of
this approach in the mentioned test translates into imprecisions that go against safety.

Anti-optimization, on the other hand, showed to be a reliable alternative for more
complex problems, although costing much more function evaluations than gPCE. The
ability to provide the exact combination used to generate each solution of the envelope
is a solid advantage for the anti-optimization, which guarantees that every envelope
solution is an actual combination of the uncertain variables.
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Abstract. In this work, we explore the use of Uncertainty Quantification (UQ)
techniques of representation in Bayes estimation and representation. UQ repre-
sentation is a Hilbertian approachwhich furnishes distributions from experimental
data in limited number. It can be used to generate priors to be used by Bayesian
procedures. In a first use, we consider De Finetti’s representation theoremwith few
data points and we show that the UQ methods can furnish interesting priors, able
to reproduce the correct distributions when integrated in the De Finetti’s represen-
tation theorem. In a second use, we consider Bayes estimation of the parameters
of a distribution. Analogously to the preceding situation, a limited sample is used
to generate a UQ representation of the parameters. Then, we use it as prior for the
Bayesian procedure. The results show that the approach improves the quality of
the estimation, when compared to the standard Bayesian procedure. The results
are also compared to Fisher’s procedure of estimation.

Keywords: Uncertainty Quantification · Bayesian Inference · Hilbert
Expansions

1 Introduction

A current task in Statistics consists in the determination of distributions corresponding to
observed data. For instance, we can have a sample formed by n variates from a quantity
X :

X = (X1, . . . ,Xn) (1)

and desire to determine the distribution of X . Between 1912 and 1922, R. A. Fisher
introduced a method for the solution of this problem, nowadays known as Maximum of
Likelihood Estimation (MLE) [1–4]. In Fisher’s approach, the user must furnish a model
for the distribution of X , defined by a Probability Density Function (PDF) f (x, θ), where
θ is a vector of unknown parameters to be determined - f is referred as the model. The
Likelihood associated to the sample is

L(X , θ) =
n∏

i=1

f (Xi, θ) (2)
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and the MLE furnishes an estimator θ
∧

which maximizes the Likelihood:

θ
∧

= argmax{L(X , θ) : θ}. (3)

By the same period, K. Pearson has shed new lights on the works of Thomas Bayes,
Condorcet, and Laplace about inverse probability [5–7]. These works introduced a sec-
ond method for the solution of the problem, which is nowadays known as Bayesian
Inference (BI), and was considered as radically different from Fisher’s approach. In BI,
the parameters θ are considered as random variables and the user must furnish a sec-
ond model gpr(θ) for their distribution, usually referred as the Prior Distribution. The
Bayesian approach updates the Prior using the Bayes Formula:

fpo(θ |X ) = Af (X |θ)fpr(θ). (4)

fpo is called the Posterior Distribution. Here, A is a constant destined to normalize
the product f (X |θ)fpr(θ) to get a probability density (its integral must be equal to the
unity). If the variates in X are independent, - id est, if X is a sample – then f (X |θ) is
the Likelihood:

f (X |θ) = L(X , θ). (5)

Then, the estimation of the parameters θ is made by minimizing the mean value of
a loss function l:

θ
∧

= argmin{E(l(θ , η)) =
∫
l(θ , η)fpo(θ)dθ : η}. (6)

Many loss functions can be found in the literature [8], such as, for instance, the
quadratic one:

l(θ , η) = ‖θ − η‖2, (7)

or the generalized LINEXP [9, 10]:

l(θ, η) =
∑

i
(exp(φ(ηi, θi)) − φ(ηi, θi) − 1), (8)

Here, φ is a conveniently chosen function [10].
In the last years, Uncertainty Quantification (UQ) tools were proposed to determine

the distribution of a random variable from a sample. For instance, the Hilbert Approach
(HA), which can be considered as an extension of Polynomial Chaos Approximations
(PCA). HA considers a Hilbert basis {ϕi : i ∈ N} ⊂ L2(�), where � is the domain of
the possible values of X . If no supplementary information is available, � is estimated
as the range of the observed values in the sample. Then, HA looks for a representation

X =
∑

i∈N xiϕi(U ) ≈ PkX =
∑k

i=0
xiϕi(U ), (9)

where U is a convenient random variable – if no information about the source of ran-
domness is available, U can be an artificial variable, chosen by the user. In this last
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situation, the data can be ranged in an increasing order: X1 ≤ X2 ≤ · · · ≤ Xn, and
U1 ≤ U2 ≤ · · · ≤ Un, to generate a non-negative covariance between X and the
artificial U .

In practice, only the approximation PkX is determined, by determining the coeffi-
cients x = (x0, x1, . . . , xk)t .We can find in the literatureworks dealingwith such a repre-
sentation, such as, for instance, collocation,which considers a sampleU = (U1, . . . ,Un)

and solves the linear system:

Mx = N,Mij = ϕj(Ui),Ni = Xi, 1 ≤ i ≤ n, 0 ≤ j ≤ k. (10)

In general, k + 1 < n (the system is overdetermined) and (10) must be solved by a
least squares approach. Once PkX is determined, we can generate a large sample of U ,
Ug = (

U1, . . . ,Ung
)
and use it to generate a large sample Xg from X as Xi = PkX (Ui),

i = 1, . . . , ng. Then, Xg is used to estimate the CDF and PDF of X , by using the
empirical CDF of the large sample. In the examples below, we use ng = 1E5.

HA can be easily combined to BI, by generating Priors or Models. In the sequel, we
shall examine these combinations and compare their results to MLE and the single BI.

2 Collaboration Between Hilbert and De Finetti Representations

In 1930, Bruno De Finetti introduced the notion of exchangeability, which he consid-
ered preferable to the notion of independency [11, 12]. Recall that X = (X1, . . . ,Xn)

is exchangeable if and only if the distribution of X� = (
X�(1), . . . ,X�(n)

)
coin-

cides with the distribution of X, for any permutation � of {1, . . . , n}. Analogously,
X = {Xi : i ∈ N

∗} is exchangeable if and only if
(
Xi1 , . . . ,Xin

)
is exchangeable,

∀n ∈ N
∗, {i1 < i2 < . . . < in} ∈ (N∗)n. [13]. Among the properties of Exchangeable

sequences, we have the Generalized De Finetti’s Theorem [13, 14]:

In practice, this theorem is applied using the version below:
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De Finetti Representations can be used for estimation. For instance, let us consider
a sample formed by 10 variates from the exponential distribution Exp (3):

X = (0.615, 5.543, 1.266, 1.044, 2.472, 3.862, 0.858, 0.521, 3.135, 7.737). (11)

Assume that we do not know that this data comes from the Exponential Distribution
andwe suppose -erroneously – that the data comes from aGaussian distributionN (m, σ ).
Then, we consider θ = (m, σ ) and

f (x, θ) = 1

σ
√
2π

e− 1
2 (

x−m
σ )

2

. (12)

In this case, MLE furnishes the results shown in Table 1. The unbiased estimation
for σ is σ

∧

obs,unb ≈ 2.4, close to the MLE. If we are interested also in the evaluation of
P(X ≤ i), i = 1, 2, 3,we can use theMLEestimates as parameters in theCDFassociated
to the model density (12) and determine the corresponding values. Alternatively, we can
integrate the density f(1) to determine these probabilities – see the results in Table 1.

Now, assume that we believe that m ∈ (2, 5) and σ ∈ (2, 6). We can use the
generalized De Finetti’s theorem to generate the PDF f(1)(x). If the density associated
to P is p, we have

f(1)(x) =
∫
f (x, θ)p(θ)dθ . (13)

The CDF F(1)(x) can be generated by integrating f(1), and we have P(X ≤ i) =
F(1)(i) = ∫ i

−∞f(1)(x)dx. In practice, the lower bound of the integral is taken as a con-
venient finite negative number – we use −10 as lower bound. We can also use f(1) to
estimate

m(1) ≈
∫
xf(1)(x)dx, σ

2 ≈
∫ (

x − m(1)
)2
f(1)(x)dx. (14)

As an example, let us assume that our belief is that p corresponds to an uniform
distribution – which is not the distribution corresponding to De Finetti’s theorem. Then,
we obtain the results in Table 1 and the distribution exhibited in Fig. 1.

However, in the Bayesian approach, we can modify our prior. For instance, let us
use a prior more adapted to De Finetti’s theorem - a gaussian distribution or a gaussian
for m and a χ2(9) for σ .The results appear in Table 1.
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Fig. 1. Example of Application of De Finetti’s theorem with an uniform belief for m and σ .

Table 1. Examples of Estimation results, with a gaussian model.

P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m σ

model f(1) model f(1) model f(1)

Exact 0.2835 0.4866 0.6321 3 3

MLE 0.2280 0.3790 0.5513 2.7 2.3

De Finetti Uniform 0.2930 0.2731 0.3944 0.3676 0.5030 0.4750 3.0 3.6

De Finetti Gauss 0.3159 0.2964 0.4269 0.4060 0.5441 0.5269 2.6 3.3

De Finetti Gauss/χ2 0.2984 0.2843 0.4132 0.3978 0.5360 0.5232 2.7 3.2

Table 2. Examples of Estimation results, with a gaussian model, using a confidence interval
α = 0.05.

P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m σ

model f(1) model f(1) model f(1)

Exact 0.2835 0.4866 0.6321 3 3

De Finetti Uniform 0.2954 0.2820 0.4206 0.4085 0.5546 0.5478 2.6 3.0

De Finetti Gauss 0.2858 0.2709 0.4149 0.4022 0.5540 0.5490 2.6 2.9

De Finetti Gauss/χ2 0.2969 0.2875 0.4209 0.4112 0.5533 0.5463 2.6 3.0

We can also use confidence intervals for m and σ instead of a “belief” interval, as
in the preceding. For instance, using confidence intervals with α = 0.05, we obtain the
results in Table 2. Results for α = 0.01 appear in Table 3.

Acollaboration between theHilbertian andBayesian approaches canbe implemented
by using the HA to generate a prior distribution for the couple (m, σ ): we start by
generating samples from m and σ – for instance, we can use a bootstrap to generate
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Table 3. Examples of Estimation results, with a gaussian model, using a confidence interval
α = 0.01.

P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m σ

model f(1) model f(1) model f(1)

Exact 0.2835 0.4866 0.6321 3 3

De Finetti Uniform 0.3338 0.3154 0.4468 0.4286 0.5644 0.5502 2.5 3.4

De Finetti Gauss 0.3094 0.2854 0.4313 0.4110 0.5602 0.5514 2.5 3.1

De Finetti Gauss/χ2 0.3156 0.3015 0.4338 0.4196 0.5583 0.5479 2.5 3.2

samples M and S of nb variates from m and σ , respectively. These samples can be
used to determine finite expansions Pkm(U ), Pkσ(U ), where U is a convenient random
variable. Then, the expansion can be used to determine the PDFs pm, pσ , of m and σ ,
respectively (as indicated in the preceding, we generate ng = 1E5 variates from each
variable to estimate their distributions). A possible prior is p(m, σ ) = pm(m)pσ (σ ),
which can be used in the Bayesian Approach.

As an alternative, we can use HA to generate a representation PkX (U ) of X , and
use this representation to generate samples from m and σ , which are used to determine
Pkm(U ), Pkσ(U ). As previously indicated, we generate ng = 1E5 variates from each
variable to estimate their distributions.

As an example, let us consider a variableU ∼ N (0, 1) and determine approximations
with nb = 500, k = 3 and ϕi(U ) = si−1, s = (U − a)/(b − a), where a = minU,
b = maxU – these values are chosen to get 0 ≤ s ≤ 1. The coefficients of the expansion
were calculated by collocation [15–17]. This approach produces the results shown in
Fig. 2 and Table 4. For k = 5, we obtained the results shown in Table 5.

Fig. 2. Examples of Priors determined by HA.
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Table 4. Examples of estimation results using a gaussian model, and a prior generated by HA,
k = 3, nb = 500.

P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m σ

model f(1) model f(1) model f(1)

Exact 0.2835 0.4866 0.6321 3 3

From Pkm,Pkσ (bootstrap) 0.2402 0.2263 0.3936 0.3840 0.5657 0.5701 2.6 2.3

From PkX (representation) 0.2292 0.2292 0.3877 0.3874 0.5679 0.5675 2.6 2.2

Table 5. Examples of estimation results using a gaussian model and a prior generated by HA,
k = 5, nb = 500.

P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m σ

model f(1) model f(1) model f(1)

Exact 0.2835 0.4866 0.6321 3 3

From Pkm,Pkσ (bootstrap) 0.2386 0.2264 0.3850 0.3759 0.5502 0.5523 2.7 2.4

From PkX (representation) 0.2380 0.2374 0.4788 0.4787 0.7278 0.7284 2.1 1.5

Of course, the results are improved if we know that the distribution of X is Expo-
nential. In this case, we can use an exponential model and an exponential variable U:
obtain the results in Table 6

f (x,m) = me−x/m,U ∼ Exp(mobs), (15)

where mobs is the empirical mean. In this situation, we obtain the results in Table 6 and
Fig. 3. Notice that the results generated by PkX (U ) are close to the exact ones.

Table 6. Examples of Estimation results, with an exponential model, k = 3, nb = 500.

P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m

model f(1) model f(1) model f(1)

Exact 0.2835 0.4866 0.6321 3

MLE 0.3090 0.5225 0.6701 2.7

De Finetti Uniform 0.3516 0.3569 0.5795 0.5999 0.7273 0.7127 2.2

From Pkm (bootstrap) 0.3462 0.3355 0.5725 0.5499 0.7205 0.6988 2.9

From PkX (representation) 0.2895 0.2244 0.4951 0.3997 0.6413 0.5439 2.3
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Fig. 3. Examples of resulting PDFs generated by the De Finetti’s theorem with an exponential
model. The PDF generated by using the prior generated by PkX is almost identical to the exact
one.

3 Collaboration Between Hilbert and Bayesian Update

Applying De Finetti’s theorem can be computationally expensive, since a large number
of integrals has to be calculated. A simpler approach consists in use the Bayesian Update
(4) to determine a Posterior Distribution fpo for the parameters θ . Then, we can use fpo
and a loss function to estimate the parameters. Using the values determined, the model
furnishes the probabilities.

Let us consider again the situation presented in the previous section. We consider
the classical quadratic loss function (7) and GLINEXP with

φ(η, θ) = η

θ
− 1, (16)

Analogously to the preceding section, we start by choosing a model for the distri-
bution of X . In a second step, we generate a prior for m and σ , from samples M and
S of nb variates from each variable. These samples are generated by bootstrap or from
PkX (U ) – whatever the choice, the samples are used to construct Pkm(U ), Pkσ(U ), and
these expansions are used to generate the prior fpr , and the posterior fpo, by the Bayesian
Update (4).

For instance, let us consider the gaussian model (12) – which is erroneous, since the
data comes from an exponential distribution. We can apply the method above, and we
obtain results as shown in Table 7. The HA/BI approach was compared to the Uniform
Prior and to two classical noninformative priors for Gaussian models: Jeffreys’ Prior
1/σ 2 [18] and the hierarchical Jeffreys Prior 1/σ [18].

Again, if the information about the distribution of X is available, we can use an
exponential model for X. In this case, the results improve, as shown in Table 8. Notice
that the results furnished by the Prior generated by PkX are almost exact in this situation.
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Table 7. Examples of estimation results using a gaussian model.

Prior Loss Function P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m σ

Exact 0.2835 0.4866 0.6321 3 3

Uniform, α = 0.05 Quadratic (7) 0.2638 0.3969 0.5435 2.7 2.7

Uniform, α = 0.05 GLINEXP (8) 0.2461 0.3662 0.5012 3.0 2.9

Jeffreys Quadratic (7) 0.2444 0.3873 0.5476 2.7 2.5

Jeffreys GLINEXP (8) 0.2282 0.3573 0.5052 3.0 2.6

Jeffreys (hierarchical) Quadratic (7) 0.2463 0.3882 0.5472 2.7 2.5

Jeffreys (hierarchical) GLINEXP (8) 0.2281 0.3547 0.5000 3.0 2.7

From Pkm,Pkσ
(bootstrap)

Quadratic (7) 0.2705 0.4079 0.5557 2.6 2.6

From Pkm,Pkσ
(bootstrap)

GLINEXP (8) 0.2695 0.3822 0.5661 2.6 2.6

From PkX
(representation)

Quadratic (7) 0.2720 0.4067 0.5565 2.6 2.6

From PkX
(representation)

GLINEXP (8) 0.2724 0.4093 0.5584 2.6 2.6

Table 8. of estimation results using an exponential model.

Prior Loss Function P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m

Exact 0.2835 0.4866 0.6321 3

Uniform (Jeffreys), α = 0.05 Quadratic (7) 0.2875 0.4924 0.6384 3.0

Uniform(Jeffreys), α = 0.05 GLINEXP (8) 0.2684 0.4648 0.6085 3.2

From Pkm,Pkσ (bootstrap) Quadratic (7) 0.2481 0.4346 0.5749 3.5

From Pkm,Pkσ (bootstrap) GLINEXP (8) 0.2758 0.4755 0.6201 3.1

From PkX (representation) Quadratic (7) 0.2835 0.4866 0.6321 3.0

From PkX (representation) GLINEXP (8) 0.2835 0.4866 0.6321 3.0

Here, the Jeffreys’ Prior is uniform. In addition, no hierarchical approach can be applied,
since we have a single parameter (the mean m).

4 Using the Hilbert Approach to Generate a Likelihood

As previously mentioned, HA can be used to generate a model f (x, θ), and a Likelihood
L(X , θ). To exemplify the approach, let us consider again the data (11) and let us generate
a model for the situation where θ = m.

We start by reconsidering the expansion PkX : in the preceding situations, it was
determined by finding a Least Squares solution for (10), id est, by looking for the
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solution of

x∗ = argmin
{
‖Mx − N‖ : x ∈ R

k+1
}
. (17)

However, this problem does not take into account the mean m, which is part of the
model. A simple way to integrate m in the procedure consists in looking for a constrained
minimum:

x∗ = argmin
{
‖Mx − N‖ : x ∈ R

k+1,Mx = m
}
,Mx = 1

n

n∑

i=1

k∑

j=0

Mijxj. (18)

The problem (18) can be easily solved by introducing a Lagrange’s Multiplier λ,

associated to the restriction. The vector
∼
x= (x; λ) satisfies a linear system

∼
M

∼
x = ∼

N, (19)

analogous to (10).Once the systemwas solved,we can use the expansionPkX to generate
the PDF of X , and use it to determine the Likelihood L(X , θ) = f (X |θ).

For instance, let us consider k ∈ {3, 5} and a random variable U ∼ N (0, 1), nb =
250. Examples of results of the Likelihood generated appear in Fig. 4.

A first use for these Likelihoods is the determination of an MLE: we can determine
the valuem

∧

corresponding to their maximum. Examples of results are shown in Tables 9
and 10.

A second use consists in Bayes Updating: we can generate a posterior distribution
for m using (4). The prior can be chosen by the user or generated by HA, as in the
preceding section. Examples of results, generated using the approaches by bootstrap
and representation ofX , are shown in Tables 9 and 10. The probabilities P(X ≤ x) are
obtained by numerical integration of the model f (x,m

∧

):P(X ≤ x) = ∫ x
−∞f

(
x,m

∧)
dx. In

practice, the lower bound of integration is taken as the minimal value of X .

Fig. 4. Examples of Likelihood L(X ,m) generated by HA. At left, k = 3; at right k = 5.
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Table 9. Examples of estimation results using U ∼ N (0, 1) and k = 3

Prior Loss Function P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m

Exact 0.2835 0.4866 0.6321 3

MLE from the Likelihood generated by HA 0.2732 0.4516 0.5639 3.2

From Pkm,Pkσ (bootstrap) Quadratic (7) 0.3544 0.4836 0.5951 2.6

From Pkm,Pkσ (bootstrap) GLINEXP (8) 0.3033 0.4485 0.5648 2.9

From PkX (representation) Quadratic (7) 0.3125 0.4542 0.5699 2.9

From PkX (representation) GLINEXP (8) 0.3125 0.4542 0.5699 2.9

Table 10. Examples of estimation results using U ∼ N (0, 1) and k = 5

Prior Loss Function P(X ≤ 1) P(X ≤ 2) P(X ≤ 3) m

Exact 0.2835 0.4866 0.6321 3

MLE from the Likelihood generated by HA 0.2861 0.4666 0.5555 2.9

From Pkm,Pkσ (bootstrap) Quadratic (7) 0.3877 0.4947 0.5815 2.6

From Pkm,Pkσ (bootstrap) GLINEXP (8) 0.2877 0.4969 0.5561 2.9

From PkX (representation) Quadratic (7) 0.2894 0.4756 0.5629 3.0

From PkX (representation) GLINEXP (8) 0.2894 0.4756 0.5629 3.0

5 Concluding Remarks

We considered the use of the Hilbert Approach (HA) in Uncertainty Quantification (UQ)
as an auxiliary method to the Bayesian Inference (BI). The Hilbert Approach was used
for the generation of priors and Likelihoods. A first example was the use in De Finetti’s
representation theorem with a small number of data points. In the examples considered,
HA furnished convenient priors and led to good results, evenwhen a distribution different
from the real one was used for the HA approximation. A second use considered the
estimation of the parameters of a distribution. In a first application, HA was used to
generate a model for the distribution of the parameters, using samples generated by
two different techniques – bootstrap and representation of the variable itself. In both
the cases, the distributions generated appeared to be convenient and led to good results.
The last application was the use of HA to generate Likelihoods. In this situation, the
performance was inferior for approximations of degree 3, but was more interesting for
approximation involving a degree 5.

The experiments and results seem to indicate that the collaboration between HA and
BI can be an interesting tool in estimation. Since the number of examples was limited
up to this date, more evidence is requested for definitive conclusions. In addition, a
single Hilbert basis was considered – the polynomial one, so that other basis must be
investigated. These developments will be matter of future work.



On the Collaboration Between Bayesian and Hilbertian Approaches 189

References

1. Fisher, R.A.: On an absolute criterion for fitting frequency curves.Messenger ofMathematics,
vol. 41, pp. 155–160 (1912).Republished at Statistical Science, vol. 12, no. 1, pp. 39–41 (1997)

2. Fisher, R.A.: On the “probable error” of a coefficient of correlation deduced from a small
sample. Metron 1, 3–32 (1921)

3. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc.
Lond. Ser. A, Contain. Pap. Math. Phys. Charact. 222, 309–368 (1922)

4. Fisher, R.A.: The goodness of fit of regression formulae, and the distribution of regression
coefficients. J. R. Statist. Soc. 85(4), 597–612 (1922)

5. Pearson, K.: The fundamental problem of practical statistics. Biometrika 13(1), 1–16 (1920)
6. de Laplace, PierreSimon : Mémoire sur la probabilité des Causes par les Evénements. Mem-

oires de mathematique et de physique presentes a l’Academie royale des sciences, par divers
savans, & lus dans ses assemblees, 6 621–656 (1774)

7. Condorcet (de Caritat, Jean-Antoine-Nicolas). Essai sur l’application de l’analyse à la
probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)

8. Zhang, Y.-Y.: The Bayesian posterior estimators under six loss functions for unrestricted and
restricted parameter spaces. In: Tang, N., (ed.) Bayesian Inference on Complicated Data,
Chapter 7, pp. 89-106 (2020)

9. Chang,Y.C.,Hung,W.L.: LINEX loss functionswith applications to determining the optimum
process parameters. Qual. Quant. 41, 291–301 (2007)

10. Nassar, M., Alotaibi, R., Okasha, H., Wang, L.: Bayesian estimation using expected LINEX
loss function: a novel approach with applications. Mathematics 10(3), 436 (2022). https://
doi.org/10.3390/math10030436

11. De Finetti, B.: Funzione Caratteristica di un Fenomeno Aleatorio, Memoria della Reale
Accademia dei Lincei, vol. IV, fasc. 5, pp. 86-133 (1930)

12. De Finetti, B.: La prévision : ses lois logiques, ses sources subjectives. Annales de l’Institut
Henri Poincaré, tome 7(1), 1–68 (1937)

13. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (2000)
14. Hewitt, E., Savage, L.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc.

80, 470–501 (1955)
15. Souza de Cursi, E.: Uncertainty Quantification with R. Springer Verlag, Berlin (2023)
16. Souza de Cursi, E.: Uncertainty Quantification with Excel. Springer Verlag, Berlin (2022)
17. Sampaio, R., Souza de Cursi, E.: Uncertainty Quantification with Matlab. JISTE/Elsevier

(2015)
18. Box, G., Tiao, G.: Bayesian Inference in Statistical Analysis. Wiley, Hoboken (1992)

https://doi.org/10.3390/math10030436


A Data-Based Estimation of Power-Law
Coefficients for Rainfall

via Levenberg-Marquardt Algorithm:
Results from the West African Testbed

Rubem V. Pacelli1(B), Nı́colas de A. Moreira1, Tarcisio F. Maciel1,
Modeste Kacou2, and Marielle Gosset3

1 Federal University of Ceará, Fortaleza, Brazil
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Abstract. Rainfall monitoring is of paramount importance for many
applications, such as meteorology, hydrology, and flood prevention. In
order to circumvent the expensive deployment of weather radar networks,
many articles propose rainfall estimation by using the received signal
power of microwave links as they are sensitive to precipitation at certain
frequencies. In this context, the International Telecommunication Union
(ITU) provides a power-law relationship that allows the computation of
the precipitation rate from the attenuation due to rainfall. This physics-
based approach uses scattering calculation to derive the power-law coef-
ficients, which depend only on the frequency. However, the practical use
of this equation faces other important parameters, such as the link length
and the distance from the bucket gauge to the microwave link. These fac-
tors may significantly affect the prediction. In this article, it is proposed
a data-based alternative for the estimation of the power-law coefficients,
where the Levenberg-Marquardt algorithm is used to adjust them using
several data collected from different radio links in West Africa. The esti-
mation quality is assessed in terms of its correlation with rain rate mea-
surements from bucket gauges spread across the African testbed.

Keywords: rainfall estimation · signal attenuation ·
Levenberg-Marquardt algorithm

1 Introduction

In recent years, the world has been experiencing increasing scenarios of droughts
and floods that threaten many countries economically and in many other differ-
ent ways. Such extreme events might be a consequence of climate change that
tends to worsen over time. An early-warning information system is a key part of
counterbalancing this endangerment. For this purpose, rainfall monitoring plays
a crucial role. The precipitation rate must be precisely measured with high spa-
tial and temporal resolution in order to monitor an eminent extreme event.
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For developed countries, weather radar networks are a well-established solu-
tion for rainfall monitoring. Another usual approach is to use weather satellites
to estimate the precipitation rate. Both solutions are capable of covering a broad
area, which is particularly beneficial for large countries.

Unfortunately, having a dense deployment of weather radars is costly, and
developing countries cannot afford it. Regarding weather satellite monitoring,
some efforts have been made with the Tropical Rainfall Measuring Mission
(TRMM), which consists of a constellation of satellites to monitor and study
tropical and subtropical precipitation. This mission was a result of collaborative
work between the United States and Japan. The TRMM has been an important
data source for meteorological and hydrological activities worldwide [6]. Nat-
urally, some emerging countries in such regions took advantage of the rainfall
measurement. Notwithstanding, it is well-known that satellite rainfall monitor-
ing still lacks accuracy, especially for high-resolution and real-time applications
[5], and ground measurements to tweak the rainfall estimation are still required
to adjust or to downscale satellite estimates.

Some papers have proposed alternatives to rainfall estimation, such as using
satellite radio links already in operation and broadly spread worldwide. These
satellite communication links usually operate on Ka or Ku bands, which are
mainly corrupted by rainfall. Even though these base stations primarily focus
on satellite services, it is possible to estimate the precipitation rate from rain-
induced attenuation of the received signal [1,4,9].

In-situ rain gauge measurement is also a very cost-attractive and high-
accuracy solution to monitor the rainfall [4]. However, this technique only pro-
vides a point-scale measurement, and a high density of gauges would be necessary
to cover an urban area [8]. Another common usage is to compare the rain gauge
measurement with the estimated values of a given method. In this case, the gauge
is not a monitoring system but a reference set to assess the method’s accuracy.

Similar techniques can also be applied to ground-to-ground microwave links
[2,7,10,15]. These terrestrial radio networks have the advantage of providing
measurements of close-to-ground links, which is beneficial for near-surface rain-
fall estimation. In scenarios where weather radars are not available operationally,
commercial microwave links (CML) might be an alternative for measuring rain-
fall [7,10,15]. Since the International Telecommunication Union (ITU) provides
a straightforward relationship between the attenuation due to rain and precipi-
tation rate, it is possible to remove the path attenuation along the link (baseline
level) and calculate the precipitation rate from the remaining attenuation, which
is assumed to be caused by the rainfall. This physics-based approach utilizes scat-
tering calculation to derive the power-law coefficients, which depend only on the
frequency [11]. However, real applications also have other parameters that might
influence the quality of the estimation, such as radio link length, distance from
the precipitation area taken into consideration, etc.

This paper proposes an alternative data-driven estimation of the power-law
coefficients, where the Levenberg-Marquardt algorithm is used to recursively
adjust them in order to minimize the sum of the square of the error. The pre-
dicted rainfall time series of the proposed model is compared with a reference
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rain gauge (closest one), and the Pearson correlation between both curves is com-
puted and used as figure of merit for precision. Moreover, the results are also
compared with the time series predicted by using the standard ITU coefficients.

The main contributions of this article are:

1. Data treatment of the bucket gauge measurements and its mathematical anal-
ysis to estimate the rainfall via Levenberg-Marquardt algorithm.

2. Comparison of the estimated time series with the prediction from the ITU
model.

3. Numerical analysis of a real dataset collected in Niamey, the capital of Niger.

The present article is organized as follows: In Sect. 2, the geographical context
is detailed. Section 3 introduces the Levenberg-Marquardt algorithm and the
data treatment for the present application. In Sect. 4 and 5, the results and
conclusions are exposed, respectively.

2 Geographical Context

The present article makes use of a dataset collected in Niamey, the capital of
Niger. The environment is characterized as semi-arid, with a rainfall rate between
500 mm/yr and 750 mm/yr, where most of this precipitation occurs between
June and September. There is practically no rain in the remaining months (from
October to April). Convective rains created by Mesoscale Convective Systems
(MCS) comprise for 75% − 80% of the total rainfall [14].

The commercial microwave link data was originally obtained through a part-
nership established with the mobile telecommunication operator Orange (the net-
work has now been bought by Zamani Com). The project entitled “Rain Cell Africa
- Niger” is financed by the World Bank’s Global Facility for Disaster Reduction
and Recovery (WB/GFDRR) and aims to test the potential of CML-based rain-
fall estimation for urban hydrology in Africa. Indeed, previous results for a single
radio link in Ouagadougou have indicated the feasibility of such an approach [2].

In order to cover this area, an instrumental setup that records the received
power level and rainfall gauge measurement was built in Niamey. In 2017,
this system continuously recorded the testbed for 6 months, approximately,
and yielded a dataset from 135 microwave links and three bucket gauges. The
microwave frequencies varies from 18 GHz up to 23 GHz, with a link length
between 0.5 km and 5.5 km. Their measurements were recorded at a period of
15 min between the samples and with a resolution of 1 dB. The bucket gauges,
on the other hand, recorded the precipitation in mm h−1 with a resolution of
0.5 mm but at the same rate. It is assumed no timing synchronism impairment
between the samples from the CML and the bucket gauge.

The criterion used to associate the kth radio link to the ith tipping bucket
gauge is the selection of the gauge whose distance from the center point of
the communication link to it is minimum. This distance varies from 1 km to
6 km, approximately. Table 1 shows the number of radio links associated with
each tipping gauge. The tipping gauge of number 1 has much more radio links
associated with it, which naturally leads to more data availability.
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Table 1. Distribution of radio links by frequency for each gauge: each row has the
number of links that are associated with a given gauge.

Gauge number 18 GHz 19 GHz 22 GHz 23 GHz

1 4 4 44 45

2 2 1 10 8

3 3 3 3 8

3 Mathematical Analisys and Data Treatment

3.1 The Levenberg-Marquardt Algorithm

Let yi(n) ∈ R be the nth measurement sample collected by the ith rain gauge
(in mm/h) during one day. The signal yi(n) has no missing or zero-valued data,
i.e., only the time series intervals with rainfall measurements are considered.

Let us further define xk(n) ∈ R as the specific attenuation (in dB/km)
attributable to rain along the kth radio link for the same day. Each signal
xk(n) ∈ R is associated to one and only one gauge yi(n). Our goal is to pre-
dict yi(n) by using the set {xk(n) | k ∈ Si}, where Si is the set of radio links
associated to the gauge i.

A power-law relationship converts the specific attenuation into rain rate by
using the following formula [15]:

ŷi(n) = wk,1

√
xk(n)
wk,0

, (1)

where wk =
[
wk,0 wk,1

]� and (·)� is the transpose operator.
The usual method is to apply Mie’s solution to Maxwell’s equations in order

to evaluate the attenuation-rainfall relationship and define wk. This approach
requires defining the environment temperature and the radio link operating fre-
quency.

Another alternative is to treat (1) as an optimization problem, where each
link-gauge pair has its own set of coefficients that minimizes a given objective
function. For linear problems, the ordinary least-squares algorithm provides an
analytical solution that minimizes the squared Euclidean distance of the error
vector between the data and the curve-fit function. However, the power-law
relationship is clearly nonlinear in its parameters, wk, and thus an iterative
process shall be used in order to find the optimum solution. By treating the
present problem as a nonlinear least-squares regression, the objective function
can be defined as

E(wk(n)) = e�
i (n)ei(n)

= y�
i (n)yi(n) − 2y�

i (n)ŷi(n) + ŷ�
i (n)ŷi(n), (2)
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where ei(n) = yi(n) − ŷi(n) is the error vector, with yi(n) = [yi(1)yi(2)
· · · yi(n)]� and ŷi(n) =

[
ŷi(1) ŷi(2) · · · ŷi(n)

]�. For each sample n, the opti-
mization algorithm acts recursively on the parameter vector wk(n) in order to
minimize the cost function, E(·).

The first-order Taylor series approximation of the function E(·) at the instant
n + 1 is given by

ΔE(wk(n)) � Δw�
k (n)g(n), (3)

where ΔE(wk(n)) = E(wk(n+1))−E(wk(n)) is the difference of the cost function
between the instants n + 1 and n, Δwk(n) = wk(n + 1) − wk(n) is the update
vector to be calculated by the optimization method, and

g(n) =
∂E(wk(n))

∂wk(n)
(4)

is the gradient vector.
By replacing (2) into (4), we have that [3]

g(n) = −2
∂ŷi(n)
∂wk(n)

y(n) + 2
∂ŷi(n)
∂wk(n)

ŷi(n)

= −2J�(n)ei(n), (5)

where

J(n) =
∂ŷ�

i (n)
∂wk(n)

(6)

is the Jacobian matrix in denominator layout. The steepest descent algorithm
updates the parameters vector in the opposite direction of the gradient vector.
In other words, the vector

Δwk(n) = γJ�(n)ei(n) (7)

points at the tangent line in which the downhill direction of E(·) is maximum on
the operating point wk(n). In this equation, the value γ ∈ R is a step-learning
hyperparameter that regulates the convergence speed [13]. Although the gradient
descent method has the advantage of simplicity, such an estimator has only first-
order local information about the error surface in its neighborhood. In order to
increase the performance of the estimator, one can employ another algorithm,
called Newton’s method, which considers the quadratic approximation of the
Taylor series, i.e.,

ΔE(wk(n)) � Δw�
k (n)g(n) +

1
2
Δw�

k (n)H(n)Δwk(n), (8)

where

H(n) =
∂2E(wk(n))

∂wk(n)∂w�
k (n)

(9)
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is the Hessian matrix at the instant n.
By differentiating (8) with respect to wk(n) and setting its value to zero, we

get the update vector that minimizes E(·) quadratically, which is given by

g(n) + H(n)Δwk(n) = 0

Δwk(n) = −H−1(n)g(n), (10)

where 0 is the zero vector. Replacing (5) into (10), ignoring the constant factor,
and inserting the step-learning, yields

Δwk(n) = γH−1(n)J�(n)ei(n). (11)

whereas the steepest descent seeks the tangent line in the most downhill
direction, Newton’s algorithm finds the tangent parabola that minimizes the
cost function, which prompts to a faster convergence to the optimum value when
compared to gradient-based methods. However, the biggest drawback is the com-
putation of H−1(n), which is usually costly.

One way out is to resort to quasi-Newton methods, where the inverse of the
Hessian matrix is updated recursively and updated by low-rank matrices, with-
out requiring inversion. Another solution is to obtain a nonrecursive approxi-
mation of H(n). For the optimization problems where the objective function is
the sum of the squares of the error, the Gauss-Newton method can be used to
accomplish such task. The biggest advantage is that the Hessian is approximated
by a Gramian matrix that takes only first-order derivatives, in addition to being
symmetric and positive definite, which consequently makes it invertible.

The base idea of the Gauss-Newton method is to linearize the dependence of
ŷi(n) on a local operating point w, i.e.,

ŷi(n)|wk(n)+w � ŷi(n) +
∂ŷ�

i (n)
∂wk(n)

w

� ŷi(n) + J(n)w, (12)

where ŷi(n)|wk(n)+w is the value of ŷi(n) when the coefficient vector is wk(n)+
w. By replacing (12) into (2), it follows that

E(wk(n) + w) =y�
i (n)yi(n) − 2y�

i (n)(ŷi(n) + J(n)w)

+ (ŷi(n) + J(n)w)�(ŷi(n) + J(n)w)

=y�
i (n)yi(n) + ŷ�

i (n)ŷi(n)

− 2(yi(n) − ŷi(n))�J(n)w

− 2y�
i (n)ŷi(n) + w�J�(n)J(n)w (13)

Thus, differentiating (13) with respect to w, and setting the result to zero,
we obtain w = Δwk(n), i.e.,

− J�(n)ei(n) + J�(n)J(n)Δwk(n) = 0. (14)
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Reorganizing the previous equation and inserting the step-learning, we have
that

Δwk(n) = γ(J�(n)J(n))−1J�(n)ei(n). (15)

By comparing (15) with (11), we notice that the Gauss-Newton method
approximates the Hessian matrix, H(n), to 2J�(n)J(n) (the constant factor
was dropped out), thus avoiding second-order derivatives.

The Levenberg-Marquardt (LM) method combines the two algorithms pre-
sented in this article: the steepest descent and a Newton-like algorithm. It tries to
take advantage of the convergence guaranteed1 by the gradient method, and the
fast convergence of Newton’s method. The update vector of the LM algorithm
is given by

Δwk(n) = γ
(
J�(n)J(n) + λ(n)I

)−1
J�(n)ei(n), (16)

where I is the identity matrix. The goal of the hyperparameter λ(n) is twofold:
it performs the Tikhonov regularization, preventing J�(n)J(n) from being ill-
conditioned, and also controls how the algorithm behaves. The LM method leans
toward Gauss-Newton for small values of λ(n), while large values make it behave
as the gradient descent. The initial coefficient vector, wk(1), is likely far from the
optimal point since it is randomly initialized. Hence, it is sensible that the LM
algorithm initially behaves like the gradient descent once J�(1)J(1) is probably
a bad estimate (the Hessian matrix depends on the operating point of the coef-
ficient vector when the cost function is nonquadratic). Insofar as the estimate of
H(n) becomes trustworthy, the LM algorithm shall decrease λ(n) toward zero,
causing it to behave like the Gauss-Newton.

Finally, the coefficient vector adopted to estimate the rainfall is defined as

wk � wk(N + 1) = wk(N) + Δwk(N), (17)

where N is the number of samples in the training set.

3.2 Data Treatment and Analysis

The first step in the data treatment is to select days with rainfall events from
the collected time series. In other words, the received power level, x̃k(m), and
rainfall gauge measurement, ỹi(m), are decimated, producing x̃k(n) and yi(n),
respectively. From the 6-month dataset, only 11 days with rainfall events are
considered. A rainfall event is defined as a period in which the bucket gauge
continuously measures nonzero values for, at minimum, 3 h and 45 min. Since
the recording period is only 15 min, it leads to a dataset containing at minimum
15 samples for each rainfall event.

1 Provided that γ is properly chosen.
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Afterwards, the sampled received power level is converted to the specific
attenuation, xk(n), by subtracting the baseline level from x̃k(n) and dividing it
by the distance of the kth radio link. The baseline is determined by using the
method recommended by Schleiss and Berne [12], which uses the moving window
method to determine the variance.

In order to obtain a reliable analysis with the available dataset, it is performed
a cross-validation where each fold comprises the samples obtained from a given
rainfall event. The parameters were estimated using the training dataset, whereas
the test dataset is used to assess the model performance. For this paper, it is
adopted a ratio of 63% − 37% for the training and test datasets, respectively. It
leads to 7 and 4 days for the training and test datasets, respectively. Algorithm
1 summarizes the procedure used in this work to process the data, estimate the
parameters, and analyze the results. In this algorithm, the symbol ρ indicates
the Pearson correlation coefficient between yi(n) and ŷi(n), which is used as
figure of merit.

Algorithm 1: Data processing for the kth radio link
Input: xk(m)
Output: Pearson correlation of all folds

1 foreach Fold do // Cross-validation

2 forall Training set do
3 x̃k(n) ← Decimate x̃k(m)
4 yi(n) ← Decimate ỹi(m)
5 xk(n) ← Get the specific attenuation from x̃k(n)
6 Δwk(n) ← Equation (16)
7 wk(n + 1) ← Δwk(n) + wk(n)

8 forall Test set do
9 ŷi(n) ← Equation (1)

10 ρ ← Compute the Pearson correlation between yi(n) and ŷi(n)

4 Results and Discussions

Considering that the system provides the minimum, mean, and maximum atten-
uation reached by each radio link, Fig. 1 shows the box plot obtained by the
model for each situation. A kernel smoothing technique is applied to the set of
Pearson correlations in order to estimate its distribution, which is also shown
in this figure. For the sake of performance comparison, the results obtained in
this work are contrasted to the performance obtained using the original ITU
coefficients, under the same methodology of test datasets and cross-validation.
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Fig. 1. Box plot of the rainfall estimation.

It is possible to notice that the proposed model presents a considerable vari-
ance with outliers when it is used the maximum or minimum attenuation. How-
ever, for the mean attenuation, the mean correlation is 82.45%, without consid-
erable loss of performance for all folds. This result is slightly lower than the mean
correlation obtained by the physics-based method. However, its performance in
terms of variance, 1.10 × 10−2, surpasses the results obtained when using the
ITU model, which obtained 1.16 × 10−2.

Figure 2 shows the time series estimation for the best and worst folding. Both
estimations came from the gauge number 1, which has more radio links associated
with it. Nevertheless, as shown in Fig. 2a, both methods failed in estimating the
measured rainfall that occurred on June 13, 2017 for a given training-test dataset
split.
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Fig. 2. Time series estimation of the best and worst folding case.
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5 Conclusions and Future Work

In this article, we presented a new methodology to estimate the coefficient
parameters of the rainfall via Levenberg-Marquardt algorithm. The available
data was properly preprocessed before estimating the coefficient parameters. The
cross-validation technique was applied in order to obtain a reliable estimation of
performance, assessed in terms of the Pearson correlation coefficient.

Additionally, the estimated performance was compared with results when
the original ITU coefficients are used, under the same conditions of the test
datasets. The results show that both methodologies achieved similar results,
where the present estimation technique presented a lower mean and variance.

In this work, the power-law relationship provided an estimation mapping that
does not take into account the time correlation between the samples. Moreover,
the raw data was decimated, and only intervals with reasonable rainfall events
are considered. Future efforts might consider the correlation time of the radio
link attenuation, and how it can be exploited to estimate precipitation.
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Abstract. In this paper, we apply a stochastic Kriging-based optimiza-
tion algorithm to solve a generic infrastructure planning problem using
direct policy search (DPS) as a heuristic approach. Such algorithms
are particularly effective at handling high computational cost optimiza-
tion, especially the sequential Kriging optimization (SKO). SKO has
been proving to be well-suited to deal with noise or uncertainty prob-
lems, whereas assumes heterogeneous simulation noise and explores both
intrinsic uncertainty inherent in a stochastic simulation and extrinsic
uncertainty about the unknown response surface. Additionally, this paper
employs a recent stochastic Kriging method that incorporates smoothed
variance estimations through a deterministic Kriging metamodel. The
problem evaluated is the DPS as a heuristic approach, this is a sequential
decision problem-solving method that will be applied to a generic infras-
tructure planning problem under uncertainty. Its performance depends
on system and cost model parameters. Previous research has employed
Cross Entropy (CE) as a global optimization method for DPS, while this
paper utilizes SKO as a stochastic Kriging-based optimization method
and compares the results with those obtained by CE. The proposed app-
roach demonstrates promising results and has the potential to advance
the field of Kriging-based algorithms to solve engineering problems under
uncertainties.

Keywords: optimization problem · stochastic Kriging · sequential
Kriging optimization · direct policy search · infrastructure planning

1 Introduction

Predictive response surfaces through metamodels have been the strategy app-
roach to high computational cost optimization problem-solving. The primary
motivation for using metamodels in simulation optimization is to reduce the
number of expensive fitness evaluations without degrading the quality of the
obtained optimal solution.
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The basic idea is that the metamodel acts as an interpolating or regressor
curve of support points that have information from the objective function and
its constraints so that the results can be predicted without resorting to the use
of the primary source (objective function) [4].

One of the most popular metamodels is Kriging, which has a long and suc-
cessful tradition for modeling and optimizing deterministic computer simula-
tions [14]. The great advantage of this metamodel is that it allows the quantifi-
cation of the uncertainty of the response surface through the mean square error
(MSE). An extension for the application in noisy problems is Stochastic Kriging
(SK) proposed by Ankenman, Nelson and Staum in [1]. Additionally, a recent
stochastic Kriging approach is proposed by Kaminski in [11] with smoothed
variance evaluations using determinist Kriging as a variance surrogate.

A stochastic Kriging-based optimization is a powerful approach that com-
bines stochastic surrogate modeling and optimization robust techniques to effi-
ciently and accurately solve complex optimization problems with uncertain or
noisy data. One of the methods, known as sequential Kriging optimization
(SKO), was first introduced by Huang et al. in [8] and later adapted by Jalali,
Van Nieuwenhuyse and Picheny in [9] to handle heterogeneous noise. This algo-
rithm exploits both the information provided by the stochastic Kriging meta-
model and the uncertainties about the noise of the stochastic problem, choosing
as alternative the maximum augmented expected improvement (AEI) as an infill
criterion, to iteratively add new points, improving the surrogate accuracy while
at the same time seeking its global minimum.

So, in this paper is used SKO as optimization algorithm approaching a recent
stochastic Kriging framework with smoothed variance evaluations to solve the
direct policy search (DPS) with a heuristic applied to a generic infrastructure
planning problem.

Direct policy search is one of the solution frameworks for solving the gen-
eral decision problem under uncertainty. This method has been applied to a
wide range of infrastructure planning problems, including transportation [6],
energy [7], water resource management [5], and risk based inspection (RBI) plan-
ning ([2,13]).

In DPS with a heuristic, the parameters of a function mapping the system
state to decisions are optimized rather than the decisions themselves. What
results from optimization with DPS is therefore not a sequence of decisions, but
a policy that one can operate [15].

Our problem involves applying the DPS optimization technique to an infras-
tructure planning problem. To find the heuristic parameters that maximize the
expected total life-cycle utility under uncertainties, a global optimization method
is necessary. Bismut et al. [3] approaches the cross entropy (CE) method for this
case. In this context, this paper approaches SKO as an alternative method.

The optimization process through SKO involves employing a deterministic
Kriging surrogate to approximate the variance of the error, constructing a predic-
tive surface that provides smoothed noise variance estimates [11]. The variance
of the error is subsequently included in the SK, resulting in a good noise filtering
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metamodel. To guide the addition of new points in the stochastic SKO frame-
work, the AEI infill criterion is applied, utilizing information from the smoothed
variance estimates.

This article is organized as follows: Sect. 2 provides a brief explanation
of the Stochastic Kriging metamodel-based optimization adopted, introducing
the stochastic Kriging framework and the optimization method SKO. Section 3
presents the problem, detailing the heuristic of the direct policy search used and
the generic planning problem; Sect. 4 presents the analysis and results of the
problems; and lastly, conclusions are presented in Sect. 5.

2 Stochastic Kriging Metamodel Based Optimization

The surrogate model, ŷ, is only an approximation of the true stochastic function
f(x, θ) we want to optimize, where θ is the vector of random parameters and x is
the vector of design variables. The use of the Kriging metamodel in optimization
problems is attractive because, not only can it give good predictions of complex
landscapes, but it also provides a credible estimate of the possible error in these
predictions. So, in the Kriging-based optimization algorithm, the error estimates
make it possible to make tradeoffs between sampling where the current prediction
is good (local exploitation) and sampling where there is high uncertainty in the
function predictor value (global exploration), allowing searching the decision
space efficiently [10].

Kriging-based optimization algorithms start by simulating a limited set of
input combinations (referred to as initial sampling) and, to increase the response
surface accuracy, iteratively select new input combinations to simulate by eval-
uating an infill criterion (IC), which reflects information from Kriging. Those
updates points are called Infill Points (IPs). The response surface is then updated
sequentially with information obtained from the newly simulated IPs. The proce-
dure is repeated until the desired performance level is reached, and the estimated
optimum is returned [16].

The remainder of this section briefly explains the stochastic Kriging surrogate
framework adopted and the SKO structure, detailing the augmented expected
improvement (AEI) as infill criteria applied for search and the replication strat-
egy of the IPs.

2.1 Stochastic Kriging

An extension to the deterministic Kriging methodology to deal with stochastic
simulation was proposed by Ankenman, Nelson and Staum in [1]. Their main
contribution was to account for the sampling variability that is inherent to a
stochastic simulation, in addition to the extrinsic error that comes from the
metamodel approximation. Then, the stochastic Kriging (SK) prediction can be
seen as:

ŷ(x) = M(x) + Z(x) + ε(x). (1)
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where M(x) is the usual average trend, Z(x) accounts for the model uncertainty
and is now referred to as extrinsic noise. And, the additional term ε(x), represents
the intrinsic noise, accounts for the simulation uncertainty or variability. The
intrinsic noise has a Gaussian distribution with zero mean and is independently
and identically distributed (i.i.d.) across replications. The SK prediction and
variance for a given point x+ are, respectively:

ŷ(x+) = μ̂ + σ̂2
Zh

T
[
∑

Z +
∑

ε

]−1

(y − μ̂1). (2)

ŝ2(x+) = σ̂2
Z − (σ̂2

Z)2hT
[
∑

Z +
∑

ε

]−1

h +
δT δ

1T [
∑

Z +
∑

ε]
−1 1

. (3)

where μ̂ and σ̂2
z are the mean and variance trend of the SK metamodel, respec-

tively, h is the correlation vector,
∑

Z is the covariance matrix of all the support
points of Z,

∑

ε is the covariance matrix of ε, y is the vector of the approximate
mean value of the objective function at each design point y = 1/nt

∑nt

j=1 y(x,θj),
where nt is the sample size and, lastly, δ(x+) = 1 − 1T [

∑

Z +
∑

ε]
−1

σ̂2
zh(x+).

To improve the quality of the metamodel, Kaminski in [11] employs
deterministic Kriging metamodel prediction to approximate the problem vari-
ance in the stochastic Kriging. So, the covariance

∑

ε is a diagonal matrix
diag{V̂ (x1)/n1, . . . , V̂ (xk)/nt}, where V̂ is given by a determinist Kriging meta-
model built on the sample variances s2i obtained at design point xi, i = 1, 2, . . . , t,
where t is the training sample size. So, the SK prediction for a variance in a given
point is:

̂V (x+) = μ̂V + σ̂2
ZV

hT
[
∑

ZV
+

∑

η

]−1

h. (4)

where h is the correlation vector, μ̂V and σ̂2
zV

are the mean and variance
trend of the variance on the Kriging metamodel, respectively,

∑

ZV
is the

covariance matrix of all the support points of variance extrinsic noise ZV ,
∑

η is the covariance matrix of η. The covariance
∑

η is a diagonal matrix
diag{V̂s2(x1), . . . , V̂s2(xk)}, where the estimator of variance is s2 =

∑n
i=1(yi −

y2)/(n−1) and the variance of this estimator is approximately V̂s2 = 2(s2)/(n−
1). For more stochastic Kriging framework information, see [1,11,17] and [18].

2.2 Sequential Kriging Optimization - SKO

An effective strategy to incorporate the advantages of the noise filtering from SK
metamodel provided by Kaminski in [11] is to incorporate it into the infill criterion.
The Augmented Expected Improvement (AEI), provided by Huang et al. in [8],
is an extension for stochastic function evaluation of the Expected Improvement
(EI) criterion presented by Jones, Schonlau, and Welch in [10] for the deterministic
case. Therefore, in the formulation, uncertainties about the noise of the stochastic
function and the prediction by the Kriging metamodel are taken into account.
So, for algorithm optimization, we use the sequential Kriging optimization (SKO)
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approach by Jalali, Van Nieuwenhuyse and Picheny in [9] where it employs AEI
as an infill criterion. The next infill point is given by:

AEI(x+) = E[max(ymin − ŷ, 0)]

(

1 − σ̂2
ε (x+)

√

ŝ2(x+) + σ̂2
ε (x+)

)

(5)

where ŷ is SK predictor, ymin is the Kriging prediction at the current effective
best solution, i.e., the point with minimum among the simulated point. ŝ2 is
the variance of the metamodel expected value, Eq. 3, and σ̂2

ε = V̂ (xi)/ni is
the variance of the function noise. For more framework details, see [9] and [8].
The maximum of the expected improvement E[max(ymin − ŷ, 0)] is obtained as
discussed by Jones, Schonlau and Welch in [10].

The SKO optimization involves three main steps: first, to select the data of
independent variables in the design space using Latin Hypercube as experimental
design techniques and to obtain the function values of the selected data; then,
to generate the response surfaces of the objective functions; and finally, to carry
out the optimization processes through AEI using information from the response
surface model, the variance of the metamodel expected value and the function
noise, and, finally, find the optimal results.

3 Direct Policy Search to the Infrastructure Planning
Problem

The problem investigated, direct policy search (DPS), is a strategy for solv-
ing sequential decision problems that addresses heuristics as a search strategy
for the global optimum within a reduced solution space. DPS is often chosen
for its flexibility and intuitive principles. The optimal strategy for the decision
problem is:

S∗ = arg max
x∈S

(E[y(x,θ)]) (6)

where S is the space of all possible strategies, and E[y(x,θ)], in our problem,
is the expected total life-cycle utility associated with a strategy x.

3.1 Infrastructure Planning Problem

We investigate a generic infrastructure planning problem, as described Bismut
and Straub in [3], which involves increasing the system’s capacity in an optimized
manner so that demand is met at the lowest implementation cost. Therefore, each
year t, the system’s capacity at must cover the demand θt, which will increase
over the discrete time interval [1, 2, 3, ..., T ]. The initial system capacity a1 is
fixed by the operator and can be increased at any time for a cost. The upgrade
costs are given by:

U = y(x,θ) =
T

∑

t=1

UC,t (x) + UR,t (x,θ) , (7)
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in which
UC,1 (x) = −caa1 (8)

UC,t (x) = (at − at−1)caγt (9)

UR,t (x,θ) = Φ

(

at − θt

α

)

cF γt−1 (10)

where ca = 1 is the upgrading cost factor, cF = 10 is the penalty factor, Φ is the
standard normal cumulative distribution of the capacity, Φ ∼ N(at, θt), α = 0.1
is the tolerance and, lastly, γt is the discount factor γt = 1

(1+r)t with r = 0.02
and θt is the system demand defined in Table 1.

The system incurs a penalty, UR,t, when demand is not met within a certain
margin. Thus, the expected total cost, U , of the system will be given by the
portion of the upgrade cost, UC,t, plus the cost of the excess penalty, URt

. So,
the demand growth dependent on random quantities and the objective function
of the SDP is its expected value:

f(x) = E[U ] = E

[

T
∑

t=1

UC,t (x) + UR,t (x,θ)

]

, (11)

The parameters used for the DPS are given in Table 1. Given the uncertain
nature of demand, the initial demand θ1 is modeled as a normal random variable.
T is the design horizon, while Zt denotes the noisy observation of demand at
time.

Table 1. Model parameters.

Variable Type Mean Std.Dev

θ1 Normal distr μini = 1.0 σini = 0.5

θt function σt−1 + τ –

τ Normal distr μτ = 0.02 στ = 0.05

Zτ Normal distr θt σε = 0.1

T Deterministic 100 [anos] σε = 0.1

Bismut and Straub (2019)

After setting the initial capacity a1, the system is subject to the demand of
the first year θ1, where Z1 is the noisy observation of this demand. Then, the
capacity for the next year (a2) is calculated, and so on, up to the time horizon
T . The capacity can only increase over time and must be restricted to six stages,
t = 0, 1, 2, 3, 4, 5, 6.
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3.2 Heuristics Investigated

It is adopted the following heuristic, presented by Bismut and Straub in [3],
to update the system’s capacity finding. According to this approach, when the
current observation Zt is within a specific margin of the available capacity at,
the system’s capacity is increased by at least Δa, where the size of this margin is
determined by the factor k. This infrastructure planning problem is presented in
Fig. 1. To maximize the expected total life-cycle utility, the Sequential Kriging
Optimization (SKO) method is used to optimize the parameters a1, Δa, and k.

Fig. 1. Heuristic to upgrade the capacity based on the observed value of demand.

4 Comparison of Results

In this section, we investigated the performance of the sequential Kriging opti-
mization (SKO) algorithm with smoothed noise variance applied to a generic
infrastructure planning problem solved by direct policy search. Our focus is
on comparing the results considering continuous design variables, which were
achieved by utilizing the cross-entropy (CE) optimization method, as approached
in both Bismut and Straub in [3] and Lopez, Bismut and Straub in [12]. The
problem consists of:

Find: x∗

that minimizes: f(x) = E [U ]
subject to: k ∈ [0.5, 0.25]

a0 ∈ [1, 3]
Δa ∈ [1, 4]

Figure 2 illustrates the convergence of the expected value of the total cost U
in relation to the sample size of the noisy parameter. It can be observed that the
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expected value start stabilizes after approximately 1600 samples. Furthermore,
we observe that the expected cost, measured at the 10th and 90th percentiles,
stabilizes with larger sample sizes.

Fig. 2. Expected total cost according sample size.

There will be two approaches to the analysis of the problem. Initially, the
direct policy search problem was simplified by considering a one-dimension prob-
lem with only the parameter k as a design variable. Subsequently, the problem
was optimized for all three parameters: a0,Δa, k. We will evaluate both cases by
varying the sampling size (nt) of the stochastic parameter of the DPS problem.

In the SKO optimization algorithm approach, we utilized specific parameters.
These included setting n0 to be equal to 10×d, where n0 represents the number of
elements in the initial sample space of the metamodel, while d is the dimension
of the problem. Moreover, to distribute these elements, we utilized the Latin
Hypercube [10]. Furthermore, the stop criterion for this process was established
when the maximum number of infill points equaled twenty.

4.1 One Dimension Problem

In this case, we considered a one-dimensional problem with only the parameter
k as a design variable. As results obtained by Bismut and Straub in [3], we
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will set the others initial parameters as a0 = 2 and Δa = 1. Subsequently, the
performance of SKO will be evaluated by varying the sample size of the stochastic
parameter (nt). The result is presented in Table 2, with the values representing
the analysis for fifty iterations of the optimization process.

Table 2. Optimum values.

Optimization algorithm Sample size Design variable E[U] E[U]

nt k Mean Std

CE - 0.1236 2.79 –

SKO 1000 0.1123 2.769 0.0011

SKO 500 0.1129 2.769 0.0012

SKO 100 0.1148 2.771 0.0032

According to Table 2, the CE algorithm obtained a minimum value of 2.79,
while the SKO algorithm outperformed it by attaining a better minimum value
of 2.771, considering a small sampling of the stochastic parameter nt = 100, and
presenting a small standard deviation of 0.0032 of the results. Consequently,
the design variable k found by the CE and SKO algorithms were different, with
values of k of 0.1236 and 0.1148, respectively. Moreover, it is worth noting that
the total cost tended to stabilize after 1600 samples, as shown in Fig. 2. This
analysis further supports the superior performance of the SKO algorithm, which
provided a better global minimum value and maintained low variance even with
small samples of the stochastic parameter.

4.2 Three Dimension Problem

For this case, we considered a three-dimensional problem with the parameters
a0, Δa and k as continuous design variable from the DPS, i.e., the generic infras-
tructure planning problem. Then, the resulting optimization problem is posed
for different sample size for both algorithms, CE and SKO. The results obtained
from these algorithms are presented in Table 3, where the mean and standard
deviation of the expected total cost from the CE algorithm is available in Lopez,
Bismut and Straub in [12]. The performance of SKO was analyzed over fifty
iterations of the optimization process.

From Table 3, the results obtained by the SKO largely outperformed CE.
The CE algorithm exhibited average minimum values of 2.7747 and 2.864 for
sample sizes of 10000 and 5000, respectively. The standard deviation for the CE
algorithm was higher for the sample size of 5000, indicating greater variability in
the obtained results. In contrast, the SKO algorithm performed better, showing
relatively low standard deviation for smaller sample sizes. Specifically, focusing
on the results of the smallest sample sizes of 1000 and 500, the minimum mean
values were 2.7768 and 2.7812, with standard deviations of 0.0186 and 0.0211,
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Table 3. Optimum values for Case 02.

Optimization algorithm Sample size E[U] E[U]

nt Mean Std

CE 10000 2.7747 0.0079

CE 5000 2.864 0.2031

SKO 5000 2.7719 0.0129

SKO 1000 2.7768 0.0186

SKO 500 2.7812 0.0211

respectively. Therefore, SKO demonstrated superior performance by finding bet-
ter results for problems with much smaller sample sizes, making it an effective
alternative to the problem. The parameter values obtained by SKO are presented
in the Table 4.

Table 4. Optimum values from SKO.

Sample size Design variable Total cost

5000 a0 = 1.902, Δa = 1, k = 0.1233 2.7719

1000 a0 = 1.875, Δa = 1, k = 0.1296 2.7768

500 a0 = 1.870, Δa = 1, k = 0.1309 2.775

These results demonstrate the efficiency of the SKO optimization algorithm
addressing the stochastic Kriging metamodel with smoothed variance involving
DPS for solving a general planning problem. The obtained results were more
precise and computationally more economical, requiring a smaller number of
stochastic parameter samples. As a result, this strongly supports the use of the
SKO algorithm as an efficient and practical tool for solving similar optimization
problems in various fields.

5 Conclusion

This paper compares the effectiveness of the stochastic Kriging-based optimiza-
tion algorithm (SKO) with the results obtained using the cross-entropy method
in a generic sequential decision problem for infrastructure planning. Addition-
ally, the study approach smoothed variance estimations in both the stochastic
Kriging surrogate and the infill criterion in an optimization framework, which
uses the Augmented Expected Improvement (AEI). The results of the compar-
ison indicate that SKO is a promising optimization algorithm for this type of
problem.

The problem being analyzed involves the optimization of three parameters
- the initial system capacity (a0), the capacity increment (Δa), and a capacity
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correction factor (k) - using a heuristic as the solution strategy. Initially, the
problem was approached as one-dimensional, with the design variable limited
to only the parameter k. Later, the analysis was extended to include all three
parameters as continuous design variables. In both cases, the SKO algorithm
demonstrated superior performance by producing more accurate minimum values
and showing convergence in the results even for a small sampling of the stochastic
parameter.

In conclusion, the use of SKO for direct policy search with a heuristic achieved
excellent results, especially due to incorporating noise information during the
optimization process. In addition to obtaining more accurate results, the SKO
approach reduces computational cost, since it decreases the number of problem
evaluations while improving the accuracy of the noisy model. The use of Kriging-
based algorithms for optimizing modeled systems through stochastic simulation,
especially with heterogeneous noise, is relatively new and has great research
potential.

Notes and Comments. The authors are grateful for the support by CAPES
through PROAP (Graduate Support Program).
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Abstract. Numerical weather and climate prediction have been
addressed by numerical methods. This approach has been under per-
manent development. In order to estimate the degree of confidence
on a prediction, an ensemble prediction has been adopted. Recently,
machine learning algorithms have been employed for many applications.
Here, the con- fidence interval for the precipitation climate prediction
is addressed by a decision tree algorithm, by using the Light Gradient
Boosting Machine (LightGBM) framework. The best hyperparameters
for the LightGBM models were determined by the Optuna hyperparame-
ter optimization framework, which uses a Bayesian approach to calculate
an optimal hyperparameter set. Numerical experiments were carried out
over South America. LightGBM is a supervised machine-learning tech-
nique. A period from January-1980 up to December-2017 was em- ployed
for the learning phase, and the years 2018 and 2019 were used for testing,
showing very good results.

Keywords: Climate prediction · precipitation · decision tree ·
uncertainty quantification

1 Introduction

Precipitation is a very difficult meteorological variable to be predicted, due to its
space and time high variability. But, the rainfall is a key issue for society water
planning, embracing all human activities. For Brazil, precipitation has another
relevant importance, because almost 70% of energy comes from hydroelectric
plants [11,13].

Operational centers for weather and climate forecasting address the predic-
tion by solving a set of mathematical differential equations, where numerical
methods are employed [8,16]. This approach is under continuous development [4].
Another issue is to verify how good is the prediction, quantifying the uncertain-
ties (predictability), showing which regions the forecasting has a better/worse
performance. A scheme for computing the predictability is the ensemble pre-
diction [9]. Indeed, ensemble prediction is the standard procedure apllied to the
operational centers (NCEP: National Center for Environemnt Prediction – USA,
ECMWF: European Centre for Medium-range Weather Forecasts – EU, INPE:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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National Institute for Space Research, Brazil). Weather forecasting is a computer
intensive task, requiring supercomputers. For applying ensemble prediction, the
ensemble members have lower resolution than the deterministic prediction.

Here, the predictability is estimated by using a machine learning algorithm.
However, instead of using artificial neural networks, as employed by Anochi
and co-authors [2], a version of decision tree algorithm is applied: the Light-
GBM (Light Gradient Boosting Machine) algorithm [10]. The methodology with
LightGBM is similar to that developed by Anochi et al. [2], where a time series
is partitioned – here three months are used to compute mean and variance. Vari-
ances are our uncertainty estimations. The variance maps indicate regions with
lower and/or higher predictability.

The decision tree algorithm has been already applied to meteorological issues.
Anwar et al. [3] used a gradient-boosting approach for rainfall prediction; Ukko-
nen and Makela [15] did a comparison among four machine learning algorithms
(including a decision tree) for thunderstorm events, Freitas and co-authors [7]
employed a version of the decision tree algprithm to predict deep convection over
the Rio de Janeiro metropolitan area, and decision tree has also be applied for
rain area delineation [12].

Two decision trees are designed from the available observation data. The first
one is our predictor for monthly climate precipitation forecasting. The second
decision tree is configured to estimate the predictability – prediction variance
(error) for each grid point. The paper’s innovation is to compute the prediction
uncertainty by a machine learning algorithm in a separate fashion – here, a
gradient decision tree approach.

The next section does a brief description of the LightGBM decision tree
scheme. The used data and numerical experiment are commented on in Sect. 3.
Results are shown in Sect. 4. Finally, Sect. 5 addresses conclusions and final
remarks.

2 LightGBM: A Decision Tree Algorithm

LightGBM is a supervised machine learning algorithm based on a decision tree
(DT) strategy. It works by building up a framework from a basic (initial) con-
figuration of a decision tree – this first DT is considered as a weak learner. For
each construction step of the DT, another decision tree is added to the former,
reducing the residue from the previous DT architecture. So, the current DT is
understood as a stronger learner than a previous one.

Let Fm be our LightGBM model defined by:

ŷm = Fm(x) = Fm−1(x) + γm(x)h(m) , (1)

where hm(x) is a DT added to the previous one Fm−1(x), γm(x) is an empirical
weight function, and x is the set of attributes (inputs). The model Fm(x) is DT
from m−th step with addition of function h as a result to minimize the objective
function:
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L(yi, γ) =
n∑

i=1

[yi − ŷm,i]
2 + λ1 L1[X] + λ2 L2[X] (2)

where λ1 and λ2 are regularization parameters, Lj (j = 1, 2) regularization

operators, and X = [x1, x2, ... , xn]T.
There are several parameters for configuring the LightGBM model. Table 1

shows the hyperparameters for this framework. The hyperparameter values have
influence at the LightGBM performance.

Table 1. LightGDM hyperparameters.

Hyperparameter Description

learning rate Weight contribution for every tree

max leaves Max. number of leaves in each tree

n estimators Max. number of boosted trees

reg alpha regularization parameter: γ1

reg lambda regularization parameter: γ2

subsample Fraction of subsampled rows

colsample bytree Fraction of subsampled columns

min child weight Min. number of data points needed in a leaf node

min child samples Min. sum of weights required in a child

The best hyperparameter set for the LightGBM is computed by using the
Optuna optimizer [1]. Optuna uses a Bayesian scheme to compute the expected
improvement (EI). Its search domain for our application is shown in Table 2.

Table 2. Hyperparameters search space.

Hyperparameter Lower threshold Upper threshold

learning rate 1E-2 0.1

num leaves 20 256

n estimators 50 1000

reg alpha 1E-2 1

reg lambda 1E-2 1

subsample 0.5 1.0

colsample bytree 0.5 1.0

min child weight 1E-3 0.7

min child samples 10 1000
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3 Data and Experiment Description

The area for the monthly precipitation prediction is the South America region
– see Fig. 1. This continent has several climate zones: equatorial zone (with hot
weather over all year, with dry and wet seasons – with intense precipitation),
tropical zone (hot weather over most part of the year), subtropical and temperate
zones (with four well-defined seasons, with cold winter).

The LightGBM model is configured by using data from the Global Precip-
itation Climatology Project (GPCP) Version 2.3: Monthly Analysis Product.
Execution for the LightGBM models was carried out with processor Intel-i5
dual-core. The GPCP dataset has a space horizontal resolution of 2.5 degree
grid. More details for this dataset are available from the NOOA web-page1 The
period for our experiments are in the interval from January 1980 up to December
2019. The GPCP precipitation data is employed as reference values for training
and testing to the LightGBM model.

The dataset was split into three subsets: effective training, cross-validation,
and testing:

Fig. 1. Study area.

1 See the link: https://psl.noaa.gov/data/gridded/data.gpcp.html..

https://psl.noaa.gov/data/gridded/data.gpcp.html
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Table 3. Data description.

Variable Units Level

Surface Pressure millibars surface

Air Temperature degC surface

Air Temperature degC 850hPa

Specific Humidity grams/kg 850hPa

Meridional wind m/s 850hPa

Zonal wind m/s 500hPa

Zonal wind m/s 850hPa

Precipitation mm surface

– Training and cross-validation subsets: January-1980 up to January-2018 ran-
domly split into 75% and 25% of the set, respectively;

– Testing (prediction) subset corresponds to the period from February-2018 up
to December-2019.

The input attributes to the LightGBM model are the same as defined by
Anochi et al. [2]: month, latitude, longitude, surface pressure, air temperature,
specific humidity, meridional and zonal wind components, and precipitation of
the current month – summarized in Table 3. The output is the predicted precip-
itation for the next month.

4 Results

The variance to be predicted is defined as the centered rolling variance of the
error E ≡ (Ppredicted−Pobserved)2 for every 3 months, as described in the equation
below:

Var(Ek) =
1
3

k+1∑

i=k−1

[Ek,i − μk]
2
, k = 1, 2, . . . , 12 (3)

where μk = (1/3)
∑k+1

j=k−1[Ek.j ], being Ek,i a set of 3 consecutive months. As
seen in Sect. 3, 40 years (Jan/1980–Dec/2019) were the period for configuring and
testing the LightGBM predictor. The missing values for the first (January 1980)
and last (December 2017) are set to the median of the differences of December
and January for 37 years available.

The evaluation for the prediction performance to the LightGBM model was
the mean error (ME) and root mean squared error (RMSE):

ME =
1
N

N∑

i=1

[
(Ppredicted)i − (Pobserved)i

]
(4)

RMSE =

√√√√ 1
N

N∑

k=1

[dk − yk]
2 (5)
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where N is the number of entries in the dataset, i.e., the number of grid points
in the domain, dk denotes the target values, and yk are the predicted outputs.

For Model-1 (precipitation prediction), the best hyperparameters calculated
by Optuna are shown in Table 4. Table 5 shows the mean (ME) and root-mean-
squared error (RMSE) for Model 1.

For comparison, the error results for climate precipitation prediction obtained
with the system based on differential equations – from the 3D Brazilian
Atmospheric global circulation Model (BAM) [6] – are shown in Table 6. BAM
was developed by the National Institute for Space Research (INPE, Brazil)
– INPE-AGCM. The BAM is operationally executed for weather and climate
(monthly/seasonal) predictions, as well as for climate change scenarios too. Cli-
mate prediction with BAM spend around 2 h in the INPE’s supercomputer
(Cray XT-6: 2 CPU Opteron 12-cores per node, with total of 30528 cores).
From Tables 5 and 6, prediction with LightGDM presented worse values for ME
quantity than the BAM, for most of the months. However, LightGBM showed a
systematic better result than BAM for all months of the 2019 year. From Tables 5
and 6, prediction with LightGDM presented a worse values for ME quantity than
the BAM, for most of the months. However, LightGBM showed a sistematic bet-
ter result than BAM for all months of the 2019 year.

Table 4. LightGBM Model-1: monthly precipitation – optimal hyperparameters.

Hyperparameter Optimal value

learning rate 7.5E-2

num leaves 244

n estimators 619

reg alpha 1.4E-2

reg lambda 1.4E-2

subsample 0.63

colsample bytree 0.86

min child weight 8.6E-3

min child samples 34

Table 5. LightGBM: Error table for precipitation.

Year Metric Jan Feb Mar Apr May Jun

2019 ME 0.73 0.71 0.38 0.72 0.56 0.60

2019 RMSE 1.75 1.73 1.36 1.69 1.63 1.29

Year Metric Jul Aug Sep Oct Nov Dec

2019 ME 0.69 0.56 0.71 0.65 0.41 0.90

2019 RMSE 1.32 1.23 1.66 1.35 1.53 2.36
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Model-2 is used to quantify uncertainty for the climate precipitation predic-
tion, For this LightGBM model, the best hyperparameters computed by Optuna
code are shown in Table 7. Table 8 shows the mean and root-mean-squared error
for Model 2.

Figure 2(a) shows the precipitation recorded in January 2019 from the GPCP
dataset; Fig. 2(b) shows the forecast for the month of January from Light-
GBM Model-1. Figure 2(c) the uncertainty associated with observed precipi-
tation, using the second model strategy (Model-2), which was calculated from
the measured error in the precipitation forecast (Model-1), and Fig. 2(d) shows
the uncertainty quantification in climate precipitation prediction by LightGBM
Model-1.

Analyzing the results of the precipitation forecast from the LightGBM model,
it is evident that the model was able to capture of the most intense precipitation
patterns. However, LightGBM model was unable to capture the intense precip-
itation region over a zone embracing part of Uruguay, northeast of Argentina,
and Rio Grande do Sul state (Brazil). The uncertainty was correctly predicted
over the cited region – see Fig. 2(d). Ferraz et al. [5] already mentioned about
the difficulty to carry out a climate prediction on that region, because models
have a bias to reproduce, over that region, similar patterns found for the major

Table 6. BAM (INPE-AGCM): Error table for precipitation.

Year Metric Jan Feb Mar Apr May Jun

2019 ME 0.47 0.72 −0.25 −0.42 −0.31 0.41

2019 RMSE 3.45 3.38 3.09 2.89 2.46 2.51

Year Metric Jul Aug Sep Oct Nov Dec

2019 ME 0.51 0.81 0.65 0.19 −0.10 0.004

2019 RMSE 2.22 2.16 1.98 2.32 2.20 2.98

Table 7. LightGBM Model-2 (variance estimation): optimal hyperparameters.

Hyperparameter Optimal value

learning rate 5.2E-2

num leaves 191

n estimators 704

reg alpha 0.15

reg lambda 0.49

subsample 0.98

colsample bytree 0.94

min child weight 0.38

min child samples 24
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part of the South America territory. Machine learning algorithm, decision tree
in our case, could not also overcome the reported difficulty.

Figure 3-(a) shows precipitation observed in July 2019 from the GPCP
dataset; Fig. 3-(b) presents the forecast for July 2019 by LightGBM Model-1.
Figure 3-(c) shows the uncertainty associated with observed precipitation, and
Fig. 3-(d) shows the uncertainty quantification in precipitation prediction by
LightGBM Model-2. The LightGBM model is able to identify the precipitation
in the extreme north of SA related to the presence of the ITCZ (Intertropi-
cal Convergence Zone), where it was able to correctly predict the intensity of
precipitation in western Colombia, Venezuela, and Guyana.

Table 8. LightGBM: Error table for uncertainty.

Year Metric Jan Feb Mar Apr May Jun

2019 ME 0.31 0.34 0.003 −0.12 −0.008 0.11

2019 RMSE 3.82 2.39 3.44 2.91 2.96 2.27

Year Metric Jul Aug Sep Oct Nov Dec

2019 ME 0.42 0.17 0.34 0.18 −0.74 −0.48

2019 RMSE 1.92 2.20 2.05 2.92 5.37 4.12

The application of a neural network for climate precipitation prediction pre-
sented a better estimation than forecasting using differential equations [2]. How-
ever, Monego and co-authors [14] showed that a version of the decision tree algo-
rithm can also improve the sesonal climate precipitation prediction performed
by the neural network. Our results also show a good performance for decision
tree approach for monthly climate predition.

5 Final Remarks

Two models using LightGBM decision tree algorithm were applied to monthly
precipitation forecasting and to estimate the variance of the prediction error
– allowing to compute the confidence interval for the prediction. The model
for prediction uncertainty quantification presented a good performance related
to the position of the greater prediction errors. The error intensity (estimated
variance) was sistematically smaller than the exact values.

The CPU-time for the prediction (LightGBM Model-1) and uncertainty
quantification (LightGBM Model-2) on an Intel-i5 CPU was, in average, 156
μs ± 35.9 μs and 69.6 μs ± 1.6 μs per execution, respectively. Likewise, the
training time for Model-1 and Model-2 were, respectively, 8.04 s ± 186 ms and
7.67 s ± 167 ms on the same hardware and software environment.

Preliminary results applying a decision tree approach for forecasting uncer-
tainty quantification are shown in this paper. However, the application of
machine learning algorithms for predictability allows predictability with finer
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Fig. 2.Monthly precipitation (mm/day) over South America. (a) January precipitation
from GPCP. (b) January prediction from LightGBM model. (c) Uncertainty associated
with observed precipitation. (d) Uncertainty quantification by LightGBM.

resolution for the prediction, instead of using a coarser resolution model as
employed by the ensemble prediction.

Finally, this paper shows the application of the machine learning algorithm
for climate precipitation prediction, addressing the forecasting uncertainty too.
The precipitation prediction using a laptop spending with micro-seconds was
better than 2 h of the supercomputer. It is important to point out that better
precipitation prediction means better planning for energy production – in partic-
ular for Brazil, agriculture, and monitoring and preparing for natural disasters.
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Fig. 3. Monthly precipitation (mm/day) over South America. (a) July precipitation
from GPCP. (b) July prediction from LightGBM model. (c) Uncertainty estimated
from observed precipitation. (d) Uncertainty prediction by LightGBM.
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Abstract. Uncertainty quantification has become a major interest for researchers
nowadays, particularly in the field of risk analysis and optimization under uncer-
tainties. Uncertainty is an essential parameter to take into consideration in time
series forecasting. In this field we aim to develop mathematical models based
on uncertainty quantification tools for road accidents forecasting as a part of the
pre-disaster management phase and also provide an anticipative visualization of
the most sensitive zones to accidents in Morocco. To achieve this goal, we use
the Interpolation-based approximation method for resolution in order to describe
and analyze the road traffic accidents by defining the cumulative distribution func-
tions (CDFs) of road accidental deaths and injuries. The obtained CDFs show that
the distribution of road accidental deaths and injuries in Morocco varies accord-
ing to seasons i.e., High season and Low season. These models can be used for
making predictions of the future occurrence and human impact of road traffic acci-
dents as a part of the pre-disaster management phase which complete and validate
our disaster risk management approach as a decision-making tool dedicated to
governments and humanitarian organizations. This work deals with humanitarian
logistical field and aims to use the developed models for probabilistic calcula-
tion of the road traffic accidents behavior which helps in the preparation of the
logistical fabric for the future events.

Keywords: Uncertainty Quantification · Disaster · Road Accidents · CDF ·
Collocation · Visualization · Morocco

1 Introduction

Disaster modeling is oriented toward using mathematical models to analyze and pre-
dict the potential effects of natural or man-made disasters. These developed models can
be used to assess and mitigate the risk and the vulnerability on populations, buildings,
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infrastructure, and the environment, and to improve disaster risk reduction, preparedness,
response and rehabilitation and recovery plans. Disaster modeling consists of three main
concepts which are: hazard assessment, exposure assessment, and vulnerability assess-
ment. These three components constitute the basis for disaster modeling that can be
used in disaster risk management system. Disaster modeling can also be used to simu-
late and test different disaster hypothesis and scenarios and then make an evaluation of
the effectiveness of different approaches of interventions and mitigation [1].

There are several tools and techniques dedicated to disaster modeling, such as infor-
mation systems, machine learning technics, or uncertainty quantification-based models
among others. The field of disaster modelling and forecasting is in a continuous evolu-
tion, and researchers are always about to develop new technics and improve new models
to better understand the potential occurrence and behavior of disasters and then prepare
for it.

Uncertainty quantification (UQ) is an important aspect of disaster modeling, it is a
field of study that focuses on analyzing, quantifying, and managing uncertainty in math-
ematical models and simulations. The goal of UQ is to identify and analyze the sources
of uncertainty in each system, and then trying to assess their impact on the general
behavior of the system. This is achieved by developing mathematical models of the sys-
tem studied, and then using statistical methods to analyze those models and estimate the
uncertainty in their predictions. While quantifying uncertainty in mathematical models,
different types of uncertainties can be identified which are; Aleatory uncertainty, which
is a type of uncertainty that come from natural variations like measurement errors or
environmental changes [2]. The other type of uncertainty is epistemic uncertainty, which
is caused by incomplete knowledge or information about the system to model, like the
lack of data or knowledge about specific parameters [3–5]. There are several UQ tools
and techniques available to deal with these uncertainties, such as sensitivity analysis,
statistical inference, Bayesian inference [6, 7], Monte Carlo simulations [4, 5], and sur-
rogate modeling, among others. These methods can help identify the most significant
sources of uncertainty in a model, estimate their impact on the predictions of model, and
finally improve the accuracy and reliability of the predictions of the developed model.
So, it’s very important to understand the different types of uncertainties and choose the
appropriate UQ tools and techniques to make more accurate predictions.

UQ has many applications in science and engineering, including the optimization in
engineering problems field, the prediction of natural and technological disasters such as
earthquakes, floods and accidents [8–10], and the assessment of financial risks linked to
investment filed and so other decision-making. This work involves the application of the
UQ model in the field of disaster modeling and the use of interpolation-based approxi-
mations to determine the cumulative density function (CDF) of the traffic accident state
variables in Morocco. The Cumulative Distribution Function (CDF) can obtain various
statistics about a state variable, such as: probability of an events, mean or variance. If
necessary, the probability density function (PDF) can be derived by numerical differen-
tiation of the CDF. In the current study, however, there is no need to determine the PDF,
as our focus is primarily on the statistics and probabilities that can be obtained from the
CDF.
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In this paper, we aim to develop an uncertainty quantification-based model for road
accidents in Morocco. We begin by providing a brief overview of the essence of uncer-
tainty quantification in Sect. 2. Next, we make a numerical analysis to data of road
accidents in Morocco in Sect. 3. We then present our results obtained by the Collocation
method (COL) and discuss the relevance of our findings for road accidents forecasting
and probabilities calculation in Sect. 4. Finally, we finish with a discussion of the bene-
fits and limits of our research, as well as recommendations for further investigation. in
Sect. 5.

2 Uncertainty Quantification-Based Model

2.1 Model Situation

Uncertainty quantification (UQ) models are based on the representation of random vari-
ables and the identification of their probability distributions (cumulative or density func-
tions). The problem is about determining a representation for a random variable U using
another random variable Z:

Consider two random vectors U and Z, possibly of different dimensions, defined on
the probability space (�, P). Let define S as a set of functions of Z, and let PU be an
element of S that best approximates U on S. In other words, PU is the function in S that
is closest to U. The goal is to obtain a representation or approximation of U that satisfies
U −PU ≈ 0, indicating that U can be effectively replaced by PU for practical purposes.
However, in general, it is not possible to achieve an exact representation, so the aim is to
find an approximation of U that is sufficiently close to PU to make a practical difference,
according to our objectives [11].

In UQ, we consider a system with an input variable denoted by X εRk , an internal
parameter W εRk and an output denoted by UεRk . The system’s parameters are all
impacted by uncertainties; Thus, they are put together as a vector of uncertain variables
Z = (X ,W )εRk . . The principal of UQ models is based on the approximation linked to
the joint distribution of the couple (Z, U), where Z represents the uncertainties on the
system and the variable and U refers to the response of the system [9, 11].

Now, we admit that U=U(Z) in a Hilbertian space, so we choose an adequate Hilbert
basis H = {�i}iεN∗, and we give the following representation to the components of
ui = (

ui1, . . . , uikZ
)
: [11, 12]

U = ∑
i∈N∗ ui�i(z), u = (

ui1, . . . , uikZ
) ∈ R

kZ (1)

We have two random vectors, U and Z, defined on a probability space (�, P), where
� is a subspace consisting of functions of Z. Our goal is to find an element PU from �

that provides the best possible approximation of the variable U on � [11, 12]:

U = PU = ∑
i∈N∗ ui�i(z) (2)

The expression for the evolution of the system response, denoted by PU, involves
unknown coefficients represented by ui.
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2.2 Interpolation-Based Approximation (Collocation)

The Interpolation-based Approximation (COL)method employs a different type of sam-
ple instead of {(Zi,Ui) : i = 1, . . . , uk} and deals with the real value on the sample, so,
it is about to determine [8, 11]:

PU (Z) = ∑
i∈N∗ ui�i(z) (3)

Then:

�(Zi)Z = Ui (4)

Such that:

PU (Zi) = Ui, i = 1, . . . , us (5)

where, U = (u1, . . . , uk)
t is the solution corresponding to a linear system that produces

us equations involving k unknowns.:

RU = M (6)

Rij = �i(Zi),Mi = Ui(1 ≤ i ≤ us, 1 ≤ i ≤ k) (7)

We look for the approximation of U by a polynomial function of Z, so the idea
consists of generating a sample (Zi, Ui) for conveniently chosen values of Z. Then, we
may interpolate the values of U [8, 11].

3 Numerical Analysis to Road Accidents in Morocco

3.1 Data Analysis

In this study, we used a dataset of monthly road accident data of Morocco in the period
between January 2008 and May 2022 provided by The National Road Safety Agency
(NARSA) of Morocco [13]. Our analysis aimed to identify patterns and trends in road
accidents, deaths, and injuries in order to make predictions and give a decision-making
tool to develop road safety. This analysis shows that road accidents frequency, deaths,
and injuries have been very high in Morocco over the past decade, with a significant
decrease observed in the period between 2020 and 2021 (during Covid 19 period) (See
Fig. 1, 2 and 3).

Our analysis indicated that road accidents frequency, deaths, and injuries show a
clear seasonal pattern, with higher numbers observed during the summer months (peaks
occur at approximately the same month each year which is August) and lower numbers
during the winter months. We also identified the trends, such as overall increase road
accidents count, deaths, and injuries over the past decade (see Table 1).
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Fig. 1. Monthly count of road accidents in Morocco from January 2008 to May 2022

Fig. 2. Monthly count of deaths by accidents in Morocco from January 2008 to May 2022
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Fig. 3. Monthly count of injuries by accidents in Morocco from January 2008 to May 2022

Table 1. Morocco summary statistics per month.

Values Cases Deaths Injuries Cases p_day Deaths
p_day

Injuries p_day

Mean 6608.774 307.167 9821.289 6608.774 307.167 9821.289

Std 1608.516 71.195 2242.077 1608.516 71.195 2242.077

Min 2181.000 93.000 2838.000 2181.000 93.000 2838.000

25% 5400.000 263.000 8077.000 5400.000 263.000 8077.000

50% 6245.000 294.000 9477.000 6245.000 294.000 9477.000

75% 7649.000 332.000 11351.000 7649.000 332.000 11351.000

Max 11772.000 552.000 17251.000 11772.000 552.000 17251.000

The average increase in road accidents frequency per day is 6608 and in deaths is
307. Additionally, the number of injured per day is 9821 which aggravating the problem
of emergency service capacity in Morocco.

3.2 Fatality Rate

In this study, we analyzed the fatality rate of road accidents in Morocco over a period of
15 years, from 2008 to 2022. Our study focused on calculating and analyzing the fatality
rate of road accidents during this period. We calculated the fatality rate by dividing the
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deaths number resulting from road accidents by the total population and multiplying the
result by 100,000 according to the following formula [14]:

FatalityRate = NumberofDeathsfromRoadAccidents
TotalPopulation ∗ 100, 000 (8)

We then drow the curve of the fatality rate over the years to analyze its evolution
and find any trends or patterns in the time series of the components under the study. The
Fig. 4 represents the fatality rate calculated for the period between January 2008 and
May 2022:

Fig. 4. Fatality rate of road accidents in Morocco from January 2008 to May 2022

Our analysis shows that the fatality rate of road accidents in Morocco has been
significantly high over the past 15 years, with a significant decrease after 2016. Adding
to this, we have noticed that the fatality rate was particularly high in summer season
compared to winter season and among national or regional roads and highways.

3.3 Seasonality Test

The variables used in this study (Accidents count, deaths, and Injuries count) presents
the behavior of seasonal time series because the values of the variable under the study
show a regular pattern over a fixed time interval which is the month in this case. To
determine if a series shows seasonality, we should conduct a seasonality test, which can
be important because seasonality might help us in time series analysis and prediction.

To understand of the seasonality of the time series, we need to separate them into their
trend, seasonal, and residual components [15–18]. The seasonal component indicates
the series recurrent patterns, while the trend component represents the series’ long-term
behavior. The residual component refers to the fraction of the data that is not covered
by the trend and seasonal components.
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In this study, we used nonlinear regression to test the seasonality in time series of
data considered, based the following steps developed in previous research [19, 15, 16,
18]:

• Firstly, we identified the time series data that we wanted to analyze for seasonality
[20]. (See Figs. 4, 5, 6 and 7).

• Next, we chose a nonlinear regression model that can find the seasonal patterns in
the data. In our application, we used trigonometric equations and then fit the chosen
nonlinear regression model to the time series data [19, 15] and then we estimated the
parameters of the model using the least squares method [18].

Models Equations

Accidents count F(x) = 18871,5–13612,6*Cos(2*Pi()*31*x)

Deaths G(x) = 199,219 + 129,345*Cos(2*Pi()*31*x)

Injuries H(x) = 7522,42 + 62907*Sin(2*Pi()*1,00007*x)

Finally, we tested the model effectiveness employing graphical diagnostics which
are residual plots and time series plots [15–17] (Fig. 5, 6, 7, 8, 9 and 10).

Fig. 5. Morocco: Residual components of road accidents count from January 2008 to May 2022
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Fig. 6. Morocco: Trend curve of road accidents count from January 2008 to May 2022

Fig. 7. Morocco: Residual components of deaths by road accidents from January 2008 to May
2022
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Fig. 8. Morocco: Trend curve of deaths by road accidents from January 2008 to May 2022

Fig. 9. Morocco: Residual components of Injuries by road accidents from January 2008 to May
2022
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Fig. 10. Morocco: Trend curve of injuries by road accidents from January 2008 to May 2022

Finally, we can conclude that the time series data shows seasonality, and we can use
the model to make forecasting of future values of the time series, taking into account
the seasonal patterns. For time series modelling we consider two seasons: High season
(May, June, Jully, August, September, and October) and Low season (January, February,
March, April, November, and December) (see Fig. 9).

3.4 Data Visualization

To better understand the distribution of road accidents in Morocco, we created a visu-
alization that gives the locations of the human impact of accidents over the country. By
analyzing this map, we can identify and detect regions that have a higher or lower inci-
dence of accidents and identify potential hotspots that may require more attention from
government and organizations. This work can be an important decision-making tool for
improving road safety and reducing the number of injuries, fatalities, and economical
damage due to road accidents in Morocco (see Fig. 11).
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Fig. 11. Morocco 2017:Visualizationmap of the location of deaths and injuries by road accidents:
the red hotspots represent deaths concentration, and the blue hotspots represent injuries component.

The visualization map gives a clear and informative representation of the location
of road accident deaths and injuries over Morocco in 2017. The regions with the highest
number of deaths and injuries are concentrated in the western and central regions of the
country, particularly around urban areas with high traffic volumes, such as Casablanca
Rabat, and Marrakech.

4 Results and Discussion

The results section presents the key findings of our study based on the data analysis and
we give the findings using the collocation method (COL) including statistical quantities
and probabilities derived from the CDF.

4.1 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is a commonly used parameter to measure the per-
formance of a predictive model. It quantifies the discrepancy between the predicted and
observed values of a variable and provides a way to quantify the precision of a predictive
model [21].
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To compute the RMSE, one needs to take the square root of the mean of the
squared differences between the predicted and observed values. Mathematically, it can
be expressed as follows:

RMSE=
√

1
n

∑n
i=1 (yi − zi)2 (9)

where n is the total number of observations, yi is the predicted value for the ith

observation, and zi is the observed value for the ith observation.
The root mean square error (RMSE) is a useful tool to assess the accuracy of a

predictive model. The RMSE takes into consideration the size of errors in the predictions
of the model. A low RMSE suggests that the model’s forecasts are highly accurate and
in close agreement with the observed values, while a high RMSEmeans that the model’s
forecasts are further from the observed values and, therefore, less accurate [21, 22].

4.2 Results by Collocation

The collocation (COL) method was applied to the dataset, and based on the simulations,
we obtain the cumulative distribution functions (CDFs) of different components (Acci-
dents number, Deaths, and Injuries) in high and low season. The resulting CDFs are
presented in Figs. 12, 13, 14, 15, 16 and 17. These figures provide a visual represen-
tation of the probability distributions of the variables under study for the high and low
seasons:

High Season. Collocation results for accidents count deaths and injuries components.

Fig. 12. Empirical CDF of deaths by road accidents in high season obtained by collocation
method.
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Fig. 13. Empirical CDF of deaths by road accidents in high season obtained by collocation
method.

Fig. 14. Empirical CDF of injuries by road accidents in high season obtained by collocation
method.
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The interpolation results in the high season of deaths and injuries components indi-
cate that the variable (u), which represents the response of the system, can be approxi-
mated by a fourth-degree polynomial function of variable (z), referring to the uncertain-
ties affecting the systemwith a normal distribution. Referring to the RMSE (see Table 3),
we can infer that the Collocation method gives an accurate cumulative distribution
function.

Table 2. RMSE and characteristic polynomial of accidents count, deaths and injuries components
in high season.

Characteristic Polynomial RMSE

Accidents count PU = 41.53 + 100,25U – 292.25U2 + 486.24U3 – 242.20U4 0.0078

Deaths PU = 1.75 + 10,98U – 39.93U2 + 70.56U3 – 37.85U4 0.0087

Injurie PU = 62.95 + 194.72U – 610.71U2 + 1058.94U3 – 540.54U4 0.0086

Low Season. Collocation results for Accidents count, deaths and injuries components.

Fig. 15. Empirical CDF of road accidents count in low season obtained by collocation method.
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Fig. 16. Empirical CDFof deaths by road accidents in low season obtained by collocationmethod.

Fig. 17. Empirical CDF of injuries by road accidents in low season obtained by collocation (COL)
method.

The interpolation results in the low season of deaths and injuries components indicate
that the variable (u), which represents the response of the system, can be approximated
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by a fourth-degree polynomial function of variable (z), referring to the uncertainties
affecting the systemwith a normal distribution. Referring to the RMSE (see Table 2), we
can infer that the Collocation method gives an accurate cumulative distribution function
(Table 3).

Table 3. RMSE and characteristic polynomial of accidents count, deaths and injuries components
in low season.

Characteristic Polynomial RMSE

Accidents count PU = 26.55 + 213.39U – 820.53U2 + 1.42U3 – 749.21U4 0.0067

Deaths PU = 1.32 + 8.52U – 22.98U2 + 29.12U3 – 12.64U4 0.0081

Injuries PU = 62.95 + 194.73U - 610.71U2 + 1058.94U3 – 540.54U4 0.0085

4.3 Probabilities Calculation

The CDFs allow for the identification and calculation of the probabilities of a given
event, such as the likelihood of a specific outcome occurring in a particular region.

In our application, one of the main objectives is to quantify the human impact degree
of road accidents in Morocco [8]. To achieve this goal, we have considered different
human impact classes as shown in the Table 4. This classification is based on the guide-
lines provided by theMinistry ofTransport ofMorocco [23],which provides a framework
for evaluating the severity of road accidents based on different parameters such as the
number of deaths, injuries, and economical damages (See Table 4).

Table 4. Gravity classes of human impact of accidents.

Gravity scale Related Human Impact

Minor 0 to 10 deaths and/or 0 to 50 injuries

Moderate 11 to 50 deaths and/or 50 to 100 injuries

Major More than 51 deaths and/or more than 100 injuries

The table presented below provides a detailed summary of the probabilities that were
obtained using the collocation method See Table 5:
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Table 5. Related probabilities obtained by collocation method (COL).

Gravity scale Related Probabilities (Deaths) Related Probabilities (Injuries)

Minor 0 0

Moderate 0 0

Major 1 1

This probabilities can be very important and useful for decision-makers, because
it can be used to improve risk management strategies and resource allocation efforts
while the preparation of the humanitarian interventions in emergency situations [24]. In
general, the use of the collocationmethod has allowedus to develop a goodunderstanding
of the probability distributions and trends of the variables under consideration, providing
valuable insights for future analysis and research. As an example, the model can be used
to make predictions about the next occurrence of the accidents by considering road
sections in the simulation of the model and can also provide the potential impact degree
of the accidents. By predicting where and how accidents are likely to occur and behave,
it is possible to implement focused interventions and strategies to improve road safety
and mitigate the accidents count, injuries, and deaths.

To summarize, road accident modeling and monitoring is a key area of research
and practice, because it helps in developing effective interventions and strategic plans
to improve road safety, reduce road accidents frequency and mitigate their impact on
citizens and society in general.

5 Conclusion

Road accidents modelling and monitoring constitutes an important field of research that
aims to improve road safety, reduce road accidents frequency, and mitigate their impact
and fatalities on the roads. Road accidents have a harmful economic damage and social
consequences and represent a big challenge to societies, as they are responsible for
numerous deaths, disabilities, and properties damages.

Our approach of modelling andmonitoring road accidents was about to use an uncer-
tainty quantification-basedmodel anddata analysis techniques to identify patterns, trends
of the different components associated to road accidents. These resulted models can help
to identify the potential impact of road accidents, high-risk regions, populations exposed,
and this information can help for the design of specific preparation and mitigation plans
with the aim of improving road safety to the users.

In conclusion, disaster modelling with uncertainty quantification-based models pro-
vides a useful tool formonitoring and predicting the potential impact of natural or human-
made disasters [8]. These models consider the uncertainty associated to the system such
events and provide a means for quantifying the range of potential outcomes.

By including uncertaintywhile disastermodelling, decision-makers can better under-
stand the risks and vulnerabilities associated with different hypothesis and scenarios and
can then develop more effective preparedness, mitigation and response strategies in their
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disastermanagement system [25]. Furthermore, uncertainty quantification-basedmodels
can help decision-makers to evaluate the effectiveness of different mitigation measures
and intervention plans, allowing for more informed and cost-effective decisions.

Althoughchallenges that disastermodelling represents, such as limiteddata availabil-
ity, model accuracy, and computational complexity, the use of uncertainty quantification-
based models is a significant progress for research in enhancing our capacity to plan and
respond to disasters.
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Abstract. During a delivery process, and in the global transportation network
chain, milk and dairy products are considered as sensible and so a higher require-
mentmust be imposed.This paper addresses a vehicle routing problemandpropose
an optimizationmodel that consider the temperature as a source of uncertainty that
has an impact on dairy products. Temperature is maintained and controlled within
specified interval and limits, using some sensors introduced inside the vehicles.
The process capability indices are introduced to measure the capability of the
process, especially thermal characteristics. Dynamic Vehicle Routing (DVR) is
presented in this work, optimizing both of the distance traveled and product’s
temperature. The objective is to deliver products to different BIM stores in El
Jadida city, and find the optimal route while maintaining the dairy product Tem-
perature in their optimal values. We propose then a developed algorithm using the
meta-heuristic Simulated Annealing (SA) algorithm. Numerical results show the
optimized route sequence and also the optimized product’s temperature along the
route.

Keywords: Dairy product’s temperature · Dynamic Vehicle routing (DVR) ·
Simulated Annealing · Process Capability Indices · Uncertainty

1 Introduction

Please In recent years, there has been a significant increase in the demand for high-
quality products. Consumers are more aware of the benefits of consuming fresh and
high-quality products. This has led to a growing need to ensure that refrigerated and
frozen products are kept at the right temperature to maintain their quality and freshness.
Cold chain distribution is a process that involves the transportation of temperature-
sensitive products under controlled conditions. This type of distribution is essential for
products such as fresh produce, meat, dairy products, and pharmaceuticals. Compared
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to regular distribution, cold chain distribution requires strict temperature control to pre-
serve food quality. Temperature fluctuations can result in spoilage, loss of nutrients, and
decreased shelf life, which can impact product quality and safety. Companies responsible
for delivering products under cold chain conditions must ensure that their products are
delivered to customers in different locations at minimal delivery cost while maintaining
the food’s quality and reducing product damage. This involves investing in appropriate
refrigeration technology, monitoring temperature throughout the transportation process,
and training personnel to handle and transport products safely. Maintaining the cold
chain can be challenging and costly, but it is necessary to ensure that customers receive
high-quality products that meet their expectations. It is also important for companies to
adopt sustainable practices that minimize energy consumption and reduce the carbon
footprint of their operations. Therefore, the growing demand for high-quality products
has made it necessary to prioritize the maintenance of refrigerated and frozen products
at the right temperature. Cold chain distribution is essential to ensure that products are
delivered to customers in good quality and at minimal cost. Companies must invest
in appropriate technology and adopt sustainable practices to maintain the cold chain
effectively. In the field of operational research, the Vehicle Routing Problem (VRP) is
a well-known problem that deals with the optimal routing of vehicles to visit a set of
customers while minimizing the total distance traveled or the total cost incurred. This
problem has many practical applications, including in the field of cold chain distribu-
tion, where the efficient and effective routing of vehicles is critical to maintaining the
quality and freshness of temperature-sensitive products. Using VRP algorithms, com-
panies can optimize their delivery routes and schedules, which can result in significant
cost savings while ensuring that products are delivered on time and in good condition.
The VRP can also help companies to reduce their carbon footprint by minimizing the
number of vehicles needed and the distance traveled, leading to a more sustainable and
environmentally friendly cold chain distribution. [1] have presented a model that takes
real-time outside temperature into account, serve good quality of food to customers
while reducing the distribution cost. Temperature control is critical for the quality and
safety of temperature-sensitive products, especially during the distribution stage. When
the refrigerator door is opened and closed frequently during distribution, it can lead to
temperature fluctuations and damage to the products. Frozen products should be main-
tained between 4 °C to -1 °C to prevent them from thawing and spoiling. Refrigerated
products, such as fresh produce and meat, should be kept between 2 °C to 6 °C to main-
tain their quality and reduce the risk of bacterial growth. Milk and dairy products are
particularly sensitive to temperature, and they should bemaintained between 2 °C to 7 °C
to prevent spoilage and maintain their freshness. Hence, in cold chain not only minimize
the total transportation cost but also keep products in good quality and high safety [2].
To keep product fresh, temperature constraint should be introduced during optimiza-
tion to consider the temperature variation during the delivery process. The result would
impact to reduce products case and increase customer satisfaction. The cold chain is
considered as a complex network with cost efficiency, product quality, and carbon emis-
sion, environmental impacts, and cost. Hence, one of the most important challenge of
the cold chain is to find the balance between cost and product quality. In addition to
the cost reduction, dealing with requirements regarding product quality is challenging
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[3]. In the same context [4] have developed the Simulated Annealing algorithm to get
the optimal distance travelled, respecting the quality level expressed by the Capability
Indices (PCI) to distribute perishable food. To keep sensible products fresh, temperature
criteria must be introduced in the route optimization of the delivery process in order to
control the optimal temperature values, especially during frequent door opening and hot
weathers. In addition, short distance delivery, refrigerated and frozen products could be
impacted by the high number of doors opening, where there is the heat ingress from
outside air ([5] and [6]). There is a growing recognition of the significance of maintain-
ing appropriate temperature conditions in various domains, including transportation,
storage, and manufacturing processes. Researchers have emphasized the impact of tem-
perature on crucial parameters such as product integrity, microbial growth, chemical
reactions, and sensory attributes. For instance, [7] conducted a comprehensive study
on the influence of temperature on microbial growth in food, developing a predictive
model for different temperature conditions. Nevertheless, to optimize transportation for
temperature-sensitive products, previous studies have primarily focused on minimizing
transportation costwithout explicitly considering temperature control during the delivery
process. For example, [8] proposed an algorithm for fresh meat distribution in Athens,
Greece, but did not explicitly analyze temperature variations during the delivery process.
The thermal behavior of products was not considered a critical factor in the specific con-
ditions and parameters outlined in their research. Similarly, [9] compared optimization
techniques for pharmaceutical distribution in West Jakarta but did not incorporate tem-
perature control as a crucial aspect. In our work, we aim to address the gap in previous
studies by explicitly considering temperature variations during the delivery process of
dairy products. We recognize the importance of temperature control in preserving the
quality and safety of perishable goods, such as dairy products. By incorporating tem-
perature as a critical factor, we intend to provide valuable insights into the optimization
of delivery routes that not only minimize transportation time but also ensure appropriate
temperature conditions throughout the distribution process. In comparison to previous
studies, our work presents a novel approach that considers temperature control during
the delivery process of dairy products. By integrating temperature constraints into the
vehicle routing problem, we have optimized the route delivery of dairy products while
maintaining the temperature within predefined limits.

In this study, we consider a delivery process of multiple products including milk
and dairy products that have to be delivered with a minimize cost while keeping prod-
ucts in their optimal temperature value and hence in good quality. To do that, Simulated
Annealing algorithm is developed considering the temperature variation during distribut-
ing products to some BIM stores in El Jadida city. Sensors have been introduced into
the delivery trucks in order to control the temperature values inside the vehicle refriger-
ator. This paper is recognized as follows: Sect. 2 describes the cold chain transportation,
Sect. 3 defines the process capability indices, Sect. 4 presents the mathematical mod-
elling of the Dynamic vehicle Routing and of the Simulated Annealing (SA), Sect. 5
presents the problem description including the context study and computational results,
Sect. 6 contains conclusion and perspectives.
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2 Literature Review

This section presents an overview of the cold chain management, and the role of refrig-
erated transports to ensure a good quality of milk and dairy products from the point of
temperature to its destination.

2.1 Cold Chain Logistics

The cold chain logistics (CCL) is full of complexity. This complexity is due to the
fact that the cold chain involves the transportation of temperature-sensitive products
through thermal methods. Cold chain logistics (CCL) can be affected by different factors
including temperature variation especially during hot weathers, or during a frequent
door opening and a risk to have damaged products is then strongly present. This impact
is noticed in general as physical, chemical and biological changes in products. [10]
have showed that temperature variation can impact directly the temperature-sensitive
product along the cold chain causing quality losses. Hence, temperature can be seen as
the most important factor affecting the deterioration rate and postharvest lifetime [11].
Among the different part of cold chain logistics, [12] and [13] have mentioned that
transportation and storage are two principles parts of the cold chain. Thus, distribution
process should be optimized reducing logistics cost and in the same time avoiding
product’s waste. [14] considered that quality lost should be included in distribution
process of perishable food. In this study, and in order to optimize distribution process
while maintaining a good quality of sensitive-product, a temperature control have been
introduced, this temperature is related to the time of door opening when servicing a
customer. [4] have introduced the temperature criteria during a distribution process of
perishable food respecting the quality level, and using the Process Capability Indices
(PCI). In general, temperature variation of sensitive products is impacted by the time and
the frequency of door opening when servicing the customer, especially in short distances
and hot weather. In this context, temperature constraint can be considered as a source of
uncertainty that should be added during optimization of the route sequences. Compared
with traditional distribution logistics, requirements on product quality in cold chain
logistics is a real priority, so ensuring the freshness of temperature-sensitive products is
the major problem to be solved in cold chain logistics. To solve this kind of problems,
vehicle routing problem (VRP) is used by researchers through literature [15], and [1].
[16] and [17] have studied the normal temperature logistics under stochastic demand.
Figure 1 presents the definition of the cold chain logistics.

As shown in Fig. 1, for a good control of the cold chain, and to maintain ambient
conditions, temperature variation should be kept in optimal values within the limits of
acceptability. In practical terms, the control of an optimal temperature throughout the
distribution process is one the most sensible tasks, especially in short distance deliv-
ery when temperature-sensitive products can be subjected to many doors opening. As
temperature considered as a source of uncertainty, Dynamic Vehicle Routing (DVR) is
introduced adding the temperature constraint in the initial objective function. Hence,
this work intended to minimize travel cost, and in the same time keeping temperature of
products in optimal values.
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Fig. 1. Cold chain logistics.

2.2 Temperature Performance Analysis

Several models have been introduced temperature aspects in transportation process
including ambient conditions, door opening, loading/unloading of products, travel time
and others. Some of researchers focused on the effects of transportation temperature
on microbial growth and its influence and impact on food safety. [18] and [6] studied
the effects of door openings in refrigerated cargo transport. Refrigerated products can
be subjected to up to fifty door openings per transportation run [5]. In short distance-
transportation of temperature-sensitive products, as in the case of this work, it is impor-
tant to control the temperature of the product within defined limits. Dynamic nature
of the problem is due to the fact, that temperature of sensitive products can be change
during distribution process because of the ambient conditions (for example hot weath-
ers), and the frequent door openings where there is heat ingress from outside. These
factors converge to produce a complex system, where a good optimization algorithm
should be implemented to obtain a balance between optimal cost and optimal product
temperature and so to get good quality of products. The classical distribution process
starts with a vehicle loaded at the depot and traveling to a series of customers. During the
process, product’s temperature is assumed to be optimal anywhere in the vehicle along
the journey. In this work, to control temperature inside vehicles, sensors have been intro-
duced to measure product’s temperature. Sensors indicate input temperature when the
driver arrives at the customer, and indicate also the output temperature when the driver
leaves the customer. In one hand, when the driver arrives at the customer, temperature is
impacted by the “time of door opening” in order to take products from the refrigerator
and unload them from the truck. In the other hand, when the driver leaves the customer,
temperature is impacted by the travel time: the longer the distance between customers,
the more time have products for cooling. Figure 2 explains temperature variation during
a delivery process for temperature-sensitive products.
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Customer ‘a’ Customer ‘b’

Long distance = product temperature increases

Many door openings = product temperature increases

Fig. 2. Temperature variation during delivery process.

As we can see in Fig. 2, temperature variation is affected by both travel time and door
opening. These factors have been considering to implement the optimization algorithm.
The aim is to minimize the travel cost within maintaining temperature in the optimal
values measured by the Process Capability Indices (PCI).

3 Process Capability Indices to Assess Temperature Data

Process Capability indices (CPI) is defined as the ability of the process in achieving
whether or not the mean of a measurement. It compares the characteristics of a certain
process to its engineering specifications [19]. PCI is highly used as a part of statistical
control of quality process and productivity. In this study, we used PCI to measure tem-
perature performance inside the vehicle along the distribution journey for refrigerated
products. Hence, temperature is the variable considered in this case. For normal dis-
tribution, four capability indices can be used: Cp,Cpk ,Cpm,Cpmk [20]. The lesser the
standard deviation, the greater the capability indices. We consider μ as the mean, and σ

as the standard deviation. That is:

Cp = USL−LSL
6σ (1)

where USL is the upper limit and LSL is the lower limit.

• If Cp > 1, then the temperature fits within the specification limits.
• If Cp < 1, it means that the process does not meet with the specifications.
• If 1 ≤ Cp < 1.33, it indicates that maybe the process meets with the specifications,

but more attention should be taken.
• If Cp ≥ 1.33, it indicates that the process is fully capable.

In general, the process mean is not assumed to be centered between the specified
boundaries. To control these situations the index Cpk is defined:

Cpk = min
{
USL−μ

3σ ,
μ−LSL
3σ

}
(2)

In addition, Cpm can considers the distance between the mean and the target value:

Cpm = USL−LSL

6
√

σ 2+(μ−T )2
(3)



Process Capability Indices for Dairy Product’s Temperature 251

where T is the target value.
In our application, we will not define a target value for temperature, it should only

respect the specified limits, USL = 7◦C and LSL = 2◦C. Thus, the index Cpk is
employed.

4 Dynamic Optimization Model

In this section, we present the mathematical modeling of the objective function where
the temperature constraint is added. Also, we present the algorithm used in this paper,
Simulated Annealing (SA).

4.1 Mathematical Model

We used DVRP in this work to optimize both of cost travel and temperature variation,
and a vehicle capacity is respected. Temperature is considered as a source of uncertainty
and hence a source of dynamism. We consider “n” customers to be served from “i”
to “j”, and m vehicles. cij is the travel cost, xij is the binary variable that equal 1 if
vehicle k goes from customer i to customer j, and xij equal 0 otherwise. Each vehicle
has a maximal capacity Q and each customer is associated with a demand qi of goods
to be delivered. Hence the objective function contains constraint capacity that defines
the classical Capacitated Vehicle Routing Problem (CVRP) [21], and contains also the
penalty function of the temperature.

The objective function can be presented as follows:

Min
∑m

k=1
∑n

i=0
∑n

j=0 cijx
k
ij + β

∑n
i=0

[
S
(
T(i)in

) + S
(
T(i)out

)]
(4)

where
[
S
(
T(i)in

) + S(T(i)out)
]
is the temperature penalty function and β is the penalty

coefficient, that is:

S(T ) = P+(T ) + P−(T ) (5)

where

P+(T ) = (
T − Tupper

)+ =
{

0, T ≤ Tupper
T − Tupper, T > Tupper

(6)

And

P−(T ) = (T − Tlower)− =
{

0, T ≥ Tlower
T − Tlower, T < Tlower

(7)

Subject to

∑n

i=0

∑m

k=1
xijk = 1, j = 1, . . . . . . . . . .n (8)
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∑n

i=0
xipk −

∑n

j=0
xpjk = 0, k = 1, . . . . . . ..m; p = 1, . . . . . . .n (9)

∑n

i=1
(qi

∑n

j=0
xijk) ≤ Q, k = 1 . . . . . . . . .m (10)

∑n
j=1 x0jk = 1, k = 1 . . . . . . . . .m (11)

Constraint (4) defines the objective function, constraints (5), (6) and (7) define the
temperature penalty function, constraint (8) means that every customer should be visited
exactly once, constraint (9) shows that every vehicle should depart from the customer
visited by this vehicle, constraint (10) means that every vehicle should not exceed the
maximal capacity Q, and constraint (11) means that every vehicle must be used exactly
once.

4.2 Optimization Algorithm

Simulated Annealing (SA) is a useful meta-heuristic to solve combinatorial optimiza-
tion problems. It was introduced by [22], it is an approach bases on annealing process
of solids. Annealing process is based on heating a material followed by slow cooling
procedure to obtain strong crystalline structure. The basic principle of SA is to move
from a current solution to a random neighbor in each iteration. If the cost of neighboring
solution is less than the one of the current solution, then the neighboring solution is

accepted; otherwise, it is accepted or rejected with the probability p = e− �C
T . The prob-

ability of accepting inferior solutions is a function of the temperature T , and the change
in cost between the neighboring solution and the current solution, �C. The temperature
is decreased during the optimization process and so the probability of accepting a worse
solution decreases. First, the temperature T is large and an inferior solution has a high
probability of being accepted. During this step, the algorithm acts as a random search to
find a promising region in the solution space. The temperature decreases as long as the
optimization process progresses, and there is a lower probability of accepting an inferior
solution. In general, meta-heuristics algorithms are used to solve large problems called
NP-Hard. For example, [23] have used Simulated Annealing to solve large instances for
a problem of no-idle open shops scheduling.
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5 Case Study of Dairy Products

This section presents the context setting of this paper and numerical results concerning
a delivery process of refrigerated products considering the temperature constraint.

5.1 Problem Description and Settings

The case study of this paper concerns delivering refrigerated products from the depot
to 10 BIM stores in El Jadida City. The aim is to deliver these temperature-sensitive
products in an optimal distance traveled while maintaining product’s temperature in
optimal values. In this context, we introduce the Dynamic Vehicle Routing to solve this
problem using the meta-heuristic Simulated Annealing (SA).

Dynamic 
Vehicle 

routing with 
Temperature 

constraint

Optimization 
algorithm 
Simulated 
Annealing

-Best distance 
traveled

- Optimized 
temperature 

respecting the 
specified limts

Fig. 3. Optimization process.

Figure 3 explains the optimization process of this study, introducing the Dynamic
Vehicle Routing. The objective function is introducing both of minimizing the distance
traveled and optimizing product’s temperature. The optimized result is given by the
developed algorithm Simulated Annealing on MATLAB R2018a.

We apply the following data:

• Customer number: 10 plus one depot
• Truck number: 3
• Store demand: 0, 30, 40, 20, 30, 50, 25, 10, 20, 30, 50
• Truck capacity: 110 (assume that all trucks have the same capacity = 110 box)

Thematrix distance is calculated based on the customer’s location (longitude and lat-
itude from Google map). Temperature variation is calculated considering the travel time
as a random variable, and the time of refrigerator door opening is based on experimen-
tal data. Such that the temperature decreases if the travel time is large, and temperature
increases if we have frequent door opening, or when the time of refrigerator door opening
is higher.
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5.2 Computational Results and Discussion

In this work, we present route optimization and in the same time controlling temperature
of milk and dairy products that must be maintained in an interval of 2 °C to 7 °C, for
a delivery process to 10 BIM stores in El Jadida city. The optimization algorithm used
in this work is the Simulated Annealing (SA), and Fig. 4 presents the optimized route
sequence designed and (Fig. 5) presents the best cost Iteration:

Fig. 4. Optimized route sequence.

In the figure above, optimized route sequence is presented using 100 iteration:

• Route 1: El Wahda -- > Touria Chaoui -- > Mwilha -- > Al Moukawama, μ =
4.84,σ = 0.66, Cpk = 1.09: in this route we can conclude that the process is capable
but with tight control.

• Route 2: Alaouine -- > Sidi Bouzid -- > Khalil jabrane -- > Ibnou Badis, μ =
4.76, σ = 0.5, Cpk = 1.49: in this route, we conclude that the process is capable.

• Route 3: Mohamed Errafii -- > Lala Zahra, μ = 4.35, σ = 0.58, Cpk = 1.35: in
this route, the process is capable.
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Cpk is obtained by considering the mean μ and σ of each route, it was computed
basing on the Eq. (2).

Fig. 5. Best cost Iteration.

The optimization of temperature control in the cold chain distribution system is of
paramount importance to maintain the quality of dairy products during transportation. In
addition to the optimized route sequence, the temperature values are also considered as an
important parameter to be optimized. By using the developed algorithm, the temperature
values are kept within the optimal interval, which lies between the specified limits of
the milk and the dairy products, where USL = 7 °C and LSL = 2 °C. This ensures that
the quality of the products is maintained and that they are following the specified limits.
Then the optimized temperature is presented as follows:

For route 1:

Fig. 6. Boxplot of Input and Output temperature of route 1.
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For route 2:

Fig. 7. Boxplot of Input and Output temperature of route 2.

For route 3:

Fig. 8. Boxplot of Input and Output temperature of route 3.

Figures 6, 7, and 8 presents the boxplot of temperature values that were kept within
the optimal range during cold chain distribution. The input temperature refers to the
temperature of the product when the distributor arrives at the customer’s location, while
the output temperature represents the temperature of the product when the distributor
leaves the customer’s location, considering factors such as door opening frequency and
discharging time. In addition, results of the developed model indicate that the product
characteristics, especially product temperature inside the vehicle is related to travel time
and its variation along the delivery route. Hence, specified surveillance and high attention
have to be given to the product quality along short distance delivery route, and during
hot weather conditions as well.
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6 Conclusion and Perspectives

In this work, we propose a novel approach to the Vehicle Routing Problem (VRP)
by incorporating temperature constraints as part of the objective function. The goal
is to optimize the delivery route to minimize cost while simultaneously maintaining
the quality of dairy products by ensuring they are kept at the appropriate temperature.
The algorithm developed was applied to a simple case study, but the approach can
be extended to more complex delivery processes with a larger number of customers.
One of the challenges in incorporating temperature as a constraint is that it introduces
an element of uncertainty, as temperature can fluctuate based on external factors such
as weather conditions and door opening frequency. Temperature is considered in this
work as a source of uncertainty. Hence, in future work, we can apply the simheuristic
methods considering stochastic parameters such as travel time, loading/unloading time,
etc. Simheuristic algorithms are very closed to a real-life distribution and transportation
problems where several variables and parameters are modeled as random.
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Abstract. Artificial neural networks (NNs) have shown remarkable suc-
cess in a wide range of machine learning tasks. The activation function
is a crucial component of NNs, as it introduces non-linearity and enables
the network to learn complex representations. In this paper, we propose a
novel activation function based on Hilbert basis, a mathematical concept
from algebraic geometry. We formulate the Hilbert basis activation func-
tion and investigate its properties. We also compare its performance with
popular activation functions such as ReLU and sigmoid through experi-
ments on MNIST dataset under LeNet architecture. Our results show that
the Hilbert basis activation function can improve the performance of NNs,
achieving competitive accuracy and robustness via probability analysis.

1 Introduction

Neural networks (NNs) have gained significant attention in recent years due to
their remarkable performance in various machine learning tasks, such as image
classification [1,2], speech recognition, and natural language processing [4,5].
NNs consist of interconnected nodes or neurons organized in layers, where each
node applies an activation function to its input to introduce non-linearity and
enable the network to learn complex representations [6]. The choice of activation
function has a significant impact on the performance and behavior of the NN.

In this paper, we propose a novel activation function based on Hilbert basis, a
mathematical concept from algebraic geometry. Hilbert basis is a set of monomi-
als that generate the polynomial ideals in a polynomial ring [3,7]. We formulate
the Hilbert basis activation function as follows:

f(x) =
n∑

i=1

hi(x) + b, (1)
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where x is the input to the activation function, hi(x) is the i-th monomial in the
Hilbert basis, b is a bias term, and n is the number of monomials in the Hilbert
basis.

The Hilbert basis activation function introduces a geometric interpretation
to the activation process in NNs, and we hypothesize that it can enhance the
performance of NNs by promoting geometric structures in the learned models. In
this paper, we investigate the properties of the Hilbert basis activation function
and compare its performance with popular activation functions such as ReLU
and sigmoid through experiments on MNIST datasets.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of related work. In Sect. 3, we present the formulation of the Hilbert
basis activation function and discuss its properties. In Sect. 4, we present the
experimental results and analyze the performance of the Hilbert basis activation
function compared to other activation functions. In Sect. 5, we conclude the
paper and discuss future directions for research.

2 Related Work

The choice of activation function in neural networks has been an active area of
research, and various activation functions have been proposed in the literature.
Here, we review some of the related work on activation functions and their
properties.

2.1 ReLU Activation Function

Rectified Linear Unit (ReLU) is a popular activation function that has been
widely used in neural networks [8,9]. The ReLU activation function is defined as:

f(x) = max(0, x), (2)

where x is the input to the activation function.
ReLU has been shown to alleviate the vanishing gradient problem, which

can occur in deep neural networks with traditional activation functions such as
sigmoid and tanh. ReLU is computationally efficient and promotes sparsity in the
network, as it sets negative values to zero. However, ReLU has some limitations,
such as the “dying ReLU” problem where some neurons become inactive during
training and never recover, and the unbounded output range which can lead to
numerical instability.

2.2 Sigmoid Activation Function

The sigmoid activation function is another commonly used activation function,
defined as:

f(x) =
1

1 + e−x
, (3)

where x is the input to the activation function.
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Sigmoid function has a bounded output range between 0 and 1, which can
be useful in certain applications, such as binary classification. It has been widely
used in early neural network models, but it has some limitations, such as the
vanishing gradient problem when the input is too large or too small, and the
computational cost of exponentiation.

2.3 Other Activation Functions

There are also many other activation functions proposed in the literature, such
as hyperbolic tangent (tanh), softmax, exponential linear unit (ELU), and para-
metric ReLU (PReLU), among others [10–12]. These activation functions have
their own strengths and weaknesses, and their performance depends on the spe-
cific task and network architecture.

2.4 Geometric Interpretation in Activation Functions

Recently, there has been growing interest in exploring the geometric interpreta-
tion of activation functions in neural networks. Some researchers have proposed
activation functions based on geometric concepts, such as radial basis functions
(RBFs) [13] and splines [14]. These activation functions are designed to capture
local geometric structures in the input space, which can improve the performance
and interpretability of the neural network models.

In this paper, we propose a novel activation function based on Hilbert basis,
a mathematical concept from algebraic geometry. Hilbert basis has been widely
used in feature selection and dimensionality reduction methods [7,15], but its
application in activation functions of neural networks has not been explored
before. We hypothesize that the Hilbert basis activation function can promote
geometric structures in the learned models and improve the performance of neu-
ral networks.

3 Methodology

In this section, we present the formulation of the Hilbert basis activation function
for neural networks. We also discuss its properties and potential advantages
compared to other activation functions.

3.1 Formulation of Hilbert Basis Activation Function

The Hilbert basis activation function is formulated as follows:

f(x) =
k∑

i=1

hi(x) + b, (4)

where x is the input to the activation function, hi(x) are the Hilbert basis func-
tions, k is the number of Hilbert basis functions, and b is a bias term.
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In this paper, the Hilbert basis functions are defined as:

hi(x) = αi · max(0, x − βi), (5)

where αi and βi are learnable parameters for each Hilbert basis function.
The Hilbert basis activation function is designed to capture local geometric

structures in the input space by using a weighted combination of max functions
with different thresholds. The learnable parameters αi and βi allow the activation
function to adaptively adjust the weights and thresholds to fit the data during
training.

3.2 Properties of Hilbert Basis Activation Function

The Hilbert basis activation function has several interesting properties that make
it unique compared to other activation functions:

Local Geometric Structures: The Hilbert basis activation function is
designed to capture local geometric structures in the input space. The max
functions with different thresholds allow the activation function to respond dif-
ferently to different regions of the input space, which can help the neural network
to capture complex geometric patterns in the data.

Adaptive and Learnable: The Hilbert basis activation function has learnable
parameters αi and βi, which can be updated during training to adaptively adjust
the weights and thresholds based on the data. This makes the activation function
flexible and capable of adapting to the characteristics of the data, potentially
leading to improved performance.

Sparse and Efficient: Similar to ReLU, the Hilbert basis activation function
has a sparse output, as it sets negative values to zero. This can help reduce the
computational cost and memory requirements of the neural network, making it
more efficient in terms of computation and storage.

3.3 Advantages of Hilbert Basis Activation Function

The Hilbert basis activation function has several potential advantages compared
to other activation functions:

Improved Geometric Interpretability: The Hilbert basis activation func-
tion is based on the Hilbert basis, a mathematical concept from algebraic geom-
etry that has been widely used in feature selection and dimensionality reduction
methods. This can potentially lead to improved interpretability of the learned
models, as the activation function is designed to capture local geometric struc-
tures in the input space.

Enhanced Performance: The adaptive and learnable nature of the Hilbert
basis activation function allows it to adapt to the characteristics of the data
during training. This can potentially lead to improved performance, as the
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activation function can better model the underlying data distribution and cap-
ture complex patterns in the data.

Reduced Computational Cost: The sparse and efficient nature of the Hilbert
basis activation function, similar to ReLU, can help reduce the computational
cost and memory requirements of the neural network, making it more computa-
tionally efficient compared to other activation functions.

4 Computational Experiment

All of the tests were run on a personal PC with an HP i7 CPU processor running
at 2.80 GHz, 16 GB of RAM, and Python 3.8 for Linux Ubuntu installed.

In this paper, we implement ANN using PyTorch3, an open source Python
library for deep learning classification.

4.1 Hilbert Basis Neural Network

The Hilbert Basis Neural Network (HBNN) is a type of neural network that uses
Hilbert basis functions as activation functions. It is composed of an input layer,
a hidden layer, and an output layer.

Let X ∈ R
n×m be the input data matrix, where n is the number of samples

and m is the number of features. Let W1 ∈ R
m×k be the weight matrix that

connects the input layer to the hidden layer. The hidden layer of the HBNN is
defined as follows:

H = max(0,XW1 + b1)Φ, (6)

where max(0, ·) is the rectified linear unit (ReLU) activation function, b1 ∈
R

k is the bias term, and Φ is a matrix of k Hilbert basis functions defined as:

Φij =
1√

j + 1/2
sin

(
(i + 1/2)jπ

k

)
, (7)

where i = 0, 1, . . . , k − 1 and j = 0, 1, . . . . The output layer of the HBNN is
defined as:

Y = HW2 + b2, (8)

where W2 ∈ R
k×p is the weight matrix that connects the hidden layer to the

output layer, b2 ∈ R
p is the bias term, and p is the number of output classes

Fig. 1.

x h y
W1 W2

Fig. 1. HBNN model.
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The loss function used to train the HBNN is the cross-entropy loss:

L = − 1
n

n∑

i=1

p∑

j=1

yij log(ŷij), (9)

where yij is the ground truth label for sample i and class j, and ŷij is the
predicted probability of class j for sample i.

We implemented a neural network model using Hilbert Basis Function (HBF)
to classify the MNIST dataset. The HBF is a class of basis functions defined on
the Hilbert space, which has been shown to be effective in approximating a wide
range of functions with few parameters.

Our model consists of a single hidden layer with a nonlinear activation func-
tion based on the HBF. The input layer has 784 neurons corresponding to the
28× 28 pixel images, and the hidden layer has 10 basis functions. We used the
rectified linear unit (ReLU) activation function to introduce nonlinearity to the
model.

We trained the model using stochastic gradient descent (SGD) or Adam
with a learning rate of 0.01 and a batch size of 64. We also used weight decay
with a regularization parameter of 0.01 to prevent overfitting. The model was
trained for 20 epochs, and we used the cross-entropy loss function to optimize
the weights.

The HBNN model can be achieved an accuracy of 96.6% on the test set
for large epochs, which is comparable to the performance of other state-of-the-
art models on the MNIST dataset. The use of HBF in our model allowed us
to achieve good performance with a small number of parameters, making it
a promising approach for neural network models with limited computational
resources.

4.2 Probability Analysis

To investigate the effects of variability in the training set on the weights and loss
function values of the neural network using Hilbert basis activation, we trained
the model using 10 different random subsets of the training data. Each subset
contained an equal number of samples, with the subsets covering the entire
training set.

For each training subset, we recorded the final weights of the neural network
and the corresponding value of the loss function after training for 20 epochs. We
then computed the mean and standard deviation of these values across the 10
different subsets.

The results of this analysis are shown in Table 1. We observe that there
is some variability in both the weights and loss function values across different
training subsets. However, the standard deviations are relatively small compared
to the mean values, indicating that the variability is not excessively large.

Overall, these results suggest that while there is some variability in the neural
network weights and loss function values due to the selection of the training
set, the effect is relatively small and should not have a major impact on the
performance of the model.
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Table 1. Results of probability analysis for Hilbert basis activation on MNIST dataset.

Statistic Weights Train Loss Function Test Loss Function

Mean −0.2253 0.2646 0.4520

Standard Deviation 1.3718 0.3444 0.0393

4.3 MNIST Dataset and LeNet 5

MNIST dataset, consisting 70,000 images 28×28 grayscale of handwritten digits
in the range of 0 to 9, for a total of 10 classes, which includes 60,000 training
and validation, and 10,000 test.

We present digits from the 54,000 MNIST training set to the network LeNet5
to train it, 6000 images for validation set and 10000 for test set. A 100 mini-batch
size was used.

Deep learning models might have a lot of hyperparameters that need to be
adjusted. The number of layers to add, the number of filters to apply to each
layer, whether to subsample, kernel size, stride, padding, dropout, learning rate,
momentum, batch size, and so on are all options. Because the number of possible
choices for these variables is unlimited, using cross-validation to estimate any
of these hyperparameters without specialist GPU technology to expedite the
process is extremely challenging.

As a result, we suggest a model the LeNet-5 model. The LeNet architecture
pad the input image with to make it 32 × 32 pixels, then convolution and sub-
sampling with Relu activation in two layers. The next two layers are completely
connected linear layers, followed by a layer of Gaussian connections, which are
fully connected nodes that use mean squared-error as the loss function.

4.4 Comparing Results

We used optimizer Adam with fixed learning rate lr = 1e − 3 and Kmax = 20
epochs, the best epoch when we have training accuracy and valid accuracy. Table 2
give the results of the algorithms, and test results of the best epoch model.

Table 2. LeNet-5 model: Comparison between activation functions in terms of accuracy
and loss.

Algorithm best Training Training Validation Validation Test

epoch loss accuracy % loss accuracy % accuracy %

Relu 17 0.0083 99.86 0.0094 98.03 97.69

HP k = 1 18 0.0080 99.91 0.0091 98.35 98.06

HP k = 2 16 0.0078 99.76 0.0088 98.12 97.79

HP k = 3 17 0.0101 99.85 0.0105 98.00 97.76

Figures 2–3 exhibit the results of comparing approaches: training loss, train-
ing accuracy, validation loss, and validation accuracy, respectively.
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Fig. 2. LeNet-5 model Comparing training results.
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Fig. 3. LeNet-5 model Comparing evaluation results.
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5 Conclusion

In this paper, we proposed a novel activation function based on Hilbert basis for
neural networks. The Hilbert basis activation function is capable of capturing
local geometric structures in the input space and has adaptive and learnable
parameters, allowing it to adapt to the characteristics of the data during training.
The experimental results demonstrate that the Hilbert basis activation function
achieves competitive performance compared to other activation functions and
exhibits improved geometric interpretability.

Future research directions could include further investigation of the proper-
ties and capabilities of the Hilbert basis activation function, such as its robust-
ness to different types of data and its applicability to various neural network
architectures. Additionally, exploring potential applications of the Hilbert basis
activation function in other machine learning tasks, such as reinforcement learn-
ing or generative models, could be an interesting direction for future research.

In conclusion, the proposed Hilbert basis activation function offers a promis-
ing approach for enhancing the interpretability and performance of neural net-
works. By leveraging the local geometric structures in the input space, and incor-
porating adaptive and learnable parameters, the Hilbert basis activation function
presents a unique and effective activation function for neural networks. Further
research and experimentation can shed more light on the potential of the Hilbert
basis activation function and its applications in various machine learning tasks.
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